Healthy People 2010-Conference Edition

12
 Heart Disease and Stroke

Co-Lead Agencies: Centers for Disease Control and Prevention; National Institutes of Health

Contents

Goal 3
Overview 3
Issues and Trends 3
Disparities 5
Opportunities 6
Interim Progress Toward Year 2000 Objectives 12
Healthy People 2010—Summary of Objectives 14
Healthy People 2010 Objectives 15
Heart Disease 15
Stroke 18
Blood Pressure 19
Cholesterol 25
Related Objectives From Other Focus Areas 28
Terminology 30
References 32

Goal

Improve cardiovascular health and quality of life through the prevention, detection, and treatment of risk factors; early identification and treatment of heart attacks and strokes; and prevention of recurrent cardiovascular events.

Overview

Heart disease is the leading cause of death for all Americans. Stroke is the third leading cause of death. Heart disease and stroke continue to be a major cause of disability and a significant contributor to increases in health care costs in the United States. ${ }^{1}$

Epidemiologic and statistical studies have identified a number of factors that increase the risk of heart disease and stroke. In addition, clinical trials and prevention research studies have demonstrated effective strategies to prevent and control these risk factors and thereby reduce illnesses, disabilities, and deaths caused by heart disease and stroke.

Issues and Trends

Coronary heart disease (CHD) accounts for the largest proportion of heart disease. About 12 million Americans have CHD. ${ }^{1}$ The CHD death rate peaked in the mid1960s and has declined in the general population over the past 35 years. This decline began in females in the 1950s and in males in the 1960s. Although absolute declines (reduction in the total number of cases) have been much greater in males than in females, rates of decline (the speed at which the number of cases had decreased) also have been greater in males, but in recent years they have been greater in females.

Since 1950, there has been a clear rise and fall in CHD death rates for each racial and gender group. Although the age-adjusted death rate for CHD continues to decline each year, declines in the unadjusted death rate and in the number of deaths have slowed because of an increase in the number of older Americans, who have higher rates of CHD.

High blood cholesterol is a major risk factor for CHD that can be modified. More than 50 million American adults have blood cholesterol levels that require medical advice and treatment. ${ }^{2}$ More than 90 million adults have cholesterol levels that are higher than desirable. All adults aged 20 years and older should have their cholesterol levels checked at least once every 5 years to help them take action to prevent or lower their risk of CHD. ${ }^{3}$ Lifestyle changes that prevent or lower high blood cholesterol include eating a diet low in saturated fat and cholesterol, increasing physical activity, and reducing excess weight. ${ }^{3}$

Source: National Vital Statistics System (NVSS), CDC, NCHS, 1979-96.
About 4 million persons have cerebrovascular disease, ${ }^{1}$ a major form of which is stroke. About 600,000 strokes occur each year in the United States, resulting in about 158,000 deaths. Death rates for stroke are highest in the southeastern United States. Like CHD death rates, stroke death rates have declined over the past 30 years. The decline accelerated in the 1970s for whites and African Americans. The rate of decline, however, has slowed in recent years. The overall decline has occurred mainly because of improvements in the detection and treatment of high blood pressure (hypertension).

High blood pressure is known as the Asilent killer@ and remains a major risk factor for CHD, stroke, and heart failure. About 50 million adult Americans have high blood pressure. High blood pressure also is more common in older persons. Comparing the 1976-80 National Health and Nutrition Examination Survey (NHANES II) and the 1988-91 survey (NHANES III, phase 1) reveals an increase from 51 to 73 percent in the proportion of Americans who were aware that they had high blood pressure. ${ }^{4.5}$ Nevertheless, a large proportion of Americans with high blood pressure still are unaware that they have this disorder. ${ }^{4,5}$

The age composition of the U.S. population has changed dramatically during the 20th century and will continue to change during the 21st century. By the end of the 1990s, one in every four persons was aged 50 years or older. By 2030, about one in three will be aged 50 years or older. Most significant has been the increase in the size of the population aged 65 years and older. In addition, the percentage of persons aged 85 years and older has increased significantly. Heart disease and stroke deaths rise significantly after age 65 years, accounting for more than 40
percent of all deaths among persons aged 65 to 74 years and almost 60 percent of those aged 85 years and older. In the 1980s and 1990s, heart failure emerged as a major chronic disease for older adults. ${ }^{6,7,8,9}$ Almost 75 percent of the nearly 5 million patients with heart failure in the United States are older than 65 years. ${ }^{8}$ Hospitalization rates for heart failure continue to increase significantly in those aged 65 years and older. ${ }^{9}$

Atrial fibrillation (AF) affects close to 2 million people. The number of existing cases of AF increases with age and is more common in males than in females. ${ }^{1}$ The rate of AF is 0.5 percent for the group aged 50 to 59 years and rises to 8.8 percent in the group aged 80 to 89 years. ${ }^{6}$ Because females have a longer life expectancy than males, the actual number of cases in elderly females (older than 75 years) is greater than in elderly males. Cases of AF may continue to rise as persons live longer and as more persons survive a first heart attack.

Because national data systems will not be available in the first half of the decade for tracking progress, two subjects of interest are not addressed in this focus area=s objectives. Representing a research and data collection agenda for the coming decade, the topics are related to provider counseling and increasing awareness of cardiovascular disease (CVD) as the leading cause of death for all females. The first topic covers instruction of high-risk patients and family members or significant others in preparing appropriate heart attack and stroke action plans for seeking rapid emergency care, including when to call 911 or the local emergency number. The second topic deals with increasing awareness among all females that CVD is their leading cause of death.

Disparities

In general, the heart disease death rate has been consistently higher in males than in females and higher in the African American population than in the white population. In addition, over the past 30 years the CHD death rate has declined differentially by gender and race. In the 1970s, African American females experienced the greatest decline in CHD. This steep decline disappeared in the 1980s, when rates of decline for white males and females exceeded those for African American males and females, and African American females had the lowest rate of decline. ${ }^{10}$ In the 1980s, males had a steeper rate of decline than females. Between 1980 and 1995, the percentage declines were greater in males than in females and greater in whites than in African Americans. In 1995, the age-adjusted death rate for heart disease was 42 percent higher in African American males than in white males, 65 percent higher in African American females than in white females, and almost twice as high in males as in females.

Disparities also exist in treatment outcomes for patients who have a heart attack. Females, in general, have poorer outcomes following a heart attack than do males: 44 percent of females who have a heart attack die within a year, compared with 27 percent of males. At older ages, females who have heart attacks are twice as likely
as males to die within a few weeks. ${ }^{11}$ These differences are explained, in part, by the presence of coexisting conditions, such as high blood pressure, diabetes, and congestive heart failure. After controlling for such factors, however, studies indicate an association remains between female gender and death following a heart attack. Complications are more frequent in females than in males after coronary intervention procedures, such as angioplasty or bypass surgery, are performed. Additional studies are needed to evaluate specific interventions and determine whether gender-specific interventions may be beneficial. In general, factors such as age (older), gender (female), race or ethnicity, low socioeconomic status, and prior medical conditions (previous heart attack, history of angina or diabetes) have been associated with longer prehospital delays in seeking care for symptoms of a heart attack. ${ }^{12}$

The male-female disparity in stroke deaths widened until the 1980s and then narrowed. Although stroke death rates have been decreasing, the decline among African Americans has not been as substantial as the decline in the total population. The racial differences in the number of new cases of stroke and deaths due to stroke are even greater than those found in CHD. Stroke deaths are highest in African American females born before 1950 and in African American males born after 1950. Among the racial and gender groups, declines in the stroke death rate are smallest in African American males. When adjusted for age, stroke deaths are almost 80 percent higher in African Americans than in whites and about 17 percent higher in males than in females. Moreover, age-specific stroke deaths are higher in African Americans than in whites in all age groups up to age 84 years and higher in males than in females throughout all adult age groups.

