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ABSTRACT

Spectral climate models are distinguished by their representation of variables as finite sums of spherical
harmonics, with coefficients computed by an orthogonal projection of the variables onto the spherical harmonics.
Representing the surface elevation in this manner results in its contamination by Gibbs-like truncation artifacts,
which appear as spurious valleys and mountain chains in the topography. These ‘‘Gibbs ripples’’ are present in
the surface topographies of spectral climate models from a number of research institutions. Integrations of the
Geophysical Fluid Dynamics Laboratory (GFDL) climate model over a range of horizontal resolutions indicate
that the Gibbs ripples lead to spurious, small-scale extrema in the spatial distribution of precipitation. This
“‘cellular precipitation pathology” becomes more pronounced with increasing horizontal resolution, causing a
deterioration in the fidelity of simulated precipitation in higher resolution models.

A method is described for reducing the Gibbs ripples that occur when making an incomplete spherical har-
monic expansion of the topography. The new spherical harmonic representations of topography are formed by
fitting a nonuniform spherical smoothing spline to geodetic data and found by solving a fixed-point problem.
This regularization technique results in less distortion of features such as mountain height and continental
boundaries than previous smoothing methods. These new expansions of the topography, when used as a lower
boundary surface in the GFDL climate model, substantially diminish the cellular precipitation pathology and
produce markedly more realistic simulations of precipitation. These developments make the prospect of using
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higher resolution spectral models for studies of regional hydrologic climate more attractive.

1. Introduction

The spectral transform method has been widely used
in atmospheric general circulation models, both for
weather forecasting and climate simulation. In this
method, the horizontal values of meteorological vari-
ables are approximated as a truncated series of analytic
functions, such as the surface spherical harmonics,
more commonly called the spherical harmonics. Spec-
tral methods are more accurate and stable than finite
element and finite difference methods, and have several
other advantages as well (Canuto et al. 1988). Thus, it
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is likely that the spectral transform method (also known
as the semispectral method) will continue to be a com-
mon numerical procedure used in atmospheric circu-
lation models.

A difficulty arises, however, in the representation
of surface boundary conditions in atmospheric spec-
tral models. In the spectral method, the earth’s sur-
face is represented as an incomplete expansion in
spherical harmonics with the coefficients determined
by an orthogonal projection of the surface onto the
spherical harmonics. The earth’s surface is arbitrarily
irregular and, therefore, can be only approximated by
a truncated series of orthogonal functions. This in-
completeness of the basis set manifests itself in the
model as an unfaithful portrayal of the peaks and val-
leys in the topography at a given resolution, as well
as the contamination of the model with spurious 0s-
cillations in the neighborhood of topographic fea-
tures of substantial relief, as identified by Hoskins
(1980).

These spurious oscillations are similar to the Gibbs
effect in truncated Fourier series, and therefore we refer
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to them as Gibbs ripples or Gibbs oscillations. They
appear as rolls with their long axes oriented north-
south for topographic features that are predominantly
aligned north—south (such as the Andes; these Gibbs
oscillations are called zonal Gibbs ripples) and as rolls
extending east—west for topographic features that are
aligned east—west (such as the steep slope at the pe-
riphery of the Antarctic ice sheet; these are referred to
as meridional Gibbs ripples). Obviously, since the
earth’s topography includes more irregular features
than simple latitudinally or longitudinally oriented
mountain ranges, the spurious Gibbs oscillations can
take on a fairly complicated character, as oscillations
beat against each other and interfere constructively and
destructively.

Navarra et al. (1994) have shown that effects of
these Gibbs oscillations are evident in long integrations
of dynamical forecasting models and may contribute to
discrepancies between the simulated and observed cli-
mates. They have shown that precipitation, wind, and
water vapor mixing ratio are among the quantities that
are affected by the Gibbs oscillations. In order to re-
duce these oscillations, Navarra et al. (1994) describe
a number of spectral coefficient weighting schemes for
use in constructing the spectral model topography.
They present results from an extended model integra-
tion using one of these methods (the so-called isotropic
filter) that shows a distinct reduction of the Gibbs os-
cillation signature in the atmospheric variables.

This paper extends the work of Navarra et al. (1994)
by examining in more detail the sensitivity of simulated
precipitation to the representation of topography in a
spectral climate model. We demonstrate that serious
deficiencies can arise when spectral model topography
is a truncated series of spherical harmonics with coef-
ficients produced by an orthogonal projection of the
gridpoint surface elevation values onto the spherical
harmonics. A new method of representing topography
is developed that greatly reduces the Gibbs oscillations
while preserving the elevation of major topographic
features with more fidelity than previous attempts. Re-
sults from an extended climate simulation using this
representation are presented to evaluate its effective-
ness in producing a realistic distribution of simulated
precipitation. We also offer some suggestions for fur-
ther improvement in the design of spectral model to-
pography.

This report is organized as follows. A brief intro-
duction to the representation of the horizontal values
of atmospheric variables by spherical harmonics is
given in section 2. Section 3 describes the climate
model used in our numerical experiments, and section
4 discusses the origin and preparation of the basic grid-
ded topographic dataset. Section 5 illustrates how sim-
ulated precipitation is adversely affected when topog-
raphy is produced by an orthogonal projection onto a
restricted set of spherical harmonics. In section 6, we
propose a new technique for representing topography
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and compare it to the existing alternatives. The results
of climate model integrations utilizing various topo-
graphic representations are presented in section 7, fol-
lowed by some suggestions for future work in section
8. A concluding discussion in contained in section 9.

2. Spectral representation of atmospheric variables

Both physical space and spectral space versions of a
number of basic variables are computed in spectral
global climate models. In physical space, a variable x
is represented as a set of values on a latitude—longitude
grid (often called the transform grid).'

