HIGHWAY SAFETY INFORMATION SYSTEM

GUIDEBOOK FOR the minnesota state DATA FILES

Volume I:
SAS FILE FORMATS

US. Department of Transportation

TABLE OF CONTENTS

INTRODUCTION I-1
DETAILS OF MAJOR FILES I-3
The Accident Files I-3
The Roadlog File I-8
Traffic Data I-12
The Intersection/Interchange File I-15
Issues Related to Merging Files I-18
MINNESOTA CONTACTS I-20
COMPOSITE LIST OF VARIABLES I-21
ACCIDENT FILES
ACCIDENT SUBFILE I-27
VEHICLE SUBFILE I-43
OCCUPANT SUBFILE I-56
ROADLOG FILE. I-64
INTERSECTION/ INTERCHANGE FILE I-82
SINGLE VARIABLE TABULATIONS See Volume II

INTRODUCTION

(NOTE: Changes from the previous edition of the Guidebook are shown in italics and bold.)

The Minnesota data system includes the following basic files:

Accident data:
Accident File
Vehicle File
Occupant File
Roadlog File
Reference Post File
Traffic File
Intersection File
Bridge (Structures) File
RR Grade Crossing File

For ease of use, the three accident subfiles, the Roadlog File, and the Intersection File have been converted to SAS files. The Traffic file (volume data) and data from the Reference Post file (True Mileage) have been merged with the Roadlog file beginning with 1990 data, and no longer exist as separate files within HSIS. The Roadlog file prior to 1990 has only the traffic data merged. Raw file data are provided to the Highway Safety Research Center (HSRC) where they are retained as backup information. The documentation (variable listings, definitions, etc.) for these raw files and for the SAS files that are developed from them are available at Federal Highway Administration (FHWA) offices.

Beginning in 1994, the Highway Safety Information System (HSIS) was converted to a relational database for internal use. This database, using a SYBASE system, stores the data received from Minnesota and other states, and the data files for a given state are linked and manipulated using SQL language. However, this conversion from the original SAS-based system to the newer relational system is somewhat transparent to the end-user of the data since the output files produced by SYBASE for modeling and analysis will be SAS formatted. As in the past, we have continued to produce SAS format libraries for each of the variables in each of the files. Because it is envisioned that the majority of analyses will utilize these SAS files and formats, this Guidebook will concern these SAS files -- their formats, completeness, and quality. Single variable tables for key variables from each file will continue to be published in a separate Volume II document.

The accident data are in three separate subfiles, the first containing the basic accident information on a case-by-case basis, and then separate files containing information on vehicles and occupants (injured occupants in 1985-90, injured plus some uninjured occupants in 1991, and all
occupants beginning in 1992) in each accident case. The vehicle and occupant data (which includes pedestrians and bicyc lists) can be linked to the basic accident data for a specific case using the accident report number and vehicle number. Again, please note the change in the file to all occupants for 1992 and later. The accident subfile can be linked to the other major files (e.g., Roadlog, Intersection/Interchange) using three common variables -- route-system, route-number, and reference point. Beginning in 1991 the Minnesota Department of Transportation (MnDOT) made extensive changes in their accident reporting system. These will be described in more detail in the later text.

Unlike an Accident File record which is referenced to a point on the roadway, each record on the Roadlog File contains information on a homogeneous section of roadway (i.e., a stretch of road which is consistent in terms of characteristics), with each new section being defined by a new beginning reference point. Each record on this Roadlog File contains current characteristics of the road system including surface type and width, shoulder and median information, lane information, etc.

The Reference Post (ATrue Mileage@) File received from MN contains "true mileage" information on some of the sections within the Roadlog File, primarily the Interstate and major arterials. This information is used in the calculation of the lengths of homogeneous sections in the Roadlog File where available. For sections where Reference Post File data do not exist, the section length is estimated by subtracting the beginning milepoints for two consecutive sections of roadway. In 1990, HSIS staff conducted comparative analyses to determine whether the lack of Atrue mileage@ information on some lower-order roadway sections significantly affects the sectionlength data and subsequent crash rate calculations. In summary, the analyses indicated that the use of length estimates based on milepoints (where Atrue mileage@ is absent) does not appear to result in a significant error B i.e., the use of the length estimates based on mileposts appears sufficiently accurate for analyses conducted with HSIS data. (A fuller description of these analyses and findings is available from HSIS staff.) Again, please note that beginning with 1990, pertinent data from the Reference Post File were merged with the Roadlog file and the entire file is no longer available as a separate file on the HSIS system.

The Traffic File contains estimated count information (yearly AADT's) for a series of count stations located on all roadways described in the Roadlog File. It is maintained by the eight different MnDOT District Offices. This AADT information can be linked with the sections on the Roadlog File using the reference point. This file also contains AADT's for heavy commercial
vehicles which are defined as vehicles with two axles and six tires or larger. The file is updated on a two-year cycle, and indications are that these traffic count data are excellent for the trunkline system and fairly good for the county state-aid systems. Again, please note that traffic data were merged with the Roadlog File beginning in 1987. The Traffic File also still remains a separate file on the HSIS system for years 1987 thru 1989, but is no longer available as a separate file on the HSIS system after 1989.

The Intersection/Interchange File contains information concerning intersections on major roadways that are maintained by the eight different MnDOT Districts across the state. It contains a number of different variables including approach lane information, entering AADT, intersection control type, and added details for signalized intersections. The file will contain intersections of US/US, US/state, and all interchanges.

Due to established priorities of effort, HSRC staff did not work with the Bridge File or the Railroad Grade-Crossing File. As is the case with most States, the Bridge File data contain information on bridge structures across the State. The data are considered quite accurate since it is based on the federal bridge inventory. It is also noted that the MnDOT Bridge Division that updates this file has a file of pictures of each bridge that is greater than 10 feet in length. In a similar fashion, the Railroad Grade Crossing File is a file containing information on all grade-crossings in the State, and is prepared and maintained according to FHWA requirements.

Details of the Accident, Roadlog, and Intersection/Interchange files and the traffic data are presented in the following section.

DETAILS OF MAJOR FILES

The Accident Files

Minnesota law requires that an accident report be filed by the investigating police officer whenever there is injury in the crash or property damage of greater than $\$ 500$. The property damage threshold increased to $\$ 1,000$ in August, 1994. The accident data are controlled by the Department of Public Safety (DPS), where a group of coder/editors not only keys in the data, but also locates each of the accidents based on the inputs provided on the report by the investigating officer and a series of maps showing the route identification and locations of prominent features and intersections. While incorrectly coded locations are identified by MnDOT edit programs and are passed back to the coders for possible correction, DPS staff limitations have prevented correction of all such errors. Thus, from an engineering analysis standpoint, there remain some location errors in
the system. However, given the relatively small percentage of location errors identified and the fact that the main result of these errors is to reduce the sample size of available accidents (a problem partially overcome by the large samples available for most HSIS-type analyses), the location information should be of higher quality than in most States. It is also noted that accidents that occur on interchange ramps are located to the center of the interchange. Thus, in bridge-related analyses, if the major route crosses over the minor route, the ramp accidents will be (erroneously?) located to the bridge.

MnDOT send an annual accident file to HSIS each year. Currently, there are thirteen years of accident data in the linkable Minnesota files obtained for the HSIS -- 1985-1997. Prior to 1991, the original data set received from Minnesota included approximately 90,000 accidents per year and approximately 170,000 vehicles per year. However, for use in the HSIS system, the 'citizen reports" (i.e., code '0" under 'Officer Type @) have been deleted due to both missing data and inherent biases in these reports. In addition, the very limited number of crashes which cannot be linked to the roadway file have also been deleted. This process has left approximately 71,00081,000 crashes and 132,000-150,000 vehicles in the HSIS files for 1985-97.

There is no clear pattern in the changes in the number of crashes across the years. Linkable, police-reported crashes were highest in 1989 and 1996. Based on conversations with MnDOT staff, both increases may have been due to increased snow/ice and related increases in crashes. Changes in the numbers of vehicles in the HSIS Vehicle subfiles track the changes in accidents very closely B there are no Aabnormal © years. Indeed, the ratio of vehicles/crash is between 1.83 and 1.87 for this full thirteen-year span.

Beginning in 1991, the Minnesota Department of Public Safety made extensive changes in their accident reporting system. These changes affect both the coverage and accuracy of the data in the HSIS files. The changes that have had the most effect on the HSIS system are as follows: (1) changed computer platforms from IBM MVS to VAX (March 11, 1991) which changed data coding screens and codes; (2) changed the accident report form in January 1991; (3) initiated a state-wide campaign to promote the use of the new report forms. The effects of these changes are noticeable in both the 1990 and later occupant data. (Note that there may also be changes in the overall accident severity distributions beginning in 1995 and later, given that the property-damage-only reporting threshold changed to $\$ 1000$ in August, 1994.)

The Vehicle and Occupant subfiles are similar in format to those in other states. The Vehicle Subfile contains variables on both the vehicle (e.g., make, model, type, direction traveling,
contributing factors), and on the driver (e.g., age, sex, physical condition). The Vehicle Subfile also contains information on a four-part sequence of events for each vehicle, which provides more detail on vehicle "paths" than do most state files. The Occupant subfile contains information on such descriptors as age, injury, position in vehicle, ejection, etc. for each occupant in the vehicle, including the driver. It is again noted that the occupant records are not total occupant records for years 1985-1989, but simply consist of those occupants who are injured in the crashes. For those earlier years, there are approximately 39,000 occupants in the file each year. While coding of uninjured occupants began in 1990, it appears that complete coding on all occupants is present in 1992 and later years. Except of this major change, the only other change in the Occupant Subfile across the time frame was in 1996 and later, when the number of occupants per vehicle increased by approximately 10% over the preceding years. Conversations with MnDOT staff indicate that they began adding additional Aplaceholder@ occupant records in this file so that the total number of records in the Occupant File for a given vehicle matched the Anumber of occupants@ for that vehicle as entered by the investigating officer. The assumption was that the officer would record the Acount@ variable correctly, but might not include data on each uninjured occupant. Based on the pattern in the file, our assumption is that these Aplaceholders@ were added beginning in 1996.

Information related to data completeness and accuracy in these three subfiles is based on three sources -- conversations with Minnesota staff who use the data, information developed through past use of the data by HSIS staff and other researchers, and comparisons of a series of single-variable tables for key variables in each file with the same variables in all other years. This latter set of quality control checks is conducted each year that a new file is received from MnDOT.

A check of the percent "unknown" for each variable in the files indicated that, once citizen and "unknown-officer" reports are removed, almost all the variables studied show a very low percentage of unknowns or obviously miscoded variables -- usually around $1-3$ percent of the total sample in each variable. The 1991 file seems to have a slightly higher percent of unknown codes than the earlier or later years, but the 1992 and later years percent seldom exceeds 4 percent.

In terms of data accuracy, a series of comparisons were made of variables which should have been somewhat similar on the accident file according to their definitions. In general, the variables were found to be internally consistent. For example, a comparison of the number of vehicle records with a count of single and multi- vehicle crashes matched quite accurately. The urban/rural codes matched well with "investigating officer" codes, and the location of
pedestrian/bike accidents matched well with accident type. The variable indicating "interchangerelated" compared well with the number of interchange elements noted in a separate variable, and counts of traffic control devices in accidents were found to match well with the number of intersection-related crashes.

However, there are two variables whose coding formats may lead to inconsistent or erroneous data. First, (like most other States) the driver-related "physical condition" variable on the vehicle subfile has categories which are clearly not mutually exclusive. For example, while only one code is allowed, a driver could be both "under the influence" and "ill" or "handicapped". Conversations with Minnesota accident officials indicate that the officers are most likely to code alcohol involvement if a choice is present. Second, the variable related to "safety equipment" in the injured-occupant subfile includes a mixture of codes related to occupant restraints, motorcycle helmet and headlight use, and pedestrian clothing colors. As verified by Minnesota, the layout of this variable makes it very difficult to code correctly, and they are planning to modify this variable in the future. For now, the data are suspect.

In addition, inconsistencies were noted in comparisons of three variables related to the type of accident -- "accident diagram", "accident type", and "vehicle movement" in the accident. Conversations with Minnesota accident records officials indicated that the "accident diagram" variable is often recoded (corrected) by coders who review each of the accident reports, while the coding for "accident type" is captured as recorded by the officer. The coding for "vehicle movement" is (subjectively) assigned by the coders to reflect the nature of movement based on the officer's description. (Note that "vehicle movement" was not coded for 1990 and later data.) Since the "accident diagram" variable describes the general nature of the vehicle movements in the crash, it would be expected to be consistent with the vehicle movement prior to accident. However, there were major inconsistencies noted in the comparison of the two variables. There are many more possible categories within the second variable related to vehicle movement, and there were notable inconsistencies between the percentages within accident types that would be expected to match certain vehicle maneuvers. In this case, because it is corrected by the in-house coders, it may be somewhat more accurate to use the accident diagram variable for this application.

In a similar comparison of "accident diagram" with "accident type" (when driver self-reports are deleted), consistency was found for many of the categories which should be related. For example, 90 percent of the accident diagram "ran-off-road left" codes were noted under accident type to be either collisions with fixed objects or rollovers. However, further exa mination revealed that the accident diagram variable provides the general nature of the crash without reference to what
is involved. For example, for those crashes coded as "head-on" in the accident diagram variable (which one might assume means head-on with a second moving vehicle), 18 percent were coded as "collision with fixed objects" and 7 percent were coded as "collision with parked vehicle" in the accident type variable. In like fashion, $\mathbf{1 3}$ percent of "sideswipe - opposite direction" under the accident diagram variable were "collisions with parked vehicle" in the accident-type variable. Clearly, if the analyst is interested in "what" is struck (e.g. another vehicle) in what fashion (e.g. head-on), then some combination of both variables should be used.

Further HSIS analyses using the "accident diagram" variable have also indicated that the "head-on" and "sideswipe opposing" codes reflect the direction of the opposing vehicles immediately prior to impact rather than their initial direction. While this coding procedure is correct, it does affect analyses in which the researcher is attempting to isolate, say, head-on or sideswipe crashes involving opposing vehicles. For example, many of the "head-on" or "sideswipe" crashes on multilane facilities, which one might assume to be cross-median crashes, actually involve vehicles originally traveling in the same direction where one of the vehicle spun around (perhaps due to ice or wet pavement) and struck the other vehicle front-to-front or side-to-side. Again, this does not represent a coding error (since no other alternative is easily proposed), but will affect certain analyses where the type of crash is used to imply something about original direction of travel.

Additional HSIS analysis indicates less than total agreement between two variables which should define whether or not an accident is intersection-related -- "intersection relationship" and certain groups of codes within "vehicle movement". Note that the former is coded by the officer on the scene, and the latter is coded in-house by coders based on the sketch and narrative. Since there is no clear choice between the two, one possibility is to use a combination of the two (requiring both to be coded as "intersection-related"), a procedure which would result in a conservative definition of a crash's relationship to an intersection.

Use of the LOC_TYPE variable concerning "Intersection Relationship" has also indicated some problems with the data related to interchange ramps on divided roadways. A full discussion of the problem is found in the "NOTE" under the variable in the SAS formats.

Finally, the changes in the 1991 accident report system affected the consistency and accuracy of the data in comparison to earlier years. Certain categories in specific variables changed in either frequencies (e.g., "collision with vehicle other roadway" in ACCTYPE increased), and coding (e.g., "not applicable" changed to "no object struck" under the "fixed object struck" variable for 1991, but not for 1992 and later). When questioned about these differences in the data,

Minnesota staff indicated that (1) some data entry edits were not in place in the early use of the new system, allowing inclusion of some invalid data values for some variables; (2) the new system has automatic default values for data entry screens, and in initial use of these screens, the data entry personnel may not have replaced the default values with actual codes from the accident report form; (3) wording of the accident report form changed for some variables, which could have led to different interpretations of the appropriate code to check on the new form; and (5) the new accident report form increased the number of "other" and "unknown" categories available for use by the officer. It should also be noted that the code changes for data in 1990 and 1991 made some variables inconsistent with the prior years of data (1985-89). To correct this problem, where possible, 1990 and 1991 data with code changes for existing variables were re-coded to match earlier years.

In summary, analysis of the Minnesota accident files indicated that the files are, in general, quite accurate and internally quite consistent with few exceptions. The 1991 changes did result in some new codes and some inconsistency with prior years= data, particularly for the 1991 data. The 1992 and later data appear to again be consistent with fewer uncoded cases than in 1991. Where high percentages of uncoded data or possible inaccuracies/inconsistencies have been found, a "NOTE" has been included under the variable listing in the later format section of this Guidebook.

The Roadlog File

As noted above, the Roadlog file contains current characteristics of the road system. The 134,000-mile system contains approximately 12,000 miles of the primary Atrunk@ roadway, 33,000 miles of additional state-maintained county and municipal systems, and 89,000 miles of (non-state maintained) county and local roads. The table below provides a breakdown of the 51,200 miles of paved, two-way roadway and 83,000 miles of >other= roadway in the state (i.e., either unpaved or county/local roads without complete inventory information)..

The state maintained portion of the file is basically updated daily based on construction and maintenance plans and input from the local division engineers. Data changes are extracted from these plans and are activated in the system on the date that the project has been completed. An "effective date" is placed on the file at that time to indicate that one or more of the variables for that roadway section have been changed.

Table 1. HSIS roadway mileage by roadway category (1996 data).

Roadway Category	Mileage
Urban freeways	345.49
Urban freeways < 4 Lanes	3.59
Urban multilane divided non-freeways	666.60
Urban multilane undivided non-freeways	519.88
Urban 2 lane highways	$11,616.20$
Rural freeways	706.10
Rural freeways < 4 lanes	0.00
Rural multilane divided non-freeways	825.16
Rural multilane undivided non-freeways	60.21
Rural 2 lane highways	$36,444.34$
Other	$82,906.66$
Total	$134,094.22$

Again, the DPS makes a frozen copy of the roadlog file annually for submission to HSIS. However, unlike other states, this is not done at the end of the calendar year, but at the time when the accident file is finalized for a preceding year. This is usually between March and July of the following year. The file received by HSIS from MnDOT contains approximately 303,000 records. Approximately 103,000 of these records are "false" records used to signify ends of routes, beginnings of coinciding routes, gaps in sections, and other records needed to allow analysis of the files. These "false" records are flagged by values in the "Remarks" variable, and, thus, any record with blanks in this variable (approximately 220,000 "true" records) represents a section of "homogeneous" roadway where characteristics remain constant. For the 1994 and later HSIS files, all Afalse@ records are deleted.

These 220,000 records cover approximately 134,000 miles of roadway. The HSIS system currently contains seven Roadlog files, representing current characteristics in 1989-1992 and 1994-1996. A 1998 file is being processed. (The 1987 file, which was originally in the HSIS
system, could not be reformatted for consistency in recent file modifications. Thus, it is no longer a part of the system. The 1993 file was omitted from the system due to missing mileage in the raw file. The 1997 file received could not be linked with crash data. The analyst can link the 1997 crash data with either the 1996 or 1998 files.) Because of the complexity of the necessary programming, computer checks for changes in each variable between years were not conducted, but conversations with Minnesota staff indicate that only a very small proportion of the file would be expected to change each year.

Two new variables, RODWYCLS and MVMT, have been created by HSIS staff in the roadway segment file of each of the HSIS states. The RODWYCLS (Roadway Class) variable is based on the combination of rural/urban, access control, number of lanes and median type variables. This variable classifies each roadway segment into one of ten roadway types described in the later AFormat @ section. This variable is also included as an accident-file variable by matching each crash to its corresponding roadway segment. The MVMT variable (Million Vehicle Miles of Travel) is calculated for each segment in the roadway file by multiplying the segment length, AADT and 365 days in a year, and dividing by one million. Both these variables were created in response to inquires from data users, whose most frequent questions have concerned either crash frequencies or rates (per MVMT) for one or more of these roadway classes. Frequencies distributions of selected crash variables by RODWYCLS for the latest year of the data are also included in Volume II of each States=Guidebook.

The accuracy and completeness of the file was again assessed through conversations with Minnesota staff, a series of single-variable tabulations for 30 key variables which are compared across years each time a new file is received, and past HSIS analyses with the data. Minnesota staff feels that, in general, the updating system and the quality of the data are excellent on 12,000 miles of the primary roadway, good on an additional 32,000 miles of state-maintained systems, and adequate or "average" on an additional 89,000 miles of county and local roads.

Single-variable runs were then made for variables related to shoulder type and width, median type and width, access control, surface type and width, divided/undivided designation, functional class, design speed, and urban/rural coding. With few exceptions, the runs indicated very low percentages of "unknown" or "not applicable" codes. Two variables related to "design speed" and "storm sewers" have very high proportions of unknowns. As expected, since they only relate to the approximately two percent of the mileage that is on divided highways, variables related to "Road 2" and those related to medians are characterized by very high proportions of "not
applicable." Finally, variables related to left and right shoulder type and width and surface type and width for Road 1 all contain approximately 12 percent of "not applicable" values in the 1990 and earlier files, and approximately 5 percent in the later files. Further conversations with Minnesota staff and computer runs revealed that in most cases, "not applicable" actually means "not coded". However, both information from Minnesota and a cross-tabulation of two of the key variables (shoulder type and surface type) with the variable "road system" in the 1987 file indicated that approximately 92% of these "not applicable (not coded)" sections were on the lower-order township or municipal roadways. All the higher order routes were coded a very high proportion of the time.

With respect to data accuracy, cross checks of the similar variables on the file such as shoulder width and type on different sides of the roadway, pavement type on the divided sections of highway, and others indicated quite consistent data across the variables once the uncoded values were removed. Thus, the file appears accurate, as would be expected from the continuous update procedures in place.

Finally, there is the remaining issue of how to handle the linkage of accidents with divided roadways where the Roadlog information is divided into "roads 1 and 2". Unfortunately, because there is no information on the accident report related to "road 1 or 2 ", there is no simple way of linking a given crash with the proper piece of pavement. As part of their merging system, Minnesota has attempted to develop some logic for such an assignment based on the direction of travel from the crash form and the mileposting direction from the Roadlog file. However, they are not satisfied that even their best attempt at such logic is accurately assigning the accidents.

We further examined this issue by printing out 200 records related to divided highways in the 1987 file and compared the individual variables for road 1 with road 2 which are related to right shoulder width, right shoulder type, surface width, surface type, left shoulder width, left shoulder type, and the presence or absence of curbs on one or both sides of the roadway. The question being examined here was whether or not there were significant differences between, say, the right shoulder width or type on road 1 versus the same variable for road 2 . If little difference is found, it would be possible to simply link any accident occurring on a divided highway section with the characteristics of road 1.

The analysis indicated very little difference between most of the variables on the two roads. Right and left shoulder type, shoulder width, and curb presence on the two roads "disagreed" in only 1-4 percent of the cases. The only major area of disagreement was in the variable related to "surface width" for the two roads, where differences were noted in 26 (13\%) of the records. Of the

26 disagreements, three surface widths disagreed by two feet, five disagreed by 3-5 feet, 13 disagreed by 10-14 feet (an additional lane), and 5 disagreed by 15 to 20 feet.

Based on these findings, we suggest that two options exist for the analyst in future efforts. First, in all cases where the "divided and one-way code" indicates a "divided rd1 and rd2," programs could be developed to check for differences between road 1 and road 2 values for the variables in question, and records could be dropped from the analysis where differences exist. Or second, for all variables except surface width the analyst could simply link accidents on divided roadways with "road 1" data. We feel that this second option is quite defensible given the low "disagreement rate" (which would most likely be lower than the error rate related to crash data). With respect to surface width, we suggest that the disagreeing records be dropped from the analysis since there is no good way to accurately link accidents with the appropriate surface width

Finally, while the basic Roadlog File described above does not contain data on horizontal or vertical alignment, we note that under a separate FHWA contract, alignment data were collected on a sample of approximately 700 miles of two-lane rural paved roads in Minnesota. These data can be made available by the HSIS staff if needed in research projects.

Traffic Data

The Traffic File sent by MnDOT contains information related to AADT data for all roadway sections across the state. For ease of analysis, HSIS programs link these data with the Roadlog file, producing an estimated AADT for each homogeneous section in that file. Details of this linkage process are at the end of this section.

The traffic information is manually derived from sample and continuous counts taken at temporary and permanent count stations throughout the State. It contains total AADT's and AADT's for heavy commercial vehicles which are defined as vehicles with two axles and six tires or larger.

Like other states, Minnesota develops traffic volume estimates based on automatic traffic recorder stations $(\mathrm{ATR}=\mathrm{s})$ and short-term (48-hour) Acoverage@ counts. There are approximately 120 ATR=s which count traffic 24 hours per day, 365 days per year across the various roadway types. These are located on all classes of both rural and urban highway, with approximately 55% of the locations being on urban roadways and 45% on rural roadways.

In addition, there are approximately 34,000 coverage (temporary) count locations across the State where 48-hour counts are made. Approximately 12,000 of these locations are covered each
year. For the trunk highway system (including Interstate roads), these counts are made on a twoyear cycle, as are counts on roads within the Twin Cities Metro Area. For the lower-order County State-Aid Highways and the Municipal State-Aid System outside the Twin Cities Metro Area, the counts are made on a four-year cycle.

The seasonal adjustment factor for a given coverage count is based on counts made at ATR $=\mathrm{s}$ which are similar to the coverage count location. Here, ATR=s are grouped into the following classifications:

Outside (i.e., Non-Metropolitan area)

X	Rural, farm to market roads
X	Rural, weekend recreational road
X	Rural, summer peak recreational road
X	Municipal, non-recreational road, under 5000 population
X	Municipal, non-recreational road, over 5000 population
X	Municipal, recreational road, under 5000 population
X	Municipal, recreational road, over 5000 population

Metropolitan Area

X High commuter route
X Commuter shopper route
X Low recreational route
Seasonal adjustment factors, based on the data for the previous three years, are developed for each classification and are applied to all coverage counts collected at locations within that classification.

For the "non-count" years, a growth factor is applied to the previous year's data based on changes in counts at the ATR stations located on the same functional class of roadway. When new data are available at the end of the next count cycle, these data for the interim, non-count years are readjusted to represent the average of prior and subsequent count years (e.g., a 1987 "non-count" year estimate based on the growth factor would be readjusted to represent the average of 1986 and 1988 counts at that location as soon as the 1988 count year is completed).

In developing AADT estimates for each section of roadway, there are sometimes road sections with no historical count data (e.g., lower order local facilities including township roadways and local streets). In these cases, an original Abaseline@ estimate is based on ATR counts on lowest order roadways with the lowest counted volumes. Growth factors for these uncounted sections are also based on this same ATR group.

MnDOT also collects vehicle classification counts at about 300 sites per year. These are 16hour (e.g., 6 AM to 10 PM) manual classification counts usually over two different days. In addition, portable vehicle classifiers are deployed to collect 48-hour data. Currently, there is no program to seasonally adjust the classification counts. There are an additional 25 Weigh-in-Motion stations statewide that collect classification data. However, these data are used less than the manual classification counts.

The new count data are placed in the Traffic file within the first six months of the subsequent calendar year. While the Traffic File can also be thought of as a "section" file (with a specified AADT at the beginning count station being assumed constant over the entire section), it differs from the Roadlog File to which it will often be merged in that the beginning and end points (termini) are often located at different points on the roadway. The linking variables are again the route system/route number/reference point (milepost).

There are approximately 208,000 records on the file, but these do not represent a one-to-one match with the 220,000 "true" records on the Roadlog file. Often there are Roadlog sections with multiple Traffic File records (i.e., multiple count stations), and often there are Roadlog sections with no Traffic File records (i.e., corresponding count stations) located within the section.

