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ABSTRACT 

DIFFUSION IN A SPdCE LATTICE OF-FISSIONABLE 
AND ABSORBING MATERIALS 

By R. P. Feynman and T. A. Welton 
. / *  

Methods are'developed for estimating the effect on a critical as- 
sembly of fabricating it as a lattice rather than in the more simply 

. .  

' , ( , t '  interpreted homogeneous manner.1 
111 E I 1 

In experiments with critical assemblies it is often convenient to 
fabricate active material, tamper /material, and absorbing material, 
such as boron, in the form of blocks o r  slabs and then to assemble 
these blocks or slabs in the form bf some regular space lattice. From 
the point of view of a theoretical tkeatment it would, of course, be 
preferable if the assembly were cbmposed of a homogeneous core and 

are small 
be considered as 
purpose of this report to 
tice size can be before a serious 
introduced. 

It is the 
how big the lat- 

from homogeneity is 

il We propose to discuss the case in some detail. 
elastic scattering 

1 

Suppose we have an 
and absorption can 
a re  present in the system 
independent of position, it being 
used. We then assume 
emitted per collision, is a 

of only one velocity 

to unity with the unit of length 
mean free path is 

number of extra neutrons 
which varies periodically 

, throughout the medium. Specifically, i + f(x) - will have the form: 
+ 

i 

-I___ ... . . .. 4 .,... 
1 .__ 
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The function p(x) is assumed to have a space average value of unity so 
that i / A  is the space average of tiel total number of neutrons emitted 
on the average per collision. We de'fine a unit cell of the lattice by 
three vectors, - -  a, b, and - c and make'the statement of periodicity, that: 

(2) 
>i'\h 

p(x + ia + mb + nc) = p(x) 

where i,m,n, are integers. With thAse assumptions we can then write 
the following integral equation for! the neutron density $(x): - 

- - - - - 

, i l l l  l.\l 
( 

- ? f  

If R ' i s  any displacement which keeps the value of p(x) unchanged - 
then we-can rewqite Eq. 3 as: 

I 
I I . > I * I  

1 ' I l ' (  1 - e - l ~ + R - ~ I  

- Ix+R-xI h$(x + R) = ( 1 / 4 ~ )  dx' 2 As') $(g - -  (4) 

I 

If we now displace the origin of x by an amount R and use the periodicity 
of p, we can rewrite Eq. 4 in thefoilowing way: 

- 

. l ' ,  

k: - 

S6 that: 

. -  . . . .. 

. . . . - .. . ..- 
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A general solution of the integral Fquation can of course be built up by 
superposing solutions of the form/Eql 7. 

Thelvector k is of course analdgous to the wave number of the 
I l l  asymptotic infinGe medium solution of the integral Eq. 3 in the ele- 

mentary, case where p(x) is constant. + In that case h-(x) is of course 
constant;also. We shalifind it convenient to deal directly with the 
periodic function $k rather than with the neutron density itself. To ac- 

, - i , t , i d ,  ,,,, complish this we substitute Eq. 7 in Eq. 3 and obtain: 

\ I  \ h  

I , /  l i  

which is conveniently rewritten: 

This equation is seen to be an integral equation for the function qk(x) 

of the solution explicitly and being Hermitian, if the propagation vector 
- k is real. 

In order to 
in investigating the 
a simple problem exactly. We 

p(x) - = i + a! cos (2nx/a) = i + 

--L 
the kernel of the integral equation, I ‘  containing the over-all wave-vector 

4 It is also 

the following: 

We now expand $(x) in a Fourier series and obtain: 



, .  
, 
I '  

, ,  I 

We substitute the expression (Eq. 12) in the Eq. 11 and obtain: 

, + *  . . .. 

