
Final Report 
Second DOE Workshop on Multiscale Problems 

Broomsfield, Colorado 
July 20-22, 2004 

October 16, 2004

 - 1 - 



Contributors  

The report of the Second DOE Workshop on Multiscale Mathematics is a collaborative effort by 
the report editors, session organizers, and invited speakers. The report also includes technical 
contributions from workshop participants. The workshop participants are listed in Section 1. 

Workshop Organizers 

Donald Estep 
Colorado State University 

Gary Johnson 
Department of Energy 

John N. Shadid 
Sandia National Laboratories 

Simon J. Tavener 
Colorado State University 

Dave Zachmann 
Colorado State University

Report Editors 

Donald Estep 
Colorado State University 

John N. Shadid 
Sandia National Laboratories 

Simon J. Tavener 
Colorado State University 

Session Organizers and Invited Speakers 

 
Todd Arbogast 

University of Texas at Austin 

Pavel B. Bochev 
Sandia National Laboratories 

Graham Carey 
University of Texas at Austin 

Edwin Chong 
Colorado State University 

Jacob Fish 
Rensselaer Polytechnic Institute 

Gregory Forest 
University of North Carolina at Chapel Hill 

Michael D. Graham 
University of Wisconsin – Madison 

Max Gunzburger 
Florida State University 

Andrew J. Majda 
New York University 

Mark S. Shephard 
Rensselaer Polytechnic Institute 

Eitan Tadmor 
University of Maryland 

 
 

  
 

 - 2 - 



Table of Contents 

CONTRIBUTORS ...........................................................................................................................................................2 
TABLE OF CONTENTS ................................................................................................................................................3 
SUMMARY ......................................................................................................................................................................4 
1. WORKSHOP PARTICIPANTS ...........................................................................................................................5 
2. INTRODUCTION..................................................................................................................................................9 
3. MULTISCALE PROBLEMS: PAST AND PRESENT ....................................................................................10 

3.1 OBSERVATIONS ABOUT THE HISTORY OF MATHEMATICS FOR MULTISCALE PROBLEMS ..........................................10 
3.2 A PERSPECTIVE ON THE CURRENT STATE OF MATHEMATICS FOR MULTISCALE PROBLEMS .....................................10 
3.3 AN ARGUMENT FOR THE NECESSITY OF TRULY MULTISCALE MATHEMATICS..........................................................12 

4. MULTISCALE PROBLEMS: FUTURE DIRECTIONS .................................................................................16 
4.1 MATHEMATICAL ISSUES ARISING IN MODERN MULTISCALE PROBLEMS ..................................................................16 
4.2 RESEARCH DIRECTIONS IN MATHEMATICS FOR MULTISCALE PROBLEMS ................................................................17 

5. THE DOE INVESTMENT IN MULTISCALE MATHEMATICS .................................................................18 
6. SPECIFIC REPORTS ON ASPECTS OF MULTISCALE PROBLEMS ......................................................19 

6.1 MATHEMATICAL TECHNIQUES ...............................................................................................................................19 
6.1.1 Adaptive Discretization and Modeling ..........................................................................................................19 
6.1.2 Variational Multiscale Analysis ....................................................................................................................25 
6.1.3 Discrete to Continuum Bridging....................................................................................................................31 
6.1.4 Reduced Order Modeling ..............................................................................................................................33 

6.2 APPLICATIONS........................................................................................................................................................38 
6.2.1 Soft Matter.....................................................................................................................................................38 
6.2.2 Atmospheric Science......................................................................................................................................44 
6.2.3 Networks........................................................................................................................................................46 

 - 3 - 



Summary  

The need to understand complex physical systems with interacting behaviors coupled 
through multiple spatial and temporal scales has increased dramatically over the last decade. 
Scientists and engineers are seeking to simulate, analyze, and control ever more complex systems. 
At the same time, the development of new measurement and characterization tools in many fields 
has made it possible to explore spatial and temporal phenomena on an unprecedented range of 
scales.  

Indeed, the physical and mathematical complications that arise in multiscale systems 
present one of the major obstacles to future progress in many fields of science and engineering. 
This has resulted in increasing pressure on the applied mathematics community to develop new 
methods for multiscale problems. The key mathematical issues are generally described as the need 
to develop better descriptions of scale representation, scale separation, inter-scale communication 
and to improve the mathematical analysis and solution techniques for multiscale problems. 

Specifically, there is a pressing need to extend existing mathematical techniques, develop 
new methods, and find innovative ways to combine multiple techniques in order to handle complex 
systems with multiple scales that may or may not be well separated. Also important is the need to 
develop and apply mathematical methods in the context of realistic applications with the goal of 
providing physically meaningful information. Moreover, there is a strong need to develop abstract 
mathematical frameworks for important classes of multiscale problems. Mathematical frameworks 
provide the means to categorize and clarify characteristics of existing models and approximations 
in a landscape of seemingly disjoint, mutually exclusive, and ad-hoc methods. Such frameworks 
are likely to encompass a variety of analytic and numerical methods. 

The overwhelming consensus opinion is that future progress on multiscale problems 
requires the efforts of interdisciplinary teams of researchers comprising mathematicians, scientists, 
engineers, and computer scientists drawn from both the universities and the national laboratories. 
The practical, problem solving orientation of the Department of Energy places it in a unique 
position to fund the interdisciplinary activity that is required to get the job done. 
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2.  Introduction  

The Second DOE Workshop on Multiscale Problems was held from July 20 to July 22 in 
Broomfield, Colorado. During these three days, over eighty researchers with expertise in a wide 
variety of engineering, mathematical and scientific fields gathered to discuss the current state of 
mathematical methods for multiscale problems, possible future directions for research, and ways in 
which the Department of Energy could best support such activity. Stimulated by a series of invited 
lectures in which general overviews of specific problems and solution methods were presented, the 
participants gathered into technical sessions for focused presentations, detailed discussions, and 
debate. The sessions were as follows. 

Session Organizer 
Systematic Multi-Scale Stochastic Modeling and Quantifying  
Uncertainty in Atmosphere/Ocean Science Andrew J. Majda 

Complex Fluids and Soft Matter M. Gregory Forest 
Variational Multiscale Analysis Pavel Bochev 
Simulation and Modeling of Multiscale Problems Graham F. Carey 
Multiscale Computational Challenges in Soft Materials Michael D. Graham 
Adaptive Modeling and Simulation Mark S. Shephard 
Variational Multiscale Methods and Multiscale Finite  
Elements for Heterogeneous Porous Media Todd Arbogast 

Simulation and Analysis of Large Networks Edwin K. P. Chong 

In Section 3, we present some general observations and summarize some general 
conclusions about the current state of multiscale methods and applications. In Section 4, we 
synthesize conclusions about possible future directions for research in multiscale mathematics. In 
Section 5, we present some detailed suggestions for ways to support research in multiscale 
mathematics. Finally, the reports from the individual workshop sessions comprise the bulk of this 
report and are presented in Section 6.  
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3.  Multiscale Problems: Past and Present 

3.1   Observations about the history of mathematics for multiscale problems 
Nature is replete with systems that encompass interacting behaviors occurring across a 

range of scales, and attempts to treat the multiscale aspects of such systems have a long and deep 
history in applied mathematics. We need only to observe the ongoing struggles to model turbulent 
and reacting fluids, biological systems, and complex materials, to understand how multiscale 
problems have driven applied mathematics. Classical techniques in applied mathematics for 
multiscale problems include continuum modeling and averaging techniques, Fourier analysis, 
asymptotic analysis, singular perturbation theory, and the use of scaling laws and self-similarity, 
i.e., the building blocks of a traditional education in applied mathematics. 

While representing a wide range of mathematics, classical multiscale techniques 
nonetheless share some common limitations. Chiefly, almost all classical methods apply to systems 
in which the important behavior occurs on widely separated scales, with the goal of reducing the 
mathematical description to a model of behavior on a single scale, while approximating the 
relevant effects of the behavior on the other scale(s), or even discarding these effects if necessary. 
This is illustrated, for example, by the continuum modeling of Brownian motion of molecules, the 
description of boundary layers via asymptotic analysis, and the characterization of “low” and 
“high” frequency modes when using Fourier analysis.  

Classical methods reflect two different historical limitations. Firstly, it was often physically 
impossible to gather experimental evidence of the behavior of complex physical processes on the 
finest scales. Secondly, the limited power of mathematical tools and computers often meant that 
even if the information on the finest scales had been available, it would have been infeasible to 
include it in a full mathematical description of the system. In other words, there was really no 
alternative to an approximate mathematical treatment of the fine-scale behavior. One serious 
consequence is that scientists and mathematicians have often had to introduce “closures” to 
mathematical models that are at best empirical and often ad hoc, raising serious concerns about the 
accuracy of such models. 

3.2   A perspective on the current state of mathematics for multiscale problems 
The need to address the issue of multiscale behavior in complex physical systems has 

increased dramatically over the last decade. Indeed, without exaggeration, we can say that the 
physical and mathematical complications that arise in multiscale systems currently present one of 
the major obstacles to future progress in many fields of science and engineering. The increasing 
pressure on the applied mathematics community to develop new methods for multiscale problems 
originates from several sources. Firstly, scientists and engineers are seeking to simulate, analyze 
and even control ever more complex systems. Consider such diverse examples such as 

• Modeling fusion reactors using extended magnetohydrodynamics, balancing plasma 
flow, wave propagation, electromagnetic effects and resistive dissipation 

• Simulating the operation of fuel cells, balancing fluid flow, heat and mass transfer, high 
heat release non-equilibrium chemical kinetics coupled with catalytic surface chemistry , 
and electrostatics 

• Simulating sub-surface contaminant transport, balancing advection, diffusion, and 
reaction in a complex flow environment 

 - 10 - 



• Modeling protein folding processes, coupling physical effects of the fast bond stretching 
scales to those on the much slower folding scales 

• Studying soft matter such as molten plastic, whose properties are determined or 
modulated by noncovalent effects such as electrostatic and van der Waal interactions, 
hydrodynamic coupling between elements of the microstructure, and the constraints of 
excluded volume or connectivity 

• Increasing reliance on long term predictions from atmospheric and climate models, to 
predict, for example, the amount of carbon dioxide in the terrestrial system in order to 
determine policy with far-reaching financial and social effects 

• Modeling large-scale complex graphs and networks that can be used to represent 
biological systems 

• Modeling complex information and communication networks involving tens and 
hundreds of thousands of nodes coupled through multiple scales in space and time 

leveL evaeW

leveL eldnuB

leveL onaN

leveL cimotA

tnenopmoC

eht ta seitreporP
elacsonaN dna-orciMO

H
---O

=C
R

 eht ta seitreporP
elacsorcaM

noitpircsed lacisyhp elacsitluM fo
 lairetam etisopmoconan a

 
Figure 1: Illustration of scales involved in modeling a nanocomposite material.  

(Figure courtesy of Mark Shepard) 

Many of these problems are of fundamental importance to the mission of the Department of 
Energy. An examination of the DOE ASC and SciDAC application areas reveals numerous other 
examples, many of which are highlighted in the report of the First DOE Workshop on Multiscale 
Problems. The properties of these systems depend critically on important behaviors coupled 
through multiple spatial and temporal scales without a clear distinction between scales, and as such, 
do not fall within the classical framework. In such situations, consistent and physically realistic 
mathematical descriptions of the coupling between, and behavior of, the various scales are required 
to obtain robust and predictive computational simulations. 

Increasing physical capabilities in experimental and computational science also contribute 
to the pressure on applied mathematics. The development of new measurement and characterization 
tools in many fields make it possible to explore spatial and temporal phenomena on an 
unprecedented range of scales. For systems where such information is available, we have the 
building blocks to create realistic mathematical models of behavior on a number of individual 
scales. But, this increases the pressure to understand how to combine realistic models at different 
scales in order to obtain a manageable model of the entire multiscale system.  
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Figure 2: Illustration of scales involved in modeling DNA.  
(Figure courtesy of Michael Graham) 

Furthermore, simulations of complex, multiscale systems are often just one component of 
the overall problem. Continuation or homotopy methods to compute steady-state solutions, 
parametric studies of state solutions, optimization and optimal control problems, and computing 
feedback control settings in real time, require many computational solutions of multiscale systems. 

The successes of the past few decades impose their own pressure on applied mathematics.  
Modern mathematical techniques such as homogenization theory, renormalization group 
techniques, hybrid numerical methods, operator splitting, variational multiscale analysis, and 
adaptive discretization and modeling (as an incomplete list), have produced significant advances in 
terms of understanding multiscale problems, thus supporting the ambition to study even more 
complex multiscale problems. It is true that most, if not all, of these methods can be traced back 
directly to classical techniques in applied mathematics. In particular, many of these methods 
assume a large separation between scales and are commonly applied with the goal of describing the 
behavior on one scale. Nonetheless, they represent a significant evolution from classical 
methodology. However, in contrast to classical methods, these techniques have been developed and 
employed in very specific scientific and application areas, and multiscale research remains largely 
disjoint among physical disciplines. For this reason, researchers are unlikely to be familiar with 
more than a couple of these methods, creating the challenge to develop an overall framework 

3.3   An argument for the necessity of truly multiscale mathematics 
We present a notional discussion based on advances in high performance computing 

hardware and the development of mathematical algorithms to argue in favor of two points; (1) the 
development of advanced mathematical solution algorithms during  the past twenty five years has 
provided an effective speed-up that is on the same order as that provided by  advances in hardware, 
(2) the solution of truly multiscale problems based on simulation at the single, smallest scale can 
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not  be used to accurately solve these type of problems, at least not  during our research careers. 
This argument is based on extrapolation of supercomputing hardware advances over the past 
twenty five years, and the scaling complexity of state-of-the-practice solvers for both elliptic partial 
differential equations (PDE) and molecular dynamics (MD) calculations.  

