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Abstract

A novel method to calculate the neoclassical radial electric field in stellarator

plasmas is described. The method, which does not have the inconvenient of

large statistical fluctuations (noise) of standard Monte Carlo technique, is

based on the variation of the combined parallel and perpendicular pressures

on a magnetic surface. Using a three-dimensional gyro-kinetic δf code, the

calculation of the radial electric field (Er) in the National Compact Stellarator

Experiment has been carried out. It is shown that a direct evaluation of Er

based on a direct calculation of the radial particle flux is not tractable due to

the considerable noise.

Pacs # : 52.35Kt, 52.30Jb, 52.35Ra
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I. INTRODUCTION

The lack of toroidal symmetry of stellarators requires a fully 3-dimensional description

of the plasma. The departure from axi-symmetry in stellarator plasmas leads to enhanced

neoclassical losses in the low-collisionality regime. Another related feature of the effect of

the non-axisymmetry of the plasma is to strongly modify the drift orbits of the particles

(see the reviews by Sadgdeev and Galeev1, and by Kovrizhnykh2).

Over the past few years, there has been a renewed interest in the so-called quasi-axisymmetric

(QA) stellarator concept; that is the equilibrium magnetic field strength is approximately

symmetric in the magnetic toroidal angle ζ, after transformation to Boozer coordinates3. A

stellarator experiment based on the QA concepts is currently being designed in the United

States4; the National Compact Stellarator Experiment (NCSX)5 is a three-field period,

low-aspect ratio configuration which has good transport and stability properties5–7. One

important feature of the QA concept is that the plasma can rotate in the direction of

quasi-axisymmetry, and it may be possible to exploit and control the formation of transport

barriers, as in advanced tokamak plasmas8. Since the radial electric field is a major con-

tender9 in the formation of transport barriers, an accurate calculation of the radial electric

field is an important aspect of QA plasmas. The reader who is not familiar with current

trends in stellarator design can consult Ref.[10].

In this paper we describe a novel method to calculate the neoclassical radial electric field

in asymmetric toroidal plasmas. The low-noise method, which exploits the advantages of

the δf algorithm11–14, is based on the variation of the combined parallel and perpendicular

pressures
(
P|| and P⊥

)
on a magnetic surface. As an example, we have calculated the radial

electric field Er for the C82 configuration of the NCSX plasma5. It is shown that a direct

(Monte Carlo) calculation of the radial electric field based on the radial particle flux is not

tractable due to the large statistical fluctuations; interestingly, the gyrokinetic calculation
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using the variation of P|| and P⊥ on a given magnetic surface does not exhibit large statis-

tical deviations, which allows for a determination of Er.

The paper is organized as follows; in section 2, we describe the method used to calculate the

radial particle flux. The numerical method, the computational details and the results are

given in section 3. Concluding remarks and future application of the method are presented

in section 4.

II. THE METHOD

In this section, we describe the method used to determine the radial electric field based on

the local variation of the parallel and perpendicular pressures (P|| and P⊥, respectively). The

quantities P|| and P⊥ are evaluated by taking appropriate velocity moments of δf ≡ f − f0,

where f is the total distribution function whereas f0 is its equilibrium part (usually f0 is

taken to be a Maxwellian distribution). The perturbed part of the distribution function, δf ,

evolves due to the combined effects of magnetic drifts and spatial inhomogeneity. Another

subtle point regarding the numerical calculation is that the velocity moments for P|| and P⊥

are carried out in small annulus (i.e. finite volume) around a magnetic surface of reference;

this point is discussed in more detail in section 3.

