
BOTTLENOSE DOLPHIN (Tursiops truncatus): California Coastal Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bottlenose dolphins are distributed worldwide in tropical and warm-temperate waters. In many regions, including California, separate coastal and offshore populations are known (Walker 1981; Ross and Cockcroft 1990; Van Waerebeek et al. 1990). California coastal bottlenose dolphins are found within about one kilometer of shore (Figure 1; Hansen, 1990; Carretta et al. 1998; Defran and Weller 1999) primarily from Point Conception south into Mexican waters, at least as far south as Ensenada. In southern California, animals are found within 500 m of the shoreline 99% of the time and within 250 m 90% of the time (Hanson and Defran 1993). Oceanographic events appear to influence the distribution of animals along the coasts of California and Baja California, Mexico, as indicated by a change in residency patterns along Southern California and a northward range extension into central California after the 1982-83 El Niño (Hansen and Defran 1990: Wells et al. 1990). Since the 1982-83 El Niño, which increased water temperatures off California, they have been consistently sighted in central California as far north as San Francisco. Photo-identification studies have documented north-south movements of coastal bottlenose dolphins (Hansen 1990; Defran et al. 1999), and monthly counts based on surveys between the U.S./Mexican border and Point Conception are variable (Carretta et al. 1998), indicating that animals are probably moving into and out of this area. Although coastal bottlenose dolphins are not restricted to U.S. waters, cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not

Figure 1. Approximate range (in bold) of California coastal bottlenose dolphins based on aerial surveys along the coast of California from 1990-2000. This population of bottlenose dolphins is found within about 1 km of shore.

for other fisheries which may take this species (e.g. gillnet fisheries). Therefore, the management stock includes only animals found within U.S. waters. For the Marine Mammal Protection Act (MMPA) stock assessment reports, bottlenose dolphins within the Pacific U.S. Exclusive Economic Zone are divided into three stocks: 1) California coastal stock (this report), 2) California, Oregon and Washington offshore stock, and 3) Hawaiian stock.

POPULATION SIZE

Photo-identification studies along the coasts of southern California and northern Mexico identified 404 unique individuals in this population between 1981 and 1989 based on dorsal fin characteristics, with an estimated 35% of animals lacking identifiable characters at any particular time (Defran and Weller 1999). This cannot be considered a minimum population estimate, however, because an unknown number of animals died during this period and rates of acquisition of dorsal fin characters are not known. Mark-recapture estimates based on photo-identification studies in 1985-89 range from 234 (95% CI 205-263) to 285 (95% CI 265-306) animals for the entire California-Mexico population (Defran and Weller 1999). A recent re-analysis of mark-recapture estimates from the 1980s resulted in revised abundance estimates of 289 (95% CI 230-298) for the period 1984-86 and 354 (95% CI 330-390) for 1987-89 (Dudzik 1999). The most recent photographic mark-recapture abundance estimate is 356 (95% CI 306 - 437) for the period 1996-

98 (Dudzik 1999). Because coastal bottlenose dolphins spend an unknown amount of time in Mexican waters, where they are subject to mortality in Mexican fisheries, an average abundance estimate for California only is the most appropriate for U.S. management of this stock. Tandem aerial surveys were conducted in 1990-94 and 1999-2000 to estimate the abundance of coastal bottlenose dolphins throughout the southern and central California portion of their range and to correct for the fraction of animals missed by a single observer team. (Carretta et al. 1998, NMFS, SWFSC, unpublished data). Aerial survey correction factors have been improved using recent information on California coastal bottlenose dolphin swim speeds (Ward 1999). Using the same methods as Carretta et al. (1998), the weighted average abundance estimate for the 1999-2000 surveys is 206 (CV=0.12) coastal bottlenose dolphins (NMFS, SWFSC, unpublished data). This presently is the best estimate of the average number of coastal bottlenose dolphins in U.S. waters.

Minimum Population Estimate

The log-normal 20th percentile of the above average abundance estimate for U.S. waters based on the 1999-2000 surveys is 186 coastal bottlenose dolphins.

Current Population Trend

Based on a comparison of mark-recapture abundance estimates for the periods 1987-89 (N=354) and 1996-98 (N=356), Dudzik (1999) stated that the population size had remained stable over an 11-year period.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No information on current or maximum net productivity rates is available for California coastal bottlenose dolphins.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (186) <u>times</u> one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) <u>times</u> a recovery factor of 0.50 (for a species of unknown status with no known fishery mortality; Wade and Angliss 1997), resulting in a PBR of 1.9 coastal bottlenose dolphins per year.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Due to its exclusive use of coastal habitats, this bottlenose dolphin population is susceptible to fishery-related mortality in coastal set net fisheries. A summary of information on fishery mortality and injury for this stock of bottlenose dolphin is shown in Table 1.