Over the past twenty five years, there has been a tremendous increase in computing power 
arising from advances in the semiconductor industry and computer architecture design. The largest-
scale scientific computing platforms have transitioned from single processor vector computers and 
small-scale multiprocessor vector computers (4 to 16 processors) to large-scale massively parallel 
computers using scalar CPUs (~100 to 10000 processors) and clusters of scalar and vector CPUs 
(~100 to 4000 processors). The increase in CPU capability and memory capacity represented by 
these machines is shown in Figures 3 and 4, and represents an increase of 6 orders of magnitude. 
The data from 1994 (Paragon) to 2003 (Earth Simulator) indicates roughly a doubling of the peak 
Gflop rate every year. This is faster than Moore’s law and includes the additional effects of adding 
larger numbers of processors and/or more powerful processors in the most advanced machines.  
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Figure 3: Hardware Performance (Gflops)  

(Figure courtesy of S.J. Plimpton and J.N. Shadid) 
 
Simultaneously, there have been developments of mathematical algorithms in several fields, 

e.g., the solution of partial differential equations and simulation of molecular dynamics, that have 
kept pace with progress in hardware and we now perform large-scale engineering and scientific 
simulations that were undreamed-of two decades ago. For example, in appropriate problems, 
algorithmic developments have decreased the computational complexity of solutions to PDE 
problems from O(N3) to O(N), where N is the number of unknowns, by the replacement of direct 
matrix factorization techniques with iterative solution methods. In Figure 5, we show the 
approximate increase in normalized speedup due to these algorithmic advances for solutions of a 
representative elliptic partial differential equation, the Poisson equation, which is a common kernel 
in many computational elliptic PDE solution methods. Historically the size of PDE simulations has 
been limited by system memory size and total CPU speed. In this figure, the size of the LINPACK 
benchmark matrix solve, for a given machine in a given year is used. It should be pointed out that 
using a sparse matrix algorithm to set the reference problem size would have increased the 
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expected normalized speed-up of the lower complexity algorithms. Figure 6 indicates the 
approximate speedup from the brute force O(N2) algorithm for MD simulations to a lower 
complexity O(N) method. Simulation sizes have been historically limited by total compute rate 
(Gflops). In this figure, the largest simulations in 1980 have been scaled by total compute rate to 
arrive at the problem sizes (number of atoms) that can be simulated on a given machine. This 
scaling corresponds roughly to the largest simulations that can be run for reasonable total 
simulation times. Today, these advanced solution methods are often being employed by leading 
researchers on very large systems and provide optimal complexity for appropriate single-scale 
simulations. In this context, algorithmic developments have provided commensurate relative 
performance increases to the strides made in hardware.  
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(Courtesy of S.J. Plimpton and J.N. Shadid) 

Yet, even with extrapolating continuing hardware advances and assuming optimal 
complexity algorithms, we cannot compute ourselves out of the problem of understanding the 
mathematics of complex multiscale systems. For example, consider the modeling of a simple 
premixed turbulent combustion problem with, say, Reynolds number Re=10,000 and Zeldovich 
number Ze=100. The ratio of the largest length scale, L, to the Kolmogorov scale, IK, is L/IK = 10 
Re3/4 for hydrodynamic turbulence. Further for a premixed turbulent reacting flow problem L/IR=10 
Ze Re3/4, with smallest reaction length scale IR. Therefore a direct numerical simulation (DNS), a 
single-scale approach, is estimated to require L/IR=106 in each spatial dimension while the largest 
simulations to date solve with . Accounting for numerical stability concerns which limit 
the time step with respect to the spatial discretization, accurate reacting flow DNS would seem to 
require computations that are 10

3/ 10RL l <

12 larger than current computations. Extrapolation using current 
hardware advances and optimal algorithms suggests that it will be 40 years before we see this 
necessary improvement in computing power. A similar rough computation for a crack propagation 
problem in 1 cm3 of Copper (~1023 atoms) using a molecular dynamics (MD) computation suggests 
that it will be at least 80 years before we can perform accurate simulations by a single-scale 
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solution method for one second. Currently, the largest MD simulations are approximately 109 
atoms and take 105 femto-second (10-15) sized time steps. 

These relatively simple multiscale examples demonstrate the limitations of single-scale 
methods. Clearly, a truly multiscale mathematics and computational approach for modern 
multiscale problems is required in order to tackle the ever more complex problems of interest to the 
DOE Office of Science. 
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Figure 5: Approximate Speed-up of Solution for PDE Problem 
(Courtesy of S.J. Plimpton and J.N. Shadid) 
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Figure 6: Approximate Speed-up of Solution for Atomistic Problem  
(Courtesy of S.J. Plimpton and J.N. Shadid) 
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4.  Multiscale Problems: Future Directions 

4.1   Mathematical issues arising in modern multiscale problems 
The key mathematical and physical issues arising in modern multiscale problems occur 

across a wide range of scientific and engineering disciplines. Due in part to the historical 
development of mathematical techniques for multiscale problems, these issues have not been 
clearly identified or abstracted. The identification and categorization of common issues is an 
important step in the process of developing mathematical frameworks for multiscale analysis that 
can guide development of advanced techniques. As an incomplete list, some key issues include: 

• Determining the scales to be included over the various portions of the space-time domain 
and the form and strength of the coupling between scales with regard to the desired 
information to be obtained from the model. (This basic question of modeling has gained 
new significance in light of the advances in science in measuring and describing 
behaviors at different scales.) 

• Selecting the appropriate model for each scale that captures the relevant physical 
behavior. (In many situations, we are still using crude models because of perceived or 
real limitations in the ability to produce computationally feasible models and to 
successfully link models.) 

• Understanding how to link the information obtained from models at various scales in 
order to ensure the effects of this linkage are controlled. (As part of this issue, it is 
important to understand how to ensure models selected at various scales are capable of 
producing and transferring the desired information to other scales.) 

• Ensuring that the errors associated with the transfer of solutions and the approximations 
or representations used for the component models are adequately controlled. (This is a 
difficult issue even when we know the basic relations between quantities at different 
scales.) 

• Characterizing the essential properties that a “closure’ model must have to provide 
physically realistic behavior in the context of a specific multiscale application. (The 
development of some general multiscale mathematical frameworks for classes of 
important problems will help to understand this key issue in multiscale modeling.) 

• Determining model parameter values needed to exercise each of the models at various 
scales and quantifying the effect of uncertainty in parameter values as it propagates 
through the component models at each scale, and by the inter-scale transfer operators, to 
the quantities of interest. (This is a critical issue in applications to “real world” scenarios. 
While progress has been made on uncertainty quantification of individual models, much 
less is known about uncertainly quantification in the context of complex multiscale 
problems with possibly heterogeneous component scale models.) 

• Estimating and controlling spatial and temporal discretization and integration errors. 
(These classical concerns gain new importance in the context of solving complex 
multiscale problems where errors from each component and the transfer of information 
between scales can impact the results from the other scales in both obvious and subtle 
ways.) 

• Developing mathematical analysis tools and producing results for the consistency, 
stability, convergence and accuracy of complex multiscale methods applied to prototype 
multiscale problems and challenging applications. 
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To be brief, we might sum up the key mathematical issues as the development of a more general 
description of scale representation, scale separation, inter-scale communication and the ability to 
apply mathematical analysis to multiscale solution methods. 

4.2   Research directions in mathematics for multiscale problems 
On the most basic level, there is pressing need for developing new mathematical methods 

and continuing work on existing mathematical methods such as 
• WKB and renormalization group 

techniques 
• Homogenization theory 
• Hybrid numerical methods 
• Averaging methods 
• Variational multiscale analysis 
• Reduced systems 

• Model decomposition, e.g., operator 
splitting and parameter passing 

• Adaptive mesh refinement and modeling 
• Discrete and continuum modeling 

techniques for network and graph models 
• Uncertainty quantification of single-scale 

models 
in order to address the mathematical issues outlined in §2.1. A critical goal is to combine and 
extend these methods or develop new methods to handle problems in which there are multiple 
scales that may not be well separated. The report of the First Workshop and the session reports 
from the Second Workshop presented in §4 below contain specifics on particular approaches, what 
is currently lacking, and what might be achieved. 

From the perspective of the mission of the DOE, developing and applying mathematical 
methods in the context of realistic applications important to the DOE is another critical goal. 
Mathematics must be informed by scientific and engineering reality in order to focus on 
overcoming the physically meaningful difficulties and obtaining physically meaningful information 
from models. A reoccurring conclusion that arose during the discussions in the Second Workshop 
is the need to fund truly interdisciplinary research. 

Beyond research in specific methods and problems, there is also a strong need for abstract 
mathematical frameworks for important classes of multiscale problems. These techniques can 
provide a common language for formulating and analyzing multiscale problems across a range of 
scientific and engineering disciplines. Existing approaches in multiscale mathematics have evolved 
from ideas and solutions that strongly reflect their original problem domains. As a result, research 
in multiscale problems has followed widely diverse and disjoint paths. This presents a serious 
barrier to the application of methods to new problem domains. The creation of abstract 
mathematical frameworks would allow categorization and clarification of characteristics of existing 
models and approximations in a landscape of seemingly disjoint, mutually exclusive, and ad-hoc 
methods. It is very likely that such mathematical frameworks will encompass a variety of analytic 
and numerical methods. 
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5.  The DOE Investment in Multiscale Mathematics  

The DOE is recommended to pursue a multi-prong strategy in funding research in 
multiscale mathematics. There is no doubt that there are individual projects and individual 
researchers that can make fundamentally important contributions to multiscale mathematics, so the 
DOE should continue to support individual investigator research. But, there is also a strong need 
for new funding models. In particular, the overwhelming consensus is that future progress on 
multiscale problems requires the efforts of interdisciplinary teams of researchers comprising 
mathematicians, scientists and engineers, and computer scientists. Because of differences in 
funding requirements and culture, truly interdisciplinary research is difficult to fund through 
traditional avenues. The practical, problem solving orientation of the DOE mission places it in a 
unique position to fund the interdisciplinary activity that is required to get the job done. 

As part of the goal of supporting interdisciplinary research, the DOE should encourage the 
development of closer ties between researchers at the DOE laboratories and at the universities. 
DOE funding of research projects should include significant resources to support long term visits 
by students, postdocs, and faculty to DOE laboratories. The DOE could even go as far as creating a 
DOE Postdoc program analogous to the NSF Postdoc Program, in which a postdoc would choose 
co-advisors from a university and a DOE laboratory and pursue an interdisciplinary project that 
involves periods of residency at both locations. 

The DOE should also improve the basic infrastructure among partner universities in large 
projects by providing funds for the creation of teleconferencing and videoconferencing facilities. In 
addition continued organization of workshops like the First, Second, and Third DOE Workshops on 
Multiscale Problems are encouraged. In terms of initiating the creation of an institute(s) focused on 
multiscale mathematics, the participants of the workshops had mixed reactions and no clear 
consensus emerged. 
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6.  Specific Reports on Aspects of Multiscale Problems 

We next present reports that cover specific aspects of multiscale problems. These reports 
should be considered as complementing the problems and methods discussed in the reports from 
the First and Third Workshops. 

The Second Workshop was organized into sessions devoted to a particular set of 
mathematical methods and/or multiscale applications raising mathematical challenges. Each 
session comprised an introductory overview lecture presented by the session organizer, followed by 
three shorter talks addressing specific issues in the subject of the session, followed by a group 
discussion. The session organizers prepared the final reports for their sessions. We also received 
final reports from two invited speakers who were chosen to add breadth to the meeting. 

In presenting the reports, we first arranged them according to whether they emphasized 
mathematical technique(s) or applications, and then grouped reports that covered similar topics 
together. It would not be difficult to find other natural arrangements of the material. 

6.1   Mathematical Techniques 

6.1.1 Adaptive Discretization and Modeling 

Session VI: Adaptive Modeling and Simulation  

Organizer 

Mark S. Shephard, Rensselaer Polytechnic Institute  

Contributing Speakers 
Victor Barocas, University of Minnesota 
C. William Gear, NEC Research Institute 
Roger Ghanem, John Hopkins University 

Fundamental advances in physical and biological sciences and the development of new 
measurement and characterization tools have made it possible to understand spatial and temporal 
phenomena on the atomic, molecular, microscopic, and macroscopic scales. Microelectronics has 
led this revolution through the development of integrated circuits. Recent progress in 
nanotechnology and biotechnology has extended the envelope of scales, making it possible to 
design starting from nanoscale building blocks. The ability to continue to accelerate these advances 
and to translate them into practice will require the ability to reliably execute multiscale simulations. 
The effective application of these multiscale simulations will require the development of adaptive 
methods that apply the appropriate models and discretizations over the space and time scales of the 
problem.  

Multiscale simulation is central to essentially all key DOE applications. A quick examination of the 
DOE ASCI and SciDAC application areas quickly reveals that each of them involved consideration 
of multiphysics behavior on multiscales that range over 12 orders of magnitude in space and 15 
orders of magnitude in time. All of these applications currently involve scientific investigation at 
multiple scales from (sub) atomic levels to full scale systems. Increasingly, these applications are 
expanding their efforts to account for the interactions of the multiple scales in the simulations 
applied.  
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The goal of adaptive methods is to control the errors associated with a simulation. In the case of 
multiscale simulations the sources of error include:  

• Scales included over the space/time domain of the problem. Interacting scales of importance 
range from sub-atomic interactions over femtoseconds to the prediction of long term weather 
patterns on the global scale. Issues to be addressed include the determination of the scales to 
be included over the various portions of the space time domain and the form and strength of 
scale coupling, 

• Models selected at each scale. Within any scale how do we select the appropriate model that 
will capture the physics to be modeled?  

