
Expeditious Reconciliation for Practical Quantum Key
Distribution

Anastase Nakassis1, Joshua Bienfang, Carl Williams2

NIST, 100 Bureau Drive, Gaithersburg, MD 20899-8423

Abstract

The paper proposes algorithmic and environmental modifications to the extant reconciliation algorithms within the BB84
protocol so as to speed up reconciliation and privacy amplification. These algorithms have been known to be a
performance bottleneck 1 and can process data at rates that are six times slower than the quantum channel they serve2.
As improvements in single-photon sources and detectors are expected to improve the quantum channel throughput by
two or three orders of magnitude, it becomes imperative to improve the performance of the classical software. We
developed a Cascade-like algorithm that relies on a symmetric formulation of the problem, error estimation through the
segmentation process, outright elimination of segments with many errors, Forward Error Correction, recognition of the
distinct data subpopulations that emerge as the algorithm runs, ability to operate on massive amounts of data (of the
order of 1 Mbit), and a few other minor improvements. The data from the experimental algorithm we developed show
that by operating on massive arrays of data we can improve software performance by better than three orders of
magnitude while retaining nearly as many bits (typically more than 90%) as the algorithms that were designed for
optimal bit retention.

keywords: Reconciliation, Cascade, Forward Error Correction, Quantum Key Distribution, Quantum Cryptography

1. Introduction

On-line cryptography relies on transforms that use a shared secret to transform the communicated plaintext. As

the ongoing use of the shared secret, known as a traffic key, compromises its secrecy, new traffic keys are created
through public negotiation that relies on mathematical transforms that are easy to compute and extremely difficult to
reverse (i.e. some function f such that f(x) is easy to compute and the equation f(x)=a is, for practical purposes,
impossible to solve). Therefore the secrecy of the communicated information can be compromised any time in the future
should the (extremely well) educated guesses on the complexity of some computations prove to be in error.

An alternative scheme for creating shared secrets, known as BB842, was suggested about 20 years ago and is

based on quantum communications that would generate, so to speak, perfect cryptographic protection provided that our
understanding of the laws of nature does not undergo radical change. Unfortunately, the scheme had and still has
limitations and engineering problems that render it rather impractical. Paradoxically, the early implementations of
BB841,5 show that the classical algorithms within the BB84 protocol can be performance bottlenecks. Specifically,
through quantum communications BB84 creates in hosts X and Y bit-strings s[x] and s[y] that in the absence of noise
and eavesdropping are identical. As neither of these assumptions is necessarily true, X and Y expect the received string,
s[y], to be of the form s[x]⊕ d and in the absence of any other information are willing to attribute all non zero terms
of d to eavesdropping. A classical algorithm is used to correct, with great probability, all errors in s[y] while releasing
minimal information to potential eavesdroppers. Once this algorithm (Reconciliation) has ended, the strings at X and Y
are transformed into shorter strings in a process (privacy amplification) that eliminates (with great probability) whatever
information eavesdroppers may have collected during the quantum communication phase and Reconciliation.

1 anakassis@nist.gov; phone 1 301 975-3632; fax 1 301 590-0932; nist.gov
2 This work was supported, in part, by the DARPA QuIST program

 We note that the quantum communication scheme used is such that when an eavesdropper, by convention Eve,
tampers with some bit b in s[x], there is a 0.5 probability that Eve will read the bit without detection and a 0.5 probability
that the bit read by Eve and Y will be for all intents and purposes a random variable that conveys no information
whatsoever on the value X encoded. Thus, each tampered bit appears as 1 in d above with probability 0.25. The
protocol assumes that Eve is trying to collect information about the strings s[x] and s[y], not to mount a denial of service
attack and consequently concerns itself with the problem of correcting s[y] when relatively few bits have been tampered
with. As a rule of thumb, if more than 60% of the bits have been tampered with, which roughly translates that more than
15% of the bits in d equal 1, the data will be thrown away. The reader should note that the percentages cited are actually
the expected values of random variables and that knowledge of the frequency of errors can only translate into confidence
intervals for the frequency of bit tampering.

