Radial Recombination

For ½ deg azimuth resolution only, 2 radials, Radial 1 and Radial 2, are combined when:

```
0 <= (Radial 1 Azimuth - INT(Radial 1 Azimuth)) <= 0.5
and
0.25 <= (Radial 2 Azimuth - Radial 1 Azimuth) <= 0.75
```

Rules for Assigning Azimuth Angle

- > The following rules assume indexed beams: Radial 1 centered on the 0.25 deg and Radial 2 centered on the 0.75 deg.
 - If Radial 1 is missing and Radial 2 is available, radial azimuth is assigned nearest 0.5 deg counterclockwise to Radial 2.
 - If Radial 1 is available and Radial 2 is missing, radial azimuth is assigned nearest 0.5 deg clockwise from Radial 1.
 - If Radial 1 and Radial 2 are missing, there will be no recombined radial.
 - If Radial 1 and Radial 2 are both available, radial azimuth is assigned nearest 0.5 deg to average of the radial azimuths.
- For non-indexed beams, recombined radial azimuth is assigned the average of the 2 radial azimuths.
 - If Radial 2 is missing, recombined radial azimuth is assigned Radial 1 azimuth + 0.25 deg.

Reflectivity Recombination

There are different recombination rules depending on reflectivity bin size and radial separation:

Reflectivity recombination rules for 0.25 km reflectivity samples and ½ deg radial separation.

• The recombined reflectivity, Z_r, is the linear average of 8, 0.25 km reflectivity estimates Z_{ii}. Example:

	Radial 1	Radial 2
R_4	Z_{14}	Z_{24}
R_3	Z_{13}	Z_{23}
R_2	Z_{12}	Z_{22}
R_1	Z_{11}	Z_{21}

 $Z_r = (Z_{11} + Z_{12} + Z_{13} + Z_{14} + Z_{21} + Z_{22} + Z_{23} + Z_{24})/8$ where Z_{ij} and Z_r in mm⁶/m³. That is:

$$Z_{ii} = 10^{(Zij (dBZ))/10}$$

The range assigned to Z_r is $(R_2 + R_3)/2$.

Reflectivity recombination rules for 0.25 km reflectivity samples and 1 deg radial separation.

• The recombined reflectivity, Z_r, is the linear average of 4, 0.25 km reflectivity estimates Z_{ij}. Example:

	Radial 1	
R_4	Z_{14}	
R_3	Z_{13}	
R_2	Z_{12}	
R_1	Z ₁₁	

$$Z_r = (Z_{11} + Z_{12} + Z_{13} + Z_{14})/4$$

The range assigned to Z_r is $(R_2 + R_3)/2$.

Reflectivity recombination rules for 1 km reflectivity samples and 1/2 deg radial separation.

• The recombined reflectivity, Z_r , is the linear average of 2, 1.0 km reflectivity estimates Z_{ij} . Example:

$$\begin{array}{c|cccc} & Radial \ 1 & Radial \ 2 \\ \hline R_1 & Z_{11} & Z_{21} \\ \end{array}$$

$$Z_r = (Z_{11} + Z_{21})/2$$

The range assigned to Z_r is R₁

Rules for Handling Reflectivity Data Below Threshold

> If Z_{ij} has a Noise-like return (Z_{ij} (ICD) = 0), power is estimated:

$$P_{ii} = 0.7 * 10$$
 (Noise (dB) + Z SNR Threshold (dB)/10)

> The resulting power is used to replace the Noise-like return:

$$Z_{ij}$$
 (dBZ) = $10log(P_{ij})$ - $Atmos*R_j$ + $20logR_j$ + $SYSCAL$
 Z_{ij} = $10^{(Zij)(dBZ)/10)}$
 $SYSCAL = dBZO$ - $Noise$ (dB)

The recombined reflectivity Z_r is censored on Z SNR Threshold:

$$\begin{split} P_r &= \big(10^{(Zr \; (dBZ) \; - \; SYSCAL \; + \; (Rj \; ^* \; Atmos))/10)}\big)/R^2 \\ &\text{if(} \; P_r < \; 10^{(Noise \; (dB) \; + \; Z \; SNR \; Threshold \; (dB))/10}\;\big) \\ & \; Z_r \; (ICD) \; = \; 0 \\ \\ &\text{else} \\ & \; Z_r \; (dBZ) \; = \; 10logZ_r \\ \\ & \; Z_r \; (ICD) \; = \; NINT[2.0 \; ^* \; (Z_r \; (dBZ) \; + \; 32.0)] \; + \; 2 \end{split}$$

Ensure all above threshold Z_r fall within ICD limits:

If
$$(Z_r (ICD) < 2)$$

 $Z_r (ICD) = 0$
If $(Z_r (ICD) > 255)$
 $Z_r (ICD) = 255$

Velocity Recombination

> Velocity recombination only occurs with ½ deg radial data.