• Parameter values used in each model. How well do we know the parameters needed to 
exercise each of the models at the various scales? How to we account for the variability of 
these quantities in the prediction of the quantities of interest? 

• Scale linking errors. How information from models on different scales is linked together 
across the scales in a meaningful way and how do we ensure any errors introduced in this 
process are small enough? 

• Solution transfer errors. Even if we know the basic relations between quantities at different 
scales, how do we ensure that the errors associated with the transfer of solutions on the 
discretizations used for those models are adequately controlled? 

• Equation discretization errors (space, time, etc.). The equation discretization methods used to 
solve each of the individual mathematical models will introduce their own errors. How are 
those errors controlled? 

• Mismatch of models at different scales. How do we ensure that the models selected at the 
various interacting scales are capable of transferring the appropriate information between 
scales? How do we control errors associated with the mismatch that can arise when different 
models are used to represent the desired behaviors on the various scales? 

• Nonlinear equation solution errors. How do we qualify and control errors involved with 
solving large non-linear systems when they are defined from multiple models interacting over 
multiple scales?  

The desired approach to execute an adaptive multiscale simulation would be to start with a coarse 
scale model and adaptively enrich it to include the scales, models and discretizations needed to 
predict the quantities of interest to the desired level of accuracy. This requires effective means to 
estimate the changes in solution from finer scale models without the application of those models 
over the entire domain. Although progress has been made on the development of discretization 
error estimators for this purpose for some classes of mathematical models, such capabilities have 
not been developed for the other sources of errors. Significant effort will be required to address the 
questions associated with the development of useful error estimates and correction indicators for 
the various components of the mathematical framework that is beginning to form for multiscale 
modeling and analysis. 

Central to the development of any adaptive multiscale method is the development of formalized 
mathematical methods for multiscale modeling and analysis since they provide mechanisms needed 
for the development of error estimates. An examination of the current efforts on the development of 
mathematical frameworks for supporting multiscale analysis clearly provides opportunities for the 
development of adaptive error control. As these methods begin to form an integrated mathematical 

 - 20 - 



framework for multiscale modeling and analysis, specific attention must be given to the adaptive 
application of the methods included to meet the needs of the many multiscale problems of interest. 

The relation of the integrals in variational multiscale methods [7,8] might lead to the natural 
definition of norms for which error estimates can be developed. Efforts on the development of the 
Heterogeneous Multiscale Methods [2] should provide the opportunity to apply various 
mathematical error analyses. The overall structure of the expansions that arise in the application of 
mathematical homogenization [4] to multiscale analysis immediately identifies the terms on which 
to concentrate error analysis. Continued generalization of these technologies [3] to include more 
spatial and temporal scales, including properly represented discrete scales, holds substantial 
promise for the development of adaptive multiscale methods. Examination of the multiscale 
extensions to generalized non-linear equation solving technologies being developed in the 
Equation-Free Multiscale Method [5.9] will also provide mechanisms for the development of 
multiscale error estimates. Finally, the appropriate quantification and modeling of uncertainty [6] 
across the various scales is critical to properly account for the stochastic nature of many of the 
processes that are being modeled. 

Some investigators are already beginning to consider the inclusion of adaptive control methods in 
the multiscale simulations they develop. Adaptive procedures have been added to the quasi-
continuum method that locally refine the model to the molecular mechanics level where needed 
[10]. Basic concepts from multilevel solution methods (e.g., adaptive multigrid) have been used to 
adaptively control the linkage of continuum discretizations and molecular mechanics models to 
predict the initiation and growth of atomic level defects [1]. These procedures are guided by two 
correction indication criterion that attempt to assess the level of non-locality and non-linearity 
present and adjust the molecular mechanics model, which models these behaviors, where needed.  

The development of multiscale simulation technologies will require appropriate combinations of 
expertise that can only be provided by multidisciplinary teams. At the heart of the development of 
the methods is the development of the needed mathematical methods to allow the various 
multiscale modeling methods to provide useful error estimates for the various error contributions. 
The ultimate success of the development of these methods requires appropriate interactions with 
the physical modelers to ensure the methods are relevant to the physics being modeled. Since the 
various mathematical methods for multiscale modeling currently under development have relative 
strengths with respect to the classes of physical models they are best suited to address, expertise on 
the appropriate physical models is important for selecting an approach and identifying the 
parameters of interest to be determined. In addition, the knowledge of physical modelers will 
provide insights that are useful in the development of the needed multiscale correction indicators 
and adaptive control methods.  

The development of adaptive multiscale methods will also need to engage computational scientist 
and software specialist. The application of an adaptive multiscale analysis will need software 
structures that can deal with multiple models and discretizations, and can ensure computational 
efficiency as the models and discretizations are adapted during the simulations. These software 
structures and associated algorithms become even more complex when consideration is given to the 
fact that most of these simulations will need to be run on large scale distributed memory parallel 
computers.  
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Session IV: Simulation and Modeling of Multiscale Problems 

Organizer 
Graham F. Carey, University of Texas at Austin  
Contributing Speakers 
Steve Bova, Sandia National Laboratory 
Donald Estep, Colorado State University 
Michael Holst, University of California at San Diego 

Methodology 
The focus of the session dealt with multiphysics/multiscale problems and adaptive procedures 
where space and time scales are an issue.  The speakers described several representative 
applications of DOE relevance to illustrate the main ideas and challenges.  For example, Steve 
Bova discussed the problem of multiscale issues that arise in coupled physics problems and the 
challenge of developing frameworks such as the Sierra framework from Sandia.  He provided 
examples involving heat transfer and thermomechanics to illustrate the ideas.  Don Estep described 
some reaction diffusion problems where the time scales may vary by different orders of magnitude 
and stressed the need for new algorithms such as operator splitting strategies to treat these more 
effectively.  In his talk, Mike Holst also dealt with some operator splitting strategies to deal with 
multiscale issues. 
It was clear from the discussion that there were still several open issues regarding the appropriate 
way to deal with different time scales.  Most of the discussion of spatial scales considered adaptive 
mesh strategies as a basic tool necessary to handle boundary layer and similar multiscale problems.   
Some related comments: 

• Todd Arbogast and Ralph Showalter discussed homogenization and porous media problem. 
One point that came out is that this technique, like many other techniques, requires a large 
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separation of scales. There is a need for techniques that work without a large separation or for 
which there are a number of intermediate scales. 

• Graham Carey asked about separating slow and fast times scales. Joe Tribbia discussed 
weather computations separate fast and slow time scales, but this can be done because they 
line up with physical phenomena, i.e., convection and diffusion. When the separation does not 
align with physical effects, it is not clear how this could be done. 

• John Shadid ventured the opinion that adaptivity can handle some scale issues, but it generally 
has to be combined with other analytic methods.  

• Don Estep said that an important outstanding problem in adaptivity is developing a theory of 
optimal mesh selection that allows cancellation of errors in space and time. Existing theories 
use estimates in which there is no cancellation, so the estimates are orders of magnitude too 
large. This is especially important in time dependent problems. 

• Mike Holst said there should be more theory about convergence of adaptive algorithms. Don 
Estep countered there should be more theory about accuracy and reliability of estimates as 
used in practice at the very upper extreme of accuracy (as opposed to the asymptotic, 
converged limit required for existing results). 

Application Areas 
The DOE applications are complex.  Most of them are nonlinear and coupled.  They involve both 
multiphysics and multiscale challenges.  There is a strong synergism between the DOE multiscale 
objectives of this program and the Lab application activities that should be exploited.  This makes a 
rigorous mathematical treatment very difficult indeed.  Usually one can aim for rigorous results 
such as error estimates, convergence proofs that depend on the multiscale parameters, and so on, in 
a more limited setting.  This is usually accomplished by treating prototype benchmark problems 
that capture the main essence of the more complex DOE applications.  The need for such 
verification and validation problems and their mathematical analysis was identified as an important 
area related to the applications component.  Mathematical and algorithmic issues concerning 
modeling error and parameter sensitivity were also singled out.  Other issues such as existence and 
uniqueness results for nonlinear multiscale problems and problems with parameter degeneracy 
were also mentioned.  With respect to homogenization, the general question of a more complete 
homogenization theory was identified as an important mathematical issue.  These problems are 
shared by a number of applications (for example, in fluid mechanics, heat transfer, solid 
mechanics), all of importance to DOE. 
Some related comments: 

• One participant emphasized the common use of operator splitting techniques in the labs and 
issues related to accuracy and stability of these methods. There is a clear need for more 
mathematical analysis of the methods in use and for development of new methods. 

• A number of applications were discussed: MEMS, thermal problems, reentry vehicles, 
material properties 

The role of a Mathematical Framework 
In some sense singular perturbation theory and the theory of matched asymptotic provide the 
beginnings of a mathematical framework for certain classes of multiscale problems.  However, the 
application of classical perturbation methods is very limited and multiscale today is used in a much 
broader context, including, in particular, computer simulation.  In the latter context, the multiple 
scales may arise through the mesh sizes of a coarse grid and a fine subgrid problem as well as 
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through the physical scales (and parameters) of the mathematical models or the scales of 
underlying microstructures that are homogenized into a macroscopic deterministic model. 
There was serious question as to whether a single ‘overarching’ mathematical framework can be 
devised.  Rather the view of the participants in this discussion was that such a mathematical 
framework would probably consist of several components tailored towards multiscale classes of 
problems of interest to DOE.  For example, the perturbation analysis mentioned above provides one 
mathematical framework that encompasses analytical techniques for regular and singular 
perturbation problems.  When such techniques apply they may lead to sequences of perturbation 
problems with respect to the multiscale parameters and these problems may involve computation.  
However, such an approach may not accommodate multiscale in the broad sense implied by such 
issues as homogenization.  Moreover, in the case of homogenization, the microscopic problem may 
encapsulate quite different physics than the macroscopic problems.  A mathematical framework for 
this homogenization component is certainly of interest.  On the other hand, variational multiscale 
methods have also been introduced to incorporate fine mesh effects into a macroscopic model.  
This is clearly related to homogenization but in variational multiscale the inner scales are more 
closely allied to the discretization process and a different form of the framework is implied here.  
Similar points apply to multiscale treatments of transient problems and timestepping.  One example 
of such a mathematical framework might exploit explicit-implicit adaptive timestepping on 
subregions in conjunction with adaptive mesh libraries.  A more general approach might involve 
adaptive space-time elements.   
Funding Initiative 
Several avenues for funding of the above activities were discussed in the session.  These range 
from targeted research on specific multiscale questions (in modeling, mathematics, methodology, 
algorithms and applications) to the funding of centers or academic initiatives for graduate students. 
The idea of networking the research regionally and nationally was also discussed.  It was felt that 
teleconferencing and videoconferencing capabilities provide a good mechanism to facilitate 
integration of work and interaction.  If the prime research targets and questions are identified as a 
result of the workshops then that would certainly provide an opportunity for individual researchers 
and research partnerships to address key issues.  The advantage here (as opposed to funding a more 
localized large center) is that the most expert people in the country can be brought into the program 
irrespective of the institution.  Such a program does involve a coordination challenge which might 
be addressed by an annual workshop and program review of participants similar to this present 
DOE workshop.  There is currently an inclination to offer larger grants from single institutions or a 
consortium of institutions.  Such an activity would work best if appropriate participants at the 
modeling, mathematical and computation level with a good track record of working together, could 
participate.  This would involve a larger level proposal.  While the increase in the DOE applied 
mathematical budget is significant in a percentage sense, it is not a large dollar amount that could 
support a large multi-university program of this type and still provide adequate resources to involve 
top researchers not in the institutional consortium.  Finally, last but not least, the need for DoE to 
have a close linkage of university and Lab activities strongly suggests a significant program in 
which students at universities spend part of their time at the Labs.  Hence a fellowship activity of 
this form should be strongly considered.   
Some related comments: 

• There appeared to be lukewarm reception for the idea of an institution as the most effective 
way to address these issues. 
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• There were similar feelings about the regional network idea that G. Forest described in his 
keynote lecture. 

• Don Estep proposed a DOE series of graduate texts on multiscale mathematics, with DOE 
providing support to faculty that write such a text. 

