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Abstract

Argonne National Laboratory is actively pursuing research and design for a Rare Isotope Accelerator (RIA) facility that 
will aid basic research in nuclear physics by creating beams of unstable isotopes.  Such a facility has been labeled as a 
high priority by the joint Department of Energy and National Science Foundation Nuclear Science Advisory Committee 
because it will allow more study on the nature of nucleonic matter, the origin of the elements, the Standard Model, and 
nuclear medicine.  An important part of this research is computer simulations that model the behavior of the particle 
beam, specifically in the Fragment Separator.  The Fragment Separator selects isotopes based on their trajectory in 
electromagnetic fields and then uses absorbers to separate particles with a certain mass and charge from the rest of 
the beam.  This project focused on the development of a multivariate, correlated Gaussian distribution to model the 
distribution of particles in the beam as well as visualizations and analysis to view how this distribution changed when 
passing through an absorber.  The distribution was developed in the COSY INFINITY programming language.  The 
user inputs a covariance matrix and a vector of means for the six phase space variables, and the program outputs a 
vector of correlated, Gaussian random variables.  A variety of random test cases were conducted in two, three and six 
variables.  In each case, the expectation values, variances and covariances were calculated and they converged to 
the input values.  The output of the absorber code is a large data set that stores all of the variables for each particle 
in the distribution.  It is impossible to analyze such a large data set by hand, so visualizations and summary statistics 
had to be developed.  The first visualization is a three-dimensional graph that shows the number of each isotope 
present after each slice of the absorber.  A second graph plots any of the six phase space variables against any of 
the others to see the change in the beam’s distribution.  Also, the expectation values, variances and covariances of 
the phase space variables were calculated after the absorber.  The distribution that models the particle beam gives 
the variability that physicists need to simulate many different situations in the Fragment Separator.  The statistics and 
visualizations will allow quick analysis of the particle beam.  Both of these developments will contribute to the overall 
viability of the RIA proposal.

INTRODUCTION

Argonne National Laboratory (ANL) is actively pursuing 
research and design for a Rare Isotope Accelerator (RIA) facility that 
will aid basic research in nuclear physics.  The joint Department of 
Energy (DOE) and National Science Foundation (NSF) Nuclear 
Science Advisory Committee stated in their long range plan that 

“The Rare Isotope Accelerator (RIA) is our highest priority for major 
new construction” [8].  RIA will allow further study on the nature 
of nucleonic matter, the origin of the elements, the Standard Model, 
and nuclear medicine.  It will make this research possible by creating 
beams of unstable, short-lived isotopes for scientific analysis.

There is a lot of planning that goes into the design for such 
a facility.  An important part of this design is the creation of a 
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computer model of the beam line.  In the Fragment Separator, 
isotopes with a specific mass over charge ratio are selected based on 
their trajectories in electromagnetic fields.  Those with the same mass 
over charge ratio are further separated by an absorber that allows for 
the selection of a specific isotope by decoupling mass and charge.  
This project focuses on modeling and visualizing the particle beam 
in the Fragment Separator.

The development of such a model requires a multivariate, 
correlated Gaussian distribution to model the particle beam before 
it passes through the absorber.  Each particle in the distribution is 
given six variables (phase space variables) that track its position, 
momentum, and energy.  This distribution will allow physicists to 
vary the dependence and mean of the six phase-space variables as 
they run simulations.  This type of flexibility will make it possible 
to test the fragment separator in a variety of conditions as research 
is done to design RIA.

As the beam passes through the absorber, the particle 
distribution changes and new particles are developed.  Currently, 
very large output files of numbers are created as the result of the 
absorber simulation.  An extension was written to represent the 
data meaningfully in a graphic form and calculate statistics on the 
large data set.  This will allow physicists and non-physicists alike to 
make quick and accurate analysis of the particle beam distribution 
generated by the fragment separator model.

These two important pieces, creating a multivariate, correlated 
Gaussian distribution and generating graphics to show how 
the distribution that models the particle beam changes, will be 
integrated into the existing model in the COSY INFINITY 
language.  “COSY INFINITY is an arbitrary order beam dynamics 
simulation and analysis code.  It allows the study of accelerator 
lattices, spectrographs, beamlines, electron microscopes, and many 
other devices” [7].  It is especially useful in the Fragment Separator 
simulations because its implementation of differential algebra allows 
it to quickly compute high-order derivatives.  