The reconciliation and privacy amplification algorithms are generally run as follows:

1 A random subset of the measured bits is exchanged to estimate the percentage, p*, of the 1’s in d.

Randomness is essential so that Eve not be capable of tampering without detection.
2 p* is used as an optimizing parameter in an interactive algorithm that attempts to detect and correct errors

in s[y]. The parameter p* is also used to determine, with very high probability, that all errors have been
corrected. Interactivity ensures parsimonious use of bits.

3 A random hashing function f is communicated between X and Y so as to map s[x] and the presumably
corrected s[y] onto identical strings in which all information pirated by Eve during the quantum
communication and step 2 above is eliminated with very high probability.

For details on steps 1-3, the reader may consult 3,4,7,8. For the purposes of this study we shall treat the algorithm

described in the Brassard-Salvail paper3 as normative.

It has of course not escaped the attention of previous authors8 that

• Step 1 can be eliminated if step 2 can be run without reference to p*. When step 2 is completed, the

communicating parties know, depending on the algorithm, either the number of 1’s in d or a probabilistic
bound.

• Most of the interactivity in step 2 can be dispensed with if we can be, so to speak, not parsimonious with
the number of bits we are willing to sacrifice and prepared to deal with the effects of errors introduced
during “error-correction”

But, it also appears that the problem has become harder because it has been conceived too narrowly:

• Communicating Systems can be expected to use the past to derive a rough initial estimate p*.

• The language of error correction has led researchers to the perception that s[y] must be transformed into

s[x]. Nevertheless, neither of these strings is more authentic or more random than the other and once the
quantum communication has taken place, the situation between sender and receiver is entirely symmetric.
Architectures and algorithms that explicitly acknowledge this symmetry are likely to be better performing
than their asymmetric brethren. In particular, there can be advantages in visualizing the algorithm as a
random process that tends to reduce the discrepancies between s[x] and s[y] by transforming, and possibly
reducing in length, both of them towards some common value s[x,y].

In the sections that follow we will flesh out these observations and will put forth an algorithm variant whose

performance will be compared to Cascade’s.

2. An overview of Cascade.

Before we attempt to see if plausible alternatives to Cascade exist, let us try to get a better idea of how this
algorithm operates, with emphasis at the opening stages that determine the overall performance because over 50% of the
bits in error will be corrected during the first pass.

[Cascade, as described in reference3]

1. Release enough bits to obtain a “good” estimate of p, p*
2. Use p* to optimally segment what remains of s[x] and s[y].
3. For each segment compute and compare the checksum.
4. Whenever the checksums differ (odd number of errors present), iteratively and interactively divide the

segment (choose each time the halves that differ in checksum values) till a single error is located and fixed.
5. Shuffle the bits and repeat steps 2, 3, and 4 for the resulting segments. If the corrections disturbed

previously matching checksums, iteratively and interactively locate and correct the corresponding errors
until all corresponding checksums match.

6. Repeat step 5 until satisfied that there are no remaining errors.
7. Randomly choose a hash function and map the reconciled strings to shorter strings in a way that Eve retains

no useful information with an extremely high probability.

The reader should note that the above summary is at times intentionally vague. For example, many authors

suggest that half of the bits should be used to estimate p and my understanding is that they do so because either they are
not very sensitive to the practical aspects of the algorithm or because they have been conditioned to think of an algorithm
that operates over a few hundred bits (the published examples1,5 refer to instances of 200+ up to 700+ bits). At the other
end, those who care about performance can cut the Gordian knot by assuming that p*=0.15 or thereabouts and have the
algorithm abort, if the actual p is even bigger. As these are matters of optimization within specific algorithms and
environments, the less we say on the subject, the better.

 We note that Reference3 includes a list of optimal segment lengths. For p in {0.01,0.05,0.10, 0.15} the
corresponding lengths n[p] are {73,14,7,5}.