+ ~ ~ w ? . N  The integrals appearing in Eq. 13 can easily be done and we obtain, by 
< i , c i : !  < : \ ' I  I\ 

.shifting the summation ind-exn: ~ , , . .  
I 

where 

From Eq. 15 we finally get the fodowing recursion relations for the C$n: 

~ @ n  [@n + ( ~ / 2 )  +n-i + (Q/z)/ @n+i] (16) 

If two of the neighboring (pn are specified it is clear that we can 
solve for all of the h. In general1 as the magnitude of n gets very 
large $n will increase without limit. If the value of h is properly 
chosen, however, then @n will conkerge to zero. Since the @n are the 
Fwrier co-efficients of a smooth function @(x) the @n must converge 

-to zero for large n if we are to have a real solution of the integral 
equation. We can therefore proteid by assuming that @* is zero for 
sufficiently large n and determining X from this requirement. 

We notice that Eq. 16 is unchanged by the substitution of -n for n, 
and we can therefore argue that the solutions of Eq. 16 must be either 
even or odd in n. The odd solution can be ruled out because it would 
require that $0 be zero, which implies that the neutron density aver- 
ages to zero. We therefore lose nothing by assuming that @n is equal 
to @-n. Consideration of Eq. 16 with n set equal to zero yields the 

1 1  

' ' ' condition: 



>I  \ h  

We then write the remining  equations (16) in the following form: 

For convenience we abbreviate the co-efficients as follows: 

We then divide all of the equations by $0 and call the ratio $n/$o - Rn, 
where R,, equals unity. 

We now solve these equationsifor: Ri by assuming that all the @n 
beyond a certain point are equal t& zero and then taking into account 
more and more of the $+,.LIf we first ' : I  decide to neglect R2 and all Rn 
beyond, we obtain: 1 1  

I 1  

Rl = ai 

If we now neglect all Rn except Rl 

Ri = ai + bl% 

Rz = a2R1 

whence: 

' 

I 

(20) 

I % we clearly obtain: 

Rl = ai + a2blRi - 

- . 

.-. . . . ---t . .. ~ .. _ _ ~  ___ .. 

.i\ 
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It is then easily seen that inclusion of higher and higher Rn will give 
values for Ri that are successive approximations to the value of the 
continued fraction: 

We now insert the values which we have for an and bn and set the 
____ _-L + 

resulting continued fraction equal ito the value of Ri-given in Eq. 17. 
We thus obtain the following secular equation for A: 

This may conveniently be rewrittdn /in the more symmetrical form: 

. .  . !  I , 

I 1  
I 1  For  a given value of the An areidetermined. If the value of a! is 

then given h can be found by a small amount of trial and error .  The 
continued fraction in Eq. 24 fortunately converges exceedingly rapidly 
for reasonable values of a and a. I I 1 

We should make sure that the Eq. 24 gives A correctly in the limit 
1 '  ' 1 1 '  a! = 0 o r  a = 0. If either a or  a! approaches zero the medium approaches 



E 
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homogeneityandXA should approach unity. If a is very small A0 will be 
equal to unity and all the higher A h  will be zero. Equation 24 then re- 
duces to: 

h = I + (a!2/2) hi/@ - A,) (25) 

From this we see that A approaches unity as a approaches zero. It is 
furthermore clear that if  a! approaches zero, Eq. 25 will again hold 
and h must again approach unity so that we have verified that Eq. 24 
has the correct limiting behavior.' 

We now wish to work-out an approximate procedure for calculating 
A, which will be reasonably accurate and simple for an arbitrary func- 
tion p(x). If the wave vector-k is real., Eq. 9 can be arranged to have a 
Hermitian kernel. We multiply each side of Eq. 9 by - and rewrite 
it as follows: 

7 ' h  

) I  
I I 

This equation can be derived from a simple variational principle and h 
can be written as the maximum of: the following expression: 

The maximum will be reached when $k is an actual solution of Eq. 9. 
If the variation of p(x) is not too violent, &(x) will be approximately 
constant. We, therefore, place, %(x) and @(rr> equal to unity and 
investigate the agreement between t?;e value of U thus obtained and the 
correct value of A. It is, of course, clear that the value of U thus ob- 
tained will always be lower than the correct value of A. We write h for 
this approximate value and obtain: 