Each raw file record contains up to 30 years of AADT information (with the related year "attached"). Thus, to determine the average AADT for a given year for a series of sections on a given route, (1) the traffic section reference points must be matched with the appropriate Roadlog sections by comparing the reference point with the beginning and ending milepoint on Roadlog sections (with the ending milepoint being "assigned" as being equal to the beginning milepoint on the succeeding section), (2) the appropriate yearly AADT for each contained Traffic file record must be extracted, and (3) the counts must be averaged for sections where multiple Traffic file records exist. If no Traffic file record exists for a given Roadlog section, then the section AADT is assumed to be equal to the AADT at the previous (upstream) traffic section on the same route. (This is the assumption made by Minnesota and by HSRC programs. However, other procedures could be followed in calculating AADT if felt to be more appropriate for a given research question.) Any AADT assignment program developed must not carry over counts from one route to ano ther, a mistake that can easily be made since the Roadlog File is a continuous file in route order. Obviously, averaging traffic over more than one year will require additional programming.

Currently, there are two HSIS SAS-formatted Traffic Files -- one developed for 1987 and earlier data, and one containing data for only 1988 and 1989. Again, please note that traffic data were merged with the Roadlog File for years 1989, 1990-1992, and 1994-1996. The Traffic File
I-14
still remains a separate file on the HSIS system for years 1987 thru 1989. It is no longer available as a separate file on the HSIS system after 1989.

The first (1987) Traffic File is similar to the raw file in that it contains up to ten years of data with 1987 counts being the most recent data. The second (1988-89) file contains only counts for 1988 and 1989. Each record on the file contains information on traffic counts for one year for a given location. To combine across years for a given counter location, records with the same location information can be merged.

As noted above, to make the AADT information even more easily usable in subsequent analyses, HSRC developed a linking program which links the basic AADT information from the SAS Traffic File with the Roadlog file to produce a separate single "Average AADT" variable for each Roadlog section on each Roadlog file. Where necessary, averaging across traffic sections in a given Roadlog section for a given year, and "carrying down" AADT information from the prior record has been done in this linkage program. The 1988-89 traffic data are linked with the 1989 Roadlog file for use with the 1988-89 accidents. In this case, the AADT variable on the 1989 Roadlog file represents an average AADT over that two-year time period. Different AADT's (say for individual accident years) could be developed by modifying the existing computer program.

Since it is not possible to perform an independent "check" of the accuracy of the AADT information, it is assumed that the procedure in place in Minnesota to monitor count stations and update the file provides adequate information. As indicated above, these are felt to be excellent data for the trunkline system where they are updated on a two-year cycle. There is also fairly good data for the county state-aid systems which are generally updated on a four-year cycle.

The Intersection/Interchange File

As noted above, the Interchange/Intersection File is a file of intersections on major roadways that are maintained by the eight different MnDOT Districts across the state. The file will contain intersections of US/US, US/state, and all interchanges on the Interstate roadways. The files currently available include years 1987 and individual files for years 1990-96. There are individual records in the file for approximately 550 interchanges, 6800 intersections, 800 intersections within interchanges, and 5900 railroad grade crossings.

Conversations with a limited sample of current district traffic engineers and a retired State Traffic Engineer who helped "design" the system indicate that while the criteria for choosing the "original" intersections may have differed slightly from district-to-district (since no criteria were actually defined), the overall purpose for building the file was to allow for subsequent identification
of high-accident locations. Thus, originally, all intersections which were to be examined for accident problems were included, which appears to mean all "major" intersections, regardless of past accident problems. Once on the file, an intersection has remained so that it's accident frequency and rate can be examined each subsequent year. (Thus, "low accident sites" for a given year are not dropped from the file.) In summary, while not a "random" sample of major intersections, the original (or subsequent) intersection choice does not seem to greatly bias the file for analysis purposes.

There is no regular system of update, but changes are noted when they are found. One district now seems to have well updated data while the other districts may or may not have data updated on a regular basis. Using this file, accident rates for the intersections can be developed. It is noted that the file is characterized by intersections of one roadway with all of the roads that cross it. Since location information is present for all crossing routes, it is possible to link all routes with the Roadlog file information.

As noted above, there are approximately 550 interchange records within the file. Each interchange will have a primary record, and for some interchange types (primarily diamond interchanges), there will be additional supplemental records on each Aintersection within interchange.@ There are approximately 760 of these supplemental records in the file. These supplemental records will also contain additional information the type of interchange element (e.g., mainline between ramps, exit ramp, intersection at ramp terminal on crossing roadway, etc.) More detail on the coding is provided under ELEM_NBR in the later format section.

Each SAS intersection record in the HSIS file contains three different types of "subrecords": (1) a set of "general" variables describing the entire intersection (e.g., intersection type), (2) a set of "reference" variables for each of six possible incoming routes, referred to as "segment" variables, and (3) a set of variables for up to two "legs" (or approaches) per route (e.g. approach AADT, speed limit).

Because of the complexity of the file, there will be times when the analyst wishes to look at routes rather than on individual intersection Alegs.@ For this reason, HSIS staff have developed programs which will produce a modified file named the Intersection Route File. This file consists of a record for each route of the intersecting routes of an intersection. Many of the variables are still the same as in the basic Intersection File. The major difference in this file is that the variables represent descriptions for each route. The "In" and "Out" descriptors denote the incoming and outgoing routes of each leg. This file format can be produced for the user by HSIS staff on request.

The completeness and accuracy of the data in these files were again assessed through the above-noted conversations with Minnesota system designers and users, examination of singlevariable tabulations for key variables, HSIS analyses, and limited cross-checking of data in the files versus videologs of intersections found in the Minnesota videodisk system.

Examination of the single-variable tables indicates that while there is a higher proportion of uncoded data than in other major files, adequate coding exists for most variables. It is noted that there is a significant amount of missing AADT data (10 to 30 percent) in the "segment 2, leg 2" records -- records usually related to the second (opposing) approach of the minor crossing roadway. AADT's are usually present for both legs of the major roadway and for the first leg of the minor roadway. One solution that has been used thus far is to assume that the missing leg 2 AADT is equal to the leg 1 AADT on the same route.

More importantly, we have determined from analyses and conversations with MnDOT staff that the majority of the AADT data in the Intersection/Interchange file are not current -- they do not match the year of the file. The user can determine which year the AADT was collected for each leg from the "AADT Year" variable attached to each leg. However, we have found that the "AADT Year" will very seldom be the current (file) year, and that the year of the AADT count can be different for different legs of the same intersection. For major routes, more recent AADT information can be extracted from the Roadlog File by linking the intersection leg with the appropriate roadway segment in that file. Unfortunately, we cannot suggest a method for "updating" the AADT data to later years for crossing roadways not found on the Roadlog file. Since multiple years data are often shown in the file, the user may be able to develop a "trend-related update", but we cannot assure that the estimates will be correct.

With this AADT exception, the file is complete in that there are few true "missing" or miscoded values. Other variables seem to be updated in a more timely manner. There are large number of "not applicable" codes within many of the variable, but this appears to result from the fact that some of the variables are specific to special types of intersections (e.g., intersections within interchanges, signalized intersections, pedestrian crossings).

The preliminary HSIS analyses have indicated some additional problems with a limited number of variables. As with all files, incomplete coding or apparent inaccuracies are detailed in a ANOTE@ under the pertinent variable in the later SAS format section.

In a final check of accuracy, the descriptive variables for a significant sample of the intersections on the file were manually compared to a videotaped picture of the intersection. The
picture was located in the Minnesota videodisk system which covers all major Minnesota routes, and which is available at FHWA for research efforts. In general, it was found that the data on the Intersection File are accurate and reliable for interchanges, signalized intersections, and major unsignalized intersections (e.g., unsignalized intersections with turn lanes on major routes). The comparison pointed out that there are cases in which more than one intersection is located on the File at the same milepoint. The videolog indicated that this usually happens when there are intersections within an interchange, as would be the case with diamond interchanges. This situation can be detected using the TYPE variable.

In general, while not perfect, the Intersection/Interchange File is clearly adequate for analysis purposes. The only major problem is with the timeliness of the AADT data.

Issues Related to Merging Files

According to MnDOT, HSRC was to receive "linkable" accident data. This was true almost all of the time. However, during later merging efforts by HSRC programmers, it was discovered that some route numbers on the accident file did not exist on the Roadlog file. MnDOT confirmed that they had only recently discovered the problem and that it was unlikely that they would be able to restore the correct location of those accidents. This problem represented less than 1% of the total accident file. Minnesota indicated that the "bad" accident routes were likely to have route numbers with the last three or four digits repeating (i.e., 190008888). HSRC runs confirmed this in many, but not all, cases.

As noted above, the accident data are subdivided into three subfiles -- accident, vehicle and occupant. These subfiles can be linked together using the "case number" variable (i.e., CASENO) present in each of the three files. When linking the occupant subfile, the additional linking variable "vehicle number" (i.e., VEHNO) must match so that the occupants are associated with the vehicle in which they were traveling. To link the Vehicle subfile with the Accident alone, first sort both subfiles by case number. To link the Occupant file with the other two subfiles, first sort both the Vehicle subfile and Occupant subfile by case number and vehicle number. Next sort the Accident subfile by case number. Alternatively, the separate subfiles can blinked by specifying an SQL JOIN operation with the constraining condition that case number and vehicle number from each table are equal. SQL processing does not require the data to be presorted and the output will not be in any particular sort order unless ORDER BY is specified.

The Accident subfile can then be linked with the Roadlog File using information related to route system, route number, and milepost on the route. The actual linkage variables on the Accident
file which are used in the merging operation are RTSYSNBR (a combination of route system and route number) and MILEPOST. The linkage variables on the Roadlog File are BEGMP, ENDMP, and RTSYSNBR.

To prepare the Accident sub file for linking with the Roadlog File using a SAS data step process, the analyst must sort both the Accident and the Roadway File into location order by RTSYSNBR and MILEPOST on the Accident file and by RTSYSNBR and BEGMP on the Roadlog File. Similar sorts would be done with other files to be merged. For the alternative SQL join, the analyst must specify an exact match on RTSYSNBR from both files and a range match where MILEPOST occurs between BEGMP and ENDMP

To link the Accident File with the Intersection/Interchange File requires similar logic, but somewhat more file manipulation. Again, the basic linkage variables are route system, route number, and milepost.

For the primary route within the Intersection/Interchange File (i.e., the initial reference route identified in the Ageneral@ variables), route system, and route number have already been combined into INT_SYNB and reference point information has been converted to MILEPOST. Thus, the linkage is similar to the Roadlog file linkage. However, matching crashes (or Roadlog information) to the individual Asegment@ variables which define all possible crossing routes is somewhat more complex. Here, the Intersection File does not contain the combined route/system variable (INT_SYNB), so the two individual variables (RTE_SYS, RTE_NBR) must be combined before matching. In addition, the milepost variables must be derived from the AReference Point@ variable (REF_PNT). The REF_PNT variable consists of 10 bytes (i.e., 050+00.900). The first three bytes is the "reference post" and the last three bytes is the offset from the reference post. To develop the milepost variable, bytes $5-6$ will need to be removed (i.e., 50.900). Once these new variables are formed, the same linking logic described above can be used. Note that programs to carry out these conversions and file linkages have been developed by HSIS staff and can be obtained from the staff when needed.

Finally, where appropriate and possible, a format which defines categories within a given variable has been developed for HSIS SAS variables. These categories are shown in the pages below. If you are a SAS user and wish to receive a formatting program which includes these SAS formats (with linkage to the pertinent variable name), please request these from the HSIS staff who provides the data file to you.

MINNESOTA CONTACTS

HSIS State Liaison -- Rosario Adiarte (651-297-2888) -- Ms. Adiarte is our main contact within the state of Minnesota when questions arise concerning the Minnesota State Transportation Information System and files. She is the Director of the Transportation Information Management Section of the Minnesota DOT.

Roadway file information-- James B. (Jim) Grones (651-296-1200) is the primary contact person for questions related to the basic roadway inventory data. James Muske, Transportation Data Section Director (651-296-1665) can also be contacted.

Interchange/Intersection information -- Lauren Hill (651-284-3455) -- Mr. Hill the Minnesota Traffic Safety Engineer, is the primary contact for questions concerning the interchange/intersection file data maintenance and Minnesota DOT's highway safety improvement program.

Accident data -- Robert Hoemke (651-296-2045) -- Mr. Hoemke is in charge of key punching and coding for all accident reports in the Department of Public Safety. Thus, he is the main contact for questions related to data in the accident file. Ron Spika (651-284-0070), Director, Accident Records and No Fault Compliance Unit, Department of Public Safety, can also be contacted.

Accident analysis -- Alan Rodgers (651-296-9489) -- Mr. Rodgers (612-297-4516), also of the Department of Public Safety, is the prime contacts for questions regarding analysis of the accident data -- how the accident data are used, and issues related to $\mathrm{it}=\mathrm{s}$ use.

Traffic data -- Curt Dahlin (651-296-6846) -- Mr. Dahlin is the main contact in the MnDOT office in charge of all traffic counts.

Video Log Data -- Mike Gillen (651-284-3505) and Gaylene Bissonette (651-284-3431) are the contacts for information on the video log/videodisk system in MnDOT Traffic Engineering.

SAS	
VARIABLE	
NAME	DESCRIPTION
AADT	CALCULATED AVERAGE AADT
AADT111	SEGMENT 1, LEG 1, YEAR 1 AADT
AADT112	SEGMENT 1, LEG 1, YEAR 2 AADT
AADT113	SEGMENT 1, LEG 1, YEAR 3 AADT
AADT114	SEGMENT 1, LEG 1, YEAR 4 AADT
AADT115	SEGMENT 1, LEG 1, YEAR 5 AADT
ACC_DATE	DATE ACCIDENT OCCURRED
ACCDIGM	DIAGRAM OF ACCIDENT CODE
ACCESS	CONTROL OF ACCESS
ACCTYPE	TYPE OF ACCIDENT
ACCYR	YEAR ACCIDENT OCCURRED
ADLN_RD1	ADDITIONAL LANES - ROAD 1
ADLN_RD2	ADDITIONAL LANES - ROAD 2
ADTYR111	SEGMENT 1, LEG 1, YEAR 1
ADTYR112	SEGMENT 1, LEG 1, YEAR 2
ADTYR113	SEGMENT 1, LEG 1, YEAR 3
ADTYR114	SEGMENT 1, LEG 1, YEAR 4
ADTYR115	SEGMENT 1, LEG 1, YEAR 5
AGE	AGE OF INJURED/KILLED OCCUPANT
AMBL_NBR	AMBULANCE NUMBER
AP_SPD11	SEGMENT 1, LEG 1, APPROACH SPEED LIMIT
APCNTL11	SEGMENT 1, LEG 1, APPROACH TRAFFIC CONTROL
BAS_TKR1	BASE THICKNESS - ROAD 1
BEGMP	CALCULATED BEGIN MILEPOST
BIRTH_DT	BIRTHDAY
BRK_CD	BREAK CODE
CASENO	ACCIDENT NUMBER
CASENO	ACCIDENT NUMBER
CASENO	ACCIDENT NUMBER
CNTL_CAT	CENTRAL OFFICE CATEGORY
COLOR1	COLOR OF BODY
COLOR2	COLOR OF ROOF
COMM_ADT	CALCULATED AVERAGE COMMERCIAL AADT
CONTRIB1	FIRST CONTRIBUTING FACTOR
CONTRIB2	SECOND CONTRIBUTING FACTOR
CORN_RPT	CORONER REPORT RECORD
COUNTY	COUNTY
COUNTY	COUNTY
CURB1	CURBS - ROAD 1
CURB2	CURBS - ROAD 2
DAMSEV	VEHICLE DAMAGE SEVERITY
DESC_	INTERSECTION DESCRIPTION
DIRECT11	SEGMENT 1, LEG 1 DIRECTION
DIST_CAT	CATEGORY ASSIGNED BY DISTRICT
DIV_CODE	ROAD DESIGN
DL_CLASS	DRIVER LICENSE CLASS

VARIABLE

FILE
Roadlog
Intersct-chg

Intersct-chg

Intersct-chg
Intersct-chg
Intersct-chg
Accident
Accident
Roadlog
Accident
Accident
Roadlog
Roadlog
Intersct-chg
Intersct-chg
Intersct-chg
Intersct-chg
Intersct-chg
Occupant
Accident
Intersct-chg
Intersct-chg
(CON' T)

Roadlog	CHA(3)	I-68	
Roadlog	NUM	I-68	
Occupant	CHA(8)	I-59	
Roadlog	NUM	I-68	
Accident	CHA(11)	I-30	
Vehicle	CHA(11)	I-45	
Occupant	CHA(11)	I-59	
Intersct-chg	CHA(2)	I-93	
Vehicle	CHA(1)	I-45	
Vehicle	CHA(1)	I-45	
Roadlog	NUM	I-69	II-186
Vehicle	NUM	I-45	II-119
Vehicle	NUM	I-45	II-123
Occupant	CHA(1)	I-59	
Accident	NUM	I-30	
Roadlog	NUM	I-69	
Roadlog	CHA(1)	I-69	II-188
Roadlog	CHA(1)	I-69	
Vehicle	CHA(1)	I-46	II-127
Intersct-chg	NUM	I-88	
Intersct-chg	NUM	I-103	
Intersct-chg	CHA(2)	I-93	
Accident	NUM	I-30	II-7
Occupant	CHA(1)	I-60	

SAS

VARIABLE	FORMAT	TABLE
TYPE	PAGE NO.	PAGE NO.

I-103
I-103
I-104
I-104
I-104
I-29
I-29 II-3
I-67 II-183
$\begin{array}{lll}\text { NUM } & I-29 & I I-5 \\ \text { CHA (4) } & I-30 & \end{array}$

CHA (1) I-67 II-184
CHA (1) I-67
CHA (2) I-103
CHA (2) I-104
CHA (2) I-104
NUM I-104
CHA (2) I-104
NUM I-59 II-165
CHA (6) I-30
I-104
I-105

CHA (1) I-60
NUM I-104
NUM I-105
-60

SAS			SAS		
VARIABLE			VARIABLE	FORMAT	TABLE
NAME	DESCRIPTION	FILE	TYPE	PAGE NO.	PAGE NO.
DL_STATE	DRIVER LICENSE STATE	Occupant	CHA (2)	I-60	
DL_WITHD	DRIVER LICENSE WITHDRAWAL	Occupant	CHA (1)	I-60	
DRIV_REC	DRIVER RECOMMENDATION	Occupant	CHA (2)	I-60	
DRV_AGE	AGE OF DRIVER	Vehicle	NUM	I-46	II-128
DRV_INJ	DRIVER INJURY	Vehicle	CHA (1)	I-47	II-131
DRV_SEX	SEX OF DRIVER	Vehicle	CHA (1)	I-47	II-132
EFEC_DTE	DATE OF ACCIDENT GEOCODING	Intersct-chg	NUM	I-94	
EJECT	EJECTION FROM VEHICLE	Occupant	NUM	I-60	II-168
ELEM_NBR	INTERCHANGE ELEMENT CODE	Intersct-chg	CHA (3)	I-88	II-235
ENDMP	CALCULATED ENDING MILEPOST	Roadlog	NUM	I-69	
EVENT1	SEQUENCE OF EVENT -1	Vehicle	CHA (2)	I-48	II-133
EVENT2	SEQUENCE OF EVENT -2	Vehicle	CHA (2)	I-48	II-136
EVENT3	SEQUENCE OF EVENT -3	Vehicle	CHA (2)	I-48	
EVENT4	SEQUENCE OF EVENT -4	Vehicle	CHA (2)	I-48	
FAT_NUM	FATALITY NUMBER	Occupant	CHA (4)	I-60	
FATLDATE	FATALITY DATE	Occupant	NUM	I-61	
FED_AID	FEDERAL AID SYSTEM	Roadlog	CHA (1)	I-69	II-189
FED_SYSD	FEDERAL AID SYSTEM - DESIGNATED	Roadlog	CHA (1)	I-70	II-190
FED_SYSR	FEDERAL AID SYSTEM - REGULAR	Roadlog	CHA (1)	I-70	II-191
FIRE	FIRE IN VEHICLE	Vehicle	CHA (1)	I-48	II-139
FUNC_CLS	FUNCTIONAL CLASS	Roadlog	NUM	I-70	II-192
GEN_ENIV	GENERAL ENVIRONMENT	Intersct-chg	NUM	I-92	II-240
H_COUNT	NUMBER OF COUNT STATIONS PER SECTION	Roadlog	NUM	I-70	
HAZMAT	HAZARDOUS MATERIAL CARRIED	Accident	CHA (1)	I-30	
HAZMTL	VEHICLE CARRYING HAZARDOUS MATERIAL	Vehicle	CHA (1)	I-48	II-140
HIT_RUN	HIT AND RUN	Accident	CHA (1)	I-31	
HOSP	INJURED TAKEN TO HOSPITAL	Occupant	CHA (1)	I-61	II-169
HOSPTRAN	TRANSPORTED TO HOSPITAL METHOD	Occupant	CHA (1)	I-61	
HOUR	HOUR ACCIDENT OCCURRED	Accident	NUM	I-31	II-9
INJ	INJURY SEVERITY	Occupant	CHA (1)	I-61	II-170
INT_SYNB	COMBINED RTE_SYS/RTE_NBR	Intersct-chg	CHA (11)	I-87	
INT_TYPE	INTERSECTION TYPE	Intersct-chg	NUM	I-88	II-241
INTE_CAT	INTERSECTION CATEGORY	Roadlog	NUM	I-71	
INTERCH	INTERCHANGE ELEMENT CODE	Accident	CHA (3)	I-31	II-13
INV_DTE	INVENTORY DATE	Roadlog	CHA (8)	I-71	
LANEWID	LANE WIDTH	Roadlog	NUM	I-71	
LEGNBR11	SEGMENT 1, LEG NUMBER 1	Intersct-chg	NUM	I-103	
LICTYPE	VALID DRIVER LICENSE	Vehicle	CHA (1)	I-49	
LIGHT	LIGHT CONDITIONS	Accident	NUM	I-32	II-67
LIS_RSTR	COMPLIANCE WITH LICENSE RESTRICTIONS	Occupant	CHA (1)	I-61	
LOC_BIKE	LOCATION OF PEDESTRIAN/BIKE ACCIDENT	Accident	NUM	I-32	
LOC_HARM	LOCATION OF FIRST HARMFUL EVENT	Accident	NUM	I-32	II-68
LOC_NARR	LOCATION DESCRIPTION	Accident	CHA (50)	I-32	
LOC_TYPE	RELATION TO INTERSECTION	Accident	NUM	I-33	II-70
LOCN_REL	LOCATION RELIABILITY	Accident	CHA (1)	I-33	

(CON' T)

SAS			SAS		
VARIABLE			VARIABLE	FORMAT	TABLE
NAME	DESCRIPTION	FILE	TYPE	PAGE NO.	PAGE NO.
LOLIMT1	SEGMENT 1 LOWER LIMIT	Intersct-chg	NUM	I-98	
LSHL_TY2	LEFT SHOULDER TYPE - ROAD 2	Roadlog	CHA (2)	I-72	
LSHL_TYP	LEFT SHOULDER TYPE - ROAD 1	Roadlog	CHA (2)	I-72	II-194
LSHL_WD2	LEFT SHOULDER WIDTH - ROAD 2	Roadlog	CHA (2)	I-73	
LSHLDWID	LEFT SHOULDER WIDTH - ROAD 1	Roadlog	CHA (2)	I-73	II-198
MAKE	MAKE OF VEHICLE	Vehicle	CHA (4)	I-49	
MCAXLDN	MOTOR CARRIER AXLES DOWN	Vehicle	CHA (2)	I-49	
MCAXLUUP	MOTOR CARRIER AXLES UP	Vehicle	CHA (2)	I-49	
MCBDYTYP	MOTOR CARRIER BODY TYPE	Vehicle	CHA (2)	I-49	II-141
MCGVWRCD	MOTOR GROSS VEHICLE WEIGHT CODE	Vehicle	CHA (2)	I-50	II-143
MCHZPLAC	MOTOR HAZARDOUS MATERIAL PLACARD FLAG	Vehicle	CHA (1)	I-50	II-145
MCSOURCE	SOURCE OF IDENTIFICATION	Vehicle	CHA (2)	I-50	
MCTRHTCH	MOTOR TRAILER HITCH CODE	Vehicle	CHA (2)	I-51	
MED_TYPE	MEDIAN TYPE	Roadlog	CHA (1)	I-73	II-202
MEDWID	MEDIAN WIDTH (IN FEET)	Roadlog	CHA (2)	I-74	II-204
MILEPOST	MODIFIED REFERENCE POINT	Accident	NUM	I-33	
MILEPOST	MODIFIED REFERENCE POINT	Intersct-chg	NUM	I-88	
	LOCATION				
MISCACT1	ACTION PRIOR TO ACCIDENT	Vehicle	NUM	I-51	II-146
MODEL	MOTOR MODEL	Vehicle	CHA (2)	I-52	
MVCLASS	MOTOR CLASS	Vehicle	CHA (2)	I-52	
MVMT	MILLION VEHICLE MILES TRAVELED	Roadlog	NUM	I-74	
MVTYPE	MOTOR TYPE	Vehicle	CHA (2)	I-52	
NBR_LEG1	NUMBER OF LEGS ON SEGMENT 1	Intersct-chg	NUM	I-99	
NBR_LEGS	NUMBER OF LEGS INTO INTERSECTION	Intersct-chg	NUM	I-94	II-242
NBR_RTES	NUMBER OF ROUTES INTO	Intersct-chg	NUM	I-94	II-243
NBRVOL	INTERSECTION TOTAL NUMBER OF TRAFFIC VOLUME COUNTS	Roadlog	NUM	I-74	
NBRVOLB	NUMBER OF BLANK TRAFFIC VOLUME COUNTS	Roadlog	NUM	I-74	
NBRVOLF	NUMBER OF FULL TRAFFIC VOLUME COUNTS	Roadlog	NUM	I-74	
NO_LANE1	NUMBER THROUGH LANES TOWARDS INCREASING MILEPOINTS	Roadlog	CHA (1)	I-74	
NO_LANE2	NUMBER THROUGH LANES TOWARDS DECREASING MILEPOINTS	Roadlog	CHA (1)	I-74	
NO_LANES	TOTAL NUMBER OF LANES	Roadlog	NUM	I-75	II-206
NUMOCCS	NUMBER OF OCCUPANTS	Vehicle	NUM	I-52	
NUMVEHS	NUMBER OF VEHICLES INVOLVED	Accident	NUM	I-34	II-71
OBJECT1	FIXED OBJECT STRUCK	Accident	NUM	I-34	II-72
OFF_TYPE	TYPE OF INVESTIGATING OFFICER	Accident	NUM	I-34	II-75
ON_BRDG	ACCIDENT OCCURRED ON BRIDGE	Accident	CHA (1)	I-35	
ONEWAY	DIVIDED AND ONE-WAY CODE	Roadlog	CHA (1)	I-75	II-208
PARKING1	PARKING ON ROAD 1	Roadlog	CHA (1)	I-75	II-209
PARKING2	PARKING ON ROAD 2	Roadlog	CHA (1)	I-75	
PHYSCOND	PHYSICAL CONDITION OF DRIVER	Vehicle	NUM	I-53	II-152
PHYSCOND	PHYSICAL CONDITION	Occupant	NUM	I-62	II-171

(CON'T)

