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ABSTRACT 
r 

Two independent methods are described for calculating the 

multiple scattering distribution f o r  projected angle scattering 

resulting when very high energy charged particles traverse a 

thick scatterer. The single scattering law for projected angle 

scattering is taken to be the Rutherford scattering law for pro- 

jected angle scattering modified at small angles by electron 

shielding and at large angles by a nuclear form f a c t o r  Tn( y f %  
I S 

which gives the effect of the finite nuclear size: The calcu- 

lations can be carried through for any reasonable choice of 2n 

i 

1‘ 

and have been carried through for two suggested choices of zn 
for the examples of fast p-meson scattering in 2 cm and 5 cm 
thick lead slabs, with good agreement for the two methods of 

calculation, The results are compared with the theories of 

MoliAre and Olbert, 
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Several multiple scattering theories have been published 1 2 3 4 .  ' 9 9 

----.-- .- -Y IC- -- - - - 
E, J, Williams, Proc. Roy, SOC, A169, 531 (1939); 

S, Goudsrrdt and J. L, Snunderson, Phys, Rev. s,, 36 (1940); 
H, S, Snyder and 147, T. Scott, Phys, Rev, " 6  -9 220 (1949); 

H, W, Lewis, Phys. Rev, 2, 526 (1950) .  

G. Molikre, Z, Naturforsh ?_a, 133 (1947); l a ,  78 (1948) 

S, Olbert, Phys, Rev. &J, 319 (1952); 

M, Annis, H, S. Bridge, and S, Olbert, Phys, Rev, 8q,, 1216 (1953) 

H, A ,  Bethe, Phys, Rev, 2, 1256 (1953) 
-.-A- ----..- - - "- -- -----.-.. .--- -.- I----------- ---- - * _-.-_ - -- - .- - -- 
which are concerned with the angular distribution of particles 

passing, with no substantial loss of energy, through a thick 

material for which the single scattering law is the Rutherford 

cross section mod.ified at small angles due to electron screening, 

In thia paper we shn.11 present two methods by which a 

multiple scattering distribution for pro.jected angle scattering 

can be obtained from more general single scattering laws than 

those already treated, We shall be concerned in particular with 

single scattering which is Rutherford for a wide middle region, 

but is modified both at large as well a s  at small angles. In 

scattering from atoms the modification at small  angles is due 

to electron screening, while at l a r g e  angles there can be modi- 

.. - . .~ ~ - - -  .. . . . . . . . . .. - . - - -  - -  
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fications due to additional forces ( as in the scattering of 

x mesons from carbon ) or due to the finite extension of the 

nucleus and the subsequent deviations from Coulomb* s 1.aw inside 

the nucleus,, We consider only the case where relatively small 

lf' are important so the approximation Cf ", sin X, tan 93 is 
appropriate e 

There has been a good deal of experimental interest recently 596 

- II__ PI_. -.. --.- ----.. - 
E, Amaldi and G ,  Fidecaro, Nuovo Cimento, 'j', 535 
W, Lo FJhittemore and R, P, Shutt, Phys, Rev. 88, 1312 (1952); 

(1.950); 

and P, To Trent, Proc. Phys. SOC. E, P, George, J, Le Reddhg, 

.- A66, 533 (1953); 

B, Leontic and A ,  W, Wolfend 

M, L,  T, Kwangara and G o  S, 6 
le, Phil, Mag. k4, lo91 (1953); 
Shrikantia, Phil. Mag: 44,1091 (1953) 

- -.--._r.__-. I ,c..c._, .-. - ..,. . .. II. .__. . ,- ..L. .-... _.. - ,.. ,. -.-......~-LI.~l---..I- .... .I ..-. - .. ... ,. - - 
in the multiple scattering of p-mesons, Experimental results, after 
being compared with the results of the Molie\re* and Olbert 3 

multiple scattering theories have been interpreted as indicating 

the existence of an. anomolous p-meson-nuclear interaction. -4nong 

the many difficulties arising in the interpretation of these experi- 

ments (see Appendix B), one of the most obvious seemed to be the 

absence of a relinhle estimato of the expected multiple scattering 

distribution from extended nuclei, 

In the Moliere multiple scattering theory the nucleus is 

treated as a point charge0 The single scattering cross section 

is taken to be the Rutherford c r o s s  section modified, at s m a l l  

page three 
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angles only, due t o  electron screening, This gives more scat- 

tering for large angles than would be expected from extended 

nuclei. In the Olbert theory an attempt is made to estimate 

the effect of the nuclear extension by multiplying the Molie\re 

projected angle single scattering law by a step function which 

cuts of f  a l l  scattering beyond A given projected angle 9 
This, however, gives a very great underestimate of the multiple 

scattering f o r  angles larger than Qd as for large angles 

Olbertts distribution f a l l s  o f f  as a Gaussian which soon is 

much smaller than even the coherent part of  the single scat- 

tering l a w ,  

g/R e 
0 

In what follows we shall outline two distinct procedures 

by which a multiple scattering distribution can be obtained 

from given single scattering laws, We deal with projected 

angle scattering as this is the usual experimental parametero 

Our second method could be extended to include the total scat- 

tering angle, Sections 2 and 3 describe the two methods we 
have developed for dealing with multiple scattering problems, 

The results of these two sections have been used to calculate 

the expected multiple scattering distribution of relativistic 

p-mesons (cp = 1 Bev) passing through 2 and 5 cm of lead, Agree- 

pent between the two methods is excellent, Appendix A contains 

a discussion of the single scattering cro,c1s section used for the 

above cnlculation, Appendlx B gives a review of the experimental 

situation with regard to p-meson scattering, 

I 

. .  
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SECTION 2. DESCRIPTION OF THE FIRST METHOD OF COMPUTING h/l(q] -- 
_I” .__ .. _-___ ”__ -.._______-II--Î ___--. --_ 

i .  

c 

i 

The first method to be described consists of folding together 

several simpler distributions in a manner somewhat analogous to 

the actual effect of successive layers of the scatterer, Although 

this method is simple in principle, it seemed on first inspection 

that it would be extremely tedious to carry through such folding 

operations, 

techniques described below were used, and we give a rather detailed 

This did not prove t o  be the case when the computing 

description of the procedure for this reason, 

The method is based on the observation that if f(9)dY , 
the probability of a single scattering through 7 to y+dy to 

one side in projected angle, is given, then the multiple scnt- 

ts?*inT distribution M( Cp ) is completely defined. (Note that f ( 7 
is not normalized to unity, but integration over all angles gives 

the average number of single scattorings in traversing the sample.) 