In stellarator geometry, it is convenient, both for analytical and computational purposes, to

use magnetic coordinates. The confining magnetic field B is written in Boozer coordinates3

as

B = ι (ψ)∇ζ×∇ψ + ∇ψ×∇θ

B = g (ψ)∇ζ + I (ψ)∇θ + β?∇ψ (1)

where θ and ζ are the poloidal and toroidal angles, respectively; ψ is proportional to the en-

closed toroidal flux; ι is the rotational transform; g (ψ) and I (ψ) are, within a multiplicative

constant, the poloidal and toroidal currents, respectively. In these coordinates the Jacobian
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of the transformation, J ≡ [∇ψ· (∇θ×∇ζ)]
−1

, satisfies JB2 = g (ψ)+ ι (ψ) I (ψ) ≡ F (ψ).

Consider the momentum of the balance equation for the ions

ρ
dV

dt
= −∇·P + en

(
E +

V×B

c

)
+ F + R (2)

where V is the fluid velocity, ρ is the mass density, R is the force due to collisions, F

represents the (possible) applied force, and P = P||b̂b̂ +
(
I − b̂b̂

)
P⊥ is the pressure tensor;

here b̂ = B/B is the unit vector along B, P|| and P⊥ are, respectively, the parallel and

perpendicular pressures. We note that Eq. (2) can be obtained by taking the first-order

velocity moment of the kinetic equation in the small gyro-radius limit. Taking the scalar

product of eζ ≡ ∂r/∂ζ (where r is the position vector) with Eq.(2), and operating with

〈...〉 =
∫ ∫

...J (ψ, θ, ζ)dθdζ, we obtain

ι (ψ)

c

dQ

dt
−
〈
dLζ

dt

〉
=

〈
∂P̂

∂ζ

〉
− Tζ (3)

where P̂ ≡
(
P|| + P⊥

)
/2, Tζ = 〈(R + F) ·eζ〉 is the torque due to applied forces and col-

lisional drag; Lζ is the toroidal component of the canonical momentum L = ρV + eA/c

where A = ψ∇θ − χ∇ζ is the vector potential and 2πχ is the poloidal flux. In deriving

Eq.(3) we have assumed that the electrostatic potential (yet to be determined) is of the form

Φ = Φ(ψ), and we have neglected the loop voltage (∂χ/∂t ' 0). Using Eq.(1), the first term

on the left-hand side of Eq.(3) can be obtained from〈
eneζ·

(
V×B

c

)〉
=
e

c

∫ ∫
nV· (B×eζ)J dθdζ =

e

c
ι (ψ)

∫
Γ·dσn =

ι (ψ)

c

dQ

dt

Here Q is the total charge, Γ = nV is the particle flux, and dσn ≡ J∇ψdθdζ is an area

element normal to the magnetic surface ψ = const and pointing outwards. The first term

on the right-hand side of Eq.(3), which is related to the pressure tensor term in Eq.(2), is

derived in Appendix A. The parallel and perpendicular pressures which enter

S ≡
〈
∂P̂/∂ζ

〉
are calculated from the velocity moments of δf which, in turn, depends on the par-

ticle trajectories. The particle trajectories being affected by the applied electric field
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E = − (dΦ/dψ) ∇ψ, we may write S = S (Er, t). After a few collision times the distribution

δf will relax and S∞ (Er) = S (Er, t 7→ ∞) will provide a measure of the time variation of

the charge Q. For one-species simulation, one can then determine the radial electric E(0)
r by

solving

S∞
[
E(0)

r

]
= 0 (4)

Alternatively, one can measure the flux surface-averaged radial particle flux 〈Γr〉 (Er) and

determine E(0)
r such that the particle flux vanishes. However in quasi-axisymmetric toroidal

configuration, the large statistical fluctuations in Γr can be comparable to, or larger than,

the time-averaged signal. As will be shown in the next section, a direct measurement of the

radial particle flux is too noisy to be of practical use. Alternatively a dynamic calculation

using the global gyrokinetic toroidal code (GTC)15, which has been rigorously benchmarked

against analytical tokamak neoclassical transport theory16, shows that S (Er, t) reaches a

low-noise asymptotic value after a few ion-ion collision times. The general behavior of S