I 



RL&.~ 0 3 I 
' I  - -  a 
1 1  Each~inltegnal~int'Eq. 28 is taken over \all space. The result of the inte- 

gration over x' in the numerator willibe a function periodic with the 
I l l  periodicity ofthe lattice. The integration over x in the numerator and 

denominator can then be extended'ober a unit cell of the lattice. 
In order to obtain the expressidnl (Eq. 28) for h in a somewhat 

more usable form, we expand p(x)i in a Fourier series: 
- 8  

The K form a denumerable set and are of the form: 

(30) 
/ / I  \ , i l l  I &  
( 2y(li l K  = 2 d p g  + @ + ry) 

I t  

Here p, q, r, are:integers and a! E,  r are the defining vectors of a 
lattice in K space. This new 1aGice'is reciprocal to the lattice defined 
by - - -  a, b, c z n  the - x space in the following sense: 

a ! - a = l  I (31) - -  ~ . b = a ! * c = O  - - - -  
I ' .  I h  

>". I  b . l i i  and cyclically for E, - y. The conditions (Eq. 31) a re  obviously satisfied 
by the choice: 

and similarly for - p, and - y. Any - K,satisfying Eq. 30 has the property 
that: 

- K (la - + mb - + nc) - = 27rx (an 

Therefore, every term in the 
t 3 periodicity which is that of 

(33) 
_ _  

. I  
(Eq. 29) is periodic with a 

29) in the Eq. 28 for A. It is 
-i 

We now insert the expansion 
necessary to remember that: 

A L T L ' A L  L!s PG GALLEY N O  @. 



F i l L l i '  PLA- t .  60 3, 

andYalsodhat~-p*~t= p since p(x) - is real. We obtain: K -K' 

We call the volume of the unit cell V and remember that the average of 
p(x) - is unity. Also we have: 

a! .  4 - 

K = K' - -  I e@-&) x dx = 0 - - 
= V  K=K' - -  i >I , \ ;  

A t  I 

.- 

Equation 35 then becomes: 

Since the average of p(x) - is unity, p,, is also equal to unity. We can then 
write Eq. 37 as: 

I l l  

I / '  

-_I 

mogenikp 
criticality in the 
implies that making the 
It can be seen in the following 
Consider a homogeneous 
terials combined in such 

its activity. 
this statement is correct. 

and absorbing ma- 
neither absorbs 

h r  nor reproduces. If we take the same materials in the same proportions, 
- .  - .  

. .- 

._ -. .~ .  __ .- r - - 
! !  
I !  

\.< 
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' I  but.dn&he lform -ofTan inhomogeneous lattice rather than a mixture, we 

can make the size of a single piece of the fissionable material such 
that this piece will be super-critical. This is, of course, an extreme 
case. The slightest disturbance of the homogenity will increase the 
activity of the system. This will beiso since in the homogeneous ar- 
rangement the absorption of one neutron yields one neutron on the 

' I  average.' In any inhomogeneous arrangement the neutron density would 
be higher in the places rich in fissionable material than in the absorb- 
ing regions. This means-that-alarger fraction of nemtrons will be 
absorbed in fission than previously land the system will be supercritical. 

The'expresston 38 gives a value of A, which is too;low. Therefore 
~ R N ~ ~ V ~ K  the correction to/ the homogeneous ?alue of h is certainly positive but 

The1 expression 38 is convenient but has, thus far,' no rigorous 
foundation if k islnot real. We proched to derive this equation in such 
a way that the restriction to real v&lues of k can be removed. We can 
write Eq. 9 as follows: 

il vh - 

I I 1!1LIXf t i  

I -somewhat larger; than given by Eq. 38. _ _  

- -  - -  

- 

(39) ' 

, 
We also write the integral equation for Qjn in the case where the vector 
k has the opposite direction to that in Eq. 39 and p(x) is equal to unity. 
We write @ = @ o  and h = A. and obtain: 
- 1 1  - 

We multiply Eq. 39 by ( l /Ao)  +o(x) ahd Eq. 40 by (p(x)/h)+(x) and inte- 
grate over x. We interchange the dummy variablesx and x' i n  the 
integrationson the right hand side of the first expr&sion&d note that 
the right hand sides of the two expressions are now equal. We there- 

I fore obtain the exact equation: 

U I  

I 

- 

The function C$~(X) - is really consdnt and can be taken equal to unity. 
1 I * i  We obtain: 

. . . . .  -. ..... . - .  . .~ 

- -. ~ . . . . . . . .  .. 