6.1.2 Variational Multiscale Analysis 

Session III: Variational Multiscale Analysis  
Organizer 
Pavel Bochev, Sandia National Laboratories  
Contributing Speakers 
El-Azab Anter, Florida State University 
Kenneth E. Jansen, Rensselaer Polytechnic Institute 
Asad Oberai, Boston University 

Introduction 
Variational multiscale analysis (VMA) is a systematic approach for modeling of multiscale 
phenomena in computational sciences. VMA is based on decomposition of the state space into 
“resolved” and “unresolved” scales and a subsequent derivation of exact governing equations for 
each scale. In conjunction with appropriate modeling assumptions, these equations serve to provide 
the basis for variational formulations capable of representing multiscale phenomena. Most notably, 
the VMA framework allows one to identify readily the appropriate scale-to-scale interactions and 
to replace interactions that depend on unresolved physics by suitable model terms.  
The VMA formalism is applicable to a broad class of multiscale phenomena, ranging from 
problems where scale separation is induced by choice of a discrete space (“resolved” scales), to 
problems where resolved and unresolved scales may represent concurrent mathematical models of 
the physical process, operating at different space and/or time scales. In the former case, scale 
separation reflects computational choice, while in the latter; it is governed by the need to employ 
different mathematical descriptions of the physics in order to achieve certain modeling and 
simulation goals. Successful applications of VMA include  

• Turbulence, shear banding in plasticity 
• Flows in porous media 
• Dynamic parameter identification in models 
• Atomistic to continuum bridging 

These are complex and non-trivial applications where VMA has helped to obtain reliable and 
accurate results. For example, in turbulence modeling VMA has led to formulation of methods that 
are comparable in accuracy with DNS calculations. This is illustrated by the plots in Figure 1, 
where several turbulence models, including a VMA approach, are compared with DNS results 
(Coleman, Kim and Le, 1996).  
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Figure 1: Non-equilibrium channel flow at Re=180 (Hughes et al 2003) 

Why a framework is needed 
There are several compelling reasons to seek a framework that provides an abstract setting for 
modeling and simulation of a broad class of multiphysics and multiscale problems. Existing 
approaches in multiscale science and engineering have evolved from a range of ideas and solutions 
that are reflective of their original problem domains. As a result, research in multiscale science has 
followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas 
and application of methods outside their application domains. For instance, multiscale problems 
characterized by discrete-to-continuum and continuum-to-continuum connections have relied on 
statistical mechanics and homogenization theory, respectively, to enable inter-scale coupling and 
transfer. The new challenge lies in the need to have mathematical models of the physical 
phenomena that incorporate multiple scales rather than just two principal scales. For example, in 
the context of atomistic-to-continuum bridging, a mix of ODEs and PDEs governs the discrete and 
the continuum scales, respectively. While computational and theoretical tools exist for each model, 
coupling of discrete and continuum variables underscores the need for a new mathematical 
formalism that can handle them simultaneously. 
Consequently, the status of the research environment calls for an abstract mathematical framework 
that can provide a common language to formulate and analyze multiscale problems across a range 
of scientific and engineering disciplines. In such a framework, critical common issues arising in 
multiscale problems can be identified, explored and characterized in an abstract setting. This type 
of overarching approach would allow categorization and clarification of existing models and 
approximations in a landscape of seemingly disjoint, mutually exclusive and adhoc methods. More 
importantly, such an approach can provide context for both the development of new techniques and 
their critical examination. Furthermore, notwithstanding the richness of multiscale problems, the 
key mathematical and physical issues arising in multiscale problems: scale representation, scale 
separation, and inter-scale communication are ubiquitous, and occur across a wide range of 
scientific disciplines. Consequently, there is a need for a mathematical framework that unifies these 
common principles and helps to analyze multiscale problems in a rigorous and systematic way. 
Such a common mathematical framework for multiscale analysis can: 

• Identify inconsistencies between the components of the model; 
• Formalize the transition process between the components; 
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• Identify the terms critical for the coupling of the components and focus on their mathematical 
and physical properties; 

• Serve as a proof of principle and concept for complex mathematical models. 
In doing so, such a framework will enable advances that address the following main challenges in 
multiscale modeling and simulation: 

• Coupling of models with different physics and/or operating on different scales 
• Bridging the scales 
• Inter-scale transfer operators  
• Incorporation of uncertainty quantification 

Availability of a common framework can provide further insight into key issues such as  
• Selection of scale separation: artificial vs. problem driven? 
• How to incorporate existing tools from, e.g., statistical mechanics or kinetic theory? 

Finally, a framework can ensure a systematic and mathematically sound foundation for validation 
of multiscale simulations, and uncertainty quantification. 
The role of VMA 
VMA is an extremely flexible modeling and computation tool that encodes structures ubiquitous in 
both physical models and computational methods. For instance, problems ranging from turbulence 
modeling and Dirichlet-to-Neumann maps, to computational techniques such as multigrid, Domain 
Decomposition, hierarchical bases, and mortar elements, can all be developed using the principles 
of VMA. Since VMA allows formulating general characteristics of how multiple scales interact, 
VMA can provide the means necessary for a unified and systematic description of multiscale 
models and their numerical solution. The VMA approach allows one to identify readily scale-to-
scale interactions and to replace those interactions that depend on unresolved physics by 
appropriate model terms. Theoretical properties of the interaction of modeling assumptions on the 
various scales can be developed by use of variational equations, the properties of the spaces and the 
associated projection operators. Of course, the particular choice of basis functions used to represent 
the solutions as well as the number and partitioning of this basis are critical numerical algorithmic 
design issues that will change from application to application. What is important, however, is that 
VMA is flexible enough to accommodate a wide range of representation techniques, including 
multiscale enrichment, partition of unity, and hierarchical decompositions, to name just few.  
The roadmap 
The state of research in multiscale science and engineering has progressed to the point where there 
is a definitive need for an overarching mathematical framework that unifies common principles 
across disciplines in a systematic and rigorous fashion. To this end, the variational multiscale 
analysis has been identified as a viable candidate for such a mathematical framework, a fact 
supported by both theoretical considerations and practical successes. However, as with any 
modeling technique, VMA requires physical inputs and will not provide the correct responses 
unless it incorporates the correct physics. Therefore, to exploit the power and promise of VMA, it 
is of paramount importance to develop a careful understanding of the physical phenomena and how 
a mathematical separation of scales interacts with a physical based view of scale separation. 
Mathematicians can be instrumental in the identification of classes of problems for which the 
framework is applicable. Development, validation and subsequent computational modeling will 
require close collaboration between mathematicians, physicists, computational scientists and 
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engineers. Therefore, a viable funding strategy to achieve the desired advances in multiscale 
modeling and simulation is to support interdisciplinary collaborative research focused on a set of 
applications that are relevant to the DOE Office of Science.  
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Session VII: Variational Multiscale Methods and Multiscale Finite Elements for Heterogeneous 
Porous Media  
Organizer 
Todd Arbogast, University of Texas at Austin  
Contributing Speakers 
Yalchin Efendiev, Texas A&M University 
Seong H. Lee, Chevron-Texaco Petroleum Technology Company 
Juanes Ruben, Stanford University 

Overview 
Multiscale (i.e., "generalized") finite elements were introduced by Babuska and Osborn in the 80's, 
and they have seen a reemergence for handling problems with natural heterogeneities.  The method 
involves solving the overall partial differential equation on a course grid by incorporating system 
microstructure directly into the finite element basis itself.  This is accomplished by solving local or 
subgrid problems that resolve the microstructure.  In this way, one can improve the overall 
resolution of the finite element approximation.  Multiscale and variational aspects of the method 
have recently been put on a sound theoretical foundation.  This session will explore various 
developments that have tailored such methods to solving problems in simulating flow and transport 
in porous media. 
Variational Multiscale Methodology 
Variational methods have revolutionized the study and approximation of partial differential 
systems.  They allow an analytical approach: one can "test" or sample a differential equation in 
various ways to separate effects and competing behaviors.  Variational methods also gave rise to 
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the finite element method, and further refinements such as finite volume methods, and they shed 
considerable light on existing numerical methods such as finite difference, spectral, and collocation 
methods.  
The Variational Multiscale Method (VMM) or framework is a refinement of the variational method 
that allows one to consider modeling the part of the system that is traditionally unresolved in more 
classical approaches.  One separates both the solution and test functions into coarse and fine (or 
"subgrid") pieces.  By restricting the test functions to either the coarse or fine scale, we have a 
natural scale separation of the dynamics of the system.  Traditional analysis simply drops the fine 
scale parts as being unresolvable.  In the VMM, one tries to either directly approximate these parts 
of the system, or model their effects in some reasonable way.  The beauty of the VMM is that, as a 
variational method, it naturally allows one to develop multiscale models that both respect the 
physical integrity of the system and produce computationally efficient schemes. 
The method is particularly well suited for elliptic partial differential systems, such as second order 
elliptic systems and Stokes or Navier-Stokes flows.  In this session we concentrated on second 
order elliptic systems, which govern the Darcy velocity of flow in a porous medium.  A major issue 
here is to handle the fine scale heterogeneity of the medium, i.e., the permeability, which is the 
main coefficient of the partial differential equation.  The permeability can vary over several orders 
of magnitude over very short spatial scales, which gives rise to fine scale features in the flow field. 
The Multiscale Finite Element Method (MsFEM) approximates the solution of the variational 
problem by using coarse-scale finite elements that incorporate the fine scale details of the flow into 
their definition, that is, the microstructure of the permeability determines the finite element basis 
functions that one uses.  MsFEM fits naturally into the VMM framework, because we can view the 
coarse-scale MsFEM basis as arising from the solution to the fine scale part of the VMM system.  
However, the VMM framework is more general than MsFEM, since it allows greater flexibility in 
the modeling. 
The VMM can be viewed as an upscaling procedure. The scale splitting allows one to remove 
explicit reference to the fine scale.  In this form, it is easy to see that the upscaled variational 
problem remains elliptic, but the form of the ellipticity is not the same as in the original system.  
The fine scale influence is nonlocal, anti-diffusive, and contains an affine correction.  Much 
upscaling work makes the erroneous assumption that the upscaled equations will be elliptic of the 
same form, and result in upscaled systems that are too diffusive.  It appears that virtually all 
attempts at upscaling, except the VMM, miss the affine correction terms in the equations.  This is 
significant, as they are related to the source/sink terms.  For subsurface flows, sources and sinks are 
often quite small (e.g., wells or relatively small leaking storage tanks), providing another fine scale 
feature that must be upscaled in the equations. 
The VMM or MsFEM can be used to produce flow fields defined on the fine scale. The method 
does not fully resolve all of the fine scales of the flow, but it does a good job in capturing the main 
fine scale features, and we do not see degradation in time for transient problems.  Moreover, this 
increased level of resolution then naturally allows us to couple results to other parts of the system.  
This is especially important in nonlinear problems, where simply knowing the average behavior is   
insufficient to determine the nonlinear effects. 
The VMM or MsFEM is computationally very efficient.  The construction of the multiscale basis 
requires the solution of a series of small local problems. These can be solved easily, even by direct 
methods, and, since the local problems are independent of each other, they naturally parallelize.  
One is then left with a global problem defined on a coarse grid, which is much easier to solve than 
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a fully resolved global fine grid problem.  Similarities were noted between VMM ideas and various 
multigrid techniques, such as the operator based and Shur complement methods.  Additional 
research in this area could result in improvements to both techniques.  It was noted that grid 
adaptation and non-nesting of coarse and fine space grids has not been considered.  Additional 
research in these areas should complement and improve the VMM.  Finally, it was suggested that 
the VMM should extend to the more general context of variational inequalities. 
Variational Multiscale Application Areas 
In this session we concentrated on finding the Darcy velocity of flow in a porous medium.  The 
main difficulty is to handle the fine scale heterogeneity of the permeability, which can vary by 
several orders of magnitude over very short spatial scales, and the fact that wells are very small.  
The session considered extension of the VMM and MsFEM to nonlinear problems, finite volume 
discretizations, and multiphase flows.  Additional research is needed to model long range coherent 
heterogeneities. Random heterogeneities tend to cancel themselves out over space, and so many 
methods model these quite well.  The VMM is well suited for coherent structures which do not 
cancel out over space, but rather the fine scale details of the permeability give rise to large scale 
flow behavior.  Channeling is one important example that needs more research.  Resolving high 
permeability channeling effects is difficult, as it is very sensitive to the details of how one localizes 
the computations (which is necessary in practice to make the method practical), that is, to the local 
boundary conditions that one uses. Conversely, we have low permeability "barriers."  It was 
reported that different implementations of the VMM ideas have varying success with channeling 
and barriers, some working relatively well and some not. 
The VMM needs further development to handle additional problems and multiscale features.  One 
such area is reactive flow modeling, which have multiple time-scales as well as multiple spatial 
scales.  The modeling of transport is also an interesting possibility.  The VMM has been used to 
incorporate the fine scales as regards numerical stability on coarse grids, but it so far has not been 
found to be useful in improving the resolution of the solution itself. Hysteresis, well modeling, and 
various additional physics have not yet been considered. 
The VMM should be applicable to the more general problem of reservoir characterization and 
quantification of uncertainty.  The handling of fine scales, appropriately in this case in a simplified 
way, should improve our understanding and use of the sparse data we are able to collect regarding 
subsurface environments.  
Benchmark problems are always an asset to numerical modeling, and would be helpful in this 
subject area.  The 10th SPE comparative solution project does provide some benchmarks, but the 
problems are quite large and cannot be solved so easily by researchers without production quality 
code and, especially, linear solvers. 
Areas of application of interest to the DOE include most all systems that include large porous 
media. We list just a few potential application areas. Perhaps paramount are subsurface 
environmental remediation, contaminant containment, and waste repository design.  Many 
proposed methods of sequestering CO2 involve large porous media.  The production of oil and gas 
from petroleum reservoirs is a natural application critical to the economic health and national 
security of the nation.  Living tissues are often modeled as porous media, so medical research on 
cancer, heart disease, and drug delivery could potentially benefit. 
The Role Of A Mathematical Framework 
The framework of the VMM and the concept of the MsFEM is a modeling tool that has been 
applied across several disciplines, as was noted in this session and in the session organized by 
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Pavel Bochev.  The common terminology, notation, and approach aide in the development in each 
field, and allows teams of researchers to better communicate about the multiscale issues involved 
in their particular application.  Because the VMM and MsFEM are multiscale variants of by now 
well established techniques (variational and finite element methods), it is relatively easy for 
researchers unfamiliar with either the field or with the particular application to begin considering 
the ideas.  Of course, every problem has its own unique multiscale behavior, and the details of the 
VMM treatment become quite problem-specific, but this overarching framework helps to keep the 
details within a solid theoretical foundation. 
Funding Initiatives 
It was agreed that much more research in the area multiscale modeling and numerics was needed, 
including research regarding the VMM. 
Progress in modeling multiscale systems requires expertise in the areas of the application, 
mathematics, and computation.  The DOE can promote such progress in at least two ways.  First, 
interdisciplinary teams of experts need to be funded to collaborate on the issues.  This would be the 
most usual case. Second, after a few decades of emphasizing multidisciplinary research, many 
researchers have become quite broad in their expertise, and can make substantial progress in 
smaller groups or even individually.  It is therefore recommended that the DOE also fund 
individual investigator research as appropriate. 
The possibility of the creation of an institute for multiscale modeling was discussed.  It was 
generally viewed to be inappropriate for several reasons. First, the total funding in this area is 
viewed as insufficient to fund all the interesting and DOE relevant multiscale research, much less 
that and an institute.  Second, institutes tend to develop a heavy bureaucracy of their own which 
does not directly contribute to scientific progress.  Third, institutes tend to develop an inertia all to 
themselves, which makes them unable to keep pace with a rapidly developing and changing field 
such as multiscale modeling. Finally, and perhaps most importantly, it was noted that there are 
existing institutes that can be used to bring diverse sets of researchers together without a need for a 
dedicated institute, such as the Institute for Mathematics and its Applications (IMA) at Minnesota, 
the Banff International Research Station (BIRS) in Canada, and the DOE laboratories themselves. 

