

A. H. Compton, Project Director

$$
\because \because \because
$$

Metallurgtcal Laboratory
S.K. Allison, Director

$$
\# * *
$$

PHYSTCS RESEARCH
E. Fermi, Division Director; E. P. Wigner, Section Chief

$$
\because \because 8+\theta
$$

SOLUTTO OF BOLTZSAN'S EGUATIOH FOR MONOESERGETC NETTROMS

F. P. Wigner

November 30,1943

* $\because *$

This report has been photostated to fill your request as our supply of copies was exhausted. If you should find that you do not need to retain this copy permanently in your files, we would greatly appreciate your returning it to TIS so that it may be used to fill future requests from other AEC installations.

Hellismicio

This document contaixeingethation aftecting the tatlonil delense of the Uptiphgres within the meating of the Espionage Act, 4.50 万0; 81 and 32 . Its tranctineme: or the revelationfot its contents in any me-. an unauthorized peran is probioniat is.

CLLSSFICLTION CANCELIED

This document is PUBLICLYRELEASABLE

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Abstract

The Eoltzman's equation is solved in the case of nonoenergetic neutrons created by a plane or point source in an infinite medium which has spherically symmetric scattering. The customary solution of the diffusion equation appears to be multiplied by a constant factor which is staler than 1 . In addition to this term the total neutron density contains another term which is important in the rieighborihood of the source. It goes with $1 / r^{2}$ in the neighborhood of a point source.

2

SOLUTTON OF BOLTZMAH'S ECUATION FOR HONORMERGETIC NEUTRONS
IN AN INEINTE HOHOGESEOUS MCDIUM

E. P. Wigner

1. The following represents a solucion of Boltzman's equation For nextens which do not change their energy during their diffusion in a matericl. The solucion can be easily obtajned on the basis of Placzek's work, which is also reproduced in A-21. The contente of the first part of the following note were also published by Bothe in the Zs. f. Physik.

We first consider \& plane source of neutrons at $x=0$.
Evidentiy, the angular distribution of neutrons will be independent of y add z and heve st every point axial symatry with respect to the X axis. The rumber of neutrons per unit volume for which the yelocity component in the X direction v_{X} 11es between $\mu \mathrm{v}$ and $(\mu+d, 0) \mathrm{v}$ will be denoted by

$$
\begin{equation*}
f(x ; \mu) d \mu . \tag{1}
\end{equation*}
$$

The density of neutrons at x is obtained by integration over the direction cosine μ

$$
\begin{equation*}
n=\int_{-1}^{1} \rho(x, \mu) d \mu=2 \bar{f} \tag{la}
\end{equation*}
$$

where \bar{f} is the average value of f over all directions of the velocity.
The Boltzman equation for spherically symmetric scattering is

$$
\begin{equation*}
\left(-\frac{v_{g}}{v} \frac{c}{\partial X}-\frac{v_{Y}}{v} \frac{\partial}{\partial y}-\frac{v_{z}}{v} \frac{\partial}{\partial z}-\sigma\right) f+\sigma_{s} \bar{f}+P / v=0 \tag{2}
\end{equation*}
$$

3

where σ_{0} and $\sigma_{\&}=\sigma-\sigma_{s}$ are tobal, scattoring and absorption erosa sectione per mit tolume of the nadiwn in when the diffusion occurs; p to the pholuction of pethrons per unt rolune and unit velochty renge. Tor en of the fom (2) one can mate fustead of (2)

$$
\begin{equation*}
\left(-\mu \frac{\partial}{2 x}-\sigma\right) x+u_{\varepsilon} \vec{x}+\frac{3}{2 v} c(x)=0 \tag{2a}
\end{equation*}
$$

The poduction te assumed in (2e) to ba one noutron par unti area of the $x=0$ plene, with aqual probability for ergry direction: there are $\frac{1}{2} \mathrm{~d} \mu$ neutrons produced per unit area with direction cosines batween μ and $\mu+\alpha_{\mu} \mu$.

