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Material provided in this document supplement the paper “Estimation of order re-
stricted means from correlated data” by Peddada, Dunson and Tan (2005). For notational
consistency, in this document we use the same notations as those used in actual paper. Two
items described in this document are the asymptotic properties of the proposed estimator
and results of a simulation study.

We summarize the simulation results for estimating the smallest parameter when the
parameters are subject to simple tree order restriction, and the estimators of individual
parameters when the parameters are subject to an umbrella order with location of the peak

unknown.
ASYMPTOTIC PROPERTIES OF THE PROPOSED ESTIMATOR

We prove that at every iterate the estimator proposed in the paper is a consistent
estimator and under certain conditions it is also asymptotically normal. Before we derive

these asymptotic properties we provide some preliminary results as follows.

For a random vector U = (U, Us,...,U,)’, define

Vi = min (Ul,
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Vi:—{maX (Ui Wit Tl Z>+min<Ui R Z“)}, i=2,...,p-1,
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where w; j are constants (not depending upon n) such that w;; > 0,w;2 > 0,w; 1 +w;2 > 0,
fori=1,....,p— 1

Lemma S1. Suppose p1 < pa < ... < pp and for ¢ = 1,2,...p, suppose U; is a consistent
estimator of u; and asymptotically \/n(U; — p;) — Z; in distribution, where Z; has mean 0
and finite variance and whose distribution is independent of the parameters i1, 2, ..., fip.
(1) If p1 < po and if Zy is normally distributed then Vi is a CAN estimator of 1.

(ii) If p1 = po then, for all real z,

VA VA
nlggo Pr{v/n(Vi — ) <z} = Pr(Z; <z)+Pr <Z1 > x, w141 + w1245 < x)

w11+ w12
Further, Vi is a consistent estimator of 1.

(153) Fori=2,3,...,p—1, if pi—1 < p; < pir1 and if Z; is normally distributed then V; is
a CAN estimator of ;.

(i) Fori=2,3,...,p—1, if pi—1 = p;j < pir1 then, for all real x,

Wi—112i-1 + wi—127Z;
wi—1,1 + Wi—1,2

le Pr{vn(Vi—u;) <z} - Pr(Z; 1 < Z; < :1:)+Pr<Zi+ <2x,Z; 1> ZZ->.
n (0]

Further, V; is a consistent estimator of p;.
(v) Fori=2.3,....p—1, if pi—1 < p; = pit+1 then, for all real x,

wi1Z; + wi2Zit1
w1+ w2

Further, V; is a consistent estimator of p;.
(vi) Fori=2,3,...,p— 1, if pi—1 = pj = pi+1 then, for all real x,

wi1Z; + wi2Zit1
wi1 + w; 2

+Pr (Zi + <2x,7; 1< Zi, Z; > Zi+1>

Wi—112Zi—1 + wi—12%Z;
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+Pr (Zi + <2x,7; 12> Zi Zi > Zi+1>

+Pr<wi—1,1Zi—1 + wi—1,2%; n winZi +wi2Zit1

<2x,Zi 1 2> Z; > Zi+1>-
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Further, V; is a consistent estimator of p;.

(vii) If pp—1 < pp and if Z, is normally distributed then V), is a CAN estimator of .
(viii) If pp—1 = pp then, for all real x,

. Wp—1,121 + wp_1,222
nlg%o Pr(vn(V, — pp) < z) = Pr(Z, <z) — Pr (Zp <z, P > w)
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Further, V,, is a consistent estimator of p,.
Proof of (i):

We first derive the asymptotic distribution of Vj. If wy 2 = 0 then the proof is trivial, as
Vi = U;. Thus, we focus on the case where wy 2 > 0.

