navigation bypass navigation contact us ring status schedules user guide links notices user sites people and policies jobs MicroWorlds publications meetings microscopes specifications About the ALS science highlights ALSNews home
 

 

Latest Science Highlights

graphene

Bilayer Graphene Gets a Bandgap

Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then behaves like a semiconductor. A team of researchers from Berkeley has engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 meV. With precision control of its bandgap over a wide range, plus independent manipulation of its electronic states through electrical doping, dual-gated bilayer graphene becomes a remarkably flexible tool for nanoscale electronic devices.


rotaxane

Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the “axle,” that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic compounds. Working together, two British groups at the University of Edinburgh and the University of Manchester have bridged this gap with hybrid rotaxanes, in which inorganic rings encircle the organic axles. The hybrid architecture greatly increases their range of useful physical properties, such as the magnetism based on molecular magnets that may make them suitable as qubits for quantum computers.


More ALS Science