An arbitrary square-integrable function on the sphere
x(¢, \) can be expanded as a series of surface spherical
harmonics:

=)

1
x((t)’ )\) = Z 2 blelm((.b- )\)

=0 m=~1]

(2.1)

where Y,,,(¢, ) is an orthogonal spherical harmonic of
degree (meridional wavenumber) ! and azimuthal order
(zonal wavenumber) m (Hobson 1931; Jones 1985).
The spherical harmonics are orthonormal with respect
to the solid angle measure d? = singddpd) on the
sphere §,, so the coefficients by, can be expressed as
the orthogonal projection with respect to d) of the
variable x(¢, \) onto the spherical harmonics:

by, = fs x(é, MDY (., \)dQ, (2.2)

where the asterisk superscript denotes complex conju-
gation. The set of coefficients {b,,} form the spectral
space version of the physical space quantity x(¢, N).
In atmospheric spectral models, the series (2.1) must
be truncated, traditionally to form either a triangular
truncation model

M 1
x(d, N) =2 ¥ bl N)

(2.3)
=0 m=-1
or a rhomboidal truncation model
M |m|+M
xR(¢a )\) = z }: blelm(d)v ’\) (24)

m=—M I=|m|

The truncated expansions (2.3) and (2.4) approximate
the series (2.1). Figure 1 depicts the terms that con-
tribute to the triangular and rhomboidal sums on the /-
m plane for M = 21 and M = 15, respectively, dem-

" These values are denoted in conventional notation as {x(¢,
) }f;’ﬁ =1 where ¢; is colatitude (i.e., ¢; = 0 at the North Pole and
¢, = = at the South Pole) with values ordered so that 0 < ¢; < ¢y,
smj=12 ---,J — U and \ is longitude, with 0 < A,
<Ny <2m,k=1,2, --+, K — 1. The transform grid consists of the
J, K ordered pairs {(¢;, \) }2 1=1. The spacing of the transform grid is
Ay()) by Ayk), where Ay(j) = bjpy ~ & and AK) = Aeri — M
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onstrating graphically why these two truncated expan-
sions have been given these names. On a transform
grid, relations analogous to (2.1)—(2.4) hold. (In the
following sections, continuous formulae will be used
to represent their discrete analogues to reduce nota-
tional complexity.)

3. Climate model description

A version of the climate model of the Geophysical
Fluid Dynamics Laboratory very similar to that of
Broccoli and Manabe (1992) was used in this study.
This model consists of two basic units: 1) a general
circulation model of the atmosphere and 2) a heat and
water balance model over the continents. The oceanic
component of the climate system was not modeled ex-
plicitly; instead, the geographical distribution of sea
surface temperature and sea ice was prescribed, varying
seasonally, in a manner consistent with observations.

As previously mentioned, the atmospheric model
employs the spectral transform method, and therefore
the horizontal values of the basic atmospheric variables
are represented as a truncated or incomplete series of
spherical harmonics. In most of the experiments de-
scribed here, the rhomboidal expansion retaining M
= 30 zonal waves is employed to represent the basic
variables. (For brevity, rhomboidal truncation at zonal
wavenumber M = 30 is subsequently designated as
R30 truncation; an analogous nomenclature is used for
triangular truncation.) The spacing of the R30 trans-
form grid is approximately 2.25° latitude by 3.75° lon-
gitude. Normalized pressure (o) is used as the model’s
vertical coordinate, with variables computed at nine un-
evenly spaced levels and vertical derivatives formed by
finite differences of the values at these levels. The dy-
namical component of this model was developed by
Gordon and Stern (1982) and is very similar to that
described by Bourke (1974).

Solar radiation at the top of the atmosphere is pre-
scribed, varying seasonally but not diurnally. Compu-
tation of the flux of solar radiation is performed using
a method similar to that of Lacis and Hansen (1974)
except that the bulk optical properties of various cloud
types are specified. Terrestrial radiation is computed as
described by Stone and Manabe (1968). For the com-
putation of radiative transfer clouds are prescribed,
varying only with height and latitude. The mixing ratio
of carbon dioxide is assumed constant everywhere, and
the ozone mixing ratio is specified as a function of
height, latitude, and season.

Over the continents, surface temperatures are com-
puted from a heat balance with the requirement that no
heat is stored in the soil. Both snow cover and soil
moisture are predicted. A change in snow depth is com-
puted as the net contribution from snowfall, sublima-
tion, and snowmelt, with the latter two determined from
the surface heat budget. Soil moisture is calculated by
the *‘bucket method.”” The soil is assumed to have a
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water holding capacity of 15 cm. If the computed soil
moisture exceeds this amount, the excess is assumed to
be runoff. Changes in soil moisture are obtained from
the rates of rainfall, evaporation, snowmelt, and runoff.
Evaporation from the soil is determined as a function
of soil moisture and the potential evaporation rate (i.e.,
the hypothetical evaporation rate from a completely
wet soil). Further details of the hydrologic computa-
tions can be found in Manabe (1969).

4. Topographic data

The topographic data used throughout the current ex-
periments were derived from a high resolution (1/6° by
1/6°) geodetic dataset prepared by the U.S. Navy (Cum-
ing and Hawkins 1981). For generating the R30 to-
pographic representations discussed in this paper, the
first step was the preparation of surface elevation data
on an R30 transform grid. This was accomplished by
assuming that each transform grid point defines the
center of a grid box, determining which high resolution
grid points lay within that box, forming an arithmetic
mean of these high resolution terrain heights, and as-
signing the resulting average elevation to the transform
grid point. The dataset resulting from this aggregation
of the 1/¢° resolution Navy data is the ultimate source
of most of the various representations of topography
discussed in subsequent sections.

