
Implementing SELinux as a Linux
Security Module

Stephen Smalley
NSA

sds@epoch.ncsc.mil

Chris Vance
NAI Labs

cvance@nai.com

Wayne Salamon
NAI Labs

wsalamon@nai.com

This work supported by NSA contract MDA904-01-C-0926 (SELinux)
Initial: December 2001, Last revised: Feb 2006

NAI Labs Report #01-043

Table of Contents
1. Introduction..5
2. Acknowledgements ..6
3. LSM Overview ...6
4. SELinux Basic Concepts ...7
5. Changes from the Original SELinux Kernel Patch ..8

5.1. General Changes ...8
5.1.1. Adding a New Level of Indirection ..8
5.1.2. Dynamically Allocating Security Fields ..9
5.1.3. Stacking with the Capabilities Module...9
5.1.4. Redesigning the SELinux API..9
5.1.5. Leveraging Linux Permission Functions ..9

5.2. Program Execution Changes ...10
5.2.1. File execute_no_trans Permission..10
5.2.2. Inheritance of State...10

5.3. Filesystem Changes...11

1

Implementing SELinux as a Linux Security Module

5.3.1. Labeling of Persistent Files ..11
5.3.2. Pseudo Filesystem Labeling ...11
5.3.3. Leveraging permission ...12
5.3.4. File Descriptor Permissions..12
5.3.5. Pipe Security Class ...13

5.4. Socket IPC and Networking Changes ...13
5.4.1. Redesigning Network Access Controls ..13
5.4.2. Storing Socket Security Data..13
5.4.3. Minimally Invasive Hooks..13
5.4.4. File Descriptor Transfer..14
5.4.5. Omitting Low-Level ioctl Controls...14
5.4.6. Extended Socket Calls ..14

5.5. System V IPC Changes ...14
5.5.1. Storing IPC Security Data ..15
5.5.2. Leveraging ipcperms..15

5.6. Miscellaneous Changes...15

6. Internal Architecture...15
7. Initialization ...17

7.1. selinux_init..17
7.2. selinux_nf_ip_init ...17
7.3. sel_netif_init..17
7.4. selnl_init..17
7.5. init_sel_fs ..18
7.6. selinux_complete_init ...18

8. Stacking with Other Modules ...18
9. SELinux API ..19
10. Helper Functions for Hook Functions ...20

10.1. Primitive Allocation Helper Functions ...20
10.2. Initialization Helper Functions..20
10.3. Permission Checking Helper Functions ..21

11. Task Hook Functions ...21
11.1. Managing Task Security Fields ...21

11.1.1. Task Security Structure...21
11.1.2. task_alloc_security and task_free_security ..22
11.1.3. selinux_task_reparent_to_init...22
11.1.4. selinux_task_post_setuid..22
11.1.5. selinux_task_to_inode ..22
11.1.6. selinux_getprocattr ...22
11.1.7. selinux_setprocattr..22

11.2. Controlling Task Operations ...23
11.2.1. Helper Functions for Checking Task Permissions..23
11.2.2. Hook Functions for Controlling Task Operations ..24

2

Implementing SELinux as a Linux Security Module

12. Program Loading Hook Functions...25
12.1. Managing Binprm Security Fields ..25

12.1.1. Binprm Security Structure..25
12.1.2. selinux_bprm_alloc_security and selinux_bprm_free_security26
12.1.3. selinux_bprm_set_security ...26
12.1.4. selinux_bprm_apply_creds...27
12.1.5. selinux_bprm_post_apply_creds ..27
12.1.6. selinux_bprm_secureexec...28

13. Superblock Hook Functions..29
13.1. Managing Superblock Security Fields ..29

13.1.1. Superblock Security Structure..29
13.1.2. superblock_alloc_security and superblock_free_security ..30
13.1.3. superblock_doinit ...30
13.1.4. selinux_sb_copy_data...30
13.1.5. try_context_mount..31
13.1.6. selinux_sb_kern_mount..31

13.2. Controlling Filesystem Operations ...31
13.2.1. superblock_has_perm...31
13.2.2. selinux_sb_statfs...31
13.2.3. selinux_mount ..31
13.2.4. selinux_umount ..32
13.2.5. selinux_quotactl..32
13.2.6. Summary of Filesystem Permission Checks ..32

14. Inode Hook Functions ...32
14.1. Managing Inode Security Fields ...33

14.1.1. Inode Security Structure ...33
14.1.2. inode_alloc_security and inode_free_security ...33
14.1.3. inode_doinit, selinux_d_instantiate..33
14.1.4. selinux_inode_init_security..35
14.1.5. selinux_inode_post_setxattr ...35
14.1.6. selinux_inode_getsecurity ..36
14.1.7. selinux_inode_setsecurity...36
14.1.8. selinux_inode_listsecurity ..36

14.2. Controlling Inode Operations..36
14.2.1. inode_has_perm..36
14.2.2. dentry_has_perm ..36
14.2.3. may_create..37
14.2.4. may_link ...37
14.2.5. may_rename ...38
14.2.6. selinux_inode_permission ..38
14.2.7. selinux_inode_setxattr ..39
14.2.8. Other inode access control hook functions...40

3

Implementing SELinux as a Linux Security Module

15. File Hook Functions...41
15.1. Managing File Security Fields ..41

15.1.1. File Security Structure..41
15.1.2. file_alloc_security and file_free_security...41
15.1.3. selinux_file_set_fowner..41

15.2. Controlling File Operations ..42
15.2.1. file_has_perm ...42
15.2.2. selinux_file_permission..42
15.2.3. selinux_file_ioctl ..42
15.2.4. file_map_prot_check ..43
15.2.5. selinux_file_mmap ...43
15.2.6. selinux_file_mprotect ...43
15.2.7. selinux_file_lock...44
15.2.8. selinux_file_fcntl ..44
15.2.9. selinux_file_send_sigiotask..44
15.2.10. selinux_file_receive ..45
15.2.11. selinux_quota_on..45

16. System V IPC Hook Functions ...45
16.1. Managing System V IPC Security Fields ...45

16.1.1. IPC Security Structure..45
16.1.2. ipc_alloc_security and ipc_free_security ...46
16.1.3. msg_msg_alloc_security and msg_msg_free_security ..46

16.2. Controlling General IPC Operations...47
16.2.1. ipc_has_perm..47
16.2.2. selinux_ipc_permission ..47
16.2.3. selinux_*_associate ..47

16.3. Controlling Semaphore Operations...48
16.3.1. selinux_semctl ..48
16.3.2. selinux_semop ..48

16.4. Controlling Shared Memory Operations...48
16.4.1. selinux_shm_shmctl ...49
16.4.2. selinux_shm_shmat ..49

16.5. Controlling Message Queue Operations ...49
16.5.1. selinux_msg_queue_msgctl..49
16.5.2. selinux_msg_queue_msgsnd ..50
16.5.3. selinux_msg_queue_msgrcv...50

17. Socket Hook Functions..50
17.1. Managing Socket Security Fields..51

17.1.1. Socket Security Structure ...51
17.1.2. sk_alloc_security and sk_free_security..51
17.1.3. selinux_socket_getpeersec ...51
17.1.4. selinux_socket_post_create ..51
17.1.5. selinux_socket_accept ..52

17.2. Controlling Socket Operations..52
17.2.1. socket_has_perm ..52
17.2.2. General Socket Layer Hooks..52
17.2.3. Controlling Receipt of Packets ...53

4

Implementing SELinux as a Linux Security Module

17.2.4. Hooks for Unix Domain Socket IPC ..54

18. IP Networking Hook Functions..55
19. Miscellaneous Hook Functions ...56

19.1. Capability-Related Hook Functions..56
19.1.1. selinux_capable ..56
19.1.2. selinux_capget ..56
19.1.3. selinux_capset_check ...56
19.1.4. selinux_capset_set ..56
19.1.5. selinux_netlink_send ..56
19.1.6. selinux_netlink_recv...57
19.1.7. selinux_vm_enough_memory ..57

19.2. Sysctl Hook Function..57
19.3. Syslog Hook Function...58

References...58

1. Introduction
In March 2001, the National Security Agency (NSA) gave a presentation about Security-Enhanced Linux
(SELinux) at the 2.5 Linux Kernel Summit. SELinux is an implementation of flexible and fine-grained
nondiscretionary access controls in the Linux kernel, originally implemented as its own particular kernel
patch. The design and implementation of the original SELinux prototype is described in
[LoscoccoFreenix2001] and [LoscoccoNSATR2001], both of which can be found at the NSA SELinux
web site (http://www.nsa.gov/selinux).

In response to the NSA presentation, Linus Torvalds made a set of remarks that described a security
framework he would be willing to consider for inclusion in the mainstream Linux kernel. He described a
general framework that would provide a set of security hooks to control operations on kernel objects and
a set of opaque security fields in kernel data structures for maintaining security attributes. This
framework could then be used by loadable kernel modules to implement any desired model of security.

The Linux Security Modules (LSM) project was started by Immunix to develop such a framework. LSM
was a joint development effort by several security projects, including Immunix, SELinux, SGI and Janus,
and several individuals, including Greg Kroah-Hartman and James Morris, to develop a Linux kernel
patch that implements this framework. The LSM framework is included as part of the Linux 2.6 series.

The SELinux implementation was adapted to use the LSM framework rather than its own particular
kernel patch. This technical report documents the LSM-based SELinux security module. The report
begins by providing an overview of LSM and a review of the SELinux basic concepts. It then provides an
overview of how the LSM-based SELinux security module differs from the original SELinux kernel
patch. Several aspects of the SELinux security module are then described, including its internal
architecture, its initialization code, its support for stacking with other security modules, and its approach
for implementing the SELinux API. The remainder of the report is then spent documenting the SELinux
hook function implementations, organized into sections for each grouping of LSM hooks. Typically,
these hooks are grouped based on the relevant kernel object or kernel subsystem.

* Note: This report predates modern enhancements to the SELinux kernel code, such as the introduction of labeled networking
support (labeled IPSEC and NetLabel/CIPSO), the introduction of APIs for getting peer and datagram security contexts for INET

5

Implementing SELinux as a Linux Security Module

and Unix socket IPC, and significant changes to the SELinux network access controls. Thus, while much of the discussion herein
is still applicable, much has changed in modern SELinux kernels.

2. Acknowledgements
We thank James Morris for his contributions to the SELinux security module and for his independent
development of CIPSO/FIPS188 packet labeling for SELinux. We thank the other contributors to the
LSM kernel patch for their work, particularly Chris Wright, Greg Kroah-Hartman, James Morris, Serge
Hallyn, and Lachlan McIlroy. We also thank the users of SELinux for their feedback on the LSM-based
SELinux releases.

3. LSM Overview
This section provides an overview of the Linux Security Modules (LSM) framework. This section
contains an edited excerpt from the Documentation/DocBook/lsm.tmpl file in the kernel tree,
updated to reflect recent changes made for the Linux 2.6 integration.

LSM provides a general kernel framework to support security modules. In particular, the LSM
framework is primarily focused on supporting access control modules. By itself, the framework does not
provide any additional security; it merely provides the infrastructure to support security modules. The
LSM framework also moves most of the capabilities logic into an optional capabilities security module,
with the system defaulting to a dummy security module that implements the traditional superuser logic.

The LSM framework adds security fields to kernel data structures and inserts calls to hook functions at
critical points in the kernel code to manage the security fields and to perform access control. It also adds
functions for registering and unregistering security modules. Extended attribute handlers for a new
security namespace were added to filesystems to support new file security attributes, and a
/proc/pid/attr subdirectory was introduced to provide userspace access to new process security
attributes.

The LSM security fields are simply void* pointers. For process and program execution security
information, security fields were added to struct task_struct and struct linux_binprm. For filesystem
security information, a security field was added to struct super_block. For pipe, file, and socket security
information, security fields were added to struct inode and struct file. Unix domain sockets may also use
a security field added to the struct sock. For System V IPC security information, security fields were
added to struct kern_ipc_perm and struct msg_msg.

Each LSM hook is a function pointer in a global table, security_ops. This table is a security_operations
structure as defined by include/linux/security.h. Detailed documentation for each hook is
included in this header file. The hooks are grouped into logical sets based on the kernel object (e.g. task,
inode, file, sock, etc) as well as some miscellaneous hooks for system operations. A static inline function
is defined for each hook, so that most of the hook calls can easily be compiled away if desired, in which
case only the default capabilities logic is included.

The global security_ops table is initialized to a set of hook functions provided by a dummy security
module that provides traditional superuser logic. A register_security function (in
security/security.c) is provided to allow a security module to set security_ops to refer to its own
hook functions, and an unregister_security function is provided to revert security_ops to the

6

Implementing SELinux as a Linux Security Module

dummy module hooks. This mechanism is used to set the primary security module, which is responsible
for making the final decision for each hook.

LSM also provides a simple mechanism for stacking additional security modules with the primary
security module. It defines register_security and unregister_security hooks in the
security_operations structure and provides mod_reg_security and mod_unreg_security functions
that invoke these hooks after performing some sanity checking. A security module can call these
functions in order to stack with other modules. However, the actual details of how this stacking is
handled are deferred to the module, which can implement these hooks in any way it wishes (including
always returning an error if it does not wish to support stacking). In this manner, LSM defers the
problem of composition to the module.

Although the LSM hooks are organized based on kernel object, all of the hooks can be viewed as falling
into two major categories: hooks that are used to manage the security fields and hooks that are used to
perform access control. Examples of the first category of hooks include the alloc_security and
free_security hooks defined for each kernel data structure that has a security field. These hooks are
used to allocate and free security structures for kernel objects. The first category of hooks also includes
hooks that set information in the security field after allocation, such as the d_instantiate hook. This
hook is used to set security information for inodes, e.g. by calling getxattr to obtain an attribute value,
when all the necessary object information is available. An example of the second category of hooks is the
inode_permission hook. This hook checks permissions when accessing an inode.

Although LSM originally included a new security system call, this call was subsequently removed. Most
of its functionality can now be implemented using the extended attribute support and /proc/pid/attr

interface, as mentioned above.

4. SELinux Basic Concepts
This section provides an overview of the SELinux basic concepts. More background information about
SELinux can be found in [LoscoccoFreenix2001].

SELinux is based on the Flask security architecture for flexible nondiscretionary access controls. This
architecture was previously implemented in the Fluke research operating system, as described in
[SpencerUsenixSec1999]. The Flask security architecture provides a clean separation between the policy
enforcement code and the policy decision-making code. The policy decision-making code is
encapsulated in a separate component of the operating system called the security server. The Flask
security architecture includes an access vector cache (AVC) component that provides caching of access
decision computations obtained from the security server to minimize the performance overhead of the
SELinux access controls. The policy enforcement code is integrated into the subsystems (e.g. the process
management code, the filesystem code, the socket and networking code, and the IPC code) of the
operating system. The policy enforcement code obtains security policy decisions from the security server
and AVC, and applies those decisions to assign security labels to processes and objects and to control
operations based on those security labels.

Since different security policies require different kinds of security attributes, the Flask security
architecture provides two policy-independent data types for security labels: the security context and the
security identifier (SID). A security context is a string representation of a security label, while a SID is
an internal handle that is mapped by the security server to a security context. Kernel SIDs are not
exported to userspace; the kernel only returns security contexts to userspace. However, userspace policy

7

Implementing SELinux as a Linux Security Module

enforcers may have their own SID mappings maintained by the userspace AVC that is included in
libselinux. Both SIDs and security contexts are handled opaquely by the policy enforcement code and
can only be interpreted by the security server. The policy enforcement code binds SIDs to active
processes and objects, consulting the security server when a SID needs to be computed for a new subject
or object. The policy enforcement code in the filesystem code also stores file security contexts in each
filesystem using extended attributes.

