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S.E. Derenzo and T.F. Budinger 
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ABSTRACT 

J This paper summarizes the physical processes and medical science goals 
that  underly modern instrumentation design for Positron Emission Tomog- 
raphy. The paper discusses design factors such  as detector material, crystal- 
phototube coupling, shielding geometry, sampling motion, electronics design, 
time-of-flight, and the interrelationships with quantitative accuracy, spatial 
resolution, temporal resolution, maximum data rates, and cost. 

1 INTRODUCTION 

Positron Emission Tomography (PET) serves a unique and important 
role in  medical research because it permits the non-invasive, quantitative 
study of biological processes as they occur using minute quantities of tracer 
material. This tracer can be in  ionic form, such as 75-second "Rb, which is 
rapidly taken up by active heart muscle, or in  molecular form, such as 20-min 
"C-palmitic acid, which is taken up and oxidized by active heart muscle. 
Similarly, 108-min 'sFF-deoxyglucose is taken up by active brain tissue. The 
physiological processes involved include: 

1) Labeled compounds are usually administered by intravenous injection 
or by inhalation of a radioactive gas. Rapid injections (< 5 sec) are essential 
when the processes to be studied are also rapid. 
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2) After passing through the lungs and heart chambers, the tracer is 
delivered by the arteries to the various tissues in proportion to the blood 
flow that they receive from the heart. The activity delivered to each organ 
depends not only on the amount administered, but also on the fraction of 
cardiac output received and the amount extracted from the lungs during 
passage of the tracer from the right to the left heart. 

3) The tracer is extracted by the tissues through diffusion, active trans- 
port or selective binding. 

4) The label may undergo several fates, depending on the biochemical 
processes in the tissue- The tracer may be (i) trapped in its original form, 
or (ii) diffuse back into the circulation (washout), or (iii) be metabolized and 
the products either trapped or washed out. 

The function of PET instrumentation is the measurement of positron 
tracer concentration in well-defined volumes as a function of time. Depending 
on the nature of the tracer and the biochemical processes that it undergoes, 
compartment models are fit to these data to yield information about tissue 
extraction, metabolic rate constants, blood volumes, and blood flow. See 
reference (1)  for a review of physiological modeling of PET data. 

Section 2 below considers the physical processes that occur during PET 
and the special advantages of PET for 3-D tomographic imaging. 

Section 3 discusses the instrumentation design factors that  affect quan- 
titative accuracy, temporal resolution, and spatial resolution. 

Section 4 discusses design tradeoffs as well as some recently developed 
high resolution state-of-the-art tomographs. 

2 PHYSICAL CONSIDERATIONS 

2.1 PHYSICAL PROCESSES IN PET 

The ability of PET instrumentation to measure tracer concentrations is 
strongly influenced by the physical processes involved in positron emission, 
the detection of the annihilation photons, and the tomographic reconstruc- 
tion, which we summarize below in 11 steps: 

1)  The nucleus decays with the emission of a positron (e') and a neutrino 
(v). The positrons have a spread of energies from zero to a maximum energy 
which varies from 0.64 MeV for 18F to 3.35 MeV for "Rb. 

2) The positron looses most of its kinetic energy in the tissue as it travels 
a few mm from the point of emission to the point of annihilation with a nearby 
electron (2-4).  
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, Positron annihilation photons 

?&re 1: A positron emitted by nuclear decay stops in tissue and annihilate5 
vi th  a nearby electron, producing two 511 keV annihilation photons that fly 
,ff in nearly opposite directions. 

3) If the positron were able to  loose all of its kinetic energy before anni-  
hilation, the two 511 keV annihilation photons would be emitted in exactly 
opposite directions. However, the positron has a residual energy of typically 
10 eV, and this  causes the angle between the photon pair to have a Gaussian 
distribution with a full-width a t  half-maximum (FWHM) of 0.50" (5). 

