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Abstract

We propose a new parallel, noncollective I/O strategy called
Distant I/O that targets clustered computer systems in which
disks are attached to compute nodes. Distant I/O allows
one-sided access to remote secondary storage without
installing server processes or daemons on remote compute
nodes. We implemented this model using Active Messages
and demonstrated its performance advantages over the
PIOFS parallel filesystem for an I/O-intensive parallel
application on the IBM SP.

1 Introduction
Recent advances in low-latency, high-speed network tech-
nology coupled with inexpensive commodity processors
have greatly improved cost-effectiveness of parallel com-
puting. Disk technology also has been advancing rapidly es-
pecially with respect to the storage density, capacity and
bandwidth. I/O, on the other hand, remains a major bottle-
neck in many parallel applications, such as climate model-
ing, computational chemistry, and computational fluid
dynamics. We argue that more flexible communication pro-
tocols in the style of Active Messages [1] or VIA [2] are
needed to exploit inexpensive local storage systems avail-
able on single-processor or symmetric multiprocessor dis-
tributed and clustered systems. We propose a new parallel
I/O model called Distant I/O (DIO) and demonstrate its ad-
vantages in a large computational chemistry application.

Parallel I/O systems such as IBM PIOFS, Intel PFS,
and PIOUS [3] use a traditional client-server model in
which some processors with attached disks act as I/O serv-
ers, while other processors are used as compute nodes and
I/O clients. This model can work well in dedicated (single-
application) environments if the I/O subsystem characteris-
tics match the needs of the particular application. In the
multi-application environment, the I/O system is a shared
resource which usually impacts the I/O performance deliv-

ered the simultaneously running applications. The client-
server dichotomy is not required, however, in collective I/O
[4]. For example, systems such as Panda [5] and DRA [6]
can effectively exploit all local disks on the compute nodes
during a collective I/O operation. Nevertheless, although
collective I/O is effective for some applications, it is not ap-
propriate for others that require more dynamic and indepen-
dent (noncollective) access to secondary storage. Certain
computational chemistry applications have such access
characteristics, for example [7].

We propose a new noncollective I/O strategy called
distant I/O (DIO) that targets clustered computer systems in
which disks are attached to compute nodes. This hardware
configuration is currently supported by networks of work-
stations (NOWs) and by multicomputers (e.g., the IBM SP)
and is likely to remain popular in the future because of the
economic and physical attributes of such architectures. DIO
supports one-sided access to storage on remote nodes that
execute the same user application; hence, all processors can
participate in a computation and operate as both I/O clients
and (if they have attached disks) servers. A DIO implemen-
tation relies for performance on the existence of a single-
sided communication protocol able to initiate an I/O opera-
tion on a processor that may be performing other computa-
tion. Lightweight communication protocols such as Active
Messages and Fast Messages [8] can be used for this pur-
pose, or we can use more portable multithreaded messaging
systems such as Nexus [9]. Such facilities allow a DIO im-
plementation to avoid the complexities and overheads asso-
ciated with the server processes and daemons required to
support a client-server–based approach.

A primitive Distant I/O mechanism can be used as a
building block for higher-level parallel I/O libraries and
systems. In this paper, we demonstrate how this can be
accomplished by describing a DIO-based implementation of
the Shared Files (SF) library that was originally developed



by the ChemIO project [10,7]. The SF library allows a user
to define “shared files” that can be accessed and updated
independently by any processor in a parallel computation.
On the IBM SP, our DIO-based SF implementation
outperforms a comparable implementation based on the
IBM PIOFS parallel file system by a wide margin, when
used by a large computational chemistry application,
namely COLUMBUS, a multireference configuration
interaction code [11].

The rest of this paper is organized as follows. In Sec-
tion 2, the DIO model and implementation on the IBM SP
are described. In Section 3, a parallel shared file implemen-
tation using DIO is presented. Section 4 contains mi-
crobenchmark performance results for DIO. Section 5
compares the performance of a large application running on
top of DIO with the performance of PIOFS on the IBM SP.
Finally, Section 6 presents our conclusions. 

2 Distant I/O Model and Architecture
One-sided communication allows a process in a distributed-
memory system to access data residing in the address space
of another process, without the explicit cooperation of the
second process. Distant I/O combines one-sided communi-
cation with I/O to secondary storage memory at remote pro-
cessors. Distant I/O has several useful properties, including:

• Distributed view of secondary storage: Secondary stor-
age is used as an extension of main memory in distrib-
uted-memory systems and accessed with the convenient
one-sided communication paradigm. 

