

POSITRON SCANNER FOR BRAIN TUMORS*

E.S. Robertson, M.D., Phi. and S.R. Bozzo, M.D. Brookhaven National Laboratory

1. MiTスODUCTION

Fo: some time we have had under development a multi-detector positron scanter for use in locating brain tumors. A previous progress report was presented at the 1902 IBM Medical Symposium (1), and the basic device has been described by Rankowitz et ai. (2).

Eisieny, the principe of the device is as follows. In the annihilation c. a positron, or $\hat{\beta}^{+}$, two gamma rays, each of 0.511 MeV , are enitied in opposite directions. Such an event may be detected with two gamina-ray counters connected in a coincidence circuit. Since Where are positron-emitting substances that tend to localize preferentially in 3 rain tumors (3,4), this method can be, and is being, used to locate Sain rumors. However, scanning with only two detectors takes about 40 minutes time, and at least two such scans are needed for three-A-sensional locaiization. It was thought that if a multi-detector device $\approx \sim A d$ be developed, the scanning time would be greatly shortened, with Bach consequent acivantages as being able to work with lower doses of Zäiation, to obtain serial determinations, and to work with shorterivied isotopes.

It was originality thought that a three-dimensional distribution of the detectors could be used, giving a complete picture of the distribution of positron activity in a single set of counts. However, the mathematical Cifificulties encountered in resolving the data generated by such an array led to a partial compromise in which 32 one-inch diameter NaV crystals ane arranged in a ring, as shown in Slide 1 . This device therefore sees only a laminographic-type section of the head about 2 cm thick, and several sets of counts are needed to scan the entire head. Even so, the procedure is much shorter than when only two detectors are used.

2. Mathematical Considerations

We data obtained with any given pair of detectors are the sum of all of ne counts that originate in the volume "seen" by that pair, modified by Gie geometry factor and other factors that affect the crystal's efficiency. (Sides 2 and 3.) At the time of the previous report (1), it had been hoped

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefuiness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
\therefore Aat iniomazion giving the distribution of activity could be obtained by soiving a system of simultancous equations, with the volume of interest Giviciec into the same number of elements of volume as the number of uscfui countex pairs. The simultancous equations method proved to be impracticable, however, and other approaches were tricd. Of the several Uunem aproaches, only the one developed by Dr. Bozzo has been tested cinncally and it will be emphasized here. This method is described as iohows:
in orden to analyze the data, a mathematical model is developed, upon wisch the computer program for solution and for display of the results is based.

The mociel will involve only a plane of interest, the limits of which will be the circie denined by the detector array.

Within this plane any point can be represented by an expression $A c(i, j)$ where $A c$ is the activity at the pointi, j.

Whe total activity within the plane will be

$$
\text { Ioial Activity }=\quad \begin{gathered}
n \\
i
\end{gathered} \sum_{j}^{j} A c(i, j)
$$

Where n and F represent the upper limits of the area under consideration expressci in the incremental units L for n, and m for ρ.

Fhe complete distribution of activity in the plane can be represented in general form by the matrix

In cader to choose appropriate values for the limits n and ρ, as well as the practical vaiues for L and M, we study the different sectors defined by various pairs of counters.

In Siicie 4_{I} we can sec different sectors defined by randomly chosen pairs.

If we impose some conditions on the pair ordering such as a particular nurber of detectors apart, then we obtain several sets of counter pairs with some particliar sector defined by cach set.

Side 5 inustraies some of the sectors generated by considering different sets.

By geaeralizing this condition, we can oicisin ló unique sets of pairs, each one defining a paricular sector oi the piane in our model. This general condition can be expressed by:

$$
N=M+1 \rightarrow N=N+16
$$

where M_{i} is any detector suioscript (1---32) and N is any coincident detector subscript (1--32)

The diffezent sectors defined by the 16 sets are 15 concentric rings and a circie with zero radius at the center of our model.
\because orcer to obtain a further division in the individual rings, we now anaiyze now a jaicicular sector of a given ring is represented in a set̂ oî paizs.
fis we cain see in Figure 6, the condition
PiN, $N+9) \cong P(N+1, N+10)$ where $P(n, m)$ represents the counts an the pai: (n, m) is only satisfied by a single source if it is located in a paiticuià ring and within this ring in a paricular sector.

Tom nere we can carive the necessary conditions that will allow us to zeprescht locations of sources at 32 points within cach ring. Also from the preceding considerations we can derive two constants in our system:
$a_{j} \quad$ That the data contain at least 16 sets of counter pairs, each one related to a particular sector of the plane,
D) That each set contains 32 elements, each one related to a particular sector within a ring.

Furthermoie, the relation between the sectors defined by the different sets is an additive one.

