Discovering a System Modernization Decision Framework:
A Case Study in Migrating to Distributed Object Technology

Evan Wallace Paul C. Clements, Kurt C. Wallnau
National Institute of Standards and Technology Software Engineering Institute
Manufacturing Engineering Laboratory Carnegie Mellon University
Gaithersburg, MD, 20899, USA Pittsburgh, PA, 15213, USA
wallace@cme.nist.gov {clements, kcw}@sei.cmu.edu
Abstract migrating to the chosen new technology? How will the

o . . .__stages of migration be managed? What will the effects be on
Many organizations face a serious challenge IntrodUCIngthe organization’s business and customer base? These and

new technologies into existing = systems. Effmt'veotherquestionsmustbeconsidered carefully; the alternative

modernization requires knowing and articulating specific.S a baseless miaration towards a technoloav with aloss
goals for the reengineering effort, conscious selection OL) 9 9y glossy

technologies and technical approaches that can achiev rochures, that may not be in the organization’s best inter-
those goals in the context of the class of system beinSstS atall

upgraded, a staged migration plan, and an integration On the other hand, prudent modernization and technology
strategy to make in-hand components work under the newlsefreshment can increase an organization’s capabilities in
adopted architecture. AIthough the StUdy of reengineering i$nany tangib]e and intangib|e ways. The system may take on
moving towards an engineering discipline, there are as yehew functionality, better performance, higher modifiability,
no proven decision frameworks that allow an organizationtighter security, or become able to interoperate with a new or
to rationally choose a modernization strategy. This papefinnortant class of partner systems. Derivative systems may
provides an in-depth look at the engineering trade-offs madg,o spun off quickly and reliably in a product line approach.
in modernizing a manufacturing engineering design systémyq.s,nnel may become fluent in state-of-the-art tools and
to use distributed object technology. From this case StUdyth?echniques, thus increasing their value. Productivity and

outlines of a more general re-engineering decision . .
9 =-eng 9 morale may be lifted. Market share may be increased.
framework can be seen, and are discussed.

. . The decision-making process is a complex one, with doz-
1. Issues in System Modernization ens of variables, many of which depend on each other. A
System modernization is a specialized application of sysdecision framework that enumerates the decision points,
tem reengineering, which is the disciplined evolution of aarticulates the questions that must be answered at each deci-
system from its current state to a new one [1]. Modernizatiorsion point, and suggests strategies based on those answers
involves substantial technical and business risk, because tyould, we believe, be of enormous practical importance.
its very nature it is the result of a prediction about the desir-The purpose of this paper is to propose the foundations for
ability of that future state. Substantial capital investmentsuch a decision framework. A complete framework is far
may be committed (such as adopting new support environPeyond the scope of the reported work, but it is hoped that
ments, or investing in intensive reprogramming), and thePy identifying the decision points, the contributing factors to

system often must continue operation free of disruption ireach, and the decision algorithms for at least some, that we
the meantime. will lay a foundational skeleton that the community as a

Faced with the question of modernization, managemen\fvhOIe might work together o fill

must answer many questions, many of which may not ever This paper reports on our experience from a case study in
be explicitly articulated and thus not given sufficient consid-System modernization. The system was a toolset for analyz-
eration. What is to be gained through modernization? Whaing manufacturing designs; the reengineering effort involved

aspects of the system and its supporting infrastructure wilmigrating to an integrated, distributed, object-based para-
be modernized? What are the technology options that can iéigm. The case study highlighted important lessons about
brought to bear? Are they of sufficient maturity and acceptthis class of technology migration, out of which emerges the
able risk? Is the current system well-enough understood d¥asis of an embryonic decision framework for moderniza-

the architectural level to judge the feasibility and risk in tion.

The remainder of the paper is organized as follows: Sec-nologies to commercial application. The DOE Technical
tion 2 provides necessary background on the constraints aniExchange of Information to Industry (TIE-In) project is
influences which governed the technical decision-makingtasked with making DOE-developed technology available
processes within the case study. Section 3 describes the casoutside of DOE. Among other things, TIE-In is interested
study in detail, and assesses the final result. Section 4 geneiin knowing whether CORBA can help make this technol-
alizes from this assessment of a specific modernization effortogy available to U.S. industry while also addressing obvi-
to an outline of a re-engineering decision framework, and ous security issues.
populates this framework with illustrations from the case gg| and the Component Integration Project
study. Finally, Section 5 states the key conclusions of this

paper and indicates possible avenues for further work. The Software Engineering Institute (SEI) is a federally-
funded research and development institute whose mission
2. Influences on Case Study is to improve the state of software.

A modernization effort involves a delicate balancing of within the SEI, a component integration project
many kinds of constraints and influences. The mostimportantaddresses issues relating to the integration of complex sys-
classes of such influences are described in the following sectems from pre-existing software parts. The project focuses
tions. on systems that are comprised of commercial off-the-shelf
2.1 Organizational Influences (COTS) components. One objective of the project is to

) define software architectures, integration techniques, and
NIST and the SIMA Project technologies to support component integration in distrib-

The U.S. National Institute of Standards and Technology uted, heterogeneous computing environments. The current
(NIST) has a long-standing role in investigating technologies technology focus of the project is on the use of distributed
for the integration of manufacturing systems. NIST's role in object technology, and CORBA in particular, for compo-
aiding U.S. industries’ competitiveness is through facilitating nent integration.
the_development ofnon-proprietary standards and ad_/ocatingzlz Application Domain Influences
their use. The Common Object Request Broker Architecture
(CORBA) being developed by the Object Management Manufacturing processes for product realization are
Group (OMG) consortium is viewed as one such potential many and varied and require specialty skills. For example,
standard that could provide a means for improved integrationjob scheduling, shop layout, and manufacturability analysis
for the manufacturing industry [2]. OMG has over five hun- are all specialized skills, often requiring specialized sup-
dred members and is still growing, and vendors are support-port technology. The notion of virtual enterprise is seen as
ing CORBA on the platforms that are commonly used for @ means of supporting the flexible combination of these

manufacturing (product realization) activities. specialty skills and tools from many highly-specialized

