
COASTWATCH FORMAT SOFTWARE
LIBRARY AND UTILITIES:

USER’S GUIDE

VERSION 2
REVISED NOVEMBER 1999

Prepared by:

Peter Hollemans
CoastWatch Operations Manager

West Coast Regional Node

U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL MARINE FISHERIES SERVICE
SOUTHWEST FISHERIES SCIENCE CENTER

8604 LA JOLLA SHORES DR.
LA JOLLA, CA 92037-1508

Copyright Notice and Statement for CoastWatch Format (CWF) Software Library
and Utilities:

CoastWatch Format (CWF) Software Library and Utilities
Copyright 1998-1999, USDOC/NOAA/NESDIS CoastWatch West Coast Regional Node

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in all
copies, that both the copyright notice and this permission notice appear in supporting documen-
tation, and that redistributions of modified forms of the source or binary code carry prominent
notices stating that the original code was changed and the date of the change. This software is
provided ”as is” without express or implied warranty.

CoastWatch Contacts:

Mail questions, comments, suggestions, and bug reports to:

CoastWatch Operations Manager
CoastWatch West Coast Regional Node
P.O. Box 271
La Jolla, CA 92038-0271, USA

Send electronic correspondence to:

cwatch@cwatchwc.ucsd.edu

Internet Access:

The CoastWatch Format (CWF) Software Library and Utilities distribution is available from
the CoastWatch West Coast Regional Node web site:

http://cwatchwc.ucsd.edu

i

Contents

1 INTRODUCTION 1

1.1 History . 1

1.2 NetCDF Heritage . 1

1.3 Using the CWF Library . 2

1.3.1 Creating a CWF Dataset . 2

1.3.2 Reading a CWF Dataset . 3

1.3.3 Error Handling . 3

1.4 CWF Data . 3

1.4.1 CWF External Data Types . 3

1.4.2 Data Access . 4

2 DATASETS 5

2.1 Get error message string from error status: cw strerror 5

2.2 Create a CWF Dataset: cw create . 6

2.3 Open a CWF Dataset for Access: cw open . 6

2.4 Leave Define Mode: cw enddef . 7

2.5 Close an Open CWF Dataset: cw close . 8

3 DIMENSIONS 10

3.1 Create a Dimension: cw def dim . 10

3.2 Get a Dimension ID from Its Name: cw inq dimid 11

3.3 Inquire about a Dimension: cw inq dim . 12

4 VARIABLES 13

4.1 CWF Variable Limitations . 13

4.2 Create a Variable: cw def var . 14

4.3 Get a Variable ID from Its Name: cw inq varid 16

ii

4.4 Get Information about a Variable from Its ID: cw inq var 17

4.5 Read or Write an Array of Values: cw get vara type and cw put vara type 18

4.6 Invalid Data Values . 20

5 ATTRIBUTES 22

5.1 CWF Attribute Limitations . 22

5.2 Read or Write an Attribute: cw get att type and cw put att type 25

5.3 Get Information about an Attribute: cw inq att Family 27

6 UTILITIES 29

6.1 Export . 29

6.1.1 Export to ArcView, ARC/INFO: cwftoarc 29

6.1.2 Export to XYZ ASCII: cwftoasc . 30

6.1.3 Export to raw binary: cwftoraw . 30

6.1.4 Export to netCDF: cwftonc . 31

6.1.5 Export to HDF: cwftohdf . 32

6.2 Plotting . 33

6.2.1 Plot to GIF: cwftogif . 33

6.3 Dataset Information . 35

6.3.1 Get a dimension: cwfdim . 35

6.3.2 Get an attribute: cwfatt . 35

6.3.3 Get data values: cwfval . 36

6.3.4 Calculate statistics: cwfstats . 36

6.3.5 Get CoastWatch HDF file information: hdfinfo 37

6.4 Dataset Manipulation . 38

6.4.1 Set navigation attributes: cwfnav . 38

6.4.2 Apply a cloud mask: cwfcmask . 39

iii

6.4.3 Create data composite: cwfcomp . 39

6.4.4 Create and apply a land mask: cwflmask 41

A QUICK REFERENCE 42

B COASTWATCH HDF METADATA SPECIFICATION 44

iv

1 INTRODUCTION

1.1 History

The original need for a set of standard routines to read and write CoastWatch data files arose
at the CoastWatch West Coast Regional Node in La Jolla, CA, in September, 1997. A software
change was planned for early 1998, from using the Global Imaging GAE image processing package
to the SeaSpace Corporation TeraScan package. In doing so, a new routine was needed to translate
TeraScan data format (TDF) into CoastWatch format (CWF1). Although a routine existed to
translate GAE files into CWF, it was not possible to adapt it for handling TDF files. In addition
to simple translation, more sophisticated handling of CWF files was desired above and beyond
what could be provided by the existing software packages (DECCON, IMGMAP, WIM, CCoast,
etc.). In short, there existed no coherent application programming interface (API) for CWF files
with a standard set of utilities supported on multiple PC and Unix computer platforms.

In October, 1997, an original CWF routine library (Version 1) was written in ANSI-C. That
library was used to write a TDF to CWF translation routine and some simple CWF utilities.
Some obvious limitations of the library spurred a refinement of the code to produce Version 2.
In particular, Version 1:

• accessed all the data at once - no good for low-memory DOS machines

• did not handle angle and cloud mask files

• had an interface that is very IMGMAP specific

Version 2 has eliminated these problems and added other improvements. The current library and
utilities source code and documentation is available from the CoastWatch West Coast Regional
Node web site:

http://cwatchwc.ucsd.edu

1.2 NetCDF Heritage

The Version 2 CWF library is based on the netCDF data model presented in [8]. Although behind
the scenes the file format is actually the standard CoastWatch format, the interface routines mimic
those of the netCDF library. In most cases, the routine names and argument types are carbon-
copies of the corresponding netCDF routines. A pseudo-netCDF interface was chosen because its
functionality is well-suited for accessing CWF data, and should ease any future migrations to a
hierarchical-type file format.

1Strictly speaking, CoastWatch format is simply a subset of the Image Mapping system format (IMGMAP), a
standard for environmental image products developed by NOAA/NESDIS. For the purposes of this guide, however,
the format will be referred to as CWF to dispell any confusion in the future when and if IMGMAP is abandoned
as the CoastWatch data format.

1

Following with netCDF, the data in CWF files is accessed in terms of dimensions, variables, and
attributes2. Unlike netCDF, only certain dimension, variable, and attribute names are allowed
and there are restrictions on variable types and attribute types and values. Other limitations also
exists, and will be explained in later sections.

1.3 Using the CWF Library

From an application programming standpoint, using the CWF library is simple. In general cases,
only a small subset of all routines in the library need to be called to perform a specific task.
In the following sections, templates for common sequences of CWF library calls are given for
common tasks. Note that for clarity, the type-specific suffixes of routine names are omitted,
“...” is inserted for an arbitrary sequence of statements, and routines that would be called
multiple times are indented.

1.3.1 Creating a CWF Dataset

Following is a typical sequence of calls to create a new CWF dataset.

cw_create /* create CWF dataset: enter define mode */
...

cw_def_dim /* define dimensions: from name and length */
...

cw_def_var /* define variables: from name, type, ... */
...

cw_put_att /* put attributes: assign attribute values */
...

cw_enddef /* end definitions: leave define mode */
...

cw_put_var /* provide values for variables */
...

cw_close /* close: save new CWF dataset */

Upon creating a CWF dataset, it will be in the first of two CWF modes. When accessing a CWF
dataset, it is either in define mode or data mode. In define mode, you can create dimensions,
attributes, and variables but you cannot read or write data. In data mode, you can access data
and change attribute values, but not define new variables, dimensions, or attributes. Calling
cw enddef will end define mode and enter data mode. Once in data mode, you can write data
values, change old values, and change the values of attributes. Finally, cw close must explicitly
be called for all datasets that are open for writing to make sure that data values are written
correctly to disk before exiting.

2The reader should refer to [8] for a full explanation of the netCDF data model and routine behaviour. This
guide only gives details on the limited CWF implementation of netCDF.

2

1.3.2 Reading a CWF Dataset

In contrast to creating a new CWF dataset, reading an existing CWF dataset is somewhat simpler.
The following sequence of library calls might be used:

cw_open /* open existing CWF dataset */
...

cw_inq_dimid /* get dimension IDs */
...

cw_inq_varid /* get variable IDs */
...

cw_get_att /* get attribute values */
...

cw_get_var /* get values of variables */
...

cw_close /* close CWF dataset */

After opening the dataset, cw inq dimid gets the dimension ID from the dimension name. Sim-
ilarly, variable IDs are retrieved from the variable names. Then variable attributes and values
can be obtained using the variable ID. Finally, the dataset is closed with cw close. Note that
for datasets opened for reading only, explicitly closing the dataset is not necessary.