The policy enforcement code consults the AVC to check permissions for operations, passing a pair of
SIDs and a security class; the AVC obtains access decisions from the security server as needed. The pair
of SIDs are referred to as a source SID and a target SID. Typically, the source SID is the SID of a process
and the target SID is the SID of another process or an object, but it is also possible for permissions to be
defined between two objects to control relationships among objects. The security class identifies the kind
of object. Each security class has an associated set of permissions that are used to control access to that
object. These permission sets are represented by a bitmap called an access vector.

5. Changes from the Original SELinux Kernel Patch
This section summarizes the changes between the original SELinux kernel patch and the LSM-based
SELinux security module. At a high level, the LSM-based SELinux security module provides equivalent
security functionality to the original SELinux kernel patch. However, there have been some changes to
the specific controls, partly driven by design constraints imposed by LSM and partly based on further
review of the original SELinux controls. There have also been significant changes in the underlying
implementation, likewise partly driven by differences in LSM and partly based on a review of the original
SELinux implementation. The following subsections summarize the changes, grouped by category.

5.1. General Changes
This subsection describes general changes between the original SELinux kernel patch and the
LSM-based SELinux security module. These changes include adding a new level of indirection,
dynamically allocating security fields, stacking with the capabilities module, redesigning the SELinux
API, and leveraging the existing Linux functions for checking permissions.

5.1.1. Adding a New Level of Indirection

The original SELinux kernel patch provided clean separation between the policy enforcement code and
the policy decision-making code by using the Flask security architecture and interfaces. The policy
enforcement code was directly inserted into the kernel code at appropriate points, and the policy
decision-making code was encapsulated in the security server, with a well-defined interface between the
two components. Similarly, policy-independent data types for security information were directly inserted
into kernel data structures, and only the security server could interpret these data types. This level of
separation permitted many different kinds of nondiscretionary access control policies to be implemented
in the security server without any changes to the policy enforcement code.

The LSM kernel patch inserts calls to hook functions on kernel objects into the kernel code at
appropriate points, and it inserts void* security fields into the kernel data structures for kernel objects. In
the LSM-based SELinux security module, the policy enforcement code is implemented in the hook
functions, and the policy-independent data types are stored using the security fields in the kernel data

8

Implementing SELinux as a Linux Security Module

structures. Internally, the SELinux code continues to use the Flask architecture and interfaces, and the
security server remains as a separate component of the module. Hence, LSM introduces an additional
level of indirection for the SELinux code and data. The internal architecture of the SELinux security
module is discussed further in Section 6.

5.1.2. Dynamically Allocating Security Fields

In the original SELinux kernel patch, fields for security data were inserted directly into the appropriate
kernel objects and were allocated and freed with the kernel object. Since LSM inserts only a single void*
security field into each kernel object, the LSM-based SELinux security module must manage a
dynamically allocated security structure for each kernel object unless it only needs to store a single word
of security data. The SELinux security module uses a dynamically-allocated security structure for the
security fields of the kernel data structures.

5.1.3. Stacking with the Capabilities Module

The original SELinux kernel patch added the SELinux nondiscretionary access controls as additional
restrictions to the existing Linux access control logic. This left the existing Linux logic intact and
unchanged, including the discretionary access control logic and the capabilities logic. LSM moves most
of the capabilities logic into an optional capabilities security module and provides a dummy security
module that implements traditional superuser logic. Hence, the LSM-based SELinux security module
provides support for stacking with either the capabilities module or the dummy module. Since some
existing applications (e.g. named, sendmail) expect capabilities to be present in Linux, it is
recommended that the SELinux module always be stacked with the capabilities module. The stacking
support is discussed further in Section 8.

5.1.4. Redesigning the SELinux API

In the original SELinux kernel patch, extended system calls such as execve_secure and
stat_secure were implemented by extending the internal kernel functions to optionally pass and
process SID parameters. Initially, in the LSM-based SELinux security module, these extended system
calls were implemented using the security system call and by passing SID parameters to and from the
hook functions via fields in the current task’s security structure. However, when the security system call
was removed from LSM, the SELinux API was completely redesigned in order to gain acceptance into
the mainline kernel. This is discussed further in Section 9.

5.1.5. Leveraging Linux Permission Functions

The original SELinux kernel patch directly inserted its own permission checks throughout the kernel
code rather than trying to leverage existing Linux permission functions such as permission and
ipcperms due to the coarse-grained permissions supported by these functions and the need to perform
permission checks in many locations where no Linux check already existed. The one notable exception
to this practice in the original SELinux kernel patch was the insertion of a SELinux permission check
into the existing capable kernel function so that SELinux could perform a parallel check for the large
number of existing calls to capable.

9

Implementing SELinux as a Linux Security Module

In contrast, LSM inserts hook calls into all of the existing Linux permission functions in order to
leverage these functions. In some cases, LSM also inserts additional hook calls in specific operations to
provide finer-grained control, but in other cases, it merely relies on a hook in one of the existing Linux
permission functions to control an operation. The LSM-based SELinux security module uses the hooks
in the existing Linux permission functions to perform a parallel check for each Linux permission check.
These parallel checks for the Linux permission checks ensure that every Linux access control is also
controlled by SELinux. They also reduce the risk that future changes to Linux will introduce operations
that are completely uncontrolled by SELinux.

Using these hooks required defining some additional coarse-grained permissions for SELinux. These
permissions are discussed further in Section 5.3.3 and in Section 5.5.2. Whenever possible, the
LSM-based SELinux security module leverages these hooks to provide control. When SELinux requires
finer-grained control, the module implements these finer-grained SELinux controls using the additional
LSM hooks.

5.2. Program Execution Changes
This subsection describes general changes between the original SELinux kernel patch and the
LSM-based SELinux security module related to program execution. These changes include replacing the
process execute permission with a new file execute_no_trans permission, and changing the controls
over the inheritance of state across a context-changing execve. Each of these changes is described below.

5.2.1. File execute_no_trans Permission

In the original SELinux kernel patch, the file execute permission controlled the ability to initiate the
execution of a program, while the process execute permission controlled the ability to execute code
from an executable image. The distinction was necessary because the SID of a task can be changed by
program execution, so the SID of the initiator may differ from the SID of the transformed process.
However, the process execute permission was redundant with the process entrypoint permission
when the SID of the task was changing, so it only served a useful purpose when the task SID was left
unchanged. Furthermore, since this permission was between a task SID and a program file SID, it
properly belonged in the file class, not the process class.

Hence, the process execute permission was replaced by a new file execute_no_trans permission in
the LSM-based SELinux security module. Unlike the original process execute permission, the file
execute_no_trans permission is only checked when the SID of the task would remain unchanged.
The process entrypoint permission was also moved into the file class for consistency. The file
execute and process transition permissions were left unchanged. These checks are described
further in Section 12.1.3.

5.2.2. Inheritance of State

Several changes were made to the controls over the inheritance of state across a context-changing
execve. These changes included changes to the file descriptor inheritance controls, changes to the
controls over process tracing and state sharing, and the addition of new controls.

10

Implementing SELinux as a Linux Security Module

The file descriptor inheritance permission checks during program execution were revised for the
LSM-based SELinux security module. This is discussed in Section 5.3.4.

In the original SELinux kernel patch, checks for process tracing and sharing process state when the SID
was changed were inserted into the compute_creds kernel function with the existing Linux tests for
these conditions for setuid programs. However, this function can not return an error, so SELinux merely
left the task SID unchanged if these checks failed, just as Linux leaves the uid unchanged if its tests fail.
Additionally, the original SELinux kernel patch used a hardcoded test for process 1 to permit the kernel
to transition to a new SID for init even though it was sharing state. In the LSM-based SELinux security
module, the ptrace and share checks were changed to also send a SIGKILL to the task to terminate it
upon a permission failure, and a new process share permission was added to provide configurable
control over process state sharing across SID transitions. This is described further in Section 12.1.4.

New permission checks were implemented in the LSM-based SELinux to control inheritance of
signal-related state and resource limits. These checks are also described in Section 12.1.4. Furthermore, a
AT_SECURE flag was added to the ELF auxiliary table so that the SELinux module could inform glibc
when to enable its own secure mode in order to sanitize the environment and other state on a
context-changing exec. This behavior is also controlled based on a permission check between the
relevant contexts, and is described in Section 12.1.6.

5.3. Filesystem Changes
This subsection describes changes between the original SELinux kernel patch and the LSM-based
SELinux security module related to the filesystem. These changes include using extended attributes
rather than the persistent label mapping for file security contexts on persistent filesystems,
reimplementing file labeling support for pseudo filesystem types, leveraging the hook in the existing
permission function, revising the file descriptor permission checks, and eliminating the pipe security
class. Each change is described below.

5.3.1. Labeling of Persistent Files

In the original SELinux kernel patch, a persistent label mapping was maintained in each filesystem that
stored a mapping from integer persistent security identifiers (PSIDs) to security contexts, and a PSID
was stored in a spare field of the on-disk ext2 inode. Since LSM provides all of its file-related hooks in
the VFS layer and does not provide any filesystem-specific hooks, the SELinux persistent label mapping
was initially changed to maintain the inode-to-PSID mapping in a regular file rather than using a spare
field in the ext2 on-disk inode. This change allowed SELinux to support other file system types more
easily, but had disadvantages in terms of performance and consistency. Since support for extended
attributes was integrated into the Linux 2.6 kernel, extended attribute handlers were created for a new
security namespace, and SELinux was modified to store file security contexts as extended attributes. This
eliminated the need for the persistent label mapping.

5.3.2. Pseudo Filesystem Labeling

In the original SELinux kernel patch, code was directly inserted into the procfs and devpts pseudo
filesystem implementations to provide appropriate file labeling behaviors. Since LSM did not provide
filesystem-specific hooks, the LSM-based SELinux security module had to reimplement this

11

Implementing SELinux as a Linux Security Module

functionality using the hooks in the VFS layer. Subsequently, as part of the integration of SELinux into
Linux 2.6, a LSM hook was introduced into the proc filesystem to better support labeling of /proc/pid
inodes, and a fake xattr handler was added to the devpts pseudo filesystem implementation to export pty
labels to userspace. However, labeling of other proc inodes and the initial labeling of devpts inodes is
still handled by the hooks called by the VFS layer. The LSM-based SELinux also expanded and
generalized support for pseudo filesystem labeling. The handling for these pseudo filesystem types is
described in Section 14.1.3.

5.3.3. Leveraging permission

As discussed in Section 5.1.5, LSM inserts a hook into the existing Linux functions for permission
checking, including the permission function for checking access to objects represented by inodes. The
LSM-based SELinux security module leverages this hook to perform a parallel check for each existing
Linux inode permission check. The use of this hook posed a problem for preserving the SELinux
distinction between opening a file with append access vs. opening a file with write access, requiring an
additional change to the Linux kernel.

The use of this hook also posed a problem for the SELinux directory permissions, which partition
traditional write access into separate permissions for adding entries (add_name), removing entries
(remove_name), and reparenting the directory (reparent). Since these distinctions are not possible in
the selinux_inode_permission hook called by the permission kernel function, a directory write

permission was added to SELinux. This permission is checked by this hook when write access is
requested, and the finer-grained directory permissions are checked by the additional hooks that are called
when a directory operation is performed.

Hence, directory modifications require both a write permission and the appropriate finer-grained
permission to the directory. Whenever one of the finer-grained permissions is granted in the policy, the
write permission should also be granted in the policy. The write permission check on directories could
be omitted, but it is present to ensure that all directory write accesses are controlled by SELinux.

5.3.4. File Descriptor Permissions

In the original SELinux kernel patch, distinct file descriptor permissions were defined for getting the file
offset or flags (getattr), setting the file offset or flags (setattr), inheriting the descriptor across an
execve (inherit), and receiving the descriptor via socket IPC (receive). These permissions were
reduced to a single use permission in the LSM-based SELinux security module that is checked
whenever the descriptor is inherited, received, or used.

Additionally, in the original SELinux kernel patch, only the inherit or receive permissions were
checked when a descriptor was inherited or received. The other descriptor permissions and the
appropriate file permissions were only checked when an attempt was made to use the descriptor. In the
LSM-based SELinux security module, the use permission and the appropriate file permissions are
checked whenever the descriptor is inherited, received, or used.

These changes to the SELinux file descriptor permission checks bring SELinux into conformity with the
base Linux control model, where possession of a descriptor implies the right to use it in accordance with
its mode and flags. This reduces the risk of misuse of a descriptor by a process, and also reduces the risk
that future changes to Linux will open vulnerabilities in the SELinux control model. With these changes,

12

Implementing SELinux as a Linux Security Module

the SELinux permission checks on calls such as read and write are only necessary to support
revocation of access for relabeled files or policy changes.

5.3.5. Pipe Security Class

In the original SELinux kernel patch, a separate security class was defined for pipes, although this
security class merely inherited the common file permissions. In the LSM-based SELinux security
module, this class was eliminated, and the fifo_file security class is used for both pipes and for
named FIFOs. This has no impact on the ability to control pipe operations distinctly, since pipes are still
labeled with the SID of the creating task while named FIFOs are labeled in the same manner as other
files.

5.4. Socket IPC and Networking Changes
This subsection describes changes between the original SELinux kernel patch and the LSM-based
SELinux security module related to socket IPC and networking. These changes include redesigning the
SELinux network access controls, storing socket security information in the associated inode security
field, reimplementing the SELinux access controls using minimally invasive hooks, changing the file
descriptor transfer controls, omitting some of the low-level ioctl controls, and implementing the
extended socket calls.

5.4.1. Redesigning Network Access Controls

As part of integrating SELinux into Linux 2.6, the network access controls were redesigned based on
past experience and on what could be readily supported by the Linux 2.6 kernel, since most of the LSM
networking hooks were rejected. This is discussed further in Section 17.2.3 and Section 18.

5.4.2. Storing Socket Security Data

The original SELinux kernel patch added security fields to the network layer sock structure for socket
security data, and also mirrored the SID and security class of the socket in the inode structure associated
with the socket. LSM also provides a security field within the sock structure, but SELinux can only use
this field to store peer security data for Unix stream connections during connection setup. Otherwise, the
LSM-based SELinux security module stores all socket security data in the security field of the associated
inode once the user socket is established. This is discussed further in Section 17.1 and Section 18.

5.4.3. Minimally Invasive Hooks

Since the original SELinux kernel patch added security fields to the lower-level struct sock structure,
most of the SELinux changes were inserted directly into the specific protocol family implementations
(e.g. the AF_INET and AF_UNIX code). The original SELinux kernel patch was fairly invasive in
inserting SELinux processing throughout the protocol family implementations, and did not try to
leverage the existing Linux packet filtering support.

13

Implementing SELinux as a Linux Security Module

LSM provides a set of hooks in the abstract socket layer for controlling socket operations at a high level,
and leverages the Linux NetFilter support for hooking network operations. The LSM-based SELinux
security module implements as many of the SELinux socket and network controls as possible using these
socket layer hooks and NetFilter-based hooks. Hence, NetFilter support should be enabled in the kernel
configuration when using SELinux.

For the SELinux Unix domain IPC controls, the LSM-based SELinux security module leverages the
hooks in the existing Linux permission functions but also required two additional hooks in the Unix
domain protocol implementation due to the abstract namespace. The SELinux socket access controls are
described in Section 17.2 and the SELinux network layer access controls are described in Section 18.

5.4.4. File Descriptor Transfer

The file descriptor transfer permission checks during socket IPC were revised for the LSM-based
SELinux security module. This is discussed in Section 5.3.4.