Furthermore, if the actual scattering s lab  were replaced by a 

series of consecutive slabs A, B, C having single scattering 

1337s f*(Y 1, f * ( T  1, ---- , where 
f( = fA( c f )  fB( -t ---- (1) 

’- then the same multipla scattering distribution resu1t.s on 

traversing all of the slabs in series. If MA((P), M B ( f ) ) , = - - -  

are the separate multiple scattering distributions for A, B,---- 9 

then M (  y )  results on folding MA, MB,---- together. 

page five 
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For the case of two components 
00 

N ‘p 1 = MA‘ 9, 1 q y - 7  )d y1 ( 2 )  
-00 

We require that only small 

and effectively consider 7 as ranging from -00 to +a e 
are  important 30 sin <p Z tan 5 y ,  

The distribution l a w  for small angles is just the Rutherford 

scattering law modified due to electron shielding. Following 

Moliere we represent this as 

where ? i s  the projected angle  and Fm is the  screening angle 

and Q =  ,!pt (N t/A) ( Z  e*/pv)2e 

thickness in atorns/crn2; p is the momentum of the incoming 

particle; 

Thomas radius” of the atom = 1.67 x 10 Z -1/3(e2/mec2). 

atomic number of the scattering material (the incident particle 

is taken to be singly charged) and me is the electron mass. 

Here (N t/A) gives the scatterer 

= k/p; v is the incoming velocity; a is the ”Fermi- 

2 is the 

The modification in the above distribution l n w  at larger 

above by yh( ? /  % ) to 
1 

angles is given by multiplying f (e, 
give 

TN ( ? /  E ) is discussed in Appendix A ,  
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The trick of this method consists of selecting some angle 

Sp’ which is a little smaller than the R, M, S, width of the 

gaussfan which approximates M ( Y )  at small angles, f A ( T )  is 
1 

then set equal to f( y )  for /?I< and = 0 for if‘/ >, y‘ 9 
I 

while f g ( q )  = 0 for Iy3I<q 
multiple scattering due to f, is given with good accuracy by the 

gaussian 

and = f ( y >  for 1911 3 ‘p‘ e The 

01‘ where 
( 5 )  

thick scatterer so we can simplify the resulting expression 

It is convenient to use the Farameter 2 = ?/% and re- 
f 

place f ( y ) ,  Q, qh , and 
B, ym, and y‘. 

2 cm l ead  scatterer, yo = 0,0304 radians = 1,74O, B = 0,126, and 

For the choice y r  = 0.5 w e  obtain (y)= 0.75, Jrm 
showing t h a t  t h i s  is a satisfactory choice for y‘.  

by the equivalent quantities g(y), 

For the case of a p-meson with cp = 1 Bev and a 

2 = 9,6 x lon4. 
t 

Then, f o r  
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whlfre the subscript 1 on MAL emphasizes that this method ,:ives 

the distribution in terms of y = ?/To, (The distribution ?unction 
M2(x) of the next section is given in terms of the angle 

characteristic of the Moli$re theory.) 

The multiple scattering distribution Msl(y) corresport.ding 
1 1  to single scattering angles)/ 9 = y yo 

following considerations, If we chose, not the full scatLerer 

thickness, but some sufficiently small fpaction O ( ,  then the 

single scattering law M g(y) for would have essentially 

unit weighting for no scatterings at all, and very s m a l l  weight- 

ings for all I y (  > y The corresponding multiple scattcring 

distribution would then be identical to the single scattering 

law for 

than one scattering, If this distribution is folded together 

with itself the multiple scattering is obtained for fraction 2N 

is obtained using the 

1 
1 y) > y 

? 

? 
IyI > y since there is negligible likelihood of  more 

of the total thickness, This distribution differs from the 

single scattering law by double scattering terms proportional to 

d y  

the multiple scattering law for thickness 2 4  is folded together 

wLth itself the multiple scattering law for thickness 4.C results, 
For 

double that for 20( of an amount double that of  the previous 

process (always neglecting higher order effects). Thus the net 

fractional correction from the single scattering law is 3 times 

that obtained in the first folding, 

so the fractional -- deviation is proportional to d<( 1, If 

? 

\ yl > y this distribution has a fractional_ deviation from 

Subsequent foldings for 8 ~ ,  

I 

i. 
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16c~ , 3 2 0 ~  , etc. have 1_" net fractional corrections (1 + 2 + 4) ,  
(1 + 2 -t 4 + 81, (1 + 2 + 4 I- 8 + 16),  etc. times that of the 

folding starting with thickness 4, These sums, 7, 15, 31, ...., 
would be 8, 16, 32,.., if we had started our folding process with 

an infinitesimal fraction of d, since going from o ( / Z  to & gives 

1/2, from d / 4  to 
(1/2 + l/4 + ..,.) = 1, 

rection after any stage of folding (neglecting higher order ef- 

fects) is just double the fractional correction obtained by the 

given step (i.ee comparing the multiple scattering for y # 0 for 
the given thickness with double that for half thickness), 

make use of the above feature to select as our  starting thickness 

a fraction 2"n of the total for which the fraction correction of  

m y  of the points in the first folding is not too large. This 

fractional correction is then doubled to account with good ac- 

curacy for the effect of not starting the process with an in- 

finitely thin sample. In the calculations f o r  2 crn lead and 

cp = 1 Bev it was found to be suitable to start with 1/8 the 

sample thickness, while 1/16 the sample thickness was suitable 

for 5 crn lead, The actual folding operations can be carried 

through with good accuracy by replacing the continuous f ( 

by a discontinuous function having values only at regular grid 

points, = 0.5, the region 0.5 

4 / 2  gives l/4, etc, f o r  the extra series terms 

We thus note that the net fractional cor- 

We 

B ? )  
T For the 2 cm lead case where y 

t o  O,7 was represented by 0,2 g ( 0 , 6 ) ,  etc. so values were de- 

=--- with a m , s i m u m  fined o n l y  at y = 0, -+ - 0.6, 0.8, + - l,O, j 
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= 6,O used in the calculations, For the 5 cm lead case we 
1 

used 7 It was found con- 

venient and permissible in these cases to neglect contributions 

to values of y # 0 where 

= 1.2 and 0.4 intervals to y = 10,O. 

\ y1 < y1 , (In cases where these contri-. 
butions are not negligible it requires only slight additional 

computing time t o  include them.) 

can best be illustrated in terms of the exampl- of the calculation 

for the 2 cm l e a d  case where we started with l/8 of the total 

thickness, Let l,/:(yj) be the lumped weights given to the grid 

points 0 ,  2 0,6, 2% 0,8,  ---- 9 -  +- 6,O to represent the single scat- 

tering law (0 .2 /8 )  g (9.1 for \yJ1 0,5, with 
J 

The remaining computing tricks 

A calculation sheet is now prepared in which values of y = 
j 

0 ,  0,2, O,4, ---- 6.0 are entered in the first column, The 

values of ,(O1/6yJ) are entered in the second column, A n  uncor- 

rected multiple scattering distribution a0,/4(y) is then com- 

puted where 

U s e  is,rnade of the fact that terms for yk # y / 2  appear 
j 

twice and we can write 

The calculations thus proceed as follows, In the third 



.- 

- .  

column the values of Rp/,(yj) are multiplied. by 

The first nwnber appearing in the column (y  = 0 here) is circled 
j 

J 

and is only counted once in the subsequent summing. The next 
/lo 

column entry starts at y J = 1.2 and contains products 17j 0 6 )  

J:(y - 0 - 6 ) .  Again the first term at y = 1.2 is circled, j j 
The next column starts at y = 1.6 and contains terms /($oo8) 

0 j 
- 0 , 8 ) .  Subsequent columns are formed similarly to R/,(yj 

produce a triangular array (requiring less than 1 hour of slide 

rule computing time). 

negligible but the terms for the first few negative values of' yk 

Contributions from negative yk are usually 

can be added if necessary. The rows are then added as indicated 

by Eq, 11 t o  give j1Ih(yj ). The function 

compared with 2 k:/8(yj) for y j # 0 and the differences are ad- 

ded to Xl4 (y  to obtain the corrected multiple scattering distri- 

bution l!/4(yj) . This is s i m i l a r l y  folded with itself to \,give 

lll2(yj), and a repetition gives j y i )  which correspondb to 

0 

x ; 4 ( y j )  is then 

MB1(y). 