1.3.3 Error Handling

Error handling in the CWF library is handled by way of an integer return status from any of
the functions. If the return status indicates an error, the function cw strerror may be used to
translate the error into an error message string. For simplicity, the examples in this guide check
the return status and call a separate function to handle the error.

1.4 CWF Data

This section discusses the four primitive CWF external data types, and the types of data access
supported by the CWF interface.

1.4.1 CWF External Data Types

The external data types supported by the CWF interface are as follows:

char 8-bit characters intended for representing text
byte 8-bit unsigned integers
short 16-bit signed integers
float 11 or 16-bit scaled floating-point

3

These types were chosen to cover the range of values for variables and attributes encoded in a
CWF file. They are called external because they correspond to different methods used by the
interface for accessing the dataset on disk. When a program reads external CWF data into an
internal variable, the data is converted to the internal type. This feature can be used to simplify
code by using a sufficiently wide internal type to access a number of different external types.
Only narrow to wide conversions are supported; for example, external byte data can be read
into a floating-point internal variable, but external floating-point data cannot be read into an
internal byte variable (type unsigned char in C). These conversion rules apply in a similar way
to writing data. The one external type that the conversion rules do not apply to is char data.
Only character data representing text strings can be written to or read from char.

1.4.2 Data Access

Data access in the CWF interface is limited to access by array section. An array section is
a rectangular block of data specified by two vectors. The start vector gives the indices of the
element in the corner closest to the origin. The count vector gives the lengths of the edges of the
rectangle along each of the variable’s dimensions, in order. The number of values accessed is the
product of these edge lengths.

As an example, consider a CWF dataset with dimensions:

(rows, columns) = (512, 512)

To access the full block of data, the following would be used:

start = (0, 0)
count = (512, 512)

or to access row 100 only:

start = (100, 0)
count = (1, 512)

Note that indexing uses the C convention of starting at 0 rather than the FORTRAN convention
of starting at 1. Section 4 “Variables” describes in detail the array section access routines.

4

2 DATASETS

This section presents the interfaces of the CWF functions that deal with CWF datasets as a
whole, as well as the error status function. To access a CWF dataset, it is first referred to by file
name. After opening, it is referred to by its CWF ID, a small non-negative integer. The CWF
ID is like a logical unit number in FORTRAN or a file descriptor in C. After closing, the ID is
no longer associated with the dataset.

The operations supported on a CWF dataset include:

• Create, given dataset name and whether to overwrite or not.

• Open, given dataset name and read/write mode.

• End define mode.

• Close, writing all data to disk.

2.1 Get error message string from error status: cw strerror

The function cw strerror returns a static reference to an error message string corresponding to
an integer CWF error status.

Usage

const char *cw_strerror (int cwerr);

cwerr An error status returned from a previous call to some CWF function.

Errors

cw strerr returns a string indicating that the error is unknown if given an error status that does
not correspond to any CWF error message.

Example

The following is a simple error handling function that uses cw strerror:

#include <stdio.h>
#include <cwf.h>

...
void handle_error (int status) {

if (status != CW_NOERR) {
fprintf (stderr, "%s\n", cw_strerror (status));
exit (-1);

}
}

5

2.2 Create a CWF Dataset: cw create

The creation function creates a new CWF dataset, returning the CWF ID. A creation mode
specifies whether or not to overwrite an existing dataset of the same name. The new CWF
dataset is placed in define mode, ready for dimension, variable, and attribute definitions.

Usage

int cw_create (const char *path, int cmode, int *cwidp);

path The file name of the new CWF dataset.
cmode The creation mode. A zero value (or CW CLOBBER) specifies that a dataset

of the same name should be overwritten. If CW NOCLOBBER is specified,
an existing dataset will not be overwritten; an error is returned if the
dataset exists.

cwidp Pointer to location where the returned CWF ID is to be stored.

Errors

cw create returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The CWF dataset name contains a directory that does not exist, or you don’t have access
to.

• The dataset already exists and CW NOCLOBBER was specified.

• The creation mode is invalid.

Example

The following code fragment creates a new CWF dataset called w9813021.lc4; the dataset is
created only if the file does not already exist:

#include <cwf.h>
...

int status;
int cwid;

...
status = cw_create ("w9813021.lc4", CW_NOCLOBBER, &cwid);
if (status != CW_NOERR) handle_error (status);

2.3 Open a CWF Dataset for Access: cw open

The function cw open opens an existing CWF dataset for access.

6

Usage

int cw_open (const char *path, int omode, int *cwidp);

path The file name of the CWF dataset to be opened.
omode The open mode. A zero value (or CW NOWRITE) specifies that the dataset

by opened for read-only access. Specifying CW WRITE opens the dataset
as read-write - variable data and attribute values can be changed.

cwidp Pointer to location where the returned CWF ID is to be stored.

Errors

cw open returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The CWF dataset does not exist.

• The open mode is invalid.

• The dataset contains variable data of a type not supported by the library.

Example

The following code opens the CWF dataset w9813021.lc4 for read-only access:

#include <cwf.h>
...

int status;
int cwid;

...
status = cw_open ("w9813021.lc4", CW_NOWRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

2.4 Leave Define Mode: cw enddef

The function cw enddef takes an open CWF dataset out of define mode. The definitions made
while in define mode are checked and variable data initialized to a fill value (see Section 4.6
“Invalid Data Values”). The dataset is then placed in data mode and variable data can be read
or written.

Usage

int cw_enddef (int cwid);

cwid CWF ID, from a previous call to cw create.

Errors

cw enddef returns the value CW NOERR if no errors occurred. Possible causes of errors include:

7

• The specified CWF ID does not refer to an open CWF dataset.

• The specified CWF dataset is not in define mode.

• No dimensions and/or variables were defined while in define mode.

Example

The following example uses cw enddef to end define mode after creating a new CWF dataset:

#include <cwf.h>
...

int status;
int cwid;

...
status = cw_create ("w9813021.lc4", CW_NOCLOBBER, &cwid);
if (status != CW_NOERR) handle_error (status);

... /* create dimensions, variables, attributes */

status = cw_enddef (cwid); /* leave define mode */
if (status != CW_NOERR) handle_error (status);

2.5 Close an Open CWF Dataset: cw close

The function cw close will close an open CWF dataset. If the dataset is in define mode,
cw enddef will be called before closing. After an open CWF dataset is closed, its CWF ID
may be reassigned to the next CWF dataset that is opened or created.

Usage

int cw_close (int cwid);

cwid CWF ID, from a previous call to cw open or cw create.

Errors

cw close returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• If in define mode, the automatic call to cw enddef failed.

• If file compression was turned on and the file failed to compress correctly.

Example

The following example uses cw close after creating a new CWF dataset:

8

#include <cwf.h>
...

int status;
int cwid;

...
status = cw_create ("w9813021.lc4", CW_NOCLOBBER, &cwid);
if (status != CW_NOERR) handle_error (status);

... /* create dimensions, variables, attributes */

status = cw_close (cwid); /* close CWF dataset */
if (status != CW_NOERR) handle_error (status);

9

3 DIMENSIONS

Dimensions for a CWF dataset are defined when it is created, while the CWF file is in define
mode. A CWF dimension has a name and a length, but unlike netCDF, CWF dimension names
are restricted. There are only two allowed dimensions, rows and columns, and both must be
defined before defining a variable.

Dimensions are of type size t rather than int to make it possible to access all the data in a
CWF dataset on platforms that only support a 16-bit int data type, for example MSDOS.

A CWF dimension in an open dataset is referred to by a small non-negative integer, called a
dimension ID. The library supports the following dimension operations:

• Create a dimension, given its name and length.

• Get a dimension ID from its name.

• Get a dimension’s name and length from its ID.

3.1 Create a Dimension: cw def dim

The function cw def dim creates a new dimension in an open CWF dataset in define mode. It
returns the dimension ID (as an argument) given the dataset ID, and dimension name and length.

Usage

int cw_def_dim (int cwid, const char *name, size_t len, int *dimidp);

cwid CWF ID, from a previous call to cw create.
name Dimension name. Must be rows or columns.
len Length of the dimension.
dimidp Pointer to location for returned dimension ID.

Errors

cw def dim returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The CWF dataset is not in define mode.

• The dimension name is invalid.

• The dimension is already defined.

• The specified length is not greater than zero.

Example

The following example uses cw def dim to define rows and columns in a new CWF dataset:

10

#include <cwf.h>
...

int status, cwid, rowsid, colsid;
...

status = cw_create ("w9813021.lc4", CW_NOCLOBBER, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_def_dim (cwid, "rows", 512, &rowsid);
if (status != CW_NOERR) handle_error (status);
status = cw_def_dim (cwid, "columns", 512, &colsid);
if (status != CW_NOERR) handle_error (status);

3.2 Get a Dimension ID from Its Name: cw inq dimid

The function cw inq dimid returns (as an argument) a dimension ID, given its name.