. . _ companies, and as a means of improving U.S. manufactur-
The NIST Systems Integration for Manufacturing Applica- ing competitiveness through faster market response and

tlor(;s_ (,[SIMAt‘.) pro?ram he:s T)goa(lj to tl'n?treair? tthe ﬂex'_b'"tt{] higher manufacturing quality. Technology for virtual enter-
and integration of computer based activities that comprise eprises must support:

whole product realization process from beginning part design
through part production [20]. To this end, SIMA sponsored a * the integration of separately-developed, specialized
project to test and demonstrate the viability of CORBA tech- ~ computer-based technologies covering a range of
nology, and to determine whether the standard is suitable for manufacturing processes;

agile manufacturing and virtual enterprises. « geographical distribution of computing resources and
Sandia and the TIE-In Project heterogeneous computing environments;

Sandia National Laboratories is a federally-funded ¢ fee-for-service brokering of computer-based services to
research and development laboratory that supports the U.S enable free-market competition.
Department of Energy (DOE). Among its many activities,
Sandia investigates the manufacture of high-quality, depend-
able systems. This has resulted in the development of NUMer 4 tnuts of these activities [21]. We searched through this
ous software components 0 support manufacturing ,ctivity model for a candidate activity around which to
engineering design, some of which formed the basis for they ;4 5 prototype integrated system using CORBA. Such a
case study. candidate needed to be simple enough to quickly prototype,

Sandia is interested—as are other U.S. government agenyet sophisticated enough to constitute a reasonable test of
cies—in exploring the transfer of internally-developed tech- the integrating technology. We found such characteristics

in the engineering design analysis activity.

SIMA has developed a model that identifies the constit-
uent activities of manufacturing and the data needs and data

Engineering analysis is a computer simulation performed conditions to be modeled and simulated, such as material
on part designs to test a part’s performance under certain realcharacteristics and forces to apply in the simulation
world use conditions. This analysis can be used not only to
determine a design’s adequacy at performing its function butfu
also be used in the optimizing a design, and lowering a part’sd
cost and/or weight while preserving confidence in its perfor-
mance. Due to the specialized nature of design software anc
the expertise needed to perform the design function, it is a
good candidate for computer network-based fee-for-service
applications. Also, the kinds of software needed to support
engineering analysis often require specialized computing
resources (supercomputers, graphics display, etc.), thus sen

The SEACAS toolset has many components in each
nctional category both as a result of the history of its
evelopment and the wide variety of approximations
appropriate to each actual analysis. We met with experts
from Sandia and developed a scenario incorporating a sub-
set of the tools in the SEACAS toolset. This included two
problem definition tools FASTQ and GEN3D, an analysis
simulator JAS3D and a visualizer BLOT. The general
usage scenario is as shown in Figure 2.

ing our desire to address distributed, heterogeneous system @
2.3 Current Sandia System and Desired Outcome

Sandia provided components from the Sandia National / \
Laboratory Engineering Analysis Code Access System FE
(SEACAS) for the modernization case study. SEACAS is a égnhgfét?on Analysis
collection of components that perform the computer based (FASTQ) (JAS3D)
processing tasks needed to support the analysis activity: the
provide functions such as defining test conditions (problem 3D Mesh Visualize
description), analysis simulation, and visualization (see Fig- Generation (BLOT)
ure 1). These tools share a common data format called EXO- (GEN3D)

3D Mesh
Model &
Analysis
Results

Problem Definition Visualization

model verification
analysis tracking
define load locations
define material type

« define geometry

¢ discretize model

« define load locations
« define material type

Figure 2. Case-Study Components and End-

Exodus Il Data Objects .
User Scenario

» coordinates

* connectivity - -
« load locations An analyst uses FASTQ to produceliacretized model

« results variables of the part to be analyzed. This model is stored in a file in
the EXODUS shared data format. The visualizing tool
BLOT then can be run against the model producing a
Simulation/Analysis v graphical representation for inspection by the analyst.
Based on that inspection the analyst either reruns FASTQ
to correct the model or he feeds the model to GEN3D to
extrude it into a three dimensional model. Another inspec-
tion/correction iteration may occur for the resulting three
Figure 1. SEACAS Tool and Data Relationships dimensional model before the model is fed to the analysis
tool. One or more analyses may be conducted, with results
evaluated via the visualization tool or through inspection of
DUS I [22]; thus these tools already have a form of data gther JAS3D output. Iteration among the various steps is
integration. The analySiS function is done USing a Finite Ele- also possib|e, for examp|e the ana|ysis results m|ght sug-

ment (FE) approximation technique[19]. The problem defini- gest changes to the underlying 2D or 3D mesh.
tions describe how to break up the part being analyzed into

elements, how to connect the elements together as well as th

 stress analysis
» shock physics analysis
* structural dynamics analysis

1. A two- or three-dimensional mesh that models the
solid as a set of many smaller linked solids.

In the scenario described above end-users are responsibl the decision to implement interim services in
for launching individual tools (often with personalized anticipation of OMA services not yet available.
scripts), managing tool output (in private directories), and ,
preparing the output of one tool for use as input to another
(sometimes with manual application of filters since not all
SEACAS tools use the same version of the Exodus data for-
mat—both format and tools have evolved over time). In
effect, the end-user is the system integrator, continually
exposed to all of the low-level details and technology depen-
dencies exhibited by the SEACAS components.