MATERIALS AND METHODS

The development of the Gaussian distribution that models 
the particle beam required research in both mathematics and 
computer science.  A random vector X = [X1,..., XN]follows a 
multivariate, Gaussian distribution [6],[12],[13] if there is a vector 
µ = [m1,...,mN]and a symmetric, positive definite covariance matrix 
S (N x N matrix) such that X has density

The covariance matrix of xi is S, which is equal to

where < X1
2 > , < X2

2 > , …, < Xn
2 > are the variances of the Gaussian 

variants and < X1X2 > , < XiXj > , …, < XnXn > are the covariances.
In order to create such a distribution, an uncorrelated X was 

created, with means, m = 0 and a covariance matrix D, such that

In this case, D was diagonal with all of the covariances equal 
to zero.  Then the density function was rewritten as

Next, a linear transformation A was applied to X, such that Y 
= AX and det(A)  0.  This meant that X = A–1Y and XT = (A–1Y )T 
= YT (A–1)T.  Looking back at the exponential part of the density 
function, XTD–1X, this was rewritten as YT (A–1)T D–1 A–1Y.  Therefore 
the density function for a multivariate Gaussian distribution in Y 
was written as

where S, the covariance matrix was given by

S = {(A–1)T D–1 A–1}–1
 = ADAT

Since A was chosen to be orthogonal,

A–1 = AT,
|A| = ±1,

|S| = |ADAT| = |D|.

This allowed the density function to be rewritten as

Then Y could generate a correlated Gaussian distribution centered 
at zero.  In order to allow for any mean as an input, Z was defined 
as a function of m and S where

Z = Y + m.

Based on this theory, the COSY function developed took a 
covariance matrix, S, as an input to describe the dependence between 
the Gaussian random variables that were generated.  The other inputs 
were the number of variables (n), and a vector (m) containing the 
desired means for the variables.  It output the vector Z as a set of 
correlated Gaussian random variables.  Generally, it is expected for 
this calculation to be done in a six-dimensional phase space, but the 
algorithm was generalized for any number of variables.

In order to develop such a function, first the covariance matrix S 
was diagonalized and the diagonalization matrix T was stored.  Then, 
n independent Gaussian random variables were generated, using 
the Eigen values of S as the variances.  Finally, T was multiplied by 
W, where W was the vector formed by the independent Gaussian 
random variables, and the resulting vector was output as a set of 
correlated Gaussian random variables [9].

COSY has a built-in function that writes a matrix as B–1DB, 
where D is a diagonal matrix with the Eigen values on the diagonal.  
This Jordan decomposition of sorts was rewritten for better 
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integration with the model and to decompose the matrix into the 
form BDB–1.  However, this decomposition does not guarantee 
that the transformation matrix B is orthogonal.  Without this 
guarantee, BDB–1 does not have to equal the decomposition for S, 
ADAT.  Therefore, a new decomposition, the Schur decomposition 
which writes a matrix as ADAT (with A being orthogonal) was 
needed.  To transform from the Jordan BDB–1 form available in 
COSY to the Schur ADAT form needed, the following calculation 
was performed:

S = ADAT = BDB–1.

Because A was orthogonal, AT = A–1.  Therefore, ADA–1 = BDB–1.  
Then it was shown that (B–1A)D = D(B–1A), and thus B–1A commuted 
with D.  D was an arbitrary diagonal matrix, and only diagonal 
matrices commute with such matrices.  Therefore, B–1A was set equal 
to some diagonal matrix d.  This meant that 

B–1A = d,
A = Bd.

Because A was orthogonal,

Therefore, the transformation was concisely written as

Now that the covariance matrix was diagonalized in the proper 
form, the next step was creating the independent Gaussian random 
variables.  This was done with the Box-Muller transform [11].  Given 
r and j independently, uniformly distributed random variables in 
(0,1), then

where z0 is the Gaussian random variable.  A procedure was written 
in COSY to generate a Gaussian random variable based on this 
transformation and taking a desired variance and mean.  In this case 
the variance was the Eigen value from the covariance matrix.

Finally, the diagonalization matrix, T, obtained after changing 
the Jordan decomposition to the Schur decomposition was 
multiplied by the vector of independent, Gaussian random variables 
and this created a vector of correlated, Gaussian random variables.  
This procedure was then called many times, and the results were 
analyzed to determine their validity.  

In order to generate valid covariance matrices to input as test 
cases, another math theorem was used.  If a matrix A is an m x 
n real matrix with m > n, then A can be written using a singular 
value decomposition of the form A = UDVT.  In this case, U is an 
m x n matrix and V is an n x n square matrix, both of which have 

orthogonal columns such that UTU = VTV = I, and D is a n x n 
diagonal matrix [10].  This decomposition was used to generate 
orthogonal matrices (U,V) which could then be used with a diagonal 
matrix containing the test Eigen values to generate a symmetric, 
diagonalizable test covariance matrix S.

