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INTRODUCTION

Quantum mechanics is used to describe particles on the
atomic scale. Quantum mechanics uses wave functions describ-
ing electrons in a field of a nucleus. In case of photoionization,
wave functions are used to describe discrete orbitals and the
emission of photo- or Auger electrons. The famous time-depen-
dent Schrödinger equation is used to find solutions for a given
Hamiltonian (the interaction operator) between the bound state
and the continuum state.  A photon colliding with an atom trans-
fers angular momentum to the outgoing electron during the pho-
toionization process. This free electron can be described by a
wave function as a plane wave that is comprised of spherical
waves (eikr). With the help of a Taylor series expansion for eikr it is
possible to separate the contributions from the spherical waves.
If all contributions except for the first (eikr=1) are truncated, it is
termed the Dipole Approximation (DA).

The interaction of x-rays with an atom or molecule is used to
probe its electronic structure and the dynamic behavior during
photoionization.  Using the dipole approximation simplifies theo-
retical models and neglects all effects resulting from higher-or-
der momenta.  As a result, the limits of the dipole approximation
must be investigated in order to have more accurate models.1

For over three decades nobody had serious doubts about
the validity of the DA. In the UV and far-UV photon-energy
ranges, the DA for photoionization is grounded in solid physical
reasoning.  This is because photoelectron velocities following
photoemission are extremely small compared to the speed of
light, and the wavelength of the light is much larger than the
orbitals of the ejected electrons.2  However, it is widely known
that the dipole approximation breaks down completely at the
hard-x-ray energy range (hν > 5 keV).  On the other hand, the
breakdown of the dipole approximation at the intermediate soft-
x-ray photon-energy range had not been explored until recently.
Higher-order multipole moments (electric quadrupole, electric
octupole, and magnetic dipole etc.) show some effect at all pho-
ton energies. Thus, it is essential to completely understand at
what photon energies the dipole approximation can no longer be
used and how important the higher-order Taylor series terms are.

The best way to determine these limits is by measuring the
angular distributions of photoelectrons because these are much
more sensitive to higher-order effects than the partial cross sec-
tions.  Electron Time-of-Flight (e-TOF) spectrometry is ideally
suited for this task.  This technique measures the flight time of
electrons between the interaction region and a detector, which
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can then be used to calculate not only the kinetic energy of the
electrons but also the direction of the emitted photoelectrons.3

Furthermore, the apparatus is able to measure the entire electron
energy spectrum simultaneously, eliminating effects due to time
fluctuations in beam intensity and sample pressure.

MATERIALS AND METHODS

The experimental setup used was an electron Time-of-Flight
end station, which requires an adequate light source.  For this
experiment, the Advanced Light Source (ALS) at the Lawrence
Berkeley National Laboratory was used.  Able to produce light in
the x-ray and ultraviolet range with light one billion times brighter
than the sun, the ALS offers the light needed to study atoms and
molecules.

X-rays are emitted from packets of electrons known as
bunches, which each have approximately the same diameter as a
human hair.  The electrons are accelerated to nearly the speed of
light, and their energies are increased inside a booster ring.  From
there, the electrons enter the storage ring and their energy is
ramped up to 1.9 GeV.  The electrons, maintaining the same en-
ergy, change direction with the help of twelve bending magnets
in the storage ring.  At these twelve positions the electrons
produce light because accelerating charged particles, in this case
the electrons, give off electromagnetic radiation.  When this
radiation is emitted, the electrons lose energy, which must be
replenished in order to maintain a constant energy.  Radio-fre-
quency cavities, which generate an alternating electromagnetic
field, give the electrons the same amount of energy that they lost
and allow the electrons to maintain their energy.  In addition,
more light is produced in straight sections of the ring by inser-
tion devices such as wigglers and undulators. Undulators and
wigglers are comprised of a series of magnets that produce a
spatially alternating magnetic field.  When the electron bunches
in the storage ring pass through the undulators or wigglers, the
electrons are deflected back and forth, thus increasing the amount
of radiation emitted along their flight path.  By adjusting the
undulator or wiggler gap, the maximum number of photons is
produced at the appropriate energy for a chosen photon energy.
The difference between undulators and wigglers is that
undulators produce light that is coherent and in phase whereas
the wiggler light is incoherent.

Most of this radiation, which comes in the form of a broad
spectrum ranging from infrared to x-rays, leaves the storage ring
by tangential ports into beamlines, which are connected to end

stations.  In the case of this experiment, beamline 8.0.1 was used
with an electron Time-of-Flight end station.  This end station
requires that the ALS operates in 2-bunch mode instead of
multibunch mode.  The length of each bunch in 2-bunch mode is,
on average, 50 picoseconds and the time separation between
these two bunches is 328 nanoseconds.

