Some Comments on the Decays

$$
\text { of } \eta(550)^{*}
$$

M. Ve1tman** and J. Ye11in ${ }^{\dagger}$

Brookhaven National Laboratory, Upton, New York

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Asaumes any liablitises with respect to the use of, or for damages resulting from the use of any information, appariturs, method, or process disclosed in this report.

As used in the above, "peraon acting on behalf of the Commianion" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commisetion, or employee of auch contractor prepares, disseminates, or provides acceas to, any information pursuant to his employment or contract. with the Commission, or his employment with such contractor.


```
*Work performed under the auspices of the United States Atomic Energy
    Commission.
**
    Permanent address: CERN, Geneva, Switzerland.
† Address after October, 1966: Physics Department, University of
    Tel-Aviv, Tel-Aviv, Israel.
```


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

Various decay modes of the $\eta(550)$ are discussed. The relations, through SU_{3} and the Gell-Mann, Sharp, Wagner mode1, between the η-decay modes and the modes $\eta \rightarrow \pi \pi \gamma, \pi^{\circ} \rightarrow \gamma \gamma$ are investigated taking into account $\eta-\eta^{*}$ mixing. The present experimental values for the neutral branching ratios plus the shape of the $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz plot are shown to require a $25 \%|\Delta \vec{I}|=3$ contribution to the $\eta \rightarrow 3 \pi$ amplitude. The connection between a possible charge asymmetry in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$ and the branching ratio $\Gamma_{\eta} \rightarrow \pi^{0^{0}}{ }^{+} e^{-} / \Gamma_{\eta}{ }^{\text {all }}$ is investigated in the framework of a model proposed earlier by several authors. It is shown that there is no conflict between the existing data and this model. The Dalitz plot distribution of $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ is discussed under various assumptions about the properties of the interaction responsible for the decay.

1. INTRODUCTION

The decay properties of the $\eta(550)$ meson are of great interest because they provide an insight into the SU_{3} properties, isospin selection rules, and charge conjugation behavior of the strong and electromagnetic (e.m.) interactions. For example, the decays $\eta \rightarrow 2 \gamma$ and $\eta-\pi \pi \gamma$ contain information on octet and singlet couplings, and are mutually related by the Gell-Mann1 Sharp-Wagner (GSW) model. These decay modes may be employed to obtain informa2,3 4 tion on the total η-decay rate and on octet-singlet mixing. Conversely, as soon as we know the experimental value of the η lifetime, we may be led to a 5 better understanding of the radiative meson decays.

The decay $\eta \rightarrow 3 \pi$ gives us the rare and as yet unique opportunity of testing for the presence of $a|\Delta \vec{I}|=3$ transition in the strong interactions. (We assume, of course, $|\Delta \vec{I}| \leq 1$ for e.m. interactions.) The experimental information now available on the decay modes of $\eta(550)$ indicates the presence of a rather large amount of $|\Delta \vec{I}|=3$. Other more qualitative and less direct evidence points to a small admixture.

Further, the existence of a $\mathrm{C}-\mathrm{violation}$ in strong or e.m. interactions may reveal itself through a charge asymmetry in $\uparrow \rightarrow 3 \pi$. The I-spin properties of such a C-violating interaction cannot be deduced from one's knowledge of the branching ratio $\Gamma_{K_{L}} \pi^{0} \pi^{0} \mid \Gamma_{K_{L}} \pi^{+} \pi^{-}$, or the $\eta \rightarrow 3 \pi$ Dalitz plot, 10 the selection rule $|\overrightarrow{\Delta I}|=0$ for the C-violating interaction does not exclude a 25% admixture of $|\overrightarrow{\Delta I}|=3 / 2$ in $K_{L}-2 \pi$, because cancellation between the C-violating part of the $|\Delta \vec{I}|=\frac{l_{2}}{2}$ 11
amplitude and the mass-matrix is possible, and this effect would tend to make
the $|\overrightarrow{\Delta I}|=3 / 2$ mode relatively more important. Further, in a recently 12 proposed model of C-violation in e.m. interactions, the selection rule $|\Delta \vec{I}|=0$ was suggested, thus allowing $|\Delta \vec{I}|=0$ and 1 but not $|\Delta \vec{I}|=2$ in $K_{L} \rightarrow 2 \pi$ and in $\eta \rightarrow 3 \pi$. Thus, a large deviation from the rule $|\Delta \vec{I}|=\frac{1}{2}$ in $K_{L} \rightarrow 2 \pi$ combined with no $|\Delta \vec{I}|=2$ in $\eta \rightarrow 3 \pi$ would be positive evidence for the correctness of this point of view. It may be noted though, that a $|\Delta \vec{I}|=0$ transition in $\eta \rightarrow 3 \pi$ is highly suppressed due to angular momentum barrier effects.

13
Next, assuming that C invariance is violated in $\eta \rightarrow \pi^{+} \pi^{-\pi} \pi^{0}$ one can ask about the isospin behavior of the relevant interaction. A criterion for deciding this question, valid under certain general and very plausible assumptions, is suggested below.

In section 2 the consequences of SU_{3} and the GSW model are investigated, following the methods introduced by Dalitz and Sutherland. In section 3 we discuss $\eta \rightarrow 3 \pi$ and $\eta \rightarrow \Pi^{0} e^{+} e^{-}$phenomenologically, employing a model intro-14-17
duced by several authors. in Table 1.