As part of the testing, a statistics procedure was written to 
recalculate the expectation values, variances, and covariances 
produced and display them alongside the expected input values.  
Optimizations were added to this computationally intensive code 
so that the memory for the calculation arrays was dynamically 
allocated.  Another enhancement took advantage of the symmetric 
nature of the covariance matrix, only calculating the upper half of the 
covariance matrix and thereby cutting the runtime of the statistics 
calculation nearly in half.

After completing work on the particle distribution to model 
the beam before the absorber, the project focused on visualizing 
and analyzing the output files produced by the absorber simulation 
code.  An isotope file is created after each slice of the absorber that 
shows how many of each type of isotope are present in the beam.  
A particle file is created for each isotope present in the beam after 
the last slice and it contains the six phase space variables for each 
particle of that type.

Procedures were written in COSY to read in this data, calculate 
statistics on the data set, and visualize the important elements.  The 
expectation values, variances and covariances were calculated for 
each of the phase space variables.  These values summarized large 
amounts of data and were output to a single file.  One visualization 
was developed in three-dimensions to show the amount of each 
type of isotope present after each slice of the absorber.  Another 
visualization plots any of the phase space variables against any 
other phase space variable.  The statistics and visualizations were 
tested with a variety of cases to ensure that they would be accurate 
representations of the data set.

RESULTS

The multivariate, correlated Gaussian distribution was developed 
with the following two-variable test case [9].  The covariance matrix 
S, was given as 

The Eigen values of S are 
 

which is approximately equal to 5.562 or 1.438.  The corresponding 
Eigen vectors are 

s1 = 	 and s2 = .

In order to generate pairs (z1, z2) of Gaussian random numbers with 
the given covariance matrix, draw (y1, y2) Gaussian, uncorrelated, 
with variances 5.562 and 1.438.  Then compute (z1, z2) as
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This test case was used until it was shown that the Eigen values 
and Eigen vectors could be calculated correctly in order to create 
correlated, Gaussian random numbers.  The uncorrelated random 
variables were created with the Box-Muller transform from a 
uniform random number generator.  However, when tested with 
25,000 iterations centered at 100, the uniform random number 
generator was not perfectly uniform (Figure 1).  This non-uniformity 
introduces a small amount of error.

The next test was to see if the distribution of one variable was 
indeed Gaussian.  A single, Gaussian, random variable was created 
using the Box-Muller transform 25,000 times and the distribution 
is shown in Figure 2.  The bell curve is instantly recognizable.

A procedure was written to generate somewhat random test 
cases in two, three and six variables.  In the two variable case, rotation 
matrices were used as orthogonal matrices to create symmetric, 
diagonalizable covariance matrices to use as inputs.  These rotation 
matrices were of the form

 .
The three variable tests were also created from orthogonal matrices.  
These were generated in Mathematica® and were of the form

The six-variable tests took advantage of the singular-value 
decomposition to create 6 x 6 orthogonal matrices that could be 
used to generate valid covariance matrices.  All of these cases created 
the covariance matrix from an orthogonal matrix A by multiplying 

A–1 * D * A, where D was a diagonal matrix with the Eigen values 
on the diagonal.

While many tests were run in two, three, and six variables during 
development, an example of a typical six variable test is as follows.  
The covariance matrix generated is given in Figure 3.  The rounded 
input Eigen values in the D matrix were 12.469, 4.0517, 13.839, 

10.531, 18.005, and 6.1554.  After the matrix was decomposed, 
the Eigen values were output and they were exactly the same out 
to 15 significant digits.  The input covariance matrix was also 
recalculated and it was exactly the same out to 14 significant digits.  
The Jordan transformation matrix is given in Figure 4 and the Schur 
transformation matrix is given in Figure 5.  

The test created 25,000 sets of six correlated, Gaussian random 
variables.  All of the expectation values were set to zero and the 
output expectation values are given in Table 1.  The variances and 
covariances were also calculated and the results are shown in Table  2.  
These variances and covariances should converge to the values given 
in the input covariance matrix.

Other tests were conducted to examine the correlation of two 
variables.  Figure 6 shows two variables with a correlation coefficient 
of zero.  Figure 7 shows a perfect correlation, where the coefficient is 

Figure 1.  Uniform Random Distribution (25,000)

Figure 2.  Gaussian Random Distribution (25,000)

Figure 3.  Input Covariance Matrix

Figure 4.  Jordan Transformation Matrix

Figure 5.  Schur Transformation Matrix
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one.  Figures 8 and 9 show correlations of 3
2

and 4
3− .  With 25,000 

pairs of correlated, Gaussian variables in each figure, the shape of 
the correlation can be seen.