SAS	
VARIABLE	
NAME	DESCRIPTION
POP_GRP	URBAN/RURAL POPULATION CODES
PUBDMG	PUBLIC PROPERTY DAMAGE
RAIL_NBR	RAILROAD CROSSING NUMBER
RD_CHAR1	ROAD CHARACTERISTICS
RDESC1	ROAD DESCRIPTION
RDSURF	ROAD SURFACE CONDITIONS
RDWORK	ROAD WORK BEING PERFORMED
RDWY_LGH	ROADWAY LIGHTING
REF_PNT	REFERENCE POINT
REF_PST	REFERENCE POST
REFPNT1	REFERENCE POINT-ROUTE 1
REMARK	REMARKS - TYPE OF RECORD
RES_CNTY	RESIDENCE COUNTY
REST1	SAFETY EQUIPMENT USED
RODWYCLS	ROADWAY CLASSIFICATION
RODWYCLS	ROADWAY CLASSIFICATION
ROW	RIGHT OF WAY WIDTH
RSHL_TY2	RIGHT SHOULDER TYPE - ROAD 2
RSHL_TYP	RIGHT SHOULDER TYPE - ROAD 1
RSHL_WD2	RIGHT SHOULDER WIDTH - ROAD 2
RSHLDWID	RIGHT SHOULDER WIDTH - ROAD
RTE_NBR	ROUTE NUMBER
RTE_NBR	ROUTE NUMBER
RTE_NBR	ROUTE NUMBER
RTE_SYS	ROUTE SYSTEM
RTE_SYS	ROUTE SYSTEM
RTE_SYS	ROUTE SYSTEM
RTENBR1	ROUTE NUMBER - ROUTE 1
RTESYS1	ROUTE SYSTEM - ROUTE 1
RTSYSNBR	COMBINED ROUTE SYSTEM/ROUTE NUMBER
RTSYSNBR	COMBINED ROUTE SYSTEM/ROUTE NUMBER
SCHLBUS	SCHOOL BUS INVOLVED ACCIDENT
SEATPOS	POSITION IN VEHICLE
SEG_LNG	CALCULATED SECTION LENGTH
SERIES	SERIES OF VEHICLE
SEVERITY	ACCIDENT SEVERITY
SEX	SEX OF INJURED/KILLED OCCUPANT
SFTY_CLS	SAFETY IMPROVEMENT
	CLASSIFICATION
SFTY_IMD	SAFETY IMPROVEMENT DISTRICT
SFTY_IMY	SAFETY IMPROVEMENT YEAR
SFTY_PRJ	SAFETY IMPROVEMENT PROJECT
	NUMBER
SIDE_WLK	SIDEWALKS
SIGN_CON	TRAFFIC SIGNALS CONSTRUCTION

SAS

	VARIABLE	FORMAT	TABLE
FILE	TYPE	PAGE NO.	PAGE NO.
Accident	NUM	I-35	II-76
Accident	CHA (1)	I-35	
Intersct-chg	CHA (8)	I-89	
Accident	NUM	I-35	II-78
Intersct-chg	NUM	I-98	
Accident	NUM	I-36	II-80
Accident	NUM	I-36	II-82
Intersct-chg	NUM	I-92	II-244
Intersct-chg	CHA (10)	I-88	
Roadlog	CHA (3)	I-75	
Intersct-chg	CHA (10)	I-98	
Roadlog	CHA (2)	I-76	
Occupant	NUM	I-62	
Occupant	CHA (1)	I-62	II-173
Accident	CHA (2)	I-36	II-84
Roadlog	CHA (2)	I-76	II-211
Roadlog	CHA (3)	I-76	
Roadlog	CHA (2)	I-77	
Roadlog	CHA (2)	I-77	II-213
Roadlog	CHA (2)	I-78	
Roadlog	CHA (2)	I-78	II-217
Accident	CHA (9)	I-37	
Roadlog	CHA (9)	I-78	
Intersct-chg	CHA (9)	I-87	
Accident	CHA (2)	I-37	II-86
Roadlog	CHA (2)	I-79	II-221
Intersct-chg	CHA (2)	I-87	II-245
Intersct-chg	CHA (9)	I-97	
Intersct-chg	CHA (2)	I-97	
Accident	CHA (11)	I-37	
Roadlog	CHA (11)	I-79	
Accident	CHA (1)	I-37	
Occupant	NUM	I-63	II-175
Roadlog	NUM	I-79	
Vehicle	CHA (3)	I-53	
Accident	CHA (1)	I-38	II-88
Occupant	CHA (1)	I-63	II-178
Intersct-chg	CHA (2)	I-94	
Intersct-chg	CHA (1)	I-93	
Intersct-chg	CHA (2)	I-93	
Intersct-chg	CHA (2)	I-93	
Roadlog	CHA (1)	I-79	II-224
Intersct-chg	NUM	I-91	

(CON' T)

SAS			SAS		
VARIABLE			VARIABLE	FORMAT	TABLE
NAME	DESCRIPTION	FILE	TYPE	PAGE NO.	PAGE NO.
SIGN_PED	TRAFFIC SIGNALS PEDESTRIAN SIGNALS	Intersct-chg	NUM	I-91	II-247
SIGN_PLA	SIGNAL HEAD PLACEMENT	Intersct-chg	NUM	I-91	
SIGN_PRO	TRAFFIC SIGNALS PROGRESSION	Intersct-chg	NUM	I-90	
SIGN_TIM	TRAFFIC SIGNALS TIMING	Intersct-chg	NUM	I-91	II-248
SPEC_ENV	SPECIFIC ENVIRONMENT	Intersct-chg	NUM	I-93	II-249
SPEED	POSTED SPEED LIMIT	Accident	CHA (2)	I-38	II-89
STM_SEW	STORM SEWERS	Roadlog	CHA (1)	I-80	
SUF_TYP1	SURFACE SPECIFICATION NUMBER - ROAD 1	Roadlog	CHA (4)	I-80	
SUF_TYP2	SURFACE SPECIFICATION NUMBER - ROAD 2	Roadlog	CHA (4)	I-80	
SUR_TKR1	SURFACE THICKNESS - ROAD 1	Roadlog	CHA (3)	I-80	
SURF_TY2	SURFACE TYPE - ROAD 2	Roadlog	CHA (2)	I-80	
SURF_TYP	SURFACE TYPE - ROAD 1	Roadlog	CHA (2)	I-80	II-225
SURF_WD2	SURFACE WIDTH - ROAD 2 (IN FEET)	Roadlog	CHA (2)	I-81	
SURF_WID	SURFACE WIDTH - ROAD 1 (IN FEET)	Roadlog	CHA (2)	I-81	II-228
TOT_INJ	NUMBER OF PERSONS INJURED	Accident	NUM	I-38	
TOT_KILL	NUMBER OF PERSONS KILLED	Accident	NUM	I-38	
TOWAWAY	VEHICLE TOWED	Vehicle	CHA (1)	I-53	II-154
TOWING	TOWING FLAG	Vehicle	CHA (1)	I-53	
TRAF_DEV	TRAFFIC CONTROL DEVICES	Intersct-chg	NUM	I-89	
TRAF_PHS	TRAFFIC SIGNALS NUMBER OF PHASES	Intersct-chg	NUM	I-92	II-251
TRAF_PRE	TRAFFIC SIGNALS PREEMPTION	Intersct-chg	NUM	I-92	
TRAF_TMF	FLASHING SIGNAL TIME OFF	Intersct-chg	CHA (2)	I-91	
TRAF_TMO	FLASHING SIGNAL TIME ON	Intersct-chg	CHA (2)	I-91	
TRF_CNTL	TRAFFIC CONTROL DEVICES	Accident	NUM	I-39	II-91
TRF_CNTL	TRAFFIC CONTROL DEVICES-REVISED	Intersct-chg	NUM	I-90	II-252
TRFCNTLW	TRAFFIC CONTROL WORKING	Accident	NUM	I-39	II-94
TURN_LN	TURNING LANES TOWARD INCREASING MILEPOSTS	Roadlog	CHA (1)	I-81	II-230
TURN_LN2	TURNING LANES TOWARD DECREASING MILEPOSTS	Roadlog	CHA (1)	I-81	
TWNSHIP	TOWNSHIP NUMBER	Accident	NUM	I-39	
TYPEDESC	INTERSECTION DESCRIPTION-REVISED	Intersct-chg	NUM	I-89	II-256
UPDATE_	DATE OF UPDATE	Roadlog	NUM	I-81	
UPLIMT1	SEGMENT 1 UPPER LIMIT	Intersection	NUM	I-99	
URB_MNC	URBAN/MUNICIPAL CODE	Roadlog	NUM	I-82	II-231
V_DAMAGE	VEHICLE DAMAGE AREA	Vehicle	NUM	I-54	II-155
VEH_DIR	DIRECTION VEHICLE WAS TRAVELING	Vehicle	NUM	I-54	
VEH_MOV1	VEHICLE MOVEMENT	Accident	NUM	I-39	
VEHNO	RELATIVE VEHICLE NUMBER	Vehicle	NUM	I-54	
VEHNO	VEHICLE OCCUPIED BY INJURED/KILLED	Occupant	NUM	I-64	
VEhStATE	STATE OF VEHICLE REGISTRATION	Vehicle	CHA (2)	I-54	
VEhtype	TYPE OF VEHICLE	Vehicle	NUM	I-55	II-157
VEHYR	MODEL YEAR OF VEHICLE	Vehicle	CHA (4)	I-55	II-162
VOLGRP	TRAFFIC VOLUME GROUP	Roadlog	CHA (2)	I-82	
VOLTYP	TRAFFIC VOLUME TYPE	Roadlog	CHA (1)	I-82	II-232

(CON' T)

SAS			SAS		
VARIABLE			VARIABLE	FORMAT	TABLE
NAME	DESCRIPTION	FILE	TYPE	PAGE NO.	PAGE NO.
WAST_MAT	WASTE MATERIAL CARRIED	Accident	CHA (1)	I-41	
WASTE_MT	VEHICLE CARRYING WASTE MATERIAL	Vehicle	CHA (1)	I-56	
WEATHER	WEATHER CONDITIONS	Accident	NUM	I-41	II-95
WEEKDAY	DAY OF WEEK ACCIDENT OCCURRED	Accident	NUM	I-41	II-97
WORK_REL	WORK RELATED ACCIDENT	Occupant	CHA (1)	I-64	
YEAR	YEAR OF TRAFFIC	Roadlog	CHA (4)	I-82	
	2 BY 2 TABLE CODE				
RODWYCLS	BY ACCTYPE	Accident			II-98
RODWYCLS	BY LIGHT	Accident			II-104
RODWYCLS	BY SEVERITY	Accident			II-108
RODWYCLS	BY WEATHER	Accident			II-112

SAS			SAS		
VARIABLE			VARIABLE	FORMAT	TABLE
NAME	DESCRIPTION	FILE	TYPE	PAGE NO.	PAGE NO.
ACC_DATE	DATE ACCIDENT OCCURRED	Accident	CHA (8)	I-29	
ACCDIGM	DIAGRAM OF ACCIDENT CODE	Accident	NUM	I-29	II-3
ACCTYPE	TYPE OF ACCIDENT	Accident	NUM	I-29	II-5
ACCYR	YEAR ACCIDENT OCCURRED	Accident	CHA (4)	I-30	
AMBL_NBR	AMBULANCE NUMBER	Accident	CHA (6)	I-30	
CASENO	ACCIDENT NUMBER	Accident	CHA (11)	I-30	
COUNTY	COUNTY	Accident	NUM	I-30	
DIV_CODE	ROAD DESIGN	Accident	NUM	I-30	II-7
HAZMAT	HAZARDOUS MATERIAL CARRIED	Accident	CHA (1)	I-30	
HIT_RUN	HIT AND RUN	Accident	CHA (1)	I-31	
HOUR	HOUR ACCIDENT OCCURRED	Accident	NUM	I-31	II-9
INTERCH	INTERCHANGE ELEMENT CODE	Accident	CHA (3)	I-31	II-13
LIGHT	LIGHT CONDITIONS	Accident	NUM	I-32	II-67
LOC_BIKE	LOCATION OF PEDESTRIAN/BIKE ACCIDENT	Accident	NUM	I-32	
LOC_HARM	LOCATION OF FIRST HARMFUL EVENT	Accident	NUM	I-32	II-68
LOC_NARR	LOCATION DESCRIPTION	Accident	CHA (50)	I-32	
LOC_TYPE	RELATION TO INTERSECTION	Accident	NUM	I-33	II-70
LOCN_REL	LOCATION RELIABILITY	Accident	CHA (1)	I-33	
MILEPOST	MODIFIED REFERENCE POINT	Accident	NUM	I-33	
NUMVEHS	NUMBER OF VEHICLES INVOLVED	Accident	NUM	I-34	II-71
OBJECT1	FIXED OBJECT STRUCK	Accident	NUM	I-34	II-72
OFF_TYPE	TYPE OF INVESTIGATING OFFICER	Accident	NUM	I-34	II-75
ON_BRDG	ACCIDENT OCCURRED ON BRIDGE	Accident	CHA (1)	I-35	
POP_GRP	URBAN/RURAL POPULATION CODES	Accident	NUM	I-35	II-76
PUBDMG	PUBLIC PROPERTY DAMAGE	Accident	CHA (1)	I-35	
RD_CHAR1	ROAD CHARACTERISTICS	Accident	NUM	I-35	II-78
RDSURF	ROAD SURFACE CONDITIONS	Accident	NUM	I-36	II-80
RDWORK	ROAD WORK BEING PERFORMED	Accident	NUM	I-36	II-82
RODWYCLS	ROADWAY CLASSIFICATION	Accident	CHA (2)	I-36	II-84
RTE_NBR	ROUTE NUMBER	Accident	CHA (9)	I-37	
RTE_SYS	ROUTE SYSTEM	Accident	CHA (2)	I-37	II-86
RTSYSNBR	COMBINED ROUTE SYSTEM/ROUTE NUMBER	Accident	CHA (11)	I-37	
SCHLBUS	SCHOOL BUS INVOLVED ACCIDENT	Accident	CHA (1)	I-37	
SEVERITY	ACCIDENT SEVERITY	Accident	CHA (1)	I-38	II-88
SPEED	POSTED SPEED LIMIT	Accident	CHA (2)	I-38	II-89
TOT_INJ	NUMBER OF PERSONS INJURED	Accident	NUM	I-38	
TOT_KILL	NUMBER OF PERSONS KILLED	Accident	NUM	I-38	
TRF_CNTL	TRAFFIC CONTROL DEVICES	Accident	NUM	I-39	II-91
TRFCNTLW	TRAFFIC CONTROL WORKING	Accident	NUM	I-39	II-94
TWNSHIP	TOWNSHIP NUMBER	Accident	NUM	I-39	
VEH_MOV1	VEHICLE MOVEMENT	Accident	NUM	I-39	
WAST_MAT	WASTE MATERIAL CARRIED	Accident	CHA (1)	I-41	
WEATHER	WEATHER CONDITIONS	Accident	NUM	I-41	II-95
WEEKDAY	DAY OF WEEK ACCIDENT OCCURRED	Accident	NUM	I-41	II-97

(CON' T)

NOTE: SAS variable names and explanatory names are shown above each listing. (See Discussion for information on SAS formats.)

ACC_DATE

DATE ACCIDENT OCCURRED
NON-LABELED VARIABLE -- YYYYMMDD

ACCDIGM DIAGRAM OF ACCIDENT CODE

```
01 = 'REAR END'
Rear end
02 = 'SIDESWIPE PASSNG' Sideswipe - Passing
03 = 'LEFT TURN' Left turn into oncoming traffic
04 = 'RAN OFF RD LEFT' Ran off road - Left side
05 = 'RIGHT ANGLE' Right angle
06 = 'RIGHT TURN' Right turn into cross-street traffic
07 = 'RAN OFF RD RGHT' Ran off road - Right side
08 = 'HEAD ON' Head on
09 = 'SIDESWIPE OPPOS' Sideswipe - Opposing
10 = 'OTHER/UNKNOWN' Other or unknown
98 = 'NOT STATED/APPLC' Not stated or not applicable
99 = 'UNKNOWN' Unknown
OTHER = 'ERROR/OTHER CODE'
```

NOTE: See discussion. This variable does not indicate "what" is struck, only "how" something is struck. In addition, the "head-on" and "sideswipe opposing" codes reflect the direction of the opposing vehicles immediately prior to impact rather than their initial direction. Also, approximate 20% of the records are coded "OTHER/UNKNOWN" prior 1989, and approximate 8\% in 1991 and later.

ACCTYPE

TYPE OF ACCIDENT

```
```

01 = 'COLL OTH VEH'

```
```

01 = 'COLL OTH VEH'
O2 = 'COL VEH OTH RDWY'
O2 = 'COL VEH OTH RDWY'
03 = 'COLL PRK VEH'
03 = 'COLL PRK VEH'
04 = 'COLL TRAIN'
04 = 'COLL TRAIN'
05 = 'COL BICYCLIST'
05 = 'COL BICYCLIST'
06 = 'COLL PEDEST'
06 = 'COLL PEDEST'
07 = 'COLL ANIMAL'
07 = 'COLL ANIMAL'
08 = 'COLL FIXOBJ'
08 = 'COLL FIXOBJ'
09 = 'COLL OTH OBJ'
09 = 'COLL OTH OBJ'
10 = 'OVERTURN'
10 = 'OVERTURN'
11 = 'FIRE/EXPLOSION'
11 = 'FIRE/EXPLOSION'
12 = 'SUBMERSION'
12 = 'SUBMERSION'
*14 = 'FALLING OBJECT'

```
```

*14 = 'FALLING OBJECT'

```
```

*13 = 'DEER' Collision with deer
Collision with motor vehicle on same
roadway
Collision with motor vehicle in other
roadway
Collision with parked motor vehicle
Collision with railroad train
Collision with bicyclist
Collision with pedestrian
Collision with animal
Collision with fixed object
Collision with other object
Overturn
Fire or explosion
Submersion
Collision with falling object
(CON' T)

```
90 = 'OTHER' Other
```

99 = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
*New codes added in 1991.

```
ACCYR YEAR ACCIDENT OCCURRED
NON-LABELED VARIABLE -- Year of accident - YYYY
```


AMBL_NBR

CASENO ACCIDENT NUMBER

```
NON-LABELED VARIABLE -- 'YYYYDDDNNNN' where YYYY = YEAR
    DDD = Julian day of year
    NNNN = 0000-9999 = Unique case number
```

COUNTY COUNTY
NON-LABELED VARIABLE -- 01-87 = County number
DIV_CODE ROAD DESIGN

```
01 = 'FREEWAY'
O2 = 'OTH DIV HIWY'
03 = 'ONE-WAY STREET'
04 = '4-6 LN UNDIV 2WY'
05 = '3 LANES UNDIV'
06 = '2-LANE UNDIV 2WY'
07 = 'ALLEY/DRIVEWAY'
*08 = 'PRIVATE'
90 = 'OTHER'
98 = 'NOT STATED'
99 = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
```

*New codes added in 1991.

HAZMAT HAZARDOUS MATERIAL CARRIED

```
'Y' = 'YES'
'N' = 'NO'
OTHER = 'ERROR/OTHER CODE'
```

NOTE: Only in Accident Subfile through 1989. See HAZMTL in Vehicle
subfile.

```
'N' = 'NO' No hit and run involved
'Y' = 'YES'
Hit and run involved
OTHER ='ERROR/OTHER CODE'
NOTE: New variable added in 1990.
```


HOUR HOUR ACCIDENT OCCURRED

```
00 = '12 AM - 1259 AM'
01 = '1 AM - 159 AM'
02 = ' 2 AM - 259 AM'
03 = '3 AM - 359 AM'
04 = '4 AM - 459 AM'
05 = ' 5 AM - 559 AM'
06 = ' 6 AM - 659 AM'
07 = ' 7 AM - 759 AM'
08 = '8 AM - 859 AM'
09 = ' 9 AM - 959 AM'
10 = '10 AM - 1059 AM'
11 = '11 AM - 1159 AM'
12 = '12NOON- 1259 PM'
13 = '1 PM - 159 PM'
14 = '2 PM - 259 PM'
15 = ' 3 PM - 359 PM'
16 = '4 PM - 459 PM'
17 = ' 5 PM - 559 PM'
18 = ' 6 PM - 659 PM'
19 = ' 7 PM - 759 PM'
20 = ' }8\mathrm{ PM - 859 PM'
21 = ' 9 PM - 959 PM'
22 = '10 PM - 1059 PM'
23 = '11 PM - 1159 PM'
25 = 'UNKNOWN'
26 = 'NOT STATED'
OTHER = 'ERROR/OTHER CODE'
```


INTERCHANGE ELEMENT CODE

NON-LABELED VARIABLE -- This is a three-character variable giving the code for a certain intersection element where the crash occurred. The coding is either "ANN" or "NNN", where "A" is alpha and "N" is numeric. Three blanks indicate "not in an interchange". Unfortunately, no other detail on the element descriptors is available.

LIGHT LIGHT CONDITIONS

```
01 = 'DAYLIGHT' Daylight
02 = 'DAWN' Dawn (morning)
03 = 'DUST' Dusk (evening)
04 = 'DARK STRT LT ON' Dark - Street lights on
05 = 'DARK STRT LT OFF' Dark - Street lights off
06 = 'DARK NO STR LIGH' Dark - No street lights
90 = 'OTHER'
98 = 'NOT STATED' Not stated
99 = 'UNKNOWN' Unknown
OTHER = 'ERROR/OTHER CODE'
```


LOC_BIKE

LOCATION OF PEDESTRIAN/BIKE ACCIDENT

```
0 = 'NOT STATED'
1 = 'SCH CROSS'
2 = 'INTERSECT'
3 ' 'NOT INTERSEC' Not at intersection
4 = 'UNKNOWN'
5 = 'NOT BIKE/PED'
OTHER = 'ERROR/OTHER CODE'
Not stated
At school crossing during school hours
At intersection
    Not at intersection
U-Unknown
Not a pedestrian/bicycle accident
    (equivalent to 0)
NOTE: LOC_BIKE should not be used to identify pedestrian or bicycle accidents because it does not correctly identify all ped/bike accidents. Other more reliable variables are (ACCTYPE, VEHTYPE, CONTRIB1, CONTRIB2, MISCACT1, VEH_MOV1). Data are only available for 1985-89.
```


LOC_HARM

LOCATION OF FIRST HARMFUL EVENT

```
1 = 'ON RDWAY'
2 = 'OFF RDWAY SHLD' Off the roadway on the shoulder
3 ' 'OFF RDWAY MEDN' Off the roadway on the median
4 'OFF RDWAY RDSID' Off the roadway on the roadside
5 = 'PARKING LOT' Parking lot
6 = 'PRIV PROPERTY'
7 = 'OUTSIDE RGHT/WY' Outside right-of-way
8 = 'UNKNOWN' Unknown
9 = 'OTHER'
OTHER = 'ERROR/OTHER CODE'
On the roadway (alley, driveway, etc.)
    Private property
    Unknown
    Other
```

LOCATION DESCRIPTION
NON-LABELED VARIABLE -- Description of location
NOTE: New variable added in 1990.

RELATION TO INTERSECTION

```
1 = 'INTERCH AREA'
2 = 'INTERSECTION'
3 = 'INTER RELAT'
4 = 'DRV WAY ACCESS'
5 = 'NON-JUNCTION'
*6 = 'SCHOOL CROSS'
*7 = 'NOT AT INTERS'
8 = 'NOT STATED'
9 = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
```

Interchange area
Intersection
Intersection-related
Alley or driveway access
Non-junction (pre-1990)
School Crossing
Not at an intersection (1990 and
later)
Not stated
Unknown
*New codes added in 1990.
NOTE: (1) When the accident and roadlog files are merged and then screened to select intersection accidents on urban freeways that have full access control(LOC_TYPE= 2, RTE_SYS (1, 2, OR 3), ACCESS = 3, AND FUNC_CLS = >11, there should not have been any records satisfying these constraints, as there should only be interchange accidents (LOC_TYPE= 1) on a highway with full access control. There were 192 records found. This raises concerns about using the LOC_TYPE variable. Using the Photolog system to examine this problem indicated the following: (1) In some cases, LOC_TYPE was miscoded as intersection when it should have been coded interchange (usually when accidents occurred on a ramp); and (2) LOC_TYPE was coded correctly as an intersection accident, but was coded on the wrong side of the road. This occurred at intersection of the ramp and the crossroad, which means that is should have been coded onto the crossroad, not the freeway.
(2) The specification of "intersection-related" with this variable does not totally agree with certain codes under VEH_MOV1 (i.e., Vehicle Movement). See discussion.
(3) *New codes added in 1990. (Note that "Non-Junction" became "Not at Intersection" in 1990 and later years.)

LOCN_REL

LOCATION RELIABILITY

```
'1' = 'NO LOCAT ERROR'
'2' = 'POSS LOCAT ERROR' Possible location error
'3' = 'PROBL LOC ERROR' Probable location error (or non-
No location error expected
geocoded)
```

OTHER = 'ERROR/OTHER CODE'
NOTE: New variable added in 1990.

MILEPOST

MODIFIED REFERENCE POINT

NON-LABELED VARIABLE
NOTE: This is a reformatted version of the original "Reference Point" variable in the $M N$ files. The reformatting was done to facilitate computer linkage with other files.

NON-LABELED VARIABLE -- NN

FIXED OBJECT STRUCK

```
OO = 'NO OBJ STRUCK'
01 = 'CONSTRU EQUIP'
02 = 'TRAFFIC SIGNAL'
03 = 'RRD CROSS DEVIC'
04 = 'LIGHT POLE'
05 = 'UTILITY POLE'
06 = 'SIGN STRUC/PST'
07 = 'MAILBOX'
08 = 'OTHER POLE'
09 = 'FIRE HYDR/PK MTR'
10 = 'TREE/SHRUBBERY'
11 = 'CRASH CUSHION
12 = 'MEDIAN SFTY BARR'
13 = 'BRDG PIERS/GDRL'
14 = 'OTHER GUARDRAIL'
15 = 'FENCING NOT BARR'
16 = 'CULVERT/HEADWALL'
17 = 'EMBNK,DITCH/CRB'
18 = 'BUILDING /WALL'
19 = 'ROCK OUTCROPS'
20 = 'UNKNOWN'
21 = 'NOT APPLIC'
22 = 'PARKING METER'
90 = 'OTHER FIX OBJ' Other Fixed object
OTHER = 'ERROR/OTHER CODE'
No object struck (equivalent to 21)
Construction barricades/equipment/etc.
Traffic signal
Railroad crossing device
Light pole
Utility pole (telephone, electric,
etc.)
Sign structure or post
Mailbox and/or mailbox post
Other poles, posts, or supports
Fire hydrant or parking meter
Tree or shrubbery
Crash cushion
Median safety barrier
Bridge piers (includes protection
guardrail)
Other guardrail
Fencing (not median barrier)
Culvert or headwall
Embankment, ditch, or curb
Building or wall
Rock outcrops
Unknown
Not applicable(equivalent to 00)
Parking Meter (1991+)
Other Fixed object
```

NOTE: (1) Code '00' (No object stuck) and code '21' (Not applicable) are equivalent.
(2) In the 1991 data, the number and percent of "NO OBJECT STRUCK" was significantly lower and the number/percent of "UNKNOWN" significantly higher than in other years. The percent of "UNKNOWN" remains slightly higher (i.e., 4 percent) in later years.

OFF_TYPE TYPE OF INVESTIGATING OFFICER

```
1 = 'MN STATE PATROL
Minnesota State Patrol
2 = 'COUNTY SHERIFF'
County sheriff
3 = 'MUNICIP POLICE'
Municipal police
4 = 'OTHER INVEST OF'
Other investigating officer
```

NOTE: Records coded as OFF_TYPE = "UNKNOWN" have been removed in 1991 and later years to improve quality of data. See Discussion.

ON_BRDG

POP_GRP

URBAN/RURAL POPULATION CODES

```
0 = 'UNKNOWN'
1 = 'URB 250K-AND OVE'
2 = 'URB 100K-249,999'
3 = 'URB 50K-99,999'
4 = 'URB 25K-49,999'
5 = 'URB 10K-24,999'
6 = 'URB 5K- 9,999'
7 = 'RUR 2500-4,999'
8 = 'RUR 1000-2,499'
9 = 'RUR 1- 999'
```


PUBDMG PUBLIC PROPERTY DAMAGE

NOTE: New variable added in 1991.

