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 Abstract

Many organizations face a serious challenge introducing
new technologies into existing systems. Effective
modernization requires knowing and articulating specific
goals for the reengineering effort, conscious selection of
technologies and technical approaches that can achieve
those goals in the context of the class of system being
upgraded, a staged migration plan, and an integration
strategy to make in-hand components work under the newly
adopted architecture. Although the study of reengineering is
moving towards an engineering discipline, there are as yet
no proven decision frameworks that allow an organization
to rationally choose a modernization strategy. This paper
provides an in-depth look at the engineering trade-offs made
in modernizing a manufacturing engineering design system
to use distributed object technology. From this case study the
outlines of a more general re-engineering decision
framework can be seen, and are discussed.

1. Issues in System Modernization

System modernization is a specialized application of sys-
tem reengineering, which is the disciplined evolution of a
system from its current state to a new one [1]. Modernization
involves substantial technical and business risk, because by
its very nature it is the result of a prediction about the desir-
ability of that future state. Substantial capital investment
may be committed (such as adopting new support environ-
ments, or investing in intensive reprogramming), and the
system often must continue operation free of disruption in
the meantime.

Faced with the question of modernization, management
must answer many questions, many of which may not ever
be explicitly articulated and thus not given sufficient consid-
eration. What is to be gained through modernization? What
aspects of the system and its supporting infrastructure will
be modernized? What are the technology options that can be
brought to bear? Are they of sufficient maturity and accept-
able risk? Is the current system well-enough understood at
the architectural level to judge the feasibility and risk in

migrating to the chosen new technology? How will th
stages of migration be managed? What will the effects be
the organization’s business and customer base? These
other questions must be considered carefully; the alternat
is a baseless migration towards a technology with glos
brochures, that may not be in the organization’s best inte
ests at all.

On the other hand, prudent modernization and technolo
refreshment can increase an organization’s capabilities
many tangible and intangible ways. The system may take
new functionality, better performance, higher modifiability
tighter security, or become able to interoperate with a new
important class of partner systems. Derivative systems m
be spun off quickly and reliably in a product line approach
Personnel may become fluent in state-of-the-art tools a
techniques, thus increasing their value. Productivity a
morale may be lifted. Market share may be increased.

The decision-making process is a complex one, with do
ens of variables, many of which depend on each other.
decision framework that enumerates the decision poin
articulates the questions that must be answered at each d
sion point, and suggests strategies based on those ans
would, we believe, be of enormous practical importanc
The purpose of this paper is to propose the foundations
such a decision framework. A complete framework is fa
beyond the scope of the reported work, but it is hoped th
by identifying the decision points, the contributing factors t
each, and the decision algorithms for at least some, that
will lay a foundational skeleton that the community as
whole might work together to fill.

This paper reports on our experience from a case study
system modernization. The system was a toolset for anal
ing manufacturing designs; the reengineering effort involve
migrating to an integrated, distributed, object-based pa
digm. The case study highlighted important lessons abo
this class of technology migration, out of which emerges th
basis of an embryonic decision framework for moderniz
tion.



c
a
n
c
n
o

e
i

f

e

g
e
in
g

ti
r
n
ia
io
-
r

-
y
th
g
a

h
f

d

,
n
e

n
h

e
h

al

le
d
l-
i-

-
ion

t
ys-
es
elf
to
nd

b-
ent
d
-

re
le,
is

p-
as
se
d
ur-
nd
-

ed
of

d

to

it-
ata
is

a
e,

t of
cs
The remainder of the paper is organized as follows: Se
tion 2 provides necessary background on the constraints
influences which governed the technical decision-maki
processes within the case study. Section 3 describes the
study in detail, and assesses the final result. Section 4 ge
alizes from this assessment of a specific modernization eff
to an outline of a re-engineering decision framework, an
populates this framework with illustrations from the cas
study. Finally, Section 5 states the key conclusions of th
paper and indicates possible avenues for further work.

2. Influences on Case Study

A modernization effort involves a delicate balancing o
many kinds of constraints and influences. The most importa
classes of such influences are described in the following s
tions.

2.1 Organizational Influences

NIST and the SIMA Project

The U.S. National Institute of Standards and Technolo
(NIST) has a long-standing role in investigating technologi
for the integration of manufacturing systems. NIST’s role
aiding U.S. industries’ competitiveness is through facilitatin
the development of non-proprietary standards and advoca
their use. The Common Object Request Broker Architectu
(CORBA) being developed by the Object Manageme
Group (OMG) consortium is viewed as one such potent
standard that could provide a means for improved integrat
for the manufacturing industry [2]. OMG has over five hun
dred members and is still growing, and vendors are suppo
ing CORBA on the platforms that are commonly used fo
manufacturing (product realization) activities.