As is well known, $T \rightarrow 2 \gamma$ and $\prod \Pi \pi T \gamma$ (The latter is assumed to go 3,5
 other by the Gell-Mann, Sharp, Wagner (GSW) model. In addition to the formulae relevant to this discussion, we will also derive, for complete4 ness, some formulae given elsewhere.

The following assumptions are essential:
(i) The physical $\eta^{0^{*}}(960)$ and $\eta^{\circ}(550)$ particles are mixtures of $S U_{3}$ singlet and octet states.

The sum of the squares of the mixing coefficients is one.
Most of the processes considered below have effective coupling constants which depend on two independent, SU_{3} invariant interactions. Some of these processes are related to each other by the GSW Model. This leads us to the assumption :
(iii) The GSW Model may be used to relate the ratios of SU_{3} invariant couplings. In accordance with the above we write:

$$
\begin{align*}
& \eta^{0^{*}}=\eta_{1} \cos \alpha+\eta_{8} \sin \alpha \tag{2.1}\\
& \eta^{0}=-\eta_{1} \sin \alpha+\eta_{8} \cos \alpha \tag{2.2}
\end{align*}
$$

where we use tan $\alpha=0.19$, obtained from the observed η, η^{*} masses. We are interested in processes involving one pseudo scalar meson and 2 photons, or one pseudoscalar meson, a photon, and a vector meson. We assume the e.m. field has the usual octet transformation properties. For the vector mesons we employ the nonet representation suggested by SU_{6} and corresponding to a $\varphi-\omega$ mixing angle θ, with $\tan \theta \cong 0.8$. The SU_{3} invariant couplings are:

$$
\begin{gather*}
A \eta_{1}(V E)+M(P V E) \\
\text { and } \tag{2.3}\\
M^{\prime} \eta_{1} \quad(E E)+A^{\prime}(P E E)
\end{gather*}
$$

where P, V and E represent the pseudoscalar octet, the vector nonet, and the e.m. octet, respectively. One finds the results of Table 2. The second column of Table 2 gives the phase space factor with respect to $\omega \pi \gamma$. The last theree lines show the phase space relative to $\pi \rightarrow \gamma \%$. The last column gives the scanty experimental information available. 4
Using the GSW Model one finds:

$$
\begin{equation*}
\frac{A^{\prime}}{M^{\prime}}=2 \frac{A}{M} \tag{2.4}
\end{equation*}
$$

The quantities M and M^{\prime} can be determined from $\omega-\pi^{0} \gamma$ and $\pi^{0} \rightarrow 2 \gamma$ respectively. From the experimental upper limit on $F \eta^{*} \rightarrow p_{y}$ we derive the condition

$$
\begin{equation*}
\left|\frac{\mathrm{A}}{\mathrm{M}}\right|<3 \tag{2.5}
\end{equation*}
$$

The process $\varphi \rightarrow \eta Y$ is not very sensitive to $|A M|$, so that the bound derived from the experimental upper limit on $\Gamma_{\varphi \rightarrow \Pi_{\gamma}}$ is probebly less trustworthy. One finds:

$$
\begin{equation*}
\frac{A}{M}<-0.36 \tag{2.6}
\end{equation*}
$$

corresponding to a branching ratio of 9% for $\varphi \rightarrow \eta_{\gamma}$. The value $\frac{A}{M}=3$ gives a branching ratio of 16%. In the following we will assume

$$
\begin{equation*}
-2 \leq \frac{A}{M} \leq 2 \tag{2.7}
\end{equation*}
$$

and compute the total $\eta_{\text {-width }}$ from this. Some support for this assumption comes from the observed $\eta-\pi \pi \gamma / \prod_{-2} \gamma$ branching ratio, as explained below. We find first, for $\frac{A}{M}=-2,-1,0,1$ and 2 using

$$
\begin{equation*}
\Gamma_{\Pi-\pi \pi T \gamma}=90.3\left(1-\frac{A}{M} \tan \alpha\right)^{2} \mathrm{eV} \tag{2.8}
\end{equation*}
$$

the values:

$$
\begin{equation*}
\Gamma_{\eta-\pi \pi r \gamma}=172,128,90,59,34.5, \mathrm{eV} \tag{2.9}
\end{equation*}
$$

and from these:

Total

$\Gamma \eta=3127,2327,1640,1072,627, \mathrm{eV}$ (from $\omega-\pi \gamma$)
Employing $A^{\prime} / M^{*}=2 \frac{A}{M}$ and the known $\pi^{0} \rightarrow 2 \gamma$ rate, we have

$$
\begin{align*}
& \Gamma_{\eta-2 \gamma}=143\left(1 \frac{2 A}{M} \tan \alpha\right)^{2} \mathrm{eV}: \tag{2.10}\\
& \Gamma_{\eta \rightarrow 2 \gamma}=442,272,143,66,8.2 \mathrm{eV} \tag{2.11}
\end{align*}
$$

and now:

$$
\Gamma_{\eta}^{\text {total }}=1525,940,490,187,28 \mathrm{eV}
$$

The above results disagree by a factor between 2 and 20 . To get somewhat more insight into the situation, we compute the $\eta \rightarrow 2 \gamma$ rate in the GSW Model, using $\Gamma^{F} \omega-\pi^{o}{ }_{\gamma}$ as input. Thus we first determine the $u \pi^{o}{ }_{Y}$ coupling constant:

$$
\begin{equation*}
g_{u \pi{ }^{o}}{ }_{Y}=3_{N} \sqrt{3} M=0.946 \cdot 10^{-3} \mathrm{MeV}^{-1} \tag{2.13}
\end{equation*}
$$