For other resolutions, we present results from pre-
existing climate model integrations, which utilized a
slightly different procedure for calculating the surface
height values on the transform grid. To prepare the
spectral topography for these integrations the 1/¢° res-
olution Navy topographic data were aggregated to a
grid of substantially higher resolution than the model,
using the procedure described above. A comparison in-
dicates that the resulting spectral topography does not
appear sensitive to the difference between these two
procedures.

5. Standard topography and its effect
on precipitation

The standard method for forming truncated spherical
harmonic representation of the topography is to use
(2.3) or (2.4) with the coefficients { &, } computed by
the orthogonal projection on the spherical harmonics
(2.2). As Navarra et al. (1994) have shown, topogra-
phy designed in this fashion is contaminated by Gibbs
oscillations. These oscillations arise because there are
more degrees of freedom in the values on a transform
grid than in the truncated set of spherical harmonics.

Figure 2 depicts the standard topography at R30 res-
olution as computed by the procedure described in sec-
tion 4, followed by the use of (2.2) and (2.4). The
Gibbs oscillations are plainly visible, most prominently
as north—south bands parallel to the Andes over the
eastern South Pacific and east—west bands just north of
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FiG. 1. The values of the meridional wavenumber / and the zonal
wavenumber m for each term included in a truncated sum of spherical
harmonics corresponding to a point on the /—m plane, marked with
a dot. Top: terms in a T21 sum (triangular truncation at M = 21).
Bottom: terms in an R15 sum (rhomboidal truncation at M = 15).

the Antarctic continent. The crests (troughs) of these
oceanic Gibbs ripples can be as much as 200 m above
(below) sea level. Smaller-scale features are also ap-
parent throughout the oceans. As demonstrated in detail
in section 7, similar oscillations occur over the conti-
nents, although they are not as readily apparent due to
the complexity of continental terrain.

The generation of spectral model topography by this
procedure has been widely used, as demonstrated by a
survey of model results produced for the Atmospheric
Model Intercomparison Project (Gates 1992). Figure
3 depicts cross sections of surface elevation across the
Andes and adjacent regions from T4?2 (triangular spec-
tral truncation at wavenumber M = 42) integrations
supplied by the National Meteorological Center?
(U.S.), European Centre for Medium-Range Weather

2 Now known as the National Centers for Environmental Predic-
tion.
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Forecasts (U.K.), Max Planck Institute for Meteorol-
ogy (Germany), Centre National de Recherches Mé-
téorologiques (France) and the National Center for At-
mospheric Research (U.S.). Standard topography com-
puted by the procedure described in section 4 is also
included for comparison. These cross. sections dem-
onstrate that similar Gibbs oscillations are found in to-
pographies used throughout the spectral climate mod-
eling community, despite the occasional use of simple
filters to reduce the amplitude of high wavenumber
components, as in the National Center for Atmospheric
Research model (Boville 1991). Comparable oscilla-
tions are present in topographies (not shown) taken
from integrations supplied by the Bureau of Meteorol-
ogy Research Centre (Australia), Canadian Climate
Centre, Commonwealth Scientific and Industrial Re-
search Organisation (Australia), and the State Univer-
sity of New York at Albany (U.S.).

The standard topography formed by orthogonal pro-
jection was used to conduct three climate model inte-
grations with horizontal resolutions of R15, R30, and
R63. The lengths of these integrations are 10, 5, and 5
years, respectively. Other aspects of the integrations are
identical. The simulated annual mean precipitation
from each of these integrations is depicted in Fig. 4,
along with the observed precipitation climatology of
Legates and Willmott (1990).

Dramatic differences are evident when comparing
the three simulations and the observed climatology.
As the horizontal resolution increases, the tendency
for precipitation to be organized in a cellular struc-
ture becomes more pronounced, particularly over
land. Over the oceans, a structure of closely spaced
bands also becomes evident as resolution is in-
creased. These unusual patterns are similar in ap-
pearance to the structure of the Gibbs oscillations in
the standard topography (Fig. 2) and are not present
in the observed climatology.

As a result of this “‘cellular precipitation pathol-
ogy,”’ the similarity between the simulated and ob-
served precipitation decreases with increasing horizon-
tal resolution. A quantitative measure of this decrease
can be obtained by interpolating or aggregating the
simulated and observed precipitation to a common grid
and computing an area-weighted pattern correlation.
Hulme (1991) used a very similar technique in com-
paring precipitation simulated by various climate mod-
els with observed data. In the current analysis, a 1° X 1°
grid was used as a common grid. The Legates and Will-
mott data are of higher resolution, so they were aggre-
gated to the 1° X 1° grid. All three model grids are of
lower resolution, so the simulated precipitation from
each was interpolated to the common grid. Based on
this procedure, the pattern correlations between the
simulated and observed annual mean precipitation are
0.717, 0.660, and 0.549 for R15, R30, and R63, re-
spectively. Root-mean-square differences between the
simulated and observed annual mean precipitation are
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0.180, 0.209, and 0.263 cm/day for R15, R30, and R63,
respectively. As the resolution of the model increases,
the pattern correlation decreases and rms difference in-
creases, indicating that greater resolution leads to less
realistic simulations of precipitation.