Let W; = /n(U; — p;), it = 1,2 with lim,_, Pr(W; < z) = Pr(Z; < x), for all . Then

Pr(vn(Vi = m) < z) = 1 = Pr(vn(Vi — 1) > o)

wl,1W1 + UJLQWQ + \/ﬁWl,Q(MQ — ,ul) > :E)
w11+ w12 a

ZI—PI'<W1 Z:E,

—1—Pr(W; > z)+ Pr <W1 > 1, winWh + wi2Wo + /nwy 2 (2 — 1) < x)

wi,1 + wi2 o

As n — oo we therefore have
Pr(vn(Vy — 1) < z) = Pr(Z; < x).

Thus, if Z; is normally distributed then /n(Vy — p1) is asymptotically normal.

The proof of consistency of Vi can be deduced along the above lines as follows. For all

z>0
Pr([Vi — | <z) =Pr(Vi — 1 <z) = Pr(Vi — < —2).
Note that
Pr(Vi —py <z) =1 - Pr(vn(Vi — 1) > vnx)
W _
- Pr<W1 > i, wi 1 Wi + w1 oWo + Vnwi 2(pe — p1) > ﬁm)
w11+ w12
=1-Pr(W; > V/nz)
%% _
+Pr<W1 > \/ﬁ@ w1,1 W1 + w1 2Wo + \/ﬁsz(m p) < \/ﬁ$> (51)
wi,1 + w2

Similarly, note that
Pr(Vi — 1 < —z) =1 —Pr(Wy > —/nx)+

%% W —
PI'(WI > —\/EIL', wiavvi + Wi,2VV2 + \/ﬁUJLQ(ﬂ,Z u’l) < —\/EIL'> (82)
wi,1 + wi2

Since x > 0 and ps > p1 we therefore observe that the right hand side of (S1) converges
to 1 and similarly the right hand side of (S2) converges to 0. Hence combining the two we
note that

nlggoPrﬂVl —m| <z)—1.
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Thus V; is a consistent estimator of p;. Consequently, if Z; is normally distributed then

Vi is a CAN estimator.
Proof of (ii):
We first derive the asymptotic distribution of V;. Note that

Pr(vn(Vi — m) < z) = 1 = Pr(vn(Vi — 1) > o)

=1-Pr (WI >z, Wi + wi2W2 > x)

wi,1 + w2 o

W W-
:1—Pr(W12:1:)+Pr<W12m,wm 1+ wio 2§$>

w11+ w12

As n — oo we therefore have

VA 7
Pr(vn(Vy —p) < z) = Pr(Z; < x) +Pr <Z1 >, Wi,141 + W1,240 < w)

w11+ w12

To prove the consistency of Vi we note that for all > 0
Pr([Vi —m| < z) =Pr(Vi —py < z) = Pr(V1 —py < —x).

Note that
Pr(Vi —p <z) =1~ Pr(vn(Vi — p1) > Vnz)

W- W-
w1, Wi + w12 22\/535)

=1 —Pr<W1 > /nx,

w11+ w12
W W
=1-Pr(Wy >+/nz) + Pr<W1 > v/nz, WLLWL + w2 W < nw) (S3)
wi,1 + wi2
Similarly, note that
Pr(Vy —py < —z) =1 —Pr(vn(Vi — p1) > —V/nz)
=1- Pr<W1 > —/nz, w11 Wi + w10 W > — nw)
w11+ w12
W 1%
— 1-Pr(W; > —\/ﬁx)+Pr<W1 > /g, 2Lt 1‘”1’2 2 < —\/ﬁx>. (S4)
w11 + w2

Since z > 0 we therefore observe that the right hand side of (S3) converges to 1 and similarly

the right hand side of (S4) converges to 0. Hence combining the two we note that
nlLIgOPr(|V1 —m| <z)—1.

Thus Vj is a consistent estimator of j;.