• Flexibility: DIO can be used to implement parallel I/O
models and libraries even on systems that lack paral-
lel/shared filesystems. Furthermore, such systems can
be customized (for example, by setting striping factors
and caching policies) to match the needs of a parallel
application, rather than relying on system-wide set-
tings.

• Capacity and bandwidth scalability: As the number of
application processors with attached disks grows, the
aggregate I/O bandwidth and aggregate capacity pro-
portionally increases.

In order to explore the practical utility of Distant I/O,
we have defined a DIO application programmer interface
(API) and constructed an implementation of this API on the
IBM SP. The API is based on the C run-time library, but ex-
tends it in four areas: 

1. Instead of a separate seek operation, offset is used as an 
additional argument to read/write operations.

2. The file descriptor is replaced by a handle that referenc-
es a file on a local or remote processor.

3. A “home” process/processor id is added to identify the
location of the file.

4. A request handle is added to support nonblocking ver-
sions of calls.

For example, the following are the DIO counterparts to the
standard read and write operations:

dio_read(handle, offset, buffer, 
bytes, proc,request)

dio_write(handle, offset, buffer, 
bytes, proc, request)

Nonblocking DIO functions are designed to allow
overlapping of remote I/O operations with other activities.
Such operations are completed by calling the dio_wait func-
tion, which takes as an argument the request handle returned
by the corresponding dio_write/read operation. The remote
file handle is a local representation of the remote file de-
scriptor. It can be obtained by registering a file for DIO ac-
cess either through a collective DIO operation similar to the
MPI-2 MPI_Win_create [11] or through a directory service.

2.1  Distant I/O on the IBM SP

We discuss the architecture of DIO by describing its imple-
mentation on the IBM Scalable POWERparallel (SP) sys-
tem. This massively parallel computer employs as building
blocks processor nodes similar to the IBM RS/6000 work-
station. Every node contains at least one local disk based on
SSA or SCSI technology. The nodes are connected through
a high-speed network that supports 38 µsec one-directional
latency and 100 MB/s bandwidth in the point-to-point user-
space communication [13]. In addition, some larger SP con-
figurations support an optional parallel filesystem, PIOFS.
PIOFS is striped on multiple disks connected to dedicated
PIOFS server nodes. 

The current generation of the IBM SP supports LAPI
[13], a commercial implementation of Active Messages
[1,14] that provides Active Messages, put, and get one-sided
remote memory copy operations. LAPI is a multithreaded
system compatible with Pthreads, which are supported by
the IBM AIX 4.2 operating system on the IBM SP. 

Our DIO implementation on the IBM SP uses LAPI
Active Messages (AM) to send specifications of read/write
operation to remote nodes. Upon arrival, the AM comple-
tion handler is invoked and executed by a separate thread.
Within the handler code, LAPI remote memory copy and
Unix I/O are used. For dio_write, LAPI_Get transfers data
to an internal DIO buffer. This step is followed by a block-
ing write. For dio_read, blocking read is followed by
LAPI_Put, which transfers data read from the disk to the in-
ternal DIO buffer and then to the user buffer at the request-



ing processor. This process is illustrated in Figure 1 for
dio_read. 

The IBM SP implementation of DIO nonblocking op-
erations exploits Posix asynchronous I/O (AIO) when a DIO
operation references a file on the local disk. If the data is on
a remote disk, the operation returns when an active message
is sent to the remote processor. The AM completion handler
is executed by a separate thread, which is activated by the
LAPI dispatcher when a message arrives [13]. This thread
executes concurrently with the main (application) thread
and makes the blocking I/O read/write call. When the I/O is
completed and the completion handler finishes, LAPI im-
plicitly sends a low-level control message to the requesting
processor, which then increments the AM completion
counter (cntr in Figure 1). This optional feature is enabled
when a non-NULL completion counter address is specified
in the LAPI_Amsend interface. If the data is on a remote file,
the dio_wait operation waits until this counter is increment-
ed, a process that occurs when the completion handler and
I/O operation it executes are completed. If the data is on a
local file, the dio_write simply calls its Posix AIO counter-
part. 

The LAPI-based implementation of DIO can be used
by MPI programs. However, it cannot be used by applica-
tions that rely on MPL, the original IBM proprietary mes-
sage-passing library which is still available on the IBM SP.
The reason for this incompatibility is that the message deliv-
ery infrastructure of MPL is based on signals. The most re-
cent implementation of MPI and LAPI both use threads.

Unlike MPL, MPI is available in two implementations: sig-
nal and thread-based. In our experience, the thread-based
implementation of MPI is competitive with the signal-based
implementation of that library.

