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Errata - 
Page 3, lines 2 and 12 read I' Coulomb" . 

Page 43, Equation (4.33) reads: 

Page 75, Figure 1 caption, read "defect" instead of "defend" 
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1. Introduction 

a 

e 

Nuclear matter i s  a uniform system of i n f i n i t e  i d e n t i c a l  

nucleonso s t r ipped  of t he i r  conloub in t e rac t ions .  A study of 

the proper t ies  of t h i s  system and i n  p a r t i c u l a r  the evaluat ion 

of i t s  binding energy as a function of its dens i ty  i s  a valua- 

ble f i rs t  s tep towards a theory of rea l i s t ic  f i n i t e  nuc le i  

s t a r t i n g  from f i r s t  pr inc ip les .  For instance,  the binding 

energy p e r  p a r t i c l e  of nuclear matter should! give the llvolume 

termf1 i n  the w e l l  known semi-emperical mass fclrnula f o r  nuc le i ,  

which i s  experimentally deduced t o  be about 16 lev. Further,  

the  experience gained from the  treatment of t he  energy and 

dens i ty  of t h i s  many-body system should be of great help i n  

evaluating the surface9 conlomb and other  terms i n  the mass 

f orrnula 

There a r e  seve ra l  mathematical formalisms developed f o r  

studying nuclear  matter.  A comparison of these and the i r  rela- 

t ive  merits is discussed by Branded'). The most successful ,  

and i n  many ways the simplest ,  theory i s  based on the 

Brueckner-Goldstone (293)  formalism: The Hamiltonian is  s p l i t  

i n t o  €Io EZ Ti + u i  and Hi 3 - o,C'# where Ti a r e  the 
i +i 

k i n e t i c  energies  of the nucledns, v i j  are the i n t e r  nucleon 

po ten t i a l s  and Ui are s ing le  p a r t i c l e  po ten t i a l s  t o  be chosen 

conveniently, It i s  assumed tha t  there a re  no i n t r i n s i c  many- 

body forces. The ground s ta te  of H i s  j u s t  that  of a zero 

temperature Fermi gas (it i s  non-degenerate) and the perturbed 
0 
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wave function and energy are expanded i n  a per turbat ion series 

i n  powers of H1. 

t h e i r  reac t ion  illatriceso and the r e su l t i ng  series i s  repre- 

sented by a se t  of diagrams similar t o  the Feynman diagrams, 

This formalism and the concept of the reac t ion  matrix are ex- 

The po ten t i a l s  v are used i n  the form of ij 

plained i n  the preceding a r t i c l e  by Ben Day. 

Subsequent t o  the development of t h i s  well-defined forma- 

lism, considerable e f f o r t  has gone i n t o  evaluating the lower 

order terms and t r e a t i n g  higher order terms i n  a cons is ten t  

way. 

fac tory  conclusiono both t h e o r e t i c a l l y  and i n  t e r n s  of agree- 

ment with experiment, 

process tias the development of the  Reference Spectrum Nethod 

by Bethe, Brandow and P e t ~ c h e k ‘ ~ )  which provided a re la t ive ly  

simple and a n a l y t i c  method f o r  evaluating the reac t ion  matrix. 

This a l s o  revealed several q u a l i t a t i v e  features with which 

higher order  diagrams could be studied. 

i n  another s ign i f i can t  ste2,, namely the r ea l i za t ion  t h a t  the 

Brueckner-Goldstone series does n o t  converge i n  powers of t he  

i n t e r a c t i o n  o r  the r eac t ion  matrix, and tha t  i t  should be 

It appears now t h a t  the theory i s  approaching a satis- 

One of the s i g n i f i c a n t  steps i n  t h i s  

Such a study r e su l t ed  

rearranged i n  powers of the number of nucleons involved, (596) 

The evaluation by Bethe of the three-body energy t o  a l l  orders  

i n  per turbat ion lends support t o  the i d e a , t h a t  the above rear- 

rangement i n  powers of the dens i ty  should converge f o r  nuclear 

matter. 
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Complete ca lcu la t ions  using r e a l i s t i c  p o t e n t i a l s  with 

tensor  f o r c e s  etc. have not  y e t  been f u l l y  done. 