4) A 511 keV photon will travel a n  average of 10 cm in water before 
interacting by Compton scattering. This  process reduces its energy and ran- 
domly changes its direction, effectively loosing all image information. Since 
the  human head or chest is approximately two interaction lengths thick, the 
probability that both annihilation photons leave the body unscattered is only 
about 20%. This represents a significant loss of events and requires large 
correction factors. Also, a small but significant fraction of the annihilation 
photons scatter "in the plane" of the tomograph and are detected as prompt 
(non-random) coincidences. These result in a heterogeneous background that 
extends beyond the subject over the entire imaging field. 

5) The annihilation photons can interact in the scintillator in  two ways- 
(i)  by photoelectric effect, whereby the entire 511 keV is given to a recoil 
electron, or (ii) by Compton scattering, where only a portion of the full energy 
is given to a recoil electron and the photon is reduced in energy and scattered 
into a new (random) angle. For BGO the probability of a photoelectric event 
is about 50% for the first interaction. For BaF? this probability is about 
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25%. A successful event requires that both annihilation photons pass the 
pulse height requirements in both opposing detectors (6,7). 

6) The recoil electrons produce ionization and excited atomic electrons in 
the scintillation crystal. Some of the excited electrons return to their ground 
states by the emission of scintillation light. The luminous efficiency (number 
of scintillation photons per keV loss) and the speed of emission vary from 
crystal to crystal (8). 

7) Light in the scintillator can be trapped by total internal reflection, 
absorbed by internal impurities and imperfections, absorbed by external re- 
flectors, or collected by the photodetector. The collection efficiency is the 
fraction of light t ha t  reaches the photodetector (9). 

8) The photodetector converts collected scintillation light to  a useful 
electrical pulse. The quantum efficiency is the probability that a n  incident 
photon will produce a photoelectron in the photodetector. The photomulti- 
plier tube has  an  internal gain of typically 1 million and a single photoelectron 
produces a pulse several nsec wide and many mV high. 

9) Electronic circuits determine whenever two opposing crystals have 
detected photons within a short time interval (5  to 20 nsec, depending on the 
detector material) and store the addresses of the crystals involved. For the 
time-of-flight mode, the differential time of arrival is also recorded. 

10) Before tomographic reconstruction, the data must be corrected for (i) 
the loss of events due to  attenuation in the tissue, (ii) accidental background 
events (random coincident detections of unrelated annihilation photons), (iii) 
scattered background events (coincident detections of photon pairs from the 
same positron but one or both have scattered), and (iv) the loss of events due 
to deadtime in the detectors and electronics. 

11)  The tomographic reconstruction usually involves filtering the 
parallel-ray projections either by convolution or frequency filtering and then 
back-projecting to form the image array. Alternate procedures involve itera- 
tive methods of estimating the true distribution such as maximum likelihood 
or least squares techniques. 

Note that 4 different efficiencies appear in these steps: 
-detection efficiency 
-luminous efficiency 
-light collection efficiency (in step 7) 
-quantum efficiency (in step 8) 

4 



Figure 2: Modern tomograph design using several rings of small crystals that 
encircle the patient. 

WADVANTAGES OF PET FOR TOMOGR-C IMAGING 

Almost all modern positron tomographs use several rings of small crys- 
tals that encircle the patient (Figure 2), and utilize the following advantages 
of PET for tomographic imaging: 

1) The total number of coincident events between each detector pair is 

2) The principle of electronic collimation allows small crystals to achieve 

a measure of all the positron activity along the line between them. 

very good spatial resolution with good sensitivity. 

3) The spatial resolution is best at the center of the imaging field, far 
from material bodies. (In single-gamma imaging, the resolution is best at the 
front face of the collimator). 

4) The sensitivity and spatial resolution are very uniform within the 
patient port (usually one-half the diameter of the detector ring). 