The number of existing cases of high blood pressure is nearly 40 percent higher in African Americans than in whites (an estimated 6.4 million African Americans have high blood pressure), ${ }^{13}$ and its effects are more frequent and severe in the African American population.

Opportunities

Primary prevention. Heart disease and stroke share several risk factors, including high blood pressure, cigarette smoking, high blood cholesterol, and overweight. Physical inactivity and diabetes are additional risk factors for heart disease. (See Focus Area 5. Diabetes.) The lifetime risk for developing CHD is very high in the United States: one of every two males and one of every three females aged 40 years and under will develop CHD sometime in their life. Primary prevention, specifically through lifestyle interventions which promote hearthealthy behaviors, is a major strategy to reduce the development of heart disease or stroke.

A number of studies have shown that lifestyle interventions can help prevent high blood pressure and reduce blood cholesterol levels. For high blood pressure, these changes include increasing the level of aerobic physical activity, maintaining a
healthy weight, limiting the consumption of alcohol to moderate levels for those who drink, reducing salt and sodium intake, and eating a reduced fat diet high in fruits, vegetables, and low-fat dairy food. Moreover, studies show that a diet low in total fat, saturated fat, and dietary cholesterol-with physical activity and weight control-can lower blood cholesterol levels.

Overweight and obesity are growing public health problems, affecting adults, adolescents, and children. Some 97 million adults are obese or overweight and thus are at increased risk of illness from high blood pressure, high blood cholesterol and other lipid disorders, type 2 diabetes, CHD, stroke, and other diseases. Efforts to prevent overweight and obesity by promoting heart-healthy behaviorsbeginning in childhood-are needed to help reverse the trend. Balancing calorie intake with physical activity is critical. Research in the 1990s showed that a wide range of physical activities are beneficial to health and that everyone can benefit from physical activity. Even when physical activity is less than vigorous, it can still produce health benefits, including a decreased risk of CHD..14,15,16,17

Nonetheless, increasing the level of physical activity remains a challenge. Furthermore, according to the 1996 Surgeon General=s Report on Physical Activity and Health, ${ }^{18}$ the percentage of people who say they engage in no leisure-time physical activity is higher among females than males, among African Americans and Hispanics than whites, among older adults than younger adults, and among the less affluent than the more affluent persons.

Progress on smoking cessation will play a critical role in achieving the national goal for heart disease reduction. Smoking cessation has major and immediate health benefits for men and women of all ages. For example, people who quit smoking before aged 50 years have half the risk of dying in the next 15 years, compared with continuing smokers. ${ }^{19}$

Studies have shown that risk factors for heart disease and stroke develop early in life: atherosclerosis already is present in late adolescence, diabetes in overweight children is on the rise, and hypertension can begin in the early teens. ${ }^{20,21}$ Tobacco use also begins in adolescence, therefore, primary prevention efforts should be expanded in elementary and secondary schools and at the college level. Nationwide mass media campaigns, community-based programs, and other communication efforts should be expanded to give groups better access to information and programs. These programs should promote heart-healthy behaviors at the community level as well as detect and treat existing risk factors.

Risk factor detection and treatment. Screening for risk factors, particularly for high blood pressure and high blood cholesterol, is an important step in identifying individuals whose risk factors may be undiagnosed and to refer them to ongoing care. A host of studies have shown that dietary and pharmacologic therapy can reduce CHD and stroke risk factors, especially high blood pressure and high blood cholesterol. These interventions, coupled with other lifestyle changes, such as
stopping smoking, increasing physical activity, and maintaining a healthy weight, can be even more effective in lowering the risk of a heart attack or stroke. ${ }^{22,23,24,25}$

Research showing the importance of blood pressure for health led to the introduction by the National Heart, Lung, and Blood Institute (NHLBI) of the National High Blood Pressure Education Program (NHBPEP) in 1972. ${ }^{26}$ NHBPEP is the first large-scale public outreach and education campaign to reduce high blood pressure. Its promotion of the detection, treatment, and control of high blood pressure has been credited with influencing the dramatic increase in the public=s understanding of hypertension and its role in heart attacks and strokes, as well as related declines in deaths. The percentage of people who were able to control their high blood pressure through lifestyle changes and through antihypertensive drug therapy rose from about 16 percent in 1971-72 to about 65 percent in 1988-94.'. ${ }^{1,6}$ About 90 percent of all adults now have their blood pressure measured at least once every 2 years. Average blood pressure levels have fallen by 10 to 12 mmHg since the advent of NHBPEP. ${ }^{27}$ A slowly changing issue has been the recognition of systolic blood pressure as a more important predictor of CHD than diastolic blood pressure, especially in older adults. ${ }^{28,29}$

Research reported in the 1980s showed for the first time that lowering high blood cholesterol significantly reduces the risk for heart attacks and heart attack deaths. This research led to the creation of the National Cholesterol Education Program (NCEP) in 1985. ${ }^{30}$ Clinical trials have proved that lowering cholesterol in persons with and without existing CHD reduces illness and death from CHD and even reduces overall death rates. Since NCEP was launched, the percentage of persons who have had their cholesterol checked has more than doubled, from 35 percent in 1983 to 75 percent in $1995 .{ }^{31}$ Consumption of saturated fat, total fat, and cholesterol declined during the 1980s and 1990s, average blood cholesterol levels in adults dropped from $213 \mathrm{mg} / \mathrm{dL}$ in 1978 to $203 \mathrm{mg} / \mathrm{dL}$ in 1988B94, and the prevalence of high blood cholesterol requiring medical advice and treatment fell from 36 percent to 29 percent. ${ }^{30}$ These results reflect the impact of NCEP=s population and high-risk strategies for lowering cholesterol.

The NHLBI Obesity Education Initiative, in cooperation with the National Institute of Diabetes and Digestive and Kidney Diseases, released in 1998 the first Federal guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. ${ }^{32}$ These clinical practice guidelines are designed to help physicians in their identification and treatment of overweight and obesity, a growing public health problem. Persons who are overweight or obese are at increased risk of illness from high blood pressure, lipid disorders, type 2 diabetes, CHD, stroke, gallbladder disease, osteoarthritis, sleep apnea and other respiratory problems, and certain cancers. The total cost attributable to obesity-related diseases in the United States is nearly $\$ 100$ billion annually. The guidelines present a new approach to the assessment of overweight and obesity and establish principles of safe and effective weight loss. According to the guidelines, the assessment of overweight involves three key measures-body mass index (BMI), waist circumference, and
risk factors for diseases and conditions associated with obesity. The definitions in the guidelines are based on research that relates body mass index to the risk of death and illness, with overweight defined as a BMI of 25 to 29.9 and obesity as a BMI of 30 and above. ${ }^{32}$

As BMI levels rise, the average blood pressure and total cholesterol levels increase, and average HDL (good cholesterol) levels decrease. Males in the highest obesity category have more than twice the risk of high blood pressure, high blood cholesterol, or both, compared to males of normal weight. Females in the highest obesity category have four times the risk of either or both of these risk factors, compared to normal weight females. Therefore, the guidelines recommend weight loss to reduce high total cholesterol, raise low levels of HDL, reduce high blood pressure, and reduce elevated blood glucose in overweight persons who have two or more risk factors and in obese persons. Overweight persons without other risk factors are advised to prevent further weight gain.

