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I. ALGEBRA aF ClURRENTS -- BACKGROUND 

In the first part of these lectures we w i l l  be concerned with a 

Probably most of review of the main ideas of the algebra of currents. 

you are already familiar with them, as I understand t h a t  the subject has 

been treated in  previous lectures, but perhaps tbt is not too bad. The 

subject of current algebras was ignored for many years, and la te ly  it is 

receiving probably too much attention. It has t o  be emphasized that many 

of the underlying ideas a m  h- tentative, and could well be wrong; 

we w i l l  arrange them in a hierarchy such that the first are very simple 

and almost certainly true, and then afterwards one can accept each 

assumption without acceptkg the successive ones. 

We start with the isotopic spin operators. As far as  the strong 

interactions are concerned, we can think of them as constants of motion, 
- 

obeying the foUowing conuartatian rules : 

However, w e  can also describe (or define) the isotopic spin in 

another way because of the principle of the conserved vector current 

(CVC) 

let 's  consider the hadronic weak current, which is coupled t o  the 

lepton p i r s .  We may write it as 

+ .  . ( A m ,  m=o) (m=1/2, &/a = +1) 
+ Ja = Ja Jhadronic 

a 

where the  dots refer  t o  ather terms which may be present, but which i n  

many cases we can show t o  be much smaller than the f i r s t  two, if  they 

are present at  al l .  
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We can further s p l i t  each term in a vectm arid axial vector part, 

i.e., 

Now the idea of CVC i s  tha t  the first term is e p l  t o  the isotopic spin 

raising current, and we can then define Il f i I2 = I Vo (m=o) d3x. In 

the same manner we have f o r  the electromagnetic current J r  = J= + isoscalar, 

and we CBI~ define I3 t o  be the integral  Over space af" the iswector  time 
component of J, a. 

I3 = I JW d3x . (4) 

We see then that we can define the isospin operators in terms of quantities 

which, at  least i n  the lowest order of e lec t r ic i ty  and weak interact ims,  

a re  measurable, as an alternative t o  defining them as a s e t  of' good quantum 

numbers of strong interactions, obeying the commukation rules (1). 

This suggests that perhaps also the other portions of the vector 

weak current (and even axial current) have charge operators, i*e., space 

integrals of' t he i r  time components, obeying some simple set  of commutation 

rules. However, as we know very well, these charges are not conserved, so 

that they m e  not fndependent of time; we can t a lk  only abaut equal time 

commutation relations. 

handle different time commutation rules without some knowledge of dynamics. 

Only these can be simple, as we don't know how t o  

The simplest possibility, as suggested f ive  years agoP2) was that 

t h i s  algebra should close, af'ter adding t o  the isospin generators the 

AI = 1/2 

smallest possible nwiber of additional operators. 

strangeness-dhanging vector chazges, w i t h  the inclusion of the 

In t h i s  way one i s  led 

A 
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t o  the algebra of SU( 3), which consists of eight charges Fi ( i  = 1,. . . .8) 

obeying the equal tfme camutat im rules 

F1, F2, F3 are identified w i t h  the isospin generators, F8 w i t h  

( Y  is the hypercharge) and the others are operators with 

&/2 Y 

AI = 1/2 and 

= - i-1. It 'may well be that  these assumptions have t o  be s t i l l  modified, 

i n  order t o  include in a Larger algebra sane possible new terms, which 

m i g h t  be present in the vector currents; but, since a t  present there i s  

no particuzaS evidence f o r  them, l e t  us stick t o  SU(3) and go on t o  

ccarrplete the algebraic structure of the theory by incorporating also the 

axial currents. 

Thus we put i n  a l so  charges f o r  the axial vector currents and 

req&e them t o  obey the commutation rules of a simple, relatively small 

algebra. 

F: , with the following commutation relations : 

The simplest possibility2j3) i s  t o  add eight axial  charges 

such tha t  the  operators 1/2(Fi 

algebras, the so-called chiral  

A t  t h i s  point we can t r y  

5 +, Fi ) generate two commuting SU( 3) 

su(3) Q su(3). 

the notion of cmbining the strangeness 

preserving and changing charge operatars, t o  make something which has 

the same form and strength as the w e a k  vector and axial charges for 

leptons, so as t o  give meaning t o  the concept of universality of w e a k  

interactims between leptons and hadrons. 435) 
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To t h i s  aim, we observe t h a t  the chwge operators 

5 (F1 5 i F2) cos 9 + (F4 2 i F5) s in  8 + (Fr5 2 i F2 ) cos 0 

(7) 
5 + (Fk5 +, i F5 ) s in  0 , 

together w i t h  a third operator, obey the commutation rule of an angular 

momentum, exactly in the same way 8 s  does the  lepton operator: 

together with L- = (L+)+ and a t h i r d  one. 

By assuming the form ( 7 )  for  hadron currents, Cabibbo5) was able 

t o  explain consistently the relative rates of the hyperon and meson 

leptonic decays with an angle 0 2 15'. 