0-4, ---- , 6.0. 

V a l i i e s  of MA1(y) (Eq.8) are computed for y = 0 ,  0.2, J 
The final M1(y) is just the sum of gaussisna 

centered at 0, I + 0.6, -. + 0.8, ---9 + - 6.0, ----. 

The value of M (y ) for any yj is computed using Eq. 12. For 
1 j  

y .  near 6.0 the contributions from yk > 6.0 must be estimated, 
3 n 

Fortunately the single scattering g(y) and k/(y,) are decreasing 

positive functions of y so the terms in Eq. 12 have a maximum for 

yk < ys and the remalnder can be estimated by noting the behavior 

page eleven 
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2 2 which, for b >>(y > can be w r i t t e n  approximately as <* 2 [l + (a2 + (y2) )/b2 ] 
2a ( 1 7 )  Ml(Yj) 2 MBl(Tj) e 

Inspect ion of the  f i n a l  r e s u l t  shows t h a t  t h i s  corresponds 
I 

again t o  2. sidewise displacement of MB1 by AZO.6A t o  generate 

Ml 5.n the examples considered, An a l t e r n a t e  method of sidewise 

displ-acement i s  obtained by not ing t h a t  MA,(x) MBL(y=x) has its 

maximum a t a  , about which it  resembles a displaced gaussian. 

This snggests t h a t  M ( y  ) is generated mainly from MB1(yk) i n  the  

region yk z yj - A  so  M1(y) should be generated using MBl(y - A ) 

multiplLed by e 

/ 

/ 
1 j  

1 

a (The l a s t  f a c t o r  i s  the  r a t i o  M A l ( d  ) /  
- &/2< g=> 

KA1(0),) These methods of generat inc the  approximate curve f o r  

M1(y) can be ca r r i ed  out rap id ly  by simple displacements on the  

sami-log p l o t  and a re  qu i t e  i n s t r u c t i v e  i n  giving i n s i g h t  i n t o  

the  behavior of  Ml(y)o ( y )  and gg(y)  

decreases  r a p i d l y  I f  the  choice of the dividing. angle y i s  in-  

creasedo This  i s  compensated la rTely  by a n  increase i n  the width 

of  the  gaussian MA1(y)s and thus i n  the required sidewj-se d is -  

placement A t o  generate  Ml(y) f r o m  MB1(y). It i s  of i n t e r e s t  

tha t  the second method (o f  the next s e c t i o n ) ,  a t  l a r g e  angles, 

j u s t  fo2ds I the  ,.-. si.nq2.e I ~ _ _  scat%er5ngu " -"* lqz a t  l a r g a  angles wTth a 

The d t f fe rence  between Y PI 
1 

1 
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\ gaussian characteristic of the Mol-lere theory, which is somewhat 

wider than MA1(y) for8 %he method of selecting y ? discussed above. 

Figs, 1, 2, and 4 show the characteristic functions when 
only elastic processes are included. It is seen that M1(y) re- 

, mains considerably greater than gB in a region where the Moliere 

curve is almost the same as the point nucleus single scattering 

curve. This is consistent with the above discussion since the 

logarithmic slope of the point nucleus g(y)  is much smaller than 

the extended nucleus g ( 7 )  so the required sidewise displacement 

is less, and the result of a given sidewise displacement is also 

less (using Eq, 15,) e When inelastic scattering is included, 

Figs, 3 and 5 ,  the curves approach t hose  f o r  a point nucleus, 

decreased by a factor 2-l at very large y. 

It is instructive to m a k e  a further comparison of this method 

and the second method ( o f  the next section) for y 2 4, say. This 

method folds together the small angle multiple scattering gaussian 

with the large angle m u l t i 2  -CY scattering distribution, while the ' 

second method essentially folds together a wider I- - - ,  gaussian and the 

l a w  for single -I scattering, The second method uses an expansion 

in terms of the parameter (4G)"' described below, neglecting 

terms of order (4G)'* and beyand, 

to neglecting multiple l a rge  angle scattering, so  the first 

method would be expected to be more reliable in cases where such 

effects are not ne@i@bl0. 

This very roughly corresponds 

AS a final point of interest, we note that the curve8 given 

in terms of y apply for a11 relativistic momenta where/ % 1, 

page fourteen 8328 15 
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In ,he example consicared, y is in units of 1.74 Bev degrees. 

Thus multiplying the absissa, and dividing the ordinate by 1874 

gives the distribution per Bev degree unit of ( c p ) e  This is 

shown by noting that f ( y  )d\Q g(y)dy so 

N t )  ZR ) (--.- 2 -2 
B = Q ' P o  =4'Ic (137p A 

= e 2 /mec2% 2,82 x 10113cm are independent of p fop 
roe 

(5% 1, 

SECTION 3. MODIFIED M O L I ~ E  THEOX 
---I- 

A,, Methods and Notation 

Po introduce the mathematical methods and notation used in 

th i s  s e c t i o n  we review the  de r iva t ion  of the general expression 

for the projected angle multiple scattering distribution for an 

arbitrary single scattering cross section, The derivation f o l -  

lows  that of MoliGre' and Olbert3 and applies when only relatively 

small angles a m  important i 

I 

If f ( ( Q  )d (Q is the probability that an incident particle 

undergo a single scattering through the projected angle p to 'f + d.y 

page fifteen 



R-83 

in its passage through the scatterer, then 

where Q = ( 5 r Y ) d y  , is the probability that the particle in 
-ad 

passing through the material has exactly n single, scatterings 

through the projected angles y19 T2, --- , yn, with angular inter- 
vals -d 9 1 9  d 4)29 --a, d 4Qn. smut is the probability that there 

be no other scatterings besides Tl, y2 --= qn. Since we are 

interested only in the final angle 9 we integrate over inter- 
mediate angles and put 

where P'Yqdq, is the probability that the particle emerge at 

a projected angle between Q1 and 47 + d Q  after exactly n scat- 

terings in the material. Tho factor l/nl occurs because in the 

integration over intermediate angles the n& permutations of' 

----yn have each been counted. 
c?l1 

Since $4. 18 holds for independent 

events the order of the n scatterings is irrelevant. 