Evidence of the cellular precipitation pathology is
present in spectral space as well as in physical space.
To illustrate this perspective, contour plots of the frac-
tion of total variance of annual mean precipitation P(¢,
\) associated with each spherical harmonic are exhib-
ited:

‘ Pim l >

By =, 5.1

"3 o >
where p,, = fsz Yiu(b, NP(d, N)dQ. (27 denotes
a truncated sum. We focus on the use of rhomboidally
truncated series in this paper, although the methods we
describe are equally appropriate for triangular trunca-
tion.) We have dubbed this quantity B, a ‘‘spherical
periodogram’ of P (¢, \) because of its similarity to
the traditional periodogram. Figure 5 displays spherical
periodograms of precipitation for the R30 model with
the standard topography and also for the Legates and
Willmott (1990) observed climatology. Zonal wave-
number m lies along the abscissa and the shifted me-
ridional wavenumber / — |[m| on the ordinate.

-500-100 -20 20 100 500

2000

F1G. 2. R30 climate model surface elevation (m) computed using the standard procedure.

5000

Comparison of spherical periodograms of simulated
and observed precipitation reveals both similarities and
substantial differences. In both cases the largest frac-
tional variance appears toward the lower left corner of
the plot, representing low zonal and meridional wave-
numbers. The fractional variance in the observed pre-
cipitation decreases rapidly with increasing wavenum-
ber, particularly along the zonal axis. (The less rapid
decrease in fractional variance along the ordinate at
low zonal wavenumbers is indicative of a tendency
for precipitation to be organized in east—west bands
when averaged over long time periods.) The major
difference between these two spherical periodograms
is that the fractional variance of simulated precipi-
tation does not decrease as rapidly with increasing
wavenumber, as indicated by the preponderance of
blue rather than gray in the upper right quadrant of
the plot. This is a signature of the greater precipita-
tion variance associated with small spatial scales in
the model simulation.

The systematic decrease in the fidelity of precipita-
tion simulation with increasing resolution is inconsis-
tent with the expectation that higher resolution models
would better simulate small-scale features of the earth’s
climate. It also suggests that this cellular precipitation
pathology constitutes a major obstacle to the simulation
of hydrologic quantities on regional and smaller scales.
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FiG. 3. Surface elevation profiles (m) along 21°S between 105° and
25°W from five different T42 climate models, with standard topog-
raphy (computed by orthogonal projection) included for comparison.
Tick marks on the vertical axis are every 1000 m, and an offset of
500 m is used between each elevation profile. (CNRM: Centre Na-
tional de Recherches Météorologiques; ECMWEF: European Centre
for Medium-Range Weather Forecasts; MPI: Max Planck Institute
for Meteorology; NCAR: National Center for Atmospheric Research;
NMC: National Meteorological Center; STD: standard topography.)

Based on the hypothesis that this pathology is associ-
ated with the existence of large Gibbs oscillations in
the standard topography, in the next section we explore
other methods for representing model topography that
reduce these oscillations and their impact on simulated
precipitation.

6. Reducing Gibbs oscillations in spectral model
topography

A possible method for reducing the Gibbs truncation
artifacts in the topography is to choose the spectral co-
efficients in some way that reduces the truncation ef-
fects. One approach is to incorporate the desired phys-
ical properties into a penalty function whose minimum
defines the spectral coefficients. Effectively, the desired
physical properties are used to choose a more useful
metric than the standard squared distance between the
gridpoint surface and a spectral representation of that
surface.

Given a topography x(¢, \) (suppressing the sub-
scripts on the arguments), one wishes to choose coef-
ficients a;,, so that x(¢, \) is approximated by a trun-
cated series of spherical harmonics

xs(Ps N) = X @pnYin(b, N), (6.1)
Im

which has reduced contamination from Gibbs oscilla-
tions and does not substantially distort the true topo-
graphic features in x(¢, \). The choice of coefficients
a,, is driven by a desire to obtain topography that is
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likely to produce more realistic climate simulations.
Based on our evaluation of climate simulations using
standard topography, the elimination of Gibbs ripples
is expected to be a very important goal. Other objec-
tives are the preservation of the height of major topo-
graphic barriers [since they are crucially linked to cli-
mate (Broccoli and Manabe 1992)] and the minimi-
zation of the broadening of the continents that occurs
in truncated spherical harmonic representations of to-
pography. Some methods for designing topography for
spectral climate models are discussed in this section.

a. Nonuniform smoothing spline

A simple way of reducing the Gibbs oscillations is
to represent topography by a smooth function. A
method for generating smooth functions xs(6, ¢) ap-
proximating relatively rough surfaces x(6, ¢) defined
on the sphere, or fitting a smooth surface to a set of
data on the sphere, is provided by the spherical smooth-
ing spline described by Freedan (1981), Shure et al.
(1982), Shure (1982), and Wahba (1981, 1982,
1990). The surface x5(8, ¢) defined by (6.1) is found
by minimizing the constrained misfit

E = f [x(d, N) = x5(, N)[?dQ
Sz

+ A f | Vixs(d, N)|2dQ (6.2)
S2
with respect to a,,, where the surface Laplacian
1 0 0 1 9?
vz = . i e + y ——y k4
S = sing ¢ (Sm 0¢> sin’ ON2
SO

The surface Laplacian constraint penalizes roughness
in the model xs(¢, \) and in particular decreases os-
cillatory behavior such as Gibbs ripples. The Lagrange
multiplier A describes the relative weighting given to
the penalty [the second term in Eq. (6.2)] and the least
squares misfit [the first term in Eq. (6.2)]. If A = 0,
the topography minimizing E is the model given by
(2.1)and (2.2). If A = 0, ‘

blm

STT ARG (6:3)

Aim

Shure (1982) describes a number of other constraints
besides this squared-modulus surface Laplacian con-
straint. Unfortunately, these spherical smoothing spline
methods do not provide a family of surfaces of suffi-
cient richness to be useful for studying the interaction
of global climate models with topography. In particu-
lar, spherical smoothing splines and related methods
described by Shure (1982) of sufficient tautness to sig-
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nificantly reduce Gibbs oscillation amplitudes produce
overly smooth topography with very little mountain re-
lief and excessively broad continents.