The Agency for Healthcare Research and Quality=s evidence-based guideline on smoking cessation interventions clearly shows that a variety of interventions are effective and concludes that improvements in cessation will require active participation of health care systems. ${ }^{33}$

These national education efforts have changed the way people think about their health. More persons than ever are having their blood pressure and their cholesterol levels checked and are taking action to keep them under control. Persons are aware of preventive measures and health promotion behaviors that can reduce their risk of developing CHD- and stroke-related illnesses. In addition, improved pharmacologic therapies are available to treat and control major CHD risk factors, such as high blood pressure, high blood cholesterol, and obesity. These therapies however, may be underutilized by health care providers.

Early identification and treatment. Each year in the United States, about 1.1 million persons experience a heart attack (myocardial infarction). In 1996, 476,000 persons died from heart attacks-about 51 percent were males and 49 percent were females. More than half of these deaths occurred suddenly, within 1 hour of symptom onset, outside the hospital. ${ }^{1,34}$ For those patients who survive, delay in treatment can mean increased damage to the heart muscle and poorer outcomes.

The benefits of rapid identification and treatment of heart attacks are clear. Early treatment of heart attack patients reduces heart-muscle damage, improves heart muscle function, and lowers the heart attack death rate. ${ }^{35,36}$

Controlled trials of clot-dissolving (thrombolytic) agents used during the acute phase of a heart attack have demonstrated the benefits of opening the affected coronary artery and reestablishing blood flow. The results from these trials have been incorporated into the current treatment model for early intervention during the acute phase of a heart attack. ${ }^{35}$ Patients who receive clot-dissolving agents in
the first and second hours after the onset of heart attack symptoms experience significant reductions in disability and death when compared to patients who are treated in the third to sixth hours. ${ }^{37}$ Even patients who are treated between 6 and 12 hours after the onset of symptoms show modest but significant benefits when compared to patients whose treatment is delayed more than 12 hours. ${ }^{38}$ Other acute interventions for heart attack patients include balloon angioplasty, coronary stenting, and coronary artery bypass surgery. ${ }^{36,39}$ The importance of early treatment has generated a growing interest in detecting the earliest warning, or Aprodromal,@ symptoms of a heart attack, thus providing the lead time needed to treat heart attack patients as quickly and effectively as possible. ${ }^{40}$

As with heart attacks, deaths from stroke can be reduced or delayed by preventing and controlling risk factors and using the most effective therapies in a timely manner. Functional limitations can be minimized when patients are treated with clot-dissolving therapy within 3 hours of a thrombotic stroke. ${ }^{41}$ As therapies have become increasingly more effective, delays in treatment initiation and lack of implementation of therapies pose major barriers to improving outcomes. Thus far, efforts to provide appropriate access to timely and optimal care to patients with acute coronary syndromes and thrombotic stroke generally are not organized into a unified, cohesive system in communities across the United States. ${ }^{42}$

Early access to emergency health care services is also a critical determinant of outcome for victims of out-of-hospital cardiac arrest. For out-of-hospital cardiac arrest where bystanders are present, a key factor is minimizing the time from the moment the collapse is recognized to the delivery of a short burst of electrical current. Collapse recognition occurs when a bystander notices that the affected individual is unresponsive, has slowed or stopped breathing, or lacks a detectable pulse. ${ }^{42}$ As soon as the emergency is recognized, the bystander should call 911 or the local emergency number. Cardiopulmonary resuscitation (CPR) is critical and should begin immediately. The sooner CPR is given to a person in cardiac arrest or ventilation is given for respiratory arrest, the greater the chances of survival. ${ }^{43}$

Despite evidence that effective treatment depends on rapid response to the patient, only a minority of individuals who can benefit from defibrillatory shock or thrombolytic agents are treated early enough for them to work. ${ }^{44}$ The public health challenge is to develop and maintain programs for easier identification and treatment of individuals with acute myocardinal infarction (AMI) and out-of-hospital cardiac arrest.

Counseling by health care providers could help to increase awareness of the symptoms and signs of a heart attack or stroke and the appropriate actions to take, such as accessing emergency medical services. It also can help reduce and control factors that increase the risk of a heart attack or a stroke. To focus resources where they might derive the greatest benefit, education should be, at a minimum, aimed at reducing delays in seeking treatment for those individuals who are at high risk
for a future cardiovascular events-for example, those with existing CHD and multiple CHD risk factors.

Cardiovascular disease recurrence. Patients with CHD, atherosclerotic disease of the aorta or peripheral arteries, or carotid artery disease are at high risk for heart attack and CHD death. ${ }^{45,46}$ About 50 percent of all heart attacks and at least 70 percent of CHD deaths occur in individuals with prior symptoms of CVD. ${ }^{47,48}$ The risk for heart attack and death among persons with established CHD (or other atherosclerotic disease) is five to seven times higher than among the general population. ${ }^{3}$

Risk factor control can greatly reduce the risk of subsequent cardiovascular problems in patients with CHD. For example, clinical trials have proved that lowering LDL-cholesterol levels in CHD patients dramatically reduces heart attacks, CHD and CVD deaths, and total deaths. ${ }^{49,50,51}$ Clinical trials have also demonstrated that lowering blood pressure in such patients reduces CVD endpoints and deaths from all causes. ${ }^{52, ~}{ }^{53,54}$ Adequate control of risk factors in the 12 million adults with CHD could reduce the overall rate of heart attacks and CHD deaths in the United States by over 20 percent. Many CHD patients, however, are not getting the aggressive risk factor management they need.

Clinical trials also show that therapeutic interventions can relieve symptoms, reduce deaths, reduce the number of rehospitalizations, and improve the quality of life for older adults with heart failure. Despite the development and promotion of clinical practice guidelines, physicians are continuing to underutilize recommended therapies. As the number of older adults who experience heart failure rises (expected to double by about 2040), these guidelines will need to be incorporated into clinical practice.

Adherence and compliance. There currently exist a number of well-established recommendations for preventing and treating cardiovascular disease and its associated risk factors. However, the potential benefits to be gained from applying these science-based recommendations often are not realized because of the multiple factors involved in adherence to such recommendations. The ability or willingness of the patient to carry out a treatment program successfully is of critical importance. Experience with the long-term management of asymptomatic CHD risk factors, such as hypertension, indicates that a sizable number of patients do not successfully carry out their prescribed treatment regimen. The reasons vary: the patient may choose not to have the initial prescription filled, may successfully initiate therapy only to abandon it after a few weeks or months, or may comply with only part of the regimen and thus fail to achieve optimal control. Continued efforts are needed to better understand the determinants of adherence to ensure that patients stay with their prescribed therapy. Also, health care providers and the health care systems in which they work are critical factors in determining whether established interventions are prescribed and patients adequately educated and monitored for therapeutic response. Finally, support from the patient=s commu-
nity and greater use of technology such as the Internet also have an increasingly greater role in promoting long-term adherence to lifestyle and pharmacologic regimens. Achieving long-term control of CHD risk factors requires that the same interest and attention given to initial evaluation and treatment decisions also be given to long-term management issues.

Future efforts. Population studies and public outreach are two of the most important areas of future research. Advanced technology allows researchers to screen persons noninvasively and painlessly for signs of developing atherosclerosis. Eventually, when their role in medical practice has been better delineated, noninvasive methods (such as magnetic resonance imaging, ultrasound, and others) may be used to determine the number of persons in the population who have heart disease or are at risk of developing heart disease.