The rate $\Gamma \uparrow \rightarrow 2 y$ is then given by:

$$
\begin{equation*}
\Gamma_{\eta \rightarrow 2 \gamma}=\frac{g^{2}}{64 \pi} \quad M_{\eta}^{3} \tag{2.14}
\end{equation*}
$$

with:

$$
\begin{gather*}
\mathrm{g}=\frac{\mathrm{eM} \cos \alpha}{15}\left\{6-12 \frac{\mathrm{~A}}{\mathrm{M}} \tan \alpha\right\}=0.36=\mathrm{x} 10^{-5}\left(6-12 \frac{\mathrm{~A}}{\mathrm{M}} \tan \alpha\right) \mathrm{Mev}^{-1} \\
\mathrm{e}=\left(\frac{4 \pi}{137}\right)^{\frac{1}{2}}=0.303 \tag{2.15}
\end{gather*}
$$

In the case $\frac{A}{M}=0$ we find $g=2.17 \times 10^{-5} \mathrm{MeV}^{-7}$, and $\Gamma \uparrow \rightarrow 2 \gamma=386 \mathrm{eV}$, a
factor 2.7 larger than found via $\pi^{0} \rightarrow 2 \gamma$. This diserepancy is independent of A/M. The ratio $\Gamma_{\eta-1 \pi T Y} / \Gamma_{\eta \rightarrow 2 Y}$ however, is dependent on A / M.
We have

$$
\begin{equation*}
\frac{\Gamma_{\eta-\pi \pi \gamma}}{\Gamma_{\eta \rightarrow 2 \gamma}}=0.233\left(\frac{1 \frac{A}{M} \tan \alpha}{1-2 \frac{A}{M} \tan \alpha}\right)^{2} \tag{2.16}
\end{equation*}
$$

Experimentally this ratio is 0.19 , corresponding to $\frac{A}{M} \simeq-1$. The values
$\frac{A}{M}=1,2$ give 0.4 and 1.6 respectively.
The situation is now as follows: using the rate $\omega-\pi^{\circ} \gamma$ as input, the rate for $\pi^{0} \rightarrow 2 \gamma$ can be computed in two ways:

2.

$$
\Gamma_{\omega-\pi / 0 \gamma}{ }^{\text {GSW }} \quad \Gamma_{\Gamma 0^{\prime} \rightarrow 2 \gamma} \sim 19 \mathrm{eV}
$$

These two methods give identical results, but disagree by a factor 3 18
with the experimental result $\Gamma_{\pi}{ }^{0} \rightarrow \gamma \gamma=6.6 \pm 3.3 \mathrm{eV}$. It might be remarked that the GSW Model, applied to compute $\omega-\mathrm{p} \pi$ from $\omega-\pi)^{0} \gamma$, gives a result which 5
is a factor of 2 too low.
On the whole the situation is not very satisfying. It is not possible to pin down whioh experimental number it is that disagrees with the theory. For instance; $\Gamma_{\pi \rightarrow 2 \gamma}$ or $\Gamma_{\eta-a \pi T \gamma}$ may be low for some unknown reasón. The situation might become clearer if new experimental results for any of the decay rates depending on $\frac{A}{M}$ lecome avallable. (It would be quite helpful in this connection if the 1 imits on the $\eta^{0} \rightarrow p \gamma$ rate, the $\varphi \rightarrow \eta_{\gamma}$ rate or the η lifetime itself could be improved.)

From the above we conclude that the η-width will be somewhere between 3000 and 100 eV . Whether or not the GSW Model predicts correctly the 5
$\eta \rightarrow \pi \pi \gamma / \eta \rightarrow 2 \gamma$ ratio is a question that can be answered only if the ratio of singlet to octet coupling is known. Clearly, any order of magnitude estimate of η decay parameters, involving $\eta \rightarrow 2 \gamma$ or $\eta-\pi \pi \gamma$, cannot be trusted. A typical example is the estimate of c-violating effects in
$\eta-\pi \pi \gamma$. An estimate of the strength of the $\pi^{+} \pi^{-}$D-wave amplitude relative to the P -wave cannot be of any interest if the P -wave itself is not understood. Further, the GSW Model, while it may correctly prescribe the form of the P-wave amplitude, does not apply to the D-wave.

$$
\text { 3. } \eta \rightarrow 3 \pi
$$

We now discuss some phenomenological aspects of the 3π decay 19 of the η. The partial decay rate $\eta \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$ is given by

$$
\begin{align*}
& \Gamma_{\eta} \rightarrow \pi^{+} \pi_{-} \pi^{0}=\frac{g^{2}}{64 \pi^{3} M} \int_{y_{-}}^{y_{+}} d y \int_{x_{-}}^{x_{+}} d x F(y, x) \tag{3.1}\\
& y_{-}=m-M / 3 \\
& y_{+}=M / 6-1.5 M_{\pi}^{2} / M_{\eta} \\
& x_{ \pm}= \pm \frac{|\vec{p}|\left(\left(M^{2}-m^{2}-2 M E_{0}\right)^{2}-4 m^{4}\right)^{\frac{1}{2}}}{2\left(M^{2}+m^{2}-2 M E_{0}\right)}
\end{align*}
$$

where
and
$y=E_{0}-M / 3, x=\frac{1}{2}\left(E_{+}-E_{-}\right),|\vec{p}|=\left(E_{0}{ }^{2}-m^{2}\right)^{\frac{1}{2}}, M=M_{\eta}, m=M_{\pi}, E_{q}=$ pion energies. The segments of the Dalitz plot are the areas limíted by the lines $\mathrm{E}_{\mathrm{o}}=\mathrm{E}_{+}, \mathrm{E}_{\mathrm{o}}=\mathrm{E}_{-}, \mathrm{E}_{-}=\mathrm{E}_{+}$(Fig. 1). The function $\mathrm{F}(\mathrm{y}, \mathrm{x})$, normalized such that the x, y independent part is 1 , is the experimentally measured Dalitz-plot distribution. The dimensionless coupling constant g is supposedly of order $\alpha=1 / 137$, but turns out to be between 0.075 and 0.41 for $100<\Gamma_{\eta}<3000 \mathrm{eV}$, one to two orders of magnitude larger.