is of the form S (Er, t) ' S0 exp (−Ct/τii) + S∞ [1 − exp (−Ct/τii)], where τii is the ion-

ion collision time, S0 (Er) = S (Er, t = 0), and C is a constant of the order of unity. It

is interesting to note that S provides information on the asymmetric part of the particle

transport. As it turns out, S strictly vanish in an axi-symmetric configuration (such as an

ideal, 2-dimensional tokamak plasma). To show this, we use the definition of the flux-surface

average and perform an integration by parts

S = −
∫ ∫

P̂
∂J
∂ζ

dθdζ = −
〈
P̂J −1∂J

∂ζ

〉

Noting that JB2 is a flux surface quantity it follows that J −1∂J /∂ζ = −2B−1∂B/∂ζ and

S =

〈
P|| + P⊥

B

∂B

∂ζ

〉
(5)

showing that S ≡ 0 in an axi-symmetric configuration. We note that the off-diagonal con-

tributions in the pressure tensor have been neglected (in terms of the smallness parameter

ρi/R0). The inclusion of finite Larmor radius (FLR) effects, such as in the paper of Rosen-

bluth et al.18, can lead to non ambipolar transport.

5



III. NUMERICAL METHOD AND RESULTS

In this section, we describe the low-noise numerical method used to evaluate S (Er, t),

which provides a measure of the radial particle flux. The computational domain and the

collision operators are also discussed. Finally we present specific numerical results for the

NCSX plasma.

It is convenient to write the parallel and perpendicular pressures in terms of their respective

Fourier components (on a given magnetic surface); for example, the perpendicular pressure

can be written as

P⊥ =
∑
m,n

(P⊥)m,n exp [i (mθ + nNpζ)] (6)

where Np is the number of field periods of the configuration and the Fourier coefficients are

calculated according to

(P⊥)m,n =

∫ 2π
0 dθ

∫ 2π
0 dζ (mv2

⊥/2) δf exp [−i (mθ + nNpζ)] d
3v∫ 2π

0 dθ
∫ 2π
0 dζ

(7)

In practise the particle trajectories are integrated in a volume enclosed between two neigh-

boring toroidal flux surfaces ψ−∆ψ/2 and ψ+∆ψ/2. (Fig.1). Here ψ is a magnetic surface

of reference and ∆ψ is chosen so that ∆ψ/ψb, where ψb is the toroidal flux at the plasma

boundary, is much less than unity. However, due to the combined effects of magnetic drifts

and background inhomogeneity, the particles will drift outside the layer ∆ψ, the number

of Lagrangian markers within the layer will decrease in time, and the statistics associated

with P|| and P⊥ will become poorer. To bypass this difficulty, particles are uniformly loaded

in the layer ∆ψ but the perpendicular and parallel pressures are monitored in the annulus

δψ � ∆ψ (Fig.2). Introducing the radial coordinate r =
√
ψ/B0 (where as before ψ is

the enclosed toroidal flux), one has ∆ψ = ψ (r + ∆r) − ψ (r) ≈ 2B0r∆r from which we get

∆r ≈ ∆ψ/
(
2
√
B0ψ

)
. The radial component of the curvature drift velocity is of the order of

Vd ≈ vth (ρth/R), where vth is the thermal velocity, ρth is the associated thermal gyroradius

and R is the major radius; here we have used Rc ≡ |∇B/B|−1 ∼ R as the typical scale length
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of the magnetic field inhomogeneity. Therefore the typical drift time within the layer ∆ψ

is τd ≈ ∆r/Vd, which is chosen so that τd � τr, where τr is the relaxation time (typically a

few ion-ion collision time). Alternatively, one can assume periodicity in the radial direction,

that is the particle that escapes the radial domain δψ can be put back in the same domain;

in this case, the number of Lagrangian markers remains constant. Different schemes can be

used and compared to randomize the position (ψ, θ, ζ) and the pitch of the particle. How-

ever, as in a real experiment, one is interested in the global radial profile of the electric field;

one important aspect of the method described above is that it can easily be extended to the

entire plasma volume, without additional assumptions regarding the boundary conditions.