Many people know what a desirable cholesterol level is, what their blood pressure should be, and that these factors relate to a risk of heart disease and stroke. The average person can expect to live 52 years longer today than he or she did 30 years ago and nearly 4 years of that gain in life expectancy can be attributed to progress against CVD, including CHD and stroke. However, much remains to be done to ensure that all segments of the population share in these benefits. Although national health data on African Americans and Hispanics have been collected since the early 1980s, data on heart disease and stroke risk factors are sparse for other minority groups, including American Indians, Alaska Natives, Native Hawaiians, Asians, and Pacific Islanders. Adequate national data on all these populations will enable researchers to examine racial and ethnic differences more fully.

Public outreach and community health intervention efforts, such as those that encourage persons to lower their high blood pressure or to get their cholesterol checked or to help people stop smoking, are important parts of health care in the United States. Culturally and linguistically appropriate counseling by health care providers is important to those efforts. New coalitions between health care providers and individual communities are forming to focus on the prevention and management of chronic CVD throughout all stages of life. Emerging areas of research include the effect of socioeconomic status on health and access to care; health status in rural populations, which often have low income and education levels; and quality of life as a criterion for evaluating treatment. With the knowledge gained through these efforts, communities will be able to use well-tested health promotion, disease prevention, and early management strategies to lower their costs and begin to extend the benefits of improved health to all Americans. ${ }^{55}$

Interim Progress Toward Year 2000 Objectives

Extensive progress has been made in reducing deaths from and risk factors for heart disease and stroke, but significant challenges remain. Between 1987 and

1996, the age-adjusted death rate for CHD declined by 22.2 percent, and for stroke, it declined by 13.2 percent. Despite these achievements, the Healthy People 2000 objectives on CHD and stroke did not reach the year 2000 targets, and the disparities between African Americans and whites were not reduced.

However, progress occurred in reducing high blood cholesterol and controlling high blood pressure. Average total cholesterol declined from $213 \mathrm{mg} / \mathrm{dL}$ in 1976B80 to $203 \mathrm{mg} / \mathrm{dL}$ in 1988B94, and the prevalence of high blood cholesterol declined from 26 percent to 19 percent, thereby achieving the year 2000 target. In the same time period, control rates among persons who have high blood pressure increased from 11 to 29 percent. However, levels fell short of year 2000 targets. The age-adjusted prevalence of overweight or obesity increased from 26 percent in 1976-80 to 35 percent in 1988-94. The percentage of the population who engaged in light to moderate physical activity remained stable at around 22 percent between 1985 and 1995. Caloric intake from fat as a percentage of total calories consumed declined from 36 percent in 1976-80 to 34 percent in 1988-94, but fell short of the target of 30 percent. Smoking among adults declined steadily from the mid-1960s through the late 1980s, and has leveled off in the 1990s. In 1998, median adult smoking prevalence for all 50 States and the District of Columbia was 22.9 percent- 25.3 percent for men and 21.0 percent for women. ${ }^{55}$

Note: Unless otherwise noted, data are from Centers for Disease Control and Prevention, National Center for Health Statistics, Healthy People 2000 Review, 1998-99.

Healthy People 2010—Summary of Objectives

Heart Disease and Stroke

Goal: Improve cardiovascular health and quality of life through the prevention, detection, and treatment of risk factors; early identification and treatment of heart attacks and strokes; and prevention of recurrent cardiovascular events.

Number Objective

Heart Disease

12-1 Coronary heart disease (CHD) deaths
12-2 Knowledge of symptoms of heart attack and importance of dialing 911

12-3 Artery-opening therapy
12-4 Bystander response to cardiac arrest
12-5 Out-of-hospital emergency care
12-6 Heart failure hospitalizations

Stroke

12-7 Stroke deaths
12-8 Knowledge of early warning symptoms of stroke
Blood Pressure
12-9 High blood pressure
12-10 High blood pressure control
12-11 Action to help control blood pressure
12-12 Blood pressure monitoring

Cholesterol

12-13 Mean total blood cholesterol levels
12-14 High blood cholesterol levels
12-15 Blood cholesterol screening
12-16 LDL-cholesterol level in CHD patients

Heart Disease

12-1. Reduce coronary heart disease deaths.

Target: 166 deaths per 100,000 population.
Baseline: 208 coronary heart disease deaths per 100,000 population in 1998 (preliminary data; age adjusted to the year 2000 standard population).
Target setting method: 20 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Total Population, 1997*	Coronary Heart Disease Deaths Rate per 100,000
TOTAL	216
Race and ethnicity	134
American Indian or Alaska Native	125
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	257
Black or African American	214
White	151
Hispanic or Latino	219
Not Hispanic or Latino	262
Black or African American	216
White	170
Gender	276
Female	
Male	95
Education level (aged 25 to 64 years)	84
Less than high school	40
High school graduate	
At least some college	

Total Population, 1997*	Coronary Heart Disease Deaths Rate per 100,000
Disability status	DNC
Persons with disabilities	DNC
Persons without disabilities	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.
*New data for population groups will be added when available.

12-2. (Developmental) Increase the proportion of adults aged 20 years and older who are aware of the early warning symptoms and signs of a heart attack and the importance of accessing rapid emergency care by calling 911.

Potential data source: National Health Interview Survey (NHIS), CDC, NCHS.

12-3. (Developmental) Increase the proportion of eligible patients with heart attacks who receive artery-opening therapy within an hour of symptom onset.

Potential data source: National Registry of Myocardial Infarction, National Acute Myocardial Infarction Project, HCFA.

12-4. (Developmental) Increase the proportion of adults aged 20 years and older who call 911 and administer cardiopulmonary resuscitation (CPR) when they witness an out-of-hospital cardiac arrest.

Potential data source: National Health Interview Survey (NHIS), CDC, NCHS.

12-5. (Developmental) Increase the proportion of persons with witnessed out-of-hospital cardiac arrest who are eligible and receive their first therapeutic electrical shock within 6 minutes after collapse recognition.

Potential data sources: National Health Interview Survey (NHIS), CDC, NCHS; Medical Expenditure Panel Survey (MEPS), AHCPR and CDC.

12-6. Reduce hospitalizations of older adults with heart failure as the principal diagnosis.

Target and baseline:

Objective	Hospitalizations of Older Adults With Heart Failure as the Principal Diagnosis	$\mathbf{1 9 9 7}$ Baseline	$\mathbf{2 0 1 0}$ Target
12-6a.	65 to 74 years	Per 1,000 Population	
12-6b.	75 to 84 years	13.4	6.5
12-6c.	85 years and older	26.9	13.5
		53.1	26.5

Target setting method: Better than the best.
Data source: National Hospital Discharge Survey (NHDS), CDC, NCHS.

Adults With Heart Failure as Principal Diagnosis, 1997	Heart Failure Hospitalization 12-6a. Aged 65 to $\mathbf{7 4}$ Years	12-6b. Aged 75 to $\mathbf{8 4}$ Years Rate per 1,000	12-6c. Aged 85 Years and Older
TOTAL	13.4	26.9	53.1
Race and ethnicity			
American Indian or Alaska Native	DSU	DSU	DSU
Asian or Pacific Islander	DSU	DSU	DSU
Asian	DNC	DNC	DNC
Native Hawaiian and other Pacific Islander	DNC	DNC	DNC
Black or African American	20.0	21.9	47.6
White	10.1	21.6	42.1
Hispanic or Latino	DSU	DSU	DSU
Not Hispanic or Latino	DSU	DSU	DSU
Black or African American	DSU	DSU	DSU
White	DSU	DSU	DSU
Gender			
Female	11.5	25.2	50.6
Male	15.6	29.5	59.3

Adults With Heart Failure as	Heart Failure Hospitalization			
Principal Diagnosis, 1997	12-6a. Aged 65 to 74 Years	12-6b. Aged 75 to 84 Years Rate per 1,000	12-6c. Aged 85 Years and Older	
Education level				
Less than high school	DNC	DNC	DNC	
High school graduate	DNC	DNC	DNC	
At least some college	DNC	DNC	DNC	
Disability status				
People with disabilities	DNC	DNC	DNC	
People without disabilities	DNC	DNC	DNC	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.