5 )  Tissue attenuation corrections are straightforward because the atten- 
uation between any  two crystals can be measured with a n  external source and 
this correction directly applied to the tracer emission data before tomographic 
reconstruction. 
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6) Using the difference of arrival time of the coincident photons, the 
position of the annihilation point along the line between the detector 
can be estimated and this information improves the statistical accuracy rii 
not the spatial resolution). 

Note tha t  PET cannot determine the chemical form of the tracer - 
metabolic processes must be inferred from the change in measured tracer 
concentration as a function of time. 

3 TOMOGRAPH DESIGN FACTORS 

The goal of all tomograph designs is the accurate and rapid measure- 
ment of tracer concentration in sharply-defined volume elements in an organ 
such as the brain or the heart. This requires temporal resolution, spatial 
resolution, and the quantitative measurement of activity concentration, as 
discussed below. 

3.1 QUANTITATIVE ACCURACY-STATISTICAL FACTORS 

Statistical accuracy in the reconstructed image depends on the number 
of coincident events that  can be collected within the available time. This 
is determined both by the available positron activity and the sensitivity of 
the tomograph in events per second per radionuclide activity in the imaging 
field. In addition, some detector materials provide time-of-flight information, 
which reduces statistical fluctuations in the reconstructed image. The system 
sensitivity depends on the following 4 factors: 

1) Solid angle coverage: Multiple rings of detectors that encircle the 
patient provide the best acceptance solid angle for the annihilation photons. 
Utilization of the cross-ring coincidences is very important in realizing the 
full available solid angle. 

2) Axial coverage: Multiple detector rings also serve to cover a larger 
volume of tissue, thus providing a higher event rate for a given amount of 
administered tracer activity. 

3) Detector Material (Table 1): Except for applications requiring very 
high light output, BGO h a s  replaced NaI(T1) in non-time-of-flight PET in- 
strumentation. BGO h a s  the highest density and the highest atomic number 
of any detector material, and as a result is best able to totally absorb 511 
keV photons efficiently in small crystals. 

A new material, gadolinium orthosilicate GSO), was reported in 1982 
(lo) and h a s  speed advantages over BGO but a \ ower detection’efficiency. Its 
use is under investigation and is planned for several tomographs (11). 
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Table 1. DETECTOR MATERIALS FOR PET 
Material NaI(T1) CsF BGO" GSOb BaF2 
Density (gm/cm3) 3.67 4.61 7.13 6.71 4.8 
Atomic Numbers 11,53 55,9 83,32,8 64,16,8 56,9 
Emission wavelength (nm) 410 390 480 430 310;225 
Index of refraction 1.85 1.48 2.15 1.9 1.56 
Hygroscopic YES VERY NO NO NO 
Photoelectrons per 511 keV 3,000 200 400 600 800;200 
Scintillation decay time (nsec 2.5 300 60 620;0.8 
Photoelectrons/ns (peak rate 60 1.3 11  1.3;250 
bismuth germanate, BilGesOl2 

bgadolinium orthosilicate (Cerium activated), GdzSi05( Ce) 

BaFz has  replaced CsF for time-of-flight positron instrumentation. In 
1982 a very fast (800 psec) .scintillation component was discovered, making 
BaF2 the highest speed inorganic scintillator known (12). BaF2 is not hygro- 
scopic (unlike CsF) and the crystals do not have to be sealed in bulky cans, 
which improves the detection efficiency. 

For any detector material, the detection efficiency depends on the detec- 
tor material, size, and pulse height thresholds used (6,7). 

4) Time-of-flight information: Modern BaF2 detectors have excellent 
timing resolution (typically 400 psec FWHM) and are able to measure the 
arrival time difference between the two photons and determine the annihila- 
tion point with an  uncertainty of 6 cm FWHM. In conventional tomography, 
the annihilation point is only known to lie somewhere along the line between 
the two coincident detectors. The time-of-flight information is able to re- 
duce the rms statistical uncertainty in the reconstructed image by the -ratio 
of t he  distance across t h e  emitting region to t h e  time-of-flight uncertainty 
times twice the speed of light (15 cm per nsec) (13-15). For example, for 
a time-of-flight uncertainty of 6 cm and a 24 cm diam emission region, the 
time-of-flight information reduces the statistical uncertainty by a factor of 2 
which corresponds to a four-fold decrease in the imaging time. 