Usage

int cw_inq_dimid (int cwid, const char *name, int *dimidp);

cwid CWF ID, from a previous call to cw open or cw create.
name Dimension name. Must be rows or columns.
dimidp Pointer to location for returned dimension ID.

Errors

cw inq dimid returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The dimension name is invalid.

Example

The following example uses cw inq dimid to get the dimension ID for rows:

#include <cwf.h>
...

int status, cwid, rowsid;
...

status = cw_open ("w9813021.lc4", CW_NOWRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_dimid (cwid, "rows", &rowsid);
if (status != CW_NOERR) handle_error (status);

11

3.3 Inquire about a Dimension: cw inq dim

The function cw inq dim returns the name and length of a CWF dimension.

Usage

int cw_inq_dim (int cwid, int dimid, char *name, size_t *lengthp);

cwid CWF ID, from a previous call to cw open or cw create.
dimid Dimension ID, from a previous call to cw inq dimid or cw def dim.
name Returned dimension name. The caller must allocate space for the re-

turned name, up to a maximum of CW MAX NAME characters. If name is
NULL, the name is not returned.

lengthp Pointer to location for returned length of dimension. If NULL, the length
is not returned.

Errors

cw inq dim returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The dimension ID is invalid.

Example

The following example uses cw inq dim to get the dimension length for rows:

#include <cwf.h>
...

int status, cwid, rowsid;
size_t rows;

...
status = cw_open ("w9813021.lc4", CW_NOWRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_dimid (cwid, "rows", &rowsid);
if (status != CW_NOERR) handle_error (status);
status = cw_inq_dim (cwid, rowsid, NULL, &rows);
if (status != CW_NOERR) handle_error (status);

12

4 VARIABLES

Variables in a CWF dataset are defined when the dataset is created, while in define mode. A
variable has a name, type, shape, and data values. A small non-negative integer called a variable
ID identifies the variable within an open CWF dataset. A variable ID of 0 is assigned to the first
variable created, 1 to the next, and so on. A variable can also have associated attributes which
identify various properties of the variable such as starting and ending latitude, satellite ID, and
projection type (see Section 5 “Attributes”).

Operations supported on variables are:

• Create a variable, given its name, data type, and shape.

• Get a variable ID from its name.

• Get a variable’s name, data type, shape, and number of attributes from its ID.

• Put an array of values into a variable, given variable ID, corner indices, edge lengths, and
a block of values.

• Get an array of values from a variable, given variable ID, corner indices, and edge lengths.

4.1 CWF Variable Limitations

Although in netCDF, a variable can have almost any name, type, and number of dimensions,
variables in a CWF dataset are limited. All variables must have exactly two dimensions, rows
and columns, and only certain variable names and types are allowed. The following table lists the
supported variable names, units, and the corresponding type constants for defining the variables’
external data types in the C interface:

Variable name Units C API Mnemonic
avhrr ch1 albedo × 100 % CW FLOAT
avhrr ch2 albedo × 100 % CW FLOAT
avhrr ch3 ◦C CW FLOAT
avhrr ch4 ◦C CW FLOAT
avhrr ch5 ◦C CW FLOAT
mcsst ◦C CW FLOAT
scan angle degrees CW FLOAT
sat zenith degrees CW FLOAT
solar zenith degrees CW FLOAT
rel azimuth degrees CW FLOAT
scan time decimal hours CW FLOAT
mcsst split ◦C CW FLOAT
mcsst dual ◦C CW FLOAT
mcsst triple ◦C CW FLOAT

13

(table continued ...)

Variable name Units C API Mnemonic
cpsst split ◦C CW FLOAT
cpsst dual ◦C CW FLOAT
cpsst triple ◦C CW FLOAT
nlsst split ◦C CW FLOAT
nlsst dual ◦C CW FLOAT
nlsst triple ◦C CW FLOAT
ocean reflect albedo × 100 % CW FLOAT
turbidity albedo × 100 % CW FLOAT
cloud — CW BYTE
graphics — CW BYTE

Note that although variable names and types are limited, the sizes of the variable dimensions are
not. The number of rows and columns can be well beyond the 512 × 512 image that is the norm
for most CoastWatch datasets.

Another general limitation of CWF is that there can only be one variable per dataset. This is
consistent with how CoastWatch format files have always been distributed – with one image per
file. The only exception to this rule is for files that contain graphics planes. Any of the variables
with units in ◦C or albedo are encoded in such a way as to allow for a second variable, called
graphics, to be included in the dataset as well. The graphics variable can accommodate up
to four graphics planes by setting the various bits in the graphics byte value. The four most
significant bits from the byte are used for encoding the four graphics planes as follows:

bit # 7 6 5 4 3 2 1 0
bit value 128 64 32 16 8 4 2 1

graphics plane # × × × × 4 3 2 1

For example, a byte value of 1 would represent a graphics bit set for plane 1. Alternately, a byte
value of 9 would mean graphics set for planes 1 and 4 and so on.

Although the graphics variable can only accommodate four bits of the full byte, it should be
noted that no such restriction is placed on the byte values for the cloud variable. The full 8 bits
are preserved.

4.2 Create a Variable: cw def var

The function cw def var adds a new variable to an open CWF dataset in define mode. It returns
(as an argument) a variable ID, given the CWF ID, the variable name, the variable type, the
number of dimensions, and a list of the dimension IDs.

Usage

int cw_def_var (int cwid, const char *name, cw_type xtype, int ndims,
const int dimids[], int *varidp);

14

cwid CWF ID, from a previous call to cw create.
name Variable name. Must be one of the names previously mentioned.
xtype One of the set or predefined CWF external data types. The type of

this parameter, cw type, is defined in the CWF header file. It must
correspond to the variable name listed in the variable name/type table,
either CW FLOAT or CW BYTE.

ndims Number of dimensions for the variable. Must be 2, or the predefined
constant CW MAX VAR DIMS.

dimids Vector of ndims dimension IDs corresponding to the variable dimensions.
The vector must contain the dimension ID for rows in dimids[0] and
columns in dimids[1].

varidp Pointer to location for the returned variable ID.

Errors

cw var def returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The CWF dataset is not in define mode.

• The variable is already defined.

• The variable name is invalid.

• The specified type is invalid – either it does not exist or does not match the variable name.

• The number of dimensions is not 2.

• The dimension IDs in the list of dimensions do not match the dimension IDs for rows and
columns.

• The variable name is graphics, but no main data variable is defined which allows for
encoding graphics.

Example

The following example uses cw var def to create a variable called avhrr ch4 of type float with
two dimensions, rows and columns in a new CWF dataset named w9813021.lc4:

#include <cwf.h>
...

int status; /* error status */
int cwid; /* CWF ID */
int rowsid, colsid; /* dimension IDs */
int varid; /* variable ID */
int dimids[2]; /* variable shape */

...
status = cw_create ("w9813021.lc4", CW_NOCLOBBER, &cwid);
if (status != CW_NOERR) handle_error (status);

15

...
/* define dimensions */

status = cw_def_dim (cwid, "rows", 512, &rowsid);
if (status != CW_NOERR) handle_error (status);
status = cw_def_dim (cwid, "columns", 512, &colsid);
if (status != CW_NOERR) handle_error (status);

...
/* define variable */

dimids[0] = rowsid;
dimids[1] = colsid;
status = cw_def_var (cwid, "avhrr_ch4", CW_FLOAT, 2, dimids, &varid);
if (status != CW_NOERR) handle_error (status);

4.3 Get a Variable ID from Its Name: cw inq varid

The function cw inq varid returns the ID of a CWF variable, given its name.

Usage

int cw_inq_varid (int cwid, const char *name, int *varidp);

cwid CWF ID, from a previous call to cw open or cw create.
name Variable name for which ID is desired.
varidp Pointer to location for the returned variable ID.

Errors

cw inq varid returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The specified variable name is not a valid name for a variable in the specified CWF dataset.

Example

The following example uses cw inq varid to get the variable ID for variable avhrr ch4 in dataset
w9813021.lc4:

#include <cwf.h>
...

int status, cwid, varid;
...

status = cw_open ("w9813021.lc4", CW_NOWRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_varid (cwid, "avhrr_ch4", &varid);
if (status != CW_NOERR) handle_error (status);

16

4.4 Get Information about a Variable from Its ID: cw inq var

The function cw inq var returns the following information about a variable, given its ID: name,
external type, number of dimensions, dimension IDs, and number of attributes.