There is no experimental evidence for any resonant structure of $F(y, x)$ over the range considered here, and we may expand $F(y, x)$ in a Taylor series:

$$
\begin{equation*}
F(y, x)=1+a_{10} y+a_{01} x+a_{20} y^{2}+a_{11} x y+a_{02} x^{2}+\ldots \tag{3.2}
\end{equation*}
$$

If C is conserved $F(y, x)=F(y,-x)$. In integrating over the Dalitzplot the terms odd in x and/or y do not contribute. Neglecting terms odd in x, the data give a good fit to

$$
\begin{equation*}
F(y, x)=1-(0.96 \pm 0.08) y / y_{+} \tag{3.3}
\end{equation*}
$$

In view of the relation $F(y, x)=|A(y, x)|^{2}$, where $A(y, x)$ is the transition amplitude, we should have a contribution $a_{20} y^{2}$ if there exists a contribution $a_{10} y$. In this case the resulting quadratic term is $\geqslant 0.2, \mathrm{y}^{2} / \mathrm{y}_{+}{ }^{2}$. Of course, there could be additional contributions to a_{20} but experimentally all y^{2} terms seem to be very unimportant, and their effects on the total rate are $\lesssim 15 \%$.

Thus, independent of C-violation, the total rate is determined up to 15% corrections by the energy independent part of $F(y, x)$. This situation is very similar to the one encountered in $K^{+} \rightarrow 3 \pi$ and $K^{0} \rightarrow 3 \pi$, and in fact the structure of the $\eta \rightarrow 3 \pi$ Dalitz plot is quite similar to the structure of $\mathrm{K}_{02} \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$. There one finds the good fit

$$
\begin{equation*}
F(y, x)=1-(0.75 \pm 0.07) y / y_{+} \tag{3.4}
\end{equation*}
$$

This similarity is in agreement with the idea that the observed structure is due to 3π final state interactions. The K_{02} data strongly suggest that the 3π system has I-spin 1 , and the similarity noted above supports the usual idea that the decay $\eta \rightarrow 3 \pi$ obeys $|\overrightarrow{\Delta I}|=1$.

The transitions $|\overrightarrow{I I}|=0$ and $|\overrightarrow{\Delta I}|=2$ violate C, are thus antisymmetric in x, and we consider them below. To lowest order in the e.m. interactions we can have $|\overrightarrow{\Delta I}|=1$, but not $|\overrightarrow{\Delta I}|=3$. The $I=1$ state of 3 pions contains a totally symmetric part -corresponding to the I-spin structure $(\vec{\pi} \cdot \vec{\pi}) \vec{\pi}$-and a part that contains no symmetric piece ($\vec{\pi} \times \vec{\pi} \times \vec{\pi}$). Only the symmetric part contributes to the energy independent piece of $F(y, x)$, and we conclude that up to 15% the rate is determined by the symmetric $|\overrightarrow{\Delta I}|=1$ amplitude. From this one finds, including a factor 1.13 due to phase space correction for the pion mass splitting,

$$
\begin{equation*}
R \equiv \frac{\Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}}{\Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}}=1.69 \tag{3.5}
\end{equation*}
$$

An experimental deviation of more than $10-15 \%$ from the above would indicate the presence of a $|\overrightarrow{\Delta I}|=3$ contribution. We can write R as a function of the ratio between the $|\overrightarrow{\Delta I}|=3$ and $|\Delta \vec{I}|=1$ energy independent amplitudes:

$$
\begin{equation*}
R=6\left|\frac{\frac{1}{3}-\frac{2}{5} \lambda}{\frac{2}{3}+\frac{3}{5} \lambda}\right|^{2} \quad ; \quad \lambda \equiv \frac{A(\Delta I=3)}{A(\Delta I=1)} \tag{3.6}
\end{equation*}
$$

The present experimental value $R \sim 0.5$ gives $|\lambda| \geq 0.24$. A value $R=1$ requires $|\lambda| \geq 0.1$.

Here we wish to point out that at present there are no theoretical or experimental reasons for believing that an interaction with $|\Delta \vec{I}|=3$, and of e.m.
strength, is not present. It is a very ugly possibility, but one can say 21
nothing else. No data on nuclear transitions give information on this point, and the relation,

$$
\begin{equation*}
\Delta^{++}-\Delta^{-}=3\left(\Delta^{+}-\Delta^{0}\right) \tag{3.7}
\end{equation*}
$$

based on $|\overrightarrow{\triangle I}| \leq 2$, for the masses of the $N^{*}(1238) I=3 / 2$ multiplet, 22 has been used with a certain success for other purposes, but is not yet experimentally tested.