RD_CHAR1 ROAD CHARACTERISTICS

```
1 = 'STRAIGHT/LEVEL'
2 = 'STRAIGHT/GRADE'
3 = 'STRAIGHT/HILCRS'
4 = 'STRAIGHT/SAG'
5 = 'CURVE AND LEVEL'
6 = 'CURVE AND GRADE'
7 = 'CURVE/HILCREST'
8 = 'CURVE/SAG'
9 = 'UNKNOWN NOT STAT'
OTHER = 'ERROR/OTHER CODE'
```

$2=$ 'STRAIGHT/GRADE'
3 = 'STRAIGHT/HILCRS'
$4=$ 'STRAIGHT/SAG'
5 = 'CURVE AND LEVEL'
7 = 'CURVE/HILCREST'
8 = 'CURVE/SAG'
OTHER = 'ERROR/OTHER CODE'

Straight and level
Straight and grade
Straight at hillcrest
Straight in sag
Curve and level
Curve and grade
Curve at hillcrest
Curve in sag
Unknown or not stated

```
'Y' = 'YES'
```

'Y' = 'YES'
'N' = 'NO'

```
'N' = 'NO'
```

Unknown
Urban -- 250,000 and over
Urban -- 100,000 - 249,999
Urban -- 50,000 - 99,999
Urban -- 25,000 - 49,999
Urban -- 10,000 - 24,999
Urban -- 5,000 - 9,999
Rural -- 2,500 - 4,999
Rural -- 1,000 - 2,499
Rural -- 1 - 999 or nonmunicipal

RDSURF ROAD SURFACE CONDITIONS

$01=$ 'DRY'	Dry
$02=$ 'WET'	Wet
$03=$ 'SNOW/SLUSH'	SnOw or slush
$04=$ 'ICE/PACK SNOW'	Ice or packed snow
$05=$ 'MUDDY'	Muddy
$06=$ 'DEBRIS'	Debris
$07=$ 'OILY'	Oily
$90=$ 'OTHER' $^{\prime}$	Other
$98=$ 'NOT STATED'	Not stated
$99=' U N K N O W N '$	Unknown
OTHER = 'ERROR/OTHER CODE'	

RDWORK ROAD WORK BEING PERFORMED

```
01 = 'NONE'
02 = 'MRK CONST ZONE'
03 = 'MRK MAINT ZONE'
04 = 'MRK UTIL WK ZONE'
05 = 'UNMRK CONST ZONE'
06 = 'UNMRK MAINT ZONE'
07 = 'UNMRK UTIL WK ZN'
90 = 'OTHER'
99 = 'UNKNOWN
```

None
Marked construction zone Marked maintenance zone Marked utility work zone Unmarked construction zone Unmarked maintenance zone Unmarked utility work zone Other Unknown

NOTE: This was a new variable in 1990. However, it appears that new codes were added in 1991 which make the 1990 data inconsistent with later years.

RODWYCLS

ROADWAY CLASSIFICATION

```
'O1' = 'URB FRWY >= 4 LN' Urban freeways, four or more lanes
'02' = 'URB FRWY < 4 LN' Urban freeways, less than 4 lanes
'03' = 'URB 2-LANE ROADS' Urban two-lane roads
'04' = 'URB ML DV N-FREE' Urban multi-lane divided, non-freeway
'05' = 'URB ML UND N-FRE' Urban multilane undivided, non-freeway
'06' = 'RUR FRWY >= 4 LN' Rural freeways, four or more lanes
'07' = 'RUR FRWY < 4 LN' Rural freeways, less than 4 lanes
'08' = 'RUR 2-LANE ROADS' Rural two-lane roads
'09' = 'RUR ML DV N-FREE' Rural multilane divided, non-freeway
'10' = 'RUR ML UND N-FRE' Rural Multilane undivided, non-freeway
'99' = 'OTHERS' Others
NOTE: Created variable added to HSIS accident and roadway inventory files in all states in 1999. See Discussion.
```

RTE_NBR

RTE_SYS

```
    '01' = 'ISTH
    '02' = 'USTH'
    '03' = 'MNTH'
    '04' = 'CSAH'
    '05' = 'MSAS'
    '07' = 'CNTY'
    '08' = 'TWNS'
    '09' = 'UTWN'
    '10' = 'MUN'
    '11' = 'NATP'
    '12' = 'NFD'
    '13' = 'IND'
    '14' = 'SFR'
    '15' = 'SPRK'
'16' = 'MIL'
'17' = 'NATM
'18' = 'NATW'
'19' = 'FRNT
'20' = 'SGAM'
'21' = 'PRV RD PUBLIC'
'23' = 'ALLEY/CEMTERY'
```

Interstate trunk highway
U.S. trunk highway

Minnesota trunk highway
County state-aid highway
Municipal state-aid street
County road
Township road
Unorganized township road
City streets
National park road
National forest development road
Indian reservation road
State forest road
State park road
Military road
National monument road
National wildlife refuge road
Frontage road
State game preserve road
Private road open to public
Alleys and cemeteries

NOTE: See RTSYSNBR

RTSYSNBR COMBINED ROUTE SYSTEM/ROUTE NUMBER

NON-LABELED VARIABLE

NOTE: This is a combined version of the RTE_NBR and RTE_SYS variables above. This combining was done to facilitate computer linkage with other files.

SCHLBUS SCHOOL BUS INVOLVED ACCIDENT

```
'Y' = 'YES'
'N' = 'NO'
OTHER = 'ERROR/OTHER CODE'
```

```
'K' = 'FATAL' Fatal
'A' = 'INCAP INJURY' Incapacitating injury
'B' = 'NON-INCAP INJ' Non-incapacitating injury
'C' = 'POSSIBLE INJ' Possible injury
'D' = 'INJURY UNKNOWN' Injury severity unknown
'P' = 'PROP. DAMAGE' Property damage
'' = 'NOT APPLIC'
```

SPEED POSTED SPEED LIMIT

```
'00','99' = 'SPEED LIMIT UNK' Speed limit unknown
'01'-'05' = '01-05' Posted speed limit in miles per hour
'06'-'10' = '06-10'
'11'-'15' = '11-15'
'16'-'20' = '16-20'
'21'-'25'= '21-25'
'26'-'30'='26-30'
'31'-'35' = '31-35'
'3\mp@subsup{6}{}{\prime}-'40'='36-40'
'41'-'45'='41-45'
'46'-'50'='46-50'
'51'-'55' = '51-55'
'56'-'60'= '56-60'
'61'-'65' = '61-65'
'66'-'70'='66-70'
'71'-'75' = '71-75'
'76'-'80' = '76-80'
'81'-'85' = '81-85'
'86'-'89' = '86-89'
'90'-'98' = '90-98'
OTHER = 'ERROR/OTHER CODE'
```

TOT_INJ NUMBER OF PERSONS INJURED

```
00-04 = '0 TO 4'
05-10 = '5 TO 10'
11-20='11 TO 20'
21-50 = '21 TO 50'
51 - high = '51 OR MORE'
```

TOT_KILL NUMBER OF PERSONS KILLED

```
00-04 = '0 TO 4'
05-10 = '5 TO 10'
11 - 20 = '11 TO 20'
21-50 = '21 TO 50'
51 - high = '51 OR MORE'
```

```
01 = 'NO TRAF CONT DEV'
No traffic control devices (same as
98)
02 = 'TRAFFIC SIGNAL'
Traffic signals
03 = 'OVERHD FLASHERS'
Overhead flashers
04 = 'STOP SGN ALL APP'
Stop sign - All approaches
05 = 'STOP SGN OTHER'
Stop sign - Other
06 = 'YIELD SIGN'
07 = 'OFF/FLGMN/SH PAT'
08='SCH BUS STP ARM'
09 = 'SCH ZONE SIGN'
10 = 'RR CROS GATES'
11 = 'RR CROS FLAS LGT'
12 = 'RR CROS STOP SGN'
13 = 'RR CROS OTHER'
14 = 'NO PASSING ZONE'
*16 = 'RRX OVRHD FLAS'
*17 = 'RRX OVRHD FLS GT'
*18 = 'RR CROS CROSSBK'
90 = 'OTHER'
98 = 'NOT APPLICABLE'
99 = 'UNKNOWN'
\begin{tabular}{|c|c|}
\hline \(01=\) 'NO TRAF CONT DEV' & No traffic control devices (same as 98) \\
\hline \(02=\) 'TRAFFIC SIGNAL' & Traffic signals \\
\hline \(03=\) 'OVERHD FLASHERS' & Overhead flashers \\
\hline \(04=\) 'STOP SGN ALL APP' & Stop sign - All approaches \\
\hline \(05=\) 'STOP SGN OTHER' & Stop sign - Other \\
\hline \(06=\) 'YIELD SIGN' & Yield sign \\
\hline 07 = 'OFF/FLGMN/SH PAT' & Officer, flagman, or school patrol \\
\hline \(08=\) 'SCH BUS STP ARM' & School bus stop arm \\
\hline 09 = 'SCH ZONE SIGN' & School zone sign \\
\hline \(10=\) 'RR CROS GATES' & Railroad crossing - Gates \\
\hline \(11=\) 'RR CROS FLAS LGT' & Railroad crossing - Flashing lights \\
\hline \(12=\) 'RR CROS STOP SGN' & Railroad crossing - Stop signs \\
\hline \(13=\) 'RR CROS OTHER' & Railroad crossing - Other \\
\hline \(14=\) 'NO PASSING ZONE' & No passing zone \\
\hline *16 = 'RRX OVRHD FLAS' & Railroad crossing-overhead flashing \\
\hline *17 = 'RRX OVRHD FLS GT' & Railroad crossing-flashing and gate \\
\hline *18 = 'RR CROS CROSSBK' & Railroad crossing-crossbuck (1990+) \\
\hline \(90=\) 'OTHER' & Other \\
\hline \(98=\) 'NOT APPLICABLE' & Not applicable (same as 01) \\
\hline 99 = 'UNKNOWN' & Unknown \\
\hline *New codes added in 1990 & 91. \\
\hline NOTE: Beginning in 1990, control device") was chan 1991 (but not other years) "99" ("UNKNOWN"). & pears that code "01" ("No traffic to code "98" ("NOT APPLICABLE"). In me of these \(01 / 98\) codes were coded \\
\hline
\end{tabular}
```

TRAFFIC CONTROL WORKING

```
00='N/A'
Not applicable
01 = 'SGN WRKN PROP'
Signal working properly
02 = 'SGN N/WRKN PROP'
Signal not working properly
03 = 'FLASHING' Signal flashing
90 = 'OTHER' Other
99 = 'UNKNOWN' Unknown
OTHER = 'ERROR/OTHER CODE'
```


TWNSHIP TOWNSHIP NUMBER

```
NON-LABELED VARIABLE -- 000 = Unknown
001-999 = Township number
```


VEH_MOV1

VEHICLE MOVEMENT

Multi-vehicle accidents at an intersection:

$01=$ 'ENTER AT ANG'	Entering at angle
$02=$ 'SAME DIREC STR'	Same direction - Both going straight
$03=$ 'SIDESWP PASSING'	Sideswipe - Passing

(CON' T)

WAST_MAT

WASTE MATERIAL CARRIED

```
    'Y' = 'YES'
    'N' = 'NO'
OTHER = 'ERROR/OTHER CODE'
NOTE: Only in Accident Subfile through 1989.
```

WEATHER WEATHER CONDITIONS

```
01 = 'CLEAR'
02 = 'CLOUDY'
03 = 'RAIN'
04 = 'SNOW'
05 = 'SLEET/HAIL/FRE'
06 = 'FOG/SMOG/DUST'
07 = 'BLOW SND/DUS/SNW'
08='SEVERE CRS WINDS'
90 = 'OTHER'
98 = 'NOT STATED' Not stated
99 = 'UNKNOWN'
```

Clear
Cloudy
Rain
Snow
Sleet, hail, or freezing rain
Fog, smog, or dust
Blowing sand, dust or snow
Severe cross winds
Other
Not stated
Unknown

WEEKDAY DAY OF WEEK ACCIDENT OCCURRED

```
1 = 'SUNDAY'
2 = 'MONDAY'
3 = 'TUESDAY'
4 = 'WEDNESDAY'
5 = 'THURSDAY'
6 = 'FRIDAY'
7 = 'SATURDAY'
OTHER = 'ERROR/OTHER CODE'
```

SAS			SAS		
VARIABLE			VARIABLE	FORMAT	TABLE
NAME	DESCRIPTION	FILE	TYPE	PAGE NO.	PAGE NO.
CASENO	ACCIDENT NUMBER	Vehicle	CHA (11)	I-45	
COLOR1	COLOR OF BODY	Vehicle	CHA (1)	I-45	
COLOR2	COLOR OF ROOF	Vehicle	CHA (1)	I-45	
CONTRIB1	FIRST CONTRIBUTING FACTOR	Vehicle	NUM	I-45	II-119
CONTRIB2	SECOND CONTRIBUTING FACTOR	Vehicle	NUM	I-45	II-123
DAMSEV	VEHICLE DAMAGE SEVERITY	Vehicle	CHA (1)	I-46	II-127
DRV_AGE	AGE OF DRIVER	Vehicle	NUM	I-46	II-128
DRV_INJ	DRIVER INJURY	Vehicle	CHA (1)	I-47	II-131
DRV_SEX	SEX OF DRIVER	Vehicle	CHA (1)	I-47	II-132
EVENT1	SEQUENCE OF EVENT -1	Vehicle	CHA (2)	I-48	II-133
EVENT2	SEQUENCE OF EVENT -2	Vehicle	CHA (2)	I-48	II-136
EVENT3	SEQUENCE OF EVENT -3	Vehicle	CHA (2)	I-48	
EVENT4	SEQUENCE OF EVENT -4	Vehicle	CHA (2)	I-48	
FIRE	FIRE IN VEHICLE	Vehicle	CHA (1)	I-48	II-139
HAZMTL	VEHICLE CARRYING HAZARDOUS MATERIAL	Vehicle	CHA (1)	I-48	II-140
LICTYPE	VALID DRIVER LICENSE	Vehicle	CHA (1)	I-49	
MAKE	MAKE OF VEHICLE	Vehicle	CHA (4)	I-49	
MCAXLDN	MOTOR CARRIER AXLES DOWN	Vehicle	CHA (2)	I-49	
MCAXLUUP	MOTOR CARRIER AXLES UP	Vehicle	CHA (2)	I-49	
MCBDYTYP	MOTOR CARRIER BODY TYPE	Vehicle	CHA (2)	I-49	II-141
MCGVWRCD	MOTOR GROSS VEHICLE WEIGHT CODE	Vehicle	CHA (2)	I-50	II-143
MCHZPLAC	MOTOR HAZARDOUS MATERIAL PLACARD FLAG	Vehicle	CHA (1)	I-50	II-145
MCSOURCE	SOURCE OF IDENTIFICATION	Vehicle	CHA (2)	I-50	
MCTRHTCH	MOTOR TRAILER HITCH CODE	Vehicle	CHA (2)	I-51	
MISCACT1	ACTION PRIOR TO ACCIDENT	Vehicle	NUM	I-51	II-146
MODEL	MOTOR MODEL	Vehicle	CHA (2)	I-52	
MVCLASS	MOTOR CLASS	Vehicle	CHA (2)	I-52	
MVTYPE	MOTOR TYPE	Vehicle	CHA (2)	I-52	
NUMOCCS	NUMBER OF OCCUPANTS	Vehicle	NUM	I-52	
PHYSCOND	PHYSICAL CONDITION OF DRIVER	Vehicle	NUM	I-53	II-152
SERIES	SERIES OF VEHICLE	Vehicle	CHA (3)	I-53	
TOWAWAY	VEHICLE TOWED	Vehicle	CHA (1)	I-53	II-154
TOWING	TOWING FLAG	Vehicle	CHA (1)	I-53	
V_DAMAGE	VEHICLE DAMAGE AREA	Vehicle	NUM	I-54	II-155
VEH_DIR	DIRECTION VEHICLE WAS TRAVELING	Vehicle	NUM	I-54	
VEHNO	RELATIVE VEHICLE NUMBER	Vehicle	NUM	I-54	
VEHSTATE	StAte OF VEHICLE REGISTRATION	Vehicle	CHA (2)	I-54	
VEHTYPE	TYPE OF VEHICLE	Vehicle	NUM	I-55	II-157
VEHYR	MODEL YEAR OF VEHICLE	Vehicle	CHA (4)	I-55	II-162
WASTE_MT	VEHICLE CARRYING WASTE MATERIAL	Vehicle	CHA (1)	I-56	

NOTE: SAS variable names and explanatory names are shown above each listing. (See Discussion for information on SAS formats.)

CASENO ACCIDENT NUMBER

```
NON-LABELED VARIABLE -- 'YYYYDDDNNNN' WHERE YYYY = YEAR
                                    DDD = JULIAN DAY OF YEAR
                                    NNNN = 0000-9999 = Unique case number
```

$\begin{array}{ll}\text { COLOR1 } & \text { COLOR OF BODY } \\ \text { COLOR2 } & \text { COLOR OF ROOF }\end{array}$
'A' = 'RED'
'B' = 'BLUE'
'C' = 'GRAY'
' ${ }^{\prime}$ ' = 'BLACK'
'E' = 'BROWN'
'F' = 'WHITE'
'G' = 'GREEN'
$'^{\prime}='^{\prime}$ TAN'
'I' = 'IVORY'
'J' = 'PINK'
'K' = 'YELLOW'
'L' = 'MAROON'
$'^{\prime}{ }^{\prime}='^{\prime} L A V E N D E R '$
$'^{\prime}{ }^{\prime}=$ 'GOLD'
'O' = 'ORANGE'
' ${ }^{\prime}$ ' = 'SILVER'
'Q' = 'UNKNOWN'

NOTE: New variable added in 1990 or 1991.

CONTRIB1 FIRST CONTRIBUTING FACTOR CONTRIB2
 SECOND CONTRIBUTING FACTOR

```
01 = 'NO IMPROP DRIV'
02 = 'FAIL TO YIELD'
03 = 'ILLEG/UNSAFE SPD'
04 = 'FOLLOW TO CLOSE'
05 = 'DISREG TRAF DEV'
06 = 'DRV LEFT OF CNTR'
07 = 'IMPROP PASSING'
08 = 'IMPRO LANE USE'
09 = 'IMPROP/PRK/STRA'
10 = 'IMPROPER TURN'
11 = 'UNSAFE BACKING'
12 = 'NO SIGNAL/IMPRO'
```

```
No improper driving
Failure to yield right of way
Illegal or unsafe speed
Following too closely
Disregard traffic control device
Driving left of roadway center - Not
passing
Improper passing or overtaking
Improper or unsafe lane use
Improper parking, starting, or
stopping
Improper turn
Unsafe backing
No signal or improper signal
```

(CON' T)

```
13 = 'IMPEDING TRAFFIC' Impeding traffic
14 = 'DRIVER INATTEN' Driver inattention or distraction
15 = 'DRIVER INEXPER' Driver inexperience
16 = 'PEDESTRIAN VIOL' Pedestrian violation or error
17 = 'PHSICAL IMPAR'
18 = 'VIS OBS WINDSHI'
19 = 'VIS OBS SUN/HEAD'
20 = 'VIS OBS OTHER'
30 = 'OTH HUMAN FACT'
41 = 'DEFECTIVE BRAKS'
42 = 'DEFEC TIRE'
43 = 'DEFECTIVE LIGHTS'
44 = 'INADEQ WINDSHLD'
45 = 'OVERSZE/WEHT/VEH'
46 = 'SKIDDING'
50 = 'OTH VEH DEFECT'
61 = 'WEATHER'
62 = 'ROAD DEFECT'
*63 = 'FAIL USE LIGHTS'
*64 = 'DRV/PHNE/CB/RDO'
98 = 'NOT STATED'
99 = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
*New codes added in 1991.
NOTE: In 1990, approximately 10% of the data are coded as "UNKNOWN".
In 1991 file, coding changes mean that the "UNKNOWN" category must
be added to the "no improper driving" category. Data appear to be
corrected in 1992 and later.
```


DAMSEV VEHICLE DAMAGE SEVERITY

```
'L' = 'LIGHT'
'M' = 'MODERATE'
'N' = 'NOT STATED'
'S' = 'SEVERE'
'6' = 'OTHER'
'5' = 'TOTAL'
'0' = 'N/APPLIC'
'1' = 'NONE'
'9' = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
```


DRV_AGE AGE OF DRIVER

```
00-01 = 'INFANT - 1 YR'
02-04 = '02-04 YRS'
05-10 = '05-10 YRS'
11-14 = '11-14 YRS'
15 = ' }15\mathrm{ YRS'
16 = ' 16 YRS'
17 = ' 17 YRS'
18 = ' 18 YRS'
```

(CON' T)

```
19 = ' }19\mathrm{ YRS'
20 = ' 20 YRS'
21-25 = '21-25 YRS'
26-30 = '26-30 YRS'
31-35 = '31-35 YRS'
36-45 = '36-45 YRS'
46-55 = '46-55 YRS'
56-65 = '56-65 YRS'
66-89 = '66-89 YRS'
90-97 = '90-97 YRS'
98 = '98 YRS OR OLDER'
99 = 'UNKNOWN'
```

NOTE: In the 1990 file, only injured driver information is available. Between 5 - 10 percent of the cases are uncoded after 1990.

DRV_INJ DRIVER INJURY

```
'K' = 'KILLED' Killed
'A' = 'INJ/INCAPACIT' Injured - Incapacitating
'B' = 'INJ NON/INCAPACI' Injured - Non-incapacitating
'C' = 'INJ POSSIB INJ' Injured - Possible injury
' ','N' = 'NO INJURY' No injury
'X','U' = 'INJ SEVER UNK' Injured - Severity unknown
OTHER = 'ERROR/OTHER CODE'
```

NOTE: (1) This variable was copied from the Occupant Subfile to this Vehicle Subfile beginning in 1990. Prior driver-injury data can be extracted from the Occupant Subfile.
(2) The "NO INJURY" code is new beginning in 1990. However, full data on all uninjured drivers is probably not available until 1991 or 1992. In addition, the "NO INJURY" code is not used after 1991. MN staff indicate that a blank code also means "NO INJURY", as captured in the format above.

SEX OF DRIVER

```
'M' = 'MALE'
'F' = 'FEMALE'
'N' = 'NS/NOT APPLIC'
OTHER = 'ERROR/OTHER CODE'
```

NOTE: In 1990, only injured driver information is available. "NS/NOT APPLIC" plus other "ERROR/OTHER CODE" represent approximately 10 percent of the cases for all years.

EVENT1	SEQUENCE OF EVENT -1
EVENT2	SEQUENCE OF EVENT -2
EVENT3	SEQUENCE OF EVENT -3
EVENT4	SEQUENCE OF EVENT -4

\(\left.$$
\begin{array}{ll}'^{\prime} 01^{\prime}= & \text { COL MV ON HWY' }\end{array}
$$ \quad \begin{array}{l}Collision with unit on the same

roadway

Collision with unit on separate\end{array}\right]\)| roadway |
| :--- |
| $'^{\prime} 02^{\prime}=$ 'COL MV ON OTH HW' |

NOTE: New variable added in 1991. Approximately 14 percent of the cases are "UNKNOWN".

FIRE FIRE IN VEHICLE

```
'Y' = 'YES'
'N' = 'NO'
OTHER = 'ERROR/OTHER CODE'
```


HAZMTL VEHICLE CARRYING HAZARDOUS MATERIAL

```
'Y' = 'YES'
'N' = 'NO'
OTHER = 'ERROR/OTHER CODE'
```


LICTYPE

MAKE

MCAXLDN

MCAXLUUP

MCBDYTYP

VALID DRIVER LICENSE

```
'Y' = 'VALID LICENSE'
'N' = 'INVALID LICENSE'
'X' = 'UNKNOWN'
'I' = 'NOT APPLICABLE'
OTHER = 'ERROR/OTHER CODE'
NOTE: Data in Vehicle subfile for 1985-1989 only.
```

MAKE OF VEHICLE
NON-LABELED VARIABLE
NOTE: New variable added in 1990. This is a four character code
indicating the vehicle make. While some codes are obvious (e.g.,
FORD, BUIC, CHEV), others are not as obvious. Approximately 13\% of
the data are uncoded.

MOTOR CARRIER AXLES DOWN

NON-LABELED VARIABLE -- Axles down making contact with pavement --(00-99)

NOTE: New variable added in 1991.

MOTOR CARRIER AXLES UP

```
NON-LABELED VARIABLE -- Axles up not making contact with pavement --
    (00-99)
```

NOTE: New variable added in 1991.

MOTOR CARRIER BODY TYPE

```
'OO' = 'NO/APPLIC' Not applicable
'01' = 'VAN' Van
'02' = 'DRY CARGO TANK' Dry bulk cargo tanker
'03' = 'LIQ CARGO TANK' Liquid bulk cargo tanker
'04' = 'GAS CARGO TANK' Gas bulk cargo tanker
'05' = 'FLATBED' Flatbed or platform
'06' = 'DUMP' Dump truck
'07' = 'CONCRETE MIXER' Concrete mixer
'08' = 'AUTO TRANSPRTER' Auto transporter
'09'= 'GARBAGE OR REFUS'' Garbage or refuse truck
'10' = 'BUS' Bus
'11' = 'COMBINATION' Combination
'12' = 'SPEC PERMIT LB' Special permit load
'90' = 'OTHER' Other
'99' = 'UNKNOWN' Unknown
```

NOTE: New variable added in 1991.

```
'99' = 'UNKNOWN' Unknown
```

'00' = 'NO/APPLIC' Not applicable
'01' = '< 10,000 LBS' Less than 10,000 pounds
'02' = '10,000 TO 11,999' 10,000 to 11,999 pounds
'03' = '12,000 TO 25,999' 12,000 TO 25,999 pounds
'04' = '26,000 TO 56,999' 26,000 TO 56,999 pounds
'05' = '57,000 TO 80,000' 57,000 TO 80,000 pounds
'06' = '80,001 TO 105K' 80,001 TO 105,000 pounds
'07' = '105,001 TO 120K' 105,001 TO 120,000 pounds
'08' = '> 120,000' Greater than 120,000 pounds

NOTE: New variable added in 1991.

MOTOR HAZARDOUS MATERIAL PLACARD FLAG

```
'Y' = 'YES'
'N' = 'NO'
' ' = 'OTHERWISE'
```

NOTE: (1) New variable added in 1991.
(2) The formatting above differs from that provided by Minnesota. Their formatting is as follows:

```
'Y' = 'HAZ MAT W/PLAC' Hazardous material on-board with
    placard
'N' = 'HAZ MAT WO/PLAC' Hazardous material on-board without
    placard
' ' = 'OTHERWISE'
```

However, the data are not coded in this manner. More specifically, while there should be a small proportion of 'N' codes, almost all the data fall into that code, with no observations in the "OTHERWISE" code. Thus, it appears to the HSIS staff that 'N' may represents a combination cases with no hazardous materials and (a limited number of) cases where hazardous material is on-board without a placard. Our guess would be that 'N' more likely defines the former - no hazardous material on board.

MCSOURCE

SOURCE OF IDENTIFICATION

```
'01' = 'CAB BOARD' Cab card
'02' = 'SHIPP PAPERS' Shipping papers
'03' = 'SIDE VEHICLE' Side of vehicle
'04' = 'DRIVER' Driver
'90' = 'OTHER' Other
OTHER = 'ERROR/OTHER CODE'
```

NOTE: New variable added in 1995.

