Princeton Plasma Physics Laboratory

PPPL Colloquium: March 14, 2007

Equation-free Modeling for Complex/Multiscale Systems


Dr. Yannis G. Kevrekidis
Professor
Department of Chemical Engineering and PACM
Princeton University

Princeton, New Jersey



In current modeling practice for complex systems the best available descriptions of a system often come at a fine level (atomistic, stochastic, microscopic, individual-based) while the questions asked and the tasks required by the modeler (prediction, parametric analysis, optimization and control) are at a much coarser, averaged, macroscopic level.

Over the last few years, and with several collaborators, we have developed and validated a mathematically inspired, computational enabling technology that allows the modeler to perform macroscopic tasks acting on the microscopic models directly. We call this the "equation-free" approach, since it circumvents the step of obtaining accurate macroscopic descriptions.

We will argue that the backbone of this approach is the design of (computational) experiments. In traditional numerical analysis, the main code "pings" a subroutine containing the model, and uses the returned information (time derivatives, function evaluations, functional derivatives) to perform computer-assisted analysis. In our approach the same main code “pings” a subroutine that sets up a short ensemble of appropriately initialized computational experiments from which the same quantities are estimated (rather than evaluated). Traditional continuum numerical algorithms can thus be viewed as protocols for experimental design (where “experiment” means a computational experiment set up and performed with a model at a different level of description).

Ultimately, what makes it all possible is the ability to initialize computational experiments at will. Short bursts of appropriately initialized computational experimentation through matrix-free numerical analysis and systems theory tools like variance reduction and estimation- bridges microscopic simulation with macroscopic modeling.

I will also discuss some recent developments in data mining algorithms, exploring large complex data sets to find good "reduction coordinates."


Return to PPPL Colloquia for 2006-2007.


U.S. Department of Energy Logo Princeton University LogoPrinceton Plasma Physics Laboratory Logo
PPPL is funded by the U.S. Department of Energy
and managed by Princeton University.


About PPPL || How to Contact PPPL || News at PPPL || Fusion Basics
Research Projects || Technology Transfer || Education Programs
Publications || Meetings and Colloquia || PPPL Home Page


Created: 02-Mar-2007
Send questions or comments to:
Cynthia R. Murphy at cmurphy@pppl.gov
Security Notice