
Dipolar Superfluids

Introduction: Superfluidity was discovered in 1938
as the ability of liquid Helium (He4) to carry mo-
mentum without dissipation and its phenomenologi-
cal theory is based on the condensate wave function
as an order parameter that describes the superfluid
component of the liquid. The cornerstone of the phe-
nomenological theory is the notion that phase of the
superfluid condensate φ couples to the gauge poten-
tial A and that the condensate current is given by
J = ρs(∇φ − eA) where ρs is a measure of the su-
perfluid density. He4, being neutral, does not carry
electrical current although it can produce nontriv-
ial gauge potentials by rotation. Another example
of a neutral superfluid is an excitonic condensate in
semiconductors, where electrons and holes can form
(metastable) bound states called excitons which are
expected to behave as neutral bosons at low den-
sities and therefore can undergo Bose-Einstein con-
densation. This condensate, being neutral, will pos-
sess properties similar to superfluidity. In recent
times , attempts to experimentally realize the exci-
tonic condensate have focused on creating electron-
hole plasma by optically exciting electrons from a va-
lence band to the conduction band and then spatially
confining the resulting electrons and holes to different
quantum wells using a static electric field. The inves-
tigation of their properties has been limited to photo-
luminescence measurements: processes which probe
phase-coherence but not superfluidity, and which de-
stroy the condensate. In particular, they have not
been investigated via transport measurements which
can provide a direct signature of their superfluid prop-
erties.

Recent developments in heterojunction fabrica-
tions open up the exciting possibility of electron-hole
bilayer systems where the electrons reside in one layer
and holes in the other layer separated by a distance
d ∼ 200Å, and where the density of electrons or
holes in individual layers can be adjusted using in-
dependent gates. These systems have very weak but
nonzero interlayer tunneling which allows the elec-
trons and holes to couple with an in-plane magnetic
field applied between the two layers. As a result of
Coulomb attraction between electrons and holes, the
excitonic condensate is expected to occur when the
typical distance rs between electrons (holes) within a
layer exceeds the distance d between the two layers.
These systems offer an alternate view of the electron-
hole excitonic condensate where the condensate has
a well defined dipole moment associated with each
exciton.

We argue that this excitonic condensate represents
a qualitatively new kind of superfluid where the con-

densate is neutral and carries no momentum density.
We call this nominally neutral superfluid a dipolar
superfluid. The dipole moment associated with each
exciton in the condensate allows this liquid to couple
to electromagnetic fields in a nontrivial fashion. We
find that the phase of the dipolar superfluid couples
to the gradient of the gauge potential. As a result,
we predict that it will exhibit a neutral persistent
dipolar current, consisting of equal and oppositely di-
rected currents in the two layers, upon application of
an in-plane magnetic field B||. Thus, in the present
case, the composite structure of excitons is manifest
in the macroscopic condensed superfluid state. In the
following paragraphs, we present the hydrodynamics
of such a superfluid based on the Ginzburg-Landau
(GL) energy functional and discuss various predic-
tions which follow from it [1].

GL Energy Functional and Effective Action: Let
us consider a bilayer system with electrons in the top
layer and holes in the bottom layer. We introduce
a notation where ± subscript corresponds to the top
and bottom layer respectively. We define the exci-
tonic condensate order parameter as

∆(r) = 〈c†+(r)c−(r)〉 = |∆(r)| exp [iΦ(r)] (1)

where c†±(r) creates an electron in the top (bottom)
layer at position r, and we have used the fact that
c−(r) = c†h(r) where c†h(r) creates a hole at position
r in the bottom layer. Upon a gauge transforma-
tion c±(r) → exp [ieϕ±(r)] c±(r), the order parame-
ter ∆(r) will transform as ∆(r) → exp [iΦ(r)]∆(r)
with

Φ(r) → Φ(r)− eϕ+(r) + eϕ−(r) (2)

where −e < 0 is the electron charge. We will
call the phase of the order parameter, Φ(r), the
dipolar phase. It is “approximately” charge-neutral
upon gauge transformation since the condensate is
an electron-hole condensate. However, the crucial
observation is that the electron and the hole oper-
ators are always spatially separated: the electrons
are in the top layer and the holes are in the bottom
layer. Therefore as one winds the phases of c+(r) and
c−(r) in the same direction, since ϕ±(r) = ϕ(r±d/2),
where d = dẑ is a vector normal to the two layers, the
phases that enter into the shift of the dipolar phase
Φ(r) are not fully compensated. This phase shift that
enters in the gauge transformation of a nominally
charge-neutral dipolar phase, Eq.(2), is crucial for
the hydrodynamics of the dipolar superfluid. Now
we determine the coupling of the dipolar phase to
external gauge potentials in the top and bottom lay-
ers, A±(r) = A(r ± d/2). To be consistent with
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gauge transformation A± → A± +∇ϕ± the dipolar
phase must transform as ∇Φ → ∇Φ − e(A+ −A−).
The gauge potentials in top and bottom layers enter
with opposite signs since they couple to oppositely
charged electrons and holes respectively, and there-
fore, in contrast to an ordinary superfluid, the phase
of the dipolar superfluid couples to the difference of
the gauge potentials between the two layers.