There are no well-established architectustgles[6] for
distributed object technology that have been
demonstrated to be effective with the OMA. It is
possible to analogize from established architectural
styles; however, there may be subtle mismatches
between these and the OMA. For example, a repository-
style integration architecture [8] can in theory be
supported by the OMA. However, the OMA lacks
TIE-In (the NIST and SEI projects as well) wanted to dem- support for critical database features, and assumptions
onstrate a modernization of SEACAS that would: concerning object granularity, security, etc., could cause

» present a uniform virtual environment for end-users that severe performance problems.

would reflect the nature of the analysis activity and notthe « The OMA specifications describe services from an
idiosyncracies of specific SEACAS components; object consumer’s perspective, not from the perspective
of an object supplier. Thus commercial ORBS exhibit a
wide range of non-standard implementation features.
Such vendor dependencies represent potential risks to
the survivability of a re-engineering solution given the
* provide a measure of security not just against theft of yolatility of the OMA specifications and marketplace.
software but also reliability and prevention of malicious or Unfortunately, it is not always easy to identify such
inadvertent denial of service; and, dependencies, nor to avoid them if identified.

* deliver reasonable, usable and predictable performance t2 5 Systems influences
end-users who are otherwise accustomed to using
computer services in local area network settings.

» support wide-area distribution of SEACAS services while
maintaining control over the software that provides these
services (some of which contain classified algorithms);

Different kinds of system properties will strongly influ-

o) ence modernization strategies. System properties may
It seemed to us that distributed object technology, and gjther pe intrinsic to the system, or they may be extrinsic

CORBA in particular, might provide a means of achieving properties that the system must exhibit. Examples of intrin-
these objectives—or at least the SEACAS modernizationjc properties include: distributed processing, client-server

would reveal limitations of CORBA in meeting these objec- orientation and multi-processing. Examples of extrinsic

tives—either of which would meet our organizational and properties (oguality attributeg4]) include fault tolerance,
project objectives. multi-level security and performantce

2.4 Technology Influences Different systems exhibit different patterns of intrinsic

Many organizations will have made some technology com- and extrinsic properties; some of these patterns arise with
mitments in advance of a thorough requirements analysis ancsufficient frequency to warrant classification as a kind of
design trade-off analysis. It is important to understand the System. We refer to the kind of system that was the subject
consequences of these commitments on both the target sy<Cf the case study as@mponent-basesystem. While all
tem and software development strategies. Our decision to us{"€al) systems are composed of components, in our usage
CORBA as a foundation for the modernization effort repre- the term component-based refers to systems that are com-
sents an important technical constraint: prised of multiple software components that:

« CORBA is new technology, and although there are * are ready “off-the-shelf” whether from a commercial
numerous commercially-available object request brokers ~source (COTS) or re-used from another system;

(ORBs), the underlying CORBA specifications are « have significant aggregate functionality and complexity,

changing. The instability of implementations and je., play the role of subsystems in the final system;

specifications is an important design factor. : ,
P P g » may be self-contained and execute independently;

* CORBA is intended to be only a communication
infrastructure within a larger distributed object
technology—the object management architecture (OMA) 1.0ne way t.o d.iffelrentiate these classes of properties is
[3]. ORB vendors are not required to implement OMA to cpn3|der !ntrlnsm propertles as represeptlng bpund
services. Thus, the decision to rely upon a vendor’'s design and implementation decisions, while quality

; . . . attributes are externally-visible system properties that
implementation of OMA services presents risks, as does deal with issues other than functionality.

» will be used “as is” rather than modified; and, All four aspects will be reflected to different degrees in

each integration relationship. Although these aspects are
entirely qualitative and descriptive, and there are no causal
connections between these and quality attributes, they pro-

Examples of component-based systems can be drawn fronyide a useful if limited framework for discussion, and will
many domains, including: computer-aided software engi- pe referred to in the following discussion.

neering (CASE), design engineering (CADE) and manufac- .
turing engineering (CAME); office automation; workflow 2.6 Architectural Influences
management; and command and control. Frameworks vs. Opportunistic Integration

 are treated as black- (or very opaque-) boxes in that their
implementations are independent of each other.

The stipulation that multiple components must be involved ~ We refer to technology infrastructures that present a
is important since this intrinsic system property defines a coherent and common view of integration within a class of
range of problems that must be addressed and dictates thsystems aitegration frameworksA number of integra-
kinds of engineering techniques and technologies needed tdtion frameworks have been developed to support compo-
address these problems. One key problem introduced by comnent integration in the CASE domain, each with its own
ponent-based systems can be summed up with the phrasparticular emphasis on one or more aspects of integration
architectural mismatcHi5]: components embed assumptions [15]. For example, PCTE [16] provides a range of integra-
about the architectural and operational context in which theytion services that emphasize data integration, while
operate, and these assumptions often conflict with the archi-ToolTalk [17] provides services that emphasize control
tecture of the target system and with assumptions manifestedntegration. Within the manufacturing domain the SEMAT-
by other components. ECH cim! application framework is both an integration
framework and an instance of an architectural style referred
to by the object-oriented community as application
frameworl; it emphasizes control and process integration.

The engineering techniques that are needed to addres
architectural mismatch are centered on the notion of systems
integration as a design activity. In contrast to the development
of other kinds of systems where system integration is often The cost of developing or using application or integra-
the tail-end of an implementation effort, in component-based tion frameworks can be great, and includes both the cost of
systems determining how to integrate components is often thedeveloping or licensing the framework and the cost of
only latitude designers have. Quality attributes such as usabil-introducing changes in engineering practices. In some situ-
ity, availability, and maintainability are influenced by and ations a more opportunistic approach to integration may be
help shape integration decisions such as: which componentdesirable. That is, rather than use a framework that imposes
need to be integrated to which; how component execution isa common approach to all integration problems, each inte-
coordinated; which architectural mismatches must be gration problem is viewed as a unique problem. While
resolved, and which mechanisms are used to adapt compaoopportunistic integration may result in extra effort and
nents to remove these mismatches. inconsistent solutions, it is flexible and can address appli-
cation-specific design problems and can accommodate new
integration technologies. Opportunistic integration does
not imply hacked, ad hoc solutions; indeed, there are sev-
eral architectural styles that may be applicable to compo-
nent-based systems that do not depend upon integration
frameworks (e.g., the “communicating objects” style [6]).

