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EFFECT OF THE TEMPERATURE O F  THE MODERATOR ON THE VELOCITY DISTRIBUTION 

OF NEUTRONS WITH NUMERICAL CALCULATIONS FOR H AS MODERATOR 

By E. P. Wigner and J. E. Wikins, Jr. 

ABSTRACT 

In this paper we set up an integral equation governing the energy distribution of neutrons that 
a re  being slowed down uniformly throughout the entire space by a uniformly distributed moderator 
whose atoms a r e  in motion with a Maxwellian distribution of velocities. The effects of chemical bind- 
ing and crystal reflection are ignored. When the moderator is hydrogen, the integral equation is re- 
duced to a differential equation and solved by numerical methods. In this manner we obtain a refine- 
ment of the dv/v2 law. 

* * * * *  

1. There a re  two particularly simple problems in connection with the energy distribution of 
neutrons that are present in a medium of finite temperature. In the first problem the slowing down 
is uniform throughout the entire space that is itself uniformiy filled with the slowing down material. 
In this case the neutron distribution is evidently the same over all space. In the second problem the 
neutrons enter a half space from one side with uniform intensity and diffuse into it. The question in 
this case is the density distribution of neutrons at large distances from the boundary plane of the 
half space and the exponential relaxation length of the neutron density. We shall be interested only 
in the first problem. 

somewhat complicated. These are the finite velocity of the particles with which they collide, the 
effect of the chemical binding on the scattering cross section, and finally the effects of crystal re- 
flection. We shall disregard the last two effects, and the calculation to be given will, therefore, be 
valid only in a monoatomic gas. Seitz and Goldberger are engaged in the study of the crystal effect, 
and Teller has made considerations on the effect of the chemical binding. 

velocity lies between v and v + dv, we proceed as follows. Let us denote the probability that a neutron 
with velocity v1 will acquire in unit length of time a velocity between v and v + dv by collision with an 
atom, by NasP_(v,vl) dv. Here N is the number of atoms per cm3 and us is the scattering cross 
section of the moderator. Hence the number of neutrons acquiring a velocity between v and v + dv in 
unit length of time is 

There are three phenomena which make the calculation of the energy distribution of the neutrons 

To derive an equation satisfied by N(v), where N(v)dv is the number of neutrons per cm3 whose 

W 

Ndv / asI)(v,vl) N(v1) dvl. 
0 

Let NasV(v) be the probability that a neutron with velocity v will be scattered in unit time, and Let 
Nosy be the probability that a neutron with velocity v will be absorbed in unit time. If we adopt the 
l /v law, this second probability will be independent of the velocity of the neutron. W e  further assume 
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that the scattering cross  section is independent of the velocity of the neutron. This is a valid assump- 
tion for  a moderator gas, since our results will be applied only in a reasonably close neighborhood of 
thermal energies. It is now clear that N(v) satisfies the following integral equation: 

Before calculating P and V we shall derive a property of the above equation that simplifies cal- 
culations greatly and also can serve as a check. Evidently equation (1) is satisfied by the Maxwell 
distribution if y = 0. This together with the principle of detailed balance permits us to give equation 
(1) a symmetric form. If we denote the Maxwell distribution of velocity by M(v) 

the principle of detailed balance reads 

Herein the mass of the neutron,is used as the unit of mass. It follows that 

= S(V,Vl) = S(Vl,V) 

is a symmetric kernel. Thus if we introduce the new quantity v(v) = N(v)/l/M?vs into the equation (I) ,  
we get the equation 

&v,vl) v(v1) dvl = [V(v) + y l  v(v) (4) 
0 

which has a symmetric kernel. 

temperature of the gas and also on the mass of its atoms. The calculation, although quite laborious, 
is entirely straightforward and gives for v1 < v 

2. The next task is to calculate V and the kernel P. Both quantities depend of course on the 

For v, > v it gives 

n 
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Herein 

where m is the mass of the atoms of the moderator in units of the neutron mass. I is the odd function 

For V we obtain* 

Equations (5) and (6) determine the quantities which occur in the integral equation (1). In the deriva- 
tion it was assumed that the scattering cross section g S  is independent of the velocity of the neutrons. 
This is a valid assumption for a moderator gas since (1) will be applied only in a reasonably close 
neighborhood of thermal energies. It was further assumed that the scattering is spherically sym- 
metric in the center of mass coordinate system. The physical significance of y is y = uav/ us where 
ua is the absorption cross section for the relative velocity v between neutron and atom-y is in- 
dependent of the latter. 

the thermal velocity. Let us denote therefore 
The equations (5) and (6) can be simplified considerably by measuring the velocity in terms of 

pv = x, pvl = x1 (7) 

and 

Then r is  the probability of absorption of the neutron while it goes one mean free path with the 
velocity corresponding to the energy kT. 