The visualizations were checked to ensure that they were 
accurate and usable in many situations.  The 3D isotope visualization 
was developed with a small data set of three slices.  The test data set 
can be seen in Table 3.  Figure 10 shows the number of each type of 
isotope present before slice one.  Figures 11 and 12 show the number 
of each type present before slices two and three.  Figure 13 shows 
the final results after slice three.  Each isotope was represented in 
the proper location with a scaled bar to show its height.  The scales 
on the axes adjusted appropriately and new isotopes did show up 
in the correct locations on subsequent slices.

Before slice 1 Before slice 2 Before slice 3 After slice 3
Mass Charge Count Mass Charge Count Mass Charge Count Mass Charge Count

1 132 50 1500 132 50 1200 132 50 1400 132 50 1700
2 100 38 1200 100 38 1100 100 38 1300 100 38 1000
3 180 10 1000 180 10 1050 180 10 800 180 10 900
4 58 80 800 58 80 900 58 80 400 58 80 750
5 150 20 500 150 20 300 150 20 350 150 20 550
6 120 8 250 120 8 300 120 8 400
7 45 93 150 45 93 100

Table 3.  Test Data Set for Isotopes Graph (three slices).

A larger data set with ten slices was also run and the final graph 
can be seen in Figure 14.  The isotopes with the top five yields have 
been colored and the rest are dark blue.  A filter was created to allow 
physicists to focus on a particular subset of data, and an example of 
this can be seen in Figure 15 where only isotopes with a mass greater 
than 110 are considered.

Input Expectation Value Experimental Expectation 
Value (25,000 iterations)

E(X) 0.00000000000000 -.1164935988960410E-001
E(A) 0.00000000000000 -.2874439761976170E-001
E(Y) 0.00000000000000 .5855313062040197E-002
E(B) 0.00000000000000 -.1004700561425346E-001
E(L) 0.00000000000000 .4222684426054750E-002
E(D) 0.00000000000000 -.1427094209738337E-001

Table 1.  Expectation Values.

Figure 6.  Uncorrelated Gaussian Random Variables (Coefficient = 0, 
{25,000}.

Figure 7.  Correlated Gaussian Random Variables (Coefficient = 1) 
{25,000}.X A Y B L D

X 10.671 .20779 -1.4274 .34818 2.6728 1.3420
A 11.307 .69172 4.0452 -2.0736 -2.6828
Y 9.2482 2.3314 1.8719 1.9073
B 11.326 1.4360 -2.1624
L 9.2897 -.80201
D 13.138

Table 2.  Variances and Covariances.

Figure 8.  Correlated Gaussian Random Variables (Coefficient = 2/3) 
{25,000}.

Figure 9.  Correlated Gaussian Random Variables (Coefficient =  
-3/4) {25,000}.
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The 2D plots of any one phase space variable against any other 
phase space variable were tested by using this filtering capability to 
reduce the data to a very small set.  Adding in one particle at a time, 
it could be seen that the scale was correct and the plot was a good 
representation of the data set.  Figure 16 shows X versus Y, which is 
the horizontal position of the particle versus the vertical position.  
This is like looking right at the particle beam.  The data set is the 
same as the ten slice run from Figures 14.  The colors of each dot 
correspond to the colors given to each isotope in Figure 14.  Figure 
17 shows X versus A, the horizontal position versus the horizontal 
momentum.

The final test was to make sure that the expectation values, 
variances and covariances that summarized all of the particle data in 
the particle files were accurate.  This was done in a similar fashion, 
where the data set was first filtered to one particle.  Then, as each 
particle was added, the new statistics were calculated by hand and 
confirmed.

Figure 10.  Isotope Graph Before Slice One (Test Data Set)

Figure 11.  Isotope Graph Before Slice Two (Test Data Set)

Figure 12.  Isotope Graph Before Slice Three (Test Data Set)

Figure 13.  Isotope Graph After Slice Three (Test Data Set)

Figure 14.  Isotope Graph After Slice Ten (Large Data Set)

Figure 15.  Filtered Data Subset (mass > 110)
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DISCUSSION AND CONCLUSION

The major question was what was causing the small amounts of 
error in the Gaussian distribution.  It is estimated that most of the 
error in the calculations is due to the non-uniformity of the random 
number generator (Figure 1).  Another generator that is included in 
COSY (RERAN) was tested, but was actually a bit worse (Figure 18).  
However, the amount of error was small and the distribution will 
still be quite useful for running a variety of simulations in RIA’s 
Fragment Separator.  Also, the visualizations and statistics will make 
it possible for physicists to analyze the results of different types of 
absorbers.  Both of these will contribute to the research necessary 
to design a Rare Isotope Accelerator.
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Figure 16.  Particle Plot of X vs. Y (horizontal vs. vertical position)

Figure 17.  Particle Plot of X vs. A (horizontal position vs. horizontal 
momentum)

Figure 18.  COSY’s Uniform Random Number Generator (RERAN) 
{25,000}
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