Proof of (iii):

We assume w;_1,1 > 0, and w; 2 > 0. The cases when either w;_1; =0, or w;2 = 0 can
be deduced similarly.
For j > i, let W; = /n(U; — pj), and let W,y = /n(Vi—1 — pi—1). Further, let A =
{W; = Wiy > /n(pi—1 — i)} and B = {W; — Wis1 < /n(pir1 — pi)}. We derive the
asymptotic distribution of V; by induction. By virtue of (i) and (ii) we assume that the
asymptotic distribution of W;_; is not dependent upon g1, pa, ..., tup.
Note that for each x,

Pr(v/n(Vi — i) < )

1 - Vﬁ - U . U . U
_ Pr[\/ﬁ{— (max (Ui wi—11Vic1twi—12 z) 4 min (Ui, wi1Ui +wj z+1>>_m} <
2 Wi—1,1 + Wi—1,2 w1+ wi2

_py Hl (max <Wi wi—1,1Wi—1 + wi—12Wi + V/nw;i—1 1 (pi—1 — Mz’))
Wi—1,1 + Wi—1,2

+ min (Wi win Wi + wi sWi1 + /nwi o (piv1 — Mi))) } < x}
w1+ wi2
AW i oW o (i1 — [ 7
— Pr (Wz <z A, B) L Pr (Wz 4 wi 1 Wi + wiaWip1 + \/ﬁwzﬂ(ﬂ'z-l-l 14i) <2, A, B)
wi 1+ w;2
AP (Wi n wi—1 1 Wizt + wi—1 2Wi + v/nwi—1 1 (pie1 — 1) <% A, B)
wi—1,1 + Wi—1,2
+Pr<wi1,1Wi1 + wi—1oWi + Vw11 (-1 — i)
wi-1,1 T Wi—12
+wi,1Wi + wioWip1 + \/ﬁwi,Q(Mz‘H — [4i) < 2, fl, B)
wi 1 + w2
Since p1 < po2 < ... < pp, therefore A, B are impossible events as n — co. Thus the

above expressions converge to P(Z; < x). Thus, if Z; is normally distributed then V; is
asymptotically normally distributed. Using arguments similar to those made in the proof

of (a) it can also be deduced that V; is consistent for p;.
Proof of (iv):

Suppose pi—1 = p; and p; < piy1. Let A = {W; > W;_1} and B = {W; — Wiq <

V/n(pit1 — i)} Then following the above calculations we have, for all z,

Pr(yvn(V; — pi) < x) =

win Wi + wi oW1 + /nw; o (piv1 — f4i)
w1+ wi2

P(Wi <z, A, B) + Pr(Wi + <2z,A, B)



+Pr (Wi + wi—1, ) Wit + wiz10Wi + vVinwi11 (pio1 — ) _ _ )

22, A, B
Wi—1,1 + Wi—1,2

wi—1aWie1 + wi—120Wi + Vnwi 11 (-1 — pi)
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—|—Pr<

win Wi + wi sWi1 + /nwi o (piv1 — i)
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N ) < 295,/1,5)

Since, as n — 00, B is an impossible event hence we deduce that

Wi—112i-1 + wi—127Z;
Wi—1,1 + Wi—1,2

Pr(vn(Vi—u;) < z) — Pr(ZZ-l < 7Z; < $> —)—Pr(Zi—i— <2x,Z; 1> ZZ->

Following arguments very similar to those in the proof of (ii) we can prove that V; is a

consistent estimator of ;.

The proofs of (v), (vi), (vii) and (viii) follow very similarly and hence we omit them.
a

We now re-state and prove Theorem 3 stated in the accompanying paper. Theorem 3

assumes that 2(®) = X has a multivariate normal distribution.

Theorem 3. Suppose p1 < ps < ... < pp and, fori=1,2,...p and s = 1,2,3,..., ,&Etil)
1)

s a consistent estimator of p; and asymptotically \/ﬁ(ﬂgtf — wi) — Z; in distribution,

where E(Z;) = 0, var(Z;) < oo and the distribution of Z; is independent of pi1, pia, ..., fip-
®)

Then, for each i, i =1,2,...,p, fi;” is a consistent estimator.

(i) If p1 < po then [Lgt) is asymptotically normally distributed.