The guiding center motion and the collisions will spread the particles toward equal density

in pitch and over the magnetic surface; therefore it is convenient to make the replacement

(again using the particular form of the Jacobian in Boozer coordinates and the definition of

the volume element in magnetic coordinates,d3x = J dψdθdζ)
∫ ∫

dθdζ =⇒
∫
J −1 (δψ)−1 d3x =⇒

[
F
(
ψ
)
δψ
]−1

∫
B2d3x

Therefore one can calculate the Fourier coefficients for the perpendicular pressure according

to

(P⊥)m,n =
∫ ∫

d3x (mv2
⊥/2) δfB

2 exp [−i (mθ + nNpζ)]∫
d3xB2

d3v (8)

The same method to evaluated to the parallel pressure on the magnetic surface ψ.

As is well known in neoclassical theory, the momentum and energy conservation proper-

ties of the collision operator are important for accurate calculation of quantities such as

the radial particle flux. The gyrophased collision operator for like-species collisions can be

written as17

C (δf) =
∂

∂v||

(
ν||δf

)
+

∂

∂v2
⊥

(ν⊥δf) +
∂2

∂v||v2
⊥

(
ν
||
⊥δf

)
+

∂2

∂v2
||

(
ν
||
||δf

)
+

∂2

(∂v2
⊥)

2

(
ν⊥⊥δf

)
(9)
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where

ν|| = ν0v||F

ν⊥ = ν0

[
v2
⊥ (2F −H −G) − 2v2

||G
]

ν
||
⊥ = 2ν0v

2
⊥v|| (H −G)

ν
||
|| = ν0

(
v2
||H/2 + v2

⊥G/2
)

ν⊥⊥ = 2ν0v
2
⊥
(
v2
⊥H + v2

||G
)

(10)

In Eq.(10), ν0 = 4πnβq
2
αq

2
β lnΛαβ/ (m2

αv
3) is the basic frequency for collisions of test particles

α with background particle β. F ,G and H are dimensionless functions that can be written

in terms of the Maxwell integral Θ(x) = 2π−1/2
∫ x
0 y

1/2 exp (−y) dy, where x = v2/v2
thβ and

vthβ is the thermal velocity of the background particles. The functions F ,G and H are

F (x) = (1 +mα/mβ)Θ(x), G(x) = Θ(x) [1 − 1/ (2x)] + dΘ/dx and H(x) = Θ(x)/x. The

test-particle drag and diffusion can be implemented by utilizing a Monte Carlo method due

to Xu and Rosenbluth17. The particle weights are modified such that the collision operator

annihilates a shifted Maxwellian16. Ion-electron collisions a Lorentz collision operator is

used, and its Monte Carlo implementation has been discussed elsewhere19.

For the simulations presented in this paper, the trajectories of a set of 2 × 105 Lagrangian

markers have been integrated20–22 with a time step ∆t/τii = 4×10−4. Collisional effects are

calculated every 10 time steps. The confining B field and the shape of the magnetic surfaces

(R,Z, φ) have been specified in terms of Fourier series (Fig.3); a set of 30 Fourier harmonics

have been retained in the calculations. Other parameters are the on-axis magnetic field

B0 = 1.26 × 104 Gauss, central ion temperature Ti(0) = 2.76 KeV, central electron temper-

ature Te(0) = 2.14 KeV and central plasma density n0 = 6.73× 1013cm−3 (these parameters

are the typical design parameters for NCSX). The magnetic surface of reference is located

at ψ/ψb = 0.7. At each time step, the local (i.e. within δψ; see Fig. 2) perpendicular

and parallel pressures from each processor element (PE) are collected onto a single PE (say