Now introduce the Fourier representation of the single scat- 

tering cross section. Let 

page sixteen 
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(where g( $ ) is not related to g(y) of the previous section). PUP 

The integrations over 7.. --- a)n,l give delta functions which, 

after the G1 -0 -  fn-1 integrations yield 

The probability of a final projected angle after any number 
of scatterings is just the sum of the p cnk 9) dyover all values 

where we use the result from Eq, 21 

Ot iii Tf(7) d y  = g(0) 
-53 

F r o m  this it can be seen that the solution of the multiple 

scattering problem is equivalent t o  the evaluation of the integral 

in Eq, 2.4, 1 2  Moliere has given an evaluation of  this integral 

in the case of a screened coulomb field. The main trick in 

evaluating the integral lies in the observation that the existence 

of multiple Bcattering will smear out fine grained irregularities 

in the final distribution so the high Fourier components give a 

negligible contribution, 
\ Moliere used the single scattering law of Eq. 3 appropriate 

page seventeen 



for a'point nucleus with electron shieldingo We are'interested 

in the case where this is modified by the nuclear "'form factor" 

TN( y/ %) as in Eq, 4. From the discussion of Appendix A we 

note that 
/ far small I C P / Y O I  

Z-' for  lav3e l(P/TeI (our choice) (25) 

with the rapid change occuring when y -  2 yo* 
I Olbertfs method consisted of 'using a s tep  function for 3 

(Olbert ) (26) 

As mentioned in the introduction, this gives a very large under- 

estimate of the multiple scattering for 7 >>To where the Olbert 
function falls off as a gaussian while, for any reasonable form 

factor, the multiple scattering distribution lies above the 

single scattering distribution f ( y )  for large 7 ,  and thus far 
above the Olbert distribution. 

\ 

Bb First Derivation of M, (x) 

We first treat the multiple scattering from extended nuclei 

as a correction to the Moli&e theory by setting TN = [ I  +(gN-l>] # 

where (yN - 1) gives the correction term, This is the method 

used by Olbert for his step function, Such a treatment yields 

satisfactory results for small angles, but is inconvenient for 

page eighteen 
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large angles where a second method (described following this) is 

preferred, Eq, 4 is written 

The first integral has been treated by Moll$re7 and to a 

- . .--*.I .IC -.-------- 

See H, A, Bethe, Reference 4, for a discussion of this integrale 
-- 

sufficient degree of accuracy, is 

We now introduce the various parameters typical of the M o l i h  

theory, following the notation of Olbert. 

is independent of the momentum in the relativistic region. 
c 

Putting Eq, 29 in 28, and using 30 gives 
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Inserting this result into Eqb 24 we obtain in terms of the 

parameter X : 

M , ( s ) ~  A = dx (dTe e (32)  a r  

' 
f + + I ]  is* -.tab + A d  y 

d, 

-06 

We use  the fact that G is a reasonably large number (for moderate 

foil thickness G varies from about 7 t;o 15) and expand the portion 

of the exponential which is multiplied by (2G)'lB 

to first order in (20)", 

This gives, 

-00 

After performing the integrations over 7 this becomes 
z 

f' ( X  j 00 ) is the Molfare functionb 

curs in Eqs 34 must be evaluated numeriaally for a given x ( % ' / % o ) .  

The integral K(x) which oc- 

Eq, 34 is seen to have the form that was desired originallya The 

integral which contains the effect Of the nuclear extension oc- 

curs as a correction to emx /fi + & f'(x;&) 
Noli& multiple scattering distribution for a point nucleus in 

i 

2 
which is the 
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. .  

Introducing the Moli2ra parameters x, and 0 as defined ? 
Eq. 30 we get 

terms .of the projected angle parameter x. This corresponds to 

1 for a l l  x. If z ( x / x o )  is the Olbert step function, Eq.26, 

the correction term becomes the Olbert correction function K(x;xo) 

if use ia made of the fact that x0>)xm. 

Using Eq; 34 the multiple scattering distribution o a n  be 

determined for a particular z(y/g)b 
inconvenient for large values of x, because in that case K(x) 

becomes almost equal to fv (x; 00) and the difference between two 

large numbers must be used to give a s m a l l  one. For large values 

of x therefore it is better to treat the modified crosa section 

directly, rather than as a correction to the Moliare distribution. 

However, Eq. 34 becomes 

This is done t i8  below. 

C. SECOND DERIVATION OF M2(X) 1 
CI-C 

Consider again the Fourier transform of the single scattering 
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Eq. 36 of course is the Moliere-Fourier transform if 3 (xt/xo) = 1, 

In the case of the point nucleus this integral is evaluated through 

the observation that there exists an angle XI  = k at which the 
integral can be split such that 1(>7 xm but \CLC - ' 

?c 

is the frequency in the neighborhood of the main Fourier compon- 

e n t ~ . ~  Then in the integration up to K the fcctor (cos 7 x) - 1) 
can be put equal to a('*\ x * ) '  /2 and, in the integration from 

2 

where T6 

2)-3/2 becomes xfw3, Both integrations can  H, to-; (xt + xm 

be performed, and the splitting point cancels up to terms of 

the order K *, which are very s m a l l .  

In the case with which we deal  the argument 3.8 modified as 

follows, Again we split the integral at an angle where x 4< m 
XI z KC<'?;' 
the form factor given in Eq, 25 that 3M (xt/xo)?:l for small 
values of the argument xf/xo. 

chosen form of 3 (Appendix A )  gives 3, (1/4)S 0,96 for the 

2 cm lead case, and 0,93 for the 5 cm lead case. The integrd 

up t o  K is thus the same as in the case of the point nucleus. 

, Now we make use of the important property of 

In particular, for x' = l/4 our 

Performing the first integration and using the fact that xm44 K , 
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. -  
It is understood that K m e t  be much smaller than I. If 

now s ( y )  is put into Eq. 36a and the terms multiplied by (2G)’l 

are expanded in the same way as before,hthe integrations, the 

following result is obtained f o r  the first order in (ZG)”, 

a5-W 

and 

In i t s  present form Eq, 39 is convenient for calculation only 

for large values of x(x? 4 in the cm lead case) because in this 

case emX is so small that, the precise value of K does not influ- 

ence the result, 

2 

However, for smaller values of x the exact value of K is of 

importance. 

be correct y must be much smaller than 1. 

convenient to evaluate the final integral- of Eq, 39 numerically 

for very small values of K., 

In order  that the expansion of (cos *) xt-1) in Eq. 37 

However, it I s  in- 

8 

c 

--e .---.---- - 
We c a n  see more clearly what error ia introduced if l-(. is al- 

lowed to become large by doing the following. 

of Eq, 39 in powers of 2xh . Expand T ( x , h  

Then neglecting terms of order 
2 

~4 OF (x)\ 1 4 gives T(XJ x z A *  eox ( 2x2-1 1 

page twenty-three 



11-83 

In tegra t ing  N( &, X )  f r o m  K, t o  L and l e t t i n g  

i n  t h i s  i n t e g r a l  we obtain 

y( A/xo) = 1 
N 

But t h i e  i s  just the  same r e s u l t  obtained by l e t t i n g  )c = L i n  the  

