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Abstract

The calculation of the magnetic flux given an assumed value for the current profile in axisymmetric toroidal plasmas is 
essential in studying the effects of various magnetohydrodynamic (MHD) instabilities upon controlled fusion. To this end, 
an iterative, modular algorithm coupled with a fast, direct elliptic solver for the Grad-Shafranov equation has been used 
to reconstruct the desired free-boundary equilibrium solution. This free-boundary Grad-Shafranov (FBGS) equilibrium 
algorithm is modified with the application of the von Hagenow method for determining the flux on the computational 
boundary, greatly reducing the time cost from O(N3) to O(N2 ln N) machine operations as compared to current Green’s 
function methods. The inherent variance in implementing the von Hagenow method gives a mean error bound of 0.1 
percent with respect to the normal Green’s method. The improvements will allow the grid resolution to be increased 
efficiently and automatically to reduce the maximum Grad-Shafranov error to values needed for accurate stability 
calculations on a more effective time scale.

Introduction

The National Spherical Torus Experiment (NSTX) is a medium-
sized, low aspect ratio spherical torus (ST) device—a cost-effective, 
innovative, and compact magnetic confinement concept designed 
to explore high-beta stability and plasma confinement as a “proof 
of principle” for controlled fusion. Parameters for the machine are a 
major radius of R = 0.85 m, minor radius a = 0.67 m, and an aspect 
ratio R/a = 1.26, with a typical toroidal field BT < 0.6 T and plasma 
current of 0.3–1.5 MA. 

The shape of the plasma and location of the plasma boundary 
greatly affect its stability and, therefore, its attractiveness for controlled 
fusion. Since the electromagnetic fields influence the movement of 
the plasma which itself induces electromagnetic fields, determining 
this shape may quickly lead to nonlinear equations. One simple 
way of studying magnetically confined plasmas with an emphasis 
on the shaping magnetic field topology is magnetohydrodynamics 
(MHD), the principle whereby the plasma is treated as a single, 

electrically-conducting fluid. Certain MHD modes cause alterations 
in the plasma topology that form magnetic islands, which may lead 
to large disruptions in a magnetic confinement device. For instance, 
in NSTX plasmas the 1/1 internal kink mode has been observed to 
induce energetic ion loss by a factor of 3–5 and cause flattening in 
the toroidal rotation profile within the plasma core [1].

To understand these and others MHD modes and their resulting 
impact, it is essential to be able to both accurately predict and 
reconstruct free-boundary MHD equilibria based on experimental 
measurements. Moreover, these equilibria are important in 
reproducing plasma configurations, implementing plasma shape 
control, and studying the plasma-wall interactions. Equilibria 
represent the simplest solution to a dynamical system, and thus are 
a natural starting point. Furthermore, reconstructing sequences of 
equilibria may be used to model the time evolution of the plasma 
as a quasi-static approximation.

MHD equilibrium is predicated upon the force balance 
equation, ∇p = J × B, where p is the pressure, J the current density, 
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and B the magnetic field. This is the static solution to the ideal MHD 
equations; it determines the plasma shape and the external fields 
required for confinement. Noting that from Ampére’s Law, ∇×B 
= μ0J, and from Maxwell’s equations, ∇ · B = 0, the force balance 
equation may be simplified in a toroidally symmetric system to the 
so-called Grad-Shafranov equation. In cylindrical coordinates, this 
is a non-linear, two-dimensional elliptic partial differential equation 
whose solution is obtained by a freeboundary Grad-Shafranov 
(FBGS) algorithm.

In this paper, we present the development of a predictive 
free-boundary auto-convergent axisymmetric equilibrium solver 
named ISOLVER. ISOLVER takes normalized pressure and current 
profiles and boundary shape as input, matches a specified plasma 
current and β, and computes coil currents as its output. At its 
core, it contains a modular, iterative algorithm coupled with a fast, 
direct elliptic solver to the Grad-Shafranov equation. To improve 
the calculation of the boundary condition for the elliptic equation, 
the von Hagenow method is implemented. This greatly reduces 
the time cost of the algorithm, making the time-limiting factor the 
solution to the differential equation. The grid resolution may be 
efficiently increased to reduce the maximum Grad-Shafranov error 
to necessary values for accurate stability calculations. Furthermore, 
a convergent solution may be calculated once and stored for a given 
computational grid, and accessed for a particular current profile on 
a much faster time scale.

In the following section, we shall describe in detail the main 
FBGS algorithm, including an analysis of the time cost. In Section 3, 
we shall explain the von Hagenow method, including the nuances of 
dealing with the inherent logarithmic singularity, and fully describe 
the significant reduction in time cost. In Section 4 we present a full 
error analysis of the code, and in Section 5 we shall give concluding 
remarks and discuss future work.