To understand where such mismatches might arise wher
integrating two or more components, it is useful to have some
idea of what it means to integrate components—and this turns
out to be surprisingly elusive. One useful way to think of inte-
gration is as aelationshipbetween two integrated entities,
where the relationship has four dimensionsaspectscon-
trol, data, process, and presentation [9][10]: Functional vs. Structural Architectures

« Control integration describes how components make A major design issue is whether to adopt an architectural
requests of (or invoke) each other’s services. style that emphasizes the functionality of the system and its

» Data integration describes how components make date
available to each other.

1. SEMATECH is an industry consortium; the Com-
» Process integration describes what end-user or busines puter Integrated Manufacturing (CIM) Application

process is supported by the integration relationship. Framework is one product of the consortium.

o])) 2. The term “framework” in application framework and
» Presentation integration describes how end-users interac integration framework describes different concepts: the

with the integration relationship, i.e., how to achieve a former describes a partial application that is completed

uniform model of human interaction. by the developer or integrator, while the latter describes
infrastructure that is independent of application func-
tionality.

components, or a style that emphasizes the structure of a sys
tem based on how the components interact rather than or
what functions they provide. We refer to the former class of
styles as functional styles, and the latter class as structura
styles.

Functional styles are far and away the predominant
approach to component-based systems; this approach define
components in terms of their functionality, e.g., database. The
interfaces between components are often expressed as funi
tion-specific application programming interfaces (API) or as
standard mechanisms (e.g., SQL for databases). Numerou
examples of functional architectures can be found in [8]; a
good example for the CAME domain is found in [11]. Func-
tional architectures are good for describing what kinds of
technologies are needed to implement a desired system func
tionality, the overall role each technology will play and which
technologies are likely to interact. They are weak when it
comes to describing non-functional properties of a design
(throughput, reliability, etc.), and generally resultin an ad hoc
integration where each particular inter-component relation-
ship is implemented as component-specific “glue.”

Structural styles are of more recent vintage but have beer
emerging as the study of software architecture has intensified
Rather than defining component interfaces in terms of spe-

distributed
object users
. .) resentation
lightweight graphical gnd process
interface & scripting layer
v l logical
: : object
: : @ layer
L é : physical
: : component
: : layer
Host 1 Host2... Host N
i i '@ corba object
native ﬂ component
tool users —p relationship

N\« invocation

Figure 3. Architectural Overview

cific functionality, structural styles define interfaces in terms
of the role a component plays in the architecture—often
describing acoordination mode{i.e., control and data flow).

A commonplace illustration of a structural style is UNIX
pipes and filters; more sophisticated illustrations include
structural models for flight simulators [12], the Simplex
architecture for evolvable real-time systems [13], and UNAS
for distributed, concurrent systems [14]. Since the structural
form of the architecture is often directly related to the archi-
tecture’s intrinsic coordination model, a range of quality
attributes can be understood from any particular design
expressed using the structural form; further, the structure
defines a uniform strategy for inter-component integration.
However, it may be difficult to determine just what function

is being computed by a system from a structural architecture.

3. Modernization Case Study .

With these technical and non-technical influences in mind,
it is possible to describe the architecture and implementation
of the prototype, and to describe in some detail how a partic-
ular trade-off analysis of the influences and technical
approaches described above are reflected in the solution.

3.1 Architectural Issues and Trade-offs

The (top-most) presentation and process layer addresses
presentation and process integration. Both aspects are
addressed in the prototype by Tk/TCL [18]. It is
depicted as a separable entity from the lower layers,
principally because it can be designed and implemented
in a way that is independent of object location or how the
objects are implemented, thus providing some support
for the desired end-user “virtual environment.”

The (middle) logical object layer addresses control and
data integration. Control integration is achieved using a
structural rather than functional interface (this is
discussed in more detail later); data integration is
achieved by object persistence and relationships. It is at
this layer that most of the detailed architectural issues
related to quality attributes are addressed.

The (bottom-most) physical component layer addresses
the management of physical resources (files, operating
system processes, etc.) and issues of architectural
mismatch between the components and the architectural
forms reflected by the logical object model (discussed
more fully in Section 3.2).

The two kinds of end-users depicted in Figure 3 reflect a

non-intrusive modernization strategy. It was important to
preserve the existing methods and mechanisms for access-
ing tool services since (a) we were dealing with a technol-
ogy that had many unknowns (CORBA), and (b) we were
only migrating a portion of the SEACAS system to distrib-

Figure 3 depicts a top-level view of the prototype architec-
ture. The three layers reflect the different kinds of integration
issues being addressed:

uted object technology. Supporting both classes of userswide-area distributed setting. For example, we were able to
involved additional coding effort, for example to provide tune the coordination model to various kinds of network

complementary tool data management services to those profailure modes (partition, node crashes, etc.), and to express
vided in the native environment, so that object-based usersthese tunings directly in the structure of the architecture.

did not interfere with native tool users (and visa versa). But The structural approach also helped to focus the component
the extra effort was deemed less important than supporting eadaptation/wrapping to those aspects of the design that
non-intrusive modernization. were sensitive to coordination issues, for example whether