MCTRHTCH

MOTOR TRAILER HITCH CODE

```
'OO' = 'NOT APPLIC'
'01' = 'TRL W BAL HITCH'
'O2' = 'TRL W FIFTH WHL'
'03' = 'A-TRAIN W 5TH WH'
'04' = 'B-TRAIN W 5TH WH'
'05' = 'C-TRAIN W 5TH WH'
'06' = 'PINTLE HITCH'
'90' = 'OTHER(W/COMB)'
'99' = 'UNKNOWN'
```

Not applicable
Trailer with ball hitch
Trailer with fifth wheel
A-train hitch (with fifth wheel)
B-train hitch (with fifth wheel)
C-train hitch (with fifth wheel)
Pintle hitch
Other (including combinations)
Unknown

NOTE: New variable added in 1991.

ACTION PRIOR TO ACCIDENT

```
01 = 'GOING STRAIGHT'
O2 = 'WRONG WAY'
03 = 'RGHT TURN/RED'
04 = 'LFT TURN/RED'
05 = 'MAKING RGHT TUR'
06 = 'MAKING LFT TURN'
07 = 'MAKING U TURN'
08 = 'START FROM STOP'
09 = 'START IN TRAFFIC'
10 = 'SLOWING IN TRAF'
11 = 'STOPPED IN TRAF'
12 = 'ENTER PRK POSIT'
13 = 'PARKED LEGALLY'
14 = 'PARK ILLEGALLY'
15 = 'AVOIDING VEH/PED'
17 = 'CHANGING LANES'
18 = 'OVERTAKING PASS'
19 = 'MERGING'
20 = 'BACKING'
21 = 'STALLED'
30 = 'OTHER ACTION'
41 = 'PED CRS W/SIG'
42 = 'PED CRS A/SIG'
43 = 'PED CRS WALK'
44 = 'PED WLK ROAD'
45 = 'PED WLK W/TRAF'
46 = 'PED WLK A/TRAF'
47 = 'PED STAND ROAD'
48 = 'PED FROM CAR'
```

```
Vehicle - Going straight ahead or
    following roadway
    Vehicle - Wrong way into opposing
    traffic
    Vehicle - Right turn on red
    Vehicle - Left turn on red
    Vehicle - Making right turn
    Vehicle - Making left turn
    Vehicle - Making U turn
    Vehicle - Starting from stopped
    position
    Vehicle - Starting in traffic
    Vehicle - Slowing in traffic
    Vehicle - Stopped in traffic
    Vehicle - Entering parked position
    Vehicle - Parked legally
    Vehicle - Parked illegally
Vehicle - Avoiding
    vehicle/object/pedestrian
    in roadway
    Vehicle - Changing lanes
    Vehicle - Overtaking or passing
    Vehicle - Merging
    Vehicle - Backing
    Vehicle - Stalled
    Vehicle - Other action
    Pedestrian - Crossing with signal
Pedestrian - Crossing against signal
Pedestrian - Crossing marked crosswalk
- No signal
Pedestrian - Crossing - No signal or
marked crosswalk
Pedestrian - Walking in road with
traffic
Pedestrian - Walking in road against
traffic
Pedestrian - Standing in road
Pedestrian - Emerging from in front or
behind of parked car
```

```
49 = 'CHLD GET OFF BUS' Pedestrian - Child getting on or off
50 = 'PED GET OUT VEH' Pedestrian - Getting on or off vehicle
51 = 'PED PUSH/WRK VEH' Pedestrian - Pushing or working on
52 = 'PED WORK IN RD' Pedestrian - Working in road
53 = 'PED PLAY IN RD' Pedestrian - Playing in road
54 = 'PED NOT IN RD' Pedestrian - Not in road
60 = 'PED OTH ACTION' Pedestrian - Other action
71 = 'BIKING W/TRAFF' Bicyclist - Riding with traffic
72 = 'BIKING A/TRAFF' Bicyclist - Riding against traffic
73 = 'BIKE RGHT TURN' Bicyclist - Making right turn
74 = 'BIKE LEFT TURN' Bicyclist - Making left turn
75 = 'BIKE MKE U TURN'
76 = 'BIKE CROSS RD'
77 = 'BIKE STOP IN RD'
80 = 'BIKE OTH/ACTION'
98 = 'NOT STATED'
99 = 'OTHER ACTION'
OTHER = 'ERROR/OTHER CODE'
```

```
    school bus
```

 school bus
 vehicle
 vehicle
    ```
Bicyclist - Making U turn
```

Bicyclist - Making U turn
Bicyclist - Riding across road
Bicyclist - Riding across road
Bicyclist - Slowing/stopping/starting
Bicyclist - Slowing/stopping/starting
in road
in road
Bicyclist - Other action
Bicyclist - Other action
Not stated

```
Not stated
```


MODEL MOTOR MODEL

NON-LABELED VARIABLE
NOTE: New variable added in 1997, but all codes are currently blanks.

MVCLASS

MVTYPE MOTOR TYPE
NON-LABELED VARIABLE
NOTE: New variable added in 1997, but all codes are currently blanks.

NUMOCCS NUMBER OF OCCUPANTS

NON-LABELED VARIABLE -- Number of occupants in the vehicle (0-99)
NOTE: New variable added in 1991.

PHYSCOND

```
01 = 'NORMAL'
02 = 'UNDER INFLUENCE'
03 = 'HAD BEEN DRINK'
04 = 'HAD BEEN USE DRG'
05 = 'ASLEEP'
06 = 'FATIGUED'
07 = 'ILL'
08 = 'HANDICAPPED'
*10 = 'COM DRV OVR .04'
90 = 'OTHER'
98 = 'NOT APPLIC'
99 = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
*New codes added in 1991.
NOTE: Codes are not mutually exclusive. If more than one condition
exists, officer is most likely to use alcohol-related codes. In
1990, only injured driver information is available. Approximately,
1 1 \text { percent of the cases are coded as "UNKNOWN." Be caution to use}
Code 10 before 1991.
NOTE: New variable added in 1990. This is a three-character code identifying the vehicle series (e.g., 626, 6LE, CIV) within a given vehicle make. While we do not have a listing of all possible formats, it appears that the data can be "decoded" when combined with MAKE. Approximately \(20 \%\) of the data are uncoded.
```


SERIES

TOWAWAY
VEHICLE TOWED
'Y' = 'YES'
'N' = 'NO'
OTHER = 'ERROR/OTHER CODE'

TOWING

SERIES OF VEHICLE
NON-LABELED VARIABLE

```
OM
```

TOWING FLAG

```
'Y' = 'NON-TRK TOWING' Non-truck vehicle towing trailer,
    boat, etc.
    'N' = 'OTHERWISE' Otherwise
```

NOTE: New variable added in 1991.

| 01 = 'FRONT' | Front |
| :---: | :---: |
| 02 = 'FRONT RIGHT' | Front right |
| 03 = 'RIGHT SIDE' | Right side |
| 04 = 'REAR RIGHT' | Rear right |
| 05 = 'REAR' | Rear |
| $06=$ 'REAR LEFT' | Rear left |
| 07 = 'LEFT SIDE/CT' | Left side/center |
| 08 = 'LEFT FRONT' | Left front |
| 09 = 'TOP' | Top |
| 10 = 'UNDER' | Under |
| 11 = 'MULTIPLE AREAS' | Multiple areas |
| $12=$ 'FRONT CENTER' | Front center |
| $00=$ 'NOT APPLICABLE' | Not applicable |
| 99 = 'UNKNOWN' | Unknown |
| OTHER = 'ERROR/OTHER CODE' | |

VEH_DIR DIRECTION VEHICLE WAS TRAVELING

```
1 = 'NORTH'
2 = 'NORTHEAST'
3 = 'EAST'
4 = 'SOUTHEAST'
5 = 'SOUTH'
6 = 'SOUTHWEST'
7 = 'WEST'
8 = 'NORTHWEST'
Northwest
99 = 'N/A' Unknown or not Applicable
```

NOTE: New variable added in 1990 or 1991.

VEHNO RELATIVE VEHICLE NUMBER

```
NON-LABELED VARIABLE -- Number of vehicle on accident report or
relative vehicle number(01-60). Used to
    link with occupant file.
```

VEHSTATE

STATE OF VEHICLE REGISTRATION
NON-LABELED VARIABLE

NOTE: New variable added in 1997. However, all codes are currently blanks.

```
10 = 'AUTOMOBILE
11 = 'AUTO+TRAILR(<90)'
20 = 'TRUCK/TRACTOR<90'
21 = 'TRU/TRAT W/SEMI'
22 = 'TRU/TRAT W/TWIN'
23 = 'TRU/TRAT W/OTHER'
24 = 'PICKUP TRUCK'
25 = 'VAN'
30 = 'MOTOCYCLE'
31 = 'MOTO SCOOTER'
32 = 'MOPED'
33 = 'ATV'
40 = 'SCHOOL BUS'
41 = 'OTHER BUS'
50 = 'MOTOR HOME/CAMP'
51 = 'SNOWMOBILE'
60 = 'FARM TRAC/EQUIP'
61 = 'TAXICAB'
62 = 'HIT&RUN VEH'
70 = 'POLICE VEH'
71 = 'FIRE DEPT VEH'
72 = 'AMBULANCE'
80 = 'MILITARY VEH'
81 = 'RD MAIN VEH'
82 = 'OTH PUB OWN VEH'
83 = 'OTH PRIV OWN VEH'
90 = 'BICYCLIST'
91 = 'PEDESTRIAN'
*92 = '2-AX/SINGLE TRK'
*93 = '3-AX SINGLE TRK'
*94 = 'SIN TRK W/TRAIL'
*95 = 'TT WITH N/TRAIL'
*96 = 'TT W/TRIP TRAIL'
*97 = 'UNKNOWN HVY TRK'
*98 = 'NON/SCH BUS'
*99 = 'UNKNOWN'
*100 = 'OTHER'
OTHER = 'ERROR/OTHER CODE'
```

*New codes added in 1991 and 1992.

NOTE: There have been changes in the codes and the coding across years. For example, bicyclist seemed to be combined with pedestrians in 1990-91. In addition, code 20 (Truck or truck tractor) disappeared in 1990, code 97 (Unknown heavy truck) was high in 1991, and then truck-related codes 92-96 began in 1992, as did code 98 (Non-school bus), 100 (Other) and 99 (Unknown).

VEHYR MODEL YEAR OF VEHICLE

NON-LABELED VARIABLE -- Model year of vehicles (NNNN).

NOTE: This variable was discontinued in 1991.
'Y' = 'YES'
'N' = 'NO'

NOTE: Only in Vehicle Subfile through 1989.

```
LIST OF VARIABLES FOR MINNESOTA OCCUPANT SUBFILE
```

| SAS | | | SAS | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VARIABLE | | | VARIABLE | FORMAT | TABLE |
| NAME | DESCRIPTION | FILE | TYPE | PAGE NO. | PAGE NO. |
| AGE | AGE OF INJURED/KILLED OCCUPANT | Occupant | NUM | I-59 | II-165 |
| BIRTH_DT | BIRTHDAY | Occupant | CHA (8) | I-59 | |
| CASENO | ACCIDENT NUMBER | Occupant | CHA (11) | I-59 | |
| CORN_RPT | CORONER REPORT RECORD | Occupant | CHA (1) | I-59 | |
| DL_CLASS | DRIVER LICENSE CLASS | Occupant | CHA (1) | I-60 | |
| DL_STATE | DRIVER LICENSE STATE | Occupant | CHA (2) | I-60 | |
| DL_WITHD | DRIVER LICENSE WITHDRAWAL | Occupant | CHA (1) | I-60 | |
| DRIV_REC | DRIVER RECOMMENDATION | Occupant | CHA (2) | I-60 | |
| EJECT | EJECTION FROM VEHICLE | Occupant | NUM | I-60 | II-168 |
| FAT_NUM | FATALITY NUMBER | Occupant | CHA (4) | I-60 | |
| FATLDATE | FATALITY DATE | Occupant | NUM | I-61 | |
| HOSP | INJURED TAKEN TO HOSPITAL | Occupant | CHA (1) | I-61 | II-169 |
| HOSPTRAN | TRANSPORTED TO HOSPITAL METHOD | Occupant | CHA (1) | I-61 | |
| INJ | INJURY SEVERITY | Occupant | CHA (1) | I-61 | II-170 |
| LIS_RSTR | COMPLIANCE WITH LICENSE RESTRICTIONS | Occupant | CHA (1) | I-61 | |
| PHYSCOND | PHYSICAL CONDITION | Occupant | NUM | I-62 | II-171 |
| RES_CNTY | RESIDENCE COUNTY | Occupant | NUM | I-62 | |
| REST1 | SAFETY EQUIPMENT USED | Occupant | CHA (1) | I-62 | II-173 |
| SEATPOS | POSITION IN VEHICLE | Occupant | NUM | I-63 | II-175 |
| SEX | SEX OF INJURED/KILLED OCCUPANT | Occupant | CHA (1) | I-63 | II-178 |
| VEHNO | VEHICLE OCCUPIED BY | Occupant | NUM | I-64 | |
| | INJURED/KILLED | | | | |
| WORK_REL | WORK RELATED ACCIDENT | Occupant | CHA (1) | I-64 | |

NOTE: This file only contains data on the injured occupants in the vehicle for 1985-1990 data. Thus, none of the "successes" (non-injured occupants) are included for these years. Beginning in 1991 and 1992, this file contains data on all occupants. See discussion

NOTE: (1) SAS variable names and explanatory names are shown above each listing. (See Discussion for information on SAS formats.)
(2) This file only contains data on the injured occupants in the vehicle for 1985-1990 data. Thus, none of the "successes" (noninjured occupants) are included for these years. Beginning in 1991, this file contains data on all occupants. See discussion.

AGE
AGE OF INJURED/KILLED OCCUPANT

```
00-01 = 'INFANT - 1 YR'
02-04 = '02-04 YRS'
05-10 = '05-10 YRS'
11-14 = '11-14 YRS'
15 = ' 15 YRS'
16 = ' 16 YRS'
17 = ' 17 YRS'
18 = ' 18 YRS'
19 = ' }19\mathrm{ YRS'
20 = ' }20 YRS'
21-25 = '21-25 YRS'
26-30 = '26-30 YRS'
31-35 = '31-35 YRS'
36-45 = '36-45 YRS'
46-55 = '46-55 YRS'
56-65 = '56-65 YRS'
66-89 = '66-89 YRS'
90-97 = '90-97 YRS'
98 = '98 YRS OR OLDER'
99 = 'UNKNOWN'
```

BIRTHDAY
NON-LABELED VARIABLE -- Date of birth (YYYYMMDD)
NOTE: New variable added 1991.

CASENO ACCIDENT NUMBER

```
NON-LABELED VARIABLE -- 'YYYYDDDNNNN' WHERE YYYY = YEAR
                                    DDD = JULIAN DAY OF YEAR
                        NNNN = 0000-9999 = Unique case number
```


CORONER REPORT RECORD

```
    'Y' = 'YES'
    'N' = 'NO'
```

NOTE: New variable added in 1991.

DRIVER LICENSE CLASS

NON-LABELED VARIABLE -- one-character -- 'A'-'Z'
NOTE: New variable added in 1991.

DRIVER LICENSE STATE

```
NON-LABELED VARIABLE -- two-character state name (i.e., MN)
```

NOTE: New variable added in 1991.

DRIVER LICENSE WITHDRAWAL

```
'Y' = 'SUSPENDED, ETC' License suspended, revoked, cancelled,
or never licensed
'N' = 'OTHERWISE' Otherwise
OTHER = 'ERROR/OTHER CODE'
NOTE: New variable added in 1990. Data appear to be consistent in
1991 and later.
```


DRIVER RECOMMENDATION

```
    'OO' = 'NOT APPLIC' Not applicable
    '01' = 'PHYSICAL EXAM' Physical exam
    '02' = 'DRIVERS EXAM' Driver's exam
    '90' = 'OTHER'
    '99' = 'UNKNOWN' Unknown
```

NOTE: New variable added in 1990. Data appear to be consistent in
1991 and later.

EJECTION FROM VEHICLE

```
1 = 'TRAPPED/EXTRIC' Trapped/Extricated
2 = 'PART EJECTED' Partially ejected
3 = 'EJECTED' Ejected
4 = 'NOT EJECTED' Not ejected
8 'NOT APPLICABLE' Not applicable
9 = 'UNKNOWN' Unknown
```

OTHER = 'ERROR/OTHER CODE'
NOTES: (1) Approximately 30% of values coded as "UNKNOWN".
(2) Labels above are correct - raw documentation is in error.

FATALITY NUMBER

```
NON-LABELED VARIABLE -- Internal fatality number assigned by
    Minnesota
```

NOTE: Not of use for analysis efforts.

HOSP

HOSPTRAN

LIS_RSTR

FATALITY DATE

NON-LABELED VARIABLE -- Date of fatality (YYYYMMDD)
NOTE: New variable added in 1998.

INJURED TAKEN TO HOSPITAL
'Y' = 'YES'
'N' = 'NO'
OTHER = 'ERROR/OTHER CODE'

TRANSPORTED TO HOSPITAL METHOD

```
NON-LABELED VARIABLE -- A = AMBULANCE
    O = NOT TRANS/OTHER
```

NOTE: New variable added in 1991.

INJURY SEVERITY

```
'K' = 'KILLED'
'A' = 'INJ/INCAPACIT'
'B' = 'INJ NON/INCAPACI'
'C' = 'INJ POSSIB INJ'
' ','N' = 'NO INJURY'
'X','U' = 'INJ SEVER UNK'
OTHER = 'ERROR/OTHER CODE'
```

NOTE: The "NO INJURY" code is new beginning in 1990, since MN did
not begin coding uninjured occupants until that year. After 1991,
MN staff indicate that a blank code also can mean "NO INJURY" as
captured in the format above. However, since additional blank
"place holder" occupant records are added to the Occupant File,
while not likely the case, there may be some blank codes which
represent other injury classes. (See Discussion.)
COMPLIANCE WITH LICENSE RESTRICTIONS

```
    'Y' = 'YES'
    'N' = 'NO'
    'I' = 'NOT APPLIC'
    'X' = 'UNKNOWN'
```

NOTE: New variable added in 1991.

PHYSCOND

PHYSICAL CONDITION

```
01 = 'NORMAL'
02 = 'UNDER INFLUENCE'
03 = 'HAD BEEN DRINK'
04 = 'HAD BEEN USE DRG'
05 = 'ASLEEP'
06 = 'FATIGUED'
07 = 'ILL'
08 = 'HANDICAPPED'
*10 = 'COM DRV OVR .04'
90 = 'OTHER'
98 = 'NOT APPLIC'
99 = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
```

*New codes added in 1991.

NOTE: Codes are not mutually exclusive. If more than one condition exists, officer is most likely to use alcohol-related codes. In 1990, only injured driver information is available. Approximately, 35 percent of the cases are coded as "UNKNOWN."

RESIDENCE COUNTY

NON-LABELED VARIABLE -- County of residence (same codes as COUNTY)
NOTE: New variable added in 1991. Valid data are not available for 1997.

REST1

SAFETY EQUIPMENT USED

```
'1' = 'CHILD REST'
'2' = 'REST DEV NOT INS'
'3' = 'REST DEV NOT USE'
'4' = 'REST DEV USED'
'5' = 'MOTOCY HELM USED'
'6' = 'MOTOCY HELM/LGHT'
'7' = 'HELM USE LGHT/OF'
'8' = 'HELMET NOT USED'
'9' = 'NO HLMT/LGHT ON'
'A' = 'NO HLMT/LGHT OFF'
'B' = 'MTRCYCL LGHT ON'
'C' = 'MTRCYCL LGHT OFF'
'D' = 'CLOTHING DARK'
'E' = 'CLOTHING LT/REFL'
'F' = 'SEAT BELT IMP US'
'G' = 'OTHER'
*'H' = 'PAS BELT INS/USE'
*'I' = 'PAS BELT INS CIR'
```

Child restraint
Restraining device not installed
Restraining device installed - Not
used
Restraining device installed - Used
Motorcycle - Helmet used
Motorcycle - Helmet used, lights on
Motorcycle - Helmet used, lights off
Motorcycle - Helmet not used
Motorcycle - Helmet not used, lights
on
Motorcycle - Helmet not used, lights
off
Motorcycle - Lights on
Motorcycle - Lights off
Clothing dark
Clothing light or reflective material
Seat belt improperly used
Other
Passive belt installed and used
Passive belt installed
circumvented
(CON' T)

```
*'J' = 'AIRBAG + SB USE' Airbag deployed, seat belt used
*'K' = 'AIRBAG-NO SB USE' Airbag deployed, seat belt not used
*'L' = 'CRD NOT INSTALL' Child restraint device not installed
*'M' = 'CRD INSTL/NO USE' Child restraint device installed not
*'N' = 'CRD INST/IMPR US'
*' ','O' = 'UNKNOWN'
Unknown
used
Child restraint device installed
improperly used
```

OTHER = 'ERROR/OTHER CODE'
*New codes added in 1990 or 1991.
NOTE: This variable has many non-exclusive codes, high percentages
of uncoded cases, and is characterized in general by poor data.

SEATPOS

POSITION IN VEHICLE

```
OO = 'NOT OCCUP'
01 = 'DRIVER'
02 = 'FRONT CENTER'
03 = 'FRONT RIGHT'
04 = 'REAR LEFT'
05 = 'REAR CENTER'
06 = 'REAR RIGHT'
07 = 'OTHER PASSNG'
08 = 'RDER HANG ON VEH'
09 = 'MO/BIK/SNWBL DRV'
10 = 'MO/BIK/SNWBL PAS'
11 = 'SLED HANG ON'
*14 = '3RD SEAT LEFT'
*15 = '3RD SEAT CENTER'
*16 = '3RD SEAT RIGHT'
*90 = 'OTHER'
98 = 'NOT APPLICABLE'
99 = 'UNKNOWN'
OTHER = 'ERROR/OTHER CODE'
```

*New codes added in 1990 or 1991.
NOTE: Approximately 18 percent 'UNKNOWN' in 1991 and later.
SEX OF INJURED/KILLED OCCUPANT

```
'M' = 'MALE'
'F' = 'FEMALE'
'N' = 'NS/NOT APPLIC'
OTHER = 'ERROR/OTHER CODE'
```

VEHICLE OCCUPIED BY INJURED/KILLED
NON-LABELED VARIABLE -- Vehicle number on accident report. Used to link with vehicle file.

NOTE: Preliminary analyses indicate that pedestrians and bicyclists are often given a $\mathrm{VEHNO}=' 0 '$.

WORK_REL WORK RELATED ACCIDENT
'Y' = 'YES'
'N' = 'NO'
NOTE: New variable added in 1990. Data appear to be consistent in 1991 and later.

LIST OF VARIABLES FOR MINNESOTA ROADLOG FILE

| SAS | | | SAS | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VARIABLE | | | VARIABLE | FORMAT | TABLE |
| NAME | DESCRIPTION | FILE | TYPE | PAGE NO. | PAGE NO. |
| AADT | CALCULATED AVERAGE AADT | Roadlog | NUM | I-67 | II-181 |
| ACCESS | CONTROL OF ACCESS | Roadlog | NUM | I-67 | II-183 |
| ADLN_RD1 | ADDITIONAL LANES - ROAD 1 | Roadlog | CHA (1) | I-67 | II-184 |
| ADLN_RD2 | ADDITIONAL LANES - ROAD 2 | Roadlog | CHA (1) | I-67 | |
| BAS_TKR1 | BASE THICKNESS - ROAD 1 | Roadlog | CHA (3) | I-68 | |
| BEGMP | CALCULATED BEGIN MILEPOST | Roadlog | NUM | I-68 | |
| BRK_CD | BREAK CODE | Roadlog | NUM | I-68 | |
| COMM_ADT | CALCULATED AVERAGE COMMERCIAL AADT | Roadlog | NUM | I-69 | II-186 |
| COUNTY | COUNTY | Roadlog | NUM | I-69 | |
| CURB1 | CURBS - ROAD 1 | Roadlog | CHA (1) | I-69 | II-188 |
| CURB2 | CURBS - ROAD 2 | Roadlog | CHA (1) | I-69 | |
| ENDMP | CALCULATED ENDING MILEPOST | Roadlog | NUM | I-69 | |
| FED_AID | FEDERAL AID SYSTEM | Roadlog | CHA (1) | I-69 | II-189 |
| FED_SYSD | FEDERAL AID SYSTEM - DESIGNATED | Roadlog | CHA (1) | I-70 | II-190 |
| FED_SYSR | FEDERAL AID SYSTEM - REGULAR | Roadlog | CHA (1) | I-70 | II-191 |
| FUNC_CLS | FUNCTIONAL CLASS | Roadlog | NUM | I-70 | II-192 |
| H_COUNT | NUMBER OF COUNT STATIONS PER SECTION | Roadlog | NUM | I-70 | |
| INTE_CAT | INTERSECTION CATEGORY | Roadlog | NUM | I-71 | |
| INV_DTE | INVENTORY DATE | Roadlog | CHA (8) | I-71 | |
| LANEWID | LANE WIDTH | Roadlog | NUM | I-71 | |
| LSHL_TYP | LEFT SHOULDER TYPE - ROAD 1 | Roadlog | CHA (2) | I-72 | II-194 |
| LSHL_TY2 | LEFT SHOULDER TYPE - ROAD 2 | Roadlog | CHA (2) | I-72 | |
| LSHLDWID | LEFT SHOULDER WIDTH - ROAD 1 | Roadlog | CHA (2) | I-73 | II-198 |
| LSHL_WD2 | LEFT SHOULDER WIDTH - ROAD 2 | Roadlog | CHA (2) | I-73 | |
| MED_TYPE | MEDIAN TYPE | Roadlog | CHA (1) | I-73 | II-202 |
| MEDWID | MEDIAN WIDTH (IN FEET) | Roadlog | CHA (2) | I-74 | II-204 |
| MVMT | MILLION VEHICLE MILES TRAVELED | Roadlog | NUM | I-74 | |
| NBRVOL | TOTAL NUMBER OF TRAFFIC VOLUME COUNTS | Roadlog | NUM | I-74 | |
| NBRVOLB | NUMBER OF BLANK TRAFFIC VOLUME COUNTS | Roadlog | NUM | I-74 | |
| NBRVOLF | NUMBER OF FULL TRAFFIC VOLUME COUNTS | Roadlog | NUM | I-74 | |
| NO_LANE1 | NUMBER THROUGH LANES TOWARDS INCREASING MILEPOINTS | Roadlog | CHA (1) | I-74 | |
| NO_LANE2 | NUMBER THROUGH LANES TOWARDS DECREASING MILEPOINTS | Roadlog | CHA (1) | I-74 | |
| NO_LANES | TOTAL NUMBER OF LANES | Roadlog | NUM | I-75 | II-206 |
| ONEWAY | DIVIDED AND ONE-WAY CODE | Roadlog | CHA (1) | I-75 | II-208 |
| PARKING1 | PARKING ON ROAD 1 | Roadlog | CHA (1) | I-75 | II-209 |
| PARKING2 | PARKING ON ROAD 2 | Roadlog | CHA (1) | I-75 | |
| REF_PST | REFERENCE POST | Roadlog | CHA (3) | I-75 | |
| REMARK | REMARKS - TYPE OF RECORD | Roadlog | CHA (2) | I-76 | |

(CON'T)

LIST OF VARIABLES FOR MINNESOTA ROADLOG FILE

| SAS | | | SAS | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VARIABLE | | | VARIABLE | FORMAT | TABLE |
| NAME | DESCRIPTION | FILE | TYPE | PAGE NO. | PAGE NO. |
| RODWYCLS | ROADWAY CLASSIFICATION | Roadlog | CHA (2) | I-76 | II-211 |
| ROW | RIGHT OF WAY WIDTH | Roadlog | CHA (3) | I-76 | |
| RSHL_TYP | RIGHT SHOULDER TYPE - ROAD 1 | Roadlog | CHA (2) | I-77 | II-213 |
| RSHL_TY2 | RIGHT SHOULDER TYPE - ROAD 2 | Roadlog | CHA (2) | I-77 | |
| RSHLDWID | RIGHT SHOULDER WIDTH - ROAD 1 | Roadlog | CHA (2) | I-78 | II-217 |
| RSHL_WD2 | RIGHT SHOULDER WIDTH - ROAD 2 | Roadlog | CHA (2) | I-78 | |
| RTE_NBR | ROUTE NUMBER | Roadlog | CHA (9) | I-78 | |
| RTE_SYS | ROUTE SYSTEM | Roadlog | CHA (2) | I-79 | II-221 |
| RTSYSNBR | COMBINED ROUTE SYSTEM/ROUTE NUMBER | Roadlog | CHA (11) | I-79 | |
| SEG_LNG | CALCULATED SECTION LENGTH | Roadlog | NUM | I-79 | |
| SIDE_WLK | SIDEWALKS | Roadlog | CHA (1) | I-79 | II-224 |
| STM_SEW | STORM SEWERS | Roadlog | CHA (1) | I-80 | |
| SUF_TYP1 | SURFACE SPECIFICATION | Roadlog | CHA (4) | I-80 | |
| | NUMBER - ROAD 1 | | | | |
| SUF_TYP2 | SURFACE SPECIFICATION NUMBER - ROAD 2 | Roadlog | CHA (4) | I-80 | |
| SUR_TKR1 | SURFACE THICKNESS - ROAD 1 | Roadlog | CHA (3) | I-80 | |
| SURF_TYP | SURFACE TYPE - ROAD 1 | Roadlog | CHA (2) | I-80 | II-225 |
| SURF_TY2 | SURFACE TYPE - ROAD 2 | Roadlog | CHA (2) | I-80 | |
| SURF_WID | SURFACE WIDTH - ROAD 1 (IN FEET) | Roadlog | CHA (2) | I-81 | II-228 |
| SURF_WD2 | SURFACE WIDTH - ROAD 2 (IN FEET) | Roadlog | CHA (2) | I-81 | |
| TURN_LN | TURNING LANES TOWARD | Roadlog | CHA (1) | I-81 | II-230 |
| | INCREASING MILEPOSTS | | | | |
| TURN_LN2 | TURNING LANES TOWARD | Roadlog | CHA (1) | I-81 | |
| | DECREASING MILEPOSTS | | | | |
| UPDATE_ | DATE OF UPDATE | Roadlog | NUM | I-81 | |
| URB_MNC | URBAN/MUNICIPAL CODE | Roadlog | NUM | I-82 | II-231 |
| VOLGRP | TRAFFIC VOLUME GROUP | Roadlog | CHA (2) | I-82 | |
| VOLTYP | TRAFFIC VOLUME TYPE | Roadlog | CHA (1) | I-82 | II-232 |
| YEAR | YEAR OF TRAFFIC | Roadlog | CHA (4) | I-82 | |

NOTE: Prior to 1994, approximately one-third of the records on this file are "false records" coded other than 'blank'. These must be taken into account when using this file -- see introductory discussion.

NOTE: SAS variable names and explanatory names are shown above each listing. (See Discussion for information on SAS formats.)

AADT CALCULATED AVERAGE AADT

NOTE: This is the calculate average AADT (annual average daily traffic) assigned to this section. It is averaged over years (198587 in the 1987 File, 1988-89 in the 1989 File), and over counters within the section. If no counters exist, the average is brought forward from the preceding upstream section. See Discussion. Approximately $2 \%-4 \%$ of the sections have AADT which is either uncoded or '0.' While the percentages of uncoded/"0" seem to vary across years, we can see no discernable pattern.

ACCESS CONTROL OF ACCESS