5.4.5. Omitting Low-Level ioctl Controls

In the original SELinux kernel patch, a small set of controls were implemented in low-level ioctl
routines to support fine-grained control over configuring network devices, accessing the kernel routing
table, and accessing the kernel ARP and RARP tables. During the development of LSM, the feasibility of
providing hooks to support these controls was explored, but it was determined that providing hooks in
every location necessary to control configuring network devices would be too invasive, and the other
controls offered little benefit over the existing capable calls. Hence, the LSM-based SELinux security
module does not implement these controls, and control over these operations is handled based on the
capable calls.

5.4.6. Extended Socket Calls

In the original SELinux kernel patch, a set of extended socket calls were implemented. These calls were
reimplemented initially for the LSM-based SELinux, and an experimental labeled networking
implementation was also contributed. However, as part of the SELinux API redesign and the rejection of
the LSM networking hooks, the extended socket calls and labeled networking do not exist in Linux 2.6.
There is one exception: a getpeercon API has been implemented to support obtaining peer security
contexts for Unix stream connections, and is available in Linux 2.6.

* Note: The preceding statements are historical and no longer apply to modern SELinux systems, which do support labeled
networking and APIs for getting peer and datagram contexts on both INET and Unix sockets.

5.5. System V IPC Changes
This subsection describes changes between the original SELinux kernel patch and the LSM-based
SELinux security module related to System V IPC. Since the System V IPC security enhancements were
never ported from the 2.2 series to the 2.4 series prior to the transition to using LSM, the LSM-based
SELinux security module had to adapt the implementation of the SELinux security enhancements to the

14

Implementing SELinux as a Linux Security Module

2.4 series. In addition to this adaptation, the changes include an easier solution for storing the IPC
security data and leveraging the hook in the existing ipcperms function.

5.5.1. Storing IPC Security Data

In the original SELinux kernel patch for the 2.2 series, it was difficult to add security data to the
semaphore and message queue structures because the kernel exported the same data structure that it used
internally to applications. Hence, the original SELinux kernel patch wrapped these data structures with
private kernel data structures that contained both the original structure and the additional security data.
This required extensive changes to the IPC code to dereference fields in the original structure. In the 2.4
series, the IPC code was rewritten to use private kernel data structures for all of the IPC objects, and each
of these structures included a struct kern_ipc_perm structure with common information. Hence, LSM
was able to add a single security field to this common structure and a single security field to the structure
for individual messages. This is discussed further in Section 16.1.

5.5.2. Leveraging ipcperms

As discussed in Section 5.1.5, LSM inserts a hook into the existing Linux functions for permission
checking, including the ipcperms function for checking access to IPC objects. The LSM-based
SELinux security module leverages this hook to perform a parallel check for each existing Linux IPC
permission check. However, since the SELinux IPC permissions are much finer-grained than the Linux
concepts of read or write access to IPC objects, new unix_read and unix_write permissions were
defined to correspond with the Linux permissions. These new permissions are checked by the hook
called by ipcperms, and the finer-grained SELinux permissions are checked by the other IPC hooks.
Hence, IPC operations require the unix_read or unix_write permission and the appropriate
finer-grained permission. The coarse-grained permission checks could be omitted, but they are present to
ensure that all IPC accesses are controlled by SELinux. These checks are discussed in Section 16.2.2.

5.6. Miscellaneous Changes
In addition to the changes described above, the LSM-based SELinux security module had to reimplement
the approach for controlling the sysctl call. It also added new controls for some system operations that
were not specifically addressed in the original SELinux kernel patch, such as syslog, which were
formerly controlled only via the coarse-grained capable controls. Fine-grained controls over netlink
operations were also introduced as part of the 2.6 SELinux. These controls are discussed in Section 19.

6. Internal Architecture
This section provides an overview of the SELinux security module internal architecture. The module
code is located within the security/selinux subdirectory of the kernel tree. All subsequent
pathnames in this section are relative to this subdirectory, unless otherwise noted. The module consists of
six major components: the security server, the access vector cache (AVC), the network interface table, the
netlink event notification code, the selinuxfs pseudo filesystem, and the hook function implementations.

15

Implementing SELinux as a Linux Security Module

The security server provides general interfaces for obtaining security policy decisions, enabling the rest
of the module to remain independent of the specific security policies used. These interfaces are defined
in the include/security.h header file under the SELinux module directory. The specific
implementation of the security server can be changed or completely replaced without requiring any
changes to the rest of the module. The example security server provided with SELinux implements a
combination of Role-Based Access Control (RBAC), a generalization of Type Enforcement (TE), and
optionally Multi-Level Security (MLS). The RBAC and TE policies are highly configurable and can be
used to meet many different security objectives. The example security server code can be found in the ss
subdirectory.

The AVC provides caching of access decision computations obtained from the security server to
minimize the performance overhead of the SELinux security mechanisms. It provides interfaces to the
hook functions for efficiently checking permissions and it provides interfaces to the security server for
managing the cache. The AVC interfaces to the hook functions are defined in the include/avc.h
header file, and the AVC interfaces to the security server are defined in the include/avc_ss.h header
file. The AVC code can be found in the avc.c file.

The network interface table maps network devices to security contexts. Maintaining a separate table is
necessary because the LSM network device security field was rejected. Network devices are added to the
table when they are first looked up by the hook functions, and are removed from the table when the
device is configured down or the policy is reloaded. The network interface table provides an interface,
defined in include/netif.h, to the hook functions for looking up and obtaining the SIDs associated
with a network device. Callback functions are registered for device configuration changes and policy
reloads. The network interface table code can be found in the netif.c file.

The netlink event notification code allows the SELinux module to notify processes when the policy has
been reloaded and when the enforcing status is changed. These notifications are used by the userspace
AVC (part of libselinux) to keep its state consistent with the kernel. The userspace AVC is used by
userspace policy enforcers such as security-enhanced X and security-enhanced dbus. The netlink event
notification code can be found in the netlink.c file.

The selinuxfs pseudo filesystem exports the security server policy API to processes. The original
SELinux kernel API was decomposed into three orthogonal components (process attributes, file
attributes, policy API) as part of the redesign for inclusion in mainline Linux 2.6, and selinuxfs provides
the underlying support for the policy API calls. All three components of the new kernel API are
encapsulated by the higher level libselinux API. The selinuxfs code can be found in the selinuxfs.c
file.

The hook function implementations manage the security information associated with kernel objects and
perform the SELinux access controls for each kernel operation. The hook functions call the security
server and access vector cache to obtain security policy decisions and apply those decisions to label and
control kernel objects. The hook functions also call the filesystem extended attribute code to obtain and
set security contexts on files. The code for these hook functions is located in the file hooks.c, and the
data structures for the security information associated with the kernel objects are defined in the file
include/objsec.h.

Abstractly, the hook function and data structure contents can be viewed as the same processing and data
that was directly inserted into the kernel code and data structures by the original SELinux patch.
However, in practice, it was often necessary to revisit the approach used by the original SELinux patch
since the LSM hook locations did not always correspond to the insertion points of the original SELinux
patch. In part, this was because the LSM project placed a heavier emphasis on minimizing hooks,

16

Implementing SELinux as a Linux Security Module

especially outside of the core kernel code. For example, the lack of any filesystem-specific hooks
required a different approach for labeling both persistent filesystems like ext3 and pseudo filesystems
like procfs. Similarly, since LSM leverages the existing NetFilter framework to support hooking on many
network operations, the implementation of the SELinux network access controls was changed.
Nonetheless, it was possible to provide the desired security semantics with the LSM hooks.

7. Initialization
This section describes the initialization code for the SELinux security module. SELinux initialization
begins with the selinux_init function, which is registered as a security initcall and called early in the
kernel initialization sequence. Certain aspects of SELinux initialization must be deferred until later in the
kernel initialization sequence and are handled by ordinary initcalls, including selinux_nf_ip_init,
sel_netif_init, selnl_init, and init_sel_fs. SELinux initialization is not fully completed until
after the initial policy is loaded by /sbin/init, at which point the selinux_complete_init function is
called. Each of these functions is described below.

7.1. selinux_init
This function, located in the hooks.c file, handles early initialization for the SELinux module. The
function starts by setting the security state for the initial task. It then calls the avc_init function to
initialize the AVC. This initialization must be done prior to any permission checking calls to the AVC.
The function then sets the secondary security module to the original security module, typically the
dummy module, to support stacking with the dummy or capabilities modules. This is discussed further in
Section 8. Finally, this function calls the LSM register_security function to register the SELinux
security module as the primary security module for LSM.

7.2. selinux_nf_ip_init
This function, also located in the hooks.c file, handles initialization of the SELinux NetFilter hooks
used to apply permission checks on outgoing packets. This function calls the nf_register_hook
function to register the SELinux post-routing hook functions with the Netfilter framework for ipv4 and
ipv6. These hook functions are discussed further in Section 18.

7.3. sel_netif_init
This function, located in the netif.h file, handles initialization of the SELinux network interface table
that is used to look up the SIDs of network devices. This function begins by initializing the SELinux
network interface hash table. It then registers a network device notifier so that it can flush entries for
devices that are downed. Finally, it also registers an AVC callback so that it can flush the entire table
upon a policy reload.

17

Implementing SELinux as a Linux Security Module

7.4. selnl_init
This function, located in the netlink.c file, handles initialization of the kernel SELinux netlink socket
used to send notifications of setenforce and policy load events to userspace. The function creates the
netlink socket and sets it to allow non-root processes to receive notifications so that userspace object
managers are not required to run as root.

7.5. init_sel_fs
This function, located in the selinuxfs.c file, handles initialization of the selinuxfs pseudo filesystem.
It registers the selinuxfs filesystem type and creates a private kernel mount of selinuxfs. This results in a
populated selinuxfs filesystem and sets up the special null device node used by SELinux when it closes
unauthorized files upon a context-changing execve.

7.6. selinux_complete_init
This function, located in the hooks.c file, completes the initialization of SELinux after the initial policy
has been loaded by /sbin/init. It traverses a list of superblocks that were initialized prior to the initial
policy load and invokes the superblock_doinit function on each of them. The superblock_doinit
function proceeds to set up the security structure for each of these superblocks. It also invokes the
inode_doinit function to set up the security structure for any existing inodes associated with the
superblock.

8. Stacking with Other Modules
This section describes the current support for stacking SELinux with other security modules. LSM
provides only minimal support for stacking security modules, providing hooks for this purpose but
deferring the details of how stacking is handled to the primary security module. Work is ongoing to
enhance the stacking support of LSM as well as to provide a generic stacker module; see the
linux-security-module mailing list for more information. At present, the SELinux security module only
functions as a primary security module and provides minimal support for using either the dummy
security module (traditional superuser logic) or the capabilities security module as a secondary security
module. This allows SELinux to be combined with either the traditional superuser logic or with the
Linux capabilities logic.

As mentioned in Section 7, the selinux_init function initializes the secondary security module to the
dummy security module, which is always resident in the kernel, prior to registering the SELinux security
module. This allows the SELinux hook functions to safely call the secondary hook functions. The
selinux_register_security hook function sets the secondary security module to a different
module, such as the capabilities module. The selinux_unregister_security hook function restores
the secondary security module to the dummy security module.

The dummy and capabilities security modules only implement a very small subset of the hook functions.
Hence, at present, the SELinux security module only calls the secondary security module for this small
set of hooks, along with a few other hooks that were added upon request for other security module

18

Implementing SELinux as a Linux Security Module

writers. Since some of the dummy and capability hook functions are implemented in terms of the
capable function, stacking the capable hook is sufficient to cover several hooks without needing to
explicitly call the secondary module from the individual hook. However, in most cases, there would be
no harm other than performance in always calling the secondary security module.

There are a few exceptions where calling the secondary module would pose a problem for SELinux. The
capability inode_removexattr and inode_setxattr functions require CAP_SYS_ADMIN for all
attributes in the security namespace, whereas SELinux applies its own finer-grained checking to the
security.selinux attribute, so SELinux must completely override the secondary module for these
hooks. The capability vm_enough_memory function would perform duplicate vm accounting if SELinux
called it, so SELinux must override it as well. The capability netlink_send function sets the effective
capability bitmap in the control buffer for the netlink message from the current process’ credentials,
whereas SELinux overrides this function with one that also applies SELinux permission checking.

The dummy and capabilities security modules are easy to stack with SELinux because they do not use
the security fields LSM added to the kernel data structures. Stacking the SELinux module with any
module that does use these fields will require the definition of a common security object header with a
module identifier and a link for chaining multiple security objects on a single security field. Work is
ongoing in this area on the linux-security-module mailing list.

9. SELinux API
This section discusses how the SELinux API was implemented in the SELinux security module. Prior to
merging SELinux into the mainline Linux 2.6 kernel, the SELinux API was implemented using a
security system call multiplexer provided by the LSM kernel patch. However, this security system call
was removed by the kernel developers during the Linux 2.5 development series, thereby requiring a
reworking of the SELinux API to gain acceptance into mainline Linux. The SELinux API has been
refactored into three components: a new /proc/pid/attr API for process attributes, the existing xattr
API for file attributes (using a new security namespace), and a selinuxfs pseudo filesystem for the
security policy API. Support for the SELinux extensions for System V and socket IPC will be
investigated in the future. All three components of the new SELinux API are encapsulated by the
libselinux library.

As part of the redesign of the SELinux API for Linux 2.6, SIDs were removed from the API, and only
security contexts are now passed by the API calls. This approach provided a better fit with both the
/proc-based interface and the xattr-based interface, as well as providing a better fit with the needs of most
applications. It also allows for future implementation of kernel tracking of SID usage and safe
reclamation of unused SIDs. For applications that would benefit from a SID abstraction, e.g. userspace
object managers such as dbusd, nscd, or X, a userspace SID table was implemented in libselinux along
with the userspace AVC.

Prior to merging SELinux into mainline Linux 2.6, extended system calls such as execve_secure,
open_secure and stat_secure were implemented by SELinux to allow security information to be
provided or returned by a call. In the original SELinux kernel patch, these calls were implemented
internally by extending the internal kernel functions to optionally pass and process SID parameters. This
approach was viewed as enhancing the Linux API to incorporate security as a first class notion, retaining
the original calls for compatibility but re-implementing them internally by passing default SIDs to the
extended internal functions. Later, in the LSM-based SELinux, to reduce the invasiveness of SELinux,
the calls were re-implementing by passing SIDs via fields in the task security structure to and from the

19

Implementing SELinux as a Linux Security Module

security hook functions. However, this approach of a parallel set of extended calls for existing system
calls was not welcomed by the kernel developers.

Based on kernel developer feedback, the extended system calls of the original SELinux API were
replaced with separate set-attribute calls that precede an ordinary call. For example, a call to
execve_secure is replaced with a call to setexeccon to set the desired exec security context followed
by a call to execve to perform the exec. Similarly, a call to open_secure or mkdir_secure is
replaced with a call to setfscreatecon to set the desired filesystem creation context followed by a call
to open or mkdir to perform the file creation. The exec context and fscreate context are attributes of the
process like the umask; if set, they are applied to all subsequent execve or file creation calls until they are
explicitly cleared via setexeccon or setfscreatecon calls with a NULL argument or they are
automatically cleared after an execve (i.e. reset upon each new program execution). Within libselinux,
these calls are implemented via writes to /proc/self/attr/exec and
/proc/self/attr/fscreate nodes. Note that a process can only set its own exec and fscreate
contexts.

The new SELinux API allows for simplification of applications that merely wish to set a single exec or
fscreate context and have it applied for any subsequent execve or file creation call, since the setting of the
context can be performed up front and the SID/context does not need to be passed around by the
application functions. The API also avoids the need to extend various library functions (e.g. execl*,
execv*, popen/pclose, fopen) that internally perform execve or file creation calls, since the caller can
simply set the exec or fscreate context prior to making the ordinary library function call and have the
context automatically applied when the execve or file creation call is made by the library function.