3.2 QUANTITATIVE ACCURACY-SYSTEMATIC FACTORS 

PET data are subject to 6 major systematic errors: 

1 )  attenuation of the annihilation photons in the tissue 

2) partial volume effects due to limited axial resolution 



Figure 3: Types of Positron 
Annihilation Events- 
True events are coinci- 
dent detections of unscat- 
tered photon pairs from 
the same e+. 
Scattered events are co- 
incident detections of pho- 
ton pairs from the same 
e+ where one or both have 
scattered. 
Accidental events are un- 
related photons detected in 
coincidence by chance. 

3) smearing due to limited in-plane resolution (16) 

4) background events due to accidental coincidences (17,18) 

5 )  background events due to prompt scatter (18-21) 

6 )  losses due to deadtime in the detectors and electronic circuits 

The two types of events leading to background types 4) and 5 )  are illustrated 
in Figure 3. 

3.3 TEMPORAL RESOLUTION 

The ability to measure the tracer concentration with good temporal res- 
olution (i.e. in a series of rapid time sequence images) requires the collection 
of a large number of events during the study, which requires good detection 
efficiency, low deadtime, high maximum data rates, and a minimum of detec- 
tor motion. Note the ability to fit compartment model rate constants to PET 
data depends primarily on the total number of events collected in the study 
and the temporal resolution. The number of events in each time sequence 
image is of less importance. 

3.4 SPATIAL RESOLUTION 
Y 

Quantitation within regions of size D requires combined system spatial 
resolution with FWHM 5 D/2. Eight components of the system resolution 
are discussed below: 
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Table 2. POSITRON RANGES IN WATER 
Isotope l8 F “C 68Ga 82R b 
Maximum Energy 0.64 MeV 0.96 MeV 1.90 MeV 3.35 MeV 
PSF F W H M  0.13 mm 0.13 mm 0.31 mm 0.42 mm 
PSF rmsb 0.23 mm 0.39 mm 1.2 mm 2.6 mm 
Diameter (75%) 1.2 mm 2.1 mm 5.4 mm 12.4 mm 

“Full width a t  half maximum of projected point spread function 
’Root-mean-square deviation from center of projected point spread function 
‘Diameter of circle containing 75% of the projected annihilations 

1)  The positron range distribution is sharply peaked and has narrow 
FWHM and standard deviation values (Table 2). However, most of the anni- 
hilations occur in the extensive tails of the distribution, as evidenced by the 
diameter of the circle that contains 75% of the projected annihilation points 
(2-4). 

2) The deviations from 180” have a nearly Gaussian distribution with 
a FWHM of 0.50” (5).  This contributes 1.3 mm FWHM for a 60 cm diam 
detect or ri n g . 

3) The geometrical component of the detector resolution (at the center 
of the imaging port) is approximately equal to one-half of the detector width 
(22-24). 

4) Annihilation photons from off-axis sources can penetrate one or more 
detectors before interacting and this results in a radial elongation of the PSF 
a t  the edge of the field (25,26). 

5 )  Compton scattering of the annihilation photons in the detectors can 
result in  a mis-identification of the detector of first interaction. This can be 
reduced by (i) coupling each scintillator to its individual photodetector and 
requiring single detector interactions only (22), or (ii) placing shielding mate- 
rial between the detectors, but this reduces the detection efficiency, especially 
for off-angle rays (6,23,24). 