We then have 

and 

* V is also given by G.  Jager in Winkelmann's Handbuch der Physik (Bart , , 1906), vc 

( 8 4  

3, p. 698. 
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for x1 > x. We further have 

and the integral equation becomes 

l:(xyxl) 4x1) dxl = [ V(X)  + r 1 v (x). (9) 

Although the derivation of the expressions for P andlV is quite straightforward, it may be worth- 

V(v) is the probability of a collision of the neutron with an atom of unit cross section and the 

while to give a few of the intermediate steps to facilitate checking the equations. 

velocity distribution 

The probability f0r.a collision with an atom of velocity v2 is, if the neutron velocity is v, and the 
cosine of the angle between the directions of motion is p, simply 

vr =p + v22 - 2 w 2 p  

which is the relative velocity of the two particles. The number of atoms within unit velocity range at 
v2 is given by (lo), the probability that ,u lies between p and p + dp is 4 dp s o  that 

1 
00 

V(v) = / $dp 
-1 

dv2 Mm(v2) l/v2,v22-2vv21-L. 

The integration over p is elementary and gives 

When integrating this expression one must proceed with the two cases v2 < v and v2 > v separately. 
This kind of disjunction is characteristic also for the calculation of P. With this proviso, the integra- 
tion of (1Oc) can be carried out easily, and it gives (6). 

The calculation of P is more cumbersome. Collision of a neutron with the velocity v1 with an 
atom of velocity v2 gives a velocity between v and v + dv for the neutron with the probability 

- 

if v < Vmin 

if Vmin < < Vmax (11) 

if v > Vmax 

These equations express the familiar fact that, after the collision, the pobability is uniform in energy 
scale between the minimum and maximum energies. Herein, p is again the cosine between the direc- 
tions of motion of neutron and atom before the collision, 
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vmin = vc - mvr/(m + 11, 

vmax = vc + mvr/(m + I), 

J/v12 + m2v22 + 2mvlv2p (1W 1 
m + l  

and 
vc = - 

is the velocity of the center of mass of neutron plus atom, mvr/(m + 1) is the velocity of the neutron 
in the center of mass coordinate system. One derives (11) most easily by a geometrical argument. 
Now 1 8 

_P(V,Vl) = JhdP JdV2 Mm(v2)Vr _P(V; V ~ Y  

-1 0 (114 

- ( + m)2v II dp dv2 Mm(v2) (v12 + m2v22 + 2mv1v2~)+ 4m 

where the integration is to be extended over the region limited by - 1 < p < 1 and that vmin < v < v-. 
The integration itself is quite elementary. However, the domain of integration is quite complicated 
and is bounded in general by two straight lines and two parts of a hyperbola, if one introduces the 
variable 2 mvlv2p, for p. A number of cases has to be distinguished and the integration carried out 
separately over different parts of the domain of integration before one obtains (5) and (5a). 

We then have 
3. The kernel S is greatly simplified in the case m = 1, i.e. when the moderator is hydrogen gas. 

f iS(xyxl) = 4 I ( ~ ) e s ( ~  - 

-2 SV(X) = (2x + l/x) I(X) + e 

and the integral equation becomes 
.. 8 X 

4e-fx2 dxl I(x1)e 1 2  2x1 v(xl) + 41(x;eQX2 e-tx12 y(x1) dxl 

0 X1, 
(14) 

The S(x,xl) of (12) has the form of a Green's function of an ordinary second order differential 
equation. The integral operator of (14) is therefore the reciprocal of a second order differential 
operator. If one applies this operator to equation (14), it will itself be transformed into a second 
order differential equation. 

second order differential operator 
Without using the theory of the Green's function, one can proceed as follows. Let us find a 

d. + a(x) - + b(x) 
dx2 dx 

d2 L 1 =  - (15) 
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which gives zero if applied either to.I(xr eQx2 o r  to e-gx2. This condition gives two linear equations 
for the two unknowns a and b. One obtains 

- 2I(x) a =  
e-x2 + ~ x ~ ( x )  ’ 

In order to bring L1 into a self-adjoint form, one may multiply it with P-l where 

P = e-x2 + 2x1(x). 