However, a comparison w i t h  more accurate data w i l l  provide i n  the 

future not only a check of the universality prlnciple, but a l so  of the 

idea that equal time conmnztators of the  charges correspond t o  the 

algebra of SU(3), and of the assumption that the eight baryon ground 

states approximately form an eight-dhensional irreducible representation 

of the  same algebra. 

m y  independent assumptions, but it i s  comfortable t h a t  so far things 

seem t o  work quite w e l l .  

We see tha t  we are i n  f a c t  tes t ing sFmultaneously 

So much fo r  the commutation rules of the charges. kt u6 go on 

and make further assumptions on the equal time commutation rules of 

densities. 

Let's use gia(x,t) (a = 1, . . 4; i = 1, . . 8) for  the 

vector currents, and gi:(_x,t) for  the corresponding axial currents, 



E we consider the equal time commutator, say, aP two vector time compo- 

nents, microcausality and the requirement of getting Eq. (5) a f t e r  inte- 

gration over a l l  the space variables enable us t o  m i t e  

Here the dots stand f o r  terms containing higher derivatives of 6-functions, 6 )  

about wbich we do not know anything but that only a f i n i t e  number of them 

is allowed in order t o  have a local operator. 

By including also the axial densities we have further 

which correspond t o  SU( 3) @ SU( 3) fo r  the charges. If we ignore the 

dots, we have an algebra of SU(3) 8 SU(3) at every point of space at  

the sanae time; that is, every granule of space carries i t s  own 

m(3) (23 f m 3 ) .  

Now le t  us make the drast ic  assumption that  there i s  nothing i n  

the place of the dots of the previous equations. 

stronger assumption, which gives the possibil i ty of mabing predictions 

about the matrix elements of currents at  any momentum transfer, instead 

of confining t h e m  only t o  the zero spatial momentum transfer situation, 

as is the case f o r  charges. 

This is  in f ac t  a much 

We may argue that th i s  assumption i s  not contradiction a t  

l eas t  w i t h  the  basic principles of f i e ld  theory, re la t ivi ty ,  and 

causality, by explicit ly constructing a nm-t r iv ia l  re la t iv i s t ica l ly  
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. 

covariant f i e l d  theoretical m o d e l ,  i.e., the "hgrangian quark model", 

in  which it holds. 

We introduce a tz ip le t  of' spin 1/2 quarks, corresponding t o  the 

basic three-dFmensional sV( 3) representation, together with the  corres- 

ponding t r i p l e t  of' antiquarks. We can write down a Lagrangian of the form 

- 
= q (73 + mo) q -I- interaction 

from which we can deduce the currents 

and - Ai 5 = i q  2 7,759 %cl! . 
By using the canonical anti-commutation rules for q fields, we can 

compute, a t  least formally, the commutation relations of these currents, 

which turn out t o  be f ree  fran gradient terms. 

It is important t o  stress that these commutation relations hold 

true,  no matter how b d l y  broken the symmetry i s  (for instance, by mss 

terms): 

t ions are two quite independent things. 

SU(3) symmetry and the validity of' equal time commutation re la -  

Anyway, as we said, the non-appearance a€' gradient terms i n  the 

theory may be only fonnally true,  i n  the sense that  we obtain t h i s  result 

if w e  do not care about the strongly singular nature of the commutators 

involved. Recently, Johnson and Low a t  MxT7) have been looking a t  t h i s  

problem. They take a simple theory of quarks interacting with a scalar 

neutral boson, and cmpute i n  power series the commutators of currents 
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t o  see whether the results they get are t h e  same as those which can be 

formally derived i n  the quark m o d e l .  

extra terms, for  the time ccaaponents of the vector and ax ia l  vector 

currents they show a consistency with our assumption. 

more complicated with vector meson interaction and they we not sure at 

present whether the last conclusions are t o  be m o d F f i e d .  

Whereas i n  general they find f'unny 

Ihings are much 

We w U 1  see that these commutation relations are best used by 

sandwiching them between states of infinite momentum along, say, the 

z-directim. 899) 

This looks l ike  a non-covariant procedure, but in fact  we intro- 

duced from the  beginning a non-covariant element in the theory, by con- 

sidering the simplest kind of' commutators of two space-like separated 

local operators, i.e., equal t i m e  commutators. This choice selects a 

particular h r e n t z  frame in w h i c h  it is a physically sensible question 

to ask what is the  momentum of the states between which the commutators 

are  t o  be sandwiched, and we may expect that the resul ts  are quite 

& 

different when the momenta are near zero or near infinity. 

there are a number of unpleasant features connected with the use of 

In fac t ,  
C 

~ __ - . 

s ta tes  w i t h  f i n i t e  mmentum. For the sake of simplicity, l e t  us consider 

only commutators af charges, sandwiched between s ta tes  of t o t a l  space 

momentum zero and masses M and M': 

. 
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We can inser t  a complete se t  of intermediate states having to ta l  space 

momentum equal t o  zero and masses M"; the four momentum transfers t o  the 

intermediate s ta tes  are kt2 = - (M' - M")' and k2 = - (M" - M);?. 
Now the equal time canmutator can be considered as the energy inte- 

gral of the imaginary part of a suitable scattering amplitude as sham in 

the following diagram: 

t 

+ crossed diagram 

and In the case of P = 0 one very annoying thing i s  that  the four 

manentun transfer t o  each intermediate s ta te  depends on i ts  mss. 

anaounts in dispersion language t o  doing a dispersion integral nut i n  the 

r e l a t iv i s t i c  variable s with fixed external masses, but in the energy 

variable with the space momentum fixed and variable masses, which i s  

w e l l  ham t o  be a disgusting way t o  do dispersion theory. 

u 

This 

MOrewer, if the four-momentum transfer depends on the mass 

differences then we can get, f o r  certain values of masses of inter-  

mediate s ta tes ,  resonances in  the channel of the currents. 