A simple generalization of the spherical smoothing
spline that we have found useful applies the surface
Laplacian constraint over a restricted region © that
does not contain topographic features of substantial re-
lief; therefore, we minimize

L | x(¢, \) = xs(¢, M) [2dQ

+ Af | Vixs(d, N)|2dQ (6.4)
®

with respect to a;,. While this constraint penalizes the
Gibbs ripples only over the region 0, if this region is
of substantial size, the ripples will be reduced through-
out the model xs(d, \). A useful and easy choice of ®
is the region of the globe covered by oceans.
To minimize (6.4), an iterative scheme is adopted:
ap = ap "+ Hp(by — agy )
+ AHlm z’ Dfr'nm,al(’j;n_'l)’

'm'

(6.5)

where b, are the L, coefficients described by (2.2);

DL =11+ DI'(I" + l)f Yy (@ MY 5 (d, N)dQ
e

and
H,, =(1+ |AID})™!

are the components of a preconditioning matrix that
transforms the iteration (6.5) into a contraction map-
ping, making it a form of successive approximation
(Luenberger 1969, section 10.2). Equations (2.2) or
(6.3) can be used to produce starting values for the
coefficients. Steepest descent (Curry 1944) or conju-
gate gradient algorithms (Daniel 1967) may result in
more rapidly converging iterative schemes.

This regularization procedure produces surfaces
xs(¢, \) that do not suffer from significantly decreased
relief while essentially eliminating the Gibbs oscilla-
tions in meridional cross sections of the topography and
reducing their amplitude in zonal cross sections of the
topography. Since for some applications, the elimina-
> tion of the zonal Gibbs ripples might be of equal or
greater importance than the attenuation of the meridi-
onal ripples, this procedure may be inadequate. To si-
multaneously remove the Gibbs oscillations in both
zonal and meridional directions while not distorting the
relief, we investigated combining the regularization
procedure with the use of special zonal filters, as de-
scribed in the following section.
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b. Combining the generalized smoothing spline
with a zonal filter

Since the modulus-squared surface Laplacian con-
straint preferentially penalizes the meridional Gibbs
oscillations relative to the zonal Gibbs oscillations,
the regularization procedure in section 6a must be
modified to produce topography on the sphere with
reduced-amplitude Gibbs oscillations in both merid-
ional and zonal directions without overly flattening
the topographic relief. Two satisfactory methods
have been found.

A zonal smoothing procedure can be used to pro-
duce a surface with minimal energy at the character-
istic Gibbs frequency, M + 1/2. This can be done
by convolving the original grid topography at each
colatitude of ¢ with a boxcar of length (M + 1/2)""
[i.e., a moving average or Lanczos filter (Lanczos
1966; Hamming 1977)], or by applying a more so-
phisticated procedure such as a filter produced using
concentration methods, as discussed in section 8. This
zonally smoothed field can then be used in place of
the true topography x(¢, A) in (6.4). This results in
surfaces that have reduced Gibbs oscillations while re-
taining more of the topographic relief than methods
such as Cesaro summation (Lanczos 1966; Hamming
1977; Korner 1988) or two-dimensional Lanczos fil-
tering.’

An alternative method that produces attractive to-
pographic surfaces is similar to the method of projec-
tion on convex sets (POCS) (Biemond et al. 1990).
Suppose that the action of a zonal filter, such as a Lan-
czos filter, in the spectral domain is denoted as an op-
erator S{ }. That is, if x(¢, \) is some topographic
model with spherical harmonic coefficients ¢, and
X(¢, \) is a zonally smoothed version of x( ¢, \) with
spherical harmonic coefficients d,,,, then

dlm = S{clm}- (66)

This zonal smoothing is applied after each iteration
(6.5):

? While the zonal Gibbs oscillations are well approximated by a
single harmonic of frequency M + 1/, the meridional Gibbs ripples
in a rhomboidally truncated spherical harmonic series are better rep-
resented as a pair of sinusoids, closely spaced about frequency M
+ 2.5, in the middle of the spectrum of the rhomboidally truncated
topography. A two-dimensional Lanczos filter can be constructed by
convolving grid values of constant latitude with a boxcar of length
(M + 1/)7" and convolving grid values of constant longitude with a
boxcar of length (M + 2.5)~". Unfortunately, features with substantial
relief in meridional sections are smoothed out considerably by this
procedure. This is because the high-frequency components that en-
dow a feature with its steepness and some of its height are multiplied
by the lower sidelobes of the sinc function when the Lanczos filter
is applied, by the convolution theorem. This is less of a problem when
smoothing zonal Gibbs oscillations because the zonal Gibbs fre-

quency is at the edge of the topography spectrum rather than the
middle.
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This results in a topography with smaller zonal
Gibbs oscillations compared to the iteration (6.5) with-
out smoothing and, depending on the zonal smoother,
may preserve much of the surface relief. We call a sur-
face produced by the iterations (6.5) or (6.7) a *‘reg-
ularized topography.”’ In this study, we produce regu-
- larized topography using the iteration (6.7) with a Lan-
czos filter as the zonal smoother, so

sin(2wm/ M)
2am/M

The resulting topography is evaluated in the following
section.

S{cm} = (6.8)

¢. Regularized topography

The regularized topography produced by combining
the Lanczos filter and the regularization procedure, as
described by (6.7), is compared to two other represen-
tations of topography formed by an R30 expansion in
spherical harmonics: the standard topography gener-
ated as described in section 5 (and used in the climate
model integrations described therein), and a version
produced using the isotropic filter of Navarra et al.
(1994) [a two-dimensional version of Cesaro sum-
mation, or Fejér smoothing (Lanczos 1966; Hamming
1977; Korner 1988)]. The Lagrange multiplier A ap-
pearing in (6.7) was chosen by trial to be —5 X 1077
when fitting an R30 spherical harmonic expansion to
the surface elevation.