The NIST Systems Integration for Manufacturing Applica
tions (SIMA) program has a goal to increase the flexibilit
and integration of computer based activities that comprise
whole product realization process from beginning part desi
through part production [20]. To this end, SIMA sponsored
project to test and demonstrate the viability of CORBA tec
nology, and to determine whether the standard is suitable
agile manufacturing and virtual enterprises.

Sandia and the TIE-In Project

Sandia National Laboratories is a federally-funde
research and development laboratory that supports the U
Department of Energy (DOE). Among its many activities
Sandia investigates the manufacture of high-quality, depe
able systems. This has resulted in the development of num
ous software components to support manufacturi
engineering design, some of which formed the basis for t
case study.

Sandia is interested—as are other U.S. government ag
cies—in exploring the transfer of internally-developed tec
-
nd
g
ase
er-
rt
d

s

nt
c-

y
s

ng
e
t
l
n

t-
r

e
n

-
or

.S.

d-
r-

g
e

n-
-

nologies to commercial application. The DOE Technic
Exchange of Information to Industry (TIE-In) project is
tasked with making DOE-developed technology availab
outside of DOE. Among other things, TIE-In is intereste
in knowing whether CORBA can help make this techno
ogy available to U.S. industry while also addressing obv
ous security issues.

SEI and the Component Integration Project

The Software Engineering Institute (SEI) is a federally
funded research and development institute whose miss
is to improve the state of software.

Within the SEI, a component integration projec
addresses issues relating to the integration of complex s
tems from pre-existing software parts. The project focus
on systems that are comprised of commercial off-the-sh
(COTS) components. One objective of the project is
define software architectures, integration techniques, a
technologies to support component integration in distri
uted, heterogeneous computing environments. The curr
technology focus of the project is on the use of distribute
object technology, and CORBA in particular, for compo
nent integration.

2.2 Application Domain Influences

Manufacturing processes for product realization a
many and varied and require specialty skills. For examp
job scheduling, shop layout, and manufacturability analys
are all specialized skills, often requiring specialized su
port technology. The notion of virtual enterprise is seen
a means of supporting the flexible combination of the
specialty skills and tools from many highly-specialize
companies, and as a means of improving U.S. manufact
ing competitiveness through faster market response a
higher manufacturing quality. Technology for virtual enter
prises must support:

• the integration of separately-developed, specializ
computer-based technologies covering a range
manufacturing processes;

• geographical distribution of computing resources an
heterogeneous computing environments;

• fee-for-service brokering of computer-based services
enable free-market competition.

SIMA has developed a model that identifies the const
uent activities of manufacturing and the data needs and d
outputs of these activities [21]. We searched through th
activity model for a candidate activity around which to
build a prototype integrated system using CORBA. Such
candidate needed to be simple enough to quickly prototyp
yet sophisticated enough to constitute a reasonable tes
the integrating technology. We found such characteristi
in the engineering design analysis activity.
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Engineering analysis is a computer simulation perform
on part designs to test a part’s performance under certain r
world use conditions. This analysis can be used not only
determine a design’s adequacy at performing its function b
also be used in the optimizing a design, and lowering a pa
cost and/or weight while preserving confidence in its perfo
mance. Due to the specialized nature of design software a
the expertise needed to perform the design function, it is
good candidate for computer network-based fee-for-serv
applications. Also, the kinds of software needed to supp
engineering analysis often require specialized computi
resources (supercomputers, graphics display, etc.), thus s
ing our desire to address distributed, heterogeneous syste

2.3 Current Sandia System and Desired Outcome

Sandia provided components from the Sandia Nation
Laboratory Engineering Analysis Code Access Syste
(SEACAS) for the modernization case study. SEACAS is
collection of components that perform the computer bas
processing tasks needed to support the analysis activity: t
provide functions such as defining test conditions (proble
description), analysis simulation, and visualization (see F
ure 1). These tools share a common data format called EX

DUS II [22]; thus these tools already have a form of da
integration. The analysis function is done using a Finite El
ment (FE) approximation technique[19]. The problem defin
tions describe how to break up the part being analyzed in
elements, how to connect the elements together as well as

Figure 1. SEACAS Tool and Data Relationships

• define geometry
• discretize model
• define load locations
• define material types

• model verification
• analysis tracking
• define load locations
• define material types

• coordinates
• connectivity
• load locations
• results variables

• stress analysis
• shock physics analysis
• structural dynamics analysis
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conditions to be modeled and simulated, such as mate
characteristics and forces to apply in the simulation

The SEACAS toolset has many components in ea
functional category both as a result of the history of i
development and the wide variety of approximation
appropriate to each actual analysis. We met with expe
from Sandia and developed a scenario incorporating a s
set of the tools in the SEACAS toolset. This included tw
problem definition tools FASTQ and GEN3D, an analys
simulator JAS3D and a visualizer BLOT. The genera
usage scenario is as shown in Figure 2.