Stroke

12-7. Reduce stroke deaths.

Target: 48 deaths per 100,000 population.
Baseline: 60 deaths from stroke per 100,000 population in 1998 (preliminary data; age adjusted to the year 2000 standard population).

Target setting method: 20 percent improvement.
Data source: National Vital Statistics System (NVSS), CDC, NCHS.

Total Population, 1997*	Stroke Deaths Rate per 100,000
TOTAL	62
Race and ethnicity	39
American Indian or Alaska Native	55
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	82
Black or African American	60
White	
Hispanic or Latino	40
Not Hispanic or Latino	63

Total Population, 1997*	Stroke Deaths Rate per 100,000
Black or African American	84
White	60
Gender	60
Female	64
Male	
Education level (aged 25 to 64 years)	22
Less than high school	17
High school graduate	8
At least some college	
Disability status	DNC
Persons with disabilities	DNC
Persons without disabilities	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.
*New data for population groups will be added when available.

12-8. (Developmental) Increase the proportion of adults who are aware of the early warning symptoms and signs of a stroke.

Potential data source: National Health Interview Survey (NHIS), CDC, NCHS.

Blood Pressure

12-9. Reduce the proportion of adults with high blood pressure.

Target: 16 percent.
Baseline: 28 percent of adults aged 20 years and older had high blood pressure in 1988в94 (age adjusted to the year 2000 standard population).

Target setting method: Better than the best.
Data source: National Health and Nutrition Examination Survey (NHANES), CDC, NCHS.

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

12-10. Increase the proportion of adults with high blood pressure whose blood pressure is under control.

Target: 50 percent.
Baseline: 18 percent of adults aged 18 years and older with high blood pressure had it under control in 1988B94 (age adjusted to the year 2000 standard population).

Target setting method: Better than the best.
Data source: National Health and Nutrition Examination Survey (NHANES), CDC, NCHS.

Adults Aged 18 Years and Older With High Blood Pressure, 1988-91* (unless noted)	Blood Pressure Controlled Percent
TOTAL	18
Race and ethnicity	
American Indian or Alaska Native	DSU
Asian or Pacific Islander	DSU
Asian	DNC
Native Hawaiian and other Pacific Islander	DNC
Black or African American	19
White	18
Hispanic or Latino	DNC
Mexican American	12
Not Hispanic or Latino	DNA
Black or African American	19
White	18
Gender	
Female	28
Male	12
Family income level	
Poor	24
Near poor	20
Middle/high income	16
Disability status	
Persons with disabilities	20 (1991-94)
Persons without disabilities	18 (1991-94)

Adults Aged 18 Years and Older With High Blood Pressure, 1988-91* (unless noted)	Blood Pressure Controlled Percent
Select populations	DNA
Persons with diabetes	DNA
Persons without diabetes	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.
*New data for population groups will be added when available.

12-11. Increase the proportion of adults with high blood pressure who are taking action (for example, losing weight, increasing physical activity, and reducing sodium intake) to help control their blood pressure.

Target: 95 percent.
Baseline: 72 percent of adults aged 18 years and older with high blood pressure were taking action to control it in 1998 (preliminary data; age adjusted to the year 2000 standard population).
Target setting method: Better than the best.
Data source: National Health Interview Survey (NHIS), CDC, NCHS.

Adults Aged 18 Years and Older With High Blood Pressure, 1994*	Taking Action To Control Blood Pressure Percent
TOTAL	79
Race and ethnicity	DSU
American Indian or Alaska Native	DSU
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	84
Black or African American	78
White	
Hispanic or Latino	79
Not Hispanic or Latino	79
Black or African American	84
White	78

Adults Aged 18 Years and Older With High Blood Pressure, 1994*	Taking Action To Control Blood Pressure Percent
Gender	
Female	81
Male	77
Family income level	78
Poor	80
Near poor	79
Middle/high income	
Disability status	84
Persons with activity limitations	76
Persons without activity limitations	
Geographic variation	80
Urban	78
Rural	
Select populations	DNA
Persons with diabetes	DNA
Persons without diabetes	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Crude rates. Data not currently age adjusted.
*New data for population groups will be added when available.

12-12. Increase the proportion of adults who have had their blood pressure measured within the preceding 2 years and can state whether their blood pressure was normal or high.

Target: 95 percent.
Baseline: 90 percent of adults aged 18 years and older had their blood pressure measured in the past 2 years and could state whether it was high or low in 1998 (preliminary data; age adjusted to the year 2000 standard population).

Target setting method: Better than the best.
Data source: National Health Interview Survey (NHIS), CDC, NCHS.

Adults Aged 18 Years and Older, 1994*	Had Blood Pressure Measured in Past 2 Years and Knew Whether It Was Normal or High Percent
TOTAL	85
Race and ethnicity	
American Indian or Alaska Native	85
Asian or Pacific Islander	80
Asian	DNC
Native Hawaiian and other Pacific Islander	DNC
Black or African American	88
White	85
Hispanic or Latino	80
Not Hispanic or Latino	86
Black or African American	88
White	86
Gender	
Female	89
Male	81
Education level (aged 25 years and older)	
Less than high school	80
High school graduate	85
At least some college	88
Disability status	
Persons with activity limitations	90
Persons without activity limitations	84

[^0]
Cholesterol

12-13. Reduce the mean total blood cholesterol levels among adults.

Target: $199 \mathrm{mg} / \mathrm{dL}$.
Baseline: $206 \mathrm{mg} / \mathrm{dL}$ was the mean total blood cholesterol level for adults aged 20 years and older in 1988в94 (age adjusted to the year 2000 standard population).

Target setting method: Better than the best.
Data source: National Health and Nutrition Examination Survey (NHANES), CDC, NCHS.

Adults Aged 20 Years and Older, 1988-94 (unless noted)	Cholesterol Level $\mathrm{mg} / \mathrm{dL}$
TOTAL	206
Race and ethnicity	DSU
American Indian or Alaska Native	DSU
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	204
Black or African American	206
White	DNC
Hispanic or Latino	205
Mexican American	DNA
Not Hispanic or Latino	204
Black or African American	206
White	207
Gender	204
Female	2
Male	205
Family income level	204
Poor	206
Near poor	
Middle/high income	

Adults Aged $\mathbf{2 0}$ Years and Older, 1988-94 (unless noted)	Cholesterol Level $\mathrm{mg} / \mathrm{dL}$
Disability status	
Persons with disabilities	208 (1991-94)
Persons without disabilities	204 (1991-94)

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.

12-14. Reduce the proportion of adults with high total blood cholesterol levels.

Target: 17 percent.
Baseline: 21 percent of adults aged 20 years and older had total blood cholesterol levels of $240 \mathrm{mg} / \mathrm{dL}$ or greater in 1988B94 (age adjusted to the year 2000 standard population).
Target setting method: Better than the best.
Data source: National Health and Nutrition Examination Survey (NHANES), CDC, NCHS.