Radial 1	Radial 2
Z_1, V_1	Z_2, V_2

> Given the reflectivity and velocity at constant range for Radial 1 (Z_1, V_1) and Radial 2 (Z_1, V_2) the recombined velocity V_r is:

$$V_r = (Z_1^*V_1 + Z_2^*V_2)/(Z_1 + Z_2)$$

where Z_1 and Z_2 are reflectivity estimates, in mm^6/mm^3 and

$$V_j = V_j (ICD) /2 - 64.5, j = 1.2 (0.5 m/s)$$

$$V_j = V_j \text{ (ICD)} - 129.0, \quad j = 1,2 \quad (1.0 \text{ m/s})$$

If either Z₁ or Z₂ are initially below SNR Threshold, an estimate is derived (See "Rules for Handling Reflectivity Data Below Threshold").

Rules for Handling Anomalies

- > The following rules define special cases for velocity recombination:
 - If V_1 (ICD) = 0 and V_2 (ICD) = 0 (Both below V SNR Threshold):

$$V_r$$
 (ICD) = 0

 Else if Average power derived From Z₁ and Z₂ Below V SNR Threshold:

$$Z = (Z_1 + Z_2)/2$$

$$P_z = Z*10^{(-20logR - SYSCAL + R*Atmos)/10}$$

$$if(P_z < 10^{(Noise (dB) + V SNR Threshold (dB))/10})$$

$$V_r (ICD) = 0$$

Else if Either V₁ (ICD) > 1 OR V₂ (ICD) > 1:

if(
$$V_1$$
 (ICD) <= 1)
 $V_r = V_2$
if(V_2 (ICD) <= 1)
 $V_r = V_1$

Else if (V₁ (ICD) = 1 and V₂ (ICD) = 1) OR
 (V₁ (ICD) = 0 and V₂ (ICD) = 1) OR
 (V₁ (ICD) = 1 and V₂ (ICD) = 0)

$$V_r$$
 (ICD) = 1

Rules for Handling Anomalies

Dealiasing attempts to place both V₁ and V₂ in the same Nyquist co-interval

Velocity Dealiasing Rules When V₁ and V₂ Within the Same PRF Sector

- if((V₁ -V₂) > V_Nyquist)
 V₂ = V₂ + 2*V_Nyquist
- if((V₂ V₁) > V_Nyquist)
 V₁ = V₁ + 2*V_Nyquist

<u>Velocity Dealiasing Rules When V₁ and V₂ Within</u> Different PRF Sectors

- Dealiasing is not attempted in this case. Assume the velocity having the smaller Nyquist velocity is missing.
- > Ensure V_r (ICD) is within ICD limits:
 - V_r (ICD) = NINT(Velocity_Reso* V_r + 127.0) + 2
 - if(V_r (ICD) < 2) V_r (ICD) = 2
 - if(V_r (ICD) > 255) V_r (ICD) = 255

Spectrum Width Recombination

Spectrum Width recombination only occurs with ½ deg radial data.

Radial 1	Radial 2
Z_1, V_1, W_1	Z_2 , V_2 , W_2

> Given the reflectivity, velocity and spectrum width at constant range for Radial 1 (Z_1 , V_1 , W_1) and Radial 2 (Z_1 , V_2 , W_2) the recombined spectrum width W_r is:

$$W_r = SQRT((Z_1^*[W_1^2 + (V_1-V_r)^2] + Z_2^*[W_2^2 + (V_2-V_r)^2])/(Z_1+Z_2))$$

where Z_1 and Z_2 are reflectivity estimates, in mm⁶/mm³ and $W_j = W_j$ (ICD)/2 - 64.5, j = 1,2.

> If either Z_1 or Z_2 are initially below SNR Threshold, an estimate is derived (See "Rules for Handling Reflectivity Data Below Threshold").

Rules for Handling Anomalies

- The following rules define special cases for spectrum width recombination:
 - If W_1 (ICD) = 0 and W_2 (ICD) = 0 (Both < W SNR Threshold): W_r (ICD) = 0
 - Else if Avg power from Z₁ and Z₂ < W SNR Threshold:

$$Z = (Z_1 + Z_2)/2$$

$$P_z = Z*10^{(-20logR - SYSCAL + R*Atmos)/10}$$

$$if(P_z < 10^{(Noise (dB) + W SNR Threshold (dB))/10})$$

$$W_r (ICD) = 0$$

• Else If Either W₁ (ICD) > 1 OR W₂ (ICD) > 1

$$if(W_1 (ICD) <= 1)$$
 $W_r = W_2$
 $if(W_2 (ICD) <= 1)$
 $W_r = W_1$

 Else if (W₁ (ICD) = 1 and W₂ (ICD) = 1) OR (W₁ (ICD) = 0 and W₂ (ICD) = 1) OR (W₁ (ICD) = 1 and W₂ (ICD) = 0)

$$W_r$$
 (ICD) = 1

 \succ Ensure W_r (ICD) is within ICD limits:

$$W_r (ICD) = NINT(2*W_r + 63.5) + 2$$
 $if(W_r (ICD) < 2)$
 $W_r (ICD) = 2$
 $if(W_r (ICD) > 255)$
 $W_r (ICD) = 255$