done so f a r  reveals t h a t  the sum of the  two- and three-body 

contr ibut ions g ives  a binding energy of about 13 t o  18 MeV per 

p a r t i c l e  a t  the observed dens i ty  of kF = 1.36 F-' or  

p= 0.178 F-3s with the higher binding corresponding t o  "soft-  

But the work 

I 
core" p o t e n t i a l s ,  7s8 There are reasons t o  hope t h a t  the cor- 

r ec t ions  t o  t h i s ,  such as  four-body terms etc ,  should no t  be 

more than a couple of MeV, and methods have been suggested f o r  

absorbing these. 

per par t ic le  i s  about 16 MeV, 

f o r  a theory beginning from first  p r inc ip l e s ,  namely an evalua- 

t i o n  of t he  energy of the  many-body system s t a r t i n g  from the 

i n t e r p a r t i c l e  po ten t ia l .  

The experimental value f o r  the binding energy 

This is  a f a i r l y  good agreement 

In  estimating the  agreement with ex- 

periment one must remember t h a t  the theory r e a l l y  ca l cu la t e s  

the p o t e n t i a l  energy which i s  about -40 MeV f o r  a t y p i c a l  

nucleon i n  the Fermi sea, and t h a t  the binding energy i s  a 

d i f f e rence  between the  large p o t e n t i a l  and k i n e t i c  energies. 

It is hoped tha t  the uncertainty (and possible  discrepancy) of 

about 3 JieV i n  a t o t a l  of about 40 hieV w i l l  be reduced by the 

correct ion terms and by: more p rec i se  ca lcu la t ions  with tensor  

fo rces  e t c .  

Since the Brueckner-Goldstone formalism and the Reference 

Spectrum Nethod f o r  evaluating the reac t ion  matrix have been 

described i n  d e t a i l  i n  the preceding a r t i c l e  by Day,' we w i l l  

proceed from where Day has l e f t  off e Thus Sec. 2 w i l l  b r i e f l y  



gather  together  some f e a t u r e s  of the  two-body wave funct ion and 

the  reac t ion  matrix needed f o r  subsequent used 

d iscuss  the convergence problems of the  expansion and bring out  

the need t o  rearrange terms i n  powers of the  densi ty .  Sections 

4 and 5 w i l l  deal. w i th  a method f o r  evaluating the three-body 

energy which gives  the p2 term i n  the new rearrangement. 

t i o n  6 involves the  treatment of tensor fo rces ,  and f i n a l l y  

Sec. 7 w i l l  be devoted t o  the choice of the s ing le -pa r t i c l e  

p o t e n t i a l  energies  t o  be used i n  the  theory. 

recommended t o  the reader t o  familiarize himself w i t h  the  ideas 

i n  the preceding a r t i c l e  before embarking on t h i s  one. 

Section 3 w i l l  

Sec- 

It is  s t rongly 
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2. Some ProDerties of the  Two-body Problem 

The Reference Spectrum Method f o r  evaluat ing the g matrixs 

described i n  de t a i l  i n  the preceding a r t i c l e  (henceforth re- 

ferred t o  as A)  can be summarized very b r i e f l y  as follows: 

The g lrlatrix i s  defined i n  terms of the internucleon po- 

t e n t i a l  v by 

where Q and e r e f e r  respec t ive ly  t o  the  Paul i  exclusion opera- 

t o r  and the energy denominator i n  the Goldstone diagram. This 

i s  e s s e n t i a l l y  a two-body operators  and involves non- t r iv i a l ly  

the r e l a t i v e  coordinate r o  the momenta of the  two p a r t i c l e s  

and a parameter which depends on the  other  p a r t i c l e s  exci ted,  

Let us def ine  a two-body wavefunctiony(?) and a de fec t  func- 

t i o n  r(3 corresponding t o  an i n i t i a l  plane wave state +(r)  by 
3 

The Reference Spectrum a p p r o ~ i m a t i o n , ~  which uses a quadrat ic  

form f o r  the s ing le -pa r t i c l e  p o t e n t i a l  energies ,  amounts t o  

dropping the Q operator ,  and replacing the energy denominator 

by &(-v%& coordinate space. These approximations and cor- 
% 

r e c t i o n s  t o  them a re  explained i n  the  o r i g i n a l  paper 4 and i n  A, 