Fourier  t r ans fo rm a (  31 
l a rge  introduces the same e r r o r  as would be introduced i f  the 

f i n a l  r e s u l t  were expanded i n  powers of 2 % x ,  

of Eq, 37, Thus allowing K, t o  become 

To overcome this  d i f f i c u l t y  one can use the  property of the 

much l a r g e r  than 

can be evaluated ana ly t i ca l ly  

f o r m  f a c t o r  that  x ( A / % 6 ) X l .  f o r  values of i\ 
7g’ e Then ‘/3 k JLA-’T(x,A)dA 

d, 

where L * 6 
p ~ a c t i c a b l e .  I n  doing th i s  i t  w i l l  be seen that  the dependence 

upon vanishes and a convenient and accurate expression f o r  

M2( X ) is-obtained, 

considered s m a l l  even i f  2 ) ( A  

T h i s  makes the  numerical i n t eg ra t ion  f A-371X,)03(A/xp)d. 
L 

We observe tha t  i f  L %l/4 than A can be 
-AS= i s  not. Thus w e  can expand e 

z 
taking only terms up t o  h . We evaluate 

mis, a f t e r  some l a b o r ,  neglect ing terms i n  o r  higher, gives 
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and 

Y I  _..--.. 
In our earlier communication 'by the same title, Leon Ne Cooper 

and James Rainwater, Phys, Revo 5, 1107 (19541, q(L,x )  was given 

as 2(2x2  

ficiently good approximation in the example there considered, 

1) q ( K )  = 2(2x2 = 1)b (K./1.26) which was a suf- 

-*1-.-*..,1 I .-..*t...-...--_c_-__. 

D, EVALUATION -..- "--..~-. OF TKE INTEGRALS 

The integrals \((x) and N(L, x) which occur in expressions 

for the multiple scattering distributions derived above can easily 

be evaluated by numerical means, 

evaluated conveniently for values of L = l/4 or 1/2, and for such 

N(L, x) in particular c a n  be 
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values of L Eq, 43 is accurate, 
on the momentum of the incoming particle but rather on) , which 
X 1 in the relativistic regiona Thus a single computation is 

sufficient for all relativistic momenta0 For different thick- 

These integrals do not depend 

nesses, or atomic number, the form factor is changed only through 

the change in Fo in z N ( % / % e )  , Table 1 gives the function 
T( %, )Xfor various values of F: at grid spacings of l./4 for 

Table 2 gives the values of the function q ( L , X  ) for L = l/4 for 
relevant values of X , 

-3 . 

K(x) and N(L,)() have been evaluated numerically for the 

2 cm and 5 cm lead cases for grid spacings of 

using Weddlels Pule. 

A x  = 1/2 and l /4  
Comparison of the results f o r  the two ' 10 

lo He Margenatl and G, M, Murphy, "The Mathematics Of Physics 

and Chemistry", D. Van Nostrand Company, Inc., New York, 

N, Y., 1943,, page 4-61, 
- 

grids shows the largest numerical errors occur for the small 

values of X where the correction term is unimportant. For 

larger values of X ( X &  3 )  the change in the numerical results 

for grid changes from 1/2 to l/4 is less than 2 percent. In all, 

the errors in the distribution due to numerical errors resulting 

from the integration, for a grid of l/4, appear to be l e s s  than 

1 percent. 

For very large values of K asymptotic formulas c a n  be 

developed, For a form factor which decreases asymptotically as 

8828 27 
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n-3  
const,/x the asymptotic expression is 

Such expressions give reasonably accurate results for x 3 6 ( 5  per- 
cent or better), The procedure described near the end of section 

2 is also readily adapted to this method for a quick graphical 

correction procedure to obtain M2(x) from the single scattoring 

law. For real atoms at the larger angles incoherent scattering 

predominates so that the form factor becomes zca/cpg) ”, Z’l. Then 

the multiple scattering distribution is given by theasymptotic ex- 

pansion of the Molie\re distribution multiplied by Zml. This is 

M2(x)dx 2 Z I 1 + % A2 + & + - - - -  7 
The results presented in this section have included only 

the first powers in (2G)”. 

order, but in view of the large uncertainty in the nuclear form 

f a c t o r  (Cp/‘?o) it w a s  not considered worthwhile at present to 

It is possible to obtain the next 

consider this term. 
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1 
APPENDIX A,, THE SINGLE S C A T T E R I N G  L A X  

The single scattering laws used in the calculations were ob- 

tained in the following way. The Rutherford formula, mudified at 

small angles due to electron shielding, is given in Eq, 3 following 
Molie\re. 

multiplied by a nuclear form factor ~ ( Y / ~ b )  which contain5 a 

When nuclear extension ia considered, this must be 

part representing elastic coherent scattering plus a part rep- 

resenting inelastic scattering ~(‘P/%,I = F: ( y / f i  + F; (9/% ): 
In principle, if the, nuclear wave functions were known exactly, 

one would prefer to calculate FN by EJXI exact phase shift malyais 

for spin 1/2 particles, and calculate FN by considering in detail 

all of the possible final states of the scattering systeme How- 

ever, the nuclear charge distribution, and the, nuclear wave 

C 

I 

functions are not known exactly, and, in fact, measurements of 

FN for fast electrons’’ are providing valuable information con- C 

R, W, Pidd, C, Lo Hammer, and E, C. Raka, Phys. Rev. 92, 11 

436 (1953) ;  

R e  Hofstadter, H, R, Fechter, and J. A ,  McIntyre, Physo Rev. _92, 

978 ( 1 9 5 3 ) ;  

Le  I, Shiff, PhysQ Rev. 92, 988 (1953); 

R, Hofstadter, Bo Hdm, A, W, Knudsen, and J, A &  McIntyre, 

Phys, Revo sp 512 (1954) ;  

D, R, Yennie, D, G, Ravenhall, and Re N, Wilson, ’Phys, Reve Ep 
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cerning the  nuclear  charge d i s t r i b u t i o n ,  In p a r t i c u l a r ,  mu- 

mesonic x-ray studies," f a s t  e l ec t ron  scattering'' and o the r  

l2 Val. L o  F i t c h  and James Rainwater, Phys, Rev. q2, 789 (1953); 
L,  N o  Cooper and E, M. Henley, Phgs, Rev. 92,  801 

John A, Wheeler, Phys, Rev. 92, 812 (1953); 

Do Le H i l l  and KO W, Ford, Phys, 9&, 1637 and 1630 (1954) 

(1953); 

- 

~ 

experimental r e s u l t s  12, l3 which a re  sens i t i ve  t o  the nuclear  

- ...I- - _- - --_I - I  

l3 F, B i t t e r  and H, Feshbach, :Phys, Rev. q2, 837 (1953); 

B, G o  Jancovici ,  Phys. Rev. s, 389 (1954); 
D, C ,  Peaslee, Phys, Rev. 5, 717 (19541 

charge d i s t r i b u t i o n ,  a l l  agree t h a t  t he  nuclear  charge d l s t r i -  

but ion i s  more compact than had previously been believed t o  be 

the  caseo 

r < R = roA1I3, a n d / ( r )  = 0 f o r  r > R  the  r ad ius  R has c l e a r  

m e a n i n g  and a b e s t  m a t c h  t o  the  above experiments g i v e s  r -1.0 

t o  1.2 x 10-13cm f o r  not  too  s m a l l  A. 