The amplitude of the Gibbs oscillations varies con-
siderably among the different representations of spec-
tral topography. The regularized topography has the
smallest Gibbs oscillations (Fig. 6a). They are some-
what larger in the isotropic version (Fig. 6b), partic-
ularly the zonal Gibbs oscillations, and much larger in
the standard topography (Fig. 2). Figure 7, a cross sec-
tion along 21°S, illustrates this dramatically by com-
paring the ripples extending westward across the Pa-
cific from the Andes for each surface. The remaining
“‘valleys’” over oceanic regions tend to be broader and
shallower in the regularized topography, and are most
notable in the Arctic Ocean and just off the coasts of
Greenland, Antarctica, and the Americas.

There is also considerable variation in the height of
topographic barriers among the different representa-
tions. The peaks of both the isotropic and regularized
topography are lower than the corresponding local
maxima of the original gridpoint surface and the stan-
dard topography. (Note that the standard version also
unrealistically overshoots the height of the original to-
pography in some places.) In the case of very sharp,
narrow mountain barriers such as the Andes, the iso-
tropic topography retains more of the peak elevation
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than the regularized version, as is evident from Fig. 7.
However, for broader features such as Greenland,
southern Africa, and the Tibetan and: East Antarctic
Plateaus, the regularization method preserves more
of the original terrain height than the isotropic proce-
dure. This is illustrated in the cross sections along 86°E
(Fig. 8).

In both the isotropic and regularized versions, a
broadening of the continents is among the costs asso-
ciated with the reduction of the Gibbs oscillations. The
broadening is more pronounced in the regularized ver-
sion, and is apparent in both the maps and the cross
sections. There are other techniques available for rep-
resenting spectral topography that may be able to re-
duce the amount of broadening associated with a given
reduction of the Gibbs ripples, but these were not at-
tempted in this study. They are discussed briefly in sec-
tion 8.

A penalty function that treats the misfit of the model
differently in continental and oceanic regions was also
used in the recent work of Bouteloup (1995). Boute-
loup suggests using a fourth power cost function for
the misfit of the model in oceanic areas and a second
power cost function for the misfit over land (or a sim-
ilar but more complicated penalty function depending
on several free parameters).

However, the regularization method described here
differs from the work of Bouteloup (1995). Not only
does (6.7) depend on only one free parameter, the La-
grange multiplier A, but it penalizes oscillatory behav-
ior in the spectral topography, while Bouteloup’s pen-
alty function simply imposes a greater cost on oceanic
misfit than on continental misfit. Also, the regulariza-
tion method reduces Gibbs oscillations globally, while
Bouteloup’s method results in a surface with numerous
Gibbs truncation artifacts in the Southern Hemisphere,
while reducing them in areas close to Europe (which
may be sufficient for regional numerical weather pre-
diction).

To summarize, the regularization technique seems to
be quite successful at reducing the magnitude of the
Gibbs oscillations in both the zonal and meridional di-
rections without an unacceptable reduction of the
height of mountain barriers. The topography that re-
sults is quite faithful to the large-scale patterns of sur-
face relief, although the continents are broader and
some narrow mountain ranges are reduced in height. In
the following section we describe a climate model in-
tegration performed with the regularized topography
and compare the simulated precipitation with that from
integrations using other representations of topography.

7. Regularized topography and simulated
precipitation

The regularized topography was used as a lower
boundary surface for an integration of the climate
model at R30 resolution. To place the results from this
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FIG. 6. Surface elevation (m). Top: R30 regularized topography. Bottom: R30 isotropic-filtered topography.

-2000

integration into context, an additional run was made
using the isotropic topography of Navarra et al. (1994),
since it represents one of the best techniques for glob-
ally reducing the Gibbs oscillations among those in the
literature. All other aspects of these integrations were
identical to the one conducted using the standard to-
pography, as described in section 5.

-500-100 -20 20 100 500

2000 5000

A comparison of the precipitation from the integra-
tions with the standard, isotropic, and regularized to-
pography to the observed climatology of Legates and
Willmott (1990) provides an indication of its sensitiv-
ity to the representation of topography. Maps of the
annual mean precipitation for the isotropic and regu-
larized topography integrations are presented in Fig. 9,
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F1G. 7. Surface elevation profiles (m) along 21°S from four different R30 topographies: original grid point
(black circles), standard truncation (blue line), isotropic filtered (green line), and regularized (red line).

and can be compared with similar maps from the stan-
dard topography integration (Fig. 4) and the data of
Legates and Willmott (Fig. 4). Substantial differences
are apparent among the three simulated precipitation
fields, particularly with regard to the cellular precipi-
tation pathology. Almost no evidence of this problem
can be found in the integration with regularized topog-
raphy, as the resulting precipitation is rather smoothly
distributed. The use of the isotropic topography also
reduces the severity of the cellular precipitation pa-
thology, but not as completely as the regularized to-
pography.

Examination of the simulated precipitation in the
spectral domain confirms the results obtained from
comparing the distributions of precipitation in physical
space. Spherical periodograms of annual precipitation
from the isotropic and regularized topography integra-
tions (Fig. 10) can be compared with those from the
standard topography integration and the observed cli-
matology (Fig. 5). The substantial decrease in the frac-
tional variance associated with high zonal and meridi-
onal wavenumbers for the isotropic and regularized to-
pography integrations results from reductions in the
cellular precipitation pathology. The spectral distribu-
tion of precipitation from the regularized topography

integration is very similar to the spectral distribution of
observed precipitation, especially at high wavenum-
bers. While differences are still evident at low wave-
numbers, this suggests that the removal of spurious
variations on small spatial scales associated with the
Gibbs oscillations may be essential for a realistic sim-
ulation of precipitation.