However, this API does require additional care to be taken by library functions to save and restore the
exec or fscreate contexts if they need to set them temporarily for their own processing (e.g. to preserve
the security context on /etc/shadow) and by signal handlers to save, reset, and restore these contexts if
the signal handler calls execve or a file creation call. The setting of the /proc/pid/attr attributes is not
supported for multi-threaded processes.

10. Helper Functions for Hook Functions
The SELinux security module provides a set of helper functions that are used extensively by the SELinux
hook implementations. This section provides an overview of these helper functions. More detailed
descriptions of individual helper functions are provided in the appropriate hooks section.

10.1. Primitive Allocation Helper Functions
For most SELinux security data structures defined in include/objsec.h, the SELinux module
provides a primitive alloc_security and free_security helper function, e.g.
task_alloc_security and task_free_security. These helper functions are used by the
alloc_security and free_security hook functions, which may contain additional processing
beyond the basic initialization performed by these helpers.

Each primitive alloc_security helper function allocates a security structure of the appropriate type,
sets a back pointer to the kernel data structure, initializes the security information, and sets the object
security field to refer to this new security structure. Each primitive free_security helper function
clears the security field and frees the security structure.

20

Implementing SELinux as a Linux Security Module

10.2. Initialization Helper Functions
The SELinux security module defines initialization helper functions for certain security structures (e.g.
inode_doinit, superblock_doinit, etc). These initialization helper functions are called by certain
SELinux hook functions, and are discussed further in later sections.

10.3. Permission Checking Helper Functions
A set of helper functions on kernel objects and permissions are provided that dereference the security
fields, set up auxiliary audit data, and then invoke the access vector cache (AVC) to perform the
permission check with the right set of parameters. These helper functions simplify the code for many of
the hook functions that perform permission checks. A few examples of these functions include
task_has_perm, inode_has_perm, and may_create.

Although these helper functions can be convenient, hook functions are free to directly call the AVC to
perform permission checks. This is done in a couple of cases. First, some permission checks involve a
security identifier (SID) that is not associated with a kernel object, e.g. a SID specified by an application
using the SELinux API calls or a SID obtained from the security server for an object that is about to be
created. Second, some operations require multiple permission checks to be performed that are based on
some of the same SIDs. In the latter case, using the helper functions would cause redundant processing
in order to extract the same SIDs multiple times.

11. Task Hook Functions
The SELinux task hook function implementations manage the security fields of task_struct structures and
perform access control for task operations. This section describes these hooks and their helper functions.

11.1. Managing Task Security Fields

11.1.1. Task Security Structure

The task_security_struct structure contains security information for tasks. This structure is defined as
follows:

struct task_security_struct {
struct task_struct *task;
u32 osid;
u32 sid;
u32 exec_sid;
u32 create_sid;
u32 ptrace_sid;

};

Table 1. task_security_struct

21

Implementing SELinux as a Linux Security Module

Field Description
task Back pointer to the associated task_struct structure.

osid SID prior to the last execve.

sid current SID for the task.

exec_sid SID for the task upon the next execve call.

create_sid SID for files created by the task.

11.1.2. task_alloc_security and task_free_security

The task_alloc_security and task_free_security helper functions are the primitive allocation
functions for task security structures. The selinux_task_alloc_security hook function calls
task_alloc_security for the new task and then copies the SID fields from the current task into the
new task. The selinux_task_free_security hook function simply calls the corresponding helper
function.

11.1.3. selinux_task_reparent_to_init

This hook function is called by the kernel reparent_to_init function to set the security attributes for
a kernel task. This hook function first calls the secondary security module to support Linux capabilities.
It then sets the SID of the task to the kernel initial SID.

11.1.4. selinux_task_post_setuid

This hook function is called after a setuid operation has successfully completed. Since the SELinux
module does not use the Linux identity attributes, this hook function does not perform any SELinux
processing. However, it does call the secondary security module to support Linux capabilities.

11.1.5. selinux_task_to_inode

This hook function is called by the procfs pseudo filesystem to set the security state for the /proc/pid
inodes associated with a task. This function sets the inode SID from the task SID and marks the inode
security structure as initialized.

11.1.6. selinux_getprocattr

This hook function is called by the procfs pseudo filesystem to get a process security attribute value from
the security module upon an attempt to read a node under the /proc/pid/attr directory. The hook function
begins by checking getattr permission if the target task differs from the current task. It then extracts
the appropriate SID from the task security structure. If the corresponding SID has not been set (e.g. if no
explicit exec SID has been set and the task is using the default policy behavior), then the hook returns a
zero length. Otherwise, the hook function calls security_sid_to_context to obtain the security
context associated with the SID, copies the context to the provided kernel buffer (if it is large enough),
and returns its length.

22

Implementing SELinux as a Linux Security Module

11.1.7. selinux_setprocattr

This hook function is called by the procfs pseudo filesystem to set a process security attribute value from
the security module upon an attempt to write a node under the /proc/pid/attr directory. The hook function
begins by checking whether the target task differs from the current task, returning an error in that case to
prevent setting of a task’s security attributes by another task. The function then applies a permission
check between the current task and the target task (always a self relationship due to the prior restriction)
based on the particular attribute being set. If a context was written to the node (as opposed to writing a
zero length buffer to reset an exec or fscreate SID to the default policy behavior), then the function calls
security_context_to_sid to convert it to a SID.

If the attribute is the exec or fscreate context, then the function proceeds to set the corresponding SID in
the task security structure. For these attributes, further permission checks based on the specified security
context are not performed until the execve or file creation operation occurs, at which point that operation
may fail due to a lack of permission. This is partly a legacy of the original API, where extended system
calls specified the SID for the operation as part of the operation call rather than separately setting a
process attribute in advance. While it would be possible to duplicate some of this checking within the
selinux_setprocattr hook function (e.g. process transition permission check), the hook function
lacks the full context of the execve or file creation operation, e.g. the entrypoint program for execve and
the parent directory, filesystem, and specific file type for file creation.

If the attribute is the current context (i.e. a dynamic context transition), then the hook function verifies
that there are no other threads in the process, checks dyntransition permission between the old and
new task SIDs, and if the process is being traced, checks ptrace permission between the tracer SID and
the new SID. If all checks pass, then the task SID is set to the new value.

11.2. Controlling Task Operations

11.2.1. Helper Functions for Checking Task Permissions

Several helper functions are provided for performing task permission checks. These functions and their
permission checks are summarized in Table 2. The task_has_perm function checks whether a task has
a particular permission to another task. The task_has_capability function checks whether a task has
permission to use a particular Linux capability. The task_has_system function checks whether a task
has one of the permissions in the system security class. This security class is used for permissions that
control system operations when there is no existing capability check or the capability check is too
coarse-grained. The task_has_security function checks whether a task has permission to use one of
the selinuxfs APIs.

Table 2. Task Helper Function Permission Checks

Function Source Target Permission(s)
task_has_perm SourceTask TargetTask ProcessPermission

task_has_capability Task Task CapabilityPermission

task_has_system Task Kernel SystemPermission

task_has_security Task Security SecurityPermission

23

Implementing SELinux as a Linux Security Module

Except for task_has_perm, these permission checks are simply based on a single task, so the target
SID is unnecessary. In the case of task_has_capability, the task’s SID is passed for both the source
and target SIDs. For task_has_system and task_has_security, a distinct initial SID is used for the
target SID.

11.2.2. Hook Functions for Controlling Task Operations

The task hook functions that perform access control and their permission checks are summarized in
Table 3. These functions call the task_has_perm helper function.

Table 3. Task Hook Function Permission Checks

Hook Source Target Permission(s)
selinux_task_create Current Current fork

selinux_task_setpgid Current TargetTask setpgid

selinux_task_getpgid Current TargetTask getpgid

selinux_task_getsid Current TargetTask getsession

selinux_task_getscheduler Current TargetTask getsched

selinux_task_setscheduler
selinux_task_setnice

Current TargetTask setsched

selinux_task_kill Current TargetTask signull
sigchld
sigkill
sigstop
signal

selinux_task_wait ChildTask Current sigchld
sigkill
sigstop
signal

selinux_task_setrlimit Current Current setrlimit

selinux_ptrace Parent Child ptrace

Only three of these hook functions require further explanation. The selinux_task_kill hook
function checks a permission between the current task and the target task based on the signal being sent.
The selinux_task_wait checks a permission between the child task and the current task based on the
exit signal set for the child task. This allows control over the ability of a process to reap a child process
of a different SID. In both hooks, the SIGKILL and SIGSTOP signals have their own distinct permissions
because neither of these two signals can be blocked. The SIGCHLD signal has its own distinct permission
because it is commonly sent from child processes to parent processes. The signull permission is
checked if a 0 signal is passed to kill, as this merely represents an existence test, not an actual signal
delivery. For all other signals, the generic signal permission is used.

The selinux_task_rlimit hook checks setrlimit permission if a hard limit is being changed so

24

Implementing SELinux as a Linux Security Module

that the hard limit can later be used as a safe reset point for the soft limit upon context transitions. See the
section on selinux_bprm_apply_creds for further discussion of the resource limit inheritance
control.

In addition to checking ptrace permission, the selinux_ptrace hook also sets the tracer SID in the
child task’s security structure for later use by selinux_bprm_apply_creds and
selinux_setprocattr. See Section 12.1.4 and Section 11.1.7 for further discussion.

Several of the task hook functions for controlling operations are not used by the SELinux security
module. These hook functions are:

• selinux_task_setuid

• selinux_task_setgid

• selinux_task_setgroups

• selinux_task_prctl

Since SELinux does not depend on the Linux identity attributes, and since these operations can only
affect the current process, SELinux does not need to control these operations. Privileged aspects of these
operations are already controlled via the selinux_capable hook function. However, it may be
desirable in the future to add SELinux permissions to control these operations, e.g. to confine Linux
identity changes at finer granularity.

12. Program Loading Hook Functions
The SELinux binprm hook function implementations manage the security fields of linux_binprm
structures and perform access control for program loading operations. This section describes these hooks
and their helper functions.

12.1. Managing Binprm Security Fields

12.1.1. Binprm Security Structure

The bprm_security_struct structure contains security information for program loading. This structure is
defined as follows:

struct bprm_security_struct {
struct linux_binprm *bprm;
u32 sid;
unsigned char set;
char unsafe;

};

Table 4. task_security_struct

25

Implementing SELinux as a Linux Security Module

Field Description
bprm Back pointer to the associated linux_binprm structure.

sid SID for the transformed process.

set Flag indicating whether sid has been set.

unsafe Flag indicating whether an unsafe transition was attempted.

12.1.2. selinux_bprm_alloc_security and selinux_bprm_free_security

The selinux_bprm_alloc_security and selinux_bprm_free_security hook functions directly
perform allocation and freeing of the linux_binprm security structures rather than using primitive helper
functions. However, they perform the same basic processing as described in Section 10.1. In earlier
versions of the SELinux module, there was no bprm security structure and these functions did nothing
for SELinux, as only the new SID for the transformed process was needed and it was stored directly in
the linux_binprm security field.

12.1.3. selinux_bprm_set_security

The selinux_bprm_set_security hook function is called while loading a new program to fill in the
linux_binprm security field and optionally to check permissions. This hook function may be called
multiple times during a single execve, e.g. for interpreted scripts. This hook function first calls the
secondary security module to support Linux capabilities. If the set flag in the bprm security structure has
already been set by a prior call to this hook, this hook merely returns without further processing. This
allows security transitions to occur on scripts if permitted by the policy. Naturally, such transitions
should only occur when the caller is more trusted than the new domain, as script invocation is subject to
an inherent race and scripts are highly susceptible to influence by their caller. However, SELinux does
allow transitions on scripts subject to policy, e.g. to support shedding of permissions upon script
invocation where the caller is trusted.

By default, this hook function sets the SID in the bprm security structure to the SID of the current task. It
also clears any file creation SID set earlier by the task to ensure that the new program starts with a clean
initial state. This function checks the current task’s security structure to see if the task specified an exec
SID for the next execve call. If so, then this exec SID is used and cleared. Otherwise, the security server
is consulted using the security_transition_sid interface to see whether the SID should change
based on the current SID of the task and the SID of the program. If the filesystem is mounted nosuid,
then any exec SID set previously or transition SID obtained from the security server is ignored, and the
task SID is left unchanged.

This hook function then performs different permission checks depending on whether the SID of the task
is changing. The permission checks for each case are described below. The file execute permission
check is performed by the selinux_inode_permission hook during open_exec processing, so it is
not listed here.

The file execute_no_trans permission is checked when a task would remain in the same SID upon
executing a program, as shown in Table 5. This permission check ensures that a task is allowed to
execute a given program without changing its security attributes. For example, although the login process
can execute a user shell, it should always change its SID at the same time, so it does not need this
permission to the shell program.

26

Implementing SELinux as a Linux Security Module

Table 5. Permission Checks if Task SID is not changing on exec

Source Target Permission(s)
Current ProgramFile execute_no_trans

The process transition permission and the file entrypoint permission are checked when the SID of
a task changes. The transition permission check ensures that the old SID is allowed to transition to
the new SID. The entrypoint permission check ensures that the new SID can only be entered by
executing particular programs. Such programs are referred to as entrypoint programs for the SID. These
permission checks are shown in Table 6. If all permission checks for a transition pass, then any unsafe
personality bits are cleared and the new SID is saved in the bprm security structure for use by
selinux_bprm_apply_creds.

Table 6. Permission Checks if Task SID is changing on exec

Source Target Permission(s)
Current NewTaskSID transition

NewTaskSID ProgramFile entrypoint

12.1.4. selinux_bprm_apply_creds

The selinux_bprm_apply_creds hook function is called to set the new security attributes for the
transformed process upon an execve after checking for certain unsafe conditions with the task lock held.
This hook function first calls the secondary security module to support Linux capabilities. This hook
then extracts the new task SID from the bprm security structure, copies the current SID of the task into
the old SID field of the task security structure, and clears the unsafe flag in the bprm security structure. If
the new SID is the same as the old SID, then nothing further is done by this hook.

Two additional permission checks may occur when the SID of the task is changing. If the task was
created via clone and has shared state, then the share permission is checked between the old and new
SIDs. If the task is being traced, then the ptrace permission is checked between the tracer task (saved in
the ptrace_sid field of the current task’s security structure earlier upon ptrace_attach) and the new SID.
The permission checks are shown in Table 7. If either of these permission checks fail, then the task SID
is left unchanged, the unsafe flag is set in the bprm security structure for later use by the
selinux_bprm_post_apply_creds hook, and the hook immediately returns. If all permissions are
granted, this hook function changes the SID of the task to the new SID and returns.

Table 7. Permission Checks if Task SID is changing on exec

Source Target Permission(s)
TracerTask NewTaskSID ptrace

Current NewTaskSID share

27

Implementing SELinux as a Linux Security Module

12.1.5. selinux_bprm_post_apply_creds

This hook function is called after the selinux_bprm_apply_creds without the task lock held to
support further processing that cannot be done safely under the task lock or that does not require it to be
held. The hook function first checks whether the unsafe flag was set in the bprm security structure, and if
so, it forces a SIGKILL to the task to terminate it and returns immediately. This function then checks
whether the task SID has changed, and if not, it returns immediately, as no further processing is required.

Otherwise, this hook function proceeds to call the flush_unauthorized_files helper function to
revoke access to the controlling tty if the task is no longer allowed to access it and to close any file
descriptors to which the task should no longer have access. After revalidating access to the controlling tty
and revoking it if necessary, the helper function calls file_has_perm on each open file with requested
permissions that correspond to the file mode and flags, and closes the open file if these permissions are
not granted under the new SID. The file_has_perm function is described in Section 15.2.1. To avoid
inducing errors in applications that expect certain descriptors to be open, this helper function also
re-opens any descriptors it closes to refer to a null device node that was set up in selinuxfs during
initialization. The helper function then returns.