It is convenient to rearrange the data matrix by a transposition of the elements from:

to:

$$
\begin{aligned}
\text { where } & n & =1--32 \\
\text { and } & n & =n+k \\
\text { wich } & k & =1--16
\end{aligned}
$$

The data máaix will contain some particular properties that will be useful in tiec reduction and solution for unknown distributions.
a) Fhe different columns will contain data related to particular concentrics circles of the plane. A special case will be the one where the location of the source is in the center of the plane. The following results (Slices $0,7,8$) show the relation between predicted and actual data in such a case.

Since the sectors formed by the counter pairs represented by the equations

$$
M=1,32-\left\{\begin{array}{l}
N=M_{1}+1 \\
\cdot \\
\cdot \\
\cdot \\
N= \\
N= \\
N_{i}+4
\end{array}\right)
$$

Co not actially cover the model as seen in Slide 9, we can reduce the data matrix to one of order 32×12.

The data observed by the detectors represent some distribution of activity within the model after undergoing a linear transformation by the matitix I .

$$
D=T . A .
$$

Furchermore, the observed data can be represented as a linear combinacion of known lioraries.

$$
\left.|\operatorname{Data} m, n|=\begin{array}{cc}
12 & 32 \\
n=1 & {\left[\lambda_{m=1}\right.}
\end{array}\left|L_{m, n}\right|\right]
$$

whe:e $Z_{m, n}$ is the matrix representing the afficiency factors of the detecio:s with respect to the coordinate position (m, n) in the model.

The $\dot{\lambda}\{m, n\rangle$ values are the muitiplicative constants associated with the various ibraries which are found to be contained in the data $\lambda(m, n)$ times.

The fiting algoritim searches for the $\hat{\lambda}$ values until the following condition is met.

$$
D_{i j}-\sum_{i=1}^{12} \quad \sum_{i=1}^{32} \quad \lambda_{i j}\left|L_{i j}\right| \ll \text { for all i and } j
$$

The resulting matrix $\lambda_{i j}$ then represents an activity matrix which is related to the initial distribution within the model.

$$
\left|\hat{\wedge}_{i, j}\right| \sim\left|A C T_{i, j}\right|
$$

3. Sceral Procecure

The numerical output from the scanning device is on paper tape and tiese data after a straight conversion to magnctic tape are input to the CIEAD program. The diata are in form in which the counts detected by each of the 1,024 possible countcr pairs are expressed uniquely. The cownts in any given (i, j) pair of detectors are directly related to the activity within the volume subtended by the pair as well as any random coincidence counts.
üse is made of a master liorary which contains individual distributions for 334 symmetrically-distributed point sources across a horizontal cut of a mociel head.

Since the physical racius of the scanning device is larger than the average head, a finite volume which is relatively free of any concentrated activity is introduced, a covering of which is obtained by considering those counters which are five or less apart. Thus the counts observed by counter pairs defined by the egs. $\mathrm{N}_{1}=1,32, \mathrm{~N}=\mathrm{M}+1, \ldots, \mathrm{~N}=1,32$, $N=M i+4$ can be ignored since they are not related to any real distribution
 Enchan voinhe s bithe head. (See Pigure 7.)

 $\because 2 \mathrm{Be}$ ents tite activity as scen by countens $(1, \dot{c})$ and position $(32,1)$
 asuviay see: by counte:s $\{1,7),(2,2\}, \ldots(32,0)$. Column twolve

 cne-to-cnc :atto has becn fourd aite sct aside in the (i, j) in position of
 coinai: ins toon processcd. The activity matrix at this point represents

 a sycuncusic distibution with a heavy concentation as the center was

 betra aeen oy tine vazious counter pairs, yielde fee diciniolition io: a
 matrik Topzesents a aistribution which would, ater a suitable
 aithe given (x, y) cocioinate in the mocia. Since we ase deasing with
 but coposite in disection to result, Thus we expect that, fo: a source
 $\left\{\begin{array}{l}6 \\ \prime\end{array}\right.$ to te ze:o, white eguin to one to: the pairs $13,27,\{2,10 ;$, etc.

 manion adout souzces not covered by our library.

The peocodure is then applied to the aemaming ll columns. After the aub-- Andus are compieted, the mutiplicative matrix contains the multipliers \therefore each of the subtacted libazies that are contaned in the initial data. Ence he initial ionaides were generated by considering the effects of uniform point soluces, cur activity matrix represents the input cata in uerns oi known point sources and their constant multipliers.

4. Sanacal Resuits

In cooperation with Dr. W. Sweet and Dr. S. Aronow at the Massachusetts Gone:al Zospital in Boston, a series of patients with symptoms of inteacraniai hesions were scarmed both by the standard two-detector method and when meuli-detector scanner.