This gives 

1 d2 21 d e-’ x2 - d 1 d emx2 x2 L = -  - - -  - + - - - - - - - + - - -  
P dx P dx p2 P d’ P2 dx P2 

(1 5a) 

If one applies either L1 o r  L to (14), the integral will give rise to two types of terms. Differentiation 
of the function before the integral sign gives zero. The other terms will contain no integral. Hence the 
integral equation reduces to a second order differential equation, the second derivative coming from 
applying L1 o r  L to the right side of (14). By virtue of these remarks, ofie sees  that any solution of 
the integral equation (14) also satisfies the differential equation 

where 

Since S(O,xl) = 0, we also have u(0 )  = 0. Conversely, any solution Y(X) of the differential equation 
(17) such that u(0) = 0 is a solution of the integral equation (14). The other solutions of (17) are, how- 
ever, not solutions of (14). The two solutions of (17) behave, at x = 0, like a constant and x itself. The 
former solution would give an N(v) that goes to zero as v, the latter-the one which we have to use- 
gives an N(v) that goes at v = 0 to zero as v2, which is the same way as the Maxwell distribution 
M(v) goes to zero. 

results. However, we found it more expedient to proceed as follows. We place 
4. It would be possible to discuss (17) in a general way and to use it directly to obtain numerical 

(19) 

so that we have 

- (p‘ /P)’ + W(x) - 47r-i [V(X) + r] -11 p = 0, p(0)  = 0, { 
observing that for x 2 0, V(x) > 0, so that V(x) + r # 0. W e  reduce the second order linear differential 
equation (19a) to a Riccati equation by making the substitution 



AECD - 2275 

which leads to 

Y = W(x) - 471-2 [ v + r] -1 - py2. 

The boundary condition p(0) = 0, together with p(x)f 0, implies that we have 

lim y(x) -x-  = 0. 
x=o { ?  

Conversely we obtain a solution p(x) from a solution y(x) of (20a) by setting 

X 

p(x) = p '  (0)x exp I [P(t)y(t) - t - I ]  dt. 

0 

The soiution y(x) of (20a) and (20b) may be written in the form 

1 4(1 + 5)x + (103 + 380 I L 364 6 ')x3 
y(x) = - - 

3(1 + *) 90(1 + 2 I )2 

+ ... , - (1163 + 6666 b + 13200 a + 8864 13@ 

945(1 + 2 

1 wh.re 6 = - fi r . We use this series to compute the values of y(x) for A = 0.1, 8.2 and 1 and for 
x= 0.1, 0.2, 8.3, 0.4, and 0.5. With these values of y we compute successively p ,  v and N, normalizing 
the functions so that N" (0) = 2. 

With the value of y(+) thus obtained we continue the function y(x) by numerical integration of 
(.loa). In order to decide how far  to carry the numerical integration, we now investigate the behavior 
of the solutions y of (20a) as  x approaches cv We use the following expansion of I(x) 

Neglecting terms involving e- 2 we see that 

1 X 
P(x) = e x ,  V(X) * x + 2x , W(x) 5-3  - 

F 
Hence (20a) becomes 

4x 2 j G y ' = x -  -nxy . 
2 +  + +  rx 

This has two solutions which a r e  finite at bb and which can be expanded in terms of inverse powers 
of x: 
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.... pry1* 1-- 2 + - 2 r  - ( 2 r 2 + 3 )  + ( 2 r 3  + 5 r )  - 
5 X 4 

X 
X 2 x  3 

These two series give the asymptotic expansions of two linearly independent solutions of (19a): 

p l = e x p j  y lPdx  = e x p ( $ ~ - 2 l n x - 2 f / x +  ....), (244 

p2 = exp 5 y2 Pdx = exp ( - 8 2  + 2 In x + 2 r / x  - ....) , (24b) 