6.1.3 Discrete to Continuum Bridging 

Invited Report: Discrete-To-Continuum Bridging: A Top-Down Perspective 
Author 
Jacob Fish, Rensselaer Polytechnic Institute 

The talk overviewed state-of-the-art discrete (atomistic) to continuum bridging methodologies and 
emphasized challenges we are facing in developing a unified multiscale mathematical framework. 
It appears that a variety of scale bridging methods can be housed under the umbrella of hierarchical 
mathematical models. Hierarchical models are a sequence of mathematical models, which include 
increasingly more sophisticated effects. The most-comprehensive member of the sequence is based 
on the “first principles”, such as Density Functional Theory, which evaluates the system energies 
by tracing the ground states of the electrons. The modeling error associated with any other member 
of the sequence (discrete or continuous) is assessed by comparing it to the most-sophisticated 
member of the hierarchical sequence. A member of the sequence is considered to be admissibly 
accurate if the modeling error in the data of interest is sufficiently small. The goal is to identify an 
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optimal member of the sequence, which is both admissibly accurate and computationally most 
inexpensive.  
One of the main challenges is to transfer the appropriate information between various hierarchical 
models, in particular those stated at discrete and continuous scales. Discrete-to-continuum bridging 
approaches can be classified into two main categories: 
1. Information-passing (other names: sequential, serial,  parameter-passing) 
2. Concurrent (other names: embedded, integrated, hand-shaking) 
Information-passing approaches are designated for problems and processes where different scales 
are weakly coupled. For weakly coupled multiscale problems, diverse length and time scales can be 
bridged in a two-way sequential manner, i.e., calculations at finer scales, and of high-computational 
complexity, can be used to evaluate equivalent constitutive properties (using mathematical 
homogenization theory) or equivalent elements (using Variational Multiscale approach) for use in a 
more approximate or phenomenological computational methodology at a longer length/time scale. 
Several discrete to continuum information-passing approaches are semi-empirical in nature. One 
popular example is kinetic Monte Carlo for surface growth, where barriers to adatom motion are 
computed with density functional theory. Similarly, for discrete dislocation dynamics, mobilities 
are computed using atomistic simulations. For polymeric materials, the so-called coarse graining 
procedures are employed to lump several atoms into “superatoms.” An example of the information-
passing approach in space and time domain is based on Diffusion Equation Approach, where 
diffusion equation is mapped into longer time and larger length scales.  
There are many systems, however, which depend inherently on physics at multiple scales. These 
pose notoriously difficult theoretical and computational problems. Turbulence, crack propagation, 
friction, and problems involving nano like devices are prime examples. In fracture, the crack tip 
bond breaking can be described with a quantum-mechanical model of bonding, while the rest of the 
sample is described with empirical potentials. In friction, it might be necessary to describe surface 
interaction using quantum-chemical approaches while using continuum elasticity to simulate the 
contact forces. For these types of problems, multiple scales have to be simultaneously 
(concurrently) resolved in different portions of the problem domain. Various domain 
decomposition and multigrid-like methods can be used to communicate the information between 
subdomains represented by different hierarchical models corresponding to different scales.  
Successful utilization of the multiscale hierarchical modeling methodology hinges on the ability to 
develop model error estimators/indicators aimed at guiding the selection of the appropriate member 
of the hierarchical sequence. For example, the coarse graining procedure for polymers may be 
controlled by an error estimator based on field gradients. By comparison, the use of KMC may be 
dictated by an estimator based on the relative rate of the investigated process with respect to the 
smallest time scale considered in the simulation.  
In devising a rigorous discrete-to-continuum scale-bridging framework, the main two barriers are: 

(i) Increased uncertainty/complexity introduced by discrete scales as illustrated in Figure 1; 
 

 - 32 - 



 
Figure 1: Reduction in precision due to increase in uncertainty and/or complexity 

(ii) Multiplicity of physical processes at coarser scales 
Increased uncertainty/complexity 
As a guiding principle for assessing the need of finer scales, it is appropriate to recall the statement 
made by Einstein, who stated that “the model used should be the simplest one possible, but not 
simpler.” What is the optimal member of the hierarchical sequence and the need for using discrete 
scales has to be carefully weighted on case-by-case basis. For example, in the case of metal matrix 
composites with almost periodic arrangement of fibers, introducing finer scales might be 
advantageous since the bulk material typically does not follow normality rules and developing a 
phemenological coarse scale constitutive model might be challenging at best. The behavior of each 
phase is well understood and obtaining the overall response of the material from its fine scale 
constituents can be obtained using homogenization.  On the other hand, in brittle ceramics 
composites, the microcracks are often randomly distributed and characterization of their interface 
properties is difficult. In this case, the use of fine scale models may not be desirable. 
Multiplicity of physical processes 
Multiple physical phenomena are intimately coupled at the discrete scale. First principle models 
encompass the whole physics explicitly representing structural, transport, optical, magnetic and 
electronic processes. Models based at coarser scales represent only one or several aspects of the 
physics. For instance, atomistic models typically do not incorporate optical, magnetic and 
electronic information. Continuum models usually represent only one physical process and rarely 
account for physics coupling. Coupling on continuum scales can be performed either by “equation 
coupling,” procedure in which the PDEs describing a physical process are enriched with coupling 
terms representing the parallel physics, or by “parameter coupling,” in which the system properties 
entering a PDE depend on the coupled physics. This requires the development of appropriate 
coupling procedures and specialized error indicators to determine when coupling is required.  

6.1.4 Reduced Order Modeling 

Invited Talk: Reduced-Order Modeling 
Author 
Max Gunzburger 
Collaborators 
In collaboration with John Burkardt, Hoa Nguyen, Janet Peterson, and Yuki Saka (Florida State 
U.); John Shadid (Sandia); Hyungchun Lee (Ajou U., Korea); Qiang Du (Penn State U.); Lili Ju 
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(IMA & U. South Carolina). The collaboration with John Shadid is supported by the Department of 
Homeland Security. 

The approximate solution of (nonlinear) complex systems using standard approaches (finite 
element, finite volume, etc.) is expensive with respect to both storage and CPU costs. As a result, it 
is difficult if not impossible, to deal with a number of situations such as: continuation or homotopy 
methods for computing state solutions; parametric studies of state solutions; optimization and 
optimal control problems (multiple state solutions); and feedback control settings (real-time state 
solutions). Not surprisingly, a lot of attention has been paid to reducing the costs of the nonlinear 
state solutions by using reduced-order models for the state. We consider the possibility of 
approximating a complex system governed by a system of nonlinear partial differential equations 
using only a handful of degrees of freedom instead of the thousands or even millions of degrees of 
freedom needed for a finite element, or finite volume, or finite difference, or spectral, etc. 
approximation. As a result, by paying the up-front cost of solving the full, high-dimensional 
discrete equations once or perhaps several times, one will be to perform many reduced-order state 
system simulations at the cost of a single full-order simulation.  
A reduced-order method consists of: first, choosing a reduced basis having hopefully very small 
dimension (determining a reduced basis usually requires perhaps several off-line solutions of the 
high-dimensional discrete system); then, seeking an approximation to the state in the form of a 
linear combination of the reduced basis functions; and then, determining the coefficients in the 
linear combination by solving the state equations, e.g., by a Galerkin method, in the reduced basis 
space (the cost of such a computation would be very small if the dimension of the reduced basis is 
very small). There are several potential benefits of using reduced-order models. (We caution that 
effective reduced-order modeling is not always possible.) In a state simulation setting, a reduced-
order method would enable the computation of many states at very little cost. In control or 
optimization settings, one is faced with multiple state solves or real-time state solves. One can base 
adjoint or sensitivity equation-based optimization methods on the low-dimensional reduced-order 
model so that, if the dimension of the reduced basis is small, the cost of each iteration of the 
optimizer would be very small relative to that using full, high-fidelity state solutions. Compensator, 
feedback law, etc. design within a feedback control setting can be based on the reduced-order 
model so that possibly feedback can be affected in real time.  
Of course, the key to having any hope of realizing the potential benefits of using reduced-order 
modeling is having available an “effective” reduced basis. We focus on two types of reduced-order 
bases: proper orthogonal decomposition (POD) and centroidal Voronoi tessellation (CVT). Both 
POD and CVT require the generation of a snapshot set from which they remove “redundant” 
information. The generation of snapshot sets usually requires several solutions of high-dimensional 
approximations of the state system; the hope is that this perhaps large off-line cost can be 
amortized over many simulations or optimizations, or enable the real-time, on-line feedback control 
of the system. Thus, a necessary (but not sufficient) condition for producing effective, low-
dimensional reduced bases is the generation of “good” snapshot sets: a POD or CVT basis can be 
no better than the information contained in the snapshot set on which they are based. Adaptively 
updating a reduced basis during an optimization or control process is out of the question since it 
requires the generation of new snapshots which in turn usually requires the querying of the high-
dimensional approximate state system; this cannot be done in real-time or is costly to do in the 
middle of an optimization process. Thus, one is interested in getting all of the information needed 
or to at least include as much information as one can in the snapshot set before one determines the 
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reduced-order basis. Snapshot sets should also be obtained as cheaply as possible; one would like 
to obtain an effective snapshot set using as few runs of the expensive, very high-dimensional 
simulation code as possible.  
Snapshots sets 
The state of a complex system is determined by parameters that appear in the specification of a 
mathematical model for the system; parameters can appear in, e.g., geometrical specifications, 
initial and boundary conditions, source terms, media-dependent coefficients, etc. Of course, the 
state of a complex system also depends on the independent variables appearing in the model. 
Snapshot sets consist of state solutions corresponding to several parameter values and/or evaluated 
at several values of one or more of the independent variables, most notably time. Thus, elements of 
a snapshot set can be: steady-state solutions corresponding to several sets of design parameters or a 
time-dependent state solution for a fixed set of design parameter values evaluated at several time 
instants during the evolution process or even several state solutions corresponding to different sets 
of parameter values evaluated at several time instants during the evolution process. Snapshot sets 
are usually determined by solving a full, very large-dimensional discretized system obtained by, 
e.g., a finite volume or finite element discretization; experimental data have also been used to 
determine snapshot sets. A snapshot set itself can sometimes be the reduced basis. On the other 
hand, snapshots sets often contain “redundant” information; in such cases, snapshot sets can be 
post-processed to remove as much of the redundancy as possible before they are used for reduced-
order modeling; the POD and CVT processes may be viewed as different ways to post-process 
snapshot sets in order to remove redundant information. At this time, the generation of snapshot 
sets is an art and not a science; in fact, it is a rather primitive art. The generation of snapshot sets is 
an exercise in the design of experiments. For example, for stationary systems, how does one choose 
the sets of parameters at which the state (and perhaps sensitivities) are to be calculated (using 
expensive, high-fidelity computations) in order to generate the snapshot set? Clearly, some a priori 
knowledge about the types of states to be simulated or optimized using the reduced-order model is 
very useful in this regard. The large body of statistics literature on the design of experiments has 
not been used in a systematic manner. For time-dependent systems, many (ad hoc) measures have 
been invoked in the hope that they will lead to good snapshot sets. For example, time-dependent 
parameters (e.g., in boundary conditions) are used to generate states that are “rich” in transients, 
even if the state of interest depends only on time-independent parameters. In order to generate even 
“richer” dynamics, impulsive forcing is commonly used. There is certainly the need for developing 
systematic, rational, justifiable, and effective methodologies for generating good snapshot sets. 
After all, a POD or CVT basis is only as good as the snapshot set used to generate it. The 
unintelligent sampling of parameter space can result in “bad” snapshot sets and/or the need to do 
“too many” high-dimensional state simulations. Unintelligent sampling in time is not so deadly 
because it does not result in any serious CPU penalties, only storage penalties. One can sample as 
often as on likes in time with no additional CPU costs; any redundant information included in the 
snapshot set as result of oversampling in time will be removed by the POD or CVT processes. Of 
course, if the memory required to store the snapshots becomes an issue, then one should consider 
intelligent time sampling. Also, the costs of generating the POD and CVT basis depend on the 
number of snapshots, but this is usually not an important consideration since these costs are small 
compared to the costs of generating the snapshots using high-dimensional discretization codes  
The parameter space sampling needs for snapshot generation are as follows. Perhaps one only 
knows bounds for the allowable values of the parameters, e.g., i ia ibα≤ ≤ , so, we need “intelligent” 
sampling of hypercubes in parameter space. Alternately, perhaps one knows constraint relations 
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between parameters, e.g.,  so, one needs “intelligent” sampling of more general regions 
in parameter space. Without any additional information about the parameters, samples should be 
uniformly distributed. If there is available additional information available about parameters 
(correlation information, probability distributions, etc.), samples should be nonuniformly 
distributed. Clearly, properly sampling parameter space is important; remember, one does not want 
to adaptively update the reduced basis so that we only get one chance to generate snapshots that 
will be useful throughout the optimization or control process. Also remember that one wants to use 
as few runs of the high-dimensional simulation code as possible in order to generate the snapshots 
so that, for the generation of snapshots, one wants to run the simulation code for relatively few 
values of the parameters. Finally, there may be many parameters appearing in the description the 
state system that one may want to vary so that parameter sampling may have to be done in a high-
dimensional parameter space. Thus, one needs methods for the effective and sparse sampling in 
regions in high dimensions. There are a huge number of available methods for sampling in, e.g., 
hypercubes, and a lesser number of methods for sampling in general regions.  