Usage

int cw_inq_var (int cwid, int varid, char *name, cw_type *xtypep,
int *ndimsp, int dimids[], int *nattsp);

cwid CWF ID, from a previous call to cw open or cw create.
varid Variable ID.
name Returned variable name. The caller must allocate space for the name,

whose maximum possible length is given by CW MAX NAME. If this param-
eter is given as NULL, no name will be returned so no variable to hold
the name needs to be declared.

xtypep Pointer to location for returned variable type, one of the set of prede-
fined CWF external data types. The valid CWF external data types for
variables are CW FLOAT and CW BYTE. If this parameter is given as NULL,
no value will be returned.

ndimsp Pointer to location for returned number of dimensions. For CWF vari-
ables, this will always be 2. If this parameter is given as NULL, no value
will be returned.

dimids Returned vector of *ndimsp dimension IDs corresponding to the variable
dimensions. The caller must allocate enough space for a vector of at least
*ndimsp integers to be returned. If this parameter is given as NULL, no
value will be returned.

nattsp Pointer to location for returned number of variable attributes assigned
to this variable. If this parameter is given as NULL, no value will be
returned.

Errors

cw inq var returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The variable ID is invalid for the specified CWF dataset.

Example

The following example uses cw inq var to get information for the variable avhrr ch4 in dataset
w9813021.lc4:

#include <cwf.h>
...

int status; /* error status */
int cwid; /* CWF ID */

17

int varid; /* variable ID */
cw_type xtype; /* variable type */
int ndims; /* number of dimensions */
int dimids[2]; /* variable shape */
int natts; /* number of attributes */

...
status = cw_open ("w9813021.lc4", CW_NOWRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_varid (cwid, "avhrr_ch4", &varid);
if (status != CW_NOERR) handle_error (status);

...
/* use NULL for the name, since we already know it */

status = cw_inq_var (cwid, varid, NULL, &xtype, &ndims, dimids, &natts);
if (status != CW_NOERR) handle_error (status);

4.5 Read or Write an Array of Values: cw get vara type and cw put vara type

The cw get vara type and cw put vara type families of functions read and write values to a
variable in an open CWF dataset. The part of the CWF variable to write is specified by giving
a corner and a vector of edge lengths that refer to an array section of the CWF variable. The
values to be read or written are associated with the variable by assuming that the the columns
dimension varies fastest. The dataset must be in data mode.

Usage

int cw_get_vara_float (int cwid, int varid, const size_t start[],
const size_t count[], float *fp);

int cw_get_vara_uchar (int cwid, int varid, const size_t start[],
const size_t count[], unsigned char *ucp);

int cw_put_vara_float (int cwid, int varid, const size_t start[],
const size_t count[], const float *fp);

int cw_put_vara_uchar (int cwid, int varid, const size_t start[],
const size_t count[], const unsigned char *ucp);

18

cwid CWF ID, from a previous call to cw open or cw create.
varid Variable ID.
start A vector of size t integers specifying the index of the variable where the

first of the data values will be read or written. The indices are relative
to 0, so for example the first data value would have index (0, 0).

count A vector of size t integers specifying the edge lengths along each di-
mension of the block of data values to be read or written. To read or
write a single data value, for example, specify count as (1, 1).

fp, ucp Pointer to a block of data values to be read or written. The data is
ordered with the columns dimension varying fastest. If the type of data
values differs from the the CWF variable type, type conversion will occur
(see Section 1.4.1 “CWF External Data Types”).

Errors

The variable read and write functions return the value CW NOERR if no errors occurred. Possible
causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The variable ID is invalid for the specified CWF dataset.

• The specified corner indices are out of range of the variable.

• The specified edge lengths added to the corner indices reference data out of range of the
variable.

• The type of data conversion required to store the values is not supported.

• The CWF dataset is in define mode rather than data mode.

Example

The following example uses cw get vara float and cw put vara float to read avhrr ch4 data
from w9813021.lc4, add 0.5 to each value, and rewrite the values back to the dataset.

#include <cwf.h>
...

#define ROWS 512
#define COLS 512

...
int status; /* error status */
int cwid; /* CWF ID */
int varid; /* variable ID */
static size_t start[] = {0, 0}; /* start vector */
static size_t count[] = {ROWS, COLS}; /* count vector */
float ch4[ROWS*COLS]; /* float data array */
int i;

19

...
status = cw_open ("w9813021.lc4", CW_WRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_varid (cwid, "avhrr_ch4", &varid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_get_vara_float (cwid, varid, start, count, ch4);
if (status != CW_NOERR) handle_error (status);
for (i = 0; i < ROWS*COLS; i++)

ch4[i] += 0.5;
status = cw_put_vara_float (cwid, varid, start, count, ch4);
if (status != CW_NOERR) handle_error (status);

4.6 Invalid Data Values

Similar to the netCDF concept of a “fill value”, there exists a value for variables of type CW FLOAT
which is used to represent invalid data. The C constant CW BADVAL is used when a variable’s data
value is unknown or invalid, ie: the data was never collected at that point or for some reason the
value should not be used in calculations. When writing values to a variable, the invalid points
can be flagged by either setting them to CW BADVAL in the float array, or in a new dataset, by
not writing to that block of values at all. In a new dataset all values are initialized to the bad
value before any writing can occur. When the CWF library reads a variable that has invalid data
points, those points are automatically flagged with CW BADVAL in the float array.

The following example could be used to count the number of invalid data values for the variable
avhrr ch4 in dataset w9813021.lc4:

#include <stdio.h>
#include <cwf.h>

...
#define ROWS 512
#define COLS 512

...
int status; /* error status */
int cwid; /* CWF ID */
int varid; /* variable ID */
static size_t start[] = {0, 0}; /* start vector */
static size_t count[] = {ROWS, COLS}; /* count vector */
float ch4[ROWS*COLS]; /* float data array */
int i;
long bad;

...
status = cw_open ("w9813021.lc4", CW_WRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_varid (cwid, "avhrr_ch4", &varid);

20

if (status != CW_NOERR) handle_error (status);
...

status = cw_get_vara_float (cwid, varid, start, count, ch4);
if (status != CW_NOERR) handle_error (status);
for (i = 0, bad = 0; i < ROWS*COLS; i++)

if (ch4[i] == CW_BADVAL)
bad++;

printf ("%ld\n", bad);

21

5 ATTRIBUTES

Attributes may be associated with a CWF variable to specify various properties such as the
starting and ending latitude, satellite ID, and projection type. Attributes for a CWF dataset
are defined when the dataset is created, while the dataset is in define mode, and can be changed
later when the dataset is in data mode. A CWF attribute has a variable to which it is assigned,
a name, a type, a length, and a sequence of one or more values. An attribute can be referred to
either by its variable ID and name, or its variable ID and attribute ID. An attribute ID is a small
non-negative integer which identifies the attribute within an open CWF dataset.

Operations supported on attributes are:

• Create an attribute, given its variable ID, name, data type, length, and value.

• Get an attribute’s data type and length from its variable ID and name.

• Get attribute’s value from its variable ID and name.

• Get name of attribute from its attribute ID.

5.1 CWF Attribute Limitations

Just as variables in CWF datasets have limitations, so do attributes. Only certain attribute/type
combinations are allowed, and some attributes are limited to having only certain values. All
numerical attributes (float, short) are limited to containing only one value. The graphics
variable, if it exists, is not allowed to have any attributes.

Unlike netCDF, the CWF interface supports the idea of “read-only” attributes. These are at-
tributes which may be of informational use to the user, but are set internally for use by the
interface routines when the file is created.

The following table summarizes the supported attribute names, units, defined external data type
constants in C, and restrictions on values (if any):

Attribute name Units C API Mnemonic Values
satellite id — CW CHAR noaa-6

noaa-7
noaa-8
noaa-9
noaa-10
noaa-11
noaa-12
noaa-14
noaa-15
noaa-16
noaa-17

satellite type — CW CHAR morning
afternoon

22

(table continued ...)

Attribute name Units C API Mnemonic Values
data set type — CW CHAR lac

gac
hrpt

projection type — CW CHAR unmapped
mercator
polar
linear

start latitude degrees CW FLOAT —
end latitude degrees CW FLOAT —
start longitude degrees CW FLOAT —
end longitude degrees CW FLOAT —
resolution sampling interval CW FLOAT —

or km/pixel
or degrees/pixel

polar grid size — CW SHORT —
polar grid points — CW SHORT —
polar hemisphere — CW SHORT —
polar prime longitude degrees CW SHORT —
grid ioffset — CW SHORT —
grid joffset — CW SHORT —
composite type — CW CHAR none

nadir
average
latest
warmest
coldest

calibration type† — CW CHAR raw
albedo temperature

fill type — CW CHAR none
average
adjacent

channel number† — CW CHAR avhrr ch1
avhrr ch2
avhrr ch3
avhrr ch4
avhrr ch5
mcsst
scan angle
sat zenith
solar zenith
rel azimuth
scan time
mcsst split
mcsst dual

23

(table continued ...)

