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Abstract. Experiments have been performed in the National Spherical Torus Experiment
(NSTX) to inject high harmonic fast wave (HHFW) power early during the plasma current
ramp-up in an attempt to reduce the current penetration rate to raise the central safety factor
during the flat-top phase of the discharge. To date, up to 2MW of HHFW power has been
coupled to deuterium plasmas as early as t=50ms using the slowest inter-strap phasing of
k‖ ≈ 14m−1 (nφ = 24). Antenna-plasma gap scans have been performed and find that
for small gaps (5-8cm), electron heating is observed with relatively small density rises and
modest reductions in current penetration rate. For somewhat larger gaps (10-12cm), weak
electron heating is observed but with a spontaneous density rise at the plasma edge similar
to that observed in NSTX H-modes. In the larger gap configuration, EFIT re-constructions
(without MSE) find that resistive flux consumption is reduced as much as 30%, the internal
inductance is maintained below 0.6 at 1MA into the flat-top, q(0) is increased significantly,
and the MHD stability character of the discharges is strongly modified.

INTRODUCTION

High-harmonic fast waves (HHFW) have been proposed as a means of efficiently
heating electrons in high β plasmas [1] and have already been used to heat Spherical
Torus (ST) plasmas [2] at the multi-megawatt level in the National Spherical Torus
Experiment (NSTX) [3] at PPPL, USA. At present, however, NSTX relies on ohmic
current drive to reach the 1MA plasma current level required for good neutral beam
absorption and confinement. In addition, many NSTX high-β discharges have per-
formance limited by the onset of MHD activity associated with q(0) dropping below
1. Application of HHFW during the IP ramp-up has been attempted in an effort to
raise q(0) and reduce OH flux consumption by lowering the central resistivity. Profile
measurements and analysis for these experiments are presented below.

1) Work supported by the U.S. Dept. of Energy under Contract No. DE--AC02--760--CH0--3073.
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EXPERIMENTAL RESULTS

Application of early HHFW power in NSTX required growing the plasma quickly to
nearly full-bore for good antenna-plasma coupling. With this discharge programming,
it was possible to couple up to 2MW of HHFW power during the IP ramp-up as early
as t=50ms. Figure 1 shows the electron temperature, density, and pressure profiles at
t=97ms for two inboard-limited deuterium discharges with an antenna-plasma gap of
6cm. The dashed lines represent ohmic reference profiles (104286), while the solid
lines correspond to the HHFW heated discharge (104277). As seen in the figure, 2MW
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FIGURE 1. Thomson scattering profiles for ohmic (dashed) and 6cm gap HHFW plasma (solid).

of HHFW power (lower right) is able to double the central electron temperature (upper
left) of a 200eV ohmic target plasma. The figure also shows that the electron density
(upper right) is doubled in the region between the axis and the core and results in a
factor of 2.5 increase in the electron pressure (lower left). Achieving 1MA flat-top
ohmic discharges is often difficult in NSTX at 0.3T, and an MHD ‘‘event’’ at 120ms
interrupts the current ramp-up of both the ohmic and HHFW heated discharges (lower
right). By t=130ms, the central Te of the HHFW heated discharge is similar to that of
the ohmic reference, and the central electron pressure is 70% higher. Figure 2 shows
the electron temperature, density, and pressure profiles at t=97ms for the same ohmic



reference discharge shown above, while the solid lines correspond to a HHFW heated
discharge (104284) with an antenna-plasma gap of 12cm. As seen in the figure, for
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FIGURE 2. Thomson scattering profiles for ohmic (dashed) and 12cm gap HHFW plasmas (solid).

the larger antenna-plasma gap of 12cm, 2MW of HHFW power raises the central Te
only slightly, but the electron density is increased (on average) by more than a factor
of 4. The electron pressure is increased by a factor of 2 in the core, a factor of 5
near the edge, and has a hollow profile. Impurity transport modeling coupled with soft
X-ray data [4] suggests that the rapid density rise may be caused by an edge particle
transport barrier similar to H-modes observed on NSTX, although the role of HHFW
as a particle and ionization source cannot be ruled out. Importantly, the MHD event
typical of the ohmic and 6cm gap HHFW ramp-up plasmas is routinely suppressed in
the 12cm gap HHFW discharges. One possible explanation of this effect is suppression
of locked tearing modes with high density operation. Another possibility is that high
edge density modifies the edge plasma resistivity profile and thus changes the current
profile evolution.

Whatever the cause, this mode of operation has allowed access to 1MA flat-top
discharges with significant broadening of the equilibrium current profile as reconstructed
by EFIT [5,6] (without MSE). The OH coil current swing required to reach 1MA was
reduced by as much at 25% for the 12cm gap discharges, and a similar fractional



decrease in resistive flux consumption was measured by EFIT. Figure 3 shows the time
evolution of the reconstructed internal inductance and q(0) for the 6cm (dashed) and
12cm (solid) gap HHFW discharges discussed above. As seen in the figure, EFIT shows
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FIGURE 3. li and q(0) evolution for 6cm (dashed) and 12cm gap (solid) HHFW plasmas.

a significant increase in q(0) for the 12cm gap case until the ‘‘reconnection-event’’ at
t=220ms disrupts the IP flat-top. In both shots, the toroidal Mirnov array and ultra-soft
X-ray data observe what is most likely a m=2/1 island near r/a = 0.7-0.8 just prior to
reconnection. Thus, if the 12cm gap discharges truly do have a broader current profile,
the event which terminates the IP flat-top phase must be relatively insensitive to the
current profile shape.

CONCLUSIONS

Experiments attempting to heat during the IP ramp-up phase using HHFW have been
carried out in NSTX in deuterium plasmas. Discharges with an antenna-plasma gap of
6cm display early central heating by HHFW, but the heating appears to be interrupted by
MHD during the IP ramp-up. Discharges with a larger gap of 12cm show much weaker
central heating, achieve very high densities, very broad pressure profiles, and appear to
suppress ramp-up MHD activity. For these discharges, the poloidal flux consumption
is significantly reduced and the current profile as reconstructed by EFIT is broadened.
This new equilibrium regime has already been used as an NBI target on NSTX, and
future work will attempt to eliminate MHD activity during the early IP flat-top phase in
an effort to further extend the pulse-length.
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