Adults Aged 20 Years and Older, 1988-94 (unless noted)	Cholesterol, 240 mg/dL or Greater Percent
TOTAL	21
Race and ethnicity	DSU
American Indian or Alaska Native	DSU
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	19
Black or African American	21
White	
Hispanic or Latino	DNC
Mexican American	18
Not Hispanic or Latino	DNA
Black or African American	19
White	21

Adults Aged 20 Years and Older, 1988-94 (unless noted)	Cholesterol, 240 mg/dL or Greater Percent
Gender	22
Female	19
Male	22
Education level	22
Less than high school	19
High school graduate	
At least some college	24 (1991-94)
Disability status	$19(1991-94)$
Persons with disabilities	
Persons without disabilities	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable. Note: Age adjusted to the year 2000 standard population.

12-15. Increase the proportion of adults who have had their blood cholesterol checked within the preceding 5 years.

Target: 80 percent.
Baseline: 68 percent of adults aged 18 years and older had their blood cholesterol checked within the preceding 5 years in 1998 (preliminary data; age adjusted to the year 2000 standard population).

Target setting method: Better than the best.
Data source: National Health Interview Survey (NHIS), CDC, NCHS.

Adults Aged 18 Years and Older, 1993*	Cholesterol Checked in Past 5 Years Percent
TOTAL	67
Race and ethnicity	57
American Indian or Alaska Native	58
Asian or Pacific Islander	DNC
Asian	DNC
Native Hawaiian and other Pacific Islander	66
Black or African American	67
White	

Adults Aged 18 Years and Older, 1993*	Cholesterol Checked in Past 5 Years Percent
Hispanic or Latino	62
Not Hispanic or Latino	67
Black or African American	65
White	68
Gender	69
Female	64
Male	56
Education level (aged 25 years and older)	69
Less than high school	78
High school graduate	68
At least some college	72
Disability status	66
Persons with activity limitations	68
Persons without activity limitations	63
Geographic variation	
Urban	
Rural	

DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
Note: Age adjusted to the year 2000 standard population.
*New data for population groups will be added when available.
12-16. (Developmental) Increase the proportions of persons with coronary heart disease who have their LDL-cholesterol level treated to a goal of less than or equal to $\mathbf{1 0 0} \mathbf{~ m g} / \mathrm{dL}$.

Potential data source: National Health and Nutrition Examination Survey, CDC, NCHS.

Related Objectives From Other Focus Areas

Access to Quality Health Services
1-3. Counseling about health behaviors
1-7. Core competencies in health provider training
1-10. Delay or difficulty in getting emergency care
1-11. Rapid prehospital emergency care

Chronic Kidney Disease

4-2. Cardiovascular disease deaths in persons with chronic kidney failure
Educational and Community-Based Programs
7-2. School health education
7-5. Worksite health promotion programs
7-8. Satisfaction with patient education
7-10. Community health promotion programs
7-11. Culturally appropriate community health promotion
7-12. Older adult participation in community health promotion activities
Health Communication
11-1. Households with Internet access
11-2. Health literacy
11-4. Quality of Internet health information sources
11-6. Satisfaction with providers' communication skills
Nutrition and Overweight
19-1. Healthy weight in adults
19-2. Obesity in adults
19-3. Overweight or obesity in children and adolescents
19-5. Fruit intake
19-6. Vegetable intake
19-8. Saturated fat intake
19-9. Total fat intake
19-11. Calcium intake
19-16. Worksite promotion of nutrition education and weight management
Physical Activity and Fitness
22-1. No leisure-time physical activity
22-2. Moderate physical activity
22-3. Vigorous physical activity
22-6. Moderate physical activity in adolescents
22-7. Vigorous physical activity in adolescents
22-11. Television viewing
22-13. Worksite physical activity and fitness
22-14. Community walking
22-15. Community bicycling
Public Health Infrastructure
23-1. Public health employees access to Internet
23-3. Use of geocoding in health data systems
23-10. Continuing education and training by public health agencies
23-15. Data on public health expenditures

Tobacco Use

27-1. Adult tobacco use
27-2. Adolescent tobacco use
27-3. Initiation of tobacco use
27-4. Age at first use of tobacco
27-5. Smoking cessation by adults
27-10. Exposure to environmental tobacco smoke
27-16. Tobacco advertising and promotion targeting adolescents and young adults
27-17. Adolescent disapproval of smoking

Terminology

(A listing of all acronyms and abbreviations used in this publication appears in Appendix K.)

Angina (angina pectoris): A pain or discomfort in the chest that occurs when some part of the heart does not receive enough blood. It is a common symptom of coronary heart disease. Angina often recurs in a regular or characteristic pattern. However, it may first appear as a very severe episode or as frequently recurring bouts. When an established stable pattern of angina changes sharply-for example, it may be provoked by far less exercise than in the past, or it may appear at rest-it is referred to as unstable angina.
Angioplasty: A nonsurgical procedure used to treat blockages in blood vessels, particularly the coronary arteries that feed the heart. Also known as percutaneous transluminal coronary angioplasty (PTCA). A thin tube (catheter), fed through blood vessels to the point of blockage, is used to open the artery.
Anticoagulants: Drugs that delay the clotting (coagulation) of blood. When a blood vessel is plugged up by a clot and an anticoagulant is given, it tends to prevent new clots from forming or the
existing clot from enlarging. An anticoagulant does not dissolve an existing blood clot.

Arrhythmia: A change in the regular beat or rhythm of the heart. The heart may seem to skip a beat, or beat irregularly, or beat very fast or very slowly.
Atherosclerosis: A type of hardening of the arteries in which cholesterol and other substances in the blood are deposited in the walls of arteries, including the coronary arteries that supply blood to the heart. In time, narrowing of the coronary arteries by atherosclerosis may reduce the flow of oxy-gen-rich blood to the heart.
Atrial fibrillation (AF): The most common sustained irregular heart rhythm encountered in clinical practice. AF occurs when the two small upper chambers of the heart (the atria) quiver instead of beating effectively, and blood cannot be pumped completely out of them when the heart beats, allowing the blood to pool and clot. If a piece of the blood clot in the atria becomes lodged in an artery in the brain, a stroke may result. AF is a risk factor for stroke and heart failure.
Blood pressure: The force of the blood pushing against the walls of arteries. Blood
pressure is given as two numbers that measure systolic pressure (the first number, which measures the pressure while the heart is contracting) and diastolic pressure (the second number, which measures the pressure when the heart is resting between beats). Blood pressures 140/90 mmHg or above are considered high, while blood pressures in the range of $130-$ 139/85-89 are high normal. Less than $130 / 85 \mathrm{mmHg}$ is normal.

Body mass index (BMI): A number that indicates a person=s body weight relative to height. BMI is a useful indirect measure of body composition, because it correlates highly with body fat in most people.

Cardiovascular disease

(CVD): Includes a variety of diseases of the heart and blood vessels, coronary heart disease (coronary artery disease, ischemic heart disease), stroke (brain attack), high blood pressure (hypertension), rheumatic heart disease, congestive heart failure, and peripheral artery disease.

Cerebrovascular disease:

Affects the blood vessels supplying blood to the brain. Stroke occurs when a blood vessel bringing oxygen and nutrients to the brain bursts
or is clogged by a blood clot. Because of this rupture or blockage, part of the brain does not get the flow of blood it needs and nerve cells in the affected area die. Small stoke-like events like transient ischemic attacks (ITAs), which resolve in a day or less, are symptoms of cerebrovascular disease.

Cholesterol: A waxy substance that circulates in the bloodstream. When the level of cholesterol in the blood is too high, some of the cholesterol is deposited in the walls of the blood vessels. Over time, these deposits can build up until they narrow the blood vessels, causing atherosclerosis, which reduces the blood flow. The higher the blood cholesterol level, the greater is the risk of getting heart disease. Blood cholesterol levels of less than $200 \mathrm{mg} / \mathrm{dL}$ are considered desirable. Levels of $240 \mathrm{mg} / \mathrm{dL}$ or above are considered high and require further testing and possible intervention. Levels of 200$239 \mathrm{mg} / \mathrm{dL}$ are considered borderline. Lowering blood cholesterol reduces the risk of heart disease.