In t he  case of vector currents, we could get k2 or kt2 equal t o  the 

square of the p mass, and t h i s  could te r r ib ly  enhance the continuum 

contribution in that region, seriously interfering with the program of 

approximating the sum over intermediate s ta tes  with f e w  resonant s ta tes ,  

a thing we w i l l  often l ike t o  do for practical  purposes of calculation. 

For instance, 
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On the  contrary, when we sandwich the commutators between states of 

inf'inite momentum, the s i tuat ion changes entirely.  

F i r s t  of' all, by gohg t o  Pz = ao, we 

transfers k2 and k'* vanish without regard 

mediate states ( i n  the case of the commutators 

can make the fm-momentum 

t o  the masses of the inter-  

of particular Fourier 

cmponents of t h e  currents, they go t o  fixed limits), and t h i s  corresponds 

in  the dispersion Language t o  having a dispersion h t e g r a l  i n  the s 

variable with fixed external masses, which i s  a much more sensible way of 

doing things. 

Also from the point of view of comparison w i t h  the experiments, it 

i s  much easier t o  measure things w i t h  fixed k2 and k'*, and t h i s  is  

another advantage, though rather  minor, of taking 

important i s  the problem of convergence of the sum rules obtained from the 

comta to r s .  A t  P- = o we get sum d e s  of the typical  form 

Pz = 00. Far more 

8,9) 

and 

of 

the 

1 ds Im A ( s ,  t; k2, kt2) = f(t)  

f r o m  R e g g e i s m  in the crossed channel we know the asymptotic behavior 

Im A i n  the variable s, thus having an idea of the convergence of 

sum rule. On the other harid, if k2 and kt2 are not Plxed, we have 

no idea whatsoever w h a t  the  convergence is .  

Another very crucial  point i s  t ha t ,  a t  f i n i t e  momentum, an impor- 

tant  contribution t o  the sum over intermediate states i s  given by 

diagrams of the following type: 
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These z -diagrams correspond t o  complicated three -particle intermediate 

states,  where the i n i t i a l  current creates a pair  and one menber of the 

pair  annihilates w i t h  the i n i t i a l  par t ic le  t o  give the f i n a l  current. 

On the contrary, at  infinite momentum we get r id  of a l l  these diagrams 

as w e l l  as a l l  disconnected pair diagrams, lFke 

and the reason is  that they a l l  carrespond t o  intermediate states of 

in f in i te  mass. I n  fac t ,  i n  the z-diagams the pair has t o  have zero or 

f i n i t e  total space moraentum since it i s  created by the current from the 

vacuum, but each member of the pa i r  has infinite momentum, thus resulting 

in a state of inf in i te  mass; in the completely disconnected diagrams, the 

relative momentum between the initial particle and the  pair is inf in i te  

and we end up again With an intermediate state of in f in i te  mass. 

MOW, whether these infinite mass states  contribute or not t o  the 

relations w e  get is a question of whether the dispersion relations have 

any subtractions . 
\$e assume expl ic i t ly  tha t  there are no subtractions and i n  t h i s  

way we get r i d  of a l l  these complicated intermediate states,  and we are 

l e f t  only w i t h  genuine intermediate s ta tes  i n  the s-channel. 

Finally we mention another very important feature of the 

frame; that is, the possibil i ty of using for the axial vector current 

the FCAC m o t h e s i s  t o  approximate the integral  of the  fourth component 

of the axial current with a me pion state. This has masing only when 

Pz = 00 



w e  axe dealing with small and fixed k2 and k'*, so that they are 

reasonably close t o  the pian pole. On the other hand, a t  P = 0 there 

is  no justif ication of such an approximation since k2 and k f 2  get 

bigger and bigger With the mass of the intermediate states.  

summarize f ina l ly  the advantages of the P = 00 frame: 

i )  Only things which are easily measurable appear; 

i t )  

iii) No variations of k2 and kf2 resulting i n  non-appewance of 

unwanted resonances in the  current channel; 

iv )  

*n 

Let's 

We have relations whose convergence can be estimated by Reggeism; 

No contribukion from disconnected or semi-disconnected graphs 

( z - d k g r -  ; 

v) It i s  possible t o  use PCAC fo r  axial vector current. 