2 1ii
α ≤∑

Of course, point sampling in regions in nR  is useful in lots of settings. It is the central task in the 
design of experiments of either the laboratory or computational types. For snapshot generation, one 
is interested in sampling a small number of points in high dimensions. All types of point 
distributions are of interest as well, again depending on the application: uniformly distributed 
points in simple regions (e.g., hypercubes); general regions; nonuniformly distributed points; 
anisotropically distributed points; and combinations thereof. We caution that sampling methods 
that are known to be good for a large number of sampling points may not be so good for sparse 
sampling; likewise, theorems that hold “as the number of sampling points goes to ∞ ” are useless to 
us; unfortunately, most sampling methods and the accompanying theorems have been developed 
for the case of a large number of sampling points. A further cautionary note is that there is a 
fundamental difference between the design of laboratory and computational experiments: computer 
experiments are repeatable while, due to noise, laboratory experiments are not exactly repeatable. 
Thus, sampling methods developed for the design of laboratory experiments (which are biased 
towards the edges of the parameter bounding box) are not useful for the computational generation 
of snapshots.  
Let us just consider uniform sampling in hypercubes. What makes a point set uniform? For 
someone that solves PDE’s by finite difference methods, a Cartesian arrangement of points would 
be ideally uniform. For someone that approximates integrals by averaging over sample points, a 
Cartesian arrangement of points is as bad as it gets! In order to compare different sampling 
methods, we consider a steady Navier-Stokes problem for which the boundary conditions at several 
inflow and outflow orifices are determined by 6 parameters; the exact details of the problem 
description are not crucial. Each of the six parameters are constrained to lie in a bounded interval; 
thus, after normalization, the parameter space is a 6D unit hypercube. We generate 7 snapshots by 
sampling 7 points within the 6D unit hypercube and then solving the steady Navier-Stokes 
equations 7 times, using each of the 7 points to define the boundary data. We then use the 7 
snapshots to approximate the solution of the steady Navier-Stokes equations corresponding to other 
parameter points in the 6D hypercube; the 7D reduced-order approximation is determined by a 
least-squares projection of the high-dimensional solution of the Navier-Stokes equations onto the 
span of the 7 snapshots. We use several sampling methods for determining the 7 snapshots: MC - 
uniform random or Monte Carlo sampling; HAM - Hammersley sampling; LHS - Latin hypercube 
sampling; CVT - centroidal Voronoi tessellation sampling; LCVT - Latinized CVT sampling; and 
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CORNER - the six vertices of the hypercube along the coordinate axes and the vertex opposite the 
origin. We choose 10 random points within the 6D hypercube, solve the Navier-Stokes equations 
for each of the points, and determine a least-squares approximation for each of these 10 solutions 
for each set of snapshots. We then sum up the errors over the ten solutions for each of the snapshot 
sets and provide the results in the table below.  
 

 CORNER MC HAM LHS CVT LCVT 
velocity error 0.345 0.222 0.333 0.198 0.149 0.157 

 
There are many other opportunities for using statistical methods in snapshot generation. Among 
these are: screening methods to eliminate unimportant parameters; sensitivity analyses; the 
incorporation of uncertainty effects; the efficient time-sampling of snapshots (using, e.g., time 
series analysis); etc.  
POD and CVT reduced-order modeling 
The reduced-order models we consider start with a set of snapshots: let 1{ }K

k kα =  denote the set of 
points in parameter space that are chosen for generating the snapshots; let  denote a time-
sampling interval, usually chosen to be a multiple of the time step used in the discretization of the 
state system; let , , denote the corresponding sampling times; let  denote the 
solution (e.g., a vector of nodal values) of the discretized (e.g., by a high-dimensional finite 
element method) state system corresponding to the parameter point 

t∆

t∆ 1 … L= , , kS ,

kα  sampled at the time t∆ ; 
then, a snapshot set could consists of the N KL=  vectors i kS S ,= ,  

. (We can (for free) enlarge the snapshot set to include the approximations of the 
time derivative of the solution of the state system.) Given  snapshots

1 1k … K … L= , , , = , , ,
( 1)i k L= − +

N M
j RS ∈ , let  denote the S

M N×  snapshot matrix whose columns are the snapshots vectors. Let TS U V= Σ  denote the SVD 
of . The d -dimensional POD-reduced basis vectors S ( )d N<  are the first d  left singular vectors 
of the snapshot matrix , i.e., . In this guise, POD is closely related to (in 
fact, it is exactly the same as) the statistical method known as Karhunen-Loève analysis or the 
method of empirical orthogonal eigenfunctions or principal component analysis. POD is sometimes 
implemented in terms of the finite element functions (instead of the nodal vectors) in which case 
the mass matrix enters into the SVD calculation. There have been several variations introduced in 
attempts to “improve” POD. Suppose one is given a set of points 

S for 1ii
i …Uφ = = N, ,

1{ }N
j jW U ==  belonging to MR  and 

a set of generators  also belonging to 1{ }d
i iZ =

MR  with d N< , let  denote the Voronoi 
tessellation of W  with respect to 

1{ }d
iiV =

1{ }d
i iZ =  and let iZ

∗ , 1i … d= , , , denote the centroids of each of the 
Voronoi regions , . In general, iV 1i …= , ,d iiZ Z

∗ ≠  for 1i … d= , , . If it so happens that the centers 
of mass of the Voronoi regions are the same as the generators of those regions, i.e., if i iZ Z

∗ =  for 
, we refer to the Voronoi tessellation as being a centroidal Voronoi tessellation. CVT’s 

have to be constructed; there are several algorithms known for constructing CVT’s. CVT’s have 
been successfully used in data compression; one particular application was to image reconstruction; 
therefore, it is natural to examine CVT’s in another data compression setting, namely reduced-
order modeling. The idea, just as it is in the POD setting, is to extract, from a given set of snapshots 

1i … d= , ,
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vectors  in 1{ }N
iiS =

MR , a smaller set of vectors also belonging to MR . In the CVT setting, the 
reduced set of vectors is the d -dimensional set of vectors 1{ }d

j jZ =  that are the generators of a 
centroidal Voronoi tessellation of the set of snapshots. Both the POD and CVT-reduced bases are 
optimal (in different senses.)  
Once having determined the POD and CVT reduced bases, one can use them to approximate 
solutions of the full system. For many sample problems, both POD and CVT reduced-order models 
provide accurate approximations to the solution of the full finite element system. In the table 
below, we compare the costs of full finite element and reduced-order simulations. This table 
provides ample motivation for why one wants to develop reduced-order models.  
 

Number of CVT or 
POD basis functions 

Ratio of CVT or POD CPU time 
and full model CPU time 

Number of CVT or POD simulations 
per full model simulation 

4 0.000015 65,789 
8 0.000088 11,402 
12 0.000391 2,560 
16 0.001329 752 

 
A natural question is: should one use CVT or POD? Their accuracy is very similar, but CVT is 
“cheaper” than POD; POD involves the solution of an M N×  singular value problem, where  is 
the number of snapshots so that the work is of order ; CVT can be implemented 
so that the work is linear in 

N
2( ) (O MN O N+ 3)

M  and  so that, in principle, CVT can handle many more snapshots. 
This is not a big deal because the work of generating either a POD or CVT basis is miniscule 
compared to the work needed to generate the snapshot set. Fortunately, one does not have to choose 
between POD and CVT, but can combine the two methods (in several different ways) to define a 
hybrid CVT-based POD (CVOD) method. CVOD offers the possibility of taking advantage of the 
best features of both POD and CVT and CVOD is cheaper than POD since it requires the solution 
of several smaller eigenproblems instead of one large one.  

N

Details and many further references can be found in the papers listed below.  
References 
[1] Q. DU AND M. GUNZBURGER; Centroidal Voronoi tessellation based proper orthogonal decomposition analysis; in 
Control and Estimation of Distributed Parameter Systems, Birkhauser, Basel, 2003, pp. 137–150.  
[2] J. BURKARDT, M. GUNZBURGER, AND H. LEE; Centroidal Voronoi tessellation-based reduced-order modeling of 
complex systems; submitted.  
[3] J. BURKARDT, M. GUNZBURGER, AND H. LEE; Reduced-order modeling of complex systems via CVT and POD; 
submitted.  

6.2   Applications 

6.2.1 Soft Matter 

Session II: Complex Fluids and Soft Matter 

Organizer 
M. Gregory Forest, University of North Carolina at Chapel Hill  
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Methodology.   
The basic equations for many complex fluid and soft matter systems require a significant 
investment of applied mathematics to advance the science and technology.  Since the basic 
equations remain in evolutionary stage, a careful strategy for building a critical numerical 
infrastructure for complex fluids and soft matter materials is needed. While progress has been made 
at each length and time scale of description of these systems, we are still at the stage where 
simplistic continuum mechanical principles are used at all scale models, in stochastic molecular 
dynamics, in kinetic Smoluchowski equations for the molecular probability distribution function 
(pdf), in mesoscopic scale-up models for second moments of the molecular pdf,  and of course in 
continuum mechanical approaches.  For example, dumbbell and multi-bead-spring idealizations are 
still the state-of-the-art in stochastic models of long chain polymers in dilute solutions.  The spring 
constants and chain extensibility due to flow gradients are reasonably modeled, but the effects of 
electrostatic potentials due to polymer-solvent mismatches are not built in yet (cf. M. Graham 
lecture).    In nematic polymer nano-composites, the molecules are idealized as rigid, 
monodisperse, and uniformly dispersed spheroids.  All of these assumptions must be relaxed in 
order to model realistic polymer nano-composites. 

1. Kinetic (molecular scale) modeling for all or part of the coupled fields in complex fluids is 
a compromise scale of description.  Micro-fluidics and nano-fluidics are pushing the 
envelope where a continuum description of the fluid solvent carrying DNA in micro-or 
nano-channels is questionable.  The solvent itself is typically not a viscous liquid.  In nano-
composites and nematic polymer materials, extensions of the current theory to include 
physics not yet resolved  (e.g. soft, deformable nano-elements, polymeric solvents, 
polydispersity, and non-uniform concentrations of nano-elements; charge effects; the 
chemical interphase between nano-element and polymer matrix).  Atomistic numerical 
technology can be turned into a scale-up predictor,  to confirm or suggest revised mean-
field potentials of kinetic theory.  

2. Scale-up methods (e.g. moment averaging) for a variety of purposes: 
3. for numerical parameter sweeps and possible control wrappers (kinetic codes take too long) 
4. for analysis of dynamical and spatial scaling laws 
5. There is currently no standard for appropriate and hierarchical benchmarks for efficacy of 

scale-up modeling and simulation.      
6. Stochastic differential equations, putatively equivalent to the kinetic Smoluchowski 

equation, but for dynamical and structure transition-rich systems, there are no robust 
criteria for knowing when a bifurcation has occurred.  Recent results of Kevrekides are a 
starting point. 

7. Self-consistent methods to put stochastic effects into scaled-up models to reflect 
heterogeneity and scales that are projected out. 

8. Homogenization:  a priori or a posteriori criteria for when homogenization is valid; i.e. 
separation of scales tests  

9. Sensitivity analysis of parameters, in deterministic systems and stochastic systems 
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10. Atomistic descriptions aimed at surface physics and chemistry, which are needed to 
understand the interfaces in mixtures, e.g. nano-composites where the “interphase” 
between the nano-element and matrix is highly variable and poorly understood. 

11. Exploring lattice Boltzmann rules for incorporating elasticity or stored memory. 
12. Model stochastic systems, such as polymer blends or polymer solutions, where one has to 

solve multiple scales (molecular and flow) simultaneously (work of Ganeson and 
Fredrickson).    

13. Investment in carefully chosen model systems for complex fluids and soft materials, and in 
the combination of analysis, theory, and simulation of these model systems, together with 
evaluation of the efficacy of these simple models in describing the more complex fluid or 
soft material.  One example of this approach is upscaled mesoscopic models of nematic 
polymers (Forest-Wang work), or the modeling of worm-like micelles with a continuum 
viscoelastic model coupled with density fluctuations for the micelles (P. Cook). 

Applications of interest to DOE where complex fluids are essential 
1. Fuel cells  
2. Microfluidics and nanofluidics 
3. Micelles and their role in remediation, solvent technology, turbulent drag reduction, all for 

energy efficiency with friendly environmental impact 
4. Particle-laden flows and suspensions where constitutive laws remain primitive 
5. Systems biology, e.g. methods for modeling cell membranes (L. Frink) 

Investments recommended to DOE managers 
1. Numerical infrastructure for small number of identified “universality classes” of non-

Newtonian constitutive laws.  There is one commercial package available, which is not 
capable of addressing the broad spectrum of complex fluids and applications.  Similarly, a 
numerical infrastructure for the wide range of molecular architecture models of dilute, 
semi-dilute and concentrated polymeric systems is needed.  

2. Possible requirements to attach to RFPs for the Multiscale Math Initiative: 
a. Research Assistant and postdoc practicum component 
b. DOE postdoctoral fellowships patterned after the NSF Postdoc Fellowships, where 

there is a faculty mentor and a secondary lab mentor  who are part of the proposal 
c. Faculty internships at the labs, and freedom for lab scientists to have  sabbaticals 

in partner academic institutions                
d. Software open source policy 

3. Team project proposals should be encouraged in the MMI portfolio, including teams with 
experimental, modeling & computation components, and resources for experiments 
included.  Leveraging with other programs at DOE should be considered and pursued.    