In orier to solve (2a) we write

$$
\delta(x)=1 / 2 \pi \int_{-\infty}^{\infty} e^{i v 2} d y^{\prime} ; f(x, \mu)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum^{\infty}(x, \mu) d \nu \quad(3)
$$

Fruroducing thite into (2a) we obtain

$$
\begin{gather*}
\left(-\mu-2 x-\sigma^{r}\right)+\sigma_{s} r+\frac{1}{2 v} e^{2 \nu}=0 \tag{4}\\
x_{y}+\frac{1}{f_{1}}(x, x) d \mu
\end{gather*}
$$

Fe try the assumption

$$
\begin{equation*}
f_{0}=a_{1}(\eta) e^{i \nu} \tag{5}
\end{equation*}
$$

Heren, * the cosine of the angle butrean the velocity or the neubron and the x dirention. This gives us for a the equetion

$$
\begin{equation*}
-i \mu \nu a(\mu)-\sigma a(\mu)+\sigma_{s} \vec{a}+1 / 2 v=0 \tag{Fa}
\end{equation*}
$$

whence we obtain

$$
\begin{equation*}
a(\mu)=\frac{1 / 2 v+\sigma_{z} \bar{a}}{\sigma+i \mu \nu \nu} \tag{Sb}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{a}=\frac{1}{2} \int_{-1}^{1} a(\mu) d \mu=\frac{1}{4 v} \int_{-1}^{1} \frac{1+2 v \sigma^{-} s^{-}}{\theta+1 \mu \mu} d \mu=\frac{1+2 v \sigma^{2} s^{2}}{2 v v} \operatorname{arctg} \frac{v}{\sigma} \tag{Sc}
\end{equation*}
$$

In order that the above solution be self-consiatent, we must have, therefore,

From this and (5) we obtain

$$
\begin{equation*}
\operatorname{2viv}=2 \operatorname{va}^{i \nu x}=\frac{e^{i v x}}{2 \eta-\sigma_{s} \ln \frac{\sigma+i v}{\sigma-i v}} \ln \frac{\sigma+i v}{\sigma-i v} \tag{ba}
\end{equation*}
$$

and (se) (6) and (5) give

$$
\begin{equation*}
f_{i}=\frac{1}{z v} \frac{e^{1 v x}}{\sigma+i \mu i r} \frac{2 i \mu}{2 i \gamma-c_{s}^{\ln \frac{\sigma}{\sigma} i v}} \tag{6b}
\end{equation*}
$$

This finally dives for in the case of a plans source because of (3)

$$
\begin{equation*}
f\left(r_{1}, \mu\right)=\frac{1}{4 \pi v} \int_{0}^{\infty} d v \frac{e^{i v z}}{0+1, r v} \frac{1}{1+\frac{1 \sigma_{s}}{2 v}} \text { in } \frac{1+i v}{\sigma-1 v} \tag{bc}
\end{equation*}
$$

and for the ricusity of neutrons we have from (ba)

$$
n=2 \vec{f}=\frac{1}{2 \pi v}-\int_{\omega}^{\infty} d v \frac{S}{21 v-\sigma_{B} \ln \frac{\sigma+i v}{\sigma-i v}} \ln \frac{\sigma+3 \nu}{\sigma-i \nu} .
$$

Or course, one cen wite $2 i$ arctg v / σ for $\ln \frac{\sigma+i \nu}{\sigma-i v}$. The cnalysis so far clasely follow\& Pleczek'e work.

Thics is Bothe's reault. In order to bring it into a more suitable fom which also shows the esymptotic behavior, the derivation of which was the subject of A-21, we push the path of integration path toward the roper part of the positive imaginary axis. Evidantly if the Inginary part of x is infinita, the integrand vanishes for positive x. However, the integrand has two singularities in the upper half plane, one where the deroninator under $e^{i v x}$ vanishes and the other one at $r=1 \sigma$. hs a result of the cefomation the path of integration will becone as indiceted in Figure 1. The firet singularity (atio) is a pole and corresponds to the velue of w, which is itimes the macroscopic absorption coefficient given in A-21. The other one is an essentigl -ingularjty. The contribution to the first part can be easily calculated and oxpressed in a closed form. It fe for $x>0$

$$
\begin{equation*}
n_{I}=I \frac{x}{2 \sigma_{a}^{v}} e^{-i x} ; I=\frac{2 \sigma_{a}}{\sigma_{3}} \frac{\sigma^{2}-x^{2}}{x^{2}-\sigma_{a}} \tag{7}
\end{equation*}
$$