6) For detectors of width W, the geometrical resolution of W/2 dis- 
cussed in part 3) above will not be realized in the reconstructed image unless 
the tomographic sampling distance is W/4 or finer throughout the image re- 
gion. A stationary circular array h a s  a sampling distance of W/2. The most 
frequently employed method of improving the sampling is by the “wobble” 
motion- rotating the detector array about a small circle centered a t  the sys- 
tem axis (27-30). A sampling distance of W/4 can also be achieved with only 
two mechanical positions by using the “clam” motion (31 ) .  
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7) reconstruction filter frequency roll-off should be determined by the 

8) the effects of organ and tracer motion are reduced by gating for cardiac 

system resolution, not by statistical fluctuations 

imaging and rapid sequence imaging for fast dynamic processes 

4 TOMOGRAPH DESIGN FACTORS 

4.1 CRYSTATrPHOTOTURE COUPLING 

One of the most fundamental limits to detector resolution is that avail- 
able phototubes are larger than the crystals we wish to use. Below we sum- 
marize many of the efforts to couple small crystals to larger phototubes: 

1) Several groups over the years have coupled phototubes to a larger 
number of smaller crystals so that the light may be split between several pho- 
totubes. The light ratio is then. used to identify which crystal is scintillating 
(32-35). 

2) Several positron detectors (starting with the Anger positron camera) 
use the large light output of NaI(T1) so that signals from several phototubes 
coupled to a single large crystal of NaI(T1) can be used to determine the 
location of the scintillation point (36,37). 

3) In another approach a grid of wires is mounted between one or more 
scintillation crystals and the photocathode of a photomultiplier tube. After 
the appearance of a photomultiplier pulse, portions of the grid are selectively 
pulsed to alter the electron trajectories near the adjacent photocathode. The 
scintillating crystal can thus be identified because the phototube output pulse 
will only be affected when the associated portion of the grid is pulsed (38-41). 

4) Some effort has  been directed toward developing phototubes with 
multiple electron multipliers and anodes, to eliminate some of the glass walls 
between phototubes, but this approach is presently limited to crystals 6 mm 
or larger. (42-45). 

5) A most promising recent approach uses a photomultiplier combined 
with solid state photodetectors. A group of crystals is coupled to a relatively 
large photomultiplier tube which determines the timing for the group. The 
solid-state photodetectors are coupled individually to each crystal to deter- 
mine the identity of the scintillating crystal. HgIz, (46-48) silicon photodiodes 
(22,49,50), silicon avalanche photodiodes (5 1-54), and small low-gain photo- 
tubes (41) have  been suggested for the crystal identifier. 
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4.2 TRADEOFF S IN T OMOGRAPH D ESIGN 

1) Patient port size:- A head tomograph h a s  a smaller patient port t h a n  a 
whole-body tomograph (30 cm vs 50 cm diam) and a smaller detector ring (60 
cm vs 100 cm diam). This results in increased sensitivity, lower cost (fewer 
detectors) and improved spatial resolution because the angulation error is 
less. The primary advantage of the body tomograph is that it can image the 
human thorax and abdomen. 

2) Shielding gap thickness, S: A large shielding gap enhances the sen- 
sitivity because the image event rate varies as S'. However, increasing S 
increases the scatter backgrounds (which vary as S3), and increases the acci- 
dental backgrounds (which vary as S4). For single ring systems, the shielding 
gap defines the slice thickness. For multiple ring systems, the relationship 
between axial resolution, sensitivity, and backgrounds is more involved as it 
depends on the design of the inter-ring shielding. 

3) Shielding depth: Given a patient port size and shielding gap thick- 
ness, it is possible to select a shielding depth that minimizes the statistical 
fluctuations in the reconstructed image. A smaller shielding depth reduces 
the detector diameter and enhances the sensitivity for image-forming events, 
but also increases the number of scattered and random background events. 
A greater shielding depth reduces these backgrounds but also reduces the 
image-forming events. An analysis of these tradeoffs is treated in reference 
(18)- 

4) Positron isotopes and compounds: As shown in table 2, some of the 
positron-emitting isotopes (such as 18F) have less blurring due to positron 
range and are preferred whenever high spatial resolution is important. Iso- 
topes with a short half life and advantageous biodistribution are also preferred 
because a large amount of tracer activity can be used for a given radiation 
dose to the patient, and this provides good counting statistics. 