Main Algorithm

A good example of a FBGS algorithm is the EFIT code 
which has been used as a freeboundary equilibrium reconstruction 
technique for many magnetic confinement devices, including DIII-
D, JET, and JT-60U. Here we shall describe the main components of 
codes like EFIT; more rigorous derivations may be found in [2].

The FBGS algorithm solves the Grad-Shafranov equation, 
which is derived from the force balance equation. Using cylindrical  
(R, ø ,Z) coordinates, Maxwell’s equations imply that the magnetic 
field may be expressed as the curl of a vector potential A = (AR, A ø, 
AZ).  Exploiting of axisymmetric geometry results in the following 
form for the magnetic field

B =  ∇ø × ∇Ψ(R,Z) + g(R,Z)∇ø
where we define the poloidal flux function Ψ(R,Z) = –RAø and 
the toroidal field function g(R,Z) = R(∂AR/∂Z − ∂AZ/∂R). From 
Ampére’s Law we recognize that the current may be expressed as

μ0J = ∆ * Ψ∇ø + ∇g x ∇ø 
where we have defined the toroidal elliptic operator as ∆*Ψ ≡ 
R2∇ · (1/R2)∇Ψ.

Using the axisymmetric forms for the magnetic field from 
Equation (1) and the current from Equation (2) in the force balance 
equation, and taking the projection onto the vectors J and ∇ø, we 

see that p and g are functions of the poloidal flux Ψ.  Taking the 
projection onto the vector ∇Ψ, we obtain the Grad-Shafranov 
equation ∆*Ψ + µ0R2p´(Ψ) + gg´ (Ψ) = 0.  Equivalently, we may 
define the toroidal current density Jø as constructed from the two flux 
functions p(Ψ) and gg´(Ψ) which are the plasma pressure gradient 
and the poloidal current functions, respectively, and thus represent 
the Grad-Shafranov equation as ∆*Ψ = µ0RJø(R,Ψ).  Hence, an 
assumed form for the toroidal current profile is dictated by the 3 
plasma pressure gradient and the poloidal current functions. In EFIT, 
these are usually given by a set of basis functions of the normalized 
flux Ψn which are second order polynomials for p(Ψ) and second 
or third order polynomials for gg (Ψ) [3]. In ISOLVER, p(Ψ) and 
〈J · B〉(Ψ)/〈B · ∇ø〉 are the specified profiles and the sound-speed 
Mach number Ms(Ψ) is also specified to include the effects of plasma 
rotation on the equilibrium.

The Grad-Shafronov equation given in cylindrical coordinates,  

R ∂   1   ∂ψ ∂2ψ
∂R ∂Z2∂RR

+ = µ0RJ
Ø
RJØ(R,Ψ)

G(R,R´) =
µ0

√

RR´
2π k

[(2 – k2)K(k2) – E(k2)]

is a separable elliptic partial differential equation. This may be 
handled by using Fast Fourier Transform techniques or applying 
the generalized Buneman Algorithm. A consistent solution to the 
elliptic equation is found by iterating on the Ψ dependence in the 
source function Jø(R,Ψ) with a Picard iteration technique, ∆*Ψn+1 = 
µ0RJø(R,Ψn). The iteration is kept convergent by altering Jø through 
the free functions p(Ψ) and g(Ψ) to meet the specified constants.

In order to solve Equation (3), the flux along the computational 
boundary must be provided as a boundary condition for the elliptic 
solver. To determine the boundary flux given the plasma toroidal 
current density and the current Ic measured in conductors located 
outside the plasma boundary at positions (Ri

c ,Z
i c), we employ the 

Green’s function for the differential operator ∆*Ψ,

R ∂   1   ∂ψ ∂2ψ
∂R ∂Z2∂RR

+ = µ0RJ
Ø
RJØ(R,Ψ)

√

G(R,R´) =
µ0 RR´
2π k

[(2 – k2)K(k2) – E(k2)]

R ∂   1   ∂ψ ∂2ψ
∂R ∂Z2∂RR

+ = µ0RJ
Ø
RJØ(R,Ψ)

√

G(R,R´) =
µ0 RR´
2π k

[(2 – k2)K(k2) – E(k2)]

where the argument k2 = 4RR´
(R+R´)2 + (Z - Z´)2

(4)

and K(k2) and E(k2) are the complete elliptic integrals of the first 
and second kind, respectively.  The Green’s function by definition 
satisfies ∆*G(R,R´) = δ(R – R´) = Rδ(R – R´)δ(Z – Z´) and the 
flux function satisfies 