Figure 4 depicts the logical object layer in more detail. The simultaneous invocations of the component were sup-

ported, how to address network disconnections.
Application Objects '::ramework Objects We considered adopting a functional approach, essen-
: tially just wrapping the SEACAS components “as is” using
: gﬁggnshfp a remote procedure call (RPC) metaphd¥e rejected this
: because the approach would not address data integration
2 requirements: this would have required us to develop addi-
S tional data management services, or else to parameterize
o the RPC interfaces to allow data interchange of lengthy
g : data streams—neither of which was desirable. Beyond
S bt these problems, an RPC approach would have exposed tool
& : [push_evert | ggﬁ“; technology to the programming interface; this would make
the modernized SEACAS system less adaptive to new com-
ponents and component upgrades, as the revealed technol-
incremental ogy dependencies are invariably reflected in end-user
% results Additional systems and interfaces such as we developed.
S Framework 3.2 Detailed Design Trade-Offs
a ervices for
‘;‘ component Component A number of modernization trade-off decisions arose at
Adaptor code Adaptation more detailed levels of the design and implementation of
))) the modernized system. For discussion purposes these have
Figure 4. Structural Architecture (Overview) been categorized according to the aspects of integration

which they addressed (process, presentation, control and
objects that implement the structural architecture are referrecdata integration).

to as structural objects in Figure 4. Two kinds of structural process, Presentation Integration in Distributed

objects are depicted in Figure 4: application objects and gystems

framework objects. Application objects implement system
functionality and most of the coordination model, while
framework objects provide needed integration infrastructure
services (which were needed despite our desire to pursue a
opportunistic integration approach). Framework objects are
discussed in detail in Section 3.2.

The detailed design of our prototype was driven largely
by the end user process it supports. There were many sim-
ilarities in steps between the user process activities for two
dimensional mesh generation, three dimensional mesh gen-
eration and mesh analysis. These similarities led naturally
to the model shown in Figure 5, which depicts the major

The coordination model is implemented by application gpject types found in the logical object model layer of the
objects that behave as state machines that are either consisteg chitecture (Figure 3). The structure of these objects
or inconsistent with respect to some specification. Specifica-reflects the end-user process: an analyst using the SEACAS
tions represent human input (e.g., mesh models, analysisqols is primarily concerned with data elements, (e.g. input
instructions), and consistency represents whether compocommands, output diagnostics, and mesh binaries), and
nent-generated data was derived from the specification. Comyelationships among them. These relationships are
ponents are invoked as a result of update operations; the\expressed in the object model as object relationships, and
return diagnostic data directly to the invoking object (not 4re modified by the value of attributes such as Consistent.

shown); they may also return other data, such as incrementaRe|ationships and their modifying attributes capture the
results from long-running analysis sessions, via event chan-

nels.

1. Using the earlier concepts, we can describe the RPC
approach as opportunistic integration (minimal or no
use of framework services) in a functional architecture.

This structural approach simplified the task of understand-
ing and analyzing how the object model would behave in a

. For this design, we opted to make object location and
string DisplayName . . .
host details as transparent as possible to end users. This

string Commands) .
@ involved a trade-off between end-user flexibility and com-

ViewD d
BLOT) tewbaia raw_data plexity. Our decision to opt for object location transparency

_ was informed by an objective assessment of the state of
string Name
boolean Consistent CORBA and CADE technology and the current state of
boolean Active manufacturing engineering: there simply was no technical
string Diagnostic or business basis upon which to develop or anticipate the
use of advanced service brokering services that might
require greater visibility into object and network topolo-
ggg]gsis gies. This decision also represented a desire to introduce

the minimum number of new concepts to the existing sys-

tem that are necessary to support our modernization objec-
tives. Nevertheless, despite this simplification, details of
object location were reflected on the structural model in the
way visualization and the event queue objects are defined.

Control, Data Integration: Needed Framework

(FASTQ) (JAS3D)| exodus3d
analysis

string pC
Specification (GEN3D)(exodus3d

Services
'@ corba object string
—» relationship Extrusion Since the OMA is not yet a sufficiently mature integra-
— attribute tion framework, and since the ORB implementation we
mel)) subclass were using did not implement OMA services beyond the
minimal CORBA specification, we were predisposed to try
Figure 5. Object Types and Relationships to use the OMA to support opportunistic integration. How-

ever, we discovered that even an opportunistic approach to
integrating component-based systems requires an extensive
range of integration framework services (as this term is
The decision to express end-user processes in the form odefined in Section 3.1). Two categories of integration
a logical object model represents a major design trade-offframework services were needed: one to deal with integra-
between the desire to achieve a tight coupling between artion in the logical object model layer, and one to deal with
object model and end-user processes versus the potentictool adaptation at the physical component layer.
need to evolve end-user processes over time: all data scheme 54 1o logical object layer both control and data integra-

embed process assumptions, and tighter coupling betweek;,, senices were required. While both forms of integra-
process and data model implies a less evolvable data modetiOn are supported OMA services, our ORB

[23]. For this case study we decided that the process Ofin, e mentation did not support them. This necessitated a
describing and analyzing solid models was sufficiently .o o among;

mature that drastic changes to the process model were na

likely. The point to note, however, is that this modernization * the degree to which we wanted our logical object model
decision was informed both by quality attributes (evolvabil- to mirror the end-user process model;

ity) and domain-specific influences (the stability of end-user .
processes in this case).

evolution of a mesh instance through the user process from
2D to 3D and finally to a full analysis.

the amount of code we were willing to write to
implement OMA-compliant services; and,

In an interactive system issues of performance are closely.
related to end-user process. Because of the compute-intensiv
character of analysis simulation, we anticipated that this
could be run on a supercomputer, while we expected an ana , i i
lyst to be sitting in front of a workstation (PC or supermicro), " the final analysis, we opted to introduce non-standard
and operating in a remote (to the simulation service) location. '0'Mms 0f OMA services. We determined that the initial
Thus, another set of trade-off decisions involved where on atechnical objective—providing a virtual environment to the
network topology objects live, and how much visibility end- €Nd-User—was important enough to justify integration at
users have on object location and on the performance characth€ l0gical objectlayer, but we knew that this would require

teristics of the underlying hosts (for example, to estimate the YS€ %f_ OMA scra]rwces such as object persistence and rerl1a-
time required to complete an analysis session). tionships. At t e same time, resource constraints on the
effort made the implementation of standard OMA services

the degree to which we were willing to have the design
reflect a non-standard approach by implementing
subsets or alternative forms of OMA services.

problematic. Therefore, we implemented the needed OMA
services, but only partially and in ways not consistent with the
OMA specifications. This resulted in a design that was func-
tional but that does not reveal the capabilities of the OMA,;
this represents a compromise to NIST and SEI objectives.