I '  This gives a simple expression for a,' except that an exact expression 
for $(x) is necessary. We proceed by approximating @(x) by a method 

Eq. 39 and take the result as an improved expression for @(x). This 
gives: 

of iteration. We insert a constant 1 ' 1  for. @(x) on the right hand side of 

- 
-ii \ h  

* t  

_ _ - ~  ; I " \  I I \  I I 

We then ,insert the Fourier-expansion Eq. 29 for p(x) and do the indicated 
integrations. This yields: 

We then insert this in Eq. 42, together with the Fourier expansion Eq. 29 
for p(x). - This yields: 

I '  If the integrations are then extended over a unit cell with V equal to the 
volume of the cell, we obtain: 

_/--- 



l - c ~ ~ ~ ~ ~ ~ ~ - ~ l i ~ ~ r  I,:W (!t 1 t x l  tan-' lkl 1 ' 
Remembering that X - and Go = I, we finally obtain: O - l g -  

1 1  This equation is formally identical with Eq. 37 but there is now no 

clear that the true h is highey-thafthat given by Eq.-47. If the accuracy 
of Eq. 47 is good,for real k, howeF,r, we would expecti it to be good for 
imaginary k. Suppose we assume k i=:i h where h is a-real vector. In 

r A R R Y v ) C E I l  Eq. 47 IK - -  c k l  mdans the square r5ot 'ofthe scalar prohuct of the vector 
with itself, not with its- complex conjugate. Remembering this, we 
obtain: 

restriction to real values of k. If k ' I  lis imaginary, however, it is not 
J I i k  

t i i h i ~ L l N i K  ' 

I 

_ _ _ ~  
This sum is obviously real since & = P-k'. It can be written: 

In Eq. 49, R {w} means the real 
function tanh-' iris always 

value of h calculated by the exact Eq. " I  24 with the approximate value of 

w. The principal branch of the 

of Eq. 47 by comparing the We now wish to check 

A. W e  assume, as we did in the derivation of Eq. 24 that k is equal to 
, zero. The symbol used in Eq. 47 now a re  specialized to the following: 
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> I '\ 1, 
Equation 47 therefore yields: 

* *  - 

If we assume (a2/4) [hi/(X - Xi)] h2/(X - h2) << I in Eq. 24 we obtain: 

h = I + (a2/2) hJX - hi) 

Ini this equation h will be nearly unity, and if we assume that hi is much 
l l ). r i  less than unity we obtain: 

i $ 1  I I .  

h = I + ((u2/2) A' (53) 

which agrees with Eq. 49. The vadidity of these approximations can be 
seen from the following examples./ We write A = 1 + AA and calculate 
A h  for various values of a and a! by,Eq. 47 (or Eq. 51 for this special 
case) and by the exact Eq. 24. We also give ( A A ) / a 2 ) ,  which is inde- 
pendent of (Y in the approximation lea 

of the exact Eq. 24. 
pected to be nearly independent of 1 '  a! . 

1 1  
0.00316 0.003 10 O,.? I' I 

Or 'I 

I A h  Ah i I  
Eq. 24 Eq. 47 ai I )  H _. 