We observe that p*n[p] varies between 0.7 and 0.75, a value that is close to ln(2)= 0.69, and that for long
segments the number of errors in a segment is approximately Poisson with parameter λ=ln(2). Back of the envelop
calculations indicate that roughly 50% of the blocks contain no error, 35% one, 13% 2, and 4% 3 or more. Indeed, if we
compute the probabilities from the Bernoulli distribution we find:

Errors p=0.01, n=73 p=0.05, n=14 p=0.10, n=7 p=0.15, n=5
 0 0.48 0.49 0.48 0.44
 1 0.35 0.36 0.37 0.39
 2 0.13 0.12 0.12 0.14
 3 0.03 0.03 0.02 0.02
 4 0.005 0.004 0.002 0.0002
 5 0.0007 0.0004 0.0002 0.00008
 6 0.00009 0.00003 0.000006 0.0
 7 0.000008 0.000002 0.0000001 0.0
 8 or more 0.00000005 0.0000004 0.0000002 0.0

The data also show that about 60% of the segments have an even number of errors. Indeed, if P[m] is the

probability that a segment of length m contains an even number of errors,

P[0]=1, P[1]=1-p
P[m+1]=p(1-P[m])+(1-p)P[m]

whose solution is P[m]=0.5*(1+(1-2p)m).

Back of the envelop computations show that if pn~ln(2), P[n]~0.5(1+1/4)=0.625. Indeed for the (p,n) values in
the table above we obtain {P[73]=0.61, P[14]=0.61,P[7]=0.60, P[5]=0.58}.

These results suggest that one can bypass the estimation of the error rate, p, by initially dividing the bitstring in
segments of length N[0] and exchanging the parities of these segments. Unless the parities agree for an acceptable
frequency, we recursively split the segments at hand until we either find an acceptable partition or failure is diagnosed.
We note that:

• When we stop, the sum total of the information released is the information released dutring the last step.
• This technique lacks statistical significance unless we are processing long strings.

 The Cascade algorithm uses a subroutine, binary, to ferret out errors when the parities of two sets differ. The
idea is quite simple. We divide the original set into two roughly equal parts (cardinality-wise) and exchange the parity of
the first half (hence, implicitly, the parity of the second). Through successive splittings, we will eventually isolate a bit
in error. The question is how much information we reveal, on the average, when we run binary on a set of length n. To
simplify the computation, let us assume that the bitstrings in question differ only in one bit location.

We note that if I[n] is the information revealed on the average, then

I[1]=0,
I[2n]=1+I[n],

I[2n+1]=1+(n/(2n+1))I[n]+((n+1)/(2n+1))I[n+1]
whose solution is I[m]= k+2x/m with m=2k+x and 0≤ x<2k.

For instance, if m=73, I[m]=6+18/73~6.25.

We observe that this value is close to log2(m) (e.g., log2(73)=6.19) and that the algorithm is, indeed, near
optimal. We also observe that if the algorithm operates on several segments in parallel, the steps needed for all errors to
be located is almost always k+1 so that if m=73 (or any number between 65 and 128 included, we would need 7 steps
before errors were isolated in all segment

 On the other hand a Hamming code6 of 7 bits adjusted for the circumstances at hand would immediately correct
all single bit error at the cost of possibly introducing new errors if the total bits in error were 3 or more. This, as we will
see, represents a tractable cost.

Finally, it is worth investigating the effects of choosing the length of the initial segments too small. If , for
example, p=0.01 and we operate on 40 bit long segments we shall correct at the first pass 70% of the errors and sacrifice
6.3% of our bits. If we choose the optimal 73 bit length segments we shall correct 53% of the errors while sacrificing
4.7% of the bits. If p=0.05, for 10 bit segments the corresponding percentages are 66% and 21% while for the optimal
14 bit segments they would have been 56% and 18%.