A comparison of the results obtained with the two methods in thee zepresontarive patients is shown in Figures 4, 5, and ó. The conventionai scans are show in the upper halves of Figures 4 and 5 , and on the left in Figure ó. The malti-cietector results depict the distribution of activity in the planes acicaued by leter pairs (A, A') in the conventional scans. The subscripts Ancicare ine relative orientations. The height of the pyramids is proporFonat io the concentration of activity above the cut-ofílevel at the locacion o. ite base of the pyramid.

Figure ca siows the results obtained by both methods in a normai subject. Tae peaks that occur are attributed to concentration of activity in muscie masses oi the head.

Figure 5 is of a patient with a tumor in the right frontal lobe. Here the gy:amicis are clearly well within the skuil and the sharpest localization appears in the B and C planes. The scattering of pyramids in the A plane maicates a more homogeneous distribution.
an Sigure o a tumor in the right patietal lobe is clearly shown in the convenionai scan. The two planes scanned by the multi-detector method Diacket the affected volume, but the localization is incicated in the A piane.

The Figures shown of the cieical resuits are an atiempt to translate the macinemaucaíy-cerived results into a display that is immediately meaningiul to tine surgeon. In this process anl values more than a selected ratio beiow the peak value are suppressed. Further work is needed to determine the optmal cut-oin, and other forms of display are being considered. In any event, ine actuà numerical values are available ion comparison.

Another somewhat different mathematical approach has been developed. Dy J. D. Pincus (5) and programmed by N. Reese of the B. N. L. Applied Nąinematics Division. This program was not available in time for processing Ge cinical data reported here, so results with it cannot be disclissed. The méaoc may, however, be described very briefly as follows. A given chori (i, j) connecting two counters, i and j, is characterized by a unit normai vector, $X(0 ;$, and a isigned) cistance, p, from the center. The viewpoint is adopted unai the actually observed counts $C(i, j)$ are a sampling of a continuous count inncian. C $; p, G ;$. A Fourier series is used in an interpolation procedure to consüucture recuired continuous function. A final integration provides the Dasis for calculation of a fielc of weighted latice points which may be displayed aume:ically or as intensity variations on an osciilographic screen.

スミ尸ЕRENCES

 Deveicoment of a Position Scanring Procedure，Fourth Medical Symposium，IBNi，October 22－26，1962，Endicott，New York．

2．S．Nankowitz，J．S．Robertson，W．A．Higinbotham，and M．J． Koseãium， $2 R E$ International Convention Record，Pari 9，pp． 49－56，150́2．

3．T．Fin．Siveet and G．L．Brownell，Localization of Intracranial Lesion iy Scanting witi Posimon－Emiting Arsenic，JANA，157，1183， 1955.

4．Ż，Bagan，P．Benta，G．I．Erownell，and W．F．Sweet，Positron Seanziag with Coper－ós in the Diagnosis of Intracranial Lesions． ॐ̈．Ňe
j．J．D．Fincus，A Nathematicai Zeconstruccion of a Radioactive Source Densigf fon its Maduced Radiation Pattern．To be published．

Figure 1: Multi-detector positron scanner as used for locating brain tumors. The 32 NaI crystals are in one plane, but the photomultiplier tube assemblies are alternately horizontal and vertical to permit close packing.

Figure 2: Schematic relationship betweer orain tumor, detector antay, and coincidence recording equipment.

Figure 3: Zones of activity "seen" by different sets of detector pairings. The notation $N=M+A$ incicates that in the designated set the number of the second member of a pair is A greater than that of the first, mociulo 32.

$$
\begin{gathered}
\text { PATEENT MG:H-E.P. } 3 / 26 / 64 \\
\text { CUO4 DTPA-NOÑVIAL }
\end{gathered}
$$

A

Figure 4: Scars taken after injection of $C u^{04}$ DTPA in a normal subjec. Neither the conventionail scans (upper) nor the multi-detector scans (lower) show abno:malities of isotope distrioution, on significant locei concentrations. See text for explanation of of symbois used in muliti-cetector scan and for eelationships among the scans.

PATIENT MGH A.S. 8/20/64

$$
\mathrm{Cu}^{64} \text { DTPA - TUMIOR }
$$

Figure 5: Scans taken after tajection of Cu^{64} DTPA in a patient with a frontal lobe tumor. The cciventional scans were taken 1 hour after injection; the muiti-detector ones 24 hours later.

> Figure ó: Scans taken after injection of As ${ }^{74}$ in patient with a tumor in the right parietal lobe. İ hour afterwards for conventionai, left, anci 24 hours afterwarç for multi-detector, right.) Nuiti-detector laminal bracket the tumor, but localization is shown in the "A" section.

[^0]: * Research supposien by the U. S. Atomic Energy Commission.