0.000500 0.000494 0 I 

0.0125 0.0124 

0.00270 0.00237 
0.0165 0.0148 0.5 

0,. 5; 

ing to Eq. 47, and may be ex- 
reasonable cases with the use 

A h / a 2  AX/a2 
Q! Eq. 24 Eq. 47 

0.2 0.0125 0.0124 
0.5 0.0125 0.0124 
1.0 0.0125 0.0124 

0.2 0.0675 0.0593 
0.5 0.0660 0.0593 

I 0.0629 0.0593 0.5 1.0 0.0629 0.0593 

0.005-76 - -0.00.450 1.6- 0.2 --- 0.144- - - -0.112 
0.0348 0.0281 1.0 0.5 0.139 0.112 
0.126 

I /  -/ 

I I r ,  

- - - - - - - __ - ____- - - - - __._ - -  

0.112 -- 0.112 
- - __ -____ 

/ 
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I '  

[ Wils{Stolibe'-not.iced that the apyroximate Ah is always less than the 
exact Ah, as expected. For a lattike with periodic length considerably 
less than a mean free path (a = O . i ) ,  p(2) can oscillate between zero 
and two (a! = 1.0) without introducing any appreciable e r ro r  in the ap- 
proximate value of Ah. The appro@mate form gives a good idea of the 
size of the effect even when the periodic length becomes a mean free 
path. 

It might be expected that if p(x) departs little from unity and has a 
short periodic length, a firXt-order' p'erturbation Calculation of h should 
suffice. 'This is not true and, in fact, several differentivalues for h can 
be obtained by doing the perturbatiqn ;calculation in several seemingly 

( & l t K >  1 1  equivalent ways.  it seems, in fact, that the calculation: is essentially 
second order and this can- be seen! frdm the following-considerations. 
We write the equation whose kernel is adjoint to that of Eq. 9: 

d ,h 

I 

t i l  \i)Li.il I2 

, ' I  1 r~ I I , , .  We consider first a case with_p(x)l equal to unity (the unperturbed case) 
and then change b(x) - to i + Ap(xL"The - eigenvalue will change to h + Ahx 
where Ah is given by the usualfirst  order perturbation calculation: 

We use Eq. 54 to do one integration and obtain: 

1 ,  

-,We insert for 
and we obtain: 

and & the unperturbed 6 and @k which are  constants, 

The result of the first-order perturbation calculation is, therefore, that 
" the eigenvalue is unchanged. -We must then go, either to a second order 

- - .. - - . _- __  
- _ _  
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c@culation~.loa)tulse one of the treat$ents which have- been given. It 
should be pointed out that the first order calculation will give correct 
answers in problems where Ap is'noti assumed to be zero on the aver- 
age. It is only in cases where no c h d g e  is made in the total amount of 
active material that a second order1 calculation may be necessary. 

The treatment which we have Ideveloped is certainly not capable of 
giving d e  critical mass of a latticelassembly. It does /enable us to 
estimate the approximate effect of the inhomogenity. We can state 
some obviously necessary and-obviously sufficient conditions that a 
given aseembly to essentially homogeneous. We require that for the 
given h of the core or tamper that-the propogation vectors of the 
infinite medium plane wave solutions /should have magnitudes which a re  
essentially independent-of-direction! ]We further require that Tis mag- 
nitude shall be different from that fo4 the corresponding homogeneous 
medium 'by only a small fraction of litbelf. We can further argue that 
the effect on the critical size produced by the inhomogenity will be of 
the order of magfiitude of the effection the magnitude df the vector k. 

If the inhomogeneities are not too large excellent approximations 
to the c4itical mass of aninduhtogeneous core can be obtained by re- 
placing the core by an "equivalene' homogeneous one. 'The "equiva- 

t i -  
' I 1  

I 

I -  

lence" being determined by making ;the homogeneous material such that 
an infinite medium of it would hav'e ye same h for the 'important K 
values as does an infinite mediumlof inhomogeneous material as de- 
veloped by the methods of this reporti 

Inhomogeneities of mean free' da(h present problems which have 
not been solved. Inhomogeneities id a system in which many neutron 
velocities are involved present interesting problems which have only 
been partly solved in  some especially simple cases. 

. 
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