These numbers suggest that be time improvements can be achieved at low bit cost by purposefully

underestimating the segment lengths in the first partition and possibly beyond.

3. An alternative to Cascade

Bearing the above remarks in mind we implemented a tested a Cascade variant which has four steps:

1. Initialization: find a workable starting segmentation of the strings to be reconciled
2. Reconciliation: Remove (presumably all) inconsistencies between the two strings
3. Reconciliation check
4. Privacy amplification.

 Our alternative is based on the idea that while for practical purposes the computational power is infinite, both bits
and time delays (cost of communications) matter. It follows then that we are led to different views of what must be
preserved and what jettisoned. In summary the algorithm we propose would run as follows:

3.1 Initialization

The bits are shuffled, and parities are exchanged for some reasonable segment length. If the observed parity

distribution meets our needs, we have a starting configuration and an estimate for the number of altered bits. If not, a
new (shorter) length is chosen and the step is repeated. If no workable length emerges, we abort.

3.2 Reconciliation and reconciliation check.

Cascade differs from previous reconciliation algorithms in that it does not discard bits to eliminate on the spot

whatever information is released through negotiation. This has the advantage of maintaining control over the parities of
the original segments. As a result, whenever an error is found in a segment after the first pass, matching errors in
previous passes are exposed and corrected. On the other hand, this technique will also lead us to correct bits that will
eventually be discarded. This does not seem to be much of a problem at low error rates but it might become one when
the error is high. For example, if we are working with p=0.15 and 5 bit segments, it takes one bit to indicate odd parity
and 2.4 bits to correct a single error. If the segment holds a single error the eavesdropper’s expected knowledge on the 4
non error bits is on the average at least 1.41 bits [(5-1)*(2p)/(1-p), p=0.15], the information that he could have collected
by guessing databases and retransmitting the measured values]. So that the net average yield will be less than 5-3.4-
1.41=0.19 bits. If we now consider that, according to our table, there is a probability of about 0.02/0.41 or, roughly, 0.05
that a segment with an odd number of errors has more than one, we see that some corrections are counterproductive in
bits as well as in time.

We observe that once parities have been exchanged, the segments are naturally divided into two subpopulations.

Those that have matching parities for which the effective error rate is about 3/5 the error rate in the general population,
p, and those with differing parities that give as segments for which the effective error rate is about 5p/3. This remark has
led us to an algorithm that operates as follows:

- Short segments with low or negative yield, e.g., length=5 and odd errors are discarded
- Error correction code is used to correct when an odd number of “errors” are present
- Impossible corrections (e.g., the Error Correction code demands that bit #12 of a ten bit segment be

flipped) indicate 3+ corrections and the segment is discarded.
- At each step we maintain up to two populations (a-bits and b-bits) with different profiles. The basic

algorithm is run separately on each subpopulation and the four resulting subsequences (non-corrected a and
b segments and corrected a and b segments) are recombined into two.

- At the end of each step we suppress bits in each segment so that Eve’s information does not increase.

When the collected observations indicate an overall remaining error probability smaller than 10-4, we combine

the two populations, divide the total into 100 bit segments, and exchange 7-bit Hamming codes. When the codes differ,
the whole segment is discarded. This ensures that a segment with errors will fail to be discarded with probability less
than 10-8.

 The process we just described has two disadvantages:

• It is bitwise suboptimal, and
• It provides incomplete and indirect information as to the number of errors in the original string. This, in

turn, requires accounting of the effects of discarding bits. As a result, the upper bound of the estimates on
the information that Eve possesses is more generous than in Cascade.

3.3 Reconciliation check

As in all algorithms, the negotiating parties compute and exchange a checksum. If the checksums differ, the
negotiation aborts. In our case the checksum is 60 bits long, thereby ensuring that the probability that we will fail to
abort when we should is less than 2-60 or, roughly, 10-18

3.4 Privacy amplification

The faulty corrections and the wholesale dumping of segments with too many errors during Reconciliation

make the exact number of errors present in the original string unknowable. But, what we really need to know is an upper
bound U(v) such that the probability that Eve’s information on the final string exceeds U(v) is v or less. Clearly, such
bounds can be derived although they will be less tight than those of Cascade because of the additional uncertainty the
algorithm introduces.