Further evidence of the relationship between the
Gibbs oscillations and the cellular precipitation pathol-
ogy can be obtained by a closer examination of the
model output. In particular, it is enlightening to study
the vertical motion in the vicinity of some of the Gibbs
oscillations in the topography. As a way of identifying
the Gibbs oscillations, we decompose the standard to-
pography into the sum of two components: a smooth
portion and a part containing the Gibbs oscillations.
Representing the smooth piece by the regularized to-
pography, the Gibbs component can be estimated as
the difference between the standard topography and the
regularized topography. This quantity is depicted for
southern Asia and the surrounding area in the top half
of Fig. 11. A “‘checkerboard’ pattern of alternating
maxima and minima (with magnitudes often greater
than 500 m) is evident in the vicinity of the Tibetan
Plateau. In comparing this pattern to the annual mean
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FIG. 8. Same as Fig. 7 except along 86°E.

vertical pressure velocity in the midtroposphere from
the integration with standard topography (Fig. 11, bot-
tom), a strong relationship is evident, with sinking mo-
tion coincident with the Gibbs oscillation ‘‘valleys’’
and rising motion above the Gibbs ‘‘peaks.”’ The spa-
tial distribution of vertical motion is thus dominated by
a noisy, small-scale pattern, which is probably the re-
sult of the Gibbs oscillations. Many of the precipitation
maxima responsible for the cellular precipitation pa-
thology (see Fig. 4b) are associated with areas of rising
motion resulting from the Gibbs ripples.

It is useful to try to quantify these changes in sim-
ulated precipitation that occur in response to changes
in the representation of topography. As in section 5,
pattern correlation statistics and rms differences are
used to describe the agreement between the observed
data of Legates and Willmott (1990) and the annual
mean precipitation in standard, isotropic, and regular-
ized topography integrations. The results are listed in
Tables 1 and 2. Isotropic and regularized topography
integrations have substantially higher pattern correla-
tions and lower rms differences than the standard to-
pography integration. The overall pattern correlation of
0.737 for the regularized topography integration is the
best among the R30 integrations and exceeds the best
pattern correlation (0.717) from any integration em-

ploying standard topography (in this case, the R15).
The regularized topography integration also has the
lowest overall rms error (0.179 cm/day). Over the con-
tinents the improvement in the rms difference is partic-
ularly evident.

These statistics demonstrate that substantial im-
provement in the fidelity of simulated precipitation can
be achieved by decreasing the amplitude of Gibbs os-
cillations in the model topography. Reducing Gibbs ar-
tifacts may also be a necessary condition to insure that
precipitation simulations become more realistic with
increasing horizontal resolution, since the results from
the integrations with standard topography suggest that
the deleterious effects of the Gibbs oscillations become
more severe as resolution is increased.

8. Suggestions for further work

Further improvements in the representation of to-
pography may be possible through the use of a more
sophisticated technique relying on the study of concen-
tration problems on the sphere. Versions of the topog-
raphy designed this way are optimal in an information—
theoretic sense and should result in more faithful rep-
resentation of narrow mountain ranges and continental
boundaries.
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F1G. 9. Annual mean precipitation distributions (mm/day). Top: R30 simulation with regularized topography.
Bottom: R30 simulation with isotropic-filtered topography.

The best understood concentration problem is
one-dimensional; one seeks those band-limited func-
tions whose Fourier transforms are most concen-
trated in a given interval in space. The solution to
this problem is a family of useful functions called the
prolate spheroidal wavefunctions; some of their
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properties are described in Slepian (1983). An ex-
pansion of the topography in terms of these special
functions can be used to produce filtered topography
that suffers very little from broadening of topo-
graphic features, such as coastlines and mountain
ranges, while accurately representing orographic
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Fic. 11. Top: Difference in surface elevation (m) between the R30 standard and R30 regularized topographies for the
Tibetan Plateau region. (This quantity is assumed to represent the Gibbs component of the R30 standard topography).
Bottom: Annual mean vertical pressure velocity (Pa s™') at the ¢ = 0.515 level, where ¢ is the normalized pressure
coordinate, from the R30 simulation with standard topography.
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TaBLE 1. Pattern correlations of simulated annual-mean
precipitation with Legates and Willmott (1990) climatology. The
correlations are computed globally for Jand points and for sea points.

Pattern correlation

Integration Global Land Sea
R15 standard 0.717 0.764 0.724
R30 standard 0.660 0.720 0.712
R63 standard 0.549 0.506 0.671
R30 isotropic 0.722 0.811 0.728
R30 regularized 0.737 0.811 0.742

peak heights. Using these prolate wavefunction fil-
ters as zonal filters, as described in section 6b, re-
duces broadening distortions.

A more sophisticated approach to designing spectral
model topography may be provided by extending the
concentration problem methods from the circle to the
sphere. This procedure would eliminate the need for
complicated iterative searches or heuristic spectral co-
efficient weighting schemes. The work of Grunbaum et
al. (1982) suggests a method for efficiently solving
concentration problems on the sphere, in which the
functions band limited to some region of / — m space
and most concentrated in some region on the sphere are
sought. Presumably these functions could be employed
in an expansion scheme for topography on the sphere
similar to that described above to avoid excessive
broadening of topographic features. Further work is
necessary to determine if using these concentration
problem techniques can be successfully adapted to the
representation of topography in spectral models.