111. MPWIMENTAL TESTS 

We want t o  discuss now what are the experimental t e s t s  of all the 

previous assumptions. To begin with, we consider the comrmrtation rela- 

tions of the  axial  charges w i t h  themselves, Eq. ( 6 ) ,  sandwiched between 

nucleon states taken a t  Pz 00. Since we are dealing w i t h  space inte- 

grals, we have in this special case k2 = k t 2  = 0. Inserting a complete 

set of intermediate states in the cammutator, and extracting the nucleon 

we end up w i t h  the Adler-Weisberger relation: 10) 

? 

GA is  the axial neutron @-decay coupling constant, f (  s)  i s  a 

fomd(s)) is the  forward forward 
kinematical factor,  and uy + e  (4 (OF ,z 
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- 
different ia l  cross section f o r  the scattering V + p + e  f f3 

(7 + p + e+ + f3' ) , f3 and p' being any possible hadron f ina l  state.  

Equation (13) i s  a prefectly rigorous consequence aP the considered com- 

mutation relations. 

I n  t h i s  form, the Adler-Weisberger relation i s  not very useful, 

because of' the  rather poor experimental informtion on neutrino cross 

sections. 

useful form by using the PCAC hypothesis, in which the neutrino (an t i -  

neutrino) forward cross section i s  replaced by a fl'p (E-p) total cross 

section. This carresponds t o  the  approximate identity 

On the other hand, it is  possible t o  put it in a more direct ly  

We get then: 

(4 3 ? 
total total  
f i P  f l P  

1 = GA2 i- 1 ds g(s)  [a + (4 - a - 

where again g(s) 

t i m a l i t y  constant which appears i n  the Goldberger-Treiman relation. 

is  a known kinematic factor, including the propor- 

This formula has been successfully compared with data and it seems 

t o  wmk very we=. 

case of byperon leptonic decays, actually we are checking more than one 

assumption, so that the agreement might be not too significant. However, 

let us assume the  optimistic poirrt of view that Eq. (14) is  indeed a proof 

of the validity both of the algebra of charges and of the PCAC. 

We want however t o  emphasize tha t  again, as in the  
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Ut us go on now t o  the algebra of the densities. A s  a generali- 

zation of the previous procedure, we sandwich the commutators of the 

Fourier transforms of' densities 

d3x 
%la 

e 

taken a t  a f b e d  m a n e r r t u n  k , perpendicular t o  the z-direction, between 

s ta tes  of f i n i t e  Px and P and inf ini te  Pzj i.e,,  we consider the matrix 
Y 

elements 

(Pz = 00, P' P' 
X Y  

where 

k + k  ..I1 '- 

= P' - p  -1 -1 

I n  dispersion language, th i s  gives r i s e  t o  a relation of the typical 

form Eq, (U), where 

by analyticity we can extend the values of the three independent 

* k f 2  = k' and t=-(&,+&i) 2 , and 
-1 ' k2 = k -1 ' 

variables to any value. 

be derived in  th i s  way is far richer 

commutation relations of charges. 

relations can be actually compared with the presently existing experi- 

mental information. 

Needless t o  say, the set of relations that can 

than what can be obtained by the 

The only question is  whether these 

For instance, consider the commutator of two vector currents 

sandwiched between nucleon states, 

an integral mer energy of et bilfnear form i n  photoproduction amplitudes 

(or, alternatively, an integral of the imaginary pa;t't of a Cmpton scat- 

tering amplitude) and a nucleon vector current form factor,  

What we get is an equality between 

If we f ix  
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k2 = kI2 = 0 and t f 0, 

t ion  amplitudes and we could obtain a whole set of relations for each t, 

but nobody knows a t  present how t o  exploit them, because photoproduction 

i s  a very complicated process as soon as one goes beyond the single pion 

production. The simplest relation t o  be extracted from t h i s  set i s  the 

what i s  inmlved are the physical photoproduc- 

one which was first given by Sjorkenu) and by Cabibbo and Radicati, 12) 

who consider the first moments of the isovector, vector 

This relation looks as follows: 

where (r2)' 

factor,  

i s  the mean square radius of the i s m c t o r  Dirac form 

) ( Panom i s  the  i s m e t o r  part of the anomalous nucleon F1 v 

production isavector cross sections in  the 

% is the mass of the nucleon. 

I = 1/2, 3/2 channels, and 

What can we say about this formula? We know t h e  photoproduction 

cross section f a i r l y  well  up t o  

a b m  single pion production, and the conclusions depend very much on 

whether you are a p t b i s t i c  or pessimistic. 

the following: he writes Eq. (E) in the form 

,E = 1500 b V ,  which i s  not too far 

Bjorken's conclusion was 
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The left-hand side i s  a very t iny  number, but it has a definitely 

known sign and the contribution from the lowest energy part of' the photo- 

production cross section turns out t o  be of the  wrong sign; so he con- 

cluded that t h i s  formula. is not very good. 

Cabibbo and Radicati came t o  the opposite conclusion by saying 

that (CI,v)* a d  

the integral is  small. 

'5 ( r  * are roughly equal and the contribution of 

Anyway, in  order t o  mahe m o r e  conclusive s ta te -  

ments, we need more precise high energy data, and w h a t  is encouraging i s  

that Ln t h i s  region the  most important contributions come from I = 1/2 

resonances which might reverse the sign of the integral  as it i s  given 

by the low-energy portion dominated by the 
* 

N33. 