4. Comparative results

We implemented the ideas above in a prototype and the initial results were better than expected. Indeed,
examples of Cascade found at the university of Aarhus1, Denmark,
http://www.cki.au.dk/experiment/qrypto/templates/initiator/RecBB84/output2_1.html, can be summarized as follows:

Original configuration Round trips Final result

Bits=233 bits, 9 errors
estimated p=0.02

estimation used 48 bits

~ 24-28
bits revealed 57+10

233-48=185 bits
corrected bits

Upper bound on Eve’s
knowledge=57+10+26=93 bits
Secret= 92 bits, percent= 0.39

Bits=259, 15 errors
estimated p=0.02,

estimation used 48 bits

~31-36
bits revealed 99+10

259-48=211 corrected bits
Upper bound on Eve’s

knowledge= 99+10+39=148
Secret=63 bits, percent= 0.24

Bits=746, 21 errors
estimated p=0.0333..,

estimation used 136 bits

~ 40-46
bits revealed 128+10

746-136=610 corrected bits
Upper bound on Eve’s

knowledge= 128+10+52=190
Secret= 420 bits, percent= 0.56

We note that:

• The number of roundtrips (not cited) was inferred by the data and cited as an interval (lower bound, upper

bound). The lower bound has very small probability of ever being achieved. The upper bound is very
close to the average case when a string is partitioned in many segments. This was not the case here

• The algorithm’s bit-retention percentages reflect, in part, the shortness of the strings used.
• The extra summand in Eve’s knowledge represents a probabilistic upper bound (three sigma) on the

number of the quantum bits Eve managed to read successfully.

The data we collected are not directly comparable to the ones we reference but suggest that we have
significantly improved on the performance of the cited software and we believe that further improvements are possible.

The experimental Java software we developed was tested between two modest profile PCs (1.8 GH/1Gb and

1.0GHz/128Mb) linked over a 100Mbs Ethernet. In the absence of interference over the Ethernet, the software processes
1.3 million bits (of which 4% are in error) in less than three seconds and sacrifices 45% of the bits (against a theoretical
minimum of 34%). It is not as fast as desired but algorithmic improvements, compiled code, and improved hardware
configurations should make it as fast as the hardware. It also uses a more generous upper bound than the one we applied
above as it assumes that Eve will in the end know which bits were in error (mathematically untrue for our algorithm but
from an engineering point acceptable) and that Eve is using the Breidbart basis to measure and resend photons5.

In the first experiment we hold the error rate fixed at 0.04 while varying the number of bits to be processed and
the number of modules that executed the algorithm. Each module executed the algorithm five times so as to produce
more representative data and the supervising software measured in milliseconds the time from the moment the first
module was launched until the last concluded its task. The numbers we collected are:

 12 Kbits 120 Kbits 600 Kbits 1.2 Mbits

1 module 15467ms 14061 ms 12906 ms 26373 ms
2 modules 16749ms 14655 ms 17218 ms 30702 ms
3 modules 17390ms 16390 ms 21045 ms 42200 ms
4 modules 17234ms 16530 ms 24967 ms 53106 ms
5 modules 17061ms 16577 ms 29873 ms 64996 ms
6 modules 18045ms 17467 ms 34904 ms 76964 ms
7 modules 18140ms 17327 ms 41045 ms 89479 ms

Typical output length (reconciles
and amplified

~6K ~63K ~336K ~700K

The data are initially hard to accept (it takes less time to process 120K bits than it takes to process 12K) and

while we can theorize why this is so, we are not sure. Experiments also show that there can be great variability in the
measurements, which reflects the network status. The important thing is that when the computer does not run other
tasks, the sweet spot for our configuration seems to be around four concurrent negotiations handling 600K each of them
requiring, roughly, 1.25 seconds (24967/20).