Table 1. Summary of available information on the incidental mortality and se	erious injury of bottlenose dolphins
(California Coastal Stock) in commercial fisheries that might take this species.	

Fishery Name	Data Type	Year(s)	Percent Observer Coverage	Observed Mortality	Estimated Annual Mortality	Mean Annual Takes
CA angel shark/ halibut and other species large mesh (>3.5in) set gillnet fishery	observer data	1997 1998 1999 2000 2001	$\begin{array}{c} 0 \ \% \\ 0\% \\ 4.0 \ \%^1 \\ 1.8\%^1 \\ 0\% \end{array}$	0	0	0
Minimum total annual takes						0

¹ The CA set gillnets were not observed during 1997-98 and in 2001; mortality was extrapolated from effort estimates and previous (1991-94) entanglement rates. In 1999 and 2000, approximately 25% of Monterey portion of the set gillnet fishery was observed, representing <5% of the overall fishery.

More detailed information on the set gillnet fishery is provided in Appendix 1. From 1991-94, no bottlenose dolphins were observed taken in this fishery with 10-15% observer coverage (Julian and Beeson 1998). The observer program was discontinued at the end of 1994, when coastal set gillnet fishing was banned within 3 nmi of the southern California

coast. In central California, gillnets have been restricted to waters deeper than 30 fathoms (56m) since 1991 in all areas except between Point Sal and Point Arguello. In 2002, a ban on set gill and trammel nets inshore of 60 fathoms from Point Reyes to Point Arguello became effective. Because of these closures, the potential for mortality of coastal bottlenose dolphins in the California set gillnet fishery has been greatly reduced. Fisher self-report data and 36 stranding records for 1997-2001 do not include any evidence of fishery interactions for this stock. Coastal gillnet fisheries exist in Mexico and probably take animals from this population, but no details are available.

Other removals

Seven coastal bottlenose dolphins were collected during the late 1950s in the vicinity of San Diego (Norris and Prescott 1961). Twenty-seven additional bottlenose dolphins were captured off California between 1966 and 1982 (Walker 1975; Reeves and Leatherwood 1984), but based on the locations of capture activities, these animals probably were offshore bottlenose dolphins (Walker 1975). No additional captures of coastal bottlenose dolphins have been documented since 1982, and no live-capture permits are currently active for this species.

STATUS OF STOCK

The status of coastal bottlenose dolphins in California relative to OSP is not known, and there is no evidence of a trend in abundance. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Because no recent fishery takes have been documented, coastal bottlenose dolphins are not classified as a "strategic" stock under the MMPA, and the total fishery mortality and serious injury for this stock can be considered to be insignificant and approaching zero.

Habitat Issues

Pollutant levels, especially DDT residues, found in Southern California coastal bottlenose dolphins have been found to be among the highest of any cetacean examined (O'Shea et al. 1980; Schafer et al. 1984). Although the effects of pollutants on cetaceans are not well understood, they may affect reproduction or make the animals more prone to other mortality factors (Britt and Howard 1983; O'Shea et al. 1999). This population of bottlenose dolphins may also be vulnerable to the effects of morbillivirus outbreaks, which were implicated in the 1987-88 mass mortality of bottlenose dolphins on the U.S. Atlantic coast (Lipscomb et al. 1994).