```
0 = 'NOT APPLICABLE' Not applicable
1 = 'NO CNTRL OF ACC' No control of access
2 = 'PART CNTL OF AC' Partial control of access
3 = 'FULL CNTL OF AC' Full control of access
4 = 'NOT PUBLIC ROAD' Not a public road
```

$\begin{array}{ll}\text { ADLN_RD1 } & \text { ADDITIONAL LANES - ROAD } 1 \\ \text { ADLN_RD2 } & \text { ADDITIONAL LANES - ROAD } 2\end{array}$
' ' = 'NOT APPLICABLE'
'O' = 'NO ADDITION LNS'
'1' = 'CLMB LNES LEFT'
'2' = 'CLMB LNES RIGHT'
'3' = 'CLMB LNES BOTH'
'4' = 'ESC LANE ON LFT'
'5' = 'ACCEL LNES LEFT'
'6' = 'ACCEL LNES RIGH'
$'^{\prime} \mathbf{'}^{\prime}=$ 'ACEL LNES BOTH'
Not applicable
No additional lanes
Climbing lane(s) on left
Climbing lane(s) on right
Climbing lanes on both sides
Escape lane on left
Acceleration lane(s) on left
Acceleration lane(s) on right
Acceleration lanes on both sides
(CON' T)

```
'8' = 'ESC LANES RIGHT' Escape lanes on right
'9' = 'OTHER ADDIT LNS' Other additional lanes
NOTE: Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See earlier discussion.)
```


BAS_TKR1

BEGMP

BRK_CD

BASE THICKNESS - ROAD 1

```
' ' = 'NOT APPLICABLE'
```

' ' = 'NOT APPLICABLE'
'UN ' = 'UNKNOWN'
'UN ' = 'UNKNOWN'
'010'-'100' = ' 1.0 - 10.0'
'010'-'100' = ' 1.0 - 10.0'
'101'-'200' = '10.1 - 20.0'
'101'-'200' = '10.1 - 20.0'
'201'-'300' = '20.1 - 30.0'
'201'-'300' = '20.1 - 30.0'
'301'-'400' = '30.1 - 40.0'
'301'-'400' = '30.1 - 40.0'
'401'-'600' = '40.1 - 60.0'
'401'-'600' = '40.1 - 60.0'
'601'-'900' = '60.1 - 90.0'
'601'-'900' = '60.1 - 90.0'
'901'-'999' = ' >= 90.1'
'901'-'999' = ' >= 90.1'
OTHER ='ERROR/OTHER CODE'
OTHER ='ERROR/OTHER CODE'
NOTE: This is the thickness of the pavement base to the nearest tenth of an inch (e.g., $094=9.4$ inches). Over 99\% of the data are coded as "Not Applicable", which probably means that a blank also means "Not Coded".

```

\section*{CALCULATED BEGIN MILEPOST}
```

NON-LABELED VARIABLE -- Calculated beginning milepost -- See

```
NON-LABELED VARIABLE -- Calculated beginning milepost -- See
    Discussion
    Discussion
BREAK CODE
```

```
1 = 'RDLOG REPT'
```

1 = 'RDLOG REPT'
2 = 'CNTRL SECT BK'
2 = 'CNTRL SECT BK'
3 = 'LOGPOINT LISTNG'
3 = 'LOGPOINT LISTNG'
4 = 'LOGPT\&CNTRL SEC'
4 = 'LOGPT\&CNTRL SEC'
5 = 'RDLG RPT \& CNTL'
5 = 'RDLG RPT \& CNTL'
6 = 'RDLG RPT \& LGPT'
6 = 'RDLG RPT \& LGPT'
7 = 'RDLG LGPT \& CNTL'

```
7 = 'RDLG LGPT & CNTL'
```

Roadlog reports
Control section book
Logpoint listings
Logpoint listings \& control section book
Roadlog report and control section book
Roadlog reports and logpoint listings Roadlog reports \& logpoint listings \& control section book

COUNTY

CURBS - ROAD 1
CURB2 CURBS - ROAD 2

```
' ' = 'NOT APPLICABLE' Not applicable
'N' = 'NO CURBS'
'L' = 'CURBS ON LEFT'
'R' = 'CURBS ON RIGHT'
'B' = 'CURBS ON BOTH'
'U' = 'UNKNOWN'
```

NOTE: Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See discussion.)

CALCULATED ENDING MILEPOST

$$
\begin{aligned}
& \text { NON-LABELED VARIABLE -- Calculated ending milepost -- See } \\
& \text { Discussion. }
\end{aligned}
$$

```
' ' = 'NOT APPLICABLE' Not applicable
'N' = 'NOT FED AID SYS' Not on federal aid system
'I' = 'FED AID INTERST' Federal aid interstate
'P' = 'FED AID PRIMARY' Federal aid primary
'S' = 'FED AID SECONDA' Federal aid secondary
'U' = 'FED AID URBAN' Federal aid urban
```

```
' ' = 'NO TRAVELLED WAY'
'D' = 'PROJECTED WAY'
'T' = 'TRAVELLED WAY' Travelled way
No travelled way or projected way
involved
Projected way
```

FED_SYSR FEDERAL AID SYSTEM - REGULAR

```
' ' = 'NO TRAV WAY INV'
'I' = 'TRAV WY INTERST'
'P' = 'TRAV WY PRIMARY'
'S' = 'TRAV WY SECONDA'
'U' = 'TRAV WY URB SYS'
'N' = 'TRAV WY NON FED'
```

FUNC_CLS
FUNCTIONAL CLASS

```
O0='NOT APPLICABLE'
Rural
01 = 'RUR INTERSTATE'
02 = 'RURAL PRIN ARTE'
06 = 'RUR MINOR ARTE'
07 = 'RUR MAJ ARTIAL'
08 = 'RUR MIN COLLECT'
09 = 'RUR LOCAL SYSTM'
Urban
12 = 'URB CONNEC FREW'
13 = 'URB FRW NOT CNT'
14 = 'URB OTH CON LNK'
15 = 'URB OTH NON LNK'
16 = 'URB MIN ARTERIA'
17 = 'URBAN COLLECTOR'
19 = 'URB LOCAL SYSTM'
Not applicable
Principal arterial - Interstate
Principal arterial - Other
Minor arterial
Major collector
Minor collector
Local systems
Principal arterial - Interstate
Principal arterial - Other freeway -
connecting
Principal arterial - Other freeway -
Non-connecting
Principal arterial - Other connecting
link
principal arterial - Other non-
connecting link
Minor arterial
Collector
Local systems
```

```
No travelled way involved
Travelled way of interstate system
Travelled way of primary system
Travelled way of secondary system
Travelled way of urban system
Travelled way of non-federal system
```

Not applicable
NOTE: Beginning with 1990 data, codes 13 and 15 are no longer valid.
Code 13 was changed to 12 and 15 was changed to 14 . This explains
why there are 'zeros' in the Guidebook tables cells for these codes.
H_COUNT NUMBER OF COUNT STATIONS PER SECTION
NON-LABELED VARIABLE -- Number of traffic count stations per section

INTERSECTION CATEGORY

```
00 = 'NO INTERSECTION'
01 = 'ISTH' Interstate trunk highway
02 = 'USTH' U.S. trunk highway
03 = 'MNTH' Minnesota trunk highway
04 = 'CSAH' County state-aid highway
05 = 'MSAS' Municipal state-aid street
07 = 'CNTY'
08 = 'TWNS'
09 = 'UTWN'
10 = 'MUN' City streets
11 = 'NATP'
12 = 'NFD'
13 = 'IND'
14 = 'SFR'
15 = 'SPRK'
16 = 'MIL'
17 = 'NATM'
18 = 'NATW'
19 = 'FRNT'
20 = 'SGAM'
21 = 'LEG'
22 = 'RAMP'
23 = 'PRIV'
No intersection
M--
Interstate trunk highway
U.S. trunk highway
Minnesota trunk highway
County state-aid highway
Municipal state-aid street
County road
Township road
Unorganized township road
City streets
National park road
National forest development road
Indian reservation road
State forest road
State park road
Military road
National monument road
National wildlife refuge road
Frontage road
State game preserve road
Leg
Ramp
Private jurisdiction road
```

NOTE: This is a "point" variable describing the intersection at the beginning of the segment.

INV_DTE

LANEWID

INVENTORY DATE

```
NON-LABELED VARIABLE -- 00000000 = DATE OF INVENTORY UNKNOWN
    YYYYMMDD = DATE OF MOST RECENT INVENTORY
```


LANE WIDTH

NON-LABELED VARIABLE -- Calculated lane width

NOTE: Lane width (in feet) is not provided in the raw data file from Minnesota. Instead, this variable is calculated using the following method suggested by Minnesota staff:
(1) If roadway is undivided (i.e., ONEWAY not equal to 'D'), and if a curb is not present (CURB1 = 'N'), then: LANEWID = SURF_WID/NO_LANES. If a curb is present (CURB1 = 'L', 'R', or 'B'), then LANEWID = 12;
(2) If roadway is divided (i.e., ONEWAY = 'D') and if a curb is not present (CURB1 = 'N'), then: LANEWID = (SURF_WID + SURF_WD2)/NO_LANES. If a curb is present (CURB1 = 'L', 'R', or 'B'), then LANEWID $=12$.

| LSHL_TYP | LEFT SHOULDER TYPE - ROAD 1 |
| :--- | :--- | :--- |
| LSHL_TY2 | LEFT SHOULDER TYPE - ROAD 2 |

```
' ' = 'NOT APPLICABLE'
'A ' = 'PRIMITIVE'
'B ' = 'UNIMPROVED'
'C ' = 'GRADED/DRAINED'
'D ' = 'SOIL-SURFACED'
'E ' = 'GRAVEL OR STONE'
'F ' = 'BITUM SURF TRAVE'
'G ' = 'MIX BITM TYP UNK'
'G1' = 'MIX BITM LOW TYP'
'G2' = 'MIX BITM HGH TYP'
'G3' = 'MIX BITM RESURF'
'G4' = 'MIX BITM NEW CON'
'I ' = 'BITM CONCRET/ASP'
'I3' = 'BITM CONCRET RES'
'I4' = 'BITM CON NEW CON'
'J ' = 'PORT CEMT CONCR'
'J3' = 'PORT CEMT RESURF'
'J4' = 'PORT CEMT NW CON'
'K ' = 'BRICK'
'L ' = 'BLOCK'
'M1' = 'COMP 1 FT BITUMI'
'M2' = 'COMP 2 FT BITUMI'
'M3' = 'COMP 3 FT BITUMI'
'M4' = 'COMP 4 FT BITUMI'
'M5' = 'COMP 5 FT BITUMI'
'M6' = 'COMP 6 FT BITUMI'
'M7' = 'COMP 7 FT BITUMI'
'M8' = 'COMP 8 FT BITUMI'
'M9' = 'COMP 9 FT BITUMI'
'N1' = 'COMP 1 FT B-CONC'
'N2' = 'COMP 2 FT B-CONC'
'N3' = 'COMP 3 FT B-CONC'
'N4' = 'COMP 4 FT B-CONC'
'N5' = 'COMP 5 FT B-CONC'
'N6' = 'COMP 6 FT B-CONC'
'N7' = 'COMP 7 FT B-CONC'
'N8' = 'COMP 8 FT B-CONC'
'N9' = 'COMP 9 FT B-CONC'
'S ' = 'SOD SHOULDER'
```

Not applicable
Primitive
Unimproved
Graded and drained
Soil-surfaced
Gravel or stone
Bituminous surface - traveled
Mixed bituminous road - type unknown
Mixed bituminous road - low-type
Mixed bituminous road - high-type
Mixed bituminous surface - resurfacing
Mixed bituminous surface - new construction
Bituminous concrete or asphalt road
Bituminous concrete or asphalt
resurfacing
Bituminous concrete or asphalt new construction
Portland cement concrete road
Portland cement concrete resurfacing
Portland cement concrete new
construction
Brick
Block
Composite shoulder - 1 ft bituminous
Composite shoulder - 2 ft bituminous
Composite shoulder - 3 ft bituminous
Composite shoulder - 4 ft bituminous
Composite shoulder - 5 ft bituminous
Composite shoulder - 6 ft bituminous
Composite shoulder - 7 ft bituminous
Composite shoulder - 8 ft bituminous
Composite shoulder - 9 ft bituminous
Composite shoulder - 1 ft bituminous composite concrete
Composite shoulder - 2 ft bituminous composite concrete
Composite shoulder - 3 ft bituminous composite concrete
Composite shoulder - 4 ft bituminous composite concrete
Composite shoulder - 5 ft bituminous composite concrete
Composite shoulder - 6 ft bituminous composite concrete
Composite shoulder - 7 ft bituminous composite concrete
Composite shoulder - 8 ft bituminous composite concrete
Composite shoulder - 9 ft bituminous composite concrete
Sod shoulder
(CON' T)

```
'OO' = 'NO SHOULDER' No shoulder
```

OTHER = 'ERROR/OTHER CODE'

NOTE: (1) Composite shoulders (i.e., part paved, part unpaved) are coded as "Mn" or "Nn" in the above format. The "n" or numeric part of these codes defines the width of the paved part of the shoulder. The shoulder width variables (e.g., LSHLDWID, RSHLWID) will provide the total shoulder width in these composite cases.
(2) Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See earlier discussion.)

LSHLDWID LSHL_WD2

LEFT SHOULDER WIDTH - ROAD 1 LEFT SHOULDER WIDTH - ROAD 2

This is the actual left shoulder width in feet. A blank means "not applicable"; a "UN" means "unknown"; and a "00" means "no shoulder".

NOTE: (1) Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See earlier discussion.)
(2) When Mn/DOT codes shoulder width, it is total shoulder width. For sod/gravel, it is from edge of lane to ditch, quardrail, or taper to ditch. When there is partial paved and partial sod/gravel, the shoulder type should be coded as "composite." In the composite codes under shoulder type, the shoulder type codes gives the feet of paved shoulder within the measurement. The total measure for shoulder width presented here is the width of the total composite shoulder -- from edge of lane to ditch. When the shoulder is "paved", the width is total width of the paved shoulder. There may be some cases where the coding is slightly in error. For example, a paved width may have some added sod/gravel which is unmeasured. However, if there is a wide area of sod/gravel, the shoulder type will be "composite" and the total width will be measured. There are also some cases where composite shoulders may be coded in error; however, it can be assumed that the total width is for all types of shoulders.

```
' ' = 'NOT APPLICABLE'
'O' = 'MEDIAN TYPE UNK'
'1' = 'RAISED MEDIAN'
'2' = 'DEPRESSED MEDIAN'
'3' = 'PLATE BEAM BARR'
'4' = 'ONE-WAY COUPLET'
'6' = 'CONCRETE BARRIER'
```

```
Not applicable
Median type unknown
No median barrier, raise median
No median barrier, depressed median
Plate beam barrier
City block (one-way couplet)
Concrete barrier
```

(CON' T)

```
'5' = 'BOX BEAM BARRIER'
'7' = 'RAIS MD CHAN/LNK'
'8' = 'DEPR MED CHAN/LK'
```

Box beam barrier
Chain link barrier, raise median Chain link barrier, Depressed median
MVMT
NBRVOL TOTAL NUMBER OF TRAFFIC VOLUME COUNTS
NON-LABELED VARIABLE -- The number of total (full plus blank) volume
fields in the record containing AADT values.

NBRVOLE

NO LANE 1
NO_LANE2

```
MEDWID
```

```
MEDIAN WIDTH (IN FEET)
```

MEDIAN WIDTH (IN FEET)
' ' = 'NOT APPLICABLE'
' ' = 'NOT APPLICABLE'
'UN' = 'UNKNOWN
'UN' = 'UNKNOWN
'VR' = 'VARIES'
'VR' = 'VARIES'
'01'-'10' = '01 - 10'
'01'-'10' = '01 - 10'
'11'-'20' = '11 - 20'
'11'-'20' = '11 - 20'
'21'-'30' = '21 - 30
'21'-'30' = '21 - 30
'31'-'40' = '31 - 40'
'31'-'40' = '31 - 40'
'41'-'60' = '41 - 60
'41'-'60' = '41 - 60
'61'-'90' = '61 - 90'
'61'-'90' = '61 - 90'
'91'-'99' = ' >= 91'

```
'91'-'99' = ' >= 91'
```

MILLION VEHICLE MILES TRAVELED
segment
NOTE: Created variable added in 1999 for all HSIS roadway-inventory
files. See Discussion.

TOTAL NUMBER OF TRAFFIC VOLUME COUNTS
NUMBER OF BLANK TRAFFIC VOLUME COUNTS
NON-LABELED VARIABLE -- The number of blank (unused) volume fields
in the record.

NUMBER OF FULL TRAFFIC VOLUME COUNTS
NON-LABELED VARIABLE -- Number of volume fields in the record
containing AADT values.

NUMBER THROUGH LANES TOWARDS INCREASING MILEPOINTS NUMBER THROUGH LANES TOWARDS DECREASING MILEPOINTS

```
'' = 'NO LANES'
'3' = 'THREE LANES'
'4' = 'FOUR LANES'
'5' = 'FIVE LANES'
```

'1' = 'ONE LANE' One through lane
'2' = 'TWO LANES' Two through lanes
Not applicable (no lanes)
Three through lanes
One through lane
Two through lanes
Four through lanes
Five through lanes

NOTE: This variable and NO_LANE1 must be summed to obtain the total number of lanes on a section of roadway, even for 2 -lane, 2 -way roadways. This has been done under NO_LANES.

```
. = 'NO LANES'
1 = 'ONE LANE'
2 = 'TWO LANES'
3 = 'THREE LANES'
4 = 'FOUR LANES'
5 = 'FIVE LANES'
6 = 'SIX LANES'
7 = 'SEVEN LANES'
8 = 'EIGHT LANES'
9-20 = '> EIGHT LANES'
```

NOTE: This is the sum of NO_LANE1 + NO_LANE2, and is the total number of lanes on a section of roadway.

ONEWAY DIVIDED AND ONE-WAY CODE

```
' ' = 'NOT APPLICABLE'
'D' = 'DIV RD1 & RD2'
'O' = 'ONE-WY RD1 & RD2'
'U' = 'UNDIV 2WAY RD1'
'X' = 'ONE WY TWD DECR'
'Z' = 'ONE WY TWD INC'
```

```
Not applicable
Divided roadway - Road-1 & road-2
present
One-way couplet - Road-1 & road-2
present
Undivided 2-way - road-1 present
One-way street towards decreasing
reference posts - Road-2 present
One-way street towards increasing
reference posts - Road-1 present
```


PARKING1
 PARKING2
 PARKING ON ROAD 1
 PARKING ON ROAD 2

```
' ' = 'NOT APPLICABLE'
'0' = 'UNKNOWN'
'1' = 'NONE RGHT OR LFT'
'2' = 'LFT NONE RGH PAR'
'3' = 'LFT NONE RGH DIA'
'4' = 'LFT PAR RGH NON'
'5' = 'LFT PAR RGH PARL'
'6' = 'LFT PAR RGH DIAG'
'7' = 'LFT DIAG RGH NON'
'8' = 'LFT DIAG RGH PAR'
'9' = 'LFT DIAG RGH DIA'
```

```
Not applicable
```

Not applicable
Unknown
Unknown
Left-none Right-none
Left-none Right-none
Left-none Right-parallel
Left-none Right-parallel
Left-none Right-diagonal
Left-none Right-diagonal
Left-parallel Right-none
Left-parallel Right-none
Left-parallel Right-parallel
Left-parallel Right-parallel
Left-parallel Right-diagonal
Left-parallel Right-diagonal
Left-diagonal Right-none
Left-diagonal Right-none
Left-diagonal Right-parallel
Left-diagonal Right-parallel
Left-diagonal Right-diagonal
Left-diagonal Right-diagonal
NOTE: Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See earlier discussion.)

```

\section*{REFERENCE POST}

NON-LABELED VARIABLE -- Reference post number ('000'-'999')
NOTE: New variable added in 1996.

\section*{REMARK REMARKS - TYPE OF RECORD}
' = 'M-REC NORM SECT' \begin{tabular}{l} 
Mileage record - Normal section \\
(roadlog file)
\end{tabular}
'CO' = 'D-REC COINCIDEN'
'EN' = 'D-REC END OF RT'
Mileage record - Non-existent section
(roadlog file)
Descriptor record - Coincident
(roadlog file)
Descriptor record - End-of-route
record (roadlog file)

\section*{RODWYCLS}

\section*{ROADWAY CLASSIFICATION}
```

'01' = 'URB FRWY >= 4 LN' Urban freeways, four or more lanes
'02' = 'URB FRWY < 4 LN'' Urban freeways, less than 4 lanes
'03' = 'URB 2-LANE ROADS' Urban two-lane roads
'04' = 'URB ML DV N-FREE' Urban multi-lane divided, non-freeway
'05' = 'URB ML UND N-FRE' Urban multilane undivided, non-freeway
'06' = 'RUR FRWY >= 4 LN' Rural freeways, four or more lanes
'07' = 'RUR FRWY < 4 LN' Rural freeways, less than 4 lanes
'08' = 'RUR 2-LANE ROADS' Rural two-lane roads
'09' = 'RUR ML DV N-FREE' Rural multilane divided, non-freeway
'10' = 'RUR ML UND N-FRE' Rural Multilane undivided, non-freeway
'99' = 'OTHERS'
Urban freeways, four or more lanes
Urban freeways, less than 4 lanes
Urban two-lane roads
Urban multi-lane divided, non-freeway
Urban multilane undivided, non-freeway
Rural freeways, four or more lanes
Rural freeways, less than 4 lanes
Rural two-lane roads
Rural multilane divided, non-freeway
Rural Multilane undivided, non-freeway
Others

```

NOTE: Created variable added to HSIS accident and roadway inventory files in all states in 1999. See Discussion.