The experimental data indicate there may be a small C-violation in $\eta \rightarrow \pi^{+} \pi^{13}$ the C-violating amplitude obeys $|\Delta \vec{I}|=0$ or $|\Delta \vec{I}|=2 . \quad A|\Delta \vec{I}|=0$ amplitude, having an I-spin structure $(\vec{\pi} \times \vec{\pi}) \cdot \vec{\pi}$, is totally antisymmetric in all three pions. It does not contribute, therefore, to a_{01} or a_{11}. Let us now suppose that the series for $F(y, x)$ converges well, i.e., that $F(y, x)$ is a relatively smooth function without rapid variations in the energy range considered here, i.e. $\cong 84 \mathrm{MeV} . \mathrm{If}$ there are no resonances one customarily assumes in accordance with other observations, that variations of $F(y, x)$ are small if one restricts oneself to energy ranges of the order of less than, a few pion masses. This implies a rapid convergence of the Taylor series for $F(y, x)$. Thus, a $|\Delta \vec{I}|=0$ term can show up only if there are rapid variations or resonances associated with it. At this writing, there is no evidence for any P wave, or higher, $I=1$ di-pion enhancement in this region, and the
nearest resonance of interest is the ρ. We will assume in the following that final state interactions for the $|\overrightarrow{\Delta I}|=0$ and $|\Delta \vec{I}|=2$ modes are adequately described by inserting an intermediate ρ. (Fig. 2). This implies that the amplitudes for $|\Delta \vec{I}|=0$ and $|\Delta \vec{I}|=2$ are nearly in phase, as the Induced phase shifts are rather small.

A further fact of importance has to do with the convergence of the series for $F(y, x)$. Suppose that the C-violating interaction obeys $|\Delta \vec{I}|=0$. Barring strong P wave, or higher, enhancements, C violating effects will be very small. The e.m. interactions will induce a $|\Delta \vec{I}|=2$ part, i.e., a contribution to a_{01}. This contribution is obviously proportional to α, but due to the expected rapid convergence of the series for $F(y, x)$ its effects may be pronounced relative to the pure $|\overrightarrow{\Delta I}|=0$ part. Thus, a pure $|\Delta \vec{I}|=0$ C-violating interaction will not give rise to a well-determined interference pattern.

Conversely, a $|\Delta \vec{I}|=2$, C-violating amplitude contributes directly to a_{01}, and only small effects due to higher order terms in the series are expected. For an expression of the form

$$
\begin{aligned}
F(y, x)= & 1+a_{10} y+a_{01} x+a_{20} y^{2}+a_{11} x y+a_{02} x^{2} \\
& + \text { terms even in } x
\end{aligned}
$$

one derives

$$
\begin{equation*}
A_{16}+A_{34}=A_{25} \tag{3.8}
\end{equation*}
$$

where $A_{i j}=N_{j}-N_{i}, N_{k}$ being the number of events in sector k.

We conclude this section by giving in Table 2 , the result of some calculations exhibiting the features mentioned above. As effective Hamiltonian we take:

$$
\begin{align*}
H_{e f f} & =g \eta(\overrightarrow{\pi \pi}) \pi^{o}+g ' \partial_{\mu} \eta(\overrightarrow{\pi \pi}) \partial_{\mu} \pi^{o} \\
& +i g_{o} \eta\left(\vec{\rho}_{\mu} \partial_{\mu} \vec{\pi}\right)+i g_{2} \eta \rho_{\mu}^{3} \partial_{\mu} \pi^{3}+g_{3} \rho_{\mu}\left(\partial_{\mu} \vec{\pi} \times \vec{\pi}\right) \tag{3.9}
\end{align*}
$$

where the arrows and upper indices refer to I-spin. The $\pi \pi S$-wave scattering phase shift is presumably very large, i.e., g and g' will have large imaginary parts. Apart from the magnitude of the interference effect, the phases of g and g^{\prime} with respect to g_{0} and g_{2}. (The latter two are taken to be real in accordance with our assumption of ρ-dominance in the relevant final states.) are not of much relevance here, and we choose g and g^{\prime} to be pure imaginary. The magnitude of g' with respect to g is fixed by the experimentally determined linear dependence on the π° energy, i.e., y. Further we will set $g_{2}=$ $\pm 0.01 \mathrm{~g}_{\mathrm{o}}$, and we fix g_{o} so that an asymmetry of about 6% is obtained. One has then $g_{o}=6.5 \mathrm{~g}, \mathrm{~g}_{2}= \pm 0.065 \mathrm{~g}$. The case $\mathrm{g}_{\mathrm{o}}=0, \mathrm{~g}_{2} \neq 0$ is also shown. The combined data of reference 13 is listed in the last column of the table. The important quantities are X_{1} and X_{2}, corresponding to the left and right hand side of Eq.(3.8). Note that the world data are on1y 1.75 standard derivations away from $X_{1}=X_{2}$, thus not allowing any conclusion with respect to the validity of Eq. (3.8).