An analyst uses FASTQ to produce adiscretized1 model
of the part to be analyzed. This model is stored in a file
the EXODUS shared data format. The visualizing too
BLOT then can be run against the model producing
graphical representation for inspection by the analy
Based on that inspection the analyst either reruns FAST
to correct the model or he feeds the model to GEN3D
extrude it into a three dimensional model. Another inspe
tion/correction iteration may occur for the resulting thre
dimensional model before the model is fed to the analys
tool. One or more analyses may be conducted, with resu
evaluated via the visualization tool or through inspection
other JAS3D output. Iteration among the various steps
also possible, for example the analysis results might su
gest changes to the underlying 2D or 3D mesh.

1. A two- or three-dimensional mesh that models the
solid as a set of many smaller linked solids.

Figure 2. Case-Study Components and End-
User Scenario
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In the scenario described above end-users are respons
for launching individual tools (often with personalized
scripts), managing tool output (in private directories), an
preparing the output of one tool for use as input to anoth
(sometimes with manual application of filters since not a
SEACAS tools use the same version of the Exodus data f
mat—both format and tools have evolved over time).
effect, the end-user is the system integrator, continua
exposed to all of the low-level details and technology depe
dencies exhibited by the SEACAS components.

TIE-In (the NIST and SEI projects as well) wanted to dem
onstrate a modernization of SEACAS that would:

• present a uniform virtual environment for end-users th
would reflect the nature of the analysis activity and not th
idiosyncracies of specific SEACAS components;

• support wide-area distribution of SEACAS services whi
maintaining control over the software that provides the
services (some of which contain classified algorithms);

• provide a measure of security not just against theft
software but also reliability and prevention of malicious o
inadvertent denial of service; and,

• deliver reasonable, usable and predictable performance
end-users who are otherwise accustomed to us
computer services in local area network settings.

It seemed to us that distributed object technology, a
CORBA in particular, might provide a means of achievin
these objectives—or at least the SEACAS modernizati
would reveal limitations of CORBA in meeting these objec
tives—either of which would meet our organizational an
project objectives.

2.4 Technology Influences

Many organizations will have made some technology com
mitments in advance of a thorough requirements analysis a
design trade-off analysis. It is important to understand t
consequences of these commitments on both the target
tem and software development strategies. Our decision to
CORBA as a foundation for the modernization effort repr
sents an important technical constraint:

• CORBA is new technology, and although there a
numerous commercially-available object request broke
(ORBs), the underlying CORBA specifications ar
changing. The instability of implementations an
specifications is an important design factor.

• CORBA is intended to be only a communication
infrastructure within a larger distributed objec
technology—the object management architecture (OM
[3]. ORB vendors are not required to implement OMA
services. Thus, the decision to rely upon a vendo
implementation of OMA services presents risks, as do
ble
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the decision to implement interim services in
anticipation of OMA services not yet available.

• There are no well-established architecturalstyles[6] for
distributed object technology that have bee
demonstrated to be effective with the OMA. It is
possible to analogize from established architectur
styles; however, there may be subtle mismatch
between these and the OMA. For example, a reposito
style integration architecture [8] can in theory b
supported by the OMA. However, the OMA lacks
support for critical database features, and assumptio
concerning object granularity, security, etc., could cau
severe performance problems.

• The OMA specifications describe services from a
object consumer’s perspective, not from the perspect
of an object supplier. Thus commercial ORBS exhibit
wide range of non-standard implementation feature
Such vendor dependencies represent potential risks
the survivability of a re-engineering solution given th
volatility of the OMA specifications and marketplace
Unfortunately, it is not always easy to identify such
dependencies, nor to avoid them if identified.

2.5 Systems influences

Different kinds of system properties will strongly influ-
ence modernization strategies. System properties m
either be intrinsic to the system, or they may be extrins
properties that the system must exhibit. Examples of intri
sic properties include: distributed processing, client-serv
orientation and multi-processing. Examples of extrins
properties (orquality attributes[4]) include fault tolerance,
multi-level security and performance1.