At the physical component level integration services are
required that support what are referred to as “wrappers” in
Figure 3. These services include: operating system proces:
and file management; management of process families; detec
tion of component failures and crashes; and system diagnos
tics. From this list it is obvious that these services are highly
dependent upon the host platform and properties of the com-
ponents being adapted. What is less obvious is that there ar
additional services needed that are dependent upon the targe

Goals for the Available Current
modernization technology areas SySteém

et
R T

Target Resulting Integration Migration
technology system class strategy strategy

Figure 6. A decision framework for
modernization

system’s software architecture. While this is not surprising
when one considers that the purpose of tool wrapping is to
resolvearchitectural mismatchand must therefore address
both architecture qnd component' aspects of gdaptatlon, It “such as security, availability, or support for multiple users
not generally realized that architectural design must also. o .

. . .in a distributed environment.
accommodate the cost and complexity of developing archi-

tecture-specific component adaptation services.

ing the qualities or utility of the subject system. These typ-
ically include better performance or resource utilization,
new or enhanced functionality, or the addition of qualities

The last was an explicit goal of the modernization effort
described in the case study and drove us to adopt distrib-
uted object technology. Further motivation included adop-
tion of a technology (CORBA) whose use was widespread

To illustrate architecture-specific integration consider,
from Figure 4, the connection of component output to an

T e o e o andgroving, norer o be bl 0 prvid sysems
bp pp JECL \ere compatible with it. Although this effort had a decided

Eg;l\tleglzg‘o?ripe;?:n%gg fﬂ;?hZ?tvl:/rerc:)fetrr-lleevCe(ljrzglg/ri](?enstsma;ycreseamh or investigative theme, the de;ire to support apop-
also be neces:sary to support this connection. For example irUIar technology often occurs in productlon organizations as
our implementation, sending incremental results to the evénlwell' A.t00| vendor adopt; a widely-used technology to

' make his products compatible and hence more marketable.

char!nel required the a55|star}ce of helper'process. tha‘A consumer is motivated by the high level of support and
monitored component output files for changes in status; new

; . flexibility offered by popular technologies. Market forces
data on these files was filtered and pa§sed to t'he event C.haroften transcend issues of technical superiority.
nel. The use of helper processes required additional service:
to support parsing and filtering of tool data, and also services Organizational goals may include the ability to rapidly
for managing the life cycle of process families (e.g., termina- turn out new versions of the system, or to deploy the system
tion of the component should terminate helper processes). in multiple versions as a product line. Sometimes, as was
the case for us, the organization’s goal is to become adept

4. Outlines for a Re-engineering Decision at handling a particular technology.

Framework
Two themes may be seen. The first theme is that the new

The case study has illuminated several of the goals,technology has been chosepriori, for market or organi-
approaches, and influences at work in a non-trivial modern-zational reasons. The second is that other qualities are
ization (technology incorporation) effort. As suggested in the peing sought, and the choice of technology to achieve those
introduction, we believe that these aspects form the embry-qualities is still unresolved. In between lies the case where
onic basis for a decision framework for this kind of reengi- a technology area has been chosen (such as distributed
neering. Specifically, we see evidence for a framework whosegbject technology), but the precise instantiation of it (such

structure is greatly simplified in Figure 6. We will discuss as CORBA) has not. The model in Figure 7 is suggested.

each of the named outputs in turn. :
P But more generally, we see that choice of technology—

if articulating the goals fails to identify it directly—is a
What technology will be imported into the enterprise and function of the motivating goals for the effort, as well as
its products as a result of the modernization effort? The first Properties of available technology areas such as maturity,
task for deciding this is to explicitly articulate the motivations available, breadth of user community, expense, in-house
and goals for the effort. Technical goals often include enhanc-expertise, suitability of purpose in achieving the goals, and

Technology Target

Goals articulated

Technology

Y . Technolo
chosenra priori 9

area chosen,
specific choice
still open

Technology area
choice still open

Proceed to choos
technology area.

e

Perform market,
technical analysis

of possible solutions.
Choose best one for
specific goals.

N ¥

Proceed to choose migration
and integration strategies

Figure 7. A decision path based on goals.

the ability of the current software architecture to accommo-
date the technology. One such decision-making process is
described in [7].

Resulting System Class

Our case study illustrated modernizing a component-basec
system. This is in contrast to organic systems whose parts art
built or modified in-house, and also in contrast to tightly con-
federated systems where the components work together vig
tightly interactive protocols (such as complex application
programmer interfaces). In the latter case, the components ar
less able to do useful work in isolation. These two classes
suggest quite different strategies for integrating the parts, anc
maintaining the integrity of the integrated whole.

Other classes of systems that have equally broad implica-
tions for system-building, but which were not explicitly
addressed in our case study, were real-time systems. As is th
custom, we distinguish between hard-real-time systems
(which must meet concrete process deadlines), soft-real-time
systems (whose correctness criteria are often phrased in term
of non-unit probabilities or process priorities), and non-real-
time systems (which have implicit timing requirements).
Likewise, the decision about whether the system will work in
a distributed or parallel computing environment has broad
ramifications for its migration to new technology.

The choice of system class is influenced most heavily by
the choice of imported—for example, CORBA strongly sup-
ports non-real-time component-based distributed systems—
but also a function of the system class before modernization
begins. Organizations will find it harder, and hence less likely,
to shift the class of system.