The selinux_bprm_post_apply_creds hook function then applies two inheritance checks between
the old and new SIDs, one to control the ability to inherit signal-related state and one to control the
ability to inherit resource limits from the old SID. These checks are intended to protect the program in
the new SID against certain forms of influence by the caller unless authorized by policy. If the siginh
permission is denied, then any itimers are cleared to avoid subsequent signal generation, pending signals
are flushed and unblocked, and all signal handlers are reset to the default. If the rlimitinh permission
is denied, then all soft resource limits are reset to the lower of the current task’s hard limit and the initial
task’s soft limit. This control relies on the proper control of the setrlimit permission to prevent
untrusted processes from lowering hard limits as well. The inclusion of the initial task’s soft limits into
the computation is to avoid resetting soft limits higher than the default soft limit for cases where the
default is lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. These two inheritance checks
are shown in Table 8.

Table 8. Inheritance Permission Checks if Task SID is changing on exec

Source Target Permission(s)
OldTaskSID NewTaskSID siginh

OldTaskSID NewTaskSID rlimitinh

Finally, this hook function wakes up the parent task if it is waiting on this task. This allows the
selinux_task_wait hook to recheck whether the parent task is allowed to wait on the task under its
new SID and to handle a denial appropriately.

12.1.6. selinux_bprm_secureexec

This hook function is called after selinux_bprm_post_apply_creds to determine whether the
AT_SECURE flag in the ELF auxiliary table should be set to cause glibc to enable its secure mode in
order to sanitize the environment and other state to protect the new program against certain forms of
influence by the caller. If the task SID has changed, then this hook function checks noatsecure

28

Implementing SELinux as a Linux Security Module

permission between the old and new task SIDs. If this permission is denied, the hook function will set
the AT_SECURE flag so that libc secure mode will be enabled. If the permission is allowed, the hook
function calls the secondary security module to allow it to set the flag, e.g. if there is a change in uid, gid
or capabilities. Otherwise, the flag will not be set and libc secure mode will not be enabled.

13. Superblock Hook Functions
The SELinux superblock hook function implementations manage the security fields of super_block
structures and perform access control for filesystem operations. This section begins by describing the
superblock hook functions for managing the security fields. It then discusses the superblock hook
functions for performing access control.

13.1. Managing Superblock Security Fields

13.1.1. Superblock Security Structure

The superblock_security_struct structure contains security information for superblock objects. This
structure is defined as follows:

struct superblock_security_struct {
struct super_block *sb;
struct list_head list;
u32 sid;
u32 def_sid;
unsigned int behavior;
unsigned char initialized;
unsigned char proc;
struct semaphore sem;
struct list_head isec_head;
spinlock_t isec_lock;

};

Table 9. superblock_security_struct

Field Description
sb Back pointer to the associated superblock.

list Link into list of superblock security structures setup prior to initial policy load.

sid SID for the file system.

def_sid default SID for labeling

behavior Labeling behavior to apply to inodes.

initialized Flag indicating whether the security structure has been initialized.

sem Semaphore used to synchronize initialization.

isec_head List of inode security structures setup prior to superblock security initialization.

29

Implementing SELinux as a Linux Security Module

Field Description
isec_lock Lock for list of inode security structures.

13.1.2. superblock_alloc_security and superblock_free_security

The superblock_alloc_security and superblock_free_security helper functions are the
primitive allocation functions for super_block security structures. The selinux_sb_alloc_security
and selinux_sb_free_security hook functions call these helper functions.

13.1.3. superblock_doinit

This helper function performs initialization for superblock security structures. It is normally called by the
selinux_sb_kern_mount hook function. However, since this helper function cannot perform full
initialization until after the initial policy load, it is also called by the selinux_complete_init
function to retroactively complete initialization of superblocks setup prior to the initial policy load.

The superblock_doinit function begins by taking the semaphore to synchronize with any other
attempts to initialize the superblock security data and then checks whether the superblock security
structure has already been marked initialized. If so, the function returns after releasing the semaphore.
Otherwise, it checks whether the initial policy load has completed. If not, then the function adds the
superblock security structure to a global list for deferred processing by selinux_complete_init,
releases the semaphore and returns.

If the initial policy load has completed, then superblock_doinit calls the security server’s
security_fs_use interface to determine the labeling behavior for the inodes associated with the
superblock and to obtain a SID for the superblock itself. It then calls the try_context_mount to
handle any mount context options, which can override the labeling behavior and superblock SID returned
by security_fs_use. Context mount support is discussed further in Section 13.1.5.

If the desired labeling behavior is to use extended attributes (xattr) superblock_doinit verifies that
the filesystem supports xattr and the security namespace, returning an error otherwise. If the superblock
is for the proc pseudo filesystem, the function sets the proc flag in the superblock security structure for
special handling upon inode initialization. The function then marks the superblock security structure as
initialized.

Next, superblock_doinit calls inode_doinit_with_dentry on the root inode to initialize its
security structure. The function likewise makes calls to initialize the inode security structures for any
inodes that were setup prior to superblock security initialization (e.g. prior to initial policy load or during
get_sb by a filesystem that directly populates itself). Finally, the function releases the semaphore and
returns.

13.1.4. selinux_sb_copy_data

The selinux_sb_copy_data function is called to allow mount option data to be copied prior to
parsing by the filesystem, so that the security module can extract security-specific mount options cleanly,
especially since the filesystem code may modify the data while processing. The hook function also
allows the security-specific options to be stripped from the mount data so that the filesystem code does
not need to be aware of them at all. If the filesystem type uses binary mount data, then this hook function

30

Implementing SELinux as a Linux Security Module

simply copies the binary data into the page for security data for later processing. Otherwise, this hook
function parses the mount option string and extracts any mount context options for later use. There are
three kinds of mount context options: context, fscontext, and defcontext.

13.1.5. try_context_mount

The try_context_mount function is called to handle any context mount options extracted earlier by
selinux_sb_copy_data. If the filesystem type uses binary mount data, then the function will extract
context options if using a version of the binary mount data that includes them. At present, only NFS has
support for such options, and it only supports one of the context mount options (context=). For string
mount data, the function processes each context-related option, checking for invalid combinations. The
fscontext and defcontext options may be used together as well as individually, but no other combination
of options is allowed. If any context option is specified, the function applies several permission checks
among the task SID, the original superblock SID, and the SID for the provided context to verify that the
use of the option is authorized.

For the context or fscontext options, the superblock SID is set to the SID for the provided context. The
context option further changes the labeling behavior to mountpoint labeling, which means that all inodes
in the filesystem are treated as having the provided context as well, and the xattr API is not supported for
the inodes in the filesystem even if the filesystem type itself supports xattrs. In contrast, the fscontext
option only sets the superblock SID and leaves the labeling behavior unchanged. The defcontext option
only sets the default SID (def_sid) for inodes in the filesystem, overriding the typical value of the file
initial SID.

13.1.6. selinux_sb_kern_mount

This hook function is called to setup the superblock security structure and to check permissions for the
mount of a particular superblock. It calls superblock_doinit to perform the initialization and then
calls superblock_has_perm to check filesystem mount permission to the superblock.

13.2. Controlling Filesystem Operations

13.2.1. superblock_has_perm

This helper function checks whether a task has a particular permission to a filesystem. It takes the task,
the super_block, the requested permissions, and optionally audit data as parameters. This function
simply calls the AVC with the appropriate parameters.

13.2.2. selinux_sb_statfs

This hook function is called to check permission when obtaining filesystem attributes. It checks
getattr permission between the current task and the filesystem.

31

Implementing SELinux as a Linux Security Module

13.2.3. selinux_mount

This hook function is called to check permission when mounting a filesystem prior to the actual reading
of the superblock. If the filesystem is being remounted (i.e. the mount flags are being changed), then this
function checks remount permission between the current task and the filesystem. Otherwise, this
function checks mounton permission between the current task and the mountpoint directory.

13.2.4. selinux_umount

This hook function is called to check permission when unmounting a filesystem. This function checks
unmount permission between the current task and the filesystem.

13.2.5. selinux_quotactl

The selinux_quotactl hook function checks that the current task has permission to perform a given
quota control command on a filesystem. If no filesystem was specified (i.e. a Q_SYNC or Q_GETSTATS
command), then the hook simply returns success, since these operations require no control. Otherwise,
one of the quotamod or quotaget permissions is checked between the current task and the filesystem,
depending on whether the command sets information or merely gets information related to quotas.

13.2.6. Summary of Filesystem Permission Checks

The permission checks for the super_block hooks are summarized in Table 10.

Table 10. Filesystem Permission Checks

Hook Source Target Permission(s)
selinux_sb_statfs Current Filesystem getattr

selinux_mount Current
Current

MountDirectory
Filesystem

mounton
remount

selinux_sb_kern_mount Current Filesystem mount

selinux_umount Current Filesystem unmount

selinux_quotactl Current Filesystem quotamod
quotaget

14. Inode Hook Functions
The SELinux inode hook function implementations manage the security fields of inode structures and
perform access control for inode operations. Since inodes are used to represent pipes, files, and sockets,
the hook functions must handle each of these abstractions. Furthermore, these hooks must handle

32

Implementing SELinux as a Linux Security Module

multiple filesystem types, including both conventional disk-based filesystems like ext3 and pseudo
filesystems like proc and tmpfs. This section begins by describing the inode hook functions for managing
the security fields. It then discusses the inode hook functions for performing access control.

14.1. Managing Inode Security Fields

14.1.1. Inode Security Structure

The inode_security_struct structure contains security information for inodes. This structure is defined as
follows:

struct inode_security_struct {
struct inode *inode;
struct list_head list;
u32 task_sid;
u32 sid;
u16 sclass;
unsigned char initialized;
struct semaphore sem;

};

Table 11. inode_security_struct

Field Description
inode Back pointer to the associated inode.

list Link into list of inode security structures setup prior to superblock security
initialization.

task_sid SID of the task that allocated this inode.

sid SID of this inode.

sclass Security class of this inode.

initialized Flag indicating whether the inode SID has been initialized.

sem Semaphore for synchronizing initialization.

14.1.2. inode_alloc_security and inode_free_security

The inode_alloc_security and inode_free_security helper functions are the primitive
allocation functions for inode security structures. In addition to the general processing for these primitive
allocation functions, inode_alloc_security saves the SID of the allocating task in the task_sid
field. The selinux_inode_alloc_security and selinux_inode_free_security hook functions
merely calls these helper functions.

14.1.3. inode_doinit, selinux_d_instantiate

The inode_doinit_with_dentry helper function performs initialization for inode security structures.

33

Implementing SELinux as a Linux Security Module

It is normally called for file inodes by the selinux_d_instantiate hook function. However, since
this helper function cannot perform full initialization until after the superblock security initialization is
complete for the associated superblock, it is also called by the superblock_doinit function to
retroactively complete initialization of inodes setup prior to the superblock security initialization. This
includes both inodes setup prior to the initial policy load and any inodes directly populated by the
filesystem code during get_sb processing.

This helper function begins by checking the initialized flag to see whether the inode SID has already
been initialized and, if so, jumps to the code for setting the inode security class. Setting of the inode
security class is always performed by this function if it has not been previously set to a more specific
value than the initial default file class even even if the initialized flag has been previously set, as the
inode mode is not always properly set at the time when an inode SID is first set. In particular, this is the
case for /proc/pid inodes.

If the initialized flag has not been set, this function takes the semaphore to synchronize with any other
attempts to initialize the inode SID and rechecks the initialized flag again. The function then proceeds to
check whether the superblock security structure has been initialized. If not, the inode security structure is
placed on the list maintained in the superblock security structure for deferred processingby
superblock_doinit and the function returns after releasing the semaphore.

If the superblock security structure has been initialized, then this function sets the inode SID based on
the defined labeling behavior for the superblock. If the labeling behavior is to use extended attributes
(xattr), then this function invokes the getxattr method to fetch the context value and invokes
security_context_to_sid_default to convert it to a SID, possibly inheriting some information
from the default file SID associated with the superblock. If the inode has no xattr value, then the inode is
assigned the default SID from the superblock security structure, which is either the initial file SID or a
SID specified via the defcontext mount option.

If the labeling behavior is to inherit the inode SID directly from the allocating task, then the function
copies the task SID from the inode security structure into its own SID field. This behavior is used for
private objects such as socket and pipes.

If the labeling behavior is to compute the inode SID based on both the allocating task SID and the
superblock SID, then the security servers’s security_transition_sid function is invoked to obtain
the inode SID. This behavior is used for pseudo filesystems like devpts and tmpfs where the inodes are
labeled with derived types reflecting both their creator and the kind of object (e.g. a pty, a temporary
file). As discussed in Section 13.1.5, the labeling behavior can be overridden via the context mount
option, so tmpfs mounts can be assigned a particular security context instead, as is done for the tmpfs
/dev used by udev.

For any other labeling behavior, the inode SID defaults to the superblock SID. There is a further
refinement for the proc filesystem; if the inode is in the proc filesystem and is not a /proc/pid inode, then
the selinux_proc_get_sid function is invoked to construct a pathname for the inode based on the
proc_dir_entry information and then obtain a SID for that pathname via the security server’s
security_genfs_sid function. The proc_dir_entry information is used to ensure a stable and reliable
name mapping, unlike the filesystem namespace itself. Note that /proc/pid inodes have their SIDs
initialized separately by the selinux_task_to_inode hook function, as discussed in Section 11.1.5.

After setting the inode SID, the function sets the initialized flag in the inode security structure to indicate
that the SID has been set. Finally, the function determines the security class for the inode and sets the
corresponding field in the inode security structure if the security class has not already been set to a more
specific value than the initial default file class. The check for a more specific value than the default file

34

Implementing SELinux as a Linux Security Module

class is to avoid overwriting the class value set by the socket hooks for socket inodes, as this function
cannot properly classify socket inodes. The inode_mode_to_security_class function is used to
obtain the security class based on the inode mode. The mapping between inode modes and security
classes is described in Table 12. If the inode does not have any of the modes listed in Table 12, then it
defaults to the file security class.

Table 12. Inode Security Classes

Mode Security Class
S_IFREG file

S_IFDIR dir

S_IFLNK lnk_file

S_IFFIFO fifo_file

S_IFSOCK sock_file

S_IFBLK blk_file

S_IFCHR chr_file

14.1.4. selinux_inode_init_security

The selinux_inode_init_security hook function is called by the filesystem-specific code when
creating a new file in order to obtain the security attribute to assign to the new inode and to set up the
incore inode security structure for the new inode. This support allows new inodes to be atomically
labeled as part of the inode creation transaction, ensuring that an inode is never visible without a security
label. This hook and the corresponding filesystem suppport was introduced in Linux 2.6.14; prior kernel
versions used a different set of post creation hooks invoked by the VFS layer that did not provide
atomicity, allowing the new inode to be temporarily visible in an unlabeled state. Support for atomic
inode labeling was only implemented for the ext2, ext3, tmpfs, and jfs filesystems in 2.6.14; similar
support for other filesystems like xfs and reiserfs has not yet been implemented at the time of this writing.

This function first checks the current task’s security structure to see if the task has set a fscreate SID for
newly created files. If so and mountpoint labeling is not being used for the filesystem, then this SID is
used. Otherwise, a SID is obtained from the security server by calling the security_transition_sid
interface; passing in the creating task and parent directory SIDs. The inode_security_set_sid
helper function is called to set the SID and security class in the incore inode security structure.