For a nuclear  charge d i s t r i b u t i o n  / ( r )  = 4 f o r  

O N  

Elementary considerat ions 

o f  quantum mechanics show t h a t  such a model cannot be s t r i c t l y  

cor rec t ,  a n d p ( r )  must be a continuous func t ion  o f  r. 

case, although t h e  d i f f e r e n t  experiments a re  not  always s e n s i t i v e  

in the  same manner t o  t he  shape of p (r), t he  eguivalent uniform 

model ro i s  usua l ly  taken t o  be that value which gives the  same 

In t h i s  

-J 

I_- I. - - -gCI-.- 

(r2> as f o r  t h e  non-uniform f ( r ) ,  P r i o r  t o  l n t e  1953 the  
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value'of rQ would have been considered to be "well known" and of 

magnitude 1.4 to 1.5 x 10113~& Thus a l l  of the comparisons 5,6 

between the experimental and expected multiple scattering distri- 

butions ueed th3.s larger value of ro. 
Until recently it has been customary to calculate FN C using 

the Born approximation which gives a linear superposition of 

the Bcatterlng amplitudes of the individual protons so the scat- 

tered internaity is of tLe form 
3 2  

(all 
G a / ( i l z e ' ? * f i . i  r;)lZ = z Ft f; 

j 

where A 2 is the acattering Intensity of a single proton, 3 q + +  k-ko 
-3 

represents the vector  momentum change In scattering, rj is the 
position coordinate of the jth proton in the nucleus, and the 

evaluation is for the ground state I i > of the nucleus. Thus 

is just the Fourier transform of the nuclear charge 

Y distribution. 

this gives 

For a uniform nuelear model, letting y =y/e]o 

* which gives diffraction minima at y = 4.tc9, 7.7, etc. Schiff" 
in particular has considered the form of Fw C (8) In Born approxi- 

mation for various simple analytic forms f o r p ( r ) ,  

FN is of the form of the square of a real amplitude term, and 

thus gives diffraction minima when the amplitude changes sign, 

For distributions sufficiently peaked in the center and with a 

gradual "tailinp@ff", the amplitude may not change sign and 

We note that 
C 

page thlrty 
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C FN will be a smoothly decreasing function of y, 
C seen from Eq, A1 that FN(0) = I and, by expanding the exponentials 

and using inversion symmetry throuya r = 0, that the leading term 

It is readily 

in the decrease of FN C for s m a l l  y depends on <r 2 > In this 

connection it is interesting to note that the widely used 

williams 

/%) = (L&/3) ( R / d  e n2r/' - ?  and <r2> = 3RYZ. Here 4 is the 
charge density for a uniform nucleus of radius R, Although 

Williams implied that this distribution closely approximates a 
uniform model, and it has been taken by others 6 as corresponding 

to the uniform model, it actually corresponds to a rather strongly 

peaked distribution about r = 0 with 

5 / 2  than for a uniform distribution, and thus a correspondingly 

more rapid initial decrease of Fi f o r  small y. For larger y it 

gives  a uniform decrease of Fg with y with an asymptotic form 

OZrIR) for which formula uses V ( r )  = ( Z  e2/r) (1 - e 1 

2 
(r > larger by a factor of 

16/y 4 for large y. 

asymptotic form 9/y 4 , which is below that for the Williams distri- 

In the region of large y Eq, A 2 ,  between 

minima, has a steady decrease with y which can be estimated by 

neglecting the sin y term and setting lcos 9 I Z 1 to give an 

bution. 

The detailed phase shift calculations of Yennie, Ravenhall., 

and Wilson, using various assurnedf(r), show that the shape of 

FN ( 9 )  is energy-dependent and significantly different from the C 

Born approximation value f o r  high'Z materials, In particular, 

the scattering amplitude is a complex number which circles the 

page thirty-one 



R-83 

value zero in the complex plane when "changing sign". Thus the 

"diffraction minima'' are largely missing, or are greatly reduced 

in magnitude compared to the Born approximation resultse This 

feature is a lso  apparent in the experimental results and had led 

to an initial "Born approximation interpretation'" that p (r ) must 
resemble an exponential distribution, The interpretation favored 

at the time of this writing is that/(r) can be fairly constant 

. 

for values of r containing most of the charge distribution, with 

a gradual dropping off  at the "surface". 

In view of the above results, and with the consideration that 
C we wish to choose a f o r m  f o r  FN which will not underestimate - the 

expected multiple scattering due to the known electromagnetic 

interaction of mu-mesons with protons in examining the results 

of experiments investigating possible "anamolous scattering" , 
C '  we have chosen the following form for FN6 For y = 0, 1, 2, 3 

we choose F: = 1,00, 0.82, 0.50, and 0.15 to approximate Eq. A2 

after the effect of the first diffraction minimum is "removed". 

A smooth curve through these points is then joined smoothly to 
Fg = 12/y 4 for y >/ 4, this being between the Williams formula 
and the value obtained above for a uniform distribution. In 

principle this should be applied to the cro9s section for total' 

angle scattering rather than for projected angle scattering as 

we do hore, The consequences of this approximation are discussed 

following the discussion of Fc. I 

The calculation of the inelastic scattering is quite dif- 
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*- 

ficulti to perform exactly.. Amrildi, Fidecaroi and MarianiL4 have 

.*....---- 

l4 E. Amaldi, Go Fidecaro, and F. Mariani, Nuovo Cimento I ,  

-~ 

carried out detailed calculations of the inelastic and elastic 

scattering expected, using a particular independent particle 

nuclear model. For incident particles of very high kinetic energy 

and cp '- 100 Mev), a Born approximation treatment similar to 

that used in the theory of x-ray scattering by atoms should be 

reasonably accurate and gives the result, as for x-rays, that 

1 - p  - .-I - -..- .. . - - 
l5 C. f. A. H, Compton and S. K. Allison, "X-rays in Theory 

and Experiment", Do V a n  Nostrand and Coo (19351, Chapter 3. 

C F; ", Zgl (1 - FN) times the form factor for the scattering by a 
single proton. This last factor must be included if the proton 

is not effectively a point charge (due, say, t o  meson cloud ef- 

fects). Amaldi etal14 have particularly emphasized this point 

and have calculated the expected effect of the proton "size"' on 

the basis of a simple model. Experimentally, however, it seems 

that the proton charge distribution should be treated as being 

conf'ined to a surprisingly small volume on the basis of electron 

scattering experiments, and, by inference, from the interpre- 

</ 

16 

------- --- -- 
I' J. A. McIntgre and R. Hofstader, Bulletin of the American 

Physical Society, Vole 29, paper I1 (also see paper 12) A.P.S. 
meeting at Seattle, Washington, July, 1954. 
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taatiOnl7 of the experiments on the neutron-electron interactione 

- -  
l7 See Le Ie Foldy, Phys, Rev. 8'J, 675 (1952) for a discussion 

of this subject and for reference to earlier papers,, 

The experiments show that the proton form factor is essentially 

unity for cp -200 Mev and at angles N 90°, so w e  take it to be 

essentially unity f o r  cpLp values considered in this paper. 