4. Investment in teleconferencing technology at universities to foster team oriented projects 
and to keep interactions active. 

New mechanisms for achieving DOE enhancements from the academic community  
The model of single investigator grants submitted by PI’s at universities should be retained, yet 
new models should be strongly considered.  If all DOE does with the Multiscale Mathematics 
Initiative is more of the same, then striking outcomes are unlikely.  Some ideas are proposed above, 
such as teams comprising a full scientific method approach to a targeted application.  However, a 
new concept arises to support regional networks, that link a small group of academic institutions 
and link that cluster to one or more DOE labs.                                                     
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Introduction 
A wide variety of naturally occurring and manmade materials have properties that lie somewhere 
between the traditional distinctions of “solid” and “liquid”.   For example, foams used for 
firefighting behave like freestanding solids if left alone, but flow somewhat like a simple liquid 
when subjected to stress.  Other important materials, such as molten plastics, display 
viscoelasticity: their response to deformation may be liquid-like or solid-like, depending on how 
rapidly they are deformed.  As a natural example of such a material we point out that inside a living 
cell resides a cytoskeleton composed of a complex gel of aqueous liquid and rigid and flexible 
biopolymers; the mechanical response of this gel can be very complex.  All of these substances 
have a nontrivial structure at the microscopic scale, a scaffold of bubbles in the case of a foam, a 
mass of entangled polymer chains in the case of a molten plastic, and a highly interconnected 
network in the case of the cytoskeleton.   
In contrast to metallic or crystalline solids, the properties of the materials just described are 
determined or modulated by noncovalent effects, such as electrostatic and van der Waals 
interactions, hydrodynamic coupling between elements of the microstructure, and the constraints of 
excluded volume or connectivity. Substances with these characteristics are called soft materials.  
They are important in a tremendous variety of applications in both technology and science, and the 
science base required for progress in soft materials research is very broad, including: colloid and 
interfacial science; chemical synthesis; fluid dynamics and transport phenomena; polymer physics; 
statistical mechanics; sophisticated instrumentation; scientific computing; and applied 
mathematics.   
Soft materials and multiscale modeling 
Soft materials have a number of characteristics that provide significant challenges and 
opportunities for applied mathematics. These include: 

• Hierarchies of interacting length and time scales 
• Hierarchies of levels of description: 

o atomistic 
o mesoscopic 
o continuum (macroscopic) 

• Many-body, long-range interactions 
• self-assembly (nontrivial equilibrium microstructure) 
• nonlinear dynamics and pattern formation away from equilibrium (e.g. in flow) 
• ergodic and nonergodic (glassy) dynamics. 
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From this list it is clear that development of effective theoretical and computational tools for 
predicting and understand the behavior of soft materials demands methods that are capable of 
tackling phenomena that occur on broad spectra of scales in both space and time. 
Applications specifically addressed by speakers 

• polymer processing: 
o flow instabilities and nonlinear flow dynamics arising from viscoelasticity 
o microstructure development in polymer blends and block copolymers 
o effect of composition variations and polymer-polymer interfaces on the rheology of 

polymer blends 
• turbulent drag reduction by additives 
• Micro- and nanofluidics for genomics:  dynamics of dissolved genome-length DNA 

molecules in confined geometries 
• biophysics: 

o mechanical properties of biomaterials 
o structure, transport and dynamics related to cell membranes 
o solvation of polymers  

Other applications of potential interest to DOE 
• Nanocomposites 
• Templated self-assembly of materials for photonics, catalysis, separations 
• lab-on-a-chip  
• liquid crystals and other structured materials/interfaces for sensor applications 

Methodologies 
• Computational fluid dynamics (e.g. finite element) for macroscopic flows of viscoelastic 

liquids like polymer solutions and melts. 
• Coarse-grained or mesoscale descriptions of polymers in solution – solvent treated as 

continuum subject to thermal fluctuations, polymer molecule modeled as a bead-spring 
dumbbell or chain.  Two treatments of the solvent dynamics were presented  

o Stochastic (“Brownian dynamics”) simulations of bead-spring chain models of 
polymers in bulk or confined solution:  Green’s function approaches to 
hydrodynamic interactions between polymer segments 

o Lattice-Boltzmann approach to hydrodynamic interactions: alternative to Green’s 
function approach involving direct solution of fluid motion in entire domain by 
solving a discretized Boltzmann equation. 

The relative merits of these two basic approaches are still to be worked out.   
• “Micro-macro” methods for computational fluid dynamics, where instead of using a closed 

form constitutive equation for the stress, a full microstructural (e.g. Brownian dynamics) 
simulation is carried out on mesh or material points. 

• Mean-field (density functional) theory and computations for description of dense 
inhomogeneous systems such as polymer blends, combined with Brownian dynamics 
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simulations and continuum mechanics, for treatment of polymer blend interfaces and other 
dense inhomogeneous soft systems. 

Challenges for mathematical analysis and computation 
• For computational fluid dynamics applications with highly elastic liquids, no current 

method is guaranteed to work at high Weissenberg number (ratio of strain rate to material 
relaxation rate). 

o The PDE for the evolution of microstructure is convection-dominated.  Upwind 
discretization are widely used but still do not guarantee converged solutions at high 
Weissenberg numbers. 

o Localized regions of high stress arise near corners, free surfaces, stagnation point 
and other regions of high extension rate.  These present significant issues in adaptive 
meshing. 

• Somewhat similar issues arise in the solution of the equations that come from dynamic 
density functional theories.  These equations may contain high-order spatial derivatives or 
even be partial integrodifferential equations, posing numerical stability problems. Because 
these methods are specifically intended for highly inhomogeneous systems they require 
effective methods for resolution of sharp gradients, as are found at interfaces. 

• For coarse-grained or mesoscopic models, a wide variety of open issues remain. 
o Long-range interactions, such as those present when electrostatic or hydrodynamic 

effects are included, often present the dominant computational cost in simulations of 
colloidal and polymeric solutions.  For example, only recently have hydrdoynamic 
interactions been incorporated into simulations of confined dissolved polymers.  It is 
important to ascertain the relative merits of various approaches (Green’s functions, 
explicit solutions for solvent motion e.g. via the lattice Boltzmann method, 
dissipative particle dynamics,…) that have been proposed for capturing these 
interactions.  

o Statistical noise is always an issue for particle-level simulations; methods of 
variance reduction are needed. 

• If a system is to be coarse-grained, what are the correct coarse-grained variables?  In more 
mathematical terms, where does the slow manifold lie?  What is the nature of the coupling 
between slow and fast modes?  How does one perform coarse-graining when there is no 
separation of scales? 

o In general, these questions seem to have received relatively little attention from 
mathematicians in the context of soft materials.  In the engineering and physics 
communities, this question has largely been addressed on an ad hoc basis.  

• A variety of higher-level issues are important as well.  Some examples include: 
o Sensitivity of results to parameters – sensitivity analysis for stochastic or other 

particle-level simulations 
o Parameter estimation for reduced (e.g. coarse-grained) models 
o Arclength continuation and bifurcation analysis using information from particle-

level simulations 
o Model based control with atomistic models and data. 
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Frontiers of physical understanding:   some examples 
• Interaction of microstructure and flow, e.g. in liquid crystalline, micellar surfactant or 

block-copolymer systems 
• Interfaces:  

o wetting and contact line dynamics 
o polymer/polymer interfaces 
o polymer dynamics near solids surfaces and in confined geometries 
o tribology at the molecular scale  

• Very slow or glassy relaxations 
• Turbulent drag reduction 
• Singularity formation and flow instabilities in free surface flows  
• Transport of particles and solutes in sheared colloidal suspensions 
• Mechanical properties of biological and biomimetic materials 
• Dynamics of polyelectrolytes 

Programmatic and other broad issues 
• It was suggested in the discussion that a set of benchmark problems for specific 

computational aspects of soft matter research might be useful.  As a specific example, a 
specific problem in colloidal or polymer dynamics might serve as a benchmark for methods 
of treating solvent dynamics (hydrodynamic interactions).  

• Attention to model problems that are relevant for soft matter systems but at the same time 
amenable to rigorous mathematical analysis should be encouraged.  This might provide a 
rich and set of issues for mathematical study and at the same time improve the rigorous 
basis for models and approximation methods used by physical scientists and engineers. 

• At the other end of the spectrum, the interaction between computationalists, theorists and 
experimentalists should also be encouraged.  What model experimental systems will allow 
direct and quantitative comparisons with the leading multiscale computational techniques? 

6.2.2 Atmospheric Science 
Session I: Systematic Multi-Scale Stochastic Modeling and Quantifying Uncertainty in 
Atmosphere/Ocean Science 
Main Speaker 
Andrew J. Majda, New York University  
Contributing Speakers 
Markos Katsoulakis, University of Massachusetts, Amherst 
Peter Kramer, Rensselaer Polytechnic Institute 
Joseph J. Tribbia, National Center for Atmospheric Research 

One of the grand challenges of contemporary science is a comprehensive predictive model for the 
atmosphere and coupled climate system.  This is one of the most difficult multi-scale problems in 
contemporary science because there is an incredible range of strongly interacting anisotropic 
nonlinear processes over many spatio-temporal scales; contemporary comprehensive computer 
models, GCM’s, are currently incapable of adequately resolving or parameterizing these 
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interactions on time scales appropriate for seasonal prediction as well as climate change 
projections. 
Thus, the multi-scale problems in atmosphere ocean dynamics serve as important prototype 
problems for developing new systematic multi-scale strategies which are valuable in other 
scientific disciplines ranging from nanotechnology to macro-molecular dynamics to protein 
folding, etc.  The societal impacts for these efforts are also large; it has been estimated recently that 
a one month increase in lead time for El Nino prediction would save 100 billion dollars for the 
world community.  Additionally, the problem of global climate change is of particular interest to 
the DOE in so far as its ramifications for the energy economy of the nation.   
Basic questions which drive climate research are the prediction of the weather from 1 to 14 days, 
the prediction of climate variations on seasonal to yearly time scales and finally, climate change 
projections on decadal and centennial time scales as well as quantifying the uncertainty associated 
with these predictions. 
One of the striking recent observational discoveries is the profound impact of variations in the 
tropics on all of these problems.  The primary issue in the influence of the tropics occurs through 
the interaction and organization of clouds into clusters, super clusters, and planetary scale 
dynamics, an inherently fully nonlinear multi-scale process.  For climate change, water vapor is the 
most important greenhouse gas and the microphysical processes in clouds are a key mechanism for 
radiative feedback.  In fact, only a 4% change in average cloudiness would overwhelm the effects 
of CO2 in climate change.  Current evidence suggests that a few global planetary teleconnection 
patterns, such as the Pacific North America Oscillation, summarize the weather and climate impact 
of the tropics for the atmosphere.  Since it will be impossible to run resolved coupled 
atmosphere/ocean comprehensive numerical models for the atmosphere for climate change 
projections, reduced models involving these basic large scale patterns are of central importance. 
Emerging Mathematical and Computational Strategies for Multi-Scale Modeling 
A new perspective on several of the issues discussed above for climate dynamics has been 
developed recently through the paradigm of modern applied mathematics where rigorous multi-
scale mathematical theory, the development of prototype model problems and novel computational 
strategies all interact simultaneously in understanding these complex scientific problems.  These 
emerging mathematical/computational strategies include the following: 

1. Systematic multi-scale asympotic modeling for the tropics 
(Majda and Klein, J. Atmos. Sci. 2003; Majda and Biello, PNAS 2004) 

2. Novel stochastic models for unresolved features of tropical convection 
(Majda and Khouider, PNAS 2002; Khouider, Majda, and Katsoulakis, PNAS 2003) 

3. Systematic Mathematical Strategies for Low Dimensional Stochastic Mode Reduction in 
Climate (Majda, Timofeyev, Vanden-Eijnden PNAS 1999; Comm. Pure Appl. Math, 2001; 
Physica D, 2002; J. Atmos, Sci. 2003 

4. Quantifying Uncertainty in ensemble Predictions and Loss of Information in coarse-grained 
stochastic models through Information Theory (Kleeman, J. Atmos. Sci, 2001; Kleeman, 
Majda, Timofeyev. PNAS 2002; Majda, Kleeman Cai, Math Anal. Appl. 2003; Abramov 
and Majda, SIAMJ, Sci. Stat. Comp. 2004; Katsoulakis and Vlachos, J. Chem. Phys. 2003; 
Katsoulakis and Trashorras, J. Stat. Phys., 2004)  

Through the serendipity of modern applied mathematics, the issues in (2) have driven new 
systematic mathematical strategies to course-grain stochastic lattice models with 
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adsorption/adsorption and diffusion coupled to continuum problems at mesoscopic scales; the 
result is a new class of coarse grained Monte Carlo methods for material science with 
simultaneously a speed up of order a billion times in computational labor while retaining fidelity 
with key features of the microscopic fluctuations (Katsoulakis, Majda, Vlachos, PNAS 2003 and J. 
Comp. Phys 2003; Katsoulakis and Vlachos, J. Chem. Phys. 2003).  In another different multi-
disciplinary application, the methodology in (3) has been applied to stochastic immersed boundary 
numerical methods for microfluid particle suspensions as for example, molecular motors in cellular 
biology.  (Kramer and Majda, SIAMJ, Appl. Math 2003). 
The Near Future Agenda for Systematic Multi-Scale Modeling for the Climate 
With all of the emerging mathematical techniques and perspectives outlined above, several other 
important and more complex problems for climate research are capable of being attacked in the 
near future.  Here is a list: 

1. Multi-scale tropical modeling of one climate GCM grid box, i.e., a region of order 100 km 
for a GCM time step of twenty minutes and scale interactions for 1 to 10 to 100 km. 