Different systems exhibit different patterns of intrinsi
and extrinsic properties; some of these patterns arise w
sufficient frequency to warrant classification as a kind
system. We refer to the kind of system that was the subje
of the case study as acomponent-basedsystem. While all
(real) systems are composed of components, in our us
the term component-based refers to systems that are c
prised of multiple software components that:

• are ready “off-the-shelf” whether from a commercia
source (COTS) or re-used from another system;

• have significant aggregate functionality and complexit
i.e., play the role of subsystems in the final system;

• may be self-contained and execute independently;

1. One way to differentiate these classes of properties is
to consider intrinsic properties as representing bound
design and implementation decisions, while quality
attributes are externally-visible system properties that
deal with issues other than functionality.
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• will be used “as is” rather than modified; and,

• are treated as black- (or very opaque-) boxes in that th
implementations are independent of each other.

Examples of component-based systems can be drawn fr
many domains, including: computer-aided software eng
neering (CASE), design engineering (CADE) and manufa
turing engineering (CAME); office automation; workflow
management; and command and control.

The stipulation that multiple components must be involve
is important since this intrinsic system property defines
range of problems that must be addressed and dictates
kinds of engineering techniques and technologies needed
address these problems. One key problem introduced by co
ponent-based systems can be summed up with the ph
architectural mismatch[5]: components embed assumption
about the architectural and operational context in which th
operate, and these assumptions often conflict with the arc
tecture of the target system and with assumptions manifes
by other components.

The engineering techniques that are needed to addr
architectural mismatch are centered on the notion of syste
integration as a design activity. In contrast to the developme
of other kinds of systems where system integration is oft
the tail-end of an implementation effort, in component-bas
systems determining how to integrate components is often
only latitude designers have. Quality attributes such as usa
ity, availability, and maintainability are influenced by an
help shape integration decisions such as: which compone
need to be integrated to which; how component execution
coordinated; which architectural mismatches must
resolved, and which mechanisms are used to adapt com
nents to remove these mismatches.

To understand where such mismatches might arise wh
integrating two or more components, it is useful to have som
idea of what it means to integrate components—and this tu
out to be surprisingly elusive. One useful way to think of inte
gration is as arelationshipbetween two integrated entities
where the relationship has four dimensions, oraspects: con-
trol, data, process, and presentation [9][10]:

• Control integration describes how components ma
requests of (or invoke) each other’s services.

• Data integration describes how components make d
available to each other.

• Process integration describes what end-user or busin
process is supported by the integration relationship.

• Presentation integration describes how end-users inte
with the integration relationship, i.e., how to achieve
uniform model of human interaction.
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All four aspects will be reflected to different degrees i
each integration relationship. Although these aspects
entirely qualitative and descriptive, and there are no cau
connections between these and quality attributes, they p
vide a useful if limited framework for discussion, and wil
be referred to in the following discussion.

2.6 Architectural Influences

Frameworks vs. Opportunistic Integration

We refer to technology infrastructures that present
coherent and common view of integration within a class
systems asintegration frameworks.A number of integra-
tion frameworks have been developed to support comp
nent integration in the CASE domain, each with its ow
particular emphasis on one or more aspects of integrat
[15]. For example, PCTE [16] provides a range of integr
tion services that emphasize data integration, wh
ToolTalk [17] provides services that emphasize contr
integration. Within the manufacturing domain the SEMAT
ECH CIM1 application framework is both an integration
framework and an instance of an architectural style referr
to by the object-oriented community as anapplication
framework2; it emphasizes control and process integration

The cost of developing or using application or integra
tion frameworks can be great, and includes both the cost
developing or licensing the framework and the cost
introducing changes in engineering practices. In some si
ations a more opportunistic approach to integration may
desirable. That is, rather than use a framework that impo
a common approach to all integration problems, each in
gration problem is viewed as a unique problem. Whi
opportunistic integration may result in extra effort an
inconsistent solutions, it is flexible and can address app
cation-specific design problems and can accommodate n
integration technologies. Opportunistic integration doe
not imply hacked, ad hoc solutions; indeed, there are se
eral architectural styles that may be applicable to comp
nent-based systems that do not depend upon integra
frameworks (e.g., the “communicating objects” style [6])

Functional vs. Structural Architectures

A major design issue is whether to adopt an architectu
style that emphasizes the functionality of the system and

1. SEMATECH is an industry consortium; the Com-
puter Integrated Manufacturing (CIM) Application
Framework is one product of the consortium.
2. The term “framework” in application framework and
integration framework describes different concepts: the
former describes a partial application that is completed
by the developer or integrator, while the latter describes
infrastructure that is independent of application func-
tionality.
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components, or a style that emphasizes the structure of a
tem based on how the components interact rather than
what functions they provide. We refer to the former class
styles as functional styles, and the latter class as structu
styles.