The second experiment carried varied the probability of error in order to show the time the algorithm needs to

converge, the reconciled bits produced, and the size of the shared secret. As the table below shows, there is a big jump
around 0.05 (at least in part because of the segmentation algorithm).

Error
frequency

Max bits
recoverable

Three sigma
bound on
Eve’s
information

Actual bits
recovered
(our variant)

Computed
three sigma
bound on
Eve’s
information

Shared
secret
size

Time

0.010 1157K 31K 1087K 32K 1055K 2.3s
0.020 1080K 62K 992K 64K 928K 2.7s
0.030 1014K 93K 892K 98K 794K 2.7s
0.040 953K 124K 834K 127K 707K 2.5s
0.050 898K 154K 774K 160K 614K 4.8s
0.060 846K 185K 585K 153K 432K 5.3s
0.070 798K 216K 539K 173K 366K 4.7s
0.080 752K 247K 520K 192K 328K 4.5s
0.090 709K 277K 474K 212K 262K 4.4s
0.100 668K 308K 405K 230K 175K 4.7s
0.110 629K 339K 385K 247K 138K 4.9s
0.120 592K 369K 321K 265K 56K 4.9s

The anomaly that appears at 6% and beyond is an artifact of our decision to throw away all five bit segments

containing errors. As these segments represent about 40% of the data we end up working with the remaining 60%. The
drop in the computed information for Eve reflects the massive data discarding of the algorithm

5. Conclusion

We would like to caution the reader that

• The times cited above have a great degree of variability as there were background processes that compete

for resources
• As Cascade was run on short strings allowances must be made for the fact that fixed (or near fixed) costs

loom large.
• Direct time comparisons between algorithms that operate on different environments are not meaningful.

Nevertheless we believe that the data at hand demonstrate that:

• reconciliation operating on big strings and using FEC cuts down on the instances of interaction and

achieves dramatically improved results;
• in parallel module execution balances the resource use among modules and maximizes resource use;
• alternatives to Cascade exist that have similar bit retention profiles, less algorithmic complexity, and

superior overall performance (measured in secret_bits/second).

 It should also be noted that the software algorithm implementation is not fully optimized and that standard IT
techniques could improve throughput by a factor between 2 and 10.

References

1. An excellent Web site to explain BB84, Reconciliation and Cascade at
http://www.cki.au.dk/experiment/qrypto/doc/QuCrypt/bb84prot.html

2. C.H. Bennet and G. Brassard, “ Quantum cryptography: Public key distribution and coin tossing”, Proc. of the
IEEE, Int. Conf. on Computers, Systems, and Signal Processing, 175-179 (conf. held in Bangalore, India,
December 1984).

3. Gilles Brassard and Louis Salvail, “Secret-Key Reconciliation by Public Discussion”, proceedings of
Eurocrypt’94, Lecture notes in computer Science, 765, Spriger Verlag, 410-423.

4. Christian Cachin, Ueli M. Maurer, “Linking Information Reconciliation and Privacy Amplification”, journal of
Cryptology 10(2): 97-110 (1997)

5. Richard J Hughes, Jane E Nordholt, Derek Derkacs and Charles G Peterson,”Practical free-space quantum key
distribution over 10 km in daylight and at night”, New J. Phys. 4 (2002) 43.

6. Shu Lin and Daniel J. Costello, Error Control Coding, 79-82 and 111-116,Prentice Hall, Englewood Cliffs,
1983.

7. M.A. Nielsen and I.L.Chuang, Quantum Computation and Quantum Information, 586-603, Cambridge
University Press, Cambridge, 2000.

8. Peter M. Nielsen and others, "Experimental Quantum Key Distribution with Proven Security Against Realistic
Attacks", Journal of Modern Optics, vol 48, no. 13, 1921-1942, 2001.