The GL energy functional for the dipolar super-
fluid will depend on the order parameter ∆(r), and
for inhomogeneous state should depend only on the
gauge-invariant combinations involving the gradient
of the dipolar phase Φ(r). In particular, the gradient
part of free energy will be given by

F =
1
2
ρd

∫
r

[∇Φ(r)− eA+(r) + eA−(r)]2 (3)

where ρd is the dipolar superfluid density. The cur-
rents in the top and bottom layers are given by
J±(r) = ±eρd [∇Φ(r)− ea(r)] where a ≡ (A+−A−)
is the antisymmetric combination of gauge potentials.
The excitonic condensate carries a net dipolar current

Jd(r) = 2eρd [∇Φ(r)− ea(r)] . (4)

Eq.(4) has exactly the same form as a supercurrent in
a superconductor. Therefore, in analogy with a su-
perconductor, we expect persistent dipolar currents
produced by the external antisymmetric gauge po-
tential. For a smoothly varying gauge potential, the
antisymmetric combination a(r) = A(r + d/2) −
A(r − d/2) ≈ d∂zA(r) can be tuned by varying a
uniform in-plane magnetic field. For example, let us
consider a uniform magnetic field B|| = −B||ŷ be-
tween the two layers, generated by gauge potential
A(r, z) = (−B||z, 0, 0). Such uniform field leads to a
dipolar supercurrent given by

Jd = 2e2ρddB||x̂. (5)

Thus, we predict that a uniform in-plane magnetic
field will induce persistent and opposite currents in
the top and the bottom layers in the direction perpen-
dicular to magnetic field. One can view the dipolar
persistent current as arising from “perfect diamag-
netism”. Indeed, turning on the in-plane magnetic
field produces electric fields which are equal and op-
posite in the two layers. These electric fields accel-
erate electrons and holes in the same direction in re-
spective layers. The phase stiffness of the conden-
sate does not allow the resulting current to decay and
gives rise to dipolar supercurrent.

This supercurrent can be detected via separate con-
tacts to the two layers and will provide a direct signa-
ture of the superfluid properties of excitonic conden-
sates. As a possible realization of this experiment in
available samples, we propose the study of induced
charges in each layer in response to an ac in-plane
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Figure 1: Schematic bilayer electron-hole system.
The electrons in the top layer and holes in the bot-
tom layer form excitons which condense at low den-
sities. We predict that an in-plane field B|| will pro-
duce equal but opposite currents in the two layers,
corresponding to a dipolar supercurrent Jd ∝ B||

magnetic field with frequency ω. In the absence of
the excitonic condensate, Faraday induction will lead
to a dipolar current Jd ∼ ωB|| which in turn will in-
duce equal and opposite charges Q± ∼ ±B|| in the
two layers. In contrast, in the presence of condensate,
the dipolar current will be Jd ∼ B|| and therefore the
induced charges will be given by Q± ∼ ±B/ω, lead-
ing to a very different frequency dependence.

Since the dipolar phase couples to the in-plane
magnetic field, introducing vortices in the dipolar
phase requires gradients in this field over the length-
scale d and is necessarily small for externally applied
fields. In addition, the zero divergence of the in-
plane field necessitates other gradients compensate
for the gradients which induce vorticity. Thus cre-
ation of vortices in the dipolar phase requires non-
trivial texture in the external magnetic field over very
short length-scales. In this sense, the dipolar super-
fluid is robust against creation of vortices (and subse-
quent destruction of superfluidity) by external mag-
netic fields. The superfluidity can also be destroyed
when the dipolar supercurrent velocity (proportional
to the applied field) exceeds the velocity of the collec-
tive mode associated with the dipolar phase fluctua-
tions. This criterion gives an estimate for the critical
field Bc above which the excitonic condensate is de-
stroyed. For typical system parameters, the critical
field is given by Bc ∼ 100T, much larger than typi-
cal values of applied in-plane field, and suggests that
dipolar condensates are indeed robust.
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