Functional styles are far and away the predomina
approach to component-based systems; this approach de
components in terms of their functionality, e.g., database. T
interfaces between components are often expressed as f
tion-specific application programming interfaces (API) or a
standard mechanisms (e.g., SQL for databases). Numer
examples of functional architectures can be found in [8];
good example for the CAME domain is found in [11]. Func
tional architectures are good for describing what kinds
technologies are needed to implement a desired system fu
tionality, the overall role each technology will play and whic
technologies are likely to interact. They are weak when
comes to describing non-functional properties of a desi
(throughput, reliability, etc.), and generally result in an ad h
integration where each particular inter-component relatio
ship is implemented as component-specific “glue.”

Structural styles are of more recent vintage but have be
emerging as the study of software architecture has intensifi
Rather than defining component interfaces in terms of sp
cific functionality, structural styles define interfaces in term
of the role a component plays in the architecture—ofte
describing acoordination model(i.e., control and data flow).
A commonplace illustration of a structural style is UNIX
pipes and filters; more sophisticated illustrations includ
structural models for flight simulators [12], the Simple
architecture for evolvable real-time systems [13], and UNA
for distributed, concurrent systems [14]. Since the structu
form of the architecture is often directly related to the arch
tecture’s intrinsic coordination model, a range of qualit
attributes can be understood from any particular desi
expressed using the structural form; further, the structu
defines a uniform strategy for inter-component integratio
However, it may be difficult to determine just what functio
is being computed by a system from a structural architectu

3. Modernization Case Study

With these technical and non-technical influences in min
it is possible to describe the architecture and implementat
of the prototype, and to describe in some detail how a part
ular trade-off analysis of the influences and technic
approaches described above are reflected in the solution.

3.1 Architectural Issues and Trade-offs

Figure 3 depicts a top-level view of the prototype archite
ture. The three layers reflect the different kinds of integratio
issues being addressed:
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• The (top-most) presentation and process layer addres
presentation and process integration. Both aspects
addressed in the prototype by Tk/TCL [18]. It is
depicted as a separable entity from the lower laye
principally because it can be designed and implement
in a way that is independent of object location or how th
objects are implemented, thus providing some supp
for the desired end-user “virtual environment.”

• The (middle) logical object layer addresses control an
data integration. Control integration is achieved using
structural rather than functional interface (this i
discussed in more detail later); data integration
achieved by object persistence and relationships. It is
this layer that most of the detailed architectural issu
related to quality attributes are addressed.

• The (bottom-most) physical component layer address
the management of physical resources (files, operat
system processes, etc.) and issues of architectu
mismatch between the components and the architectu
forms reflected by the logical object model (discusse
more fully in Section 3.2).

The two kinds of end-users depicted in Figure 3 reflec
non-intrusive modernization strategy. It was important
preserve the existing methods and mechanisms for acce
ing tool services since (a) we were dealing with a techno
ogy that had many unknowns (CORBA), and (b) we we
only migrating a portion of the SEACAS system to distrib

Figure 3. Architectural Overview
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uted object technology. Supporting both classes of us
involved additional coding effort, for example to provide
complementary tool data management services to those p
vided in the native environment, so that object-based us
did not interfere with native tool users (and visa versa). B
the extra effort was deemed less important than supportin
non-intrusive modernization.

Figure 4 depicts the logical object layer in more detail. Th

objects that implement the structural architecture are refer
to as structural objects in Figure 4. Two kinds of structur
objects are depicted in Figure 4: application objects a
framework objects. Application objects implement syste
functionality and most of the coordination model, whil
framework objects provide needed integration infrastructu
services (which were needed despite our desire to pursue
opportunistic integration approach). Framework objects a
discussed in detail in Section 3.2.

The coordination model is implemented by applicatio
objects that behave as state machines that are either consi
or inconsistent with respect to some specification. Specific
tions represent human input (e.g., mesh models, analy
instructions), and consistency represents whether com
nent-generated data was derived from the specification. Co
ponents are invoked as a result of update operations; t
return diagnostic data directly to the invoking object (no
shown); they may also return other data, such as increme
results from long-running analysis sessions, via event ch
nels.