If the filesystem is using mountpoint labeling, then no attribute should be set on disk, so the function
returns an EOPNOTSUPP error to the filesystem code to skip setting of the on-disk attribute. Otherwise, if
the filesystem code supplied pointer arguments to receive the attribute name and value, the function
generates the SELinux attribute name and the security context value for the inode and sets the arguments
accordingly before returning successfully. Certain filesystems such as tmpfs do not provide pointer
arguments for receiving the attribute name and value because there is no attribute representation other
than the incore representation, unlike the disk-based filesystems that have on-disk attribute storage.

35

Implementing SELinux as a Linux Security Module

14.1.5. selinux_inode_post_setxattr

This hook function is called to update the inode security structure after a successful setxattr operation
while the inode semaphore is still held. It first checks whether the changed attribute is the SELinux
attribute; if not, it returns immediately. Otherwise, it converts the attribute value to a SID and updates the
inode SID.

14.1.6. selinux_inode_getsecurity

This hook function was originally called on getxattr(2) calls on attributes in the security namespace for
filesystems that did not provide native support for xattrs. It is now called (as of Linux 2.6.15) on all
getxattr(2) calls on attributes in the security namespace, even when the filesystem supports xattrs, in
order to allow SELinux to provide the canonical form of the security context to userspace. After checking
that the requested attribute is the SELinux attribute, the function calls security_sid_to_context to
convert the inode SID to a context and copies the context into the provided buffer.

14.1.7. selinux_inode_setsecurity

This hook function is called upon setxattr(2) calls on attributes in the security namespace for filesystems
that do not provide native support for xattrs. After checking that the attribute name is the SELinux
attribute, the function calls the security_context_to_sid to convert the provided attribute value to a
SID and sets the inode SID to it.

14.1.8. selinux_inode_listsecurity

This hook function is called upon listxattr(2) calls to return the names of any security attributes
supported by the security module for filesystems that do not provide native support for xattrs. It copies
the name of the SELinux attribute into the provided buffer.

14.2. Controlling Inode Operations

14.2.1. inode_has_perm

This helper function checks whether a task has a particular permission to an inode. In addition to taking
the task, inode, and requested permission as parameters, this function takes an optional auxiliary audit
data parameter. This optional parameter allows other audit data, such as the particular dentry, to be
passed for use if an audit message is generated. This function sets up an auxiliary audit data structure if
one is not provided and then calls the AVC to check the requested permission to the inode.

14.2.2. dentry_has_perm

This helper function is the same as the inode_has_perm except that it takes a dentry as a parameter
rather than an inode, and optionally takes a vfsmount parameter. This function saves the dentry and
vfsmount in the audit data structure and then calls inode_has_perm with the appropriate parameters.

36

Implementing SELinux as a Linux Security Module

14.2.3. may_create

This helper function checks whether the current task can create a file. It takes the parent directory inode,
the dentry for the new file, and the security class for the new file. This function checks the current task’s
security structure to see if the task has set a fscreate SID for newly files. If so and mountpoint labeling is
not being used, then this SID is used. Otherwise, a SID is obtained from the security server using the
security_transition_sid interface. The function then checks permissions as described in Table 13.

Table 13. Create Permission Checks

Source Target Permission(s)
Current ParentDirectory search, add_name

Current File create

File Filesystem associate

This helper function is called by the following inode hook functions:

• selinux_inode_create

• selinux_inode_symlink

• selinux_inode_mkdir

• selinux_inode_mknod

14.2.4. may_link

This helper function checks whether the current task can link, unlink, or rmdir a file or directory. It takes
the parent directory inode, the dentry of the file, and a flag indicating the requested operation. The
permission checks for these operations are shown in Table 14 and Table 15.

Table 14. Link Permission Checks

Source Target Permission(s)
Current ParentDirectory search, add_name

Current File link

Table 15. Unlink or Rmdir Permission Checks

Source Target Permission(s)
Current ParentDirectory search, remove_name

Current File unlink or rmdir

37

Implementing SELinux as a Linux Security Module

This helper function is called by the following inode hook functions:

• selinux_inode_link

• selinux_inode_unlink

• selinux_inode_rmdir

14.2.5. may_rename

This function checks whether the current task can rename a file or directory. It takes the inodes of the old
and new parent directories, the dentry of an existing link to the file, and the new dentry for the file. This
function checks the permissions described in Table 16, Table 17, and Table 18. The permissions in Table
16 are always checked. The permissions in Table 17 are only checked if the new dentry already has an
existing inode (i.e. a file already exists with the new name), in which case that file will be removed by the
rename. The permissions in Table 18 are only checked if the file is a directory and its parent directory is
being changed by the rename.

Table 16. Basic Rename Permission Checks

Source Target Permission(s)
Current OldParentDirectory search, remove_name

Current File rename

Current NewParentDirectory search, add_name

Table 17. Additional Rename Permission Checks if NewFile Exists

Source Target Permission(s)
Current NewParentDirectory remove_name

Current NewFile unlink or rmdir

Table 18. Additional Rename Permission Checks if Reparenting

Source Target Permission(s)
Current File reparent

This helper function is called by the following inode hook functions:

• selinux_inode_rename

38

Implementing SELinux as a Linux Security Module

14.2.6. selinux_inode_permission

This hook function is called by the kernel permission and exec_permission_lite functions to
check permission when accessing an inode. If the permission mask is null, then there is no permission to
check and the function simply returns success. This can occur upon file existence tests via access(2) with
the F_OK mode. Otherwise, this function converts the permission mask to an access vector using the
file_mask_to_av function, and calls inode_has_perm with the appropriate parameters. Table 19
specifies the SELinux permission that is checked for each permission mask flag when checking access to
a directory. Table 20 provides the corresponding permission information when checking access to a
non-directory file.

In Table 19, notice that a write permission mask causes the general write permission to be checked. This
hook function cannot distinguish among the various kinds of modification operations on directories, so it
cannot use the finer-grained permissions (add_name, remove_name, or reparent). Hence, directory
modifications require both the general write permission and the appropriate finer-grained permission to
be granted between the task and the inode. The general write permission check could be omitted from
this hook, but it is performed to ensure that all directory modifications are mediated by the policy.

Table 19. Directory Permission Checks

Mask Permission
MAY_EXEC search

MAY_READ read

MAY_WRITE write

In Table 20, notice that a separate MAY_APPEND permission mask and append permission are listed. This
permission mask was added by the LSM kernel patch and is used (along with MAY_WRITE) when a file
is opened with the O_APPEND flag. This allows the security module to distinguish append access from
general write access. The selinux_file_fcntl hook ensures that the O_APPEND flag is not
subsequently cleared unless the process has write permission to the file.

Table 20. Non-Directory Permission Checks

Mask Permission
MAY_EXEC execute

MAY_READ read

MAY_APPEND append

MAY_WRITE write

14.2.7. selinux_inode_setxattr

This hook function is called to check permissions prior to setting an extended attribute (xattr) for an
inode. If the attribute is not the SELinux attribute but is in the security namespace, then the function
checks CAP_SYS_ADMIN to protect the security namespace for unprivileged processes. If the attribute

39

Implementing SELinux as a Linux Security Module

is not in the security namespace at all, then this function simply checks the setattr permission to the
inode.

If the attribute is the SELinux attribute, then this function first checks whether mountpoint labeling is
being used, in which case it immediately returns an error indicating that setxattr is not supported.
Otherwise, the function checks whether the process owns the file and if not, checks CAP_FOWNER
capability, in order to provide a DAC restriction over file relabeling. The function then applies a series of
mandatory permission checks for file relabeling, as summarized in Table 21. It also invokes the security
server’s security_validate_transition function to apply any checks based on all three security
contexts (the old file context, the new file context, and the process context) together. This function was
introduced as part of the enhanced MLS support to support MLS upgrade and downgrade checks, but can
be generally applied for other kinds of policy logic as well.

Table 21. Setxattr Permission Checks

Source Target Permission(s)
Current OldFileContext relabelfrom

Current NewFileContext relabelto

File Filesystem associate

14.2.8. Other inode access control hook functions

The remaining inode hook functions are called to check permissions for various operations. Since each
of these remaining hook functions only require a single permission between the current task and the file,
the permission checks are all described in Table 22.

Table 22. Remaining Inode Hook Permission Checks

Hook Permission
selinux_inode_readlink read

selinux_inode_follow_link read

selinux_inode_setattr setattr or write

selinux_inode_getattr getattr

selinux_inode_getxattr getattr

selinux_inode_listxattr getattr

Of these hooks, only two require further description. First, the selinux_inode_setattr hook checks
the setattr permission to the file if setting the file mode, uid, gid or explicitly setting the timestamps to
a particular value via utimes; otherwise, it merely checks write permission. Separate permissions could
be defined for different kinds of setattr operations, e.g. chown, chmod, utimes, truncate. However, this
level of distinction does not seem to be necessary to support mandatory access control policies. Second,
the selinux_inode_follow_link hook checks the same permission as the
selinux_inode_readlink hook, i.e. read permission. While this is correct from an information flow
perspective and while even reading a malicious symlink may constitute a hazard (e.g. for realpath(3)), it

40

Implementing SELinux as a Linux Security Module

may be desirable in the future to introduce a separate follow permission to allow a trusted process to see
all symlinks (e.g. for ls -l) without necessarily being able to follow them (in order to protect against
malicious symlinks).

15. File Hook Functions
The SELinux file hook functions manage the security fields of file structures and perform access control
for file operations. Each file structure contains state such as the file offset and file flags for an open file.
Since file descriptors may be inherited across execve calls and may be transferred through IPC, they can
potentially be shared among processes with different security attributes, so it is desirable to separately
label these structures and control the use of them. Additionally, it is necessary to save task security
information in these structures for SIGIO signals.

15.1. Managing File Security Fields

15.1.1. File Security Structure

The file_security_struct structure contains security information for file objects. This structure is defined
as follows:

struct file_security_struct {
struct file *file;
u32 sid;
u32 fown_sid;

};

Table 23. file_security_struct

Field Description
file Back pointer to the associated file.

sid SID of the open file descriptor.

fown_sid SID of the file owner; used for SIGIO events.

15.1.2. file_alloc_security and file_free_security

The file_alloc_security and file_free_security helper functions are the primitive allocation
functions for file security structures. In addition to the general security field management,
file_alloc_security associates the open file with the SID of the allocating task. The
selinux_file_alloc_security and selinux_file_free_security hook functions simply call
the helper functions.

41

Implementing SELinux as a Linux Security Module

15.1.3. selinux_file_set_fowner

This hook function is called to save security information about the current task in the file security
structure for later use by the selinux_file_send_sigiotask hook. One example of where this hook
is called is the fcntl call for the F_SETOWN command. This hook saves the SID of the current task in
the fown_sid field of the file security structure.

15.2. Controlling File Operations

15.2.1. file_has_perm

This helper function checks whether a task can use an open file descriptor to access a file in a given way.
It takes the task, the file, and the requested file permissions as parameters. This function first sets up the
auxiliary audit data. It then calls the AVC to check use permission between the task and the file
descriptor. If this permission is granted, then this function also checks the requested permissions to the
file using the inode_has_perm helper function. In some cases (e.g. certain ioctl and fcntl commands),
this helper function is called with no requested file permissions in order to simply check the ability to use
the descriptor. In these cases, the latter check is omitted.

15.2.2. selinux_file_permission

This hook function is called by operations such as read, write, and sendfile to revalidate
permissions on use to support privilege bracketing or policy changes. It takes the file and permission
mask as parameters. If the permission mask is null (an existence test), then the function returns success
immediately. Otherwise, if the O_APPEND flag is set in the file flags, then this hook function first sets the
MAY_APPEND flag in permission mask. This function then converts the permission mask to an access
vector using the file_mask_to_av function, and calls file_has_perm with the appropriate
parameters.

15.2.3. selinux_file_ioctl

This hook function is called by the ioctl system call. It calls file_has_perm with a requested file
permission based on the command argument. For some commands, no file permission is specified so
only the use permission is checked. The generic ioctl file permission is used for commands that are
not specifically handled. Table 24 shows the permission checks performed for each command.

Table 24. I/O Control Permission Checks

Command Source Target Permission(s)
FIONREAD
FIBMAP
FIGETBSZ
EXT2_IOC_GETFLAGS
EXT2_IOC_GETVERSION

Current FileDescriptor
File

use
getattr

42

Implementing SELinux as a Linux Security Module

Command Source Target Permission(s)
EXT2_IOC_SETFLAGS
EXT2_IOC_SETVERSION

Current FileDescriptor
File

use
setattr

FIONBIO
FIOASYNC

Current FileDescriptor use

Other Current FileDescriptor
File

use
ioctl

15.2.4. file_map_prot_check

This helper function is called by the selinux_file_mmap and the selinux_file_mprotect hook
functions to apply permission checks for attempts to create or change the protection of memory
mappings. The function first checks whether the caller is attempting to make executable an anonymous
mapping or a private file mapping that will also be writable. If so, it applies the process execmem
permission check to control the ability to execute arbitrary code from memory.

If a file is being mapped, then this function calls the file_has_perm with a set of permissions based on
a flag indicating whether the mapping is shared and the requested protection. Since read access is always
possible with a mapping, the read permission is always required. The write permission is only checked
if the mapping is shared and PROT_WRITE was requested. The execute permission is only checked if
PROT_EXEC was requested.

It should be noted that the protection on a mapping may subsequently become invalid due to a file relabel
or a change in the security policy. Hence, support for efficiently locating and invalidating the appropriate
mappings upon such changes is needed to support full revocation. This support has not yet been
implemented for the SELinux security module.

15.2.5. selinux_file_mmap

This hook function is called to check permission when creating a mapping. The hook function
determines whether the mapping will be shared based on the provided flags and calls the
file_map_prot_check helper.

15.2.6. selinux_file_mprotect

This hook function is called to check the requested new protection for an existing mapping. If the caller
is attempting to make the mapping executable, this function first applies several specialized checks. If the
mapping is in the brk region, then the process execheap permission is checked to control attempts to
make the heap executable, which should normally never occur and is not portable; such memory if
needed should be explicitly allocated via mmap. If the mapping is a private file mapping that has had
some copy-on-write done, indicating that it may include modified content, then this function performs a
file execmod permission check. Typically, this should only occur for text relocations, which if possible
should be eliminated from the program or DSO. If the mapping is in the main process stack, this function
checks the process execstack permission to control attempts to make the stack executable; as with
execheap, such memory if needed should be explicitly allocated via mmap. This function then

43

Implementing SELinux as a Linux Security Module

determines whether the mapping is shared based on the flags in the vm_area_struct and calls the
file_map_prot_check helper to complete checking. Note that in the execstack case, this will also
trigger an execmem check, so both permissions would have to be allowed in order to permit making the
stack executable; however, in practice, the more likely situation is that one would allow execmem to a
particular program to permit legitimate runtime code generation while denying execstack to prevent
making its stack executable.

15.2.7. selinux_file_lock

This hook function is called to check permissions before performing file locking operations. It calls
file_has_perm with the lock permission.

15.2.8. selinux_file_fcntl

This hook function is called by the fcntl system call. It calls file_has_perm with a requested file
permission based on the command parameter. The basic permission checks performed for each command
are shown in Table 25.

Table 25. File Control Permission Checks

Command Source Target Permission(s)
F_SETFL
F_SETOWN
F_SETSIG
F_GETFL
F_GETOWN
F_GETSIG

Current FileDescriptor use

F_GETLK
F_SETLK
F_SETLKW
F_GETLK64
F_SETLK64
F_SETLKW64

Current FileDescriptor
File

use
lock

In addition to these basic checks, the write permission is checked if the F_SETFL command is used to
clear the O_APPEND flag. This ensures that a process that only has append permission to the file cannot
subsequently obtain full write access after opening the file.