l a rge  enough value of c p y  this factor will eventually become 

important and require consideration, 

For 

If the gingle proton form factor is set equal to unity, the 
I above expression for FN can be understood by analogy with x-ray 

scattering where the "inelastic" scattering corresponds to modi- 

fied Compton elastic scattering, where the recoil momentum is 

taken up by a single (moving) electron rather than by the atom 

as a whole, The final states of importance correspond to recoil 

electron momenta centered about the photon momentum transfer, 

modified by the initial electron momentum distribution, which 

is given by the Fourier transform of the ground state wave function 

of the atom. For charged particles of kinetic energy and cp >> 
100 M w ,  and f o r  y > >  1, the final states of importance should 
ba attainable with moderate energy loss, so the expression for 

the total scattering intensity in a given direction can be written 

with fair accuracy by sumning over-all final states, keeping q, 

for a given angle, the same as in the elastic cases 

-+ 
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by closure, 

lead to the above quoted result for FNe 

For an independent particle model Eq, A1 and Eq, A 3  
a ,  

1 Thus we set 

The remaining point t o  be considered is the error intro- 

duced when @& is applied to the law f o r  projected (rather than 

total) angle scatteringo For a do/dR l a w  varying as y-' , the 
projected angle single scattering law is obtained by multiplying 

do/dR by T C c M )  , where C c n )  = x/2, 4/3, 16/15, Sn/16, and 32 /35  

In going from fi =4 for Rutherford scattering to v Z =  8, (which 

is obtained when the asymptotic form of FN multiplies the Ruther- 

ford scattering, c(n) is reduced by the factor of 5/80 This rep- 

resents an extreme situation since 

We note that the above effect can approximately be taken into 

C 

gN is more slowly varying. 

account by choosing row 10 percent larger than otherwise when 

applying yN to the law for projected angle scattering, In the 

# 

c 

examples we choose ro = 1.1 x 10 0'3 cm, corresponding to ro 

1,O x 

the exact form for the true TN(y),, we consider this approxim- 

ation to be adequate for the present,, 

cm for da/dO, In view of the uncertainty concerning 
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The interest of the authors in the multiple scattering theozrg 

was mainly stimulated by the possible consequences of a strong 

anornolous mu-meson-nucleon interaction on the interpretation of 

the mu-mesonic x-ray experiments, l2 cosmic ray experiments on 

the scattering of fast mu-mesons by nuclei suggested that some 

anornolous scattering exists, but the interpretation of the experl- 

msnts ape not completely unambiguous, and there is considerable 

disagreement on the magnitude and existence of the effect, when 

these experiments were analysed, the expected multiple scattering 

distribution for an extended nucleus was obtained by various ap- 

. proximations such as comparing the experimental results with the 

predictions of the MoliJre and Olbert theories, or by using the 

Willims theory. In all cases the old "large" nuclear size was 

used which gives <r > 2 twice that favorod by recent experiments, 

Thus the experiments were always analgsed on a basis that under- 

estimated the coulomb multiple scattering, Aside from the results 

of the experiments discussed belcw, we note that the mu-mesonic 

x-ray results indicate that any anornolous energy independent 

nuclear potential for the mu-meson can in its effect at most be 

equivalent to a slight change in the choice of the nuclear radius 

when calculating the coulomb interaction, This could not explain 

any significany portion of the anornolous scattering reported in 
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. -  some 

acti 

of the experiments. 

n by Annis et a1 18 
Also, 

9x1 be 

experiments on the nuclear 'inter- 

xplained without invoking any 

..,..-I- - 
' I  l8 M, h i s ,  H, C. Wilkins, and J, D, Miller, Phys. Rev. & 

- _ _  - -  _- 

anomolous interaction, Such an "anornolous interaction" would hslve 

to be strongly energy-dependent and thus only appear strongly a t  

high energies t o  explain the low energy experimenta, 

Amaldi and FidecaroS investigated the large angle scatteying 

o f  fast mu-mesons in the energy bands 200 Mev to 320 Mev and )320 

MeV, using a counter hodoscope. They compared the large angle 

multiple scattering in iron and lead, emphasizing the iron re- 

sults as far as anornolous scattering is concerned. About 5 x 10 5 

c 

incident mesons were counted and results for iron were consistent 

with no anomolous interaction, 

168 particles were incident and 3 scattered particles were ob- 
served in each energy band, 

Neve 
w-es placed above the apparatus t o  decrease the number of protons 

etce, 204, 914 particles were incident with one scattered count 

In their series 2 run on iron 249, 

When an extra 200 gm/crn2 of bricks 

in the lower energy band and none in the higher energy band, 

latter numbers are about the expected values for scattered protons, 

etc. with that amount of filtering, 

"anornolous scattering'' of - 4.5 x 10~29cm2/nuclee~ in the lower 
energy band and + 2.3 x 10'29cm2/nuclean in the upper energy 

band, These values assume isotropic scattering for the anomolous 

The 

They set an upper limit f o r  

* 
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part. 

Whittemore and Shutt investigated the multiple scattering of 

negative mu-mesons in 5 cm of lead for particles having 0.3 B e v 4  

cp < 3.1 Bev using two cloud chambers and a magnet for momentum 

analysis, Their sxperimental points essentially fall on the Scott- 

Snyder (MoliGre) curve for p q s  13 Bev degrees, with one point at 

17 Bev degrees a factor of about two below the Molisre curve (but 

with a large statistical uncertainty). From Fig. 5 these points 
would a l so  fall above our theoretical curve. The principle dif- 

ficulty in the interpretation of these results is the question of 

the certainty that only mu-mesons were involved. It is of interest 

in this connection that the later experiments were conducted under- 

ground, or, in one case, using 1 meter of lead absorber above the 

cloud chamber to assure greater beam purity. Also we should like 

to point out that mea~urements'~ on the scattering of cp - 200 Mev 

..--e- --I-..&..- .-- -"I- I --u -.-.--- 
l9 John 0 ,  Kessler and Leon M. Lederman, Phys. Rev. 94, 

689 (1954) 

x-mesons on Pb show differential cross sections for elastic plus 

inelastic scattering which are always -0.1 barn or larger. By 

contrast, the elastic scattering experiments using electrons of 

comparable momentum give differential CILOSS sections which are - 
section. This contrast is ad.mittedly extreme, but it emphasizes 

the importance of not underestimating the possible importance of 

5 barns at 120°, a factor of 10 below the %-meson cross 

a 
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.. small percentages of beam contamination in such experiments, 

The remaining experiments used greater absorber thickness at 

6ea level, o r  operated underground t o  minimize beam contamination, 

They have the common feature, however, that the momentum distri- 

bution of the incident particles was not measured directly, but 
' I  

was assumed known from other sourceso Any error in the assumed 

known momentum distribution would tend to affect all of these 

experiments in a similar fashion. The fact that the observed 
* 

scattering distributions are not given directly as a function of 

p? makes comparison of their final CUZIVBCS with our calculated 

N(  y )  difficult, 
George, Redding, and Trent measured the multiple scattering 

of penetrating cosmic ray particles in 2 cmlead plates at 60 m,w.e. 