Migration Strategy

At least four factors play a role in determining if mod-
ernization should be all at once, or staged incrementally.

The first factor is the difference between the current sys-
tem and the desired state of the new system. For example,
adding hard-real-time constraints to a non-real-time system
represents a major migration effort that is much different
than upgrades to achieve a new system in the same class.

The second factor is whether or not the goals for mod-
ernization include any that would be met by intermediate
products developed by an incremental update strategy.

The third factor is a function of the organization. How
much expertise, over and above what is available in the
organization, will be required for importing and deploying
the chosen technology?

The fourth factor is a function of the chosen technology
area. A mature technology, with an active user community
and plentiful support tools can be fielded with less risk than
a new technology with little community experience.

Figure 8 shows how goals, system class, organizational
factors, and technology suggest a migration strategy.

Intermediate products
useful in their own right?

New system class
large variation from

)
no current system®
es /}o

Incremental Monolithic
migration migration
strategy strategy

¢ % \/es

Low risk technology Mature technology?
for organization?

Figure 8. Choosing a migration strategy

Integration Strategy

Integration strategy has to do with how to make the com-
ponents in a component-based system interact with each
other in a correct, usable, and efficient manner. Integration
strategy may have a different meaning for a system in
another class; this is an area of the framework that we have
not explored. However, for component-based systems, the
issues (each discussed previously) are as follows.

One is the issue of frameworks versus opportunistic inte-
gration, which was discussed in Section 2.6. Resolving this
choice will be a function of the technology chosen (for
example, choosing CORBA as provided by the OMA

framework resolves this choice), the components at hand, anc Architecture,” in Proceedings of the 16th International
the organization's expertise. Another, also discussed in Sec. ~ Conference on Software Engineering, Sorrento Italy, May
tion 2.6, is the issue of functional versus structural architec- 1994, pp. 81-90 o~
tures. A third is concerns aspects of integration (control, data [5] Garlan, D., Allen, R, Ockerbloom, J., "Architecture

’ X ! . . ' ! Mismatch: Why Reuse is so Hard”, IEEE Software V12, #6,
process, or presentation), discussed in Section 2.5. The lasti pp17-26, November 1995.

strongly influenced by the first; a framework-based approach[s] Garlan and Shaw, “An Introduction to Software

will emphasize a particular range of integration aspects. Architecture,” in Advances in Software Engineering and
) . Knowledge Engineering, vol. I, World Scientific Publishing
5. Conclusions and Potential Next Steps Company,1993

. [7] Brown, A., Wallnau, K., “A framework for systematic
We have described a case study in reengineering via tech evaluation of software technologies” to appear in the special

nology m_oderni_zation..Th.e case study was a high-f.idelity issue of IEEE Software on assessment of software tools,

exercise in that its motivations were authentically motivated September 1996.

by real-world concerns such as supporting a distributed client[8] Principles of CASE Tool IntegratiorAlan Brown, et. al.,

base and making separately-developed tools work seamlessl[g] (T);ldord UV;'V‘ES'_W Pr:e;& 1Dggf_41_'_SBN 2‘19'|509478'5- f

to perform industriallv useful work. omas, |., Nejmeh, B., “Definitions of tool integration for
P y environments,” IEEE Software 9(3), pp. 29-35, March 1992.
In addition to providing specific lessons and trade-offs [10] Wasserman, A., “Tool integration in software engineering

about the introduction of distributed object technology in a environments,” in F. Long, ed.Software Engineering

component-based system, we have shown how the modern ~ Environments, Lecture Notes in Computer Science gp7

o . . 138-150, Springer-Verlag, Berlin, Germany, 1990.

ization exercise was influenced by several factors such as the

A . [11] Brown, A., Judd, R., Riddick, F., “Architectural issues in the
goals nature of the participating organizations, the class of design and implementation of an integrated toolkit for

system being updated, and the choice of technology. We manufacturing engineering” submitted to the International
believe that a decision framework for modernization exists, Journal of Computer Integrated Manufacturing.

and that our case study represents a single path through the[12] Structural Modeling: An Application Framework and
framework. The case study has illuminated the path we tray- ~ Development Process for Flight Simulatorésregory

. . Abowd, Bass, L., Howard, L., Northrup, L., SEI Technical
elled, suggested nearby paths, and hinted at the existence ¢ Report. CMU/SEI-93-TR-14, August, 1993, Software

the framework as a whole. Engineering Institute, Carnegie-Mellon University,

We have presented the work in terms of the decision frame-___ Fittsburgh, PA.

work, because we believe that now is an opportune time to[13] SA Software Architecture for Dependable and Evolvable
! PP Industrial Computing Systems, Sha, L., Rajkumar, R.,

challenge the reengineering community to work collabora- Gagliardi, M., SEI Technical Report, CMU/SEI-95-TR-005,
tively towards building and instantiating as much of this July 1995, Software Engineering Institute, Carnegie-Mellon
framework as possible. Real-world reengineering case stud- University, Pittsburgh, PA.

ies will become more common and available as the field [14] Royce, Walker, Royce, Winston, “Software architecture:
matures. We hope and expect that an industrially robust deci- ~ ntegrating process and technology” TRW Space and

. . . . Defense, Quest, Summer 1991. Also see
sion framework for reengineering, based on sound experi- pp:/aww.stars.reston.unisysgsg.com/arch-006.html.

ence, may soon be within our collective grasp. [15] NIST, “Next Generation Computing Resources: Reference
Model for Project Support Environments (Version 2.0)",
6. Acknowledgments NIST Special Publication 500-213, November 1993
The SEl is sponsored by the U.S. Department of Defense [16] (‘;Vakegan, L't' %”d“nget:g J'H“Iﬁcirg%;he Standards for
Neil Christopher of NIST Manufacturing Engineering Labo- pen Repositories, Frentice-mall, : .
P g 9 . g . [17] Frankel, R., “Introduction to the ToolTalk Service”, Sun
ratory deserves a large measure of credit for making this work

) ; o Microsystems Inc., Mountain View, CA., 1991.
possible and for setting out the broad objectives for the work. [18] Ousterhout, J., “Tcl and the Tk Toolkit”, Addison Wesley.