R ∂   1   ∂ψ ∂2ψ
∂R ∂Z2∂RR

+ = µ0RJ
Ø
RJØ(R,Ψ)

√

G(R,R´) =
µ0 RR´
2π k

[(2 – k2)K(k2) – E(k2)]

where the argument k2 = 4RR´
(R+R´)2 + (Z - Z´)2

= µ0Σ RIiδ(R – Rc
i)δ(Z – Zc

i) in vacuum

∆*ψ(R) = µ0RJø(R) = µ0RJø(R,Z) in plasma

where Nc is the total number of coils, and (Rc
i ,Z

c
i ) is the position 

of and Ii the current in the ith coil.
In order to use these relations to solve for the boundary flux, 

first consider the following vector identity applied to Ψ and G, 

Letting the observation point (R´,Z´) lie on the computational 
boundary, integrate Equation (5) over all space. Using the Divergence 
Theorem, the left hand side reduces to surface integrals which vanish 

(1)

(2)

(3)
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at infinity. After integration, the first term on the right hand side 
becomes the boundary flux. Integration over the second term on 
the right hand side may be broken into integrating over the plasma 
and the vacuum. Hence, we have for the flux boundary

In summary, a FBGS algorithm takes an initial guess for the 
toroidal current profile Jø and executes an iterative technique 
to compute a convergent flux solution. Once given a boundary 
condition flux, the algorithm solves Equation (3) using a fast direct 
method for elliptic equations. Inverted, the elliptic equation has the 
following finite difference form

A Fast Fourier Transform technique would require N transforms 
for Jøij, where N is the number of grid points in the Z direction 
(index j), each requiring O(N lnN) operations. After solving the 5M 
tri-diagonal equations where M is the number of grid points in the 
R direction (index i), another N transforms are required to bring the 
solution back into Ψi,j.  In total, the number of operations required 
to solve the elliptic equation is O(N2 lnN).  

To arrive at a boundary solution, the integral in Equation (6) 
must be evaluated.  The two dimensional integral becomes a double 
sum over R and Z, which can be expensive to evaluate. Assuming 
there are N grid points in each direction, to evaluate this sum requires 
O(4N3) operations, and determining the flux on the computational 
boundary can become the limiting factor in the FBGS algorithm.  
The algorithm iterates the boundary flux computation through the 
current profile given by a consistent flux solution until the boundary 
flux and other profiles converge

Von Hagenow Method

The von Hagenow Method[4] is a technique used to greatly 
reduce the time cost in calculating the boundary flux Ψb. Namely, 
it implements a new method of evaluating the costly integral in 
Equation (6).

First, consider a psuedo-flux function U(R,Z) that satisfies the 
same elliptic equation as Ψ but is canonically 0 on the boundary. 
Then, applying the same vector identity as in Equation (5) now to 
U and G, we have that 

where we choose the observation (R´,Z´) to be a small distance  
outside the computational boundary, and we take the limit as є 
→ 0.

Integrating the expression in Equation (8) over the computational 
domain, and using the relations for ∆*U, the term on the left hand 
side becomes the sought-after integral in Equation (8). Noting 
the behavior of U on the boundary, the integral of the first term 
on the right hand side vanishes, and so does the second term after 

application of the divergence theorem. Thus, we arrive at the 
following expression for the desired integral

This line integral around the boundary is much cheaper to 
evaluate than the whole integral over the computational domain. 
First, the inherent symmetries in the Green’s function for the toroidal 
elliptic operator reduce the number of total evaluations needed.  
Noting closely the form in Equation (4), we see that G(R,R´) is 
symmetric in its arguments and is only dependent on the three 
variables R, R´, and (Z − Z´)2. These symmetries reduce the number 
of calculations of the Greens function from 16N2 to close to 3N2 
machine operations. The solution to the psuedo-flux U may be found 
using similar fast direct methods as for the original flux, which takes 
O(N2 lnN) as previously discussed.  The derivative may be easily and 
accurately approximated by analytically differentiating a three-point 
bicubic spline interpolation. Thus, the time limiting factor has been 
reduced to solving the elliptic equation.

The problem that arises using this method to compute the 
boundary flux is the behavior of the Green’s function G(R,R´) at 
the point (R,Z) = (R´,Z´). The boundary integral that we seek to 
evaluate given by Equation (9) has a logarithmic singularity which 
can be removed analytically. The Green’s function term behaves like 

with a singularity at the boundary l = l0, where we have parameterized 
R = R(l) and R´ = R(l0)

The removal of the logarithmic singularity may be dealt with 
in several ways, the most accurate and straightforward of which is 
to express the derivative as ∂U/∂n = constant + ∂U´/∂n where the 
variable term ∂U´/∂n vanishes at the singularity. Thus, we may 
analytically evaluate the singular behavior of the Green’s function 
term g(R,R´) around the boundary and numerically integrate the 
remaining terms which are no longer exhibit singularities.