2. The scale up of cloud microphysics models operating on scales smaller than one meter to 
bulk cloud physics models on scales of one kilometer. 

3. The blending of hierarchical Bayesian Statistical Models for observations and the 
Stochastic Modeling Strategies discussed earlier for practical parameterization. 

4. The Use of Information Theory to Quantify Information Flow Among Components of 
Comprehensive and Reduced Models and to Quantity Their Uncertainty 

5. Comprehensive Fluctuation-Dissipation Relations in Various Components of the Multi-
Scale Climate System 

There are natural emerging partnerships among interdisciplinary university initiatives in applied 
math and atmosphere ocean science (CAOS at the Courant Institute), the National Center for 
Atmospheric Research (NCAR), and DOE labs spearheading the climate change initiative (Los 
Alamos, Livermore). 
This is an exciting training ground for a new generation of multi-disciplinary research scientists.  
This can be nurtured through workshops and special theme years, as well as research finding for 
Ph.D. students and post docs in a multi-institutional as well as a single investigator framework. 

6.2.3 Networks 

Session VIII: Simulation and Analysis of Large Networks 

Organizer 
Edwin K.P. Chong, Colorado State University  

Contributing Speakers 
Jeffrey Herdtner, Miami University of Ohio 

Overview 
Many important systems are most naturally or can only be modeled by networks (or graphs). Many 
of these systems are of critical importance to DOE. A partial list includes, biological systems 
(viewed at various levels), microbial communities, protein interaction networks, social networks, 
epidemiology, as well as designed technological networks (e.g. power distribution, communication 
networks, sensor/actuator networks, robotic networks, etc.). Multiscale issues arise in the modeling, 
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analysis, and simulation of networks with respect to several dimensions: time, space (e.g., topology 
and geography), state (e.g., queues), and size (e.g., number of nodes, users). In many cases these 
systems are dynamic in nature and consist of networks of networks, with dynamic interactions. In 
many cases localized or small magnitude forcing can cause large scale responses. The 
mathematical analysis of networks is a relatively new area, analysis methods are only beginning to 
be explored. The analysis of these systems will require new methods and also extend ideas from 
more established areas of multiscale analysis. Mathematical areas that are clearly relevant are, 
graph based algorithms, combinatorial optimization, discrete event simulation, agent based 
simulations, and ideas developed from continuum modeling of multiscale systems. 
Multiscale Phenomena in Communication Networks 
Our focus here is on communication networks, although many of the issues are common to other 
types of networks as well, including power distribution networks, agent-based networks, 
sensor/actuator networks, and robotic networks. This specific area was the focus of the invited 
lecture and breakout session talks in the “Simulation and Analysis of Large Networks” session.  
A communication network is a collection of communicating devices connected together via 
communication links. Such devices include computers, phones (wired and wireless), laptops and 
PDAs, and sensors. Examples of communication networks include the Internet, local area networks 
(LANs), cellular networks, and wireless ad hoc networks. 
Communication networks are multiscale in nature by design. The dominant design paradigm in 
networking is the hierarchical (layered) architecture. In particular, network protocols are arranged 
in a hierarchical protocol “stack” (e.g., the ISO OSI architecture). Moreover, the topological 
arrangement of networks is typically also hierarchical (e.g., the Internet). Finally, general-purpose 
networks like the Internet are heterogeneous both in infrastructural components as well as the 
nature of traffic that traverse them. All these factors work together to give rise to multiscale 
phenomena.  
Scaling in the Internet 
Events on networks like the Internet take place on a variety of time scales. For example, packet 
transit times are often in microseconds, file transfers take seconds, routing table updates take 
minutes, and significant network topological changes may take days. The metaphor of mice and 
elephant coexisting in a common habitat is often used to describe Internet traffic: while most 
packets are small (mice), most bits reside in large packets (elephants). 
Since the seminal paper of Leland, Taqqu, Willinger, and Wilson [LeT94], Internet researchers 
have come to accept that dealing with Internet traffic involves reckoning with features that 
transcend multiple time scales. A variety of approaches have been brought to bear on this issue, 
including self similarity, long-rage dependence, power laws and heavy tails, multifractals, 
cascades, wavelets, and highly optimized tolerance (HOT). These approaches stem from embracing 
a premise best articulated in a paper by Abry et al. [AbB02]: “Although created by man and 
machine, the complexity of teletraffic is such that in many ways it requires treatment as a natural 
phenomenon.” 
It turns out that not only in the time scale are scaling features observed: the topology of the internet 
also has scaling features. In a well-known recent study by Faloutsos et al. [FaF99], it was shown 
that the distribution of the number of neighboring nodes in the Internet topology follows a power 
law. 
Interest in scaling features like the ones described above boil down to a concern that such features 
have impact on the design and performance of networks. For example, some have demonstrated 
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that self-similar traffic leads to poor behavior of queues. On the other hand, some have also been 
able to exploit such scaling features in the Internet, for example in prediction-based congestion 
control and in filtering for dealing with distributed denial of service attacks. 
Scaling in Wireless Networks 
Large wireless networks have received significant recent interest owing to the maturing of 
technologies enabling large numbers of devices to communicate over a common wireless channel. 
Interest in such networks are varied, ranging from the possibility of quickly deploying computer 
networks in battlefield environments, to the use of a large number of simple and inexpensive 
sensors in a collective way to perform demanding tasks.  
The modeling and analysis of such networks is difficult because of the confluence of two factors: 
the nature of the interference-limited wireless channel and the large number of communicating 
devices. Fundamental issues like the capacity of such a network is not easily addressed by standard 
analytical techniques (e.g., calculating the Shannon capacity). Successful recent efforts have 
resorted to asking simpler questions. In particular, a promising line of work has focused on 
characterizing the scaling law of such networks as the number of devices (nodes) grows 
asymptotically. In the asymptotic regime, we find relief in analytical tractability and simplification. 
Within the framework of scaling laws, it possible to answer questions like: as the number of nodes 
in a network increases, how does the capacity that it can support grow?  It is also of interest to 
characterize how different performance metrics are related in scaling laws. For example, is it 
possible to trade off capacity for delay performance, in terms of scaling laws? These are questions 
that only recently have begun to be addressed.  
Mathematical Models and Frameworks 
The need for appropriate mathematical models and frameworks has become clear as network 
researchers struggle to make sense of the complexity of these man-made systems. While the 
traditional approaches common in networking research have focused on discrete mathematics, the 
techniques that have come to fore in dealing with issues like scaling phenomena and large networks 
have been of the continuous flavor. Differential equations (whether ordinary, stochastic, or partial), 
widespread in models of natural systems, now occupy firm ground in the modeling of man-made 
networks. This is a promising development, because it opens up vast possibilities for many more 
researchers to contribute to solving pressing problems in networks. In particular, the topics in 
multiscale mathematics traditionally funded by DoE is now of relevance in tackling problems in 
networking research. The successful marrying of these two areas will involve strategic 
collaborations and multidisciplinary efforts. 
Continuum Models and Multiscale Methods in Simulating Large Networks 
We describe here what we believe to be a promising current effort along the lines of bringing 
multiscale mathematics to bear on the problem of simulating large networks. The approach 
involves constructing partial differential equation models for large networks, and using multiscale 
methods in the solution of such models as a surrogate for detailed simulation, which becomes 
increasingly impossible as the size of networks grow.  Below, we describe several examples to 
illustrate the critical need and rationale for this effort. 
1. Internet 
Simulation modeling has become the primary tool in the performance analysis of the Internet, with 
large research efforts directed toward enabling simulation of increasingly larger networks (e.g., 
DARPA's Network Modeling and Simulation program [NMS]). Such simulation tools are used in a 
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variety of ways, including in the evaluation of protocol designs and for network resource 
provisioning. High-performance computing techniques and technologies, such as parallel 
computing [WuF01], have been exploited to advance the frontier of network simulator 
performance.  Yet, the current state-of-the-art in simulation tools does not support the simulation of 
networks with a hundred million nodes, roughly the current size of the Internet (see, e.g., [RiA02] 
for an assessment of the state-of-the-art in large-scale simulation tools).  Indeed, a recent news 
release from Georgia Tech reports the creation of “the world's fastest detailed computer simulations 
of the internet,” capable of simulating “networks from over 1 million web browsers in near real 
time” [GT03]. At numbers exceeding millions of nodes, we should expect continuous 
approximations in the topological domain to provide appropriate models of the network, at least at 
some levels of abstraction. 
2. Wireless ad hoc networks 
Interest in wireless ad hoc networks has flourished in recent years. At the same time, the analysis of 
such networks has proven to be challenging. A seminal paper by Gupta and Kumar [GuK00] show 
that under certain modeling assumptions, it is possible to characterize the scaling law of the 
transport capacity in the asymptotic regime where the number of nodes grows to infinity. Roughly, 
they show that the throughput grows as O(n1/2). This result has spawned numerous papers that 
characterize asymptotic scaling laws for wireless networks in different settings (e.g., [GrT02], 
[XiK04]. Despite the ground-breaking nature of these scaling-law results, they do not provide any 
means to calculate the actual throughput of a network with, say, a million nodes. Simulation 
remains the only method of answering such questions. However, as is the case in Internet 
simulation, simulation tools do not currently support network sizes of millions of nodes. 
3. Sensor networks 
The possibility of networking not only computers and communication devices but also sensors has 
led to significant current interest in sensor networks (see, e.g., NSF's SENSORS AND SENSOR 
NETWORKS Program [NSF-SSN]).  Like wireless ad hoc networks, sensor networks consist of 
sensors connected together via wireless links. However, sensor networks exhibit some unique 
features, including limitations in energy, bandwidth, and processing power. Analysis of such 
networks has closely followed that of wireless ad hoc networks, characterizing asymptotic scaling 
laws as the number of sensors grows (e.g., [GaV03], [El03]). The performance of large-scale sensor 
networks is still not possible with state-of-the-art simulators. 
4. Dense traffic networks 
Although our main motivators stem from problems in communication networks, we believe that 
other problems areas have similar needs, and would benefit from our work. One example is the 
simulation of dense traffic networks. This problem has become important in recent years because 
of the development of intelligent highway systems. Most recently, traffic simulation has become an 
important tool in the assessment of the impact of terrorist attacks in dense metropolitan areas 
[Sh03]. 
The state-of-the-art in traffic network simulation appears to be consistent with that of 
communication networks [HeK03]. The techniques that are brought to bear in advancing the state-
of-the-art also appear to be similar: e.g., parallel processing [Sc00] and fluid traffic models 
[CONTRAM]. We believe that our work on continuous models for network simulation will be 
relevant to the development of simulation tools for traffic networks in dense metropolitan areas. 
Factors to be considered in modeling. 
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In building network models, several factors have to be taken into account, depending on the type of 
network at hand. Here, we describe some salient factors to be considered and their bearing on our 
exploration of PDE-based models. 
1. Simulation output 
Network simulation models and tools are used for a variety of tasks: 

• performance evaluation 
• prototyping and benchmarking 
• resource provisioning 

In addition to conventional uses of network simulation, there is also interest in gathering qualitative 
system-wide information about the network, such as stability and propagation of local effects to the 
global network. 
For some time there has been an interest in Internet traffic modeling, particularly to characterize the 
time-varying properties of traffic (e.g., long-range dependence and self similarity [PaW00]).  In 
such models, time aggregation and continuous-time models have played key roles in the 
development of tractable models. There has been recent interest also in spatial traffic analysis 
[CrK03]. A PDE model of the network provides a natural means to explore both time as well as 
spatial variations. 
2. Nature of network topologies 
Network topologies vary depending on the type of network being considered. A well-known recent 
study shows that the Internet has an interesting topological characteristic: the distribution of the 
number of neighboring nodes follows a power law [FaF99]. This finding influences the way in 
which random graphs are used to model the Internet [ReN02], [NoR02]. Wireless ad hoc networks, 
on the other hand, are likely to me mesh-like [CoB96]. Sensor networks also exhibit unique 
topological features, usually tied to the particular application of the network (e.g., target tracking). 
Moreover, both wireless ad hoc and sensor networks often involve mobility of the nodes; this 
means that the network topology is evolving with time. The burden of modeling this evolving 
topology in graph-based simulators is a challenging issue. A PDE-based model has the potential to 
ameliorate such modeling challenges. 
3. Physical characteristics 
Wireline networks (e.g., the Internet) are often modeled without regard to detailed physical features 
(e.g., signal waveforms). The most detailed feature in the model is usually a “packet.” In contrast, 
wireless network models often incorporate some physical characteristics of the wireless medium 
(e.g., signal propagation, fading, and multiuser interference), because such characteristics bear 
heavily on the behavior and performance of the network. In a later section, we describe how we 
propose to take into account such modeling features in constructing a PDE model. 
4. Traffic characteristics 
In network modeling and simulation, we have to be concerned with the nature of the 
communication traffic. Internet traffic modeling has led to a myriad of models that capture 
important features of internet traffic, such as self similarity [PaW00]. A variety of continuous-time 
stochastic processes have come to be useful in network traffic models. More recently, interest in 
models for controlled traffic (e.g., TCP traffic) has led to the development of fluid models for such 
traffic (e.g., [LiP03]). Continuous-time processes and fluid models fit naturally into our PDE 
framework for network modeling. 
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5. Levels of model abstraction 
In building network models, we invariably focus on some level of model abstraction, ignoring 
details that are irrelevant to the level of interest (e.g., [HuE98]). In the construction of PDE models 
for networks, we plan to take into consideration different levels of model abstraction, to provide 
answers to different types of modeling questions. 
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