Once the light enters the beamline, a monochromator is used
to select a specific wavelength (and thus a specific energy) of
photons.  In order to do this, a grating diffracts the radiation and
a specific wavelength is selected by the exit slit.  The monochro-
mator on beamline 8.0.1 has three spherical gratings with radii of
70 m.  Each grating is suitable for a different energy range, which
is determined by its coating and the number of lines per millime-
ter.

Various optical devices, such as the entrance and exit slits,
are used along the beamline in order to focus, bend, and control
the incoming photons.  The entrance and exit slits can be varied
in slit width and are used in order to adjust the resolution of the
monochromator.  Directly before the entrance slit, the Vertical
Condensing Mirror serves to reduce the height of the beam so
that more photons will pass through the entrance slit.  Beyond
the exit slit, Horizontal and Vertical Refocusing Mirrors are
aligned perpendicular to each other in order to achieve maximum
horizontal and vertical focusing (Figure 1).

From the beamline, the light enters the vacuum chamber of
the electron Time-of-Flight end station (Figure 2).  This chamber
supports the analyzers and can be rotated about the x-ray beam
by 90 degrees while under vacuum. This allows the collection of
spectra at many different angles, increasing the accuracy of an-
gular-distribution measurements and allowing for the calcula-
tion of additional angular-distribution parameters.

Photons interact with gas that is ejected perpendicular to
the photon beam by a needle in a space called the interaction
region. There, photoemission occurs due to the collision of the
photons from the beam and the gas particles. These electrons
can go into an analyzer and must travel a distance of 437.5 mm

Figure 1. Schematic diagram of Beamline 8.0.1

Figure 2. Experimental schematic of the electron Time-of-Flight
system. Light from the ALS storage ring passes through beamline optics
into a differential-pumping section.  The chamber and analyzers can
rotate around the photon beam for more accurate electron angular-
distribution measurement.
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Figure 4. The coordinate system and angles used for the experiment.

converter/biased amplifier while the end time is marked by the
ALS Bunch Marker signal that is produced every 328 ns. The
time signal is converted into a voltage using an Analog-to-Digi-
tal Converter with the different voltages corresponding to spe-
cific channel numbers, which are stored as counts in a
Multi-Channel-Analyzer. A spectrum is made up of all the counts
produced over all the channel numbers with the peaks in the
spectrum corresponding to electrons with certain kinetic ener-
gies (Figure 3).

For this experiment, the spectra for molecular nitrogen were
collected at fifteen different chamber rotation angles.  Nitrogen
gas was selected because it is a simple molecule with inner and
outer shells, and argon gas was used for calibration purposes
further explained in the next section.  Nitrogen gas spectra were
collected at certain photon energies ranging from 413 eV to
664 eV.  Each photon energy required adjustments of the
undulator gap for optimal resolution and intensities.

DATA ANALYSIS AND RESULTS

Each analyzer produces a separate spectrum that is used to
calculate the differential cross section for photoemission pro-
cesses.  This differential cross section describes the angular
distribution of ejected photoelectrons from a randomly oriented
sample using 100% linearly polarized light. Using the nondipole
parameters (δ and γ which can be combined to the single param-
eter ζ, equivalent to γ + 3δ) and the dipole parameter (β), the
equation is as follows:
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Each analyzer has a fixed φ and θ (Figure 4) that correspond to
the angle of the photoemitted electron in regards to the direction
of the photon beam and its polarization. σnl corresponds to the
partial cross section of electrons from subshells nl. The equa-
tions relating to analyzers 1, 3, and 4 are the only ones needed in
order to obtain the dipole and nondipole parameters (β, ζ respec-
tively) (Figure 5).

and be within a ± 2.7 degrees cone relative to a straight flight
path in order to be detected.

Electrons have to have a minimum kinetic energy of 5 eV to
arrive at the detector of any analyzer within the 328 ns time
window.  Analyzers 2 and 3 are positioned on a cone with a half
angle of 54.7 degrees along the photon beam and out of the
plane perpendicular to the x-ray beam.  For a certain chamber
position analyzers 1 and 3 are at the so-called “magic angle.”
This is the angle at which the dipole parameter disappears from
the equation of the differential partial cross section, leaving be-
hind the nondipole parameters.   Positioning the analyzers at the
“magic angle” allows only nondipolar angular-distribution ef-
fects to be studied. Analyzers 1, 4, and 5 are used to measure
dipolar angular distributions and cross-section ratios.