This structural approach simplified the task of understan
ing and analyzing how the object model would behave in

Figure 4. Structural Architecture (Overview)
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wide-area distributed setting. For example, we were able
tune the coordination model to various kinds of networ
failure modes (partition, node crashes, etc.), and to expr
these tunings directly in the structure of the architectur
The structural approach also helped to focus the compon
adaptation/wrapping to those aspects of the design t
were sensitive to coordination issues, for example wheth
simultaneous invocations of the component were su
ported, how to address network disconnections.

We considered adopting a functional approach, esse
tially just wrapping the SEACAS components “as is” usin
a remote procedure call (RPC) metaphor1. We rejected this
because the approach would not address data integra
requirements: this would have required us to develop ad
tional data management services, or else to paramete
the RPC interfaces to allow data interchange of lengt
data streams—neither of which was desirable. Beyo
these problems, an RPC approach would have exposed
technology to the programming interface; this would mak
the modernized SEACAS system less adaptive to new co
ponents and component upgrades, as the revealed tech
ogy dependencies are invariably reflected in end-us
systems and interfaces such as we developed.

3.2 Detailed Design Trade-Offs

A number of modernization trade-off decisions arose
more detailed levels of the design and implementation
the modernized system. For discussion purposes these h
been categorized according to the aspects of integrat
which they addressed (process, presentation, control a
data integration).

Process, Presentation Integration in Distributed
Systems

The detailed design of our prototype was driven large
by the end user process it supports. There were many s
ilarities in steps between the user process activities for tw
dimensional mesh generation, three dimensional mesh g
eration and mesh analysis. These similarities led natura
to the model shown in Figure 5, which depicts the majo
object types found in the logical object model layer of th
architecture (Figure 3). The structure of these objec
reflects the end-user process: an analyst using the SEAC
tools is primarily concerned with data elements, (e.g. inp
commands, output diagnostics, and mesh binaries), a
relationships among them. These relationships a
expressed in the object model as object relationships, a
are modified by the value of attributes such as Consiste
Relationships and their modifying attributes capture th

1. Using the earlier concepts, we can describe the RPC
approach as opportunistic integration (minimal or no
use of framework services) in a functional architecture.
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evolution of a mesh instance through the user process fr
2D to 3D and finally to a full analysis.

The decision to express end-user processes in the form
a logical object model represents a major design trade-
between the desire to achieve a tight coupling between
object model and end-user processes versus the pote
need to evolve end-user processes over time: all data sche
embed process assumptions, and tighter coupling betw
process and data model implies a less evolvable data mo
[23]. For this case study we decided that the process
describing and analyzing solid models was sufficient
mature that drastic changes to the process model were
likely. The point to note, however, is that this modernizatio
decision was informed both by quality attributes (evolvab
ity) and domain-specific influences (the stability of end-us
processes in this case).

In an interactive system issues of performance are clos
related to end-user process. Because of the compute-inten
character of analysis simulation, we anticipated that th
could be run on a supercomputer, while we expected an a
lyst to be sitting in front of a workstation (PC or supermicro
and operating in a remote (to the simulation service) locatio
Thus, another set of trade-off decisions involved where on
network topology objects live, and how much visibility end
users have on object location and on the performance cha
teristics of the underlying hosts (for example, to estimate t
time required to complete an analysis session).

view
update

string Name
boolean Consistent

exodus
boolean Active
string Diagnostic

update

analysis

update

update

viewerdisplay

string Commands

string DisplayName

ViewData raw_data

(FASTQ)

(GEN3D)

(JAS3D)

event
queue

try_pull
push

(BLOT)

corba object

relationship
attribute
subclass

Figure 5. Object Types and Relationships
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For this design, we opted to make object location an
host details as transparent as possible to end users. T
involved a trade-off between end-user flexibility and com
plexity. Our decision to opt for object location transparenc
was informed by an objective assessment of the state
CORBA and CADE technology and the current state
manufacturing engineering: there simply was no technic
or business basis upon which to develop or anticipate t
use of advanced service brokering services that mig
require greater visibility into object and network topolo
gies. This decision also represented a desire to introdu
the minimum number of new concepts to the existing sy
tem that are necessary to support our modernization obj
tives. Nevertheless, despite this simplification, details
object location were reflected on the structural model in t
way visualization and the event queue objects are defin

Control, Data Integration: Needed Framework
Services

Since the OMA is not yet a sufficiently mature integra
tion framework, and since the ORB implementation w
were using did not implement OMA services beyond th
minimal CORBA specification, we were predisposed to tr
to use the OMA to support opportunistic integration. How
ever, we discovered that even an opportunistic approach
integrating component-based systems requires an exten
range of integration framework services (as this term
defined in Section 3.1). Two categories of integratio
framework services were needed: one to deal with integ
tion in the logical object model layer, and one to deal wit
tool adaptation at the physical component layer.

