Radial Recombination For ½ deg azimuth resolution only, 2 radials, Radial 1 and Radial 2, are combined when: ``` 0 <= (Radial 1 Azimuth - INT(Radial 1 Azimuth)) <= 0.5 and 0.25 <= (Radial 2 Azimuth - Radial 1 Azimuth) <= 0.75 ``` # Rules for Assigning Azimuth Angle - > The following rules assume indexed beams: Radial 1 centered on the 0.25 deg and Radial 2 centered on the 0.75 deg. - If Radial 1 is missing and Radial 2 is available, radial azimuth is assigned nearest 0.5 deg counterclockwise to Radial 2. - If Radial 1 is available and Radial 2 is missing, radial azimuth is assigned nearest 0.5 deg clockwise from Radial 1. - If Radial 1 and Radial 2 are missing, there will be no recombined radial. - If Radial 1 and Radial 2 are both available, radial azimuth is assigned nearest 0.5 deg to average of the radial azimuths. - For non-indexed beams, recombined radial azimuth is assigned the average of the 2 radial azimuths. - If Radial 2 is missing, recombined radial azimuth is assigned Radial 1 azimuth + 0.25 deg. ## Reflectivity Recombination There are different recombination rules depending on reflectivity bin size and radial separation: #### Reflectivity recombination rules for 0.25 km reflectivity samples and ½ deg radial separation. • The recombined reflectivity, Z_r, is the linear average of 8, 0.25 km reflectivity estimates Z_{ii}. Example: | | Radial 1 | Radial 2 | |-------|----------|----------| | R_4 | Z_{14} | Z_{24} | | R_3 | Z_{13} | Z_{23} | | R_2 | Z_{12} | Z_{22} | | R_1 | Z_{11} | Z_{21} | $Z_r = (Z_{11} + Z_{12} + Z_{13} + Z_{14} + Z_{21} + Z_{22} + Z_{23} + Z_{24})/8$ where Z_{ij} and Z_r in mm⁶/m³. That is: $$Z_{ii} = 10^{(Zij (dBZ))/10}$$ The range assigned to Z_r is $(R_2 + R_3)/2$. ## Reflectivity recombination rules for 0.25 km reflectivity samples and 1 deg radial separation. • The recombined reflectivity, Z_r, is the linear average of 4, 0.25 km reflectivity estimates Z_{ij}. Example: | | Radial 1 | | |-------|-----------------|--| | R_4 | Z_{14} | | | R_3 | Z_{13} | | | R_2 | Z_{12} | | | R_1 | Z ₁₁ | | $$Z_r = (Z_{11} + Z_{12} + Z_{13} + Z_{14})/4$$ The range assigned to Z_r is $(R_2 + R_3)/2$. # Reflectivity recombination rules for 1 km reflectivity samples and 1/2 deg radial separation. • The recombined reflectivity, Z_r , is the linear average of 2, 1.0 km reflectivity estimates Z_{ij} . Example: $$\begin{array}{c|cccc} & Radial \ 1 & Radial \ 2 \\ \hline R_1 & Z_{11} & Z_{21} \\ \end{array}$$ $$Z_r = (Z_{11} + Z_{21})/2$$ The range assigned to Z_r is R₁ # Rules for Handling Reflectivity Data Below Threshold > If Z_{ij} has a Noise-like return (Z_{ij} (ICD) = 0), power is estimated: $$P_{ii} = 0.7 * 10$$ (Noise (dB) + Z SNR Threshold (dB)/10) > The resulting power is used to replace the Noise-like return: $$Z_{ij}$$ (dBZ) = $10log(P_{ij})$ - $Atmos*R_j$ + $20logR_j$ + $SYSCAL$ Z_{ij} = $10^{(Zij)(dBZ)/10)}$ $SYSCAL = dBZO$ - $Noise$ (dB) The recombined reflectivity Z_r is censored on Z SNR Threshold: $$\begin{split} P_r &= \big(10^{(Zr \; (dBZ) \; - \; SYSCAL \; + \; (Rj \; ^* \; Atmos))/10)}\big)/R^2 \\ &\text{if(} \; P_r < \; 10^{(Noise \; (dB) \; + \; Z \; SNR \; Threshold \; (dB))/10}\;\big) \\ & \; Z_r \; (ICD) \; = \; 0 \\ \\ &\text{else} \\ & \; Z_r \; (dBZ) \; = \; 10logZ_r \\ \\ & \; Z_r \; (ICD) \; = \; NINT[2.0 \; ^* \; (Z_r \; (dBZ) \; + \; 32.0)] \; + \; 2 \end{split}$$ Ensure all above threshold Z_r fall within ICD limits: If $$(Z_r (ICD) < 2)$$ $Z_r (ICD) = 0$ If $(Z_r (ICD) > 255)$ $Z_r (ICD) = 255$ ## **Velocity Recombination** > Velocity recombination only occurs with ½ deg radial data. | Radial 1 | Radial 2 | |------------|------------| | Z_1, V_1 | Z_2, V_2 | > Given the reflectivity and velocity at constant range for Radial 1 (Z_1, V_1) and Radial 2 (Z_1, V_2) the recombined velocity V_r is: $$V_r = (Z_1^*V_1 + Z_2^*V_2)/(Z_1 + Z_2)$$ where Z_1 and Z_2 are reflectivity estimates, in mm^6/mm^3 and $$V_j = V_j (ICD) /2 - 64.5, j = 1.2 (0.5 m/s)$$ $$V_j = V_j \text{ (ICD)} - 129.0, \quad j = 1,2 \quad (1.0 \text{ m/s})$$ If either Z₁ or Z₂ are initially below SNR Threshold, an estimate is derived (See "Rules for Handling Reflectivity Data Below Threshold"). #### Rules for Handling Anomalies - > The following rules define special cases for velocity recombination: - If V_1 (ICD) = 0 and V_2 (ICD) = 0 (Both below V SNR Threshold): $$V_r$$ (ICD) = 0 Else if Average power derived From Z₁ and Z₂ Below V SNR Threshold: $$Z = (Z_1 + Z_2)/2$$ $$P_z = Z*10^{(-20logR - SYSCAL + R*Atmos)/10}$$ $$if(P_z < 10^{(Noise (dB) + V SNR Threshold (dB))/10})$$ $$V_r (ICD) = 0$$ Else if Either V₁ (ICD) > 1 OR V₂ (ICD) > 1: if($$V_1$$ (ICD) <= 1) $V_r = V_2$ if(V_2 (ICD) <= 1) $V_r = V_1$ Else if (V₁ (ICD) = 1 and V₂ (ICD) = 1) OR (V₁ (ICD) = 0 and V₂ (ICD) = 1) OR (V₁ (ICD) = 1 and V₂ (ICD) = 0) $$V_r$$ (ICD) = 1 #### Rules for Handling Anomalies Dealiasing attempts to place both V₁ and V₂ in the same Nyquist co-interval ## Velocity Dealiasing Rules When V₁ and V₂ Within the Same PRF Sector - if((V₁ -V₂) > V_Nyquist) V₂ = V₂ + 2*V_Nyquist - if((V₂ V₁) > V_Nyquist) V₁ = V₁ + 2*V_Nyquist #### <u>Velocity Dealiasing Rules When V₁ and V₂ Within</u> Different PRF Sectors - Dealiasing is not attempted in this case. Assume the velocity having the smaller Nyquist velocity is missing. - > Ensure V_r (ICD) is within ICD limits: - V_r (ICD) = NINT(Velocity_Reso* V_r + 127.0) + 2 - if(V_r (ICD) < 2) V_r (ICD) = 2 - if(V_r (ICD) > 255) V_r (ICD) = 255 ## Spectrum Width Recombination Spectrum Width recombination only occurs with ½ deg radial data. | Radial 1 | Radial 2 | |-----------------|-----------------------| | Z_1, V_1, W_1 | Z_2 , V_2 , W_2 | > Given the reflectivity, velocity and spectrum width at constant range for Radial 1 (Z_1 , V_1 , W_1) and Radial 2 (Z_1 , V_2 , W_2) the recombined spectrum width W_r is: $$W_r = SQRT((Z_1^*[W_1^2 + (V_1-V_r)^2] + Z_2^*[W_2^2 + (V_2-V_r)^2])/(Z_1+Z_2))$$ where Z_1 and Z_2 are reflectivity estimates, in mm⁶/mm³ and $W_j = W_j$ (ICD)/2 - 64.5, j = 1,2. > If either Z_1 or Z_2 are initially below SNR Threshold, an estimate is derived (See "Rules for Handling Reflectivity Data Below Threshold"). #### Rules for Handling Anomalies - The following rules define special cases for spectrum width recombination: - If W_1 (ICD) = 0 and W_2 (ICD) = 0 (Both < W SNR Threshold): W_r (ICD) = 0 - Else if Avg power from Z₁ and Z₂ < W SNR Threshold: $$Z = (Z_1 + Z_2)/2$$ $$P_z = Z*10^{(-20logR - SYSCAL + R*Atmos)/10}$$ $$if(P_z < 10^{(Noise (dB) + W SNR Threshold (dB))/10})$$ $$W_r (ICD) = 0$$ • Else If Either W₁ (ICD) > 1 OR W₂ (ICD) > 1 $$if(W_1 (ICD) <= 1)$$ $W_r = W_2$ $if(W_2 (ICD) <= 1)$ $W_r = W_1$ Else if (W₁ (ICD) = 1 and W₂ (ICD) = 1) OR (W₁ (ICD) = 0 and W₂ (ICD) = 1) OR (W₁ (ICD) = 1 and W₂ (ICD) = 0) $$W_r$$ (ICD) = 1 \succ Ensure W_r (ICD) is within ICD limits: $$W_r (ICD) = NINT(2*W_r + 63.5) + 2$$ $if(W_r (ICD) < 2)$ $W_r (ICD) = 2$ $if(W_r (ICD) > 255)$ $W_r (ICD) = 255$