4. RELATION BETWEEN $\eta \rightarrow 3 \pi$ AND $\eta \rightarrow \pi \mathrm{e}^{+} \mathrm{e}^{-}$

If one assumes the transition $\eta \rightarrow \rho \pi$ is responsible for C-violating effects in $\eta \rightarrow 3 \pi$, then one may try, using the GSW mode 1 , to make a prediction for the rate $\Gamma_{\eta} \rightarrow \pi^{\circ} e^{+} e^{-}$Conversely, knowing the rate $\Gamma_{\eta} \rightarrow \pi^{0} e^{+} e^{-}$gives us information about the asymmetry in $\eta^{0} \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$. 17 Here we wish to show that such a connection depends very strongly on the momentum transfer dependence of the $\eta 0 \pi$ vertex. As the results have some practical consequences only if we assume $|\Delta \vec{I}|=0$ for this coupling, we will consider that case only. Furthermore we will assume that the ρ meson couples to a conserved current. The matrix-element for the process $\eta \rightarrow \pi e^{+} e^{-}$is then given by

$$
\begin{equation*}
A_{\eta \rightarrow \pi^{1}}^{0} e^{+} e^{-}=\frac{e^{2}}{5} f\left(k^{2}\right) \frac{m_{\rho}^{2}}{k^{2}+m_{\rho}^{2}-i m_{\rho} \Gamma_{\rho}} \frac{\left(\eta+\pi^{\circ}\right)_{\mu}}{m_{\eta}^{2}-m_{\pi}^{2}}\left(u_{e} \gamma^{\mu} u_{e}\right) \tag{4.1}
\end{equation*}
$$

where $\eta_{\mu}, \pi_{\mu}^{0}$ are the η and π° four momenta, $k=p_{+} p_{-}$and $e=\left(\frac{4 \pi}{137}\right)^{\frac{1}{2}}$: In our metric, \mathbf{k}^{2} is negative for timelike k. We take

$$
\begin{equation*}
f\left(k^{2}\right) \cong \lambda_{1}+\lambda_{2} \frac{k^{2}}{\mathrm{~m}_{\rho}^{2}} \tag{4.2}
\end{equation*}
$$

where λ_{1} and λ_{2} are dimensionless. The case $\lambda_{1}=0$ corresponds to zero charge radius for the $\eta \pi^{\circ} \gamma$ vertex. It was demonstrated in reference 17 that with $\lambda_{2}=0, \lambda_{1} \neq 0$ the experimental limit of 1% on $\Gamma_{\eta} \rightarrow \pi^{\circ} e^{+_{e}} / \Gamma_{\text {total }}$ leads to a maximum asymmetry of 3% in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$.

Let us denote the corresponding value of λ_{1}, leading to $\Gamma_{\eta} \rightarrow \pi e^{+} e^{-} / \Gamma_{\eta}^{\text {total }}$ $=1 \%$, by λ. Note that in this case the variation of amplitude over the Dalitz plot, necessary to obtain a nonzero contribution to $a|\overrightarrow{\Delta I}|=0$ transition, is obtained through the ρ-propagator. It is easy to see that the functions $f\left(k^{2}\right)=\lambda$ or $f\left(k^{2}\right)=\lambda \frac{k^{2}}{m^{2}}$ produce almost equally large asymmetries. On the other hand, setting $\lambda_{1}=0$ one finds that a value $\lambda_{2}=13.5 \lambda$ is needed to obtain the same branching ratio for $\eta-\pi^{0} e^{+} e^{--}$ as with $\lambda_{1}=\boldsymbol{\lambda}, \lambda_{2}=0$. Thus, if we assume a zero charge radius for the $\eta \pi \gamma$ vertex, the experimental limit on $\eta \rightarrow \pi^{0} e^{+} e^{-23}$ leads to an upper limit of about 10% on the charge asymmetry in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$.

5. CONCLUSION

In the foregoing the connection of the η decay modes, through SU_{3}, to other decays has been studied. We find that the branching ratio $\eta \rightarrow \pi^{+} \pi^{-} \gamma / \eta \rightarrow 2 \gamma$ depends on the ratio of singlet (A) and octet (M) coupling, and as a result values of A / M around -1 are expected. This, in turn, suggests a rather large η-width somewhere between 500 and 2300 eV . There is no value of A / M that fits all the available data. The known Dalitz distribution of the three pions in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ leads to a branching ratio

$$
\mathrm{R}=\frac{\Gamma_{\eta} \rightarrow \pi^{0} \pi^{0} \pi^{0}}{\Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}}=1.7(\pm 15 \%)
$$

An experimental deviation from this prediction implies the presence of $a|\overrightarrow{\Delta I}|=3$ interaction with strength of order 0.01 . The authors are aware of no theoretical or experimental arguments for or against the presence of such an interaction, except for its ugliness. A possible test is provided by the relation for the masses $\Delta^{A^{++}}-\Delta^{-}=3\left(\Delta^{+}-\Delta^{0}\right)$ of the $N^{*}(1238)$ multiplet. However, the similarity of the $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $K_{20} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz plots is seen as evidence against the presence of $a|\vec{I}|=3$ transition. We conclude that a direct experimental measurement of the branching ratio $\Gamma_{\eta} \rightarrow 3 \pi^{0} / \Gamma_{\eta} \rightarrow \pi^{+} \pi^{-} \pi^{o}$ is essential in this connection.

The I-spin properties of a possible C-violating interaction lead to predictions for the asymmetry pattern in the $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz plot. If the C violating interaction allows $|\overrightarrow{\Delta I}|=2$ then the relation (3.8) must hold to good accuracy; otherwise we conclude that there is a considerable C violating amplitude with $|\overrightarrow{\Delta I}|=0$ present. Further we find that using the model of reference 17 , we are unable to draw any useful information from the present experimental upper limit on $\Gamma_{\eta} \rightarrow \pi e^{+} e^{-} / \Gamma_{\eta}^{\text {total }}$, with respect to the magnitude of the asymmetry in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$. The relation between $\eta \rightarrow 3 \pi$ and $\eta^{*} \rightarrow 3 \pi$ is independent of form factor considerations, but on the other hand, many unknowns, such as different SU_{3} properties enter, and this problem is therefore not discussed here.