At the logical object layer both control and data integra
tion services were required. While both forms of integra
tion are supported OMA services, our ORB
implementation did not support them. This necessitated
trade-off among:

• the degree to which we wanted our logical object mod
to mirror the end-user process model;

• the amount of code we were willing to write to
implement OMA-compliant services; and,

• the degree to which we were willing to have the desig
reflect a non-standard approach by implementin
subsets or alternative forms of OMA services.

In the final analysis, we opted to introduce non-standa
forms of OMA services. We determined that the initia
technical objective—providing a virtual environment to th
end-user—was important enough to justify integration
the logical object layer, but we knew that this would requir
use of OMA services such as object persistence and re
tionships. At the same time, resource constraints on t
effort made the implementation of standard OMA service
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problematic. Therefore, we implemented the needed OM
services, but only partially and in ways not consistent with th
OMA specifications. This resulted in a design that was fun
tional but that does not reveal the capabilities of the OMA
this represents a compromise to NIST and SEI objectives

At the physical component level integration services a
required that support what are referred to as “wrappers”
Figure 3. These services include: operating system proc
and file management; management of process families; de
tion of component failures and crashes; and system diagn
tics. From this list it is obvious that these services are high
dependent upon the host platform and properties of the co
ponents being adapted. What is less obvious is that there
additional services needed that are dependent upon the ta
system’s software architecture. While this is not surprisin
when one considers that the purpose of tool wrapping is
resolvearchitectural mismatch, and must therefore addres
both architecture and component aspects of adaptation,
not generally realized that architectural design must a
accommodate the cost and complexity of developing arc
tecture-specific component adaptation services.

To illustrate architecture-specific integration conside
from Figure 4, the connection of component output to a
event channel. This clearly requires adaptation services
support an interface from the tool wrapper to an OMA objec
However, depending on the nature of the components a
host platform, a range of other wrapper-level services m
also be necessary to support this connection. For example
our implementation, sending incremental results to the ev
channel required the assistance of a “helper process” t
monitored component output files for changes in status; n
data on these files was filtered and passed to the event ch
nel. The use of helper processes required additional servi
to support parsing and filtering of tool data, and also servic
for managing the life cycle of process families (e.g., termin
tion of the component should terminate helper processes)

4. Outlines for a Re-engineering Decision
Framework

The case study has illuminated several of the goa
approaches, and influences at work in a non-trivial mode
ization (technology incorporation) effort. As suggested in th
introduction, we believe that these aspects form the emb
onic basis for a decision framework for this kind of reeng
neering. Specifically, we see evidence for a framework who
structure is greatly simplified in Figure 6. We will discus
each of the named outputs in turn.

Technology Target

What technology will be imported into the enterprise an
its products as a result of the modernization effort? The fi
task for deciding this is to explicitly articulate the motivation
and goals for the effort. Technical goals often include enhan
A
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ing the qualities or utility of the subject system. These typ
ically include better performance or resource utilization
new or enhanced functionality, or the addition of qualitie
such as security, availability, or support for multiple use
in a distributed environment.

The last was an explicit goal of the modernization effo
described in the case study and drove us to adopt distr
uted object technology. Further motivation included ado
tion of a technology (CORBA) whose use was widespre
and growing, in order to be able to provide systems th
were compatible with it. Although this effort had a decide
research or investigative theme, the desire to support a p
ular technology often occurs in production organizations
well. A tool vendor adopts a widely-used technology t
make his products compatible and hence more marketab
A consumer is motivated by the high level of support an
flexibility offered by popular technologies. Market force
often transcend issues of technical superiority.

Organizational goals may include the ability to rapidl
turn out new versions of the system, or to deploy the syste
in multiple versions as a product line. Sometimes, as w
the case for us, the organization’s goal is to become ad
at handling a particular technology.

Two themes may be seen. The first theme is that the n
technology has been chosena priori, for market or organi-
zational reasons. The second is that other qualities
being sought, and the choice of technology to achieve tho
qualities is still unresolved. In between lies the case whe
a technology area has been chosen (such as distribu
object technology), but the precise instantiation of it (suc
as CORBA) has not. The model in Figure 7 is suggeste

But more generally, we see that choice of technology—
if articulating the goals fails to identify it directly—is a
function of the motivating goals for the effort, as well a
properties of available technology areas such as matur
available, breadth of user community, expense, in-hou
expertise, suitability of purpose in achieving the goals, a

Goals for the
modernization

Resulting

Available
technology areas

Integration
strategy

Migration
strategysystem classtechnology

Target

Current
system
class

Figure 6. A decision framework for
modernization
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the ability of the current software architecture to accomm
date the technology. One such decision-making process
described in [7].