REFERENCES

- Britt, J. O. and E. B. Howard. 1983. Tissue residues of selected environmental contaminants in marine mammals. *In:* Howard, E. B. (ed.), Pathobiology of Marine Mammal Diseases. CRC Press, Boca Raton, Florida.
- Carretta, J. V., K. A. Forney and J. L. Laake. 1998. The abundance of southern California coastal bottlenose dolphins estimated from tandem aerial surveys. Mar. Mamm. Sci. 14:655-675.
- Defran, R. H. and D. W. Weller. 1999. Occurrence, distribution, site fidelity and school size of bottlenose dolphins (*Tursiops truncatus*) off San Diego, California. Mar. Mamm. Sci. 15:366-380.
- Defran, R. H., D. W. Weller, D. L. Kelly, and M. A. Espinosa. 1999. Range characteristics of Pacific coast bottlenose dolphins (*Tursiops truncatus*) in the Southern California Bight. Mar. Mamm. Sci. 15:381-393.
- Dudzik, K.J. 1999. Population dynamics of the Pacific coast bottlenose dolphin (*Tursiops truncatus*). M.S. Thesis, San Diego State University, San Diego, California 92182. 63pp.
- Forney, K.A., J. Barlow, M.M. Muto, M. Lowry, J. Baker, G. Cameron, J. Mobley, C. Stinchcomb, and J.V. Carretta. 2000. U.S. Pacific Marine Mammal Stock Assessments: 2000. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-300. 276p.
- Hansen, L. J. 1990. California coastal bottlenose dolphins. *In*: S. Leatherwood and R.R. Reeves (eds.), The Bottlenose Dolphin, p. 403-420. Academic Press, Inc., San Diego.
- Hansen, L. J. and R. H. Defran. 1990. A comparison of photo-identification studies of California coastal bottlenose dolphins. Rep. Int. Whal. Commn. Special Issue 12:101-104.
- Hanson, M.T. and R.H. Defran. 1993. The behavior and feeding ecology of the Pacific coast bottlenose dolphin, *Tursiops truncatus*. Aquatic Mammals 19:127-142.
- Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284.
- Lipscomb, T. P., F. Y. Schulman, D. Moffett, and S. Kennedy. 1994. Morbilliviral disease in Atlantic bottlenose dolphins (*Tursiops truncatus*) from the 1987-88 epizootic. Journal of Wildlife Diseases 30:567-571.

- O'Shea, T. J., R. L. Brownell, Jr., D. R. Clark, W. A. Walker, M. L. Gray, and T. G. Lamont. 1980. Organochlorine pollutants in small cetaceans from the Pacific and South Atlantic Oceans, November 1968-June 1976. Pesticides Monitoring Journal 14:35-46.
- O'Shea, T. J., R. R. Reeves, and A. Kirk Long (eds.). 1999. Marine Mammals and Persistent Ocean Contaminants: Proceedings of the Marine Mammal Commission Workshop, Keystone, Colorado, 12-15 October 1998. Marine Mammal Commission, Bethesda, MD. 150pp.
- NMFS, Southwest Fisheries Science Center. P.O. Box 271, La Jolla, CA 92038-0271
- Norris, K. S. and J. H. Prescott. 1961. Observation on Pacific cetaceans of Californian and Mexican waters. University of California Publications in Zoology 63:291-402. University of California Press, Berkeley and Los Angeles.
- Reeves, R. R. and S. Leatherwood. 1984. Live-capture fisheries for cetaceans in USA and Canadian waters, 1973-1982. Rep. Int. Whal. Commn. 34:497-507.
- Ross, G. J. B. and V. G. Cockcroft. 1990. Comments on Australian bottlenose dolphins and the taxonomic status of *Tursiops aduncus* (Ehrenberg, 1832). *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 101-128. Academic Press, 653pp.
- Schafer, H. A., R. W. Gossett, C. F. Ward, and A. M. Westcott. 1984. Chlorinated hydrocarbons in marine mammals. Biennial Report, 1983-84, Southern California Coastal Water Research Project, Long Beach, California.
- Van Waerebeek, K., J. C. Reyes, A. J. Read, and J. S. McKinnon. 1990. Preliminary observations of bottlenose dolphins from the Pacific coast of South America. *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 143-154 Academic Press, 653 pp.
- Walker, W. A. 1975. Review of the live-capture fishery for smaller cetaceans taken in Southern California waters for public display, 1966-77. J. Fish. Res. Board. Can. 32:1197-1211.
- Walker, W. A. 1981. Geographical variation in morphology and biology of bottlenose dolphins (*Tursiops*) in the eastern North Pacific. Admin. Rep. LJ-81-03C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038, USA. 52p.
- Ward, B.G. 1999. Movement patterns and feeding ecology of the Pacific coast bottlenose dolphin (*Tursiops truncatus*).
 M.S. Thesis, San Diego State University, San Diego, California, 92182. 98pp.
- Wells, R. S., L. J. Hansen, A. B. Baldridge, T. P. Dohl, D. L. Kelly and R. H Defran. *In*: S. Leatherwood and R. R. Reeves (eds.), The Bottlenose Dolphin, p. 421-431. Academic Press, Inc., San Diego.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commerce, NOAA Tech. Memo. NMFS-OPR-12. 93 pp.