5 )  Time-of2flight vs  conventional tomography : BaFz provides very good 
timing resolution which results in low accidental backgrounds, very high max- 
imum event rates, and information on the location of the point of annihilation 
which reduces the statistical fluctuations in the reconstructed image. How- 
ever, this advantage is partially offset by the reduced detection efficiency and 
a greater difficulty in using small crystals for good spatial resolution. BGO 
provides the ability to use smaller crystals and phototubes and simplifies the 
electronics and data storage. 

6) Number of detectors: The use of many small detectors aids in reducing 
the overall system deadtime and in improving spatial resolution. However, 
the cost of the tomograph is related to the number of detectors. 
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7) Circuit deadtime: The use of many parallel circuits increases the cost 
of the electronics but can provide very high data rates, even when using BGO, 
which is relatively slow. 

8) The reconstruction algorithm: By using a reconstruction filter that  
maintains the higher spatial frequencies (within the limits of the overall sys- 
tem spatial resolution), quantitation within well-defined volume elements is 
improved. Reducing the amplitude of these higher frequencies decreases the 
apparent noise in the reconstructed images and is frequently used when the 
tomographic reconstruction is to be viewed as an image. 

9) Sampling motion: The use of a detector sampling motion improves the 
image quality and quantitation by more densely sampling the image space. 
However, this  motion conflicts with requirements for high temporal resolution, 
particularly for gated cardiac imaging. Although the most common sampling 
motion is the circular “wobble”, the “clam” motion involves only two positions 
and can be peformed even for gated cardiac studies. 

See references ( 1  1,44,55-59) for more complete discussions of these fac- 
tors in tomograph design. 

4 3  AD VANCED T O M O G R A P E  

Table 3 describes some modern positron tomographs with <7 mm reso- 
lu tion. 

See references (60-62) for descriptions of positron tomographs using time- 
of-flight information. 

Table 3. COMPARISON OF POSITRON TOMOGRAPHS 
WITH SPATIAL RESOLUTIONS FINER THAN 7 mm FWHM 

Institution MGH NIRS CTI LBL Univ 
Boston Japan Knoxville Berkeley Penn 

References (63-66) (67,68) (69) (70) (7 1,72) 
Detector Material BGO BGO BGO BGO NaI( TI) 

Number of Crystals 360 128 5 12” 600 6 
Detector Ring Diam (cm) 46 26.5 100 60 85h 
Patient Port Diam cm) 28 13.5 65 30 50 

Crystal C-C Spacing (mm) 4.0 
In-plane Resolution (mm)’ 4.8 3 5 2.6 6.5 
Axial Resolution (mm) 10 5 18 5 13 

Number of Rings 1 1 1-4 1 1 

- Crystal Width (mm 4 5.6 3 
6.5 6.1 3.15 - 

\ 4  

“per ring 
”hexagonal 
“FWHIM of reconstructed point spread function near center of system 



5 CONCLUSIONS 

1) Positron Emission Tomography measures regional biochemical pro- 
cesses (and is complementary to  X-ray CT and Magnetic Resonance Imag- 
ing). 

2) The choices of detector material, crystal-photomultiplier coupling, 
sampling motion, and shielding geometry have a significant effect on spatial 
resolution, temporal resolution, and the ability to accurately measure tracer 
concentration. 

3) Multilayer tomograph designs are important in being able to collect 
more information for a given administered activity. 

1") the 
4) PET instrumentation has  evolved in two disti,nct directions: 

use of very small BGO or GSO crystals for high spatial resolution <5mm 
FWHM) conventional tomography or (b) the use of BaF2 with good timing 
resolution (<500 psec FWHM) for time-of-flight tomography. 

5 )  Efforts are underway throughout the world to  improve the  timing 
resolution of BGO and GSO systems, and to improve the spatial resolution 
of BaF2 systems. 
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