ROW RIGHT OF WAY WIDTH
NON-LABELED VARIABLE -- Average right of way width in feet.
NOTE: New variable added in 1994.
\begin{tabular}{lll} 
RSHL_TYP & RIGHT & SHOULDER TYPE - ROAD 1 \\
RSHL_TY2 & RIGHT & SHOULDER TYPE - ROAD 2
\end{tabular}
\begin{tabular}{|c|c|}
\hline 'A ' & \(=~ ' N O T ~ A P P L I C ~\) \\
\hline 'B & = 'UNIMPROVED' \\
\hline 'C & \(={ }^{\prime}\) GRADED/DRAINED' \\
\hline 'D & \(={ }^{\prime}\) SOIL-SURFACED' \\
\hline 'E & 'GRAVEL OR STONE' \\
\hline 'F & = 'BITUM SURF TRAVE' \\
\hline 'G & \(=\) 'MIX BITM TYP UNK' \\
\hline 'G1' & 'MIX BITM LOW TYP' \\
\hline 'G2' & 'MIX BITM HGH TYP' \\
\hline 'G3' & 'MIX BITM RESURF' \\
\hline 'G4' & \(=\) 'MIX BITM NEW CON' \\
\hline 'I & = 'BITM CONCRET/ASP' \\
\hline 'I3' & \(=\) 'BITM CONCRET RES' \\
\hline 'I4' & \(={ }^{\prime}\) BITM CON NEW CON' \\
\hline 'J & 'PORT CEMT CONCR' \\
\hline 'J3' & 'PORT CEMT RESURF' \\
\hline 'J4' & \(=\) 'PORT CEMT NW CON' \\
\hline ' K & ' \({ }^{\prime}\) BRICK' \\
\hline 'L & = 'BLOCK' \\
\hline 'M1' & \(={ }^{\prime} \mathrm{COMP} 1 \mathrm{FT}\) BITUMI' \\
\hline 'M2' & 'COMP 2 FT BITUMI' \\
\hline 'M3' & 'COMP 3 FT BITUMI' \\
\hline 'M4' & 'COMP 4 FT BITUMI' \\
\hline 'M5' & 'COMP 5 FT BITUMI' \\
\hline 'M6' & 'COMP 6 FT BITUMI' \\
\hline 'M7' & 'COMP 7 FT BITUMI' \\
\hline 'M8' & 'COMP 8 FT BITUMI' \\
\hline 'M9' & 'COMP 9 FT BITUMI' \\
\hline 'N1' & \(=' \mathrm{COMP} 1 \mathrm{FT} \mathrm{B}\)-CONC' \\
\hline 'N2' & \(={ }^{\prime} \mathrm{COMP} 2 \mathrm{FT}\) B-CONC' \\
\hline 'N3' & \(={ }^{\prime} \mathrm{COMP} 3 \mathrm{FT} \mathrm{B}\)-CONC' \\
\hline 'N4' & \(={ }^{\prime} \mathrm{COMP} 4 \mathrm{FT}\) B-CONC' \\
\hline 'N5' & \(={ }^{\prime} \mathrm{COMP} 5\) FT B-CONC' \\
\hline 'N6' & \(={ }^{\prime} \mathrm{COMP} 6 \mathrm{FT}\) B-CONC' \\
\hline 'N7' & \(={ }^{\prime} \mathrm{COMP} 7 \mathrm{FT}\) B-CONC' \\
\hline 'N8' & \(=\) 'COMP 8 FT B-CONC' \\
\hline 'N9' & \(={ }^{\prime} \mathrm{COMP} 9 \mathrm{FT}\) B-CONC' \\
\hline
\end{tabular}

Not applicable
Primitive
Unimproved
Graded and drained
Soil-surfaced
Gravel or stone
Bituminous surface - traveled
Mixed bituminous road - type unknown
Mixed bituminous road - low-type
Mixed bituminous road - high-type
Mixed bituminous surface - resurfacing
Mixed bituminous surface - new construction
Bituminous concrete or asphalt road
Bituminous concrete or asphalt
resurfacing
Bituminous concrete or asphalt new construction
Portland cement concrete road
Portland cement concrete resurfacing
Portland cement concrete new
construction
Brick
Block
Composite shoulder - 1 ft bituminous
Composite shoulder - 2 ft bituminous
Composite shoulder - 3 ft bituminous
Composite shoulder - 4 ft bituminous
Composite shoulder - 5 ft bituminous
Composite shoulder - 6 ft bituminous
Composite shoulder - 7 ft bituminous
Composite shoulder - 8 ft bituminous
Composite shoulder - 9 ft bituminous
Composite shoulder - 1 ft bituminous composite concrete
Composite shoulder - 2 ft bituminous composite concrete
Composite shoulder - 3 ft bituminous composite concrete
Composite shoulder - 4 ft bituminous composite concrete
Composite shoulder - 5 ft bituminous composite concrete
Composite shoulder - 6 ft bituminous composite concrete
Composite shoulder - 7 ft bituminous composite concrete
Composite shoulder - 8 ft bituminous composite concrete
Composite shoulder - 9 ft bituminous composite concrete
```

'S ' = 'SOD SHOULDER' Sod shoulder
'OO' = 'NO SHOULDER' No shoulder
OTHER = 'ERROR/OTHER CODE'

```

NOTE: (1) Composite shoulders (i.e., part paved, part unpaved) are coded as "Mn" or "Nn" in the above format. The "n" or numeric part of these codes defines the width of the paved part of the shoulder. The shoulder width variables (e.g., LSHLDWID, RSHLWID) will provide the total shoulder width in these composite cases.
(2) Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handing. (See earlier discussion.)

\section*{RSHLDWID RIGHT SHOULDER WIDTH - ROAD 1 RSHL_WD2 RIGHT SHOULDER WIDTH - ROAD 2}

This is the actual right shoulder width in feet. A blank means "not applicable"; a "UN" means "unknown"; and a "00" means "no shoulder".

NOTE: (1) Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handing. (See earlier discussion.)
(2) When Mn/DOT codes shoulder width, it is total shoulder width. For sod/gravel, it is from edge of lane to ditch, quardrail, or taper to ditch. When there is partial paved and partial sod/gravel, the shoulder type should be coded as "composite." In the composite codes under shoulder type, the shoulder type codes gives the feet of paved shoulder within the measurement. The total measure for shoulder width presented here is the width of the total composite shoulder -- from edge of lane to ditch. When the shoulder is "paved", the width is total width of the paved shoulder. There may be some cases where the coding is slightly in error. For example, a paved width may have some added sod/gravel which is unmeasured. However, if there is a wide area of sod/gravel, the shoulder type will be "composite" and the total width will be measured. There are also some cases where composite shoulders may be coded in error; however, it can be assumed that the total width is for all types of shoulders.

\section*{RTE_NBR ROUTE NUMBER}

NON-LABELED VARIABLE
NOTE: 'NNNNNNNNX' = ROUTE NUMBER (N=0-9, and X is numeric, alpha, or blank. Note that in a few cases with county/township roads, an alpha character will appear in other columns.) This variable is used for file linkage * see RTSYSNBR.
```

'01' = 'ISTH' Interstate trunk highway
'02' = 'USTH' U.S. trunk highway
'03' = 'MNTH' Minnesota trunk highway
'04' = 'CSAH' County state-aid highway
'05' = 'MSAS' Municipal state-aid highway
'07' = 'CNTY' County road
'08' = 'TWNS' Township road
'09' = 'UTWN'
'10' = 'MUN'
'11' = 'NATP'
'12' = 'NFD'
'13' = 'IND'
'14' = 'SFR'
'15' = 'SPRK'
'16' = 'MIL'
'17' = 'NATM'
'18' = 'NATW'
'19' = 'FRNT'
'20' = 'SGAM'
'21' = 'PRV RD PUBLIC'
'23' = 'ALLEY/CEMTERY'
Unorganized township road
City streets
National park road
National forest development road
Indian reservation road
State forest road
State park road
Military road
National monument road
National wildlife refuge road
Frontage road
State game preserve road
Private road open to public
Alleys and cemeteries

```

NOTE: See RTESYSNBR.

\section*{RTSYSNBR COMBINED ROUTE SYSTEM/ROUTE NUMBER}

NON-LABELED VARIABLE
NOTE: This is a combined version of the RTE_NBR and RTE_SYS variables above. This combining was done to facilitate computer linkage with other files.

\section*{SEG_LNG}

SIDE_WLK

\section*{SIDEWALKS}
```

' ' = 'NOT APPLICABLE'
'N' = 'NO SIDEWALKS'
'L' = 'SIDWLK LEFT SIDE'
'R' = 'SIDWLK RIGH SIDE'
'B' = 'SIDWLK BOTH SIDE'
'C' = 'COMBINATION'
'U' = 'UNKNOWN'

```
Not applicable
No sidewalks
Sidewalks on left side
Sidewalks on right side
Sidewalks on both sides
Combination (divided roadways and one-
way couplets only)
Unknown
```

' ' = 'NOT APPLICABLE' Not applicable or not stated
'Y' = 'STORM SEWERS'
'N' = 'NO STORM SEWERS'
'U' = 'UNKNOWN'
Yes - Storm sewers present
No - Storm sewers not present
Unknown

```

NOTE: High percentage of "UNKNOWN" codes.

\section*{SUF_TYP1 \\ SURFACE SPECIFICATION NUMBER - ROAD 1 SUF_TYP2 SURFACE SPECIFICATION NUMBER - ROAD 2}
\begin{tabular}{|c|c|c|}
\hline & \(=\) 'NOT APPLICABLE' & Not applicable or not stated \\
\hline '0000' & \(=' \mathrm{GRAVL} / \mathrm{AGGRG}\) SURF' & Gravel (aggregate) surface \\
\hline '2301' & \(={ }^{\prime}\) 'CONCRETE PAVEMNT' & Concrete pavement \\
\hline '2321' & \(={ }^{\prime}\) RD-MIX BITM SURF' & Road-mixed bituminous surface \\
\hline '2331' & \(=\) 'PLT-MIX BTM PAVE' & Plant-mixed bituminous pavement \\
\hline '2341' & \(=\) 'PLT-MIX BTM SURF' & Plant-mixed bituminous surface \\
\hline '2351' & \(=\) 'ASPHL CONCR SURF' & Asphaltic concrete surface \\
\hline '2361' & \(=\) 'ASPHL CONCR FINE' & Asphaltic concrete surface (fine mix) \\
\hline
\end{tabular}

NOTE: Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See earlier discussion.)

\section*{SUR_TKR1 SURFACE THICKNESS - ROAD 1}

NON-LABELED VARIABLE -- Surface thickness to the nearest tenth of an inch (e.g., \(094=9.4\) inches). Here, a blank means "not applicable" and a "UN" means "unknown".

\section*{SURF_TYP SURFACE TYPE - ROAD 1 \\ SURF_TY2 SURFACE TYPE - ROAD 2}
```

'' = 'NOT APPLICABLE'
'A ' = 'PRIMITIVE'
'B'= 'UNIMPROVED'
'C ' = 'GRADED/DRAINED'
'D ' = 'SOIL-SURFACED'
'E ' = 'GRAVEL OR STONE'
'F ' = 'BITUM SURF TRAVE'
'G ' = 'MIX BITM TYP UNK'
'G1' = 'MIX BITM LOW TYP'
'G2' = 'MIX BITM HGH TYP'
'G3' = 'MIX BITM RESURF'
'G4' = 'MIX BITM NEW CON'
'I ' = 'BITM CONCRET/ASP'
'I3' = 'BITM CONCRET RES'

```
Not applicable
Primitive
Unimproved
Graded and drained
Soil-surfaced
Gravel or stone
Bituminous surface - traveled
Mixed bituminous road - type unknown
Mixed bituminous road - low-type
Mixed bituminous road - high-type
Mixed bituminous surface - resurfacing
Mixed bituminous surface - new
construction
Bituminous concrete or asphalt road
Bituminous concrete or asphalt
resurfacing
(CON' T)


NOTE: Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See earlier discussion.)

\section*{SURF_WID} SURF_WD2

SURFACE WIDTH - ROAD 1 (IN FEET) SURFACE WIDTH - ROAD 2 (IN FEET)
```

' ' = 'NOT APPLICABLE'
'UN' = 'UNKNOWN'
'VR' = 'VARIES'
'01'-'15' = '01 - 05'
'16'-'18' = '16 - 18'
'19'-'22' = '19 - 22'
'23'-'25' = '23 - 25'
'26'-'30' = '26 - 30'
'31'-'40' = '31 - 40'
'41'-'50' = '41 - 50'
'51'-'60' = '51 - 60'
'61'-'80' = '61 - 80'
'81'-'99' = ' >= 81'

```

NOTE: Road 2 data only exist for divided roadways. In addition, since there is no accurate way of linking a given accident with the proper road, and because of the low number of "disagreements" between Road 1 and Road 2 data, it is suggested that accidents always be linked with Road 1 data for ease of handling. (See earlier discussion.)

TURN_LN TURNING LANES TOWARD INCREASING MILEPOSTS TURN_LN2 TURNING LANES TOWARD DECREASING MILEPOSTS
```

' ' = 'NOT APPLICABLE'
'N' = 'NO TURNING LANE'
'L' = 'TRN LNE LFT SDE'
'R' = 'TRN LNE RGH SDE'
'B' = 'TRN LNE BTH SDE'

```

\section*{Not applicable}

No turning lanes
Turning lanes on left sides
Turning lanes on right side
Turning lanes on both sides

DATE OF UPDATE
```

NON-LABELED VARIABLE -- Most recent date on which record was
modified (YYYYMMDD).

```

NOTE: New variable added in 1994.
```

0 = 'NOT APPLICABLE' Not applicable
1 = 'NONMUNIC RURAL'
2 = 'NONMUNIC URBAN'
3 = 'MUNICIPAL RURAL'
4 = 'MUNICIPAL URBAN'
Nonmunicipal - rural
Nonmunicipal - urban
Municipal - rural
Municipal - urban

```

\section*{VOLGRP TRAFFIC VOLUME GROUP}
\begin{tabular}{|c|c|}
\hline = 'GROUP UNK/UNASSG' & Group unknown or unassigned \\
\hline '01' = 'RUR-FARM TO MRKT' & Outstate rural - blue (farm to market) \\
\hline '02' = 'RUR-SOME RECREAT' & Outstate rural - green (some recreational) \\
\hline '03' = 'RUR-MODR RECREAT' & Outstate rural - red (moderate recreational) \\
\hline '04' = 'RUR-HIGH RECREAT' & Outstate rural - yellow (high recreational) \\
\hline '05' = 'MUNIC-REC >5000' & ```
Outstate municipal - recreational over
5000
``` \\
\hline '06' = 'MUNIC-NREC >5000' & Outstate municipal - non-recreational over 5000 \\
\hline '07' = 'MUNIC-REC <5000' & Outstate municipal - recreational under 5000 \\
\hline '08' = 'MUNIC-NREC < 5000' & Outstate municipal - non-recreational under 5000 \\
\hline '09' = 'METRO-URB COMMUT' & Metro - urban commuter \\
\hline '10' = 'METRO-URB/SUB MX' & Metro - urban-suburban mix \\
\hline '11' = 'METRO-SUB COMMUT' & Metro - suburban commuter \\
\hline '12' = 'METRO-OUTLY COMM' & Metro - outlying commuter \\
\hline '13' = 'METRO-OUTLY MIX' & Metro - outlying mix \\
\hline '14' = 'METRO-OUTLY REC' & Metro - outlying recreational \\
\hline '15' = 'MTRO/URB/SUB SHP' & Metro - urban-suburban shopping \\
\hline '16' = 'METRO - URB MIX' & Metro - urban mix \\
\hline '17' = 'METRO-SUBUR MIX' & Metro - suburban mix \\
\hline OTHER = 'ERROR/OTHER CODE' & \\
\hline
\end{tabular}

NOTE: New variable added in 1989.

\section*{VOLTYP TRAFFIC VOLUME TYPE}
```

'A' = 'ACTUAL'
'C' = 'COMPTR GENERATED'
'E' = 'ESTIMATED'

```

Actual
Computer generated
Estimated

YEAR
YEAR OF TRAFFIC
NON-LABELED VARIABLE -- Denotes year of volume count

NOTE: The Intersection File consists of variable length records ranging from 228-1204 bytes each, depending on the number of intersecting routes and legs. Each record consists of a fixed-length "general" portion with variables describing the entire intersection (e.g.,"General Environment", "Traffic Control Device"), and a variable length portion which describes up to six segments (routes), and up to two legs (approaches) for each segment. Variables for segments include such variables as "Route Number" and "Number of Legs", and variables for each leg include multiple years of AADT information and "Number of Approach Thru Lanes." This variable-length record has been converted into a SAS-formatted, fixed length record for ease of use. In this conversion, each variable for every possible leg on each route had to be given a separate SAS variable name. The listing below includes the SAS names for all "general" variables and example names for the route-specific and leg-specific variables. Unlike the other file descriptions, for clarity, the variables are primarily listed in raw-file order rather than alphabetical order.
"GENERAL" VARIABLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAS & & & SAS & & \\
\hline VARIABLE & & & VARIABLE & FORMAT & TABLE \\
\hline NAME & DESCRIPTION & FILE & TYPE & PAGE NO. & PAGE NO. \\
\hline RTE_SYS & ROUTE SYSTEM & Intersct-chg & CHA (2) & I-87 & II-245 \\
\hline RTE_NBR & ROUTE NUMBER & Intersct-chg & CHA (9) & I-87 & \\
\hline INT_SYNB & COMBINED RTE_SYS/RTE_NBR & Intersct-chg & CHA (11) & I-87 & \\
\hline MILEPOST & MODIFIED REFERENCE POINT LOCATION & Intersct-chg & NUM & I-88 & \\
\hline REF_PNT & REFERENCE POINT & Intersct-chg & CHA (10) & I-88 & \\
\hline ELEM_NBR & INTERCHANGE ELEMENT CODE & Intersct-chg & CHA (3) & I-88 & II-235 \\
\hline INT_TYPE & INTERSECTION TYPE & Intersct-chg & NUM & I-88 & II-241 \\
\hline DESC & INTERSECTION DESCRIPTION & Intersct-chg & NUM & I-88 & \\
\hline TYPEDESC & INTERSECTION DESCRIPTION-REVISED & Intersct-chg & NUM & I-89 & II-256 \\
\hline RAIL_NBR & RAILROAD CROSSING NUMBER & Intersct-chg & CHA (8) & I-89 & \\
\hline TRAF_DEV & TRAFFIC CONTROL DEVICES & Intersct-chg & NUM & I-89 & \\
\hline TRF_CNTL & TRAFFIC CONTROL DEVICES-REVISED & Intersct-chg & NUM & I-90 & II-252 \\
\hline SIGN_PRO & TRAFFIC SIGNALS PROGRESSION & Intersct-chg & NUM & I-90 & \\
\hline SIGN_TIM & TRAFFIC SIGNALS TIMING & Intersct-chg & NUM & I-91 & II-248 \\
\hline SIGN_CON & TRAFFIC SIGNALS CONSTRUCTION & Intersct-chg & NUM & I-91 & \\
\hline SIGN_PLA & SIGNAL HEAD PLACEMENT & Intersct-chg & NUM & I-91 & \\
\hline SIGN_PED & TRAFFIC SIGNALS PEDESTRIAN SIGNALS & Intersct-chg & NUM & I-91 & II-247 \\
\hline TRAF_TMO & FLASHING SIGNAL TIME ON & Intersct-chg & CHA (2) & I-91 & \\
\hline TRAF_TMF & FLASHING SIGNAL TIME OFF & Intersct-chg & CHA (2) & I-91 & \\
\hline TRAF_PHS & TRAFFIC SIGNALS NUMBER OF PHASES & Intersct-chg & NUM & I-92 & II-251 \\
\hline TRAF_PRE & TRAFFIC SIGNALS PREEMPTION & Intersct-chg & NUM & I-92 & \\
\hline RDWY_LGH & ROADWAY LIGHTING & Intersct-chg & NUM & I-92 & II-244 \\
\hline GEN_ENIV & GENERAL ENVIRONMENT & Intersct-chg & NUM & I-92 & II-240 \\
\hline SPEC_ENV & SPECIFIC ENVIRONMENT & Intersct-chg & NUM & I-93 & II-249 \\
\hline DIST_CAT & CATEGORY ASSIGNED BY DISTRICT & Intersct-chg & CHA (2) & I-93 & \\
\hline CNTL_CAT & CENTRAL OFFICE CATEGORY & Intersct-chg & CHA (2) & I-93 & \\
\hline SFTY_IMY & SAFETY IMPROVEMENT YEAR & Intersct-chg & CHA (2) & I-93 & \\
\hline SFTY_IMD & SAFETY IMPROVEMENT DISTRICT & Intersct-chg & CHA (1) & I-93 & \\
\hline SFTY_PRJ & SAFETY IMPROVEMENT PROJECT NUMBER & Intersct-chg & CHA (2) & I-93 & \\
\hline
\end{tabular}
(CON' T)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & "GENERAL" VAR & RIABLES & & & \\
\hline \multicolumn{3}{|l|}{SAS} & \multicolumn{3}{|l|}{SAS} \\
\hline \multicolumn{3}{|l|}{VARIABLE} & \multicolumn{2}{|l|}{VARIABLE FORMAT} & TABLE \\
\hline NAME & DESCRIPTION & FILE & TYPE & PAGE NO. & PAGE NO. \\
\hline SFTY_CLS & SAFETY IMPROVEMENT CLASSIFICATION & Intersct-chg & CHA (2) & I-94 & \\
\hline EFEC_DTE & DATE OF ACCIDENT GEOCODING & Intersct-chg & NUM & I-94 & \\
\hline NBR_RTES & NUMBER OF ROUTES INTO INTERSECTION & Intersct-chg & NUM & I-94 & II-243 \\
\hline \multirow[t]{2}{*}{NBR_LEGS} & NUMBER OF LEGS INTO INTERSECTION & Intersct-chg & NUM & I-94 & II-242 \\
\hline & \multicolumn{5}{|l|}{SEGMENT (ROUTE) SPECIFIC VARIABLES} \\
\hline \multicolumn{3}{|l|}{SAS} & \multicolumn{2}{|l|}{SAS} & \\
\hline \multicolumn{3}{|l|}{VARIABLE} & \multicolumn{2}{|l|}{VARIABLE FORMAT} & TABLE \\
\hline NAME & DESCRIPTION & FILE & TYPE & PAGE NO. & PAGE NO. \\
\hline RTESYS1 & ROUTE SYSTEM - ROUTE 1 & Intersct-chg & CHA (2) & I-97 & \\
\hline RTENBR1 & ROUTE NUMBER - ROUTE 1 & Intersct-chg & CHA (9) & I-97 & \\
\hline REFPNT1 & REFERENCE POINT-ROUTE 1 & Intersct-chg & CHA (10) & I-98 & \\
\hline RDESC1 & ROAD DESCRIPTION & Intersct-chg & NUM & I-98 & \\
\hline LOLIMT1 & SEGMENT 1 LOWER LIMIT & Intersct-chg & NUM & I-98 & \\
\hline UPLIMT1 & SEGMENT 1 UPPER LIMIT & Intersection & NUM & I-99 & \\
\hline NBR_LEG1 & NUMBER OF LEGS ON SEGMENT 1 & Intersct-chg & NUM & I-99 & \\
\hline \multicolumn{6}{|l|}{NOTE: Variables for Segments \(2-6\) would be identical, with last character denoting the Segment number (e.g., RTESYS2, RTESYS3, etc.)} \\
\hline \multicolumn{6}{|c|}{LEG (APPROACH) SPECIFIC VARIABLES} \\
\hline \multicolumn{3}{|l|}{SAS} & \multicolumn{2}{|l|}{SAS} & \\
\hline \multicolumn{3}{|l|}{VARIABLE} & \multicolumn{2}{|l|}{VARIABLE FORMAT} & TABLE \\
\hline NAME & DESCRIPTION & FILE & TYPE & PAGE NO. & PAGE NO. \\
\hline LEGNBR11 & SEGMENT 1, LEG NUMBER 1 & Intersct-chg & NUM & I-103 & \\
\hline DIRECT11 & SEGMENT 1, LEG 1 DIRECTION & Intersct-chg & NUM & I-103 & \\
\hline AADT111 & SEGMENT 1, LEG 1, YEAR 1 AADT & Intersct-chg & NUM & I-103 & \\
\hline ADTYR111 & SEGMENT 1, LEG 1, YEAR 1 & Intersct-chg & CHA (2) & I-103 & \\
\hline AADT112 & SEGMENT 1, LEG 1, YEAR 2 AADT & Intersct-chg & NUM & I-103 & \\
\hline ADTYR112 & SEGMENT 1, LEG 1, YEAR 2 & Intersct-chg & CHA (2) & I-104 & \\
\hline AADT113 & SEGMENT 1, LEG 1, YEAR 3 AADT & Intersct-chg & NUM & I-104 & \\
\hline ADTYR113 & SEGMENT 1, LEG 1, YEAR 3 & Intersct-chg & CHA (2) & I-104 & \\
\hline AADT114 & SEGMENT 1, LEG 1, YEAR 4 AADT & Intersct-chg & NUM & I-104 & \\
\hline ADTYR114 & SEGMENT 1, LEG 1, YEAR 4 & Intersct-chg & NUM & I-104 & \\
\hline AADT115 & SEGMENT 1, LEG 1, YEAR 5 AADT & Intersct-chg & NUM & I-104 & \\
\hline ADTYR115 & SEGMENT 1, LEG 1, YEAR 5 & Intersct-chg & CHA (2) & I-104 & \\
\hline AP_SPD11 & SEGMENT 1, LEG 1, APPROACH SPEED & Intersct-chg & NUM & I-104 & \\
\hline & LIMIT & & & & \\
\hline APCNTL11 & SEGMENT 1, LEG 1, APPROACH & Intersct-chg & NUM & I-105 & \\
\hline & TRAFFIC CONTROL & & & & \\
\hline
\end{tabular}

NOTE: Variables for all other Legs would be identical. The first numerical character at the end of each variable denotes the segment number, the second numerical character denotes the leg number, and the third numerical character (if present) denotes the year of the data. For example, DIRECT21 would denote the direction variable for segment 2, leg 1. In like fashion, AADT223 would denote the AADT for segment 2 , leg 2 , year 3 .
"GENERAL" VARIABLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAS & & & SAS & & \\
\hline VARIABLE & & & VARIABLE & FORMAT & TABLE \\
\hline NAME & DESCRIPTION & FILE & TYPE & PAGE NO. & PAGE NO. \\
\hline RTE_SYS & ROUTE SYSTEM & Intersct-chg & CHA (2) & I-87 & II-245 \\
\hline RTE_NBR & ROUTE NUMBER & Intersct-chg & CHA (9) & I-87 & \\
\hline INT_SYNB & COMBINED RTE_SYS/RTE_NBR & Intersct-chg & CHA (11) & I-87 & \\
\hline MILEPOST & MODIFIED REFERENCE POINT LOCATION & Intersct-chg & NUM & I-88 & \\
\hline REF_PNT & REFERENCE POINT & Intersct-chg & CHA (10) & I-88 & \\
\hline ELEM_NBR & INTERCHANGE ELEMENT CODE & Intersct-chg & CHA (3) & I-88 & II-235 \\
\hline INT_TYPE & INTERSECTION TYPE & Intersct-chg & NUM & I-88 & II-241 \\
\hline DESC & INTERSECTION DESCRIPTION & Intersct-chg & NUM & I-88 & \\
\hline TYPEDESC & INTERSECTION DESCRIPTION-REVISED & Intersct-chg & NUM & I-89 & II-256 \\
\hline RAIL_NBR & RAILROAD CROSSING NUMBER & Intersct-chg & CHA (8) & I-89 & \\
\hline TRAF_DEV & TRAFFIC CONTROL DEVICES & Intersct-chg & NUM & I-89 & \\
\hline TRF_CNTL & TRAFFIC CONTROL DEVICES-REVISED & Intersct-chg & NUM & I-90 & II-252 \\
\hline SIGN_PRO & TRAFFIC SIGNALS PROGRESSION & Intersct-chg & NUM & I-90 & \\
\hline SIGN_TIM & TRAFFIC SIGNALS TIMING & Intersct-chg & NUM & I-91 & II-248 \\
\hline SIGN_CON & TRAFFIC SIGNALS CONSTRUCTION & Intersct-chg & NUM & I-91 & \\
\hline SIGN_PLA & SIGNAL HEAD PLACEMENT & Intersct-chg & NUM & I-91 & \\
\hline SIGN_PED & TRAFFIC SIGNALS PEDESTRIAN SIGNALS & Intersct-chg & NUM & I-91 & II-247 \\
\hline TRAF_TMO & FLASHING SIGNAL TIME ON & Intersct-chg & CHA (2) & I-91 & \\
\hline TRAF_TMF & FLASHING SIGNAL TIME OFF & Intersct-chg & CHA (2) & I-91 & \\
\hline TRAF_PHS & TRAFFIC SIGNALS NUMBER OF PHASES & Intersct-chg & NUM & I-92 & II-251 \\
\hline TRAF_PRE & TRAFFIC SIGNALS PREEMPTION & Intersct-chg & NUM & I-92 & \\
\hline RDWY_LGH & ROADWAY LIGHTING & Intersct-chg & NUM & I-92 & II-244 \\
\hline GEN_ENIV & GENERAL ENVIRONMENT & Intersct-chg & NUM & I-92 & II-240 \\
\hline SPEC_ENV & SPECIFIC ENVIRONMENT & Intersct-chg & NUM & I-93 & II-249 \\
\hline DIST_CAT & CATEGORY ASSIGNED BY DISTRICT & Intersct-chg & CHA (2) & I-93 & \\
\hline CNTL_CAT & CENTRAL OFFICE CATEGORY & Intersct-chg & CHA (2) & I-93 & \\
\hline SFTY_IMY & SAFETY IMPROVEMENT YEAR & Intersct-chg & CHA (2) & I-93 & \\
\hline SFTY_IMD & SAFETY IMPROVEMENT DISTRICT & Intersct-chg & CHA (1) & I-93 & \\
\hline SFTY_PRJ & SAFETY IMPROVEMENT PROJECT & Intersct-chg & CHA (2) & I-93 & \\
\hline & NUMBER & & & & \\
\hline SFTY_CLS & SAFETY IMPROVEMENT CLASSIFICATION & Intersct-chg & CHA (2) & I-94 & \\
\hline EFEC_DTE & DATE OF ACCIDENT GEOCODING & Intersct-chg & NUM & I-94 & \\
\hline NBR_RTES & NUMBER OF ROUTES INTO & Intersct-chg & NUM & I-94 & II-243 \\
\hline & INTERSECTION & & & & \\
\hline NBR_LEGS & NUMBER OF LEGS INTO INTERSECTION & Intersct-chg & NUM & I-94 & II-242 \\
\hline
\end{tabular}

NOTE: SAS variable names and explanatory names are shown above each listing. (See Discussion for information on SAS formats.)

RTE_SYS
ROUTE SYSTEM
\begin{tabular}{|c|c|}
\hline '01' = 'ISTH' & Interstate trunk highway \\
\hline \(' 02 '=~ ' U S T H ' ~\) & U.S. trunk highway \\
\hline \(' 03 '=~ ' M N T H '\) & Minnesota trunk highway \\
\hline \(' 04 '={ }^{\prime}\) CSAH' & County state-aid highway \\
\hline '05' = 'MSAS' & Municipal state-aid street \\
\hline \(' 07 '=~ ' C N T Y ' ~\) & County road \\
\hline \(' 08 '=~ ' T W N S '\) & Township road \\
\hline \(' 09 '=~ ' U T W N '\) & Unorganized township road \\
\hline '10' = 'MUN' & City streets \\
\hline '11' = 'NATP' & National park road \\
\hline '12' = 'NFD' & National forest development road \\
\hline '13' = 'IND' & Indian reservation road \\
\hline '14' = 'SFR' & State forest road \\
\hline '15' = 'SPRK' & State park road \\
\hline '16' = 'MIL' & Military road \\
\hline \(' 17\) ' = 'NATM' & National monument road \\
\hline \(' 18 '={ }^{\prime}\) NATW' & National wildlife refuge road \\
\hline '19' = 'FRNT' & Frontage road \\
\hline '20' = 'SGAM' & State game preserve road \\
\hline '21' = 'PRV RD PUBLIC' & Private road open to public \\
\hline '23' = 'ALLEY/CEMTERY' & Alleys and cemeteries \\
\hline
\end{tabular}
'02' = 'USTH' U.S. trunk highway
'03' = 'MNTH' Minnesota trunk highway
'04' = 'CSAH' County state-aid highway
'05' = 'MSAS' Municipal state-aid street
'08' = 'TWNS' Township road
'09' = 'UTWN' Unorganized township road
'10' = 'MUN' City streets
'11' = 'NATP'
'12' = 'NFD'
\(=\) IND
'15'
'16' = 'MIL'
'17' = 'NATM'
'18' = 'NATW'
'20' = 'SGAM'
'21' = 'PRV RD PUBLIC'
'23' = 'ALLEY/CEMTERY'

National park road
National forest development road
ndian reservation road

State park road
Military road
National monument road
ional wildife refuge road

State game preserve road
Private road open to public
Alleys and cemeteries

\section*{RTE_NBR ROUTE NUMBER}

NON-LABELED VARIABLE

NOTE: 'NNNNNNNNX' = ROUTE NUMBER (N=0-9, and X is numeric, alpha, or blank. Note that in a few cases with county/township roads, an alpha character will appear in other columns.) This variable is used for file linkage * see INT_SYNB.

\section*{INT_SYNB COMBINED RTE_SYS/RTE_NBR}

NON-LABELED VARIABLE

NOTE: This is a combined version of the RTE_NBR and RTE_SYS variables above. This combining was done to facilitate computer linkage with other files.

\section*{INTERCHANGE ELEMENT CODE}

NON-LABELED VARIABLE -- The reader should first see the Note under INT_TYPE below. ELEM_NBR is a three-character variable giving the code for interchange elements (e.g., mainline between ramps, exit ramp, intersection at ramp terminal on crossing roadway, etc.) These codes are only present for a subset of interchanges in the file - primarily diamond interchanges - and denote that this record is a supplemental record for this interchange. They are retained in the file to assist in linking accidents to specific interchange elements within these diamond interchanges -- the same code is found in the Accident File. The coding is either "ANN" or "NNN", where "A" is alpha and "N" is numeric. The formats for the possible codes (i.e., possible interchange element types) is very complex. It is not presented here, but can be obtained from HSIS staff.

\section*{INT_TYPE INTERSECTION TYPE}
```