PE=0); the Fourier coefficients for P|| and P⊥ are then calculated according to Eq.(7). All

numerical parallel computations reported here have carried out with 16 PEs.
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The radial particle flux obtained from a direct measurement of the radial particle flux (ar-

bitrary units) is shown as the jagged curve in Fig. 4 (in this case the applied radial electric

field is 0 and the background distribution function f0 has been loaded as a Maxwellian with〈
V||
〉

= 0). It is noted that the noise is comparable to the signal; to determine the relation

Γr = Γr (Er) from a direct measurement is not accurate. As a comparison, the thick line in

Fig. 4 represents the radial particle flux calculated from the velocity moments P|| and P⊥.

The electron current density (calculated for large t) as a function of the normalized ra-

dial electric field Er = −ad/dr (eΦ/Ti(0)) is shown in Fig. 5. The electron current density

displays an almost linear dependence on Er. The ion current density, shown in Fig. 6,

shows however a strong dependence on the Er parameter. The largest ion flux is obtained

for Er ' −0.2. We note that the ion flux is typically two orders of magnitude larger than

the electron flux for small electric field (note the scale difference between Fig.5 and 6). By

inverting the relation Γi

[
E(0)

r

]
= Γe

[
E(0)

r

]
, we obtained E(0)

r ' −0.87 statvolt/cm, that is

E(0)
r ' −26.2kV/m (which corresponds to the stable root). For illustrative purposes, the

calculations have been carried out for a single magnetic surface (more precisely, for a single

annulus), but a global calculation would lead the variation of Er with the radial coordinate.

IV. CONCLUDING REMARKS

In this paper, we have presented a method to calculate the radial electric field in stel-

larator plasmas; our method is particularly useful for toroidal plasmas which depart weakly

from axi-symmetry (e.g. the ‘quasi-asymmetric concept’). It is has been shown that a direct

measurement of the radial particle flux is very noisy, and not of much practical use for a di-

rect calculation of Er. The moment approach, however, shows a relatively smooth behavior

and reaches an asymptotic value after a few ion-ion collision times.
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The method presented in this paper can be improved by including the off-diagonal terms

(which are ∼ ρi/R0 times smaller than the diagonal terms) in the pressure tensor π. How-

ever, since the dominant symmetry breaking term in the Bmn spectrum is much larger than

the smallness parameter ρi/R0 one can, in first approximation, neglect the off-diagonal terms

in the pressure tensor π.

An extension of the method presented in this paper can be used to determine the damping

rates of toroidal and poloidal flows in stellarator plasmas; this is left for future work.
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APPENDIX A: DIVERGENCE OF THE PRESSURE TENSOR

The pressure tensor, P, can be written as

P = P||b̂b̂ + P⊥
(
I − b̂b̂

)
, (A1)

where b̂ = B/B is the unit vector along B, I is the unit dyadic, and P|| and P⊥ are,

respectively, the parallel and perpendicular pressures. We can also write Eq.(A1) as P =

P̃BB + P⊥I, where P̃ ≡
(
P|| − P⊥

)
/B2. The divergence of the pressure tensor then reads

∇·P = B
(
B·∇P̃

)
+ P̃∇· (BB) + ∇P⊥ (A2)

where the second term on the right-hand side can be calculated using the relation ∇B2/2 =

B× (∇×B) + (B·∇) B so that

∇·BB =
1

2
∇B2 − B× (∇×B) (A3)

Using Ampere’s law, 4πJ = c∇×B, and the radial force balance, J×B = c∇P0, one gets

B× (∇×B) = −4π∇P0 and the divergence of the pressure tensor now reads

∇·P = B
(
B·∇P̃

)
+ P̃

(
1

2
∇B2 + 4π∇P0

)
+ ∇P⊥ (A4)

Taking the scalar product of Eq.(A4) with eϕ ≡ ∂r/∂ϕ where r is the position vector and

ϕ = {θ, ζ} one gets

eϕ· (∇·P) = Bϕ

(
B·∇P̃

)
+
P̃

2

∂

∂ϕ
B2 +

∂P⊥
∂ϕ

(A5)

where we used the fact that the equilibrium pressure is a flux surface quantity, P0 = P0 (ψ).