9. Conclusions

This study has demonstrated that the conventional
representation of spectral model topography as a trun-
cated set of spherical harmonics computed from grid-
point data can produce highly undesirable effects on
simulated precipitation in climate simulations. These
effects are manifest as an accumulation of spatial vari-
ance in precipitation on very small scales, or what we
have called the ‘‘cellular precipitation pathology.”” At
the root of this pathology are ripples in the model to-
pography, analogous to Gibbs oscillations in a trunca-
ted Fourier series, as described by Navarra et al.
(1994). The resulting distortion of the precipitation
field increases with horizontal resolution, making it a
serious obstacle to the realistic simulation of hydro-
logic quantities on smaller scales.

We propose an alternative representation of spectral
topography and demonstrate its use in a climate simu-
lation. This representation utilizes a Lanczos filter as a
zonal smoother in combination with a nonuniform ver-
sion of the spherical smoothing spline. The topography
that results from this iterative regularization procedure
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is largely free of the small-scale oscillations that char-
acterize the standard topography. Furthermore, the pre-
cipitation from the climate simulation performed using
this regularized topography is in substantially better
agreement with the observed climatology, both in phys-
ical space and spectral space. It also improves on the
simulated precipitation produced using previously
available techniques for reducing Gibbs oscillations
(Navarra et al. 1994). In fact, the reduction of Gibbs
oscillations in spectral topography seems to be an es-
sential requirement for improved simulation of hydro-
logic quantities as the horizontal resolution of climate
models increases.

An examination of climate simulations produced for
the Atmospheric Model Intercomparison Project
(Gates 1992) reveals that Gibbs oscillations are present
in the topography used by many other spectral climate
modeling groups. This suggests that the phenomenon
described in this paper may have broad impact, al-
though it is possible that the particular combination of
physical parameterizations used in the GFDL climate
model makes it more sensitive to this problem. Some
evidence of Gibbs artifacts are present in maps of cloud
statistics from the ECMWF model (Potter et al. 1992),
suggesting that precipitation could be similarly af-
fected.

The sensitivity of the spatial pattern of precipitation
to the model topography raises a question about the
realism of the precipitation fields simulated using the
regularized topography. Since much of the world’s pre-
cipitation is produced by weather systems with rather
small scales, how reasonable are the smooth precipi-
tation fields produced from observations (Figs. 4d and
5) or simulated using the regularized topography (Figs.
9 and 10)? An important consideration in answering
this question is the timescale of interest. Over flat ter-
rain, inhomogeneities in the spatial distribution of pre-
cipitation can be very large over short time periods
(i.e., days), but these become smaller as the length of
the averaging period is increased (D. R. Legates 1994,
personal communication; C. J. Willmott 1994, personal
communication ). In areas of significant relief, the geo-
graphic distribution of precipitation producing systems

TABLE 2. Root-mean-square differences (cm/day) between
simulated annual mean precipitation and Legates and Willmott
(1990) climatology. The root-mean-square differences are computed
globally for land points and for sea points.

Rms difference

Integration Global Land Sea
R15 standard 0.180 0.175 0.182
R30 standard 0.209 0.242 0.192
R63 standard 0.263 0.352 0.212
R30 isotropic 0.185 0.183 0.186
R30 regularized 0.179 0.175 0.181
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is often strongly influenced by the topographic features,
so that spatial inhomogeneities persist even as longer
averaging periods are used. This is evident when ex-
amining long-term averages of observed precipitation
from regions where the density of observations is high,
such as the central and eastern United States (e.g., U.S.
Environmental Data Service 1968). For multiyear av-
erages of simulated precipitation such as those exam-
ined in this study, orographically induced extrema are
realistic only if the topographic features that produce
them are realistic features of the earth’s topography that
can be resolved at the horizontal resolution of the
model. At the R30 resolution used in most of these
experiments, only relatively large-scale topographic
features (e.g., the Tibetan Plateau, Antarctic ice sheet,
Rocky/Andes cordillera) can be resolved without in-
troducing Gibbs artifacts, so it is reasonable for precip-
itation extremes associated with smaller features (e.g.,
the Alps, Atlas Mountains, Tien Shan) to be absent
from the simulated precipitation fields. We therefore
argue that multiyear averages of annual observed and
simulated precipitation should be relatively smooth, al-
though precipitation maxima and minima associated
with resolvable orographic features should be evident.

While the regularization method described here re-
duces the magnitude of the cellular precipitation pa-
thology and is better at eliminating small-scale ripples
and maintaining the height of broad topographic fea-
tures than techniques previously proposed for reducing
Gibbs oscillations, its drawbacks include a substantial
broadening of the continents and a serious reduction in
the height of very narrow mountain ranges. The broad-
ening of continents and narrow topographic features,
such as the Andes, is partly a consequence of the zonal
filtering described in section 6b. It is possible that this
broadening may cause difficulties for the simulation of
aspects of climate not considered in our analysis. For
example, continental broadening may produce inaccu-
rate simulations of oceanic fields in coupled models.
However, designing filters based on the solution of con-
centration problems originating in communication the-
ory may alleviate some of the difficulties with repre-
senting narrow topographic features using only a few
spectral coefficients.

It should also be noted that the version of the regu-
larization procedure used here was designed specifi-
cally to produce R30 topography with the desired at-
tributes. Slightly modified procedures may be neces-
sary to generate topographies with the same attributes
when different truncations (such as R15, R63, and T42,
for example ) are used. Careful experimentation may be
required to arrive at the modifications that achieve the
desired reduction of Gibbs ripples, but such effort may
be well spent in avoiding their destructive effects on
the simulation of hydrologic quantities.
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