(1) If p1 = po then, for all real x,

VA 7
nlggo Pr{\/ﬁ(ﬂgt) —u) <z} —>Pr(Z; <z)+Pr (ZI >, w1141 + W1,242 < x)

w1 t+wie

(iii) For i = 2,3,...,p — 1, if pi—1 < p; < pip1 then ,&Et) s asymptotically normally
distributed.

(i) Fori=2,3,...,p—1, if pi—1 = p; < pir1 then, for all real x,

nlg%o Pr{\/ﬁ(ﬂz(-t) — i) <z} —=Pr(Z;1 <Z; <x)

Wi—112Zi—1 + wi—12%;
Wi—1,1 + Wi—1,2

+Pr <Zz + <2x,7; 1> Zz) .
(v) Fori=2,3,....p—1, if pi—1 < p; = pi+1 then, for all real x,
Jim Pr{vn(il’ - w) <z} = Pr(Z; < ,Z; < Zis1)
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wi14; + wi2Zit1
wi 1+ w;2

+PI‘<ZZ' + <2x,7Z; > Zz'+1>-
(vi) Fori=2,3,...,p— 1, if pi—1 = pj = pi+1 then, for all real x,

lim Pr{vn(i” — ) <z} = P(Z < 2,21 < Zi < Ziga)
n o0

P (ZZ- Witk Gindinl 9, 7 < 7,7, > Zi+1>
wi 1+ w2
. Z._ . Z
+Pr(zz- UL PO T gy g s 7 7> ZHI)
Wi—1,1 + W;i—1,2

wi 1141 twi124;  wi1d; +wi2Zit1
wi—1,1 + Wi—1,2 wi 1+ w2

(vii) If pp—1 < pp then [L;E)t) is asymptotically normally distributed.

+Pr< <2x,7Z; 1 > 7Z; > Zi+1>-

(viii) If pp—1 = pp then, for all real x,

Wp—1,14p—1 + Wp—1272
p—1,1Z4p—1 + Wp-1,2 pzx>.

nlggo Pr{\/ﬁ(ﬂg) ~#p) S} = Pr(Z, < @) —Pr (Zp = Wp—1,1 +Wp—1,2

Proof:

We sketch the proof for the case when ¥ is known. If ¥ is unknown then one may
appeal to Slutsky’s theorem. Further, it is enough to prove the theorem for the estimators
produced after one iteration because the same argument can be applied for every iteration.

For each new iterate ¢, the proof follows by appealing to Lemma S1 with U = ﬂ(tfl),
V = 4® and by noting that 4(®) = X is a normally distributed random variable.

SIMULATION STUDY
Umbrella order with unknown location of the peak

In §4 of the accompanying paper, we compared the performance of X, " and i, in
terms of E(6 —0)'(§ — 0). In this document we provide the comparisons between the three
estimators in terms of the mean squared error (MSE) of the individual components, namely,
E(éz —0;)%,i=1,2,...,p, where 6, is an estimator of 6;.

Simulations were conducted under the same set of configurations as in the accompanying
paper. All results are based on 10,000 simulation runs. Results summarised in Table 2

indicate that /i generally performs better than X and it competes very well with /.



Simple tree order restriction

We compared the performance of the following estimators of 11 under the simple tree order
restriction, uy < pg, 2 = 2,3,...,p. As before, the simulation results are based on 10,000

simulation runs.

e The restricted maximum likelihood estimator (RMLE) of ;1 under the assumption

that ¥ is diagonal, with weights 1/0;;, 4 =1,2,...,p.

This estimator was considered only in the case when ¥ is diagonal.
e ji1, the proposed estimator.
e (1P the estimator introduced in Hwang & Peddada (1994).

e Unrestricted maximum likelihood estimator X;.