underground using a counter-triggered cloud chamber, 

experimental arrangements were used for the triggering counter 

telescope involving 0, 5 ,  and 10 cm lead below the cloud chamber- 
The particles were all assumed to be p-mesons and the momenta of 

the individual particles were known only to be above the cutoff 

values determined by the lead abaorber thickness. The analysis 

w a s  made by assuming that the energy distribution was flat for 

Three 

I 

E < <  E E= 12 Bev. The experimental distribution N( y )  was com- 
0 

c pared with one calculated using a weighted average of gaussian 

function; (one for each energy) in accord with the above pre- 

scription for the assumed energy distribution. No anornolous 

scattering was observed using 10 cm of lead, but a small amount 

of "anQmOlOUE3 scattering" appeared at larger angles when 0 or 5 cm 

8828 4.6 
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lead was used. They conclude that no anomolous scattering is ob- 

served for kinetic energies >- 200 MeV, and some may exist f o r  

lower energies. It is interesting t o  note that the curve8 for 

0 and 5 cm lead show essentially the same excess over their 
theoretical curves whether point nucleus scattering is included 

or not. It would be desirable to have a direct measurement of 

. 
I ,  

the, momentum distribution of the incident particles. 

Leontic and Wolfendale used a multiplate cloud chamber .at sea 

level with a counter telescope that required that detected' par- 

ticles traverse 1 meter of lead above the chamber, six 2 cm lead 

plates  inside the chamber, and 0, 5 ,  or 10 cm lead below the 
chamber. It was assumed that the 1 meter of lead excluded all 

but p-mesons from the measurements. The main analysis compared 

the maximum scattering in any of the center four plates with the 

r. m. s .  angle f o r  the four plates. The analysis made the as- 

sumption that the basic multiple scattering law for any given 

particle should effectively be a gaussian at all angles if no 

anomolous scattering were present, By an ingenious analysis they 

showed that the results were inconsistent with this assumption, 

A further analysis assumed that an "anornolous scattering gaussian" 

would be superimposed on the normal multiple scattering gaussian 

in some small fraction of the plate traversals. They then ob- 

tained a best matching of parameters. Unfortunately, the selection 

criterion for considered evonts was biased in favor of selecting 

cases whore "anomolous scattering" ( o r  the non-gaussian multiple 

scattering tail) occured. Dr. Wolfendale informsz0 us that a 

8 8 2 8. j. 41 . - page forty 
/ 
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preliminary re-examination suggests that the essential features 

of the results will not be seriously altered on correcting this 

bias factor, but we have not Been the details of such a re-examin- 

ation, 

The saeasuPa?Mntis of Leontic and wolfendale have been exten- 
ded by HcDiam&$ B uaS;w 8 B$fferent and interesting analysis, 

-. - .-- 

2o PPivate co $.cationo We wish to thank Professor G o  D, 

Rochester and Dr, R e  W, Wolfendale for corresponding with us 
' -e  

concerning the aQalysis of the experiments of the Manchester 

group on p-meson s c a t t e r i w e  The paper by NcDiarmid is scheduled 

f o r  publication in Phil, Fk~g;, 

The results seem t o  contrepdlct those of George, Redding and Trent 

in that no ano~laus'tioatterjtmg is observed for low energies, At 

higher energfer the experimental results are between the Moli2re 

and Olbert multiple scattering curves for a (partially) assumed 

distribution of incidene particle energies. The results are closer 

to the Wolf$noe 4;bW t o  the Olbert curves, We have not, however, 

performed the deta i l ed  folding together of our final curve with 

their derived momentum distributions as is necessary for a quant- 

itative comparisone 

References to e a r l i e r  papers will be found in the articles 

discussed , i ab@ve. 
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FIGURE CAPTIONS - .-_-------.- 

Fig. 1. Curves illustrating the first method of computing the 

multiple scattering distribution M1(y) for cp = 1 Bev 

in 2 cm Pb, including only coherent scattering. g = 

single scattering law; MA1 E multiple scattering gaus- 

sian for single scatterings through y 4 0.5; MB1 s 

multiple scattering distribution for single scatterings 

through y > 0.5; F 

form factor. Multiply y by 1.74 for Bev degrees. A 

nuclear size R = l , O ~ l ~ / ~  x 10-13cm w a s  used f o r  all 

of the examples of the figures as discussed in Ap- 

C 
N 
is the assumed coherent nuclear 

> 
pendix A. 

Fig. 2. Curves for the game case as in Fig, 1. The Holie\re 

and Olbert multiple scattering distributions are 

shown for comparison with M1(y). 

bution is for a single scattering cutoff angle of y = 

1.6, The point nucleus and extended nucleus single 

scattering distributions are g and go 

Curves for cp = 1 Bev and 2 cm Pb using rH for the 
total elastic plus inelastic scatterlng. g = point 

nucleus single scattering law; g = g' yN is the as- 
sumed extended nucleus single scattering l a w ;  

is the resulting multiple scattering distribution. 

The Olbert distri- 

1 

Fig, 3. 
I 

M1 

Multiply y by 1.74 f o r  Bev degrees. 

Curves for cp = 1 Bev and 5 crn Pb using only  coherent Fig. 4. 
scattering, g', g,  TN, and Ml have the same meaning 



R-83 

. -  

as in the preceding figures. 

Bev degreesI 

Multiply y by 1074 f o r  

Fig, stD Curves for cp = 1 Bev and 5 cm Pb using the total elastic 
plus inelastic scattering. 

meaning as in the preceding figuseso 

The symbols have the s m e  

b 
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x=2 

x10-1 
10.540 
5.656 

,40113 

XIO-l  

30314 

2.730 
2,199 
1.6845 
1 . 2042 

x10°2 

7,926 
4.7499 
2.564 
1.2268 

x=3 

d o r n 2  
1,9112 
1.3507 
1.4421 

x10'2 

1.8069 

2.382 
3 0116 
3.907 
4.595 

Xl0-* 

50000 
4.983 
4,516 
3.703 

a- 
m 

x=4 X=5 x=6 x=7 



x10°2 
1 . 6598 
1,8165 
1,7814 
1,5625 

x10-5 
1 ,5136 
4,503 

12,003 
28,62 

3.25 -54826 
3 * 9  -4.565 
3.75 -3.193 
4 , O O  -3 a 2 5  

x10°2 
4.25 -2.605 
4.50 -2,195 
4.75 -1,0662 
5400 -1 8 6000 

Xl0-5 

2,110 
0.6769 

5,906 
14.65 

x1~03  
-9,584 
-8.074 
-6 865 
-5,886 

x ~ ~ - 4  
-3.947 
-3,808 
-3.370 
-2 * 921 

x ~ ~ - 3  

8 ,547 
5 317 
2.943 

1 2  237 27.27 
11,539 
4b3U 
u-455 

x10-6 

42.04 
10,120 

1.4347 
-0 ,5713 

* x ~ ~ - 4  
-2,530 
-2.201 

-1 ,9268 
-1 * 6959 

x1~-3  
5.25 -13,821 
5.50 -12,021 
5.75 -10,520 
6 ,OO -9 . 259 I 
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1.0 -3.218 

4.0 -- -60.35 
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