We note that although the counter mechanism in LAPI
AM interface is convenient, it is not mandatory to imple-
ment DIO. Other active-message–style facilities, including
the Berkley/Cornell AMs and Illinois FM, could be used in
a similar fashion to implement DIO on other platforms, in-
cluding networks of workstations. In particular, notification
of I/O completion can be accomplished with an explicit
message sent back to the requesting node.

3 Parallel Shared Files

We used the Distant I/O model to construct an implementa-
tion of Shared Files (SF), a parallel I/O library we had de-
veloped before [7]. This library supports the concept of a
parallel file with every process in a parallel computation be-
ing able to read and write independently at arbitrary loca-
tions. This disk access model is similar to the parallel files
created in the M_UNIX mode on the Intel PFS and the de-
fault parallel file mode supported by the IBM PIOFS. The
differences between SF and these other systems include the
following:

• Shared files are not guaranteed to be persistent. Persis-
tency is a property of the filesystem on which SF is im-
plemented, rather than the model itself. 
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Figure 1: Implementation of dio_read



• Shared Files support files larger than 2 GB in Fortran
API.

• Shared Files read and write operations are nonblocking
(a feature not yet available in Fortran-77/90) and contain
an offset argument rather than a separate seek operation.

The SF library does not perform any explicit control
of consistency in concurrent accesses to overlapping sec-
tions of the shared files. For example, SF semantics allows a
write operation to return before the data transfer is com-
plete, which requires special care in programs that perform
write operations in critical sections, since unlocking access
to a critical section before write completes is unsafe. An
sf_wait function is provided that can be used to enforce
completion of the data transfer so that the data can be safely
accessed by another process after access to the critical sec-
tion is released by the writing process.

The actual size of a shared file might grow as process-
es perform write operations beyond the current end-of-file
boundary. Data in shared files are implicitly initialized to
zero, meaning that read operations at locations that have not
been written return zero values. However, reading beyond
the current end-of-file boundary is erroneous and the result
undefined. 

As we explain below, our DIO-based implementation
can achieve significantly better performance than PIOFS
(even with our well equipped IBM SP I/O configuration).

The Shared Files library is implemented by striping a
parallel logical file across multiple physical files (compo-
nent files) located on all disks available on the computing
nodes on which the parallel application is running, see for

Figure 2. It uses Distant I/O to perform remote read/write
operations. Based on an input from the user for the “typical
request size,” SF determines a value of the striping factor. If
this (optional) information is not available, an empirically
determined value (e.g., 32 kB) is used. 

The DIO implementation of Shared Files exploits the
properties of this I/O model to avoid updating the size of
component files when the application writes beyond the log-
ical end-of-file boundary in the shared file. The size of a
component file is updated when only read or write operation
on that file is performed.

The original Shared Files implementation used the
ELIO (Elementary IO) device library [6,7] as its portability
layer. We added DIO as another device library compatible at
run time with ELIO. This allows multiple filesystem imple-
mentations (e.g., PIOFS and local JFS files) in the same ap-
plication and enables one to dynamically select, at run time,
which implementation to use. The library uses the path
specified in the metafile name to determine whether it points
to a filesystem shared by all the processors (like PIOFS); if
it does not, SF selects a DIO-based implementation for this
particular shared file.

4 Performance
We measured the performance of DIO by writing and read-
ing 1 GB (eight times the amount of main memory on a pro-
cessor, to avoid caching effects) of data from both a local
and a remote file. The request size varied from 4096 to
32,768 bytes. We tested two disk configurations on the 512-
node IBM SP at Pacific Northwest National Laboratory
(PNNL). In one configuration, the local JFS filesystem was
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mounted on a single SCSI disk; in the second configuration,
it was striped on two identical SCSI disks (bandwidth opti-
mization). 

Figures 3 and 4 show that the I/O rates for remote re-
quests approach local rates as the request size increases. The
relatively small differences between local and remote I/O
can be attributed to the efficiency of LAPI. (The bandwidth
in LAPI_Put (used in dio_read) grows much faster with in-
creased message size than in the MPI point-to-point mes-
sage-passing [13] and, for example, achieves more than 70
MB/s bandwidth for messages as short as 4096-bytes.)
However, the overhead associated with Active Messages
processing (including the handler execution by a dedicated
thread scheduled by AIX) contributes to the larger differ-
ence in performance for smaller requests. 