For our simulation study, we generated the sample mean vector X from a p-variate
normal distribution with g/ = (0,1,1,0,...,0) and a tri-diagonal covariance matrix X

whose elements are defined as follows:
2 .
01,1 = Ci, 01,2 = dUCl, Oii — O (Ci—l + Ci), O4i+1 = dUCi,fOI“ all ¢ Z 2,

with d = 0, =1 and all remaining off-diagonal elements of 3 being zero. Thus we considered
3 different covariance structures; d = 0 corresponds to a diagonal X, d = 1 corresponds to
the case where the components of X are non-negatively correlated and d = —1 corresponds
to the case where the components of X are non-positively correlated. The covariance matrix
3} is assumed to be known.

Nearly 100 different patterns of c1,co,...,cg and o were considered. A representative
sample of the simulation study is summarised in Table 3. We compared the above estimators
in terms of MSE, E(fi; — pi1)?, and the coverage probability, P(|f; — u1| < 1.96,/011), where
91 is an estimator of ;1. Note that, theoretically the MSE of X is 011 = ¢; and its coverage
probability is 0.95.

In the case when ¥ is diagonal (i.e. d =0) and ¢; = .1,¢2 = 0.005, the MSE of RMLE
exceeds that of X and also its coverage probability drops well below 0.95. Thus when ¥
is diagonal, the RMLE performs very poorly. Further, in view of the theoretical result
obtained in Hwang & Peddada (1994), it may be avoided when the covariance matrix is

nondiagonal. Hence one should be very careful in using RMLE as the method of choice.



As expected, from a theoretical result of Tan & Peddada (2000), the performance of
8" is poor for certain covariance structures. For example when the components of X are
non-negatively correlated (i.e. d = 1) and ¢; = .1,c2 = 0.005 the coverage probability is
almost zero! In contrast, the proposed estimator ji; performs best in every case considered

in this simulation study.
Table 2: Umbrella Order

Component-wise comparison of the MSE, with n = 10.

Parameter Variance pattern
(i) (i) (iii)
i [P X i it X i i X
72 0.361 0.359 0.394 | 0.363 0.349 0.390 | 1.596  3.376 1.615
42 0.343 0.333 0.398 | 0.661 0.622 0.909 | 4.218 6.418 8.122
3 0.336 0.330 0.393 | 1.089 1.108 1.605 | 13.072 16.002 25.613
144 0.363 0.368 0.402 | 1.746 1.894 2.470 | 34.081 38.756  62.588
s 0.392 0.395 0.405 | 2.686 2.898 3.610 | 68.376 75.535 128.346
L6 0.357 0.359 0.393 | 1.788 1.930 2.530 | 33.127 37.309 61.834
7 0.348 0.338 0.403 | 1.088 1.108 1.618 | 12.515 14.796 25.349
s 0.337 0.329 0.399 | 0.641 0.621 0.907 | 4.099 5.873 8.260
Lo 0.340 0.328 0.392 | 0.357 0.343 0.405 | 1.057 2.430 1.606
110 0.371 0.369 0.401 | 0.100 0.100 0.100 | 0.100  0.823 0.098




Table 3: Simple Tree Order

Comparison of estimators in terms of MSE (first row) and coverage probability (second

row). Note that in this simulation experiment ¢y = ¢3 = ¢4 and ¢5 = ¢g = ¢7 = cg = 1.

Results are based on 10,000 simulation runs. Here o = 2.

C1,C X Uncorrelated Positive Negative
(d=0) correlation (d = 1) | correlation (d = —1)
X RMLE ﬂ ﬂHP ﬂ ﬂHP ﬂ ﬂHP
1, 0.1 1.00 0.653 0.608 0.626 | 0.721 1.413 0.739 1.149
0.951 | 0.975 0.975 0.975 | 0.974 0.938 0.974 0.931
0.2, 0.1 0.200 | 0.178 0.164 0.177 | 0.179 0.703 0.177 0.212
.946 0.960 0.968 0.969 | 0.961 0.655 0.962 0.940
0.1, 0.005 | 0.100 | 0.192 0.055 0.092 | 0.064 0.920 0.064 0.099
0.951 | 0.845 0.975 0.974 | 0.975 0.008 0.975 0.951
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