Attribute name Units C API Mnemonic Values
mcsst triple
cpsst split
cpsst dual
cpsst triple
nlsst split
nlsst dual
nlsst triple
ocean reflect
turbidity
cloud

data id† — CW CHAR visible
infrared
ancillary
cloud

sun normalization — CW CHAR yes
no

limb correction — CW CHAR yes
no

nonlinearity correction — CW CHAR yes
no

orbits processed — CW SHORT —
channels produced† — CW SHORT —
channel pixel size† — CW SHORT —
channel start block — CW SHORT —
channel end block — CW SHORT —
ancillaries produced† — CW SHORT —
ancillary pixel size† — CW SHORT —
ancillary start block — CW SHORT —
ancillary end block — CW SHORT —
image block size — CW SHORT —
compression type† — CW CHAR none

1b
percent non zero % CW SHORT —
horizontal shift — CW SHORT —
vertical shift — CW SHORT —
horizontal skew — CW SHORT —
vertical skew — CW SHORT —
orbit type — CW CHAR ascending

descending
both

orbit time — CW CHAR day
night

start row — CW SHORT —
start column — CW SHORT —

24

(table continued ...)

Attribute name Units C API Mnemonic Values
end row — CW SHORT —
end column — CW SHORT —
orbit start year — CW SHORT —
orbit start day — CW SHORT —
orbit start month day month×100 + day CW SHORT —
orbit start hour minute hour×100 + minute CW SHORT —
orbit start second — CW SHORT —
orbit start millisecond — CW SHORT —
orbit end year — CW SHORT —
orbit end day — CW SHORT —
orbit end month day month×100 + day CW SHORT —
orbit end hour minute hour×100 + minute CW SHORT —
orbit end second — CW SHORT —
orbit end millisecond — CW SHORT —
† Attribute is read-only.

5.2 Read or Write an Attribute: cw get att type and cw put att type

The cw get att type and cw put att type families of functions read and write attributes for an
open CWF dataset. Attributes are defined for a new CWF dataset using cw put att type while
in define mode, and can be re-written while in data mode.

Usage

int cw_get_att_text (int cwid, int varid, const char *name, char *tp);

int cw_get_att_short (int cwid, int varid, const char *name, short *sp);

int cw_get_att_float (int cwid, int varid, const char *name, float *fp);

int cw_put_att_text (int cwid, int varid, const char *name,
size_t len, const char *tp);

int cw_put_att_short (int cwid, int varid, const char *name,
cw_type xtype, size_t len, const short *sp);

int cw_put_att_float (int cwid, int varid, const char *name,
cw_type xtype, size_t len, const float *fp);

25

cwid CWF ID, from a previous call to cw open or cw create.
varid Variable ID of the attribute’s variable.
name Attribute name. Must be one of the attribute names previously

mentioned.
xtype One of the set or predefined CWF external data types. The type of

this parameter, cw type, is defined in the CWF header file. It must
correspond to the attribute name listed in the attribute name/type table,
either CW FLOAT, CW CHAR, or CW SHORT.

len Number of values provided for the attribute. For attributes of type
CW FLOAT and CW SHORT, len must be 1. For CW CHAR, len must be the
length of the character string.

tp, sp, fp Pointer to one or more values. If the type of values differs from the
CWF attribute type specified as xtype, type conversion will occur (see
Section 1.4.1 “CWF External Data Types”).

Errors

The attribute read and write functions return the value CW NOERR if no errors occurred. Possible
causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The variable ID is invalid for the specified CWF dataset.

• The specified type is invalid – either it does not exist or does not match the attribute name.

• The specified length is inappropriate for the attribute type.

• The type of data conversion required to store the values is not supported.

• The attribute is read-only, and a put operation was attempted.

Example

The following example uses cw get att text and cw put att text to switch the orbit time
attribute for avhrr ch4 in w9813021.lc4.

#include <cwf.h>
...

int status; /* error status */
int cwid; /* CWF ID */
int varid; /* variable ID */
char otime[10]; /* attribute value */

...
status = cw_open ("w9813021.lc4", CW_WRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_varid (cwid, "avhrr_ch4", &varid);

26

if (status != CW_NOERR) handle_error (status);
...

status = cw_get_att_text (cwid, varid, "orbit_time", otime);
if (status != CW_NOERR) handle_error (status);
if (strcmp (otime, "day") == 0)

strcpy (otime, "night");
else

strcpy (otime, "day");
status = cw_put_att_text (cwid, varid, "orbit_time", strlen (otime), otime);
if (status != CW_NOERR) handle_error (status);

5.3 Get Information about an Attribute: cw inq att Family

The attribute inquiry family of functions returns the following information about an attribute,
given its name: external type, length, and attribute ID. The one exception is cw inq attname
which returns the attribute name given its ID. This function is useful in generic applications that
need to get the names of all the attributes associated with a variable.

Usage

int cw_inq_attname (int cwid, int varid, int attid, char *name);

int cw_inq_att (int cwid, int varid, const char *name, cw_type *xtypep,
size_t *lenp);

int cw_inq_attid (int cwid, int varid, const char *name, int *attidp);

cwid CWF ID, from a previous call to cw open or cw create.
varid Variable ID of the attribute’s variable.
name Attribute name. For cw inq attname, this is a pointer to the location

for the returned attribute name. The caller must allocate space for the
name, whose maximum possible length is given by CW MAX NAME.

xtypep Pointer to location for returned attribute type, one of the set of pre-
defined CWF external data types. The valid CWF external data types
for attributes are CW FLOAT, CW SHORT, and CW CHAR. If this parameter is
given as NULL, no type will be returned so no variable to hold the type
needs to be declared.

lenp Pointer to location for returned number of values currently stored in the
attribute. If this parameter is given as NULL, no value will be returned.

attid For cw inq attname, attribute ID. The attributes for each variable
are numbered from 0 (the first attribute) to natts-1, where natts is
the number of attributes for the variable, as returned from a call to
cw inq var.

attidp For cw inq attid, pointer to location for returned attribute ID that
specifies which attribute this is for this variable.

27

Errors

Each function returns the value CW NOERR if no errors occurred. Possible causes of errors include:

• The specified CWF ID does not refer to an open CWF dataset.

• The variable ID is invalid for the specified CWF dataset.

• The attribute does not exist.

• For cw inq attname, the specified attribute ID is not in the range 0 to natts-1.

Example

The following example uses cw inq attname to get the attribute names for variable avhrr ch4
in dataset w9813021.lc4:

#include <stdio.h>
#include <cwf.h>

...
int status; /* error status */
int cwid; /* CWF ID */
int varid; /* variable ID */
int natts; /* number of attributes */
char attname[CW_MAX_NAME]; /* attribute name */
int i;

...
status = cw_open ("w9813021.lc4", CW_NOWRITE, &cwid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_varid (cwid, "avhrr_ch4", &varid);
if (status != CW_NOERR) handle_error (status);

...
status = cw_inq_var (cwid, varid, NULL, NULL, NULL, NULL, &natts);
if (status != CW_NOERR) handle_error (status);

...
for (i = 0; i < natts; i++) {

status = cw_inq_attname (cwid, varid, i, attname);
if (status != CW_NOERR) handle_error (status);
printf ("%s\n", attname);

} /* for */

28

6 UTILITIES

This section describes a number of utility routines written to use the Version 2 CWF library. The
utilities allow CoastWatch users to:

• convert CoastWatch data to other formats

• query the data dimensions, attributes, and values

• perform simple operations: navigation, statistics, cloud masking, etc.

The utilities are written for use in a command-line oriented operating system. As such, they can
be used on any machine running Unix, DOS, or under the Microsoft Windows DOS shell. Most
of the utilities print to standard output, the screen by default. Output can be redirected to a file
in any of the above systems by using the > character (see examples below). DOS and DOS shell
users are cautioned not to use output redirection with binary output - rather, use the program’s
output file option to get correct results.

6.1 Export

6.1.1 Export to ArcView, ARC/INFO: cwftoarc

The cwftoarc utility converts CWF data to either an ASCII or binary GRID file for use in
the ArcView or ARC/INFO GIS packages from Environmental Systems Research Institute, Inc.
(ESRI). The file can be used in ArcView with the Spatial Analyst extension, or in ARC/INFO
with the ASCIIGRID or FLOATGRID commands, depending on the file type. Note that in
binary mode, two files are actually created, a .flt file to hold the binary data, and a .hdr file
to specify the geographic location. Both files are required by ArcView or ARC/INFO to import
the data.

To help Arc users, cwftoarc also outputs a projection specifications note when performing the
conversion. The projection specifications must be copied exactly in order to correctly overlay
other GIS data. In ArcView, the projection is set using the View|Properties|Projection dialog
box. In ARC/INFO, experienced users should be able to use the projection specifications with
the PROJECT command.

Usage

cwftoarc [-p fdig] [-d dfdig] [-b bname] input

-p fdig Changes the default precision (number of significant digits) for floating-
point values (6).

-d ddig Changes the default precision (number of significant digits) for double
precision floating-point values (10).

-b bname Changes the output to binary mode, creating <bname>.flt and
<bname>.hdr. Default is ASCII mode to standard output.

input The CoastWatch dataset to read.