In Boozer coordinates, the product of the Jacobian and the magnetic field strength squared

is a flux surface quantity, that is JB2 = F (ψ), where J = [∇ψ· (∇θ×∇ζ)]−1 denotes

the Jacobian and F (ψ) is a linear combination of the poloidal current, toroidal current and

safety factor. We introduce the flux-surface average operator 〈•〉 as

〈•〉 ≡
∫ ∫

J (•) dθdζ (A6)
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It is easy to show that 〈•〉 annihilates the B·∇ operator, that is

〈B·∇G〉 = 0 (A7)

for any function G = G (ψ, θ, ζ). Noting that, in Boozer coordinates, Bθ and Bζ are flux-

surface quantities, the flux-surface average of Eq.(A5) is

〈eϕ· (∇·P)〉 =
1

2

〈
∂

∂ϕ

(
P|| + P⊥

)〉
, (A8)

where we used Eq.(A7) and〈
P̃
∂B2

∂ϕ

〉
=

〈
P|| − P⊥
B2

∂B2

∂ϕ

〉

=

〈
B2

(
P⊥ − P||

) ∂

∂ϕ

(
1

B2

)〉

=

〈
F (ψ)

J
(
P⊥ − P||

) ∂

∂ϕ

(
1

B2

)〉

= F (ψ)
∫ ∫ (

P⊥ − P||
) ∂

∂ϕ

(
1

B2

)
dθdζ

= F (ψ)
∫ ∫

1

B2

∂

∂ϕ

(
P|| − P⊥

)
dθdζ

=
∫ ∫

J ∂

∂ϕ

(
P|| − P⊥

)
dθdζ

=

〈
∂

∂ϕ

(
P|| − P⊥

)〉
. (A9)
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Figure 1 Computational domain for δf calculations of the radial electric field. The mag-

netic coordinates are ψ, θ and ζ. The particles are initialized at the toroidal flux

surface ψ. The width of the annulus is such that δψ/ψb � 1, where ψb is the toroidal

flux at the plasma boundary.

Figure 2 The Lagrangian δf markers are uniformly distributed in the layer of width δΨ;

the radial width is chosen such that the typical drift time of an ion in the layer is

larger than the relaxation time of the perturbed parallel and perpendicular calculated

in the annulus δψ centered at ψ.

Figure 3 Magnetic surface of the 3-field period National Compact Stellarator Experiment

(NCSX). Although the shape of the magnetic surface is largely different for that of a

comparable tokamak, the equilibrium B field is approximately symmetric in ζ (mag-

netic toroidal angle) after transformation to Boozer coordinates.

Figure 4 Radial particle fluxes (arbitrary units) at the magnetic surface ψ/ψb = 0.7 as

obtained from a direct measurement (thin, broken line) and from the fluid moment

approach (thick line). The perpendicular and parallel pressures relax on a time scale

of the order of a few ion-ion collision times. The applied radial electric field is zero

and the time has been normalized to the ion-ion collision time τii.

Figure 5 Electron current density as a function of the normalized radial electric field Er =

−ad/dr (eΦ/Ti(0)), where a is the average minor radius of the last closed magnetic

surface, and Ti(0) is the ion temperature at the magnetic axis.

Figure 6 Ion current density as a function of the normalized radial electric field (plasma

parameters are the same as in Fig.5).
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FIG.1 Lewandowski et al
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FIG.2 Lewandowski et al
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FIG.3 Lewandowski et al
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FIG.4 Lewandowski et al
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FIG.5 Lewandowski et al
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FIG.6 Lewandowski et al
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