Specifically, to evaluate the integral at the boundary point given 
by l0, we first express the derivative as

And the total Green’s function term is broken into its singular 
component gs(l) given by Equation (10) and non-singular 
component gns(l) which is determined by simply subtracting out 
the singular component from the total. Thus the line integral may 
treated by three separate integrands,

The first integral no longer has a singularity due to the behavior of 
the variable derivative term, and the third integral is easily evaluated. 
The second integral may be determined analytically.
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Results

In the implementation used for the following results, we have 
used for computational convenience a simpler approximation to 
the integration through the logarithmic singularity. Instead of the 
method described in Section 3, we simply treat the singularity locally 
at the two points closest to the singularity, replacing the entire Green’s 
function term by the singular approximation and ignoring the non-
singular part. Though less accurate, this calculation remains viable 
since the local contribution missing from the non-singular term at 
the singularity is almost negligible around the whole boundary. The 
mean relative contribution is 0.00035, decreasing the computed 
boundary flux result from its actual value.

Figure (1) shows the entire computed boundary solution plotted 
linearly for the von Hagenow method (plotted in black) and the 

slower summing Green’s function method (plotted in red). Figure 
(2) shows a closer comparison at each side of the computational 
boundary.  The maximum error against the Green’s method 
calculated boundary values was observed to be 0.00019 for the 
bottom, 0.00196 for the right, 0.00022 for the top, and 0.00016 for 
the left, with respective mean relative errors of 0.02326, 0.02326, 
0.00301, and 0.00598. Figure (3) shows the ratio of the regular 
computed value over the von Hagenow computed value. Figure (4) 
shows the inherent computational variance in the von Hagenow 
and Green computed boundary, and the ratio of disagreement. The 
inherent mean relative error is 0.00174.

Figure (5) contains contour plots of the equilibrium flux 
computed using the von Hagenow and the Green’s method to 
compute the boundary flux.

A more exact application of the von Hagenow method should 
differ from the normal Green’s method by a limiting inherent relative 
error of 0.1 percent. However, it is clear from Figure (2) that the 
error in the bottom and right side of the boundary are off by an 
order of magnitude, which is larger than expected from ignoring the 
local contribution of the non-singular Green’s term to the boundary 
flux. These systematic errors affect the entire equilibrium solution. 
Furthermore, the behavior of the error and ratios at the corners of 
the boundary are not consistent with the fact that the approximation 
of the pseudo-flux derivative ∂U/∂n is canonically set to vanish at 
the corner values. This points at possible minor errors in the specific 
application of the von Hagenow method and treatment of the Green’s 
function term at the singularity.

Figure 1.  Linear plot of the entire boundary solution with and without 
von Hagenow implementation

Figure 2.  Plots of the boundary flux.
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Discussion and conclusions

A sufficiently accurate application of the von Hagenow method 
in a modified implementation of the FBGS algorithm has been 
accomplished. The costly computation of the boundary flux has been 
greatly reduced so that the limiting factor in the total equilibrium 
algorithm becomes the solution of the differential equation, which 
may be handled using fast direct elliptic methods. The total time 
cost reduces from O(N4) to O(N2 lnN).

Future studies should investigate the behavior of the Green’s 
function term at the corner boundary values, and reduce the 
disagreement in the von Hagenow method to below 0.1 percent. 
Furthermore, the method should be implemented to create a more 
modular FBGS algorithm, computing the necessary values once 
for a given grid resolution, which may be changed efficiently to 
reduce the maximum Grad-Shafranov error. The improved FBGS 
algorithm may be implemented within ISOLVER, which computes 
free-boundary equilibria. 

Acknowledgements

The author would like to thank Dr. J. Menard for his guidance 
throughout this project and many helpful discussions and Mr. 
J. Morgan for his support. The work was completed within the 
Science Undergraduate Laboratory Internship program in the Office 
of Science of the U. S. Department of Energy under DE-AC02-
76CH0307.

Figure 3.  Ratio of von Hagenow computed value versus normal 
value.

Figure 4.  Inherent variance in von Hagenow method and ratio.

Figure 5.  Contour plots of the equilibrium flux.

5(a) 
Contour plot of Ψ using von Hagenow method

5(b) 
Contour plot of Ψ using normal Green’s method
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