29

Example

The following command converts the file w9823910.js7 for import into ArcView, making sure to
output all data values with 4 significant digits rather than the default 6 to reduce the file size:

cwftoarc -p 4 w9823910.js7 > w9823910.js7.asc

The following command converts w9823910.js7, this time in binary mode:

cwftoarc -b w9823910 w9823910.js7

6.1.2 Export to XYZ ASCII: cwftoasc

The cwftoasc utility converts CWF data into an ASCII file of (x, y, z) triplets, ie: longitude,
latitude, value. The file can subsequently be used in analysis and plotting programs such as the
Generic Mapping Tools (GMT)3. Note that “bad” or “missing” data values are flagged with the
value -999.

Usage

cwftoasc [-p fdig] [-d ddig] [-r] input

-p fdig Changes the default precision (number of significant digits) for floating-
point values (6).

-d ddig Changes the default precision (number of significant digits) for double
precision floating-point values (10).

-r Reverses the default coordinate order (lon, lat).
-t Separates data values with TAB rather than SPACE.
input The CoastWatch dataset to read.

Example

The following command converts w9823910.js7 into a TAB-delimited ASCII file of (x, y, z)
values organized as latitude, longitude, value:

cwftoasc -r -t w9823910.js7 > w9823910.js7.asc

6.1.3 Export to raw binary: cwftoraw

The cwftoraw utility converts CWF data into a raw binary file in which each data value is
represented by one byte. Byte values are derived from the floating-point data values according
to the command line scaling specifications. If the scaling causes a data value to fall outside
the output byte range, the byte value will be truncated to the closest representable value. For
example, if the scaling calls for data values in the range [0, 25.5] to be mapped to byte values in
the range [0, 255], the data value 30.0 will be truncated to byte value 255.

3See http://www.soest.hawaii.edu/soest/gmt.html for more information on GMT.

30

Graphics planes can also be included by specifying the desired byte values for each plane. Only
the first four graphics planes are currently supported.

Note: When running cwftoraw under DOS, use the -o option to get correct binary output.

Usage

cwftoraw [-# gbyte] [-m maxbyte] [-b badbyte] [-o output] [-l min]
[-h max] input

-# gbyte Specifies the byte value for graphics plane # (# = 1,2,3,4).
-m maxbyte Changes the default maximum byte value (255).
-b badbyte Changes the default bad data byte value (0).
-o output Specifies an output file name, default is write to standard output.
-l min Changes the default minimum data value (0.0).
-h max Changes the default maximum data value (25.5).
input The CoastWatch dataset to read.

Example

The following command scales the temperature data in w9823910.js7 by a factor of 10, and
writes out the byte values to w9823910.js7.raw:

cwftoraw w9823910.js7 > w9823910.js7.raw

As another example, the following command scales the albedo data in w9823921.jc2 from albedo
values in the range [0, 25] to byte values in the range [0, 250], and applies graphics plane 3 as
byte value 255:

cwftoraw -3 255 -m 250 -h 25.0 w9823921.jc2 > w9823921.jc2.raw

6.1.4 Export to netCDF: cwftonc

The cwftonc utility converts CWF data to network Common Data Form (netCDF)4. Unlike some
of the other conversion routines, cwftonc retains as much information from the CoastWatch file as
possible. All supplementary information including the originating satellite, date, time, projection
specifications, etc. is available in the netCDF file. Variable data is encoded as 32-bit floating-
point or 16-bit integer values and graphics planes as 8-bit bytes, all with dimensions rows and
columns. Supplementary information is encoded as variable attributes, as described in Section 5.
A number of additional attributes may also be included in the file:

missing value The value for missing or invalid data.
scale factor Integer data scaling factor; multiply integer data by this value to recover

the floating-point data.
add offset Integer data offset; if non-zero, add this offset after applying the scaling

factor to recover the floating-point data.
4See http://www.unidata.ucar.edu/packages/netcdf for more information on netCDF.

31

Usage

cwftonc [-i] input output

-i Encode floating-point data as netCDF 16-bit scaled integers, default is
32-bit floating-point.

input The CoastWatch dataset to read.
output The netCDF dataset to write.

Example

The following command converts w9823921.jc4 to 16-bit integer netCDF data:

cwftonc -i w9823921.jc4 w9823921.jc4.nc

6.1.5 Export to HDF: cwftohdf

The cwftohdf utility converts CWF data to Hierarchical Data Format (HDF)5. The routine was
completely rewritten between version 2.2 and 2.3 of the utilities; enhancements include:

• standard HDF calibration attributes

• optional use of HDF built-in data compression

• storage of multiple data variables (ie: channel 1, channel 4, SST, etc.)

• conversion of projection attributes to USGS National Mapping Division standard

• reduced output file size due to compression and removal of extra data

cwftohdf converts CoastWatch data to HDF, but translates metadata from the CoastWatch file
into a standard set of HDF attributes outlined in Appendix B.

Usage

cwftohdf [-u] [-v] input1 [input2 [input3 [...]]] output

-u Write uncompressed HDF data, default is to use compression.
-v Print verbose status messages.
input1 input2
...

The CoastWatch dataset(s) to read.

output The CoastWatch HDF dataset to write.

Example

The following command converts a number of CoastWatch datasets into one CoastWatch HDF
file with HDF compression turned on. Note that all files must have the same date, time, and
geographic projection:

5See http://hdf.ncsa.uiuc.edu for more information on HDF.

32

cwftohdf -v *.cwf combined.hdf

6.2 Plotting

6.2.1 Plot to GIF: cwftogif

The cwftogif utility plots CWF data to a GIF file with accompanying color bar and labels.
There are many plotting options as detailed in the usage note below, including:

• rendering graphics planes in a specified color

• scaling data between a minimum and maximum value

• applying one of a number of color maps

• labelling the color bar in Fahrenheit for temperature data

• generating a satellite time stamp

The colors for graphics planes and missing values can be individually specified using a red,
green, and blue (RGB) byte-valued intensity triplet, ie: (0,0,0) for black, (0,255,0) for green,
(150,150,150) for gray, etc.

Note: Running cwftogif under DOS requires the use of -o.

Usage

cwftogif [-# r,g,b | -# dyn] [-c colors] [-b r,g,b] [-l min] [-h max]
[-p fdig] [-m cmap] [-t ticint] [-f] [-i] [-s [-u]] [-o output] input

33

-# r,g,b Specifies the RGB values for graphics plane # (# = 1,2,3,4).
-# dyn Specifies that graphics plane # should be dynamic, ie: light on dark,

dark on light.
-c colors Changes the default number of colors in the palette (246).
-b r,g,b Changes the RGB for bad data values (0,0,0).
-l min Changes the default minimum data value:

infrared = 4
visible = 0
angle = 0
scan time = 0
cloud = 0

-h max Changes the default maximum data value:
infrared = 30
visible = 20
angle = 90
scan time = 24
cloud = 255

-d dec Changes the default number of decimal places for tick values (1).
-m cmap Changes the default color map:

infrared = hsl256
visible = black-white
angle = black-white
scan time = black-white
cloud = hsl256

Selections include:
black-white
hsl256
prism

-t ticint Changes the default scale tick interval:
infrared = 2
visible = 2
angle = 5
scan time = 2
cloud = 16

-f Changes the plot to work in Fahrenheit, default is Celsius.
-i Inverts the default background and foreground colors (black, white).
-s Places a satellite time stamp on the image, default is no stamp.
-u Formats the satellite time stamp in UTC, default is the local system

time zone.
-o output Specifies an output file name, default is write to standard output.
input The CoastWatch dataset to read.

Example

The following command plots w9823921.jc4 to a GIF with tick marks every 1◦C, time stamp in
local time, and graphics planes 2 and 3 in dynamic mode:

cwftogif -t 1 -s -2 dyn -3 dyn w9823921.jc4 > w9823921.jc4.gif

34

As another example, the following command plots w9824322.vd7 to a GIF with tick marks every
1◦C, inversed color scheme (background white, foreground black), time stamp in local time,
graphics planes 2 and 3 in black, and bad or missing values in white:

cwftogif -t 5 -i -s -2 0,0,0 -3 0,0,0 -b 255,255,255
w9824322.vd7 > w9824322.vd7.gif

6.3 Dataset Information

6.3.1 Get a dimension: cwfdim

cwfdim prints the size of a specified dimension, either rows or columns.

Usage

cwfdim [-d dimension] input

-d dimension The dimension to print. If not specified, a list of valid dimension names
is printed.

input The CoastWatch dataset to read.

Example

The following command prints the number of data rows in w9823921.jc4:

cwfdim -d rows w9823921.jc4

6.3.2 Get an attribute: cwfatt

cwfatt prints the value of a specified attribute.

Usage

cwfatt [-a attribute] input

-a attribute The attribute to print. If not specified, a list of valid attribute names is
printed.

input The CoastWatch dataset to read.