In this 2 is the value of m / i for wich the denmeinator vanishos. It is, therefore, glven by the equation

$$
\begin{equation*}
2 x=0_{5} \ln (0+26) /(3-x) \tag{7a}
\end{equation*}
$$

According to tr-2, it is olosely approximated by the exprestion

$$
\begin{equation*}
x=\sqrt{3 \sigma_{a}}\left(1-2 \sigma_{a} / 5 \sigma\right) ; \quad \sigma_{a}=\sigma-\sigma_{s} \tag{7b}
\end{equation*}
$$

Figure 7

The contribution of the second part carnot be expressed ln a closed form Because the singularity is essential. However, it can be expressed as a real integral if ope Introduces a variebio along the imaginary axis. It is with $\eta=i 0(1+\eta)$

$$
\begin{equation*}
n_{n}=\frac{2}{2 \pi v} \int \operatorname{sid\eta } \frac{e^{-\sigma(1+\eta) x}}{-2 \pi(1+\eta)-\sigma_{e} \ln \frac{-n}{2+\eta}} \ln \frac{-n}{2 n \eta} \tag{6}
\end{equation*}
$$

Where the petty of integration corresponds to the lop around is in Figure 1. It goes, for 7, from $\eta=$ co ar quad $\eta=0$ back to $\eta=\infty$. On the farce part of the path, in $\frac{-\eta}{2+\eta}$ rust be replaced by

$$
\ln \frac{\eta}{2 \cdot n}-1 \pi=-\ln (1+2 / \eta)-1 \pi,
$$

on the second part by

$$
\ln \frac{n}{2+\eta}+1 \pi=-\ln (1+2 / \eta)+1 \pi
$$

We have, altogether

$$
\begin{align*}
& =\frac{2 \sigma^{2}}{y} \int_{0}^{\infty} \frac{(1+\eta) e^{-(1+\eta) \sigma x} d \eta}{\left[2 \sigma(1+\eta)-\theta_{s} \ln (1+2 / \eta)\right]^{2}+\pi^{2} \sigma_{s}^{2}} \tag{Ba}
\end{align*}
$$

The first part of $n=n_{1}+n_{2}$, fee., n_{1} is the only one that is important at distances from the source natch ere larger then a men Area path. Its functional dependence on x is the game as given by the diffusion equation. However, tits absolute value is everyshere smaller by a factor

$$
\begin{equation*}
I=\frac{2 \sigma_{a}}{\sigma_{\varepsilon}} \frac{\sigma^{2}-x^{2}}{x^{2}-\sigma_{a}} \tag{ab}
\end{equation*}
$$

The reason for this "initial absorption" is the the density in the neighborhood of the source is greater (by n_{2}) thar given by the diffusion conation so that the absorption in the neighborhood of the source is also greater. As a result, fever neurons get away Iron the source than the diffusion equation would indicate. The initial absorption is plotted in

In order to calculate the second part of n, Le., r_{2}, it ia advisedly first to go over from the density distribution around a plane source n to the density distribution N around a point soured. This can be Bone by the woll-inowa erection

$$
\begin{equation*}
N(r)=-\frac{1}{2 \pi r} \frac{d n(r)}{d r} \tag{9}
\end{equation*}
$$

If this transformation is applied to n_{1}, etc., it only gives the customary solution of the diffusion equation multiplied by I, ie.,

$$
\begin{equation*}
N(x)=N_{2}(r)+N_{2}(r) ; \quad N_{7}(x)=\frac{T}{4 \pi} \frac{x^{2}}{x^{2} r} \theta^{-x r} \tag{10}
\end{equation*}
$$

The second pert becomes

$$
\begin{equation*}
N_{2}(r)=\frac{a^{3}}{\pi x v} \int_{0}^{\infty} \frac{(1-\eta)^{2} a n e^{-(1+\eta) \sigma r}}{\left[2 \sigma(1+\eta)-\sigma_{s} \ln (1+2 \eta)\right]^{2}+n_{s}^{2} \sigma_{s}^{2}} \tag{10a}
\end{equation*}
$$