For  the asymptotic behavior of the two linearly independent solutions of (171, this gives because of 
(19) 

(4x2 - 2f/X) l e  
IJ- 1Q - 
- 1  2 1 +r x-1 + 2x-2 

.(-fx2 + 2T/X) 
lJ = x  

1 +r x-1 + gx-2 

and for N 

(26a) 

It is evident from physical considerations that if y > 0 the slowing down at high energies, Nv2, cannot 
be zero. Hence in the asymptotic expansion of N at x = uo the coefficient of N1 cannot be zero. Hence 
the coefficient of pl in the asymptotic expansion of 1-1 also is not -ero. A s  a result, p1 gives the 
asymptotic behavior of p because for large x we have p2 4 p 
carry out our numerical integration only to a point xo at which t ie series (23a) gives the same value 
as the numerical integration. For x z x o  the ser ies  (23a) may be used to obtain values of y. In prac- 
tice it turns out that xo = 5 is a suitable choice. 

It follows that it is necessary to 

Having computed y in this manner for x h  0.5 we can compute p(x) by the formula 

X 

and then we can compute Y(X) and N(x). 

(1 + r /x)-2--which is within the accuracy of the expression in the denominator-we obtain, rein- 
troducing 4 s and the life time T of the neutrons, 

The asymptotic form of N at large x o r  large v is given by (26a). Replacing e-2p/x in this by 
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c 

: i  

Cv dv N(v) dv 
( N ~ ~  7 v 113 

where C is a constant. This shows that the deviation from the dv/v2 law arises at high energies not 
from the positive temperature of the atoms but from the absorption. It causes N(v) to become lower 
than the dv/v2 law would indicate. At  lower energies the Figures show that N(v) becomes higher than 
1/v2. This is the result of the finite temperature of the atoms. For T = 0, (27) is correct for all v. 
The constant C occurring in (27) is of some importance and may be evaluated directly from the values 
of N(x) previously calculated. If this be done it is possible to obtain a check on the computations used 
to find N(x) by calculating C in mother manner. The number of neutrons which a re  slowed down to 
velocities below vo is given, when vo is very large, by the formula 

bo 

vN(jl)vg2 dv - N U S  lim v2N(v) = 
C 

V V=m 2N2 oS2r3 
us 

vO’ 

Since vo is large, this is approximately equal to the number of neutrons that are absorbed at velocities 
below vo and in the limit as vo,approaches infinity, we have equality. Thus 

m 

Hence the constant C of the asymptotic expression for N(v) can also be obtained by integrating N(v). 
The integral was evaluated as follows. Replace v by x = Pv, so that 

w 

6 

The integral 5 N(x) dx = A may be computed by numerical integration of the values of N(x) previously 

computed. To compute B = 5 N(x) dx, we replace N(x) by an asymptotic expansion of the form 

0 co 

6 

1 

2 ~ 3  usi 73 [ x2 
- + ...... c s2 N(x) = (29) 

(which may be obtained by making more precise the reasoning which leads to 26a) and integrating 
directly. In this manner we get a linear equation 

A + B =  c P2 
2 ~ 3 , ~ ~  r3 ’ 

which may be solved for C. The constant C was computed in this manner for the three values of y 
previously mentioned, and it was found that they agreed satisfactorily (about 1%) with the values of C 
computed directly. 
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Our numerical results are summarized in the attached Figure which shows the graphs of 
1 
4 M(x) = x2e-x2 ( y  = 0) and N(x) for 6 = - 6 p y = 0.1, 0.2 and 1 respectively. This corresponds to 

values of 0.226, 0.452, 2.257 at kT energy. In the three latter cases, the straight line graph 

x2N(x) is also included, so that the deviation from the dv/v2 law may be visualized. 1 lim of - 
2 x=oo 

Figure 1. Graphs showing N(x) for fly = 0, 0.226, 0.451, and 2.257, and its asymptotic behavior for  
large X for = 0.226, 0.451, and 2.257. x is proportional to the velocity, X = 1 corresponding to kT. 
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