Example

The following commands print various useful attributes from w9823921.jc4:

cwfatt -a satellite_id w9823921.jc4
cwfatt -a projection_type w9823921.jc4
cwfatt -a resolution w9823921.jc4
cwfatt -a channel_number w9823921.jc4

35

cwfatt -a orbit_start_year w9823921.jc4

6.3.3 Get data values: cwfval

The cwfval utility extracts data values from a CWF dataset based on user-specified image
coordinates or real world coordinates. The utility can handle either one coordinate pair, or
an ASCII file of coordinate pairs. Bad or missing data values are flagged with -999. An attempt
to access data outside the data boundaries, either by specifying an invalid image coordinate or by
specifying a real world coordinate that transforms to an invalid image coordinate, will produce
an error message.

Usage

cwfval [-p fdig] [-w] -c x y | -f cfile input

-p fdig Changes the default precision (number of significant digits) for floating-
point values (6).

-w Specifies that x and y are in real world coordinates (longitude, latitude)
rather than image coordinates (column, row).

-c x,y Specifies the coordinates of the desired data value. In image coordinates
(the default):
1 ≤ x ≤ columns
1 ≤ y ≤ rows

where rows and columns are the dataset dimensions. In real world
coordinates:
-360 < x < 360
-90 < y < 90

and the data value is approximated using the nearest neighbor.
-f cfile Specifies a file of (x, y) coordinate values, one pair per line, separated

by a space.
input The CoastWatch dataset to read.

Example

The following command prints the data value from the center point of w9823921.jc4:

cwfval -c 256,256 w9823921.jc4

6.3.4 Calculate statistics: cwfstats

cwfstats calculates the following statistics for a CWF dataset:

• total number of data values

• total number of good data values

36

• mean

• minimum value

• maximum value

• standard deviation

Usage

cwfstats input

input The CoastWatch dataset to read.

Example

The following command runs cwfstats on w9823921.jd7:

cwfstats w9823921.jd7

6.3.5 Get CoastWatch HDF file information: hdfinfo

The hdfinfo routine simply prints a table of information about the contents of a CoastWatch
HDF file from cwftohdf.

Usage

hdfinfo input

input The CoastWatch HDF dataset to read.

Example

The following commands convert a number of CWF files to CoastWatch HDF using cwftohdf,
then print the file information:

cwftohdf *.cwf combined.hdf
hdfinfo combined.hdf

Output:

Contents of file combined.cwf:

Global information:
satellite noaa-14
sensor avhrr
pass_date 1999/10/18
start_time 20:43:01 UTC
pass_type day

37

projection mercator
et_affine 1099.964975 0 0 -1099.964975

-9872185.654 2820420.762
rows 512
cols 512
origin USDOC/NOAA/NESDIS CoastWatch HDF library version 3.0

Variable information:
Variable Type Units Scale Offset % Good
avhrr_ch2 INT16 albedo*100% 0.01 0 100
graphics UINT8 - - - -
avhrr_ch4 INT16 celsius 0.01 0 100
cloud UINT8 - - - 0
sst INT16 celsius 0.01 0 100

6.4 Dataset Manipulation

6.4.1 Set navigation attributes: cwfnav

The cwfnav utility modifies the horizontal shift and vertical shift attributes in a CWF
dataset. Subsequent data reads will take the new shift attributes into account by adjusting the
data location with respect to the earth location. Setting a negative or positive horizontal shift
will result in the data being shifted left or right respectively. Similarly with the vertical shift,
negative or positive will shift the data up or down respectively.

By default, the navigational shifts are applied cumulatively, ie: the shifts written to the file are
derived by adding the existing shifts to the user-specified shifts. This behaviour can be overridden
using the -r option to reset the existing navigation before applying the new navigation.

Usage

cwfnav [-h hshift] [-v vshift] [-r] input

-h hshift Changes the default horizontal shift (0).
-v vshift Changes the default vertical shift (0).
-r Resets the existing shifts before applying new.
input The CoastWatch dataset to navigate.

Example

The following command applies a navigational shift of 2 pixels left and 3 pixels down to the data
in w9823921.jc4:

cwfnav -h -2 -v 3 w9823921.jc4

38

6.4.2 Apply a cloud mask: cwfcmask

The cwfcmask utility applies a CoastWatch cloud mask file to a CWF dataset, flagging all cloudy
data as invalid. By default, all CLAVR[10] cloud tests employed by CoastWatch are used in
applying the cloud mask. A more restricted set of cloud tests can be specified by using the
appropriate bits listed in the table below. Note that the cloud tests and corresponding bits vary
between daytime and nighttime data. The orbit time attribute may be used to determine which
set of bits is appropriate for the data.

CLAVR Test Bit
Day Night

Reflective Gross Cloud Test (RGCT) 1 -
Reflectance Uniformity Test (RUT) 2 -
Reflectance Ratio Cloud Test (RRCT) 3 -
Channel 3 Albedo Test (C3AT) 4 -
Thermal Uniformity Test (TUT) 5 2
Four Minus Five Test (FMFT) 6 4
Thermal Gross Cloud Test (TGCT) 7 1
Uniform Low Stratus Test (ULST) 8 3
Cirrus Test (CIRT) - 5

Usage

cwfcmask [-b n,n,n ...] cloudmask input output

-b n,n,n... Specifies the cloud mask bits to use for masking, default is all bits. n
ranges from 1 to 8.

cloudmask The CoastWatch cloud mask file.
input The CoastWatch dataset to mask.
output The CoastWatch dataset to write. The output values will be altered so

that cloudy pixels are flagged as invalid data.

Example

The following command applies the nighttime TGCT and TUT tests from the cloud mask in
e9800306.ncm to e9800306.ns7:

cwfcmask -b 1,2 e9800306.ncm e9800306.ns7 e9800306.ns7.masked

6.4.3 Create data composite: cwfcomp

The cwfcomp utility creates a “composite” dataset given two or more CWF datasets. The com-
posite is created from the input datasets by performing calculations on a pixel-by-pixel basis. A
number of different calculations are available as described by the formulae below, where N is the
number of good pixels from the input datasets at the pixel location:

39

• mean value:

xmean =

(
N∑
i=1

xi

)
/N

• median value (x1..xN sorted by data value):

xmedian =

{
x(N+1)/2 N odd
(x(N/2) + x(N/2)+1)/2 N even

• first or last value (x1..xN sorted by time):

xfirst = x1

xlast = xN

• minimum or maximum value (x1..xN sorted by data value):

xmin = x1

xmax = xN

In general, cwfcomp is used to create composites from a time series of files, each with the same
geographic region and variable type. For example, cwfcomp could be used to combine ten days
of sea-surface-temperature datasets into one in order to obtain a mean SST field for a certain
region and eliminate cloud. Note that for simplicity, the CWF dataset created by cwfcomp will
indicate the same date and time as the latest file in the time series. It is up to the user to keep
track of which datasets have been used in the composite.

Usage

cwfcomp [-c ctype] [-v] [-g ngood] [-b badval] input1 input2
[input3 [input4 [...]]] output

-c ctype Specifies the composite type. Selections include mean (default), median,
first, last, min, and max.

-v Print verbose status messages.
-g ngood Minimum number of good pixels required to form an aggregate function,

default is 1.
-b badval Specifies a floating-point value to treat as invalid data, default is none.
input1 input2 The CoastWatch datasets to read (at least 2).
output The CoastWatch dataset to write.

Example

The following command creates a mean composite from three CoastWatch datasets, writing
output to mean.sd7:

cwfcomp w9901923.sd7 w9902023.sd7 w9902122.sd7 mean.sd7

40

6.4.4 Create and apply a land mask: cwflmask

The cwflmask utility uses a combination of polygon filling and morphological transformations[9]
to create a land/ocean mask from coastline geography data in graphics plane 3 of a standard
CWF dataset. The routine begins with a polygon fill of open ocean pixels at a user-specified
row and column. If not all open ocean points are connected (ie: a peninsula or other landform
comes between) then a recursive fill may be used. A recursive fill can lead to unexpected results
when the geography plane contains ambiguous coastline data, such as in the case of very low
resolution coastlines or non-coastline features, ie: rivers or state boundaries. Problems can occur
with non-recursive polygon fills as well. For example when a poor quality coastline database has
been used to render the geography plane, a break in the coastline will cause the fill to spill in and
incorrectly identify land as ocean.

After polygon filling, an optional morphological dilation of the land mask can be used to mask
out near-land ocean data. This may be desirable if the near-land data is contaminated with a
land signal.

Upon output, cwflmask stores the generated land mask in graphics plane 1 and masks out all
land data from the file, leaving only open ocean data points.

Usage

cwflmask [-o r,c] [-r] [-e n] input output

-o r,c Specifies a 1-relative row and column point for open ocean, default is to
assume that the lower-left corner is an ocean point.

-r Attempt to generate a recursive land mask - may not work well for
ambiguous and/or multiply connected coastlines.

-e n Optionally extend the land mask out from the coast by n pixels.
input The CoastWatch dataset to mask.
output The CoastWatch dataset to write. The output values will be altered so

that land pixels are flagged as invalid data, and graphics plane 1 will
contain the land mask.