Resulting System Class

Our case study illustrated modernizing a component-bas
system. This is in contrast to organic systems whose parts
built or modified in-house, and also in contrast to tightly con
federated systems where the components work together
tightly interactive protocols (such as complex applicatio
programmer interfaces). In the latter case, the components
less able to do useful work in isolation. These two class
suggest quite different strategies for integrating the parts, a
maintaining the integrity of the integrated whole.

Other classes of systems that have equally broad impli
tions for system-building, but which were not explicitly
addressed in our case study, were real-time systems. As is
custom, we distinguish between hard-real-time syste
(which must meet concrete process deadlines), soft-real-ti
systems (whose correctness criteria are often phrased in te
of non-unit probabilities or process priorities), and non-rea
time systems (which have implicit timing requirements
Likewise, the decision about whether the system will work
a distributed or parallel computing environment has bro
ramifications for its migration to new technology.

The choice of system class is influenced most heavily
the choice of imported—for example, CORBA strongly sup
ports non-real-time component-based distributed system
but also a function of the system class before modernizat
begins. Organizations will find it harder, and hence less like
to shift the class of system.

Goals articulated

Technology
chosena priori

Technology area
choice still open

Technology
area chosen,
specific choice
still open

Proceed to choose

Perform market,
technical analysis
of possible solutions.
Choose best one for
specific goals.

technology area.

Proceed to choose migration
and integration strategies

Figure 7. A decision path based on goals.
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Migration Strategy

At least four factors play a role in determining if mod
ernization should be all at once, or staged incrementally

The first factor is the difference between the current sy
tem and the desired state of the new system. For exam
adding hard-real-time constraints to a non-real-time syste
represents a major migration effort that is much differe
than upgrades to achieve a new system in the same cla

The second factor is whether or not the goals for mo
ernization include any that would be met by intermedia
products developed by an incremental update strategy.

The third factor is a function of the organization. How
much expertise, over and above what is available in t
organization, will be required for importing and deploying
the chosen technology?

The fourth factor is a function of the chosen technolog
area. A mature technology, with an active user commun
and plentiful support tools can be fielded with less risk tha
a new technology with little community experience.

Figure 8 shows how goals, system class, organizatio
factors, and technology suggest a migration strategy.

Integration Strategy

Integration strategy has to do with how to make the com
ponents in a component-based system interact with ea
other in a correct, usable, and efficient manner. Integrati
strategy may have a different meaning for a system
another class; this is an area of the framework that we ha
not explored. However, for component-based systems,
issues (each discussed previously) are as follows.

One is the issue of frameworks versus opportunistic int
gration, which was discussed in Section 2.6. Resolving th
choice will be a function of the technology chosen (fo
example, choosing CORBA as provided by the OMA

Incremental
migration
strategy

Monolithic
migration
strategy

Low risk technology

Intermediate products New system class

 current system?

Mature technology?
for organization?

useful in their own right?  large variation from

yes yes

yesyes nono

no
no

Figure 8. Choosing a migration strategy
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framework resolves this choice), the components at hand,
the organization’s expertise. Another, also discussed in S
tion 2.6, is the issue of functional versus structural archite
tures. A third is concerns aspects of integration (control, da
process, or presentation), discussed in Section 2.5. The la
strongly influenced by the first; a framework-based approa
will emphasize a particular range of integration aspects.

5. Conclusions and Potential Next Steps

We have described a case study in reengineering via te
nology modernization. The case study was a high-fidel
exercise in that its motivations were authentically motivate
by real-world concerns such as supporting a distributed clie
base and making separately-developed tools work seamle
to perform industrially useful work.

In addition to providing specific lessons and trade-of
about the introduction of distributed object technology in
component-based system, we have shown how the mode
ization exercise was influenced by several factors such as
goals nature of the participating organizations, the class
system being updated, and the choice of technology. W
believe that a decision framework for modernization exis
and that our case study represents a single path through
framework. The case study has illuminated the path we tra
elled, suggested nearby paths, and hinted at the existenc
the framework as a whole.

We have presented the work in terms of the decision fram
work, because we believe that now is an opportune time
challenge the reengineering community to work collabor
tively towards building and instantiating as much of th
framework as possible. Real-world reengineering case st
ies will become more common and available as the fie
matures. We hope and expect that an industrially robust de
sion framework for reengineering, based on sound expe
ence, may soon be within our collective grasp.
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