Congestive heart failure (or heart failure): A condition in which the heart cannot pump enough blood to meet the needs of the body's other organs. Heart failure can result from narrowed arteries that supply blood to the heart muscle and other factors. As the flow of blood out of the heart slows, blood returning to the heart through the veins backs up, causing congestion in the tissues. Often swelling (edema) results, most commonly in the legs and ankles, but possibly in other parts of the body as well. Sometimes fluid collects in the lungs and interferes with breathing, causing shortness of breath, especially when a person is lying down.

Coronary heart disease

(CHD): A condition in which the flow of blood to the heart muscle is reduced. Like any muscle, the heart needs a constant supply of oxygen and nutrients that are carried to it by the blood in the coronary arteries. When the coronary arteries become narrowed or clogged, they cannot supply enough blood to the heart. If not enough oxygen-carrying blood reaches the heart, the heart may respond with pain called angina. The pain usually is felt in the chest or sometimes in the left arm or shoulder. When the blood supply is cut off completely, the result is a heart attack. The part of the heart muscle that does not receive oxygen begins to die, and some of the heart muscle is permanently damaged.

Coronary stenting: A pro-

 cedure that uses a wire mesh tube (a stent) to prop open an artery that recently has been cleared using angioplasty. The stent remains in the artery permanently, holding it open to improve blood flow to the heart muscle and relieve symptoms, such as chest pain.HDL (high-density lipoprotein) cholesterol: The socalled good cholesterol. Cholesterol travels in the blood combined with protein in packages called lipoproteins. HDL is thought to carry cholesterol away from other parts of the body back to the liver for removal from the body. A low level of HDL increases the risk for CHD, whereas a high HDL level helps protect against CHD.

Heart attack (also called

 acute myocardial infarction): Occurs when a coronary artery becomes completely blocked, usually by a blood clot (thrombus), resulting in lack of blood flow to the heart muscle and therefore a loss of neededoxygen. As a result, part of the heart muscle dies (infarcts). The blood clot usually forms over the site of a cholesterol-rich narrowing (or plaque) that has burst or ruptured.
Heart disease: The leading cause of death and a common cause of illness and disability in the United States. Coronary heart disease and ischemic heart disease are specific names for the principal form of heart disease, which is the result of atherosclerosis, or the buildup of cholesterol deposits in the coronary arteries that feed the heart.
High blood pressure: A systolic blood pressure of 140 mmHg or greater or a diastolic pressure of 90 mmHg or greater. With high blood pressure, the heart has to work harder, resulting in an increased risk of a heart attack, stroke, heart failure, kidney and eye problems, and peripheral vascular disease.

Ischemic heart disease:

 Includes heart attack and related heart problems caused by narrowing of the coronary arteries and therefore a decreased supply of blood and oxygen to the heart. Also called coronary artery disease and coronary heart disease.
LDL (low-density lipopro-

tein): The so-called bad cholesterol. LDL contains most of the cholesterol in the blood and carries it to the tissues and organs of the body, including the arteries. Cholesterol from LDL is the main source of damaging buildup and blockage in the arteries. The higher the level of LDL in the blood, the greater is the risk for CHD.

Lipid: Fat and fat-like substances, such as cholesterol, that are present in blood and body tissues.

Peripheral vascular disease: Refers to diseases of any blood vessels outside the heart and to diseases of the lymph vessels. It is often a narrowing of the blood vessels that carry blood to leg and arm muscles. Symptoms include leg pain (for example, in the calves) when walking and ulcers or sore on the legs and feet.

Stroke: A form of cerebrovascular disease that affects the arteries of the central nervous system. A stroke occurs when blood vessels bringing oxygen and nutrients to the brain burst or become clogged by a blood clot or some other particle. Because of this rupture or blockage, part of the brain does not get the flow of
blood it needs. Deprived of oxygen, nerve cells in the affected area of the brain cannot function and die within minutes. When nerve cells cannot function, the part of the body controlled by these cells cannot function either.

References

1. National Heart, Lung, and Blood Institute. Morbidity and Mortality: 1998 Chartbook on Cardiovascular, Lung, and Blood Diseases. Bethesda, MD: National Institutes of Health, Public Health Service, National Heart, Lung, and Blood Institute, October 1998.
2. Sempos, C.T.; Cleeman, J.I.; Carroll, M.K.; et al. Prevalence of high blood cholesterol among U.S. adults: An update based on guidelines from the second report of the National Cholesterol Education Program Adult Treatment Panel. Journal of the American Medical Association, 269:3009-3014, 1993.
3. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. National Cholesterol Education Program: Second Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). Circulation 89:1329-1445, 1994.
4. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Archives of Internal Medicine 157:2413-2446, 1997.
5. Burt, V.L.; Culter, J.A.; Higgins, M.; et al. Trends in the prevalence, awareness,
treatment, and control of hypertension in the adult U.S. population. Hypertension 26:60-69, 1995.
6. Centers for Disease Control and Prevention. Mortality from congestive heart failure-United States, 1980-1990. Morbidity and Mortality Weekly Report 43:77-78, 1994.
7. Gillum, R.F. Epidemiology of heart failure in the United States. American Heart Journal 126:10421047, 1993.
8. Lenfant, C. Fixing the failing heart. Circulation 95:771-772, 1997.
9. Croft, J.B.; Giles, W.H.; Pollard, R.A.; Casper, M.L.; and Livengood, Jr., R.F. National trends in the initial hospitalizations for heart failure. Journal of the American Geriatrics Society 45:270-275. 1997.
10.. Huston, S.L.; Lengerich, E.J.; Conlisk, E.; and Passaro, K. Trends in ischemic heart disease death rates for blacks and whitesUnited States, 1981-1995. Morbidity and Mortality Weekly Review 47:945-949, 1998.
10. Gillum, R.F.; Muscolino, M.F.; and Madans, J.A. Fatal Ml among black men and women. Annals of Internal Medicine 127:111-118, 1997.
11. National Heart Attack Alert Program Coordination