[19] Finite Element Methods in Stress Analy$isr Holand and

7. References Kolbein Bell, eds., Tapir: Technical University of Norway,
[1] SEI Reengineering Project Description, Trondheim, Norway, 1969.

http://www.sei.cmu.edu/~reengineering . [20] Barkmeyer, E., Hopp, Pratt, Rinaudot, SIMA Background
[2] The Common Object Request Broker: Architecture and Study, Technical Report NISTIR 5662, National Institute of

Specification, Revision 1.10MG TC Document 91.12.1, Standards and Technology, 1995.

Object Management Group, 492 Old Connecticut Path, [21] Barkmeyer, E., SIIMA Reference Architecture Part I:

Framingham, MA, 01701 Activity Models, NIST Technical Report (in publication).

[3] Object Management Architecture Guide, Revision 3€cond [22] Schoof, L., Yarberry, V., Exodus II: A Finite Element Data
Edition, OMG TC Document 92.11.1, Object Management Model, Sandia Report SAND92-2137-UC-705, Sept. 1994.
Group, 492 Old Connecticut Path, Framingham, MA, 01701. [23] Bremeau, C., Thomas, I., “A Schema Design Method for

[4] Abowd, G., Bass, L., Kazman, R., Webb, M., “SAAM: A PCTE”, in proceedings of the PCTE 1993 Conference, ISBN
Method for Analyzing the Properties of Software 0-95-10631-2-X.

	Abstract
	Many organizations face a serious challenge introducing new technologies into existing systems. E...
	1. Issues in System Modernization
	2. Influences on Case Study
	2.1 Organizational Influences
	NIST and the SIMA Project
	Sandia and the TIE-In Project
	SEI and the Component Integration Project

	2.2 Application Domain Influences
	2.3 Current Sandia System and Desired Outcome
	Figure 1 . SEACAS Tool and Data Relationships
	Figure 2 . Case-Study Components and End- User Scenario

	2.4 Technology Influences
	2.5 Systems influences
	2.6 Architectural Influences
	Frameworks vs. Opportunistic Integration
	Functional vs. Structural Architectures

	3. Modernization Case Study
	3.1 Architectural Issues and Trade-offs
	Figure 3 . Architectural Overview
	Figure 4 . Structural Architecture (Overview)

	3.2 Detailed Design Trade-Offs
	Process, Presentation Integration in Distributed Systems
	Figure 5 . Object Types and Relationships
	Control, Data Integration: Needed Framework Services

	4. Outlines for a Re-engineering Decision Framework
	Figure 6. A decision framework for modernization
	Technology Target

	Figure 7. A decision path based on goals.
	Resulting System Class
	Migration Strategy

	Figure 8. Choosing a migration strategy
	Integration Strategy

	5. Conclusions and Potential Next Steps
	6. Acknowledgments
	7. References
	[1] SEI Reengineering Project Description, http://www.sei.cmu.edu/~reengineering
	[2] The Common Object Request Broker: Architecture and Specification, Revision 1.1, OMG TC Docume...
	[3] Object Management Architecture Guide, Revision 2.0, Second Edition, OMG TC Document 92.11.1, ...
	[4] Abowd, G., Bass, L., Kazman, R., Webb, M., “SAAM: A Method for Analyzing the Properties of So...
	[5] Garlan, D., Allen, R., Ockerbloom, J., “Architecture Mismatch: Why Reuse is so Hard”, IEEE So...
	[6] Garlan and Shaw, “An Introduction to Software Architecture,” in Advances in Software Engineer...
	[7] Brown, A., Wallnau, K., “A framework for systematic evaluation of software technologies” to a...
	[8] Principles of CASE Tool Integration, Alan Brown, et. al., Oxford University Press, 1994, ISBN...
	[9] Thomas, I., Nejmeh, B., “Definitions of tool integration for environments,” IEEE Software 9(3...
	[10] Wasserman, A., “Tool integration in software engineering environments,” in F. Long, ed., Sof...
	[11] Brown, A., Judd, R., Riddick, F., “Architectural issues in the design and implementation of ...
	[12] Structural Modeling: An Application Framework and Development Process for Flight Simulators,...
	[13] SA Software Architecture for Dependable and Evolvable Industrial Computing Systems, Sha, L.,...
	[14] Royce, Walker, Royce, Winston, “Software architecture: integrating process and technology” T...
	[15] NIST, “Next Generation Computing Resources: Reference Model for Project Support Environments...
	[16] Wakeman, L. and Jowett, J., “PCTE: The Standards for Open Repositories”, Prentice-Hall, 1993.
	[17] Frankel, R., “Introduction to the ToolTalk Service”, Sun Microsystems Inc., Mountain View, C...
	[18] Ousterhout, J., “Tcl and the Tk Toolkit”, Addison Wesley.
	[19] Finite Element Methods in Stress Analysis, Ivar Holand and Kolbein Bell, eds., Tapir: Techni...
	[20] Barkmeyer, E., Hopp, Pratt, Rinaudot, SIMA Background Study, Technical Report NISTIR 5662, N...
	[21] Barkmeyer, E., SIIMA Reference Architecture Part I: Activity Models, NIST Technical Report (...
	[22] Schoof, L., Yarberry, V., Exodus II: A Finite Element Data Model, Sandia Report SAND92-2137-...
	[23] Bremeau, C., Thomas, I., “A Schema Design Method for PCTE”, in proceedings of the PCTE 1993 ...

	Discovering a System Modernization Decision Framework: A Case Study in Migrating to Distributed O...