-18a-

ACKNOWLEDGEMENTS

Abstract

The authors would like to thank Dr. G. Kalbfleisch, Dr. N.P. Samios, and Professors H.H. Bingham and M. Schwartz for many discussions of the experimental situation vis-a-vis the $\eta(550)$. We are also grateful to Prof. Lincoln Wolfenstein for giving the manuscript a critical reading, and for giving us several helpful comments. We would also like to thank our colleagues in the theoretical group at Brookhaven for helpful discussions. The authors would like to thank Prof. Paolo Franzini for discussing his results with them prior to publication.

TABLE 1

$$
\begin{array}{lrl}
\eta & \rightarrow \pi^{+} \pi^{-} \pi^{\circ} & 25 \\
\eta \rightarrow \pi^{+} \pi^{-} \gamma & 5.5 & \% \\
\eta & \rightarrow 2 \gamma & 29 \\
\eta \rightarrow \pi^{\circ} 2 \gamma & 26 & \% \\
\eta \rightarrow \pi^{\circ} \pi^{\circ} \pi^{\circ} & 14.5 \%
\end{array}
$$

CAPTION

Branching ratios for the main decay modes of $\eta^{0}(550)$. We have used the charged/neutral ratio of Rosenfeld et al, and also the
 that compilation. The neutral branching ratios are from the experiment 6 of Di Giugno et al.

TABLE 2

Amplitude	Phase Space Factor	Experiment
$\begin{aligned} & A\left(\eta^{o^{*}} \rightarrow \omega \gamma\right)=A \cos \alpha+M \sin \alpha \\ & A\left(\eta^{o^{*}} \rightarrow \rho^{\circ} \gamma\right)=3 A \cos \alpha+3 M \sin \alpha \end{aligned}$	0.28 0.223	$<1 \mathrm{MeV}$
$A(\eta) \rho \gamma)=-3 A \sin \alpha+3 M \sin \alpha$	2.16×10^{-4}	
$A(\eta) \omega \gamma)=-A \sin \alpha+M \cos \alpha$	$\sim 10^{-6}$	
$A(\omega \rightarrow \pi \gamma)=3(3)^{\frac{1}{2}} \mathrm{M}$	1	1.3 MeV
$\begin{aligned} & A(\phi \rightarrow \eta \gamma)=(2)^{\frac{1}{2}}(A \sin \alpha+2 M \cos \alpha) \\ & A\left(\phi \rightarrow \eta^{\circ} \gamma\right)=(2)^{\frac{1}{2}}(-A \cos \alpha+2 M \sin \alpha) \end{aligned}$	$\begin{aligned} & 0.865 \\ & 0.38 \times 10^{-2} \end{aligned}$	$<0.3 \mathrm{MeV}$
$A(\emptyset \rightarrow \pi \gamma)=0$	2.3	
$A(\Pi \rightarrow 2 \gamma)=(3)^{\frac{1}{2}} M^{\prime}$	1	6.6 eV
$\begin{aligned} & A(\eta \rightarrow 2 \gamma)=-A^{\prime} \sin \alpha+M^{\prime} \cos \alpha \\ & A\left(\eta^{0^{*}} \rightarrow 2 \gamma\right)=A^{\prime} \cos \alpha+M^{\prime} \sin \alpha \end{aligned}$	67.3 358.2	$<0.6 \mathrm{MeV}$

CAPTION

The first column shows the amplitude for the given process as a function of the octet and singlet couplings of the pseudoscalar nonet to veator mesons, and also as a function of the 0^{-}singlet octet mixing angle α. The second column shows the phase space integrated over the simplest momentum dependence of the amplitude. The top 8 lines show the predicted branching ratio relative to $\omega \rightarrow \pi \gamma$. The bottom three lines show the same vs. $\pi \rightarrow 2 \gamma$. The experimental numbers are taken from Rosenfeld et. al., except for 18
$\Gamma_{\pi^{0} \rightarrow \gamma \gamma^{\prime}}$ which is taken from Stamer et. al.

TABLE 3

	$\mathrm{g}_{2}=0$	$\mathrm{~g}_{\mathrm{o}}=0$	$\mathrm{~g}_{2}=0.01 \mathrm{~g}_{\mathrm{o}}$	$\mathrm{g}_{2}=-001 \mathrm{~g}_{\mathrm{o}}$	Experiment
Segment					
1	7.72	8.32	8.3	8.34	8.44
6	7.70	7.09	7.09	7.09	7.16
2	14.41	16.88	17.65	16.1	16.3
5	15.88	13.41	12.7	14.1	150
3	27.41	28.31	280	28.6	28.65
4	26.88	25.99	26.0	25.75	24.4
$\mathrm{~A}_{\mathrm{S}}$	-0.92	7.02	8.0	6.1	6.77
X_{1}	0.55	3.55	3.0	4.1	5.5
X_{2}	-7.47	3.47	4.9	2.0	1.27

$$
\begin{aligned}
& A_{S}=N_{1}+N_{2}+N_{3}-N_{4}-N_{5}-N_{6} \\
& x_{1}=N_{1}+N_{3}-N_{4}-N_{6} \\
& x_{2}=N_{2}-N_{5}
\end{aligned}
$$

CAPTION

Using the Hamiltonian (3.9) we show the number of events, normalized to 100 , to be expected in each segment of the Dalitz plot, for various choices of the coupling constant. (See Fig. 1) The world data is shown in the last column and comprises 3079 events.