Once inside an analyzer, the electrons are detected by two
Micro-Channel Plates (MCPs) positioned in a Chevron arrange-
ment. MCPs are thin glass disks with thousands of microscopic
tubes. A high voltage is applied across the MCPs and when
electrons collide with the walls of the tubes, they produce sec-
ondary electrons, which accelerate and cascade down the tubes
thus creating even more electrons.

After an electron hits the Micro-Channel Plates, a cloud of
electrons is made that hits an anode which charges a capacitor
that produces a main pulse each time it discharges. From there,
this pulse is amplified. A Constant Fraction Discriminator then
inverts the signal, shifts it by less than a nanosecond, and adds
the original signal to the inverted and shifted signal. This new
signal marks the start time for the time-to-amplitude

 

Figure 3. Flow chart of how the signal given by an electron becomes part
of a spectrum.
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Figure 5: Top - Angular distribution pattern for the dipole parameter ß.  As ß changes values, 

the angular distribution pattern changes shape.  

Bottom - The nondipole angular distribution pattern describing δ and γ.  Unlike the dipole 

angular distribution pattern, as δ and γ change values, the pattern is scaled accordingly. 

 

Figure 5. Top - Angular distribution pattern for the dipole parameter β.  As β changes values, the angular distribution pattern changes
shape.  Bottom - The nondipole angular distrubution describing δ and γ.  Unlike the dipole angular distrubution pattern, as δ and γ
change values, the pattern are scaled accordingly.

The differential cross section is proportional to the area under
the N 1s peak for nitrogen gas (Figure 6).  By dividing the differ-
ential cross sections for analyzers 3 and 4 by that for analyzer 1,
it is possible to determine the angular distribution parameters
without knowing the partial photoionization cross section.

Argon gas was used for calibration because all of the dipole and
nondipole parameters are known for this element. This way we
determine the efficiencies for each analyzer pair.
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Now that all the necessary parameters are known, the nondipole
and dipole parameters can be determined for that particular en-
ergy.  Each of these equations must be solved for each spectrum
and from there a graph can be made of the nondipole or dipole
parameter over the photon energy.

DISCUSSION AND CONCLUSIONS

Figure 7 shows experimental data of the N2 N 1s nondipole
parameter ζ as filled circles with error bars and theoretical data
for molecular nitrogen as a solid line that is in excellent agree-
ment with the data points. The theory for atomic nitrogen is
shown as a dot-dashed line.  The broad peak centered at about
470 eV photon energy is due to significant contributions of the
nondipole parameters in Equation 1.

The theory for atomic nitrogen lacks the resonance-like fea-
ture seen in the experimental data, leading to the conclusion that
this behavior has a molecular origin despite the largely atomic-like
nature of the occupied 1s orbitals in molecular nitrogen.  The
theory for molecular nitrogen is explained in detail elsewhere.5

In short, the magnitude of nondipole effects is dependent
on the relation between the photon energy and the size of the
orbital.  When the photon has a larger wavelength (which corre-
sponds to a lower photon energy) than the orbital, the nondipole
effect is small.  On the other hand, if the orbital is larger than the

Figure 6. Spectra of nitrogen and argon at a certain photon energy.  The
colored sections under the graphs indicate which areas were used to
calculate the dipole and nondipole parameters.

Figure 7. Nondipole parameter ζ  for molecular nitrogen.  The filled
circles with error bars are the data collected as described in the text.  The
theory for molecular nitrogen is the solid line and the theory for atomic
nitrogen is the dot-dashed line.
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photon wavelength, the nondipole effect is large.  When com-
paring N2 N 1s ionization with atomic nitrogen N 1s ionization,
the nondipole effect is more pronounced in molecular nitrogen.
This is rather puzzling because the N 1s orbitals are about the
same size.  Based on theoretical calculations these larger
nondipole effects depend on the bond-length distance between
the two nitrogen atoms. Therefore, it is necessary to also include
the comparison between the wavelength and the bond-length.
It has been shown that the nondipole effect is related to the
bond-length size to a larger extent than the orbital size and some
other molecular contributions.5  Theory starts to deviate at lower
photon energies (410-420 eV).  This deviation is attributed to the
fact that the theory uses a frozen-core approximation for the
calculations and a dynamical potential change needs to be imple-
mented. The observed nondipole effects appear to indicate a
universal nondipole characteristic in molecular photoionization,
which demands further experimental and theoretical study.
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