15.2.9. selinux_file_send_sigiotask

This hook function is called to check whether a signal generated by an event on a file descriptor can be
sent to a task. This function is sometimes called from interrupt. It is passed the target task, a file owner
structure and the signal that would be delivered (or 0 if SIGIO is to be used as the default). Since the file
owner structure is embedded in a file structure, the file structure and its security field can be extracted by

44

Implementing SELinux as a Linux Security Module

the hook function. The hook function calls the AVC to check the appropriate signal permission between
the fown_sid in the file security structure and the target task SID.

15.2.10. selinux_file_receive

This hook function is called to check whether the current task can receive an open file descriptor that was
sent via socket IPC. This function calls the file_to_av function to convert the file flags and mode to an
access vector and then calls file_has_perm to check that the receiving task has these permissions to
the file. If this hook returns an error, then the kernel will cease processing the message and will pass a
truncated message to the receiving task.

15.2.11. selinux_quota_on

This hook function is called to check permissions when quotas are enabled to a particular quota file. It
calls file_has_perm to check quotaon permission to the file.

16. System V IPC Hook Functions
The SELinux System V Inter-Process Communication (IPC) hook functions manage the security fields
and perform access control for System V semaphores, shared memory segments, and message queues.
This section describes these hooks and their helper functions.

16.1. Managing System V IPC Security Fields

16.1.1. IPC Security Structure

The ipc_security_struct structure contains security information for IPC objects. This structure is defined
as follows:

struct ipc_security_struct {
struct kern_ipc_perm *ipc_perm;
security_class_t sclass;
u32 sid;

};

Table 26. ipc_security_struct

Field Description
ipc_perm Back pointer to the associated kern_ipc_perm.

sclass Security class for the IPC object (see Section 16.1.2).

sid SID for the IPC object.

45

Implementing SELinux as a Linux Security Module

Likewise, the msg_security_struct structure contains security information for IPC message objects. This
structure is defined as follows:

struct msg_security_struct {
struct msg_msg *msg;
u32 sid;

};

Table 27. msg_security_struct

Field Description
msg Back pointer to the associated IPC message;

sid SID for the IPC message.

16.1.2. ipc_alloc_security and ipc_free_security

The ipc_alloc_security and ipc_free_security helper functions are the primitive allocation
functions for the security structures for semaphores, shared memory segments, and message queues. The
kernel data structures for these objects share a common substructure, kern_ipc_perm, and the security
field is located in this shared substructure; a single set of helper functions can be used for all three object
types. A new IPC object inherits its SID from the creating task. The security class for the IPC object is
passed by the caller; it will be one of SECCLASS_MSGQ, SECCLASS_SEM, or SECCLASS_SHM.

The ipc_alloc_security helper function is called by the following allocation hook functions:

• selinux_sem_alloc_security

• selinux_shm_alloc_security

• selinux_msg_queue_alloc_security

After calling the helper, the allocation hook functions set up auxiliary audit data and then call the AVC to
check the create permission between the current task and the IPC object. Hence, these hook functions
have the unusual property of being used both for allocation and a permission check. Using two separate
hooks for this purpose would be cleaner but inefficient, since they would both be called at the same point.

The ipc_free_security function is called upon a permission denial by the allocation hook functions
as well as by the following deallocation hook functions:

• selinux_sem_free_security

• selinux_shm_free_security

• selinux_msg_queue_free_security

These deallocation hook functions do not perform any other processing.

16.1.3. msg_msg_alloc_security and msg_msg_free_security

The msg_msg_alloc_security and msg_msg_free_security helper functions are the primitive
allocation functions for the security structures for individual messages on a message queue. These helper

46

Implementing SELinux as a Linux Security Module

functions provide all of the processing for the selinux_msg_msg_alloc_security and
selinux_msg_msg_free_security hook functions. These helper functions simply provide the
standard processing for primitive allocation functions, and initialize the message SID to the unlabeled
SID.

16.2. Controlling General IPC Operations
This section describes the helper and hook functions for controlling general IPC operations. Although
the allocation functions do perform a create permission check, they are not listed here since they were
discussed in the previous section.

16.2.1. ipc_has_perm

This helper function sets up the auxiliary audit data information and calls the AVC to check whether the
current task has a particular permission to an IPC object. The explicit passing of the security class of the
IPC object is a legacy of the earlier handling for pre-existing objects prior to SELinux initialization via
precondition functions and could be removed, using the sclass field from the security structure instead.

16.2.2. selinux_ipc_permission

This hook function is called from the kernel ipcperms function, so it is called prior to all IPC operations
that will read or modify the IPC object. This hook function checks unix_read and/or unix_write
permission to the IPC object based on the flag, as shown in Table 28. These permissions provide a
coarse-grained equivalent to the Unix permissions, whereas the other IPC hooks check finer-grained
permissions. These coarse-grained permission checks are not strictly necessary, but ensure that all IPC
accesses are mediated by the policy.

Table 28. ipc_permission Permission Checks

Flag Permission
S_IRUGO unix_read

S_IWUGO unix_write

16.2.3. selinux_*_associate

When a task attempts to obtain an IPC object identifier for an existing object via one of the *get calls, the
kernel calls the corresponding associate hook function for the object type. The SELinux IPC associate
hook functions are:

• selinux_sem_associate

• selinux_shm_associate

47

Implementing SELinux as a Linux Security Module

• selinux_msg_queue_associate

These hook functions check associate permission between the current task and the IPC object.

16.3. Controlling Semaphore Operations

16.3.1. selinux_semctl

This hook function checks permissions before performing an operation on the specified semaphore; the
specific permission is determined by the operation being performed. The permissions required for each
operation are shown in Table 29.

Table 29. Semaphore Control Permissions

Operation Source Target Permission
IPC_INFO
SEM_INFO

Current System ipc_info

GETPID
GETNCNT
GETZCNT

Current Sem getattr

GETVAL
GETALL

Current Sem read

SETVAL
SETALL

Current Sem write

IPC_RMID Current Sem destroy

IPC_SET Current Sem setattr

IPC_STAT
SEM_STAT

Current Sem getattr, associate

16.3.2. selinux_semop

This hook function checks permissions for semaphore operations. It always checks read permission
between the current task and the semaphore. If the semaphore value is being altered, it also checks
write permission between the current task and the semaphore. Notice that these permissions are
different from the unix_read and unix_write permissions checked by selinux_ipc_permission.

48

Implementing SELinux as a Linux Security Module

16.4. Controlling Shared Memory Operations

16.4.1. selinux_shm_shmctl

This hook function checks permissions before performing an operation on the specified shared memory
region; the specific permission is determined by the operation being performed. The permissions
required for each operation are shown in Table 30.

Table 30. Shared Memory Control Permissions

Operation Source Target Permission
IPC_INFO
SHM_INFO

Current System ipc_info

IPC_STAT
SHM_STAT

Current Shm getattr, associate

IPC_SET Current Shm setattr

SHM_LOCK
SHM_UNLOCK

Current Shm lock

IPC_RMID Current Shm destroy

16.4.2. selinux_shm_shmat

This hook function checks permissions for shared memory attach operations. It always check read

permission between the current task and the shared memory object. If the SHM_RDONLY flag was not
specified, then it also checks write permission between the current task and the shared memory object.
Notice that these permissions are different from the unix_read and unix_write permissions checked
by selinux_ipc_permission.

16.5. Controlling Message Queue Operations

16.5.1. selinux_msg_queue_msgctl

This hook function checks permissions before performing an operation on the specified message queue;
the specific permission is determined by the operation being performed. The permissions required for
each operation are shown in Table 31.

Table 31. Message Queue Control Permissions

Operation Source Target Permission
IPC_INFO
MSG_INFO

Current System ipc_info

49

Implementing SELinux as a Linux Security Module

Operation Source Target Permission
IPC_STAT
MSG_STAT

Current MessageQueue getattr, associate

IPC_SET Current MessageQueue setattr

IPC_RMID Current MessageQueue destroy

16.5.2. selinux_msg_queue_msgsnd

This hook function is called by the msgsnd system call to check the ability to place an individual
message on a message queue. It performs three permission checks, involving the current task, the
message queue, and the individual message. These checks are shown in Table 32. This hook function
also sets the SID on the message if it is unlabeled. It calls the security_transition_sid interface of
the security server to obtain a SID based on the SID of the task and the SID of the message queue.

Table 32. Message Send Permissions

Source Target Permission
Current MessageQueue write

Current Message send

Message MessageQueue enqueue

16.5.3. selinux_msg_queue_msgrcv

This hook function can be called by either the msgsnd system call (for a pipelined send) or by the
msgrcv system call to check the ability to receive an individual message from a message queue. Hence,
the receiving task may not be the current task and is explicitly passed to the hook. This hook function
performs two permission checks, involving the receiving task, the message queue, and the individual
message. These permission checks are shown in Table 33. It is important to note that an error return from
this hook simply causes the individual message to be ignored in the same manner as if it had the wrong
message type. Hence, access denials on individual messages are not propagated to the calling process
and may cause the calling process to block waiting for messages that are accessible.

Table 33. Message Receive Permissions

Source Target Permission
ReceiverTask MessageQueue read

ReceiverTask Message receive

50

Implementing SELinux as a Linux Security Module

17. Socket Hook Functions
The SELinux socket hook function implementations manage the security fields of socket objects and
perform access control for socket operations. This section describes these hooks and their helper
functions.

17.1. Managing Socket Security Fields

17.1.1. Socket Security Structure

Each user space socket structure (struct socket) has an associated inode structure, so the inode security
structure is extensively used for socket objects as well. See Section 14.1 for a discussion of inode
security structure and associated functions. A security field also exists in the network layer socket
structure (struct sock), but this field can only be safely used for local/Unix domain sockets presently. A
change to the TCP code would be required to ensure proper handling of this field for newly created
server sockets created by a connection; such a change was included in the LSM kernel patch, but did not
make it into the mainline kernel due to the rejection of the LSM networking hooks.

For local/Unix domain sockets, the sk_security_struct is used to store security information about the peer
during connection establishment when the user socket is not yet allocated for the new connection. This
structure is defined as follows:

struct sk_security_struct {
struct sock *sk;
security_id_t peer_sid;

}

Table 34. sk_security_struct

Field Description
sk Back pointer to the associated sock structure.

peer_sid SID of the peer socket.

17.1.2. sk_alloc_security and sk_free_security

The sk_alloc_security and sk_free_security helper functions are the primitive allocation
functions for sock security structures. They immediately return if the socket family is anything other than
the local/Unix domain, as they cannot safely handle other kinds of sockets. Otherwise, they perform the
usual allocation and initialization of the security structure.

17.1.3. selinux_socket_getpeersec

This hook function is called to handle the SO_PEERSEC getsockopt option. It first checks whether the
socket is local/Unix domain, and if not, returns an error. Otherwise, it extracts the peer SID from the
sock security structure, converts it to a context, and copies it to the user buffer.

51

Implementing SELinux as a Linux Security Module

17.1.4. selinux_socket_post_create

After a socket structure has been successfully created, this hook function is called to setup the inode
security structure for the socket . It set the security class using socket_type_to_security_class, as
shown in Table 35. The netlink socket class is further partitioned based the netlink protocol to support
fine-grained control. If the socket does not match any of the specified types, it defaults to the generic
socket security class. The hook function then sets the inode SID. The hook function is passed a flag
indicating whether the socket is being created for kernel-internal use (e.g. for RPC) or for userspace. If
the socket is for kernel-internal use, then it is labeled with the kernel initial SID. Otherwise, it is labeled
with the SID of the creating task.

Table 35. Socket Security Classes

Protocol Family Type Protocol Security Class
PF_UNIX SOCK_STREAM

SOCK_SEQPACKET
ignored unix_stream_socket

PF_UNIX SOCK_DGRAM ignored unix_dgram_socket

PF_INET/PF_INET6 SOCK_STREAM IPPROTO_IP
IPPROTO_TCP

tcp_socket

PF_INET/PF_INET6 SOCK_DGRAM IPPROTO_IP
IPPROTO_UDP

udp_socket

PF_INET/PF_INET6 any other value any other value rawip_socket

PF_NETLINK ignored ignored netlink_*_socket

PF_PACKET ignored ignored packet_socket

PF_KEY ignored ignored key_socket

17.1.5. selinux_socket_accept

This hook function is called after a new socket has been created for the connection but prior to calling the
protocol family’s accept function. In addition to checking permission (discussed further in Section 17.2),
this hook function sets the SID and security class in the inode security structure for the new socket. The
new socket inherits the SID and security class of the listening socket. The new socket initialization must
occur in this hook, since traffic can occur on the socket before the post_accept hook is called.

17.2. Controlling Socket Operations

17.2.1. socket_has_perm

This helper function checks whether a task has a particular permission to a socket. It first checks whether
the socket is for kernel-internal use, and if so, returns success immediately. Otherwise, it sets up the
auxiliary audit data and calls the AVC to check the permission.

52

Implementing SELinux as a Linux Security Module

17.2.2. General Socket Layer Hooks

The socket layer access control hook functions first check a permission between the current task and the
socket using the socket_has_perm helper function. Some of the hook functions perform additional
processing. The hook functions and the initial permission that they check are shown in Table 36. Any
additional processing for the hook functions is then described after this table.

Table 36. Socket Layer Hook Permission Checks

Hook Function Source Target Permission
selinux_socket_create Current NewSocket create

selinux_socket_bind Current Socket bind

selinux_socket_connect Current Socket connect

selinux_socket_listen Current Socket listen

selinux_socket_accept Current Socket accept

selinux_socket_sendmsg Current Socket write

selinux_socket_recvmsg Current Socket read

selinux_socket_getsockname Current Socket getattr

selinux_socket_getpeername Current Socket getattr

selinux_socket_setsockopt Current Socket setopt

selinux_socket_getsockopt Current Socket getopt

selinux_socket_shutdown Current Socket shutdown

The selinux_socket_bind hook function performs an additional name_bind permission check
between the socket and the SID associated with the port number for ports that are outside the range used
to automatically bind. It also performs an additional node_bind permission check between the socket
and the SID associated with the IP address.

The selinux_socket_connect hook function performs an additional name_connect permission
check between the socket and the SID associated with the port number for TCP sockets. This check
provides control over outbound TCP connections to particular ports distinct from the general controls
over sending and receiving packets.

17.2.3. Controlling Receipt of Packets

The selinux_socket_sock_rcv_skb hook function is called by the sk_filter kernel function
prior to applying any socket filters to control receipt of individual packets on a socket at a point where
the destination socket and the receiving network device information is available. The hook function
begins by checking whether the socket family corresponds with IPv4 or IPv6 and returning success
immediately otherwise. It then checks for mapped IPv4 packets arriving via IPv6 sockets and adjusts the
family information accordingly for later use in translation of the headers.

Unlike the previously discussed socket hook functions, this hook is passed a pointer to a network layer
socket (sock) structure rather than a userspace socket structure. This hook function must (while holding
the appropriate lock) first dereference the socket field of the sock structure and then dereference the

53

Implementing SELinux as a Linux Security Module

inode field of the resulting socket structure in order to obtain security information about the receiving
socket. However, security information is not always available, e.g. the socket may not be presently
associated with an userspace socket (e.g. new server socket that has not yet been accepted, or a userspace
socket that has been closed).

After obtaining the socket security information, the hook function must also obtain security information
for the receiving network device. It calls the sel_netif_sids function to obtain the interface SID
associated with the device. It then determines the right set of permissions to check based on the socket
class, sets up auxiliary audit data, and calls selinux_parse_skb to parse the headers for address
information to include in the audit data. It then performs permission checks between the socket SID and
the SIDs associated with the receiving network interface, the remote host, and the source port, as shown
in Table 37. Note that these permission checks differ from the original set of permission checks for
packet receipt prior to the redesign for Linux 2.6.