This expression, as well as (82), shows that the second part of the density $\left(n_{2}\right.$ end $\left.N_{2}\right)$ is a sup of exponential, ail of them with positive coefficients. However, the relaxation length of all exponential .s are equal to or shorter then the mean res path, $1 / \sigma$. It does not seen to be possible to express a_{2} on N_{2} in a closed form, Tia coefficients of the different exponontials

$$
\frac{(1+n)^{2}}{4 \pi r} e^{-a(1+\eta) r}
$$

(nomeined so that the interred over e all space be ar) are given in Figs. 3 as function of $1+\eta$ for variole $\sigma_{s} / \tau=1-\sigma_{g} / \sigma$.
2. It appears rocsonable to approximate H_{2} by a single exponential which has the wight singularity at $r=0$

$$
\begin{equation*}
\mathrm{N}_{2} \approx \frac{1}{4 \pi r^{2}} e^{-r^{\prime} r} \tag{מ}
\end{equation*}
$$

Such fer approxtintion cant be very accurate since N_{2} contains not one bit an infinite range of exponentials. For π^{\prime} one can choose the value of $(1+2)$ er for when the novelized aponertist contributes mot to (BOC), A. E', the port the the curve of Ag. 3 here there

9

marima. The corresponding $I+\eta$ is given by the transcendental equation $2 \sigma(1+\eta)=\sigma_{s} \ln \left(1+2 / r_{7}\right)$ which gives for or

$$
\begin{equation*}
2 \sigma^{\prime}=\sigma_{s} \ln \frac{\sigma^{\prime}+\sigma}{\sigma^{\prime}-\sigma} \tag{11e}
\end{equation*}
$$

The formal similarty between this equation and that determining x (7a) is remarkable. The resulting σ^{\prime} / σ is given in Fig. 4 es function of σ_{a} / e (curve a).

An alternative procedure is to choose σ^{\prime} in such a way that the integral of (11) over all space have the right value. Since the production of neutrons is I per unft time, the absorption of neutrons also is 1

$$
\sigma_{a} v \int\left(N_{1}+N_{2}\right) 4 \pi r^{2} d r=1
$$

Frog this and (11) $I+\sigma_{a} / \sigma^{\prime}=1$ and

$$
\begin{equation*}
\sigma^{\prime}=\frac{\psi_{a}}{I-I} \tag{11b}
\end{equation*}
$$

follows. The $\sigma 1 / r$ corresponding to (21b) is the curve marked (b) in Fig. 4. For mall ofo the two curves in Fig. 4 are close to each other indicating that (11) is a reasonably good approximation in this cose. For large σ_{a} / σ, the σ^{\prime} of (IIb) becomes smaller than or which shons that the approximation is poor in this case.

The ebove formulee give a ropresentetion of the whole noutron density du to a poirt source. The first part of the density N, i.e. HI_{1}, is dominant at large distances fron the source (except if σ_{a} / σ is nearly one). The second part, N_{2}, doninates in the neighborhood of the source. As σ_{2} / σ approches 1, the nost probable exponentiel in k_{2} becomes the one with $\Rightarrow \theta^{-} \theta$ a th the smo tire, the exponent x of N_{1} also
aproaches $\sigma \approx \frac{10}{a}$ In this limiting case N_{1} and H_{2} have the sane exponential. However, N_{1} contains the factor $I / r, H_{2}$ the factor I / r^{2}. Since I goes, at the same time, to zero, the total M becomes in this limiting case $\left(4 \pi r^{2} v\right)^{-1} e^{-\sigma_{a} r}$ - as evident iron physical considerations. A third wey of writing (10a)

$$
\begin{equation*}
N_{2}(r)=\int_{\infty}^{\infty} \frac{e^{-Y r}}{4 \pi r v} \frac{\varphi^{2} d s}{\left(\xi-\frac{\sigma s}{2} \ln -\frac{\xi+\sigma^{r}}{Y-\sigma}\right)^{2}+\frac{\pi^{2} \sigma_{s}^{2}}{4}} \tag{20b}
\end{equation*}
$$