Committee. Working Group Report on Educational Strategies to Prevent Prehospital Delay in Patients at High Risk for Acute Myocardial Infarction. NIH Publication No. 97-3787. Bethesda, MD: National Heart, Lung, and Blood Institute, National Institutes of Health, 1997.
13. Burt, V.; Whelton, P.; and Roccella, E.J. Prevalence of hypertension in the U.S. adult population. Hypertension 25:305-313, 1995.
14. Pate, R.R.; Pratt, M.; Blair, S.N.; et al. Physical Activity and Public Health: A Recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. Journal of the American Medical Association 273:402-407, 1995.
15. Physical Activity and Cardiovascular Health. NIH Consensus Development Panel on Physical Activity and Cardiovascular Health. Journal of the American Medical Association 276(3):241-246, 1996.
16. Dunn, A.L.; Marcus, B.H.; Kampert, J.B.; Garcia, M.E.; Kohl, H.W.; and Blair, S.N. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. Journal of the American Medical Association 281:327-334, 1999.
17. Manson, J.A.; Hu, F.; Rich-Edwards, J.W.; Colditz, G.; Stampfer, M.J.; Willett, W.H.; Speizer, F.; and Hennekens, C. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. New England Journal of Medicine 341:650-658, 1999.
18. U.S. Department of Health and Human Services (HHS). Physical Activity and Health: A Report of the Surgeon General. Atlanta, GA: The Department, Centers for Disease Control (CDC) and Prevention, National Center for Chronic Disease Prevention and Health Promotion, 1996.
19. HHS. The Health Benefits of Smoking Cessation. A Report of the Surgeon Gen-
eral. HHS Publ. No. CDC 908416. Atlanta, GA: HHS, Public Health Services, Centers for Disease Control, NCCDPHP. Office on Smoking and Health, 1990.
20. Freedman, D.S.; Dietz, W.H.; Srinivasan, S.R.; and Berenson, G.S. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 103:1175-1182, 1999.
21. Winkleby, M.; Robinson, T.; Sundquist, J.; and Kraemer, H. Ethnic variations in cardiovascular disease risk factors among children and young adults: Findings from the Third National Health and Nutrition Examination Survey 19981994. Journal of the American Medical Association 281:1006-1013, 1999.
22. Leon, A.S.; Cornett, J.; Jacobs, Jr., D.R.; and Rauramaa, R. Leisure time physical activity and risk of coronary heart disease and death: The Multiple Risk Factor Intervention Trial. Journal of the American Medical Association 258:2388-2395, 1987.
23. $\mathrm{O}=$ Connor, G.T.; Hennekens, C.H.; Willett, W.H.; Goldhaber, S.Z.; Paffenbarger, Jr., R.S.; Breslow, J.L.; and Buring, J.E. Physical exercise and reduced risk of nonfatal myocardial infarction. American Journal of Epidemiology 142:11471156, 1995.
24. Blair, S.N.; Kohl, III, H.W.; Barlow, C.E.; Paffenbarger, Jr., R.S.; Gibbons, L.W.; and Macera, C.A. Changes in physical fitness and all cause mortality: A prospective study of healthy and unhealthy men. Journal of the American Medical Association 273:1093-1098, 1995.
25. Willett, W.H.; Dietz, W.H.; and Colditz, G.A. Primary care: Guidelines for healthy weight. New England Journal of Medicine 341:427434, 1999.
26. Roccella, E.J., and Horan, M.J. The National High Blood Pressure Education Program: measuring progress and assessing its impact. Health Psychology (7 suppl.):237-303, 1998.
27. HHS. Health, United States, 1998. Hyattsville, MD: the Department, Centers for Disease Control and Prevention, National Center for Health Statistics, 1998.
28. Kannel, W.B.; Dawber, T.R.; and McGee, D.L. Perspectives on systolic hypertension, the Framingham Study. Circulation 61:117982, 1980.
29. The Systolic Hypertension in the Elderly Program (SHEP) Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the SHEP. Journal of the American Medical Association 265:3255-3264, 1991.
30. Cleeman, J.I., and Lenfant, C. The National

Cholesterol Education Program: Progress and Prospects. Journal of the American Medical Association 280:2099-2104, 1998.
31. National Heart, Lung, and Blood Institute. Cholesterol Awareness Surveys.
Press conference (December 4, 1995). Bethesda, MD: the Institute.
32. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: Evidence Report. Journal of Obesity Research (Suppl 2); September, 1998.
33. Smoking Cessation: Clinical Practice Guidelines, No. 18. HHS Pub. No. (AHCPR) 96-06920. Washington, DC: HHS, Public Health Service, Agency for Health Care Policy and Research, 1996.
34. Marano, M.A. Current estimates from the National Health Interview Survey, 1995. National Center for Health Statistics. Vital Health Statistics 10(199):1-428, 1998.
35. National Heart Attack Alert Program Coordinating Committee 60 Minutes to Treatment Working Group. Emergency Department: Rapid identification and treatment of patients with acute myocardial infarction. Annals of Emergency Medicine 23:311-329, 1994.
36. Ryan, T.J.; Antman, E.M.; Brooks, N.H.; et al. 1999 update: ACC/AHA guidelines for the management of patients with acute myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). Journal of the American College of Cardiology 34:890-911, 1999.
37. Boersma, E.; Maas, A.C.P.; Deckers, J.W.; and Simoons, M.L. Early thrombolytic treatment in acute myocardial infarction: Reappraisal of the golden hour. Lancet 348:771-775, 1996.
38. Betts, J.H. Late assessment of thrombolytic efficacy with altiplase (rt-PA) 6-24 hours after onset of acute myocardial infarction. Australian New Zealand Journal of Medicine 23:745748, 1993.
39. The Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndrome=s (GUSTO Ilb) Angioplasty Substudy Investigators. A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute myocardial infarction. New England Journal of Medicine 336:1621-1628, 1997.
40. Bahr, R.D.; Introduction: community message in acute myocardial ischemia. Clinician 14:1, 1996.
41. National Institute of Stroke and Neurological Diseases and T-PA Working Group. Tissue Plasminogen Activator for Acute Ischemic Stroke. New England Journal of Medicine 333(24):15811587, 1995.
42. American Heart Association. Emergency Cardiovascular Care Programs. Chain of Survival. Links in the Chain. Retrieval June 1999
<http://www.proed.net/ecc/ch ain/links.htm>.
43. National Heart Attack Alert Program Coordinating Committee, Access to Care Subcommittee. Access to timely and optimal care of patients with acute coronary syndromes-community planning considerations: Report by the National Heart Attack Alert Program. Journal of Thrombosis and Thrombolysis 6:19-46, 1998.
44. National Heart Attack Alert Program. Patient/Bystander Recognition and Action: Rapid Identification and Treatment of Acute Myocardial Infarction. NIH Pub. No. 93-3303 Bethesda, MD: National Heart, Lung, and Blood Institute, National Institutes of Health, 1993.
45. Criqui, M.H.; Langer, R.D.; Fronek, A.; Feigelson, H.S.; Klauber, M.R.; McCann, T.J.; et al. Mortality over a period of 10 years in patients with peripheral arterial disease. New England Journal of Medicine 326(6):381-386, 1992.
46. Salonen, J.T., and Salonen, R. Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arteriosclerosis and Thrombosis 11(5):1245-1249, 1991.
47. Kannel, W.B., and Schatzkin, A. Sudden death: Lessons from subsets in population studies. Journal of the American College of Cardiology 5(6 suppl.):141-149B, 1985.
48. Kuller, L.; Perper, J.; and Cooper, M. Demographic characteristics and trends in arteriosclerotic heart disease mortality: Sudden death and myocardial infarction. Circulation 51(1 suppl.):III-1-III-15, 1975.
49. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 334:1383-1389, 1994.
50. Sacks, F.M.; Pfeffer, M.A.; Moye, L.A.; et al., for the Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. New England

Journal of Medicine 335:1001-1009, 1996.
51. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. New England Journal of Medicine 339:1349-1357, 1998.
52. Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The Sixth Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. NIH Pub. No. 984080. Bethesda, MD: National High Blood Pressure Education Program, National Institutes of Health, National Heart, Lung, and Blood Institute, November 1998, 24-25.
53. Psaty, B.M.; Smith, N.L.; Siscovick, D.S.; et al. Health outcomes associated with antihypertensive therapies used as first-line agents: a systematic review and meta-analysis. Journal of the American Medical Association 277:739-745, 1997.
54. MacMahon, S., and Rodgers, A. The effect of blood pressure reduction in older patients: an overview of five randomized controlled trials in elderly hypertensives. Clinical and Experimental Hypertension 1596715978, 1993.
55. CDC. State-specific Prevalence of Current Cigarette and Cigar Smoking Adults—United States, 1998. Morbidity and Mortality Weekly Report 48(45), 1999.

[^0]: DNA = Data have not been analyzed. DNC = Data are not collected. DSU = Data are statistically unreliable.
 Note: Age adjusted to the year 2000 standard population.
 *New data for population groups will be added when available.