Table 37. Permission Checks for Receiving a Packet on a Socket

Source Target Permission(s)
Socket NetworkInterface udp_recv

tcp_recv
rawip_recv

Socket RemoteNode (Host) udp_recv
tcp_recv
rawip_recv

Socket SourcePort recv_msg

17.2.4. Hooks for Unix Domain Socket IPC

LSM places calls to two hooks, unix_stream_connect and unix_may_send, within the Unix domain
socket code to provide consistent control over Unix domain socket IPC. These hooks are placed into the
Unix domain socket code in order to have access to the destination socket, which is not available to the
socket layer hooks. For sockets that use the file namespace, the inode hook functions could be used to
control IPC, but this would not address sockets that use the abstract namespace. Hence, these two hooks
were added by LSM.

The selinux_socket_unix_stream_connect hook function is called for Unix stream connections.
It checks the connectto permission between the client socket and the listening socket. It also sets the
peer SID fields in each of the peer sockets’ security structures for later use by
selinux_socket_getpeersec. The selinux_socket_unix_may_send hook function is called for
Unix datagram communications. It checks the sendto permission between the sending socket and the
receiving socket. These permission checks are summarized in Table 38.

Table 38. Unix Domain Permission Checks

Hook Source Target Permission
unix_stream_connect ClientSocket ServerSocket connectto

54

Implementing SELinux as a Linux Security Module

Hook Source Target Permission
unix_may_send SendingSocket ReceivingSocket sendto

18. IP Networking Hook Functions
The LSM kernel patch added a set of security fields and hooks to allow management of security data for
several network-related data structures, including network buffers, network devices, and network layer
sockets. It also added a number of hooks to the IP network stack to support IP packet lifecycle
management, particularly to support packet labeling using CIPSO-style options, that could not be
directly supported via the existing NetFilter hooks. The LSM-based SELinux network access control
functionality was originally implemented using these security fields and hooks as well as several
NetFilter hooks. However, the LSM security fields and hooks for networking were not accepted for
inclusion in Linux 2.6. As a result, the SELinux network access controls were redesigned and
implemented using only the socket layer hooks and NetFilter hooks, and some functionality such as
packet labeling was dropped from SELinux. This section describes the SELinux NetFilter hook
functions.

* Note: The preceding statements are historical and no longer apply to modern SELinux systems, which do include a set of network
hooks and support packet labeling.

The SELinux IPv4 and IPv6 NetFilter hook functions, selinux_ipv4_postroute_last and
selinux_ipv6_postroute_last, perform permission checks for outgoing packets after routing has
occurred. Incoming packets are mediated by the selinux_socket_sock_rcv_skb LSM hook, which
is described in Section 17.2.3. Both of the NetFilter hook functions call a common helper,
selinux_ip_postroute_last, to perform all processing.

The helper function begins by extracting the socket security information from the associated inode
security structure. After obtaining the socket security information, the hook function must also obtain
security information for the sending network device. It calls the sel_netif_sids function to obtain the
interface SID associated with the device. It then determines the right set of permissions to check based
on the socket class, sets up auxiliary audit data, and calls selinux_parse_skb to parse the headers for
address information to include in the audit data. It then performs permission checks between the socket
SID and the SIDs associated with the sending network interface, the remote host, and the destination
port, as shown in Table 39. Note that these permission checks differ from the original set of permission
checks for packet receipt prior to the redesign for Linux 2.6.

Table 39. Permission Checks for Sending a Packet from a Socket

Source Target Permission(s)
Socket NetworkInterface udp_send

tcp_send
rawip_send

55

Implementing SELinux as a Linux Security Module

Source Target Permission(s)
Socket RemoteNode (Host) udp_send

tcp_send
rawip_send

Socket DestinationPort send_msg

19. Miscellaneous Hook Functions
This section describes miscellaneous hook functions that do not fit into one of the prior sections.

19.1. Capability-Related Hook Functions

19.1.1. selinux_capable

This hook function is called by the kernel to determine whether a particular Linux capability is granted
to a task. After calling the secondary security module to perform the ordinary Linux capability test or
superuser test, this hook function calls the task_has_capability helper function to check the
corresponding SELinux capability permission. Hence, the Linux capability must be granted by both the
secondary security module and by SELinux.

19.1.2. selinux_capget

This hook function is called by the kernel to get the capability sets associated with a task. It first checks
capget permission between the current and target tasks. If this permission is granted, it then calls the
secondary security module to obtain the capability sets, since SELinux does not maintain this
information. Note that the returned capability sets are not modified to remove capabilities that would be
denied by SELinux.

19.1.3. selinux_capset_check

This hook function is called by the kernel to check permission before setting the capability sets
associated with a task. It calls the secondary module to allow it to apply the normal Linux capability
checking logic, and then checks capset permission between the current and target task. SELinux does
not perform any checks on the individual capabilities being set, since it revalidates each capability on use
in the selinux_capable hook.

19.1.4. selinux_capset_set

This hook function is called by the kernel to set the capability sets associated with a task. It simply calls
the secondary module to set the capability sets, since SELinux does not maintain this information.

56

Implementing SELinux as a Linux Security Module

19.1.5. selinux_netlink_send

This hook function is called to perform permission checking and to set the effective capability set in the
control buffer for a netlink message when the message is sent. The function first calls the secondary
module to initialize the effective capability set based on the sending task. It then calls the AVC to
compute the set of capabilities that would be allowed by SELinux and intersects this set with the
effective capability set in the control buffer. Finally, if the policy supports the fine-grained netlink classes
and permissions, this hook function calls selinux_nlmsg_perm to apply further permission checks
based on a mapping of netlink message types to read and write information flows (i.e. observing
information or modifying information).

19.1.6. selinux_netlink_recv

This hook function is called to check permission when a netlink message is received that requires
privilege. It checks the effective capability set associated with the netlink message to see if
CAP_NET_ADMIN is set.

19.1.7. selinux_vm_enough_memory

This hook function is called to check permissions and perform accounting when allocating a mapping. It
was initially made into a security hook to avoid generating spurious audit messages upon checking
CAP_SYS_ADMIN to determine whether to reserve some memory. The hook function calls the
secondary module’s capable function to check whether the task has CAP_SYS_ADMIN, and if so, it
calls the AVC to check whether SELinux would allow this capability as well, using an interface that
avoid audit generation. The function then calls the kernel __vm_enough_memory function with a flag
indicating whether the capability was granted.

19.2. Sysctl Hook Function
The selinux_sysctl hook function checks permission for the current task to access a sysctl entry. It
calls the selinux_proc_get_sid helper function to obtain the SID associated with the sysctl entry
based on the proc_dir_entry tree. This is also used by inode_doinit_with_dentry for other procfs
inodes, as discussed in Section 14.1.3. If no match is found, then the hook function defaults to the sysctl
initial SID.

The hook function then performs a permission check based on the requested operation, treating the sysctl
entry as a directory for search operations and as a file for read or write operations on a variable. Table 40
shows the permission checks associated with each requested operation.

Table 40. sysctl Permission Checks

Operation Value Source Target Permission
1 Current Entry Search

4 Current Entry read

2 Current Entry write

57

Implementing SELinux as a Linux Security Module

19.3. Syslog Hook Function
The selinux_syslog hook function checks that the current task has permission to perform a given
system logging command. For operations 3 (read last kernel messages) and 10 (return size of log buffer),
the syslog_read system permission is checked. For operations that control logging to the console, the
syslog_console system permission is checked. All other operations (including unknown ones) are
checked with syslog_mod system permission.

References

[LoscoccoFreenix2001] Peter Loscocco and Stephen Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System”, Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, The USENIX Association, June 2001.

[LoscoccoNSATR2001] Peter Loscocco and Stephen Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System”, NSA Technical Report, February 2001.

[LoscoccoNISS1998] Peter Loscocco, Stephen Smalley, Patrick Muckelbauer, Ruth Taylor, S. Turner,
and John Farrell, “The Inevitability of Failure: The Flawed Assumption of Security in Modern
Computing Environments”, Proceedings of the 21st National Information Systems Security
Conference, October 1998.

[SpencerUsenixSec1999] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen,
and Jay Lepreau, “The Flask Security Architecture: System Support for Diverse Security Policies”,
Proceedings of the Eighth USENIX Security Symposium, The USENIX Association, August 1999.

[FIPS188] FIPS PUB 188: Standard Security Label for Information Transfer, U.S. Dept. of Commerce /
National Institute of Standards and Technology, September 6, 1994.

[MorrisSeloptOverview2002] James Morris, “Overview of SELinux Labeled Networking Support via
CIPSO/FIPS-188 IP Options”, selopt-overview.txt, February 2002.

[MorrisSCMP2001] James Morris, “Security Context Mapping Protocol”, scmp-draft.txt, December 30,
2001.

58

	Table of Contents
	1. Introduction
	2. Acknowledgements
	3. LSM Overview
	4. SELinux Basic Concepts
	5. Changes from the Original SELinux Kernel Patch
	5.1. General Changes
	5.1.1. Adding a New Level of Indirection
	5.1.2. Dynamically Allocating Security Fields
	5.1.3. Stacking with the Capabilities Module
	5.1.4. Redesigning the SELinux API
	5.1.5. Leveraging Linux Permission Functions

	5.2. Program Execution Changes
	5.2.1. File executenotrans Permission
	5.2.2. Inheritance of State

	5.3. Filesystem Changes
	5.3.1. Labeling of Persistent Files
	5.3.2. Pseudo Filesystem Labeling
	5.3.3. Leveraging permission
	5.3.4. File Descriptor Permissions
	5.3.5. Pipe Security Class

	5.4. Socket IPC and Networking Changes
	5.4.1. Redesigning Network Access Controls
	5.4.2. Storing Socket Security Data
	5.4.3. Minimally Invasive Hooks
	5.4.4. File Descriptor Transfer
	5.4.5. Omitting LowLevel ioctl Controls
	5.4.6. Extended Socket Calls

	5.5. System V IPC Changes
	5.5.1. Storing IPC Security Data
	5.5.2. Leveraging ipcperms

	5.6. Miscellaneous Changes

	6. Internal Architecture
	7. Initialization
	7.1. selinuxinit
	7.2. selinuxnfipinit
	7.3. selnetifinit
	7.4. selnlinit
	7.5. initselfs
	7.6. selinuxcompleteinit

	8. Stacking with Other Modules
	9. SELinux API
	10. Helper Functions for Hook Functions
	10.1. Primitive Allocation Helper Functions
	10.2. Initialization Helper Functions
	10.3. Permission Checking Helper Functions

	11. Task Hook Functions
	11.1. Managing Task Security Fields
	11.1.1. Task Security Structure
	11.1.2. taskallocsecurity and taskfreesecurity
	11.1.3. selinuxtaskreparenttoinit
	11.1.4. selinuxtaskpostsetuid
	11.1.5. selinuxtasktoinode
	11.1.6. selinuxgetprocattr
	11.1.7. selinuxsetprocattr

	11.2. Controlling Task Operations
	11.2.1. Helper Functions for Checking Task Permissions
	11.2.2. Hook Functions for Controlling Task Operations

	12. Program Loading Hook Functions
	12.1. Managing Binprm Security Fields
	12.1.1. Binprm Security Structure
	12.1.2. selinuxbprmallocsecurity and selinuxbprmfreesecurity
	12.1.3. selinuxbprmsetsecurity
	12.1.4. selinuxbprmapplycreds
	12.1.5. selinuxbprmpostapplycreds
	12.1.6. selinuxbprmsecureexec

	13. Superblock Hook Functions
	13.1. Managing Superblock Security Fields
	13.1.1. Superblock Security Structure
	13.1.2. superblockallocsecurity and superblockfreesecurity
	13.1.3. superblockdoinit
	13.1.4. selinuxsbcopydata
	13.1.5. trycontextmount
	13.1.6. selinuxsbkernmount

	13.2. Controlling Filesystem Operations
	13.2.1. superblockhasperm
	13.2.2. selinuxsbstatfs
	13.2.3. selinuxmount
	13.2.4. selinuxumount
	13.2.5. selinuxquotactl
	13.2.6. Summary of Filesystem Permission Checks

	14. Inode Hook Functions
	14.1. Managing Inode Security Fields
	14.1.1. Inode Security Structure
	14.1.2. inodeallocsecurity and inodefreesecurity
	14.1.3. inodedoinit, selinuxdinstantiate
	14.1.4. selinuxinodeinitsecurity
	14.1.5. selinuxinodepostsetxattr
	14.1.6. selinuxinodegetsecurity
	14.1.7. selinuxinodesetsecurity
	14.1.8. selinuxinodelistsecurity

	14.2. Controlling Inode Operations
	14.2.1. inodehasperm
	14.2.2. dentryhasperm
	14.2.3. maycreate
	14.2.4. maylink
	14.2.5. mayrename
	14.2.6. selinuxinodepermission
	14.2.7. selinuxinodesetxattr
	14.2.8. Other inode access control hook functions

	15. File Hook Functions
	15.1. Managing File Security Fields
	15.1.1. File Security Structure
	15.1.2. fileallocsecurity and filefreesecurity
	15.1.3. selinuxfilesetfowner

	15.2. Controlling File Operations
	15.2.1. filehasperm
	15.2.2. selinuxfilepermission
	15.2.3. selinuxfileioctl
	15.2.4. filemapprotcheck
	15.2.5. selinuxfilemmap
	15.2.6. selinuxfilemprotect
	15.2.7. selinuxfilelock
	15.2.8. selinuxfilefcntl
	15.2.9. selinuxfilesendsigiotask
	15.2.10. selinuxfilereceive
	15.2.11. selinuxquotaon

	16. System V IPC Hook Functions
	16.1. Managing System V IPC Security Fields
	16.1.1. IPC Security Structure
	16.1.2. ipcallocsecurity and ipcfreesecurity
	16.1.3. msgmsgallocsecurity and msgmsgfreesecurity

	16.2. Controlling General IPC Operations
	16.2.1. ipchasperm
	16.2.2. selinuxipcpermission
	16.2.3. selinux*associate

	16.3. Controlling Semaphore Operations
	16.3.1. selinuxsemctl
	16.3.2. selinuxsemop

	16.4. Controlling Shared Memory Operations
	16.4.1. selinuxshmshmctl
	16.4.2. selinuxshmshmat

	16.5. Controlling Message Queue Operations
	16.5.1. selinuxmsgqueuemsgctl
	16.5.2. selinuxmsgqueuemsgsnd
	16.5.3. selinuxmsgqueuemsgrcv

	17. Socket Hook Functions
	17.1. Managing Socket Security Fields
	17.1.1. Socket Security Structure
	17.1.2. skallocsecurity and skfreesecurity
	17.1.3. selinuxsocketgetpeersec
	17.1.4. selinuxsocketpostcreate
	17.1.5. selinuxsocketaccept

	17.2. Controlling Socket Operations
	17.2.1. sockethasperm
	17.2.2. General Socket Layer Hooks
	17.2.3. Controlling Receipt of Packets
	17.2.4. Hooks for Unix Domain Socket IPC

	18. IP Networking Hook Functions
	19. Miscellaneous Hook Functions
	19.1. CapabilityRelated Hook Functions
	19.1.1. selinuxcapable
	19.1.2. selinuxcapget
	19.1.3. selinuxcapsetcheck
	19.1.4. selinuxcapsetset
	19.1.5. selinuxnetlinksend
	19.1.6. selinuxnetlinkrecv
	19.1.7. selinuxvmenoughmemory

	19.2. Sysctl Hook Function
	19.3. Syslog Hook Function
	References