$[\xi=(I+\eta) r]$ can be obtained from (10b) by partial integration. This gives

$$
\begin{equation*}
N_{2}(r)=\int^{\infty} \frac{e^{-\xi r}}{4 \pi r^{2} v} \frac{d}{d \xi} \frac{\xi^{2}}{\left.\left(\xi-\frac{\sigma}{2} \ln \frac{\xi+\sigma}{\xi-\sigma}\right)^{2}+\frac{\pi^{2} \sigma_{s}^{2}}{4} d \xi . . .\right\} .} \tag{12}
\end{equation*}
$$

This integral, incidentally, converges for all r, including $r=0$ end thus shows the behavior of $N_{2}(r)$ for small r. It gives $N_{2}(r)$ as a sum of functions $e^{-\xi} / 4 \pi r^{2}$ with $\xi \geq \sigma$. The coefficient is infinite (but integrable) for $\xi=\sigma$, drops hence and goes to zero as ξ^{-3} for large $\%$. It stays positive for all ξ if $\sigma_{s} / \sigma>8 / \pi^{2}$, otherwise it becomes negaiive and approaches 0 for large from below. Since the second factor has a relatively sharp maximum in the neighborhood of $\}=0$, it seems reasonable to replace (11c) by a single $e^{-r i r} / 4 r^{2} v$ curve, the coefficient of which is equal to the integral of the second factor (i.e. equal to 1) and the o. of which corresponds to the center of mass of the same factor, i.e. is equal to

$$
\begin{equation*}
\sigma^{\prime}=\int_{\sigma}^{\infty} \xi \frac{d}{d \xi} \frac{\varphi^{2}}{\left(\xi-\frac{\sigma_{s}}{2} \ln \frac{\xi+\sigma^{2}}{\xi-\sigma}\right)^{2}+\frac{\pi^{2} \sigma_{s}^{2}}{4}} d \xi \tag{11c}
\end{equation*}
$$

It may be, in many onses, just as simple to use the aocurate formule (100) then any approximate expression The functions $x_{\xi}=e^{-\xi n / 4 \sim n o b e y ~ a ~ s i m p l e ~ d i f f e r e n t i a l ~ e q u a t i o n ~} \Delta f_{\xi}=\xi^{2} f_{\xi}$ which mekes it often possible to obtain the combined effect of a distribution of sources. If the source density is ρ, the equation $\Delta f_{\xi}-\xi^{2} f_{\xi}+$ $p / v=0$ gives f_{ξ}. This integrated over ξ with the weight factor appearing in (10b) gives then socond part" of the noutron density created by sources of the density P. Similarly, the "first pert" of the neutron density is in most cases most easily obtained by solving the equation $\Delta Y-x^{2} \gamma+\left(I x^{3} / \alpha q^{2}\right) \rho=O_{0}$ on the whole, one can say that the assumption of a single energy valuo makes it almost as easy to obtain the neutron density in an infinite honogeneous medium as it is to obiain the eleutric potential if the charges are given. It is much more difficult, however, to take into account the variation of onergy as is elso to oonsider a problen with two media.
3. The epproximete expreesions given ebove for the neutron density tempt one to try the following procedure: Take the path before the first collision into account rigorously and take the place Whoie the first collision occurs to be the source of neutrons which are to be treated by a difsusion equetion. Such a procedure deals with two kinds of noutrons, those which kave not yot suffered any collision and those which have already suffered a collision. The sources of the latter are more extorded than the original sources and it appears nore justifisible to treat them by means of the diffusion equation. The proeedure can be further generalizod by treating not only the first

12

but the first two collisions rigorously eto. Evidently the ebove method vill give more eccurate results in the neighborhood of the source than the straight application of the diffusion theory. It will be seen, however, that no matter how many coliisions one takes into acoount rigorously, the asymptotic behavior remains the same as in the straight dirfueion theory, i.e. does not contain the factor I of (10). Of course, ona can obtain a very good expression for the dersity at any point by taking into aocount sufficiently meny collisions rigorously, but no matter hov many collisions one treats this way, there is always a distance where the result becomes inaccurate. Let us consider the oese of a point source of unit strent th. The density before the first collision is ovidently

$$
\begin{equation*}
N_{f_{1}}=\frac{1}{4 \pi r^{2} v} e^{-\sigma r}=\int_{0}^{\infty} \frac{e^{-\xi r}}{4 \pi r m} d \xi \tag{13}
\end{equation*}
$$