IV. GOING BWOM, SU(3) @ SU(3) 

One can t r y  t o  extend the chiral  SU(3) SU(3) algebra by including 

the space integrals af a l l  the vector and axial  vector conrponents, and if  

one evaluates the cmmtators  follming the formal quark model we intro- 

duced before, one g e t s  the  ch l ra l  U(6)  @ V(6) algebra. One may go even 

further by introducing additional currents, like scala.r, pseudoscalar, and 

tensor currents, which have never been seen but which might be there, and 

one gets the compact U( 12) algebra; foe .  , the algebra orf a l l  the sixteen 

Dirac matrices and the  nine A-matrices. 

However, if we follow the  previous philosophy of taking matrix 

elements a t  Pz = 00, many of these operators have vanishing rnatrix 

elements between single part ic le  states, and many others became equal. 9,131 

Let us look at t h i s  point in more detail.  
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We l i s t  the currents i n  the quark model and the behavior of t he i r  

matrix elements between single particle s ta tes  at  

and I did, we c a l l  "good" the operators whose matrix elements do not 

vanish, and "bad" the others.) 

Pz = 00. (As Fubini 

s : q + $ h i q  - 1 
pz 

v : q + h i q  f( 1 

+ 1 
P ax,y h i  q m - z 

"bad" 

"bad" 

'"bad 

"bad 
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- i q + s a  A . q  - 1 Y 1  

llbad" 1 + 
P 

+ 1 

9 B a z h i q  - Z 

q BcrzAiq - - P Z 
flb,ll 

identical 

identical 

From the preceding l is t ,  we see that by restr ic t ing ourselves t o  

V and A currents, Le. ,  t o  the U(6)  43 U(6) 

P = 00 two identical  U ( 3 )  @ U( 3) containing two m o r e  operators w i t h  

respect t o  SU(3)  Cg, SU(3) ,  the time component of the baryon current and 

the axial  vector analogue of it. 

reduces t o  the 

adjoining the "good" tensor current cmpcjnents . 

chiral  algebra, we get at  

Z 

On the other hand, the algebra of U(l.2) 

CU(6) Jw algebra which i s  obtained from U( 3) 43 U( 3) by 

Out of the whole se t  of commutation relations of t h e  compact U(12), 

we can pick commutators of three different types: 

1) good-good ccmmtators. They involve two good operators t o  give 

another good me. 

explained before) , apart frm the physical interpretation of tensor 

currents which i s  s t i l l  dubious. 

2) 

and since both wmbers go t o  zero like 

meaningful information from these rules when they ccmverge. 

We get from them sensible sum rules (Fn the way we 

good-bad commutators. The right-hand side i s  again a bad operator, 

l/Pz, we can e m c t  t o  extract 
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3) bad-bad commutators. These are quite awful things. Since the l e f t -  

hand side would go l i k e  1/P: and the right-hand side i s  of the  order of 1, 

being the matrix element of a good operator, there must appear t e r r i b l y  

divergent integrals  so tha t  the  rules  we get look l i k e  

has yet succeeded i n  giving any meaning t o  them. 

co/m = 1. Nobody 

A s  f o r  the physical signiricance of the U(l.2) algebra, only t'ne V 

and A currents have been clear ly  identified v i th  measurable quantit ies i n  

weak and electromagnetic processes. For the S ,  P, and T currents, the  

interpretat ion is  a t  present highly tentat ive.  For example, it could w e l l  

be t h a t  the  S density appears as  a part of the energy density, f o r  instance 

i n  the mass difference term. 

new interactions if they exist a t  al l .  

Another poss ib i l i ty  i s  t ha t  they appear i n  

14 ) Hwever, we can define these currents i n  s t i l l  another way 

which perhaps i s  the  only way t o  r e l a t e  then with physical observable 

q m t i t i e s .  It could Fn f a c t  be tha t  they are loca l  operators with a 

very simple analyt ical  structure,  i.e., with as  f e w  singularities as 

possible and, if t h i s  is the case, t h e i r  m a t r i x  elements are indirect ly  

connected trith S-matrix elements in the  sense tha t  they a re  the leas t  

sin- solutions of l inear  homogeneous in tegra l  equations ha*@; as 

coefficients the relevant on-shell S-matrix elements. 

These matrix elements could even admit single pole approximations 

( for  instance, we can have a partid conservation of' the  tensor current) 

so t h a t  they w u u l d  be related t o  scat ter ing processes involving the 

appropriate mesons. 
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V. TRYING TO REPRESENT THE LOCAL U(3)  @ U(3)  ALGEBFU 

The advantages of' considering the local chiral alg2bra commutation 

miles, Eqs. (9), (lo), (ll), sandwiched between s ta tes  with 

have already been emphasized i n  the preceding sections. 

P = 00 z 

1 w a n t  t o  present now sane fur ther  investigations which Dashen and 

I have made at Caltechl') on the gossibll i ty of finding an inf ini te  

dimensional representation of' the complete set of local  commutators. 