REFERENCES

1. M. Ge11-Mann, D. Sharp, W. Wagner, Phys. Rev. Letters 8, 261 (1962). For details see W.G. Wagner, Ph.D. Thesis, Cal Tech (1962), unpublished.
2.

S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
3. F. Berends and P. Singer, Physics Letters 19, 249, 616 (E) (1965).
4. R.H. Dalitz and D. Sutherland, Nuovo Cimento 37, 1777 (1965); ibid 38, $1945(\mathrm{E})(1965)$.
5.

For a detailed discussion of the application of the GSW model and SU_{6} to the radiative meson decays, see J. Yellin, Phys. Rev. 147, B1080 (1966), and J. Ye11in, Ph.D. Thesis, University of Chicago (1965) (unpublished).
6. G. DiGiugno et. al., Phys. Rev. Letters 16, 767 (1966); F.S. Grawford, L. Lloyd, and E.C. Fowler, Phys. Rev. Letters 16, 909 (1966). The authors are indebted to Dr. G. Kalbfleisch for many discussions dealing with the neutral decay modes of the $\eta(550)$ and related topics.
M.A.B. Bég, Phys. Rev. Letters 9, 67 (1962).
J. Prentki and M. Veltman, Physics Letters 15, 88 (1965). L.B. Okun, (unpublished) and "Possible Properties of CP-Violating Non-Leptonic Interactions" published in "High Energy Physics and Elementary Particles", International Atomic Energy Agency, Vienna (1965), p. 939; T.D. Lee and L. Wolfenstein, Phys. Rev. 138 B1490 (1965). S. Barshay, Physics Letters 17, 78 (1965); J. Bernstein, G. Feinberg, and T.D. Lee, Phys. Rev. 139, B1650 (1965); T.D. Lee, Phys. Rev. 140, B967 (1965).

REFERENCES

10. J. Prentki, Invited talk at the Oxford International Conference on Elementary Particles, September (1965).
11.

S. Weinberg, Phys. Rev. 110, 782 (1958).
12. T.D. Lee, Phys. Rev. 140, B957 (1965) and Lecture given at the Oxford International Conference on Elementary Particles, September (1965).
13. C. Baltay et. al., UCRL-16693, February 1966; Phys. Rev. (to be published) ; E.C. Fowler, Bull. Am. Phys. Soc. 11, 380 (1966); C. Baltay, et. al., Phys. Rev. Letters 16, 1224 (1966). The latter group reports a charge asymmetry of $7.2 \pm 2.8 \%$ in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$.
14. S. Glashow and C. Sommerfield, Phys. Rev. Letters 15, 78 (1965).
15. Y. Fujii and G. Marx, Physics Letters 17, 75 (1965).
16. M. Nauenberg, Physics Letters 17, 329 (1965).
17. B. Barrett et. al., Phys. Rev. 141, 1342 (1966).
18. P. Stamer, et. al., Phys. Rev. (to be published). This experiment gives $\tau_{\pi^{0}}=(1.0 \pm 0.5) \times 10^{-16}$ sec., using emulsion techniques. This compares well with the older value of von Dardel, et. al., Phys. Rev. Letters 4, 51 (1963) who, from their counter experiment, give $\tau_{\pi^{o}}=(1.05 \pm 0.18) \times 10^{-16} \mathrm{sec}$. The reader is referred to Table 6 of the paper of Stamer, et. al., for comparison with other experiments, some of which give rather different results. Note that the Rosenfeld compilation gives $\tau_{\pi^{0}}=(1.78 \pm 0.26) \times 10^{-16} \mathrm{sec}$. (A. Rosenfeld, et. al., Rev. Mod. Phys. 37, 633 (1965)). In the text we use the Stamer value.

REFERENCES

19. J. Prentki and M. Veltman, "Preludes to Theoretical Physics,", dedicated to Professor V.F. Weisskopf, ed. by de-Shalit, et. a1., p. 250 (North Holland Publishing Co.) (1966); T.D. Lee, Phys. Rev. 139, B1415 (1965).
20. J.S. Be11, Lecture given at the Oxford International Conference on Elementary Particles, September 1965 (unpublished).
21. The authors are indebted to Prof. C.A. Barnes, Dr. J. Weneser, and Dr. E.K. Warburton for several discussions concerning the possible presence of $|\Delta \vec{I}|=3$ transitions in nuclei. For a discussion of electromagnetic mass formulae in SU_{3} and SU_{6}, see S.L. Glashow and R. Socolow, in "High Energy Physics and Elementary Particles", p. 423, published by the International Atomic Energy Agency, Vienna (1965).
22. The figure of 1% comes from L. Price and F.S. Crawford, Phys. Rev. Letters 15, 123 (1965). We are now informed by Professor H.H. Bingham that the world data give an upper limit on the $\eta \rightarrow \pi^{\circ} e^{+} e^{-}$branching ratio of 10^{-3}. The authors gratefully acknowledge a great number of helpful discussions with Professor Bingham. See C. Baglin and H. Bingham, et. al., (to be published).

FIGURE CAPTIONS

Fig. 1 Lines of zero amplitude in the Dalitz plot for $\eta-\pi^{+} \pi^{-} \pi^{0}$ via a $|\overrightarrow{\mathrm{I}}|=0$ transition.

Fig. 2 Intermediate ρ model for $\eta-\pi^{+} \pi^{-} \pi^{\circ}$.

m