Example

The following command applies a recursive land mask to the data in 1999 291 2308 n15 cvc c4.cwf,
starting the polygon fill at row 256, column 256:

cwflmask -o 256,256 -r 1999_291_2308_n15_cvc_c4.cwf test.cwf

41

A QUICK REFERENCE

Datasets
cw create create dataset
cw open open existing dataset
cw enddef end define mode
cw close close dataset
cw strerror get error message string

Dimensions
cw def dim define dimension
cw inq dimid inquire dimension ID
cw inq dim inquire dimension info

Variables
cw def var define variable
cw inq varid inquire variable ID
cw inq var inquire variable info
cw put vara float write variable data from float
cw put vara uchar write variable data from unsigned char
cw get vara float read variable data into float
cw get vara uchar read variable data into unsigned char

Attributes
cw inq attname inquire attribute name
cw inq att inquire attribute info
cw inq attid inquire attribute ID
cw put att text write attribute from char
cw put att short write attribute from short
cw put att float write attribute from float
cw get att text read attribute into char
cw get att short read attribute into short
cw get att float read attribute into float

Utilities
cwftoarc export to ArcView
cwftoasc export to ASCII
cwftoraw export to binary
cwftonc export to netCDF
cwftohdf export to HDF
cwftogif plot to GIF
cwfdim get dimension
cwfatt get attribute

42

Utilities (continued ...)
cwfval get data
hdfinfo examine CoastWatch HDF
cwfnav set navigation
cwfcmask apply cloud mask
cwfstats calculate statistics
cwfcomp create composite
cwflmask create/apply land mask

43

B COASTWATCH HDF METADATA SPECIFICATION

CoastWatch HDF files created by cwftohdf via the HCWF library follow a
number of conventions for storing CoastWatch satellite data in HDF
format:

1) Multiple channels and derived varibles can be stored in one HDF
file. A standard CoastWatch product file contains data from one
time (ie: satellite pass) and CoastWatch region only.

2) A standard set of global attributes is encoded with the data,
describing the time, location, satellite, sensor, etc. from which
the data originated.

3) A standard set of variable attributes is encoded with each
variable, describing the variable units, scaling factor, etc. as
well as any other important information such as the equations and
corrections used in data processing.

The following table lists the standard set of global attributes for
CoastWatch HDF. Since all map projection calculations in the HCWF
library are performed using the General Cartographic Transformation
Package (GCTP) from the USGS National Mapping Division, a number of
global attributes are dedicated to storing GCTP-related parameters.
See the GCTP documentation for details on the values of GCTP
parameters.

NAME TYPE DESCRIPTION
--

satellite CHAR8 Satellite name, eg: noaa-12, noaa-14,
noaa-15, goes-8, orbview-2.

sensor CHAR8 Sensor name, eg: avhrr, seawifs.
pass_date INT32 Date of satellite pass in days since

January 1, 1970.
start_time FLOAT64 Start time of satellite pass in seconds

since 00:00:00 UTC.
pass_type CHAR8 Satellite pass time: day, night.
projection CHAR8 Descriptive projection name, eg: mercator,

geographic, polar stereographic.
gctp_sys INT32 GCTP projection system code.
gctp_zone INT32 GCTP zone for UTM projections.
gctp_parm FLOAT64 GCTP projection parameters (15).
gctp_datum INT32 GCTP spheroid code.
et_affine FLOAT64 Earth transform affine parameters (6) -

see below for details.
rows INT32 Number of data rows.

44

cols INT32 Number of data columns.
origin CHAR8 Original data source, eg: USDOC/NOAA/NESDIS

CoastWatch.
history CHAR8 Newline separated list of utilities and

command line parameters used to create
the file and perform subsequent
processing.

The et_affine attribute is used by the HCWF library to calculate
projection (x,y) coordinates from image (i,j). GCTP is then used to
calculate (latitude,longitude) from (x,y). Given the six affine
transform parameters as follows:

a = et_affine[0] e = et_affine[4]
b = et_affine[1] f = et_affine[5]
c = et_affine[2]
d = et_affine[3]

the following vector calculation is performed:

|x| |a b| |i| |e|
| | = | | | | + | | (or Y = AX + B)
|y| |c d| |j| |f|

where (x,y), (i,j), and (e,f) are column vectors, (a,b,c,d) is a 2x2
matrix, and:

x = easting
y = northing
i = column (1-relative)
j = row (1-relative)

The inverse operation may be performed by inverting the affine
transform:

det(A) = ad - bc
a’ = d / det(A)
b’ = -b / det(A)
c’ = -c / det(A)
d’ = a / det(A)
e’ = -(a’e + b’f)
f’ = -(c’e + d’f)

so that:

|i| |a’ b’| |x| |e’|

45

| | = | | | | + | | (or X = A’Y + B’)
|j| |c’ d’| |y| |f’|

The following table shows the standard set of variable attributes for
CoastWatch HDF. Some attribute groups are created by HDF SD
convenience functions, denoted in brackets (), in order to make data
more readable and usable by generic HDF viewing programs. A <var> in
the TYPE field indicates that the attribute type is the same as the
variable data type.

NAME TYPE DESCRIPTION
--

(SDsetdatastrs)
long_name CHAR8 Descriptive variable name, eg: AVHRR

channel 4, sea surface temperature.
units CHAR8 Descriptive units name, eg: celsius,

albedo*100%, degrees.
format CHAR8 FORTRAN-77 notation for data value

printing, eg: F7.2.
coordsys CHAR8 Coordinate system - same as global

projection attribute.

(SDsetfillvalue)
_FillValue <var> Value used to fill in for unwritten

data.

(SDsetcal)
scale_factor FLOAT64 Calibration scale factor.
scale_factor_err FLOAT64 Calibration scale error.
add_offset FLOAT64 Calibration offset.
scale_factor FLOAT64 Calibration offset error.
calibrated_nt INT32 Code for HDF data type of uncalibrated

data.

C_format CHAR8 C notation for data value printing,
eg: %7.2f.

missing_value <var> Value used for missing data, same as
_FillValue attribute.

solar_corr CHAR8 For AVHRR channel 1 and 2 data, whether
the solar zenith angle correction was
performed: yes, no.

limb_corr CHAR8 For AVHRR channel 4 and 5 data, whether
the limb correction was performed: yes,
no.

nonlinear_corr CHAR8 For AVHRR channel 4 and 5 data, whether
the nonlinearity correction was performed:

46

yes, no.
sst_equation CHAR8 For sea surface temperature, the SST

equation used, eg: nonlinear split-window.
percent_good INT16 Good pixels / total pixels * 100%.

The calibration attributes are used by the CWFv3 library to read and
write channel and ancillary data as follows:

float = scale_factor*(int - add_offset) (on read)
int = float/scale_factor + add_offset (on write)

where float and int are the floating-point and integer values
respectively. See the HDF User’s Guide for more details on data
calibration.

Note that not all variable attributes are required for any given
CoastWatch variable; for example the calibration attributes are not
needed for graphics data since graphics planes are encoded as 8-bit
bytes and require no calibration. Also some attributes such as
solar_corr, limb_corr, nonlinear_corr, and sst_equation only have
meaning with certain variables.

47

References

[1] Map Projections. Environmental Systems Research Institute, Inc., USA, 1994.

[2] HDF User’s Guide, Version 4.1r2. University of Illinois at Urbana-Champaign, June, 1998.

[3] HDF Reference Manual, Version 4.1r2. University of Illinois at Urbana-Champaign, June,
1998.

[4] Kernighan, B. and D. M. Ritchie. The C Programming Language, Second Edition. Prentice-
Hall Inc., USA, 1988.

[5] Kidwell, K. B. (Editor) NOAA POLAR ORBITER DATA USER’S GUIDE. US-
DOC/NOAA/NESDIS, January, 1997.

[6] Mulligan, P. (prepared for) Interface Control Document for NOAA-K, L & M Environmen-
tal Image Products. Contract No. 50-DDNE-9-00018, USDOC/NOAA/NESDIS, August 21,
1992.

[7] Mulligan, P. (prepared for) User’s Manual for the NOAA-K, L & M Environmental Image
Products. Contract No. 52-DDNE-9-00018, USDOC/NOAA/NESDIS, August 25, 1992.

[8] Rew, R., G. Davis, S. Emmerson, and H. Davies. NetCDF User’s Guide for C: An Access
Interface for Self-Describing, Portable Data, Version 3. Unidata Program Center, University
Corporation for Atmospheric Research, Boulder, Colorado, 1997.

[9] Simpson, James J. Image Masking Using Polygon Fills and Morphological Transformations,
REMOTE SENS. ENVIRON. 40:161-183, 1992.

[10] Stowe, L. L. et al. Global distribution of cloud cover derived from NOAA/AVHRR operational
satellite data. Adv. Space Res. Vol. 11 No. 3 pp. (3)51-(3)54, 1991.

48