The motivations which may give physical significance t o  the problem 

are the following. W e  started considering the U ( 3 )  U ( 3 )  algebra of 

vector and axial vector charges, and one may ask whether it i s  possible 

t o  use it as an approximate symmetry fo r  hadmms, i.e., whether hadrons 

can be described approximately with irreducible or small reducible 

representations uf U( 3) €3 U(3) 

f o r  U ( 3 ) .  

i n  the same way as we know it i s  t rue 

The answer we get from experiment i s  that U( 3) @ U( 3) cannot be 

a symmetry i n  any accurate sense. In fact ,  we know from the Adler- 

Weisberger relation that the baryon octet and decimet do not form a 

s ingle  irreducible U(3)  X U ( 3 )  representation, because they are quite 

strongly connected through the ax ia l  charges t o  other states, mainly 

resonances. 

&my peoplex6) however have looked at the  question of what happens 

if we consider them as a part of a reducible representation, tha t  i s  if 

we assume baryons t o  be a mixture of' a small ntmiber CCP irreducible 

U(3)  X U(3) 

higher resonames which are hown t o  contribute t o  the Adler-Weisberger 

sum rule. 

multiplets incorporating besides the N and N* some other 
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This seems t o  work @te w e l l ,  with the baryon ground s ta tes  mixing 

predominantly with a few excited states,  those excited s ta tes  presumably 

miXing predominantly w i t h  the ground s ta te  and with some s t i l l  higher 

excited states,  and so for th .  

elements between the  lowest baryon states can be f i t t ed  with an admixture 

of U(3) X U(3) representations corresponding mathematically t o  three- 

quark configurations. 

The know electromagnetic and weak matrix 

We should l i ke  t o  describe i n  a unified way t h i s  presumably 

infinite &ab  of representation mixings. This is why, instead of 

representing first the algebra of charges and then trying t o  extend it 

t o  higher moments of the currents, we t r ied  t o  represent at cnce the 

whole local chiral  algebra in aa inflnite dimensional space. The hope 

i s  to  find in th i s  way an approximate model f o r  hadrons depending on a 

possibly small number of continuous parameters and g i v b g  a rough 

description of the hadron spectrum and of i t s  physical properties (form 

factors, coupling constants, etc.) . 
of course it i s  possible that t h i s  program cannot be accanplished 

unless one builds up a complete r e l a t iv i s t i c  theory of all the world, 

but we feel it nevertheless interesting t o  investigate it and see if 

th i s  i s  the case. 

I n  order t o  make the problem more precise, we have t o  consider 

-her the general. angular momentum properties of the matrix elements 

of the currents taken at  Pz = 00. 

Since we w i l l  deal with matrix elements between eigenstates of 

t o t a l  momentum, it is natural t o  consider i n  the place of Eqs. (9), (LO), 

(ll) , t he i r  Fourier transforms taken, as we did before, a t  a space momen- 

tum perpendicular t o  the z-direction; i.e., 
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M describes a l l  the possible additional. quantum numbers we need t o  

characterize the state. 

A very important feature of the resulting matrix elements 

1 2 (zl + F'i) perpen- is that  they do not depend on the average mgnentum 

dicular t o  the z-directicm. 

we wlll check it later in a particular example. This is  quite interesting 

because it means that at infinite momEtntwn we don't need momentum indices 

t o  Label the  states, the diff'erence of maanenta $I being already i n  the 

argument of the aperators. 

We w i l l  not demonstrate it i n  general but 

This is very analogous t o  the situation one runs into in the  very 

primitive conmutation relations i n  ncm-relativistic quantum mechanics, 

when doing the atomic sum rules. 

t o  deal with the gross state of the motion of the atom, which i s  held 

fixed,but only with relative mamenta. 

r e l a t iv i s t i c  atomic physics 

In fact, i n  t h i s  case one does nat have 

What is not similar t o  non- 

i s  that here we have t o  match up the 
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commutation relations with relativist ic angular momentum properties , 
which guarantee that we are dealing with particles of definite spin. 

This is  very d i f f icu l t ,  and has prevented us up t o  now frm finding a 

complete solution of the problem. We have, however, some preliminary 

resul ts  which hold in  general and whose content we are going t o  discuss. 

The f i r s t  thing to do is  t o  define , the spin operator at 
w P 

P = CD , and t h i s  WILL be done In the following way: we def h e  z 

= Jz = h (the hel ic i ty  operator) , 
9 2  

have n a n w i s h i n g  matrix elements only between 9, and By 

s ta tes  with N = N' and equal t o  the usual angular momentum matrLx 

elements appropriate t o  the  spin of the  s ta te  N. 