5 Application
The multireference configuration interaction (MRCI) meth-
od is widely used in computational chemistry to obtain ac-
curate predictions of properties of chemical systems. Details
of the algorithms and methodology used in the COLUM-
BUS MRCI code are given elsewhere [11]. From the mathe-
matical perspective, the program solves the eigenvalue
problem for a very large sparse symmetric Hamilton matrix
by using the standard Davidson method. A set of expansion
vectors is used to project the original eigenvalue problem to
a subspace eigenvalue problem that has a much smaller di-

mension. Because of the very high accuracy of the MRCI
method, even for a very small molecule, the matrix becomes
very large. To date, the state-of-the-art calculations in this
area have been for 100 to 200 million of the configuration
state functions (Hamilton matrix dimension). Despite using
sparsity techniques and highly effective compression
scheme to reduce the storage requirements such large calcu-
lations cannot be performed in-core. 

To address memory limitations, COLUMBUS design-
ers adopted a disk-based approach using the SF library [7].
This application is using shared memory programming
model with data located in distributed system memory and
in secondary storage The calculations are performed in an
MIMD task-parallel fashion driven by data-dependent dy-
namic load balancing. The program allocates all possible
distributed main memory for a one-dimensional global array
[15] and then creates an SF shared file to store data that does
not fit in the distributed main memory. Secondary storage is
accessed in a noncollective fashion, with individual proces-
sors reading and writing records containing compressed da-
ta. Data is read from disk, uncompressed, updated,
compressed, and written back to the disk. Since the update
can affect the compression rate, the size of the data written
to the disk might be different from that of the original data.
The average I/O request size in this program is approxi-
mately 30 KB. Due to the algorithm properties and the
amount of available in-core memory, the request size could
not be increased.
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We used both PIOFS and DIO implementations of
Shared Files to solve the largest MRCI problem ever at-
tempted, represented by a matrix of dimension 1.3 billion
(1,295,937,374). The calculations were performed on 128
processors of the IBM SP at PNNL. We report timing results
for two execution environments: 

• SF-PIOFS (44 servers with 4 SSA disks each,
which appears to be the largest PIOFS configura-
tion available at that time anywhere) and MPL
communication and 

• SF-DIO on top of local disks (not striped) and the
LAPI Active Messages library. 

The I/O-related statistics are given (per iteration) in Table 1.

Table 1: I/O performance in COLUMBUS using Shared 
Files library on top of PIOFS and DIO

The first column contains the amount of data read
from secondary storage. It is slightly different for the two
versions because of the dynamic nature of the load balanc-
ing and the algorithm properties. The second column indi-
cates the total time wall-clock time spent reading data,
summed over all processors. We do not report write rates
because the I/O buffering layer in AIX makes them harder
to measure reliably in a context of a complex application
such as COLUMBUS rather than in a synthetic benchmark.

Data Volume I/O time Bandwidth 
per CPU

PIOFS 900.963GB 906297.07s 0.994MB/s
DIO 900.957GB 235708.32s 3.823MB/s

The last column gives the average bandwidth rate per I/O re-
quest and per processor. These results show that the DIO-
based implementation of SF outperforms PIOFS by a factor
of four in this particular application. The SF-DIO read rates
measured in COLUMBUS are only 25% lower than those
measured by our microbenchmark for DIO alone (see Figure
3). This small difference is due to the overhead of the SF
layer (striping) and some degree of contention when access-
ing data. 

The overall execution time of COLUMBUS is 60%
shorter for the DIO-based implementation than for PIOFS.
The improvement can be contributed to increased efficiency
of I/O and faster interprocessor communication. The origi-
nal implementation of this application used the IBM MPL
communication library and PIOFS. Although LAPI is faster
(and incompatible) with MPL, this I/O-bound application is
spending only 10% time on the interprocessor communica-
tion. Therefore, the increase of the overall performance than
can be contributed to the improvement in I/O is estimated to
be at least 50%. 

6 Conclusions
We have proposed a new approach to parallel I/O in cluster
systems, called Distant I/O. This new model avoids scalabil-
ity problems and software overhead associated with client-
server implementations of parallel filesystems, and supports
the construction of scalable secondary storage systems
based on attached disks. DIO provides one-sided and asyn-
chronous access to disks attached to remote processors: in
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effect, it extends the one-sided communication model to
secondary storage. We implemented this model using active
messages and Posix asynchronous I/O on the IBM SP. Our
implementation approach is directly applicable to clusters
of workstations on which various flavors of active-mes-
sage–style communication facilities are available. We have
used our DIO library both to construct applications directly
and to implement higher-level libraries. In particular, we
have constructed a DIO-based implementation of the
Shared Files library by striping parallel-shared files on local
disks attached the IBM SP nodes. DIO performance is ex-
cellent when measured by a microbenchmark and by a large
computational chemistry application.
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