The donsity, after the first collision $N_{\text {a }}$ will be ascumed to obey the equation

$$
\begin{equation*}
\frac{\sigma_{2}}{\alpha^{2}} \Delta N_{a_{1}}-\sigma_{a} N_{a_{1}}+\frac{\sigma_{a}}{\sigma} N_{D_{-1}}=0 \tag{14}
\end{equation*}
$$

One may be tempted to introduce a factor I into the last term of (14) (which would give the correct asymptotis behevior to $N_{a, 1}$) but this is not justifiable since, ovidentiy, the irfegral of o $\mathrm{N}_{\mathrm{a}} \mathrm{N}_{\mathrm{f}}$ must be equal to the integral of the production $\left(\sigma_{\Delta} / \sigma\right) N_{k / 1}$ One can solve (14) most easily by usime for $N_{\text {\& }}$ the last expression in (13) end writing for $N_{a_{1}}$

$$
\begin{equation*}
N_{a_{1}}=\int a(\xi) \frac{R^{-\xi}}{4 \pi \Omega w} d \xi+a \frac{e^{-x}}{4 \pi n N} \tag{14:0}
\end{equation*}
$$

Ons obtains in this way

$$
\begin{equation*}
N_{a_{1}}=-\frac{\sigma}{\sigma} \int_{\sigma}^{\infty} \frac{x^{2}}{\sigma_{a}} \frac{1}{\xi^{2}-x^{2}} \frac{e^{-5 r}}{4 \pi r r^{2}} d \xi+\frac{x^{2}}{\sigma_{a}^{\sigma}} \frac{e^{-x 2}}{4 \pi r^{2}} \tag{14b}
\end{equation*}
$$

The coefficient of (14a) is determined so that the Laplacien of $N_{a,}$ shell contain no ס-function at $\mu=0$. Hence, $N_{a,}$ has only a logarithmic singularity at $\Omega=0$.

The solution of the problem in the present approximation is the sua of (13) and (14b). Had we used the diffusion equetion right Srom the stert, the solution would have been only the last term of (14b). One sees that the present procedure gives a much more nearly correct result at snall distances. In particular, the density is $\sim 1 / 4 \pi n^{2}$ near the origin, as it is in the accurate solution. However, at large distances the behavior of the sum of (13) and (34b) is the ceme as thet of the solution of the diffusion equation, Comparison With (10) shows that it is too large by the factor $1 / \mathrm{I}$. Neither will this behevior chenge if one takes further collisions rigorously into ascount before going over to the diffusion equation: the neutrons which suffered their first collision at a point P will, even if another collision js taken into account rigorously, give the same density at large distances as in the foregoing treatment in which they were treated, from P on, by the diffusion equation. This holds for all points P end thus for the whole distribution. The reason for this surprising behevior is that the diffusion equation assumes a bias in the velocity distribution of the neutrons in the direction of decreasing density right from the stert. In reality, this bias develops only after a distaroe of about one nean free path.
-13
It may be worthwile to remark that the oaioulation of the first two sations could be carried out also in case of a not spherically symmetrio scattering. The exponent in N_{1}, i.e. K, has already been calculated in A-21 for the case thet the differential oross seotion contains, in addition to a conatant term, a term proportional to the cosine of the scattering angle.

He had ocoasion to derive and use the above results for the calculation of the multiplication constant of a water cooled pile. In this case, some of the neutrons are made thermal in the water and a oertain loss by initial absorption was to be expected. σ_{a} / σ is in this case ebout .01 , and thus much greater than it is in grapinite. However, figure 2 shows that the initial absorption remains quite small and amounts to only 8% oausing a loss in the total multiplication constant of less then . 02%.

\qquad $1+$ ．
\qquad \square ＋4

\qquad

\qquad

$\frac{74}{7+1}$

I
$\xrightarrow[7]{7 ?}$ －7 $\frac{17}{7}$

H7
\＃\＃
＋
W \#
ل
－-1

$$
\text { 午 } 7 \text { ワ }
$$

C$+$7
\＃ U
\＃
\＃
\＃W———————
（T）