To deduce the angular momentum properties of Fi(gL), it i s  most 

useful t o  express the matrix elements 

i n  terms of m t r i x  elements aP currents in the B r e i t  frame. Ve s t a r t  

f ram 

k = (N'h', P i  = z, P'=O, P i s  l$io(0)l Nh, P, = - - * , P =o, Pz=m) , k 
Y Y 

(19) 

k where we have taken lcl i n  the x-direction, and P, = - Pi = - 2 . 
To go t o  the Breit frame, we apply the r e l e w t  pure Lorentz tmns- 

formtion G, ending up with 



(N'h' IC'' G ZiO(O) G - l  GI Nh) 

Now we have t o  express the s ta tes  G IN'h') and G INh) in terms of 

hel ic i ty  states i n  the B r e i t  frame. It is  easily shown17) that  G INh) 

can be obtained by applying a suitable spin rotation, depending on the 

mitsses of the s ta tes  and the modulus of 
w kl, 

IN, h, Px = - - = 0) &ere e2/2 is  the transformed 

z-mamentum and the same applies t o  

rotation, and with Pz = 4- 2 . 

t o  
Z 

a - - -  k 
2 ' p z -  2 ' p y  

G I N ' h ' )  , i n  general w i t h  a different 
Z 

a 

Apart from a factor which includes the nmmalization of the s ta tes  

and the relevant Lorentz contraction factor 7 ,  we may write 

. 
A t  t h i s  point we have the matrix elements of a canbination of the 

current components between hel ic i ty  eigenstates in the B r e i t  frame with 

momenta along a certain direction different from the z-direction, which, 

i n  the case of equal masses, i s  the x i l i rec t ion .  

matrix element a f'urther rotation around the y-axis t o  align the momenta 

along the x-axis. 

Iy'e then i n s e r t  i n  the 

The result  af all these operations is the following: 
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where 7 i s  the  overall factor mentioned before and i s  given by 

E€' 
E + E' q = 2  , 

€ and € '  being the energies in the B r e i t  frame; 

tum of each state i n  the same frame; 

the rotations performed, 

9/2 is the space mornen- 

6 and 8 '  are the t o t a l  angles of 

k + arc  tan M r  + J 
M ' - M  

k 6 = arc  tan 

k - arc tan M ' + M  > 
M' - M 6' = axc tan  

and f a a l l y  

Yi(o) = dio(o) + COS 8 diz(o) - sin e a,(o) 

where 8 is the angle between the original Breit frame momentun of N' and 

the  x-direction, such that cos 8 = k/q. 

In the  B r e i t  frame the properties of the  naatrix elements of Zi(0)  

are well-known and expressible i n  terms of the analogues of the famous 

Sachs form factors G and GM. 

equal t o  the matrix elements 

Moreover, by inverting Eq. (20), they are E 

and these are thus objects with known angular momentum behavior; most 

important, we have f o r  these matrix elements the property 

We can also find, f o r  fixed N' and N, the fo l la r ing  properties of 

("h' I I.w : 
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i) The part odd i n  has A q z  odd, whUe the even part has A 9 ,  

even. 
-i $lyrt 

i i )  It is invariant under P and ? e  OYx where @ and 

.T are  the parity and time-reversal operators respectively. 

iii) For N = N', EO that the Breit frame momentum q i s  equal t o  k, 

a multipole expansion shows tha t  the coefficient of k j  cmtains only 

lag[ = 0, 2 ,  . . . j f o r  j even, and = 1, 2 ,  . . . j+l for  
w - 

j odd (only odd f o r  odd j when the current i s  conserved). 
.-A. 

5 
In the case of Fi (SI), the only difference is  tha t  it i s  odd 

-5 yyfi , and t h e  coefficient of k 3 contains only under @ e 

= 1, 2 ,  3, . . . j+l f o r  j even znd = 1, 3 ,  . . . j 
L*r ,-.. 

f o r  j odd. 

An interesting thing t o  nate i s  tha t  f o r  degenerate s ta tes  N = N' 

we can make slqple statemEtnts abaut 1Ag.l properties and not only abaut A g X ,  

as in the general case; and the reason i s  t h a t  ?in t h i s  case we have onkj 
c 

"allowed transit ions" with the 

geaeral case, as we put in higher a d  higher powers of (K  - 14' ) , we get 

I A91 properties mentioned, while i n  the 
'k.. 

higher and higher "forbidden" t ransi t ions in addition t o  the allowed ones. 

We ?rant t o  give now two i l lus t ra t ions  which w i l l  c1arif.j how all 

L e t  us first consider the very simple example of the such things work .  

matrix element of Fi(gL) taken between two s ta tes  with equal masses and 

spin and par i ty  1/2+ a t  Pz = a. Then we have in  terms of Dirac-Pauli 

form factors:  
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where IU) and IU’) are Dirac spinors. S h c e  IU) is such tha t  

this  matrix element i n  the form 

. 

Nar if we want t o  evaluate the matrix element (21) appropriate t o  
+i 

the Breit frame, we have t o  insert the mt r i ces  e ”’, thus obtaining 

k -ia arctan - 
CF1 - i ay N(k) (Ut le 2M 

where N ( k )  is the normalization factor pertaining t o  the Breit frame, 

i.e., 

1 N(k) = 

By noting that 

k -ia arctan 2~ 1 - - Y e 

. 

k 
[l - i 2MJ 

we immediately get 

which i s  the well-known Sachs form of the current, provided ire identify 

in the usual manner 
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-1 
GM(k2) = (Fl + F2) (1 + k2/4$) . 