1 = 'INTERCHANGE'
2 = 'INTSEC WITHN INT'
3 = 'INTERSECTION'
4 = 'MD BLOCK PED CRO'
6 = 'RECREATION CROS'

```
5 = 'RR CROSSING' Railroad crossing

\section*{Interchange}

Intersection within interchange
Intersection
Mid-Block pedestrian crossing
Railroad crossing
Recreational crossing

NOTE: As detailed in the earlier Discussion, basic intersections (i.e., those not part of an interchange) are coded as "3". Each interchange will have a record in the file coded as INT_TYPE = "1". In addition, some interchanges (primarily diamond interchanges) will have supplemental records in the file which will have the same milepost as the type "1" record (and the same general descriptors), but which will be coded as type "2" -- intersections within an interchange. These type "2" supplemental records will also have an Interchange Element Code as a further identifier. See ELEM_NBR above.

\section*{DESC \\ INTERSECTION DESCRIPTION}

NON-LABELED VARIABLE

NOTE: Due to its complexity in the Minnesota raw files, this variable was reformatted into TYPEDESC (see below).
```

10 = 'OTHER INTERCHANG'
11 = 'DIAM INTERCHANGE'
12 = 'HALF DIAM INTERC'
13 = 'FLD DIAM INTERCH'
14 = 'OTH DIAM INTERCH'
15 = 'TRUMPET INTERCHA'
16 = 'CLOVERLEAF INTER'
17 = 'PART DIR INTERCH'
18 = 'FULL DIR INTERCH'
19 = 'COMPLEX INTERCH'
20 = 'OTHER INTERSECT'
21 = 'DIAM INTERSECT'
22 = 'HALF DIAM INTERS'
23 = 'FLD DIAM INTERSE'
24 = 'OTH DIAM INTERSE'
25 = 'TRUMPET INTERSEC'
26 = 'CLVERLEA INTERSE'
27 = 'PART DIR INTERSE'
28 = 'FULL DIR INTERSE'
29 = 'COMPLEX INTERSEC'
31 = 'TEE INTERSECTION'
32 = 'WYEE INTERSECTON'
33 = 'CRX RGHT/AN INTE'
34 = 'CRX SKEW INTERSE'
35 = '> 4 LEG INTERSEC'
41 = 'SCH CRX PED CROS'
42 = 'BUS DIST CROSSIN'
43 = 'OTHER CROSSING'
51 = 'S/TRK R/ANG RRX'
52 = 'S/TRK SKEWED RRX'
53 = 'M/TRK R/ANG RRX'
54 = 'M/TRK SKEWED RRX'
60 = 'REC AREA N/A'

```

Other Interchange Diamond Interchange
Half Diamond Interchange
Folded Diamond Interchange
Other Diamond Interchange
Trumpet Interchange
Cloverleaf Interchange
Partial Directional Interchange
Full directional Interchange
Complex Interchange
Other Intersection
Diamond Intersection
Half Diamond Intersection
Folded Diamond Intersection
Other Diamond Intersection
Trumpet Intersection
Cloverleaf Intersection
Partial Directional Intersection
Full directional Intersection
Complex Intersection
Tee Intersection
Wyee Intersection
Crossing at Right Angles Intersection
Crossing Skewed Intersection
Greater than four leg Intersection
School or Pedestrian Crossing
Central Business District Crossing Other Crossing
Single Track, Right Angle Railroad Crossing
Single Track, Skewed Railroad Crossing Multi-Track, Right Angle Railroad Crossing
Multi-Track, Skewed Railroad Crossing
Recreational Crossing-Not Applicable

NOTE: In some cases, intersection types denoted by codes 20-34 will not match exactly with information on number of legs in the NBR_LEGS variable. The Minnesota Department of Transportation has been notified of this problem and it should be corrected in data in future years.

\section*{RAIL_NBR RAILROAD CROSSING NUMBER}
```

NON-LABELED VARIABLE -- ' ' = 'NOT STATED'
'NNNNNNNA' = Railroad crossing number

```

TRAFFIC CONTROL DEVICES

NON-LABELED VARIABLE
NOTE: Due to its complexity in the Minnesota raw files, this variable was reformatted into TRF_CNTL (see below).

\section*{TRF_CNTL TRAFFIC CONTROL DEVICES-REVISED}
```

10 = 'NOT APPLICABLE'
11 = 'UNSIG RAMP TERM'
12 = 'SIGNAL RAMP TERM'
21 = 'NONE INTERCHANGE'
22 = 'THRU YIELD INCHG'
23 = 'THRU STOP INCHG'
24 = 'ALL STOP INCHG'
25 = 'FLS AMB/RD INCHG'
26 = 'FLS RED/RED INCH'
27 = 'SIGNALS INCHG'
28 = 'OTHER INCHG'
31 = 'NONE INTERSECTON'
32 = 'THRU YIELD INTER'
33 = 'THRU STOP INTER'
34 = 'ALL STOP INTER'
35 = 'FLS AMB/RD INTER'
36 = 'FLS RED/RED INTE'
37 = 'SIGNALS INTER'
38 = 'OTHER INTER'
41 = 'MDBK PED-MRK/SGN'
42 = 'MDBK PED-PST FLS'
43 = 'MDBK PED-OVH FLS'
44 = 'MDBK PED-SIGNAL'
51 = 'RR XBUCK+RRX'
52 = 'RR XBUCK+RXR+WRN'
53 = 'RR XBUCK+STOPSGN'
54 = 'RR SIG ONLY PDST'
55 = 'RR SIG ONLY CANT'
56 = 'RR SIG/GATE PDST'
57 = 'RR SIG/GATE CANT'
58 = 'RR OTHER/NONE'
60 = 'REC CRS NOT APPL'

```

Not applicable
Unsignalized Ramp Terminals
Signalized Ramp Terminals
No Interchange
Thru/Yield Interchange
Thru/Stop Interchange
All Stop Interchange
Flashers - Amber/Red Interchange
Flashers - Red/Red Interchange
Signalized Interchange
Other Interchange
No Intersection
Thru/Yield Intersection
Thru/Stop Intersection
All Stop Intersection
Flashers - Amber/Red Intersection
Flashers - Red/Red Intersection
signalized Intersection
Other Intersection
Mid-block pedestrian crossing -
Pavement marking and signing
Mid-block pedestrian crossing -
Flasher - pedestal mount
Mid-block pedestrian crossing -
Flasher - overhead
Mid-block pedestrian crossing -
Signal
Crossbuck plus RXR
Crossbuck plus RXR plus other warning signs
Crossbuck plus stop sign
Railroad crossing signal w/o gates -
Pedestal mount
Railroad crossing signal w/o gates -
Cantilever
Railroad crossing signal w/gates -
Pedestal mount
Railroad crossing signal w/gates -
Cantilever
Other or None
Recreational Crossing Not Applicable

\section*{SIGN_PRO}

TRAFFIC SIGNALS PROGRESSION
```

0 = 'NOT APPLICABLE'
1 = 'NOT IN PROG SYS'
2 = 'IN PROGR SYSTEM'

```

Not applicable
Not in progression system
In progression system
```

O = 'NOT APPLICABLE' Not applicable
1 = 'FIXED TIME'
2 = 'ACTUATED'
Fixed time
Actuated

```

\section*{SIGN_CON TRAFFIC SIGNALS CONSTRUCTION}
```

0 = 'NOT APPLICABLE'
1 = 'TEMPORARY'
2 = 'PERMANENT'

```

Not applicable
Temporary (includes wood poles)
Permanent

\section*{SIGN_PLA SIGNAL HEAD PLACEMENT}
```

O = 'NOT APPLICABLE'
1 = 'PEDEST MOUNT ONL'
2 = 'OVERHEAD'

```

Not applicable
Pedestrian mount only
Overhead

\section*{TRAFFIC SIGNALS PEDESTRIAN SIGNALS}
```

O = 'NOT APPLICABLE'
1 = 'NO PEDEST SIGNAL'
2 = 'PED SIG NOT ACTU'
3 = 'PED ACT WLK GREE'
4 = 'PED ACT SCAM SYS'

```

TRAF_TMO FLASHING SIGNAL TIME ON
' ' = 'NOT APPLICABLE'
'OO' = 'NO P/TIME FLAS'
'01'-'24' = Time parttime
flash system begins

TRAF_TMF

FLASHING SIGNAL TIME OFF
```

' ' = 'NOT APPLICABLE'
'OO' = 'NO P/TIME FLAS'
'01'-'24' = Time parttime
flash system terminates

```
```

Not applicable
No pedestrian signals
Pedestrian signals - Not pedestrian
actuated
Pedestrian signals - Pedestrian
actuated - Walk with green
Pedestrian signals - Pedestrian
actuated - Scramble system

```
```

Not applicable
Not on parttime flash system
Time parttime flash system
terminates/begins

```

Not applicable
Not on parttime flash system

Time parttime flash system terminates/begins

\section*{TRAF_PHS TRAFFIC SIGNALS NUMBER OF PHASES}
```

O = 'NOT APPLICABLE'
2 = 'TWO PHASES'
3 = 'THREE PHASES'
4 = 'FOUR PHASES'
5 = 'FIVE PHASES'
6 = 'SIX PHASES'
7 = 'SEVEN PHASES'
8 = 'EIGHT PHASES'

```

TRAF_PRE
TRAFFIC SIGNALS PREEMPTION
```

O = 'NOT APPLICABLE'
1 = 'NO PREEMPTION'
2 = 'RAILROAD ONLY'
3 = 'EMERGEN VEH ONLY'
4 = 'EMERGEN VEH HARD'
5 = 'BUS ONLY'
6 = 'RR/EMERGENCY VEH
7 = 'RR AND BUS'
8 = 'EMERG VEH + BUS'
9 = 'RR+EMER VEH+BUS'

```

RDWY_LGH

\section*{ROADWAY LIGHTING}
```

1 = 'NONE'
2 = 'PARTIAL'
3 = 'FULL'
4 = 'CONTINUOUS'
5 = 'PART ENERGY CON'
6 = 'FULL ENERGY CON'
7 = 'CONT ENERGY CON'
8 = 'POINT LIGHTING'

```

GENERAL ENVIRONMENT
\(1=\) 'URBAN \(^{\prime}\)
\(2=\) 'SUBURBAN'
3 = 'CITY BYPASS'

4 = 'RURAL'

Not applicable
Number of phases
Not applicable
No preemption
Railroad only
Emergency vehicle only - Vehicle
actuated
Emergency vehicle only - Hard wire
Bus only
Railroad and emergency vehicle
Railroad and bus
Emergency vehicle and bus
Railroad \& emergency vehicle \& bus

None
Partial
Full
Continuous
Partial (energy conservation program)
Full (energy conservation program)
Continuous (energy conservation
program)
Point lighting

Urban
Suburban
City bypass (not for interstate system)
Rural

\section*{SPECIFIC ENVIRONMENT}
```

01 = 'CNTRL BUS DIST'
02 = 'STRIP COMMR AREA'
03 = 'SHOPPING CENTER'
04 = 'INDUST AREA'
05 = 'RESIDENT AREA'
06 = 'SCH/SCH CROSSING'
07 = 'AGR/ISOL BUS/SCH'
08 = 'AGRICULTURE'
09 = 'EMERGENCY SERVIC'
10 = 'FOREST'
11 = 'PARK/CAMPGROUND'
12 = 'OTHER REC AREA
13 = 'ELDERLY/HANDI'
14 = 'OTHER'

```
Central business district
Strip commercial area
Shopping center
Industrial area
Residential area
School or school crossing
Agriculture and isolated
business/school
Agriculture
Emergency service (hospital, fire
station, or police)
Forest
Park or campground
Other recreational area (e.g., golf
course)
Elderly or handicapped
Other

\section*{DIST_CAT CATEGORY ASSIGNED BY DISTRICT}
```

NON-LABELED VARIABLE -- Intersection/interchange category assigned
by individual districts only limited use,
and no format available.

```

\section*{CNTL_CAT CENTRAL OFFICE CATEGORY}
```

NON-LABELED VARIABLE -- ' ' = No category assigned by central
office
'01' - '99' = Category assigned by central
office

```

SFTY_IMY

SFTY_IMD

SFTY_PRJ

SAFETY IMPROVEMENT YEAR
```

NON-LABELED VARIABLE -- Safety improvement year where
' ' = No safety improvement
'70' - 'XX' = Year of improvement

```
SAFETY IMPROVEMENT DISTRICT
```

NON-LABELED VARIABLE -- ' ' = 'NO SAFETY IMPROV'
'1' - '9' = District responsible for
improvement

```

\section*{SAFETY IMPROVEMENT PROJECT NUMBER}
```

NON-LABELED VARIABLE -- ' ' = 'NO SAFETY IMPROV'
'01' - '99' = Project number assigned

```

SFTY_CLS

\section*{EFEC_DTE}

NBR_RTES

NBR_LEGS

SAFETY IMPROVEMENT CLASSIFICATION
```

NON-LABELED VARIABLE -- ' ' = 'NO SAFETY IMPROV'
'01' - '99' = Safety improvement code

```
DATE OF ACCIDENT GEOCODING

 YYMMDD=Date from which accident data are
 geocoded to intersection
NUMBER OF ROUTES INTO INTERSECTION
NON-LABELED VARIABLE -- 1-9 = Number of routes involved
NUMBER OF LEGS INTO INTERSECTION
NON-LABELED VARIABLE -- 1-9 = Number of legs in intersection

NOTE: Variables for Segments 2-6 would be identical, with last character denoting the Segment number (e.g., RTESYS2, RTESYS3, etc.)

NOTE: SAS variable names and explanatory names are shown above each listing. (See Discussion for information on SAS formats.)

\section*{RTESYS1 ROUTE SYSTEM - ROUTE 1}
```

'01' = 'ISTH' Interstate trunk highway
'02' = 'USTH' U.S. trunk highway
'03' = 'MNTH' Minnesota trunk highway
'04' = 'CSAH' County state-aid highway
'05' = 'MSAS' Municipal state-aid street
'07' = 'CNTY' County road
'08' = 'TWNS' Township road
'09' = 'UTWN' Unorganized township road
'10' = 'MUN' City streets
'11' = 'NATP' National park road
'12' = 'NFD' National forest development road
'13' = 'IND' Indian reservation road
'14' = 'SFR' State forest road
'15' = 'SPRK' State park road
'16' = 'MIL' Military road
'17' = 'NATM' National monument road
'18' = 'NATW' National wildlife refuge road
'19' = 'FRNT' Frontage road
'20' = 'SGAM' State game preserve road
'21' = 'PRV RD PUBLIC' Private road open to public
'23' = 'ALLEY/CEMTERY' Alleys and cemeteries

```

NOTE: This variable is used in linkage to other files. See Note under REFPNT1 below.

RTENBR1 ROUTE NUMBER - ROUTE 1
```

NON-LABELED VARIABLE

```

NOTE: 'NNNNNNNNX' = ROUTE NUMBER (N=0-9, and X is numeric, alpha, or blank. Note that in a few cases with county/township roads, an alpha character will appear in other columns.) This variable is used for file linkage. See REFPNT1.

\section*{REFPNT1}

\section*{RDESC1}
ROAD DESCRIPTION

NOTE: In over \(97 \%\) of the cases, Route 1 is usually the "primary" route used for general intersection location. Thus, RTESYS1 and RTENBR1 is usually the same as RTE_SYS and RTE_NBR, and REFPNT1 is the same as REF_PNT. For the crossing roads, RTESYS2, RTENBR2 and REFPNT2 will be used for the first crossing route, RTESYS3, etc. for the second crossing route, etc. While the original REF_PNT was converted to MILEPOST for ease of computer linkage, REFPNT1-X has not been converted. However, HSIS staff has developed a computer program to allow linkage of these crossing routes with other files. The user can request the program or variables from the linked files from our staff.

ROAD DESCRIPTION
```

1 = '2 LANE 2 WAY'

```
1 = '2 LANE 2 WAY'
2 = '3/5 LN UND-2W,LT'
2 = '3/5 LN UND-2W,LT'
3 = '4/6 LN UND-NLTL'
3 = '4/6 LN UND-NLTL'
4 = '4/6 LN UND-LTL'
4 = '4/6 LN UND-LTL'
5 = '4/6 LN DIV-NLTL'
5 = '4/6 LN DIV-NLTL'
6 = '4/6 LN DIV-LTL'
6 = '4/6 LN DIV-LTL'
7 = 'ONE-WAY'
7 = 'ONE-WAY'
8 = 'FREEWAY'
8 = 'FREEWAY'
9 = 'OTHER'
9 = 'OTHER'
2 lanes 2-way
```

NOTE: Coding for this variable is somewhat questionable since two identical intersections may be coded into different categories. Specifically, it appears that the number of lanes shown at the first of each category (e.g., "3/5," or "4/6") could be interpreted by the district coders as either the total number of lanes (counting leftturn lanes) or the total number of through lanes. The main problem appears to be in categories "2" and "4." Here, for example, an undivided four-lane roadway with opposing left-turn lanes at the intersection might be coded as a category "2" or a category "4." It also appears that category "6" is a rather broad category. Here, all divided roadway with a median continuing up to the intersection proper which have four or more through lanes and either single or double left-turn lanes would be coded as a "6."

SEGMENT 1 LOWER LIMIT

```
NON-LABELED VARIABLE -- Lower reference point limit:
 0000-9999 = Dist. in ft from intersection
 towards beginning of route used as lower
 search limit for accident occurrences
```

UPLIMT1 SEGMENT 1 UPPER LIMIT

$$
\begin{aligned}
\text { NON-LABELED VARIABLE }- & \text { Upper reference point limit: } \\
& 0000-9999=\text { Dist. in ft from intersection } \\
& \text { towards end of route used as upper search } \\
& \text { limit for accident occurrences }
\end{aligned}
$$

NBR_LEG1 NUMBER OF LEGS ON SEGMENT 1

```
NON-LABELED VARIABLE -- Number of legs described in this record:
 1-2 = Number of legs
```

SAS			SAS		
VARIABLE			VARIABL	FORMAT	TABLE
NAME	DESCRIPTION	FILE	TYPE	PAGE NO.	PAGE NO.
LEGNBR11	SEGMENT 1, LEG NUMBER 1	Intersct-chg	NUM	I-103	
DIRECT11	SEGMENT 1, LEG 1 DIRECTION	Intersct-chg	NUM	I-103	
AADT111	SEGMENT 1, LEG 1, YEAR 1 AADT	Intersct-chg	NUM	I-103	
ADTYR111	SEGMENT 1, LEG 1, YEAR 1	Intersct-chg	CHA (2)	I-103	
AADT112	SEGMENT 1, LEG 1, YEAR 2 AADT	Intersct-chg	NUM	I-103	
ADTYR112	SEGMENT 1, LEG 1, YEAR 2	Intersct-chg	CHA (2)	I-104	
AADT113	SEGMENT 1, LEG 1, YEAR 3 AADT	Intersct-chg	NUM	I-104	
ADTYR113	SEGMENT 1, LEG 1, YEAR 3	Intersct-chg	CHA (2)	I-104	
AADT114	SEGMENT 1, LEG 1, YEAR 4 AADT	Intersct-chg	NUM	I-104	
ADTYR114	SEGMENT 1, LEG 1, YEAR 4	Intersct-chg	NUM	I-104	
AADT115	SEGMENT 1, LEG 1, YEAR 5 AADT	Intersct-chg	NUM	I-104	
ADTYR115	SEGMENT 1, LEG 1, YEAR 5	Intersct-chg	CHA (2)	I-104	
AP_SPD11	SEGMENT 1, LEG 1, APPROACH SPEED LIMIT	Intersct-chg	NUM	I-104	
APCNTL11	SEGMENT 1, LEG 1, APPROACH TRAFFIC CONTROL	Intersct-chg	NUM	I-105	

NOTE: Variables for all other Legs would be identical. The first numerical character at the end of each variable denotes the segment number, the second numerical character denotes the leg number, and the third numerical character (if present) denotes the year of the data. For example, DIRECT21 would denote the direction variable for segment 2, leg 1. In like fashion, AADT223 would denote the AADT for segment 2, leg 2, year 3 .

NOTE: SAS variable names and explanatory names are shown above each listing. (See Discussion for information on SAS formats.)

LEGNBR11

DIRECT11

## AADT111

ADTYR111

AADT112

SEGMENT 1, LEG NUMBER 1

```
NON-LABELED VARIABLE -- Leg number of first leg:
 0 = 'NOT APPLICABLE'
 1-12 = Number assigned
```

SEGMENT 1, LEG 1 DIRECTION

```
0 = 'NOT APPLICABLE'
1 = 'NORTH'
2 = 'NORTHEAST'
3 = 'EAST'
4 = 'SOUTHEAST'
5 = 'SOUTH'
6 = 'SOUTHWEST'
7 = 'WEST'
8 = 'NORTHWEST'
```

SEGMENT 1, LEG 1, YEAR 1 AADT

```
NON-LABELED VARIABLE -- 000000 = Not applicable or no traffic
 000001-999999 = 2-way volume on leg, most
 recent available year
```

NOTE: Most AADT's are probably not current. The user can determine which year the AADT was collected for each leg from the "AADT Year" variable attached to each leg. However, we have found that the "AADT Year" will seldom be the current (file) year, and that the year of the AADT count can be different for different legs of the same intersection. Unfortunately, we cannot suggest a method for "updating" the AADT data to later years. Since multiple years data are often shown in the file, the user may be able to develop a "trend-related update", but we cannot assure that the estimates will be correct.

SEGMENT 1, LEG 1, YEAR 1
NON-LABELED VARIABLE -- Year AADT111 was collected:
'YY' or YY = Last two digits of year
' ',' 0','00', 0, or blank = No AADT
available
NOTE: This variable can either be a numeric or a character variable.

SEGMENT 1, LEG 1, YEAR 2 AADT
NON-LABELED VARIABLE -- See AADT111 above.

AADT114 SEGMENT 1, LEG 1, YEAR 4 AADT
NON-LABELED VARIABLE -- See AADT111 above.

## ADTYR114 SEGMENT 1, LEG 1, YEAR 4

NON-LABELED VARIABLE -- See AADT111 above.

AADT115 SEGMENT 1, LEG 1, YEAR 5 AADT
NON-LABELED VARIABLE -- See AADT111 above.

ADTYR115 SEGMENT 1, LEG 1, YEAR 5
NON-LABELED VARIABLE -- See AADT111 above.

AP_SPD11 SEGMENT 1, LEG 1, APPROACH SPEED LIMIT NON-LABELED VARIABLE -- $00=$ 'UNKNOWN' 01-70 = Approach speed in mph

APCNTL11 SEGMENT 1, LEG 1, APPROACH TRAFFIC CONTROL

```
If INT_TYPE (intersection type) is anything except a
Railroad grade crossing (i.e., INT_TYPE ne 5):
0 = 'NOT APPLICABLE'
1 = 'THRU OR ONE-WAY' Through or one-way leaving
intersection
2 = 'YIELD SIGN'
3 = 'STOP SIGN'
4 = 'FLASHER - AMBER'
5 = 'FLASHER - RED'
6 = 'SIGNAL'
If INT_TYPE is railroad grade crossing (i.e., INT_TYPE = 5):
0 = 'RR NOT APPLCABLE'
1 = 'XBUCK + RXR SIGN' Crossbuck plus RXR sign
= 'XBUCK+RXR+WARNNG
3 = 'XBUCK + STOP SGN'
4 = 'RR SIG ONLY PDST'
5 = 'RR SIG ONLY CANT'
6 = 'RR SIG/GATE PDST'
7 = 'RR SIG/GATE CANT
8 = 'RR OTHER OR NONE'
```