So we see that by considering the matrix elements (21), i n  t h i s  simple 

case we found the  form of the curreot which is appropriate t o  the Breit 

system and which has well-defined angular momentum properties. 

t h i s  example clearly shows that the matrix elements of the currents at  

P = 00 

Moreover, 

do not depend on the average transverse momentum. z 
I;et us look a t  another i l lustrat ion of the general angular momen- 

tum properties of the  current matrix e lewnts  that we listed before. 

Now we w i l l  choose the case of a system which i s  intrinsically nm- 

re la t iv i s t ic ,  i n  the sense that the interesting part of the spectrum, 

which saturates the commutation rules of our algebra, has a level  s-cing 

which is  small compared w i t h  the mass of the system. 

atoms, f o r  nuclei, and it is also very roughly t rue  for baryons, but it 

i s  not so f o r  mesons . 

This i s  t rue  f o r  

In  t h i s  case (M' - M) << (M' f M); a situation i n  which one, 

f o r  instance, ignores the Dirac magnetic moment as compared, w i t h  the 

anomalous one, and a lso  the v e r y  complicated "Dirac" effects i n  the 

matrix elements, wh ich  we w a u l d  have f o r  general spins. 

In t h i s  approximation, l e t  us consider instead of equal time 

commutators at  a l ightl ike interval cammutators taken at 

between states approximately a t  rest. 

Lorentz transformation from Pz = 00 

differences are negligible. 

Pz = 00, 

This i s  obtained simply by a pure 

t o  rest, provided the mass 
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What we pick up is the following: 

and t h i s  is the same as 

where H is  the energy operator. 

r e l a t iv i s t i c  system the enerm i s  approximately equal t o  the mass, what 

we f ina l ly  get by sandwiching these operators between two states w i t h  

masses M and M' is 

Noting that f o r  our essentially non- 

This clearly shows why we have such complicated angular momentum 

properties for  these ma t r ix  elements; the reason being that i n  addition 

t o  charge and current densitfes and the  

extra retardation factor e -i&z which introduces an amount of 

$1. ,x 
e factor,  we have an 

z-dependence that depends on the  mass differences. 

To evaluate the matrix element (21) i n  t h i s  case, we have t o  per- 

form a rotation of an angle 8' = 6 = etrdasl iM/k aMund the y-axis (the rest of 

each 

overall exponential factor e 

rotation vanishing, since k / ( W ' )  2 0), and we end up with an 

, i.e., we get -ix LGi5-F 
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From th i s  it is clear that t h e  A Y x  selection rule comes now 

ent i re ly  from the current 

the exponential factor has A g x  = 0. The multipole expansion proper- 

t ies and parity and time-reversal properties of the matrix element are 

a l l  easily read off from t h i s  expression. 

indices, so that we have A 9, = 0, 21; 

The sum rules tha t  can be obtained in  th i s  way differ from the 

usual sum rules used i n  atomic and nuclear physics i n  t h a t ,  first of 

a l l  these are supposed t o  be exact i n  t h e  strong interaction, and 

secondly, because of the presence of the retardation factor these rules 

are evaluated a t  fixed four-momentum transfer 

ordinary theoretical  atomic physics one deals with momentum transfers 

depending on the masses. 

properties are now somewhat more ccanplicated. 

= +k *, FhFle i n  

Ar,d the price f o r  t ha t  is tha t  the angular 

Since the Hamfitmian i s  just the  time translation operator, we 

can expand Eq. (23) i n  the following way: 
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To have a concrete example, l e t  us specialize t h i s  formula t o  the case 

of a single non-relativistic quark i n  a potential whose energy i s  given 

by 

2 
M = const. + 5 + V(Z) . 

Now it is very easy t o  write down the currents for t h i s  object i n  

such a way tha t  they almost sa t i s fy  the r e l a t iv i s t i c  commutation rules; 

i.e. , 

where z and x are now the Heisenberg operators f o r  the location of the 

particle,  

there is the  sum of the charge and of the current density. 

hi are the usual SU(3) matrices and inside the parentheses 

The reeson why t h i s  i s  only approximately a representation of the 

local algebra i s  that,  apart from corrections from coordinate-velocity 

commutators, the left-hand side of Eq. (26) is  just the  operator 

(where to i s  defined t o  be such that 

i s  t r i v i a l l y  obeyed. 

z ( t o )  = -to), by which the algebra 

Quantum mechanically, the diff icul ty  is  that one 

has t o  neglect the order i n  which z and B appear. However, t h i s  intro- 

duces only corrections aP f a i r l y  hi& order in (v/c) in the canmutation 

rules. 

A s  a f i n a l  remark, we note that for the ax ia l  vector charges, i n  

t h i s  approximation we have 
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and t h i s  has the features we have learned from the application of' the 

Adler-Weisberger relation, Indeed, the retardation factor e 

allows the axial c h ~ t r g e s  t o  couple the nucleon t o  states with higher 

-m 

spins, because every power of 

brings one m o r e  unit of A 9  into the transition. In terms of' pion 

coupling, t h i s  i s  ecpivalent t o  saying that the pion couples the nucleon 

introduces one more power of z which 

t o  hi@er spin resonaces through i t s  orbital  angular momentum. 



h 
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