Here m* refers t o  the reduced mask i n  the Reference Spectrum 

energys *, a pos i t i ve  quant i ty ,  i s  the parameter involving 

- 7- 



off-energy-shell contr ibut ions from other  exci ted p a r t i c l e s ,  

and the  f a c t o r  Zis suppressed. It then follows from (2.3) 
PI 

and the  matrix element 

The g matrix element can thus be obtained by solving the d i f -  

f e r e n t i a l  equation (2.4) as exac t ly  as poss ib le  and using the  

so lu t ion  f o r  7 (7) i n  (2.5) . 
r a t e l y  "lo and the f i rs t  order energy, which i s  the g matrix 

i t se l f ,  has been evaluated. 

studying higher order diagrams, involving 'iarge numbers of g 

This  has been done qu i t e  accu- 

However, f o r  the  2urposes of 

matr ices9 it  i s  use fu l  t o  e x t r a c t  some q u a l i t a t i v e  features of 

the  funct ion 7 and the operator g. The great advantage of the 

Reference Spectrum Nethod, as compared t o  d i r e c t l y  solving the  

i n t e g r a l  equation (2,l) f o r  g, is the  ease w i t h  which it lends 

i t se l f  t o  such q u a l i t a t i v e  understanding. 

I n  t h i s  connectiono i t  i s  use fu l  t p  separate  the p o t e n t i a l  

i n t o  a shor t  range p a r t  v and a long range pa r t  vR, as  

o r i g i n a l l y  suggested by Noszkowski and Scot t .  

t i o n  d is tance  d was so -chosen by: , these workers, t h a t  the d e f e c t  

funct ion 7 had zero slope arid value a t  r d ,  ipe. the 'lwoundL1 

i n  the wave f u n c t i o n y  due t o  the  repuls ive  core got  lLhealedll 

S 

m e  separa- 
.. 
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a t  r 
d is tance  is, of courseo a funct ion of the  i n i t i a l  momenta 

d due t o  the a t t r a c t i v e  p a r t  i n  vS. This separat ion 

-49 
ko,Po. B u t s  f o r  a standard hard core p o t e n t i a l ,  with a core 

rad ius  c :: Oe4 F, the  d is tance  d i s  about 1 F f o r  a wide range 

of kogPo up t o  about 2 E" 112 Moszkowskf and Sco t t  show tha t  

the  reac t ion  matrix gs corresponding t o  t h i s  vs i s  zero f o r  

free nucleons. 

energy-shell  gs matrix i n  nuclear  matter,  i t  i s  s t i l l  usefu l  

t o  make such a separat ion,  s ince  the two p a r t s  vs and vi have 

qu i t e  d i f f e r e n t  proper t ies  and have t o  be t r ea t ed  d i f f e r e n t l y ,  

vs contains the  strong repuls ive core and is  bes t  treated i n  

terms of i t s  r eac t ion  matrix g 

Further,  because of i t s  s h o r t  range, gs has high Fourier  com- 

ponentsI and as  we w i l l  see, a strong momentum dependence. On 

the other  hand, v :  i s  the  r e l a t i v e l y  weak t a i l  of the a t t r a c -  

t i v e  part  and consequently has  a rap id ly  convergent Born series. 

Further ,  although i t s  matrix elements depend s t rongly on the 

momentum t r a n s f e r  , the  diagonal element i s  r e l a t i v e l y  indepen- 

dent  of momentum. A l l  these p rope r t i e s  w i l l  be discussed and 

used i n  de t a i l  a t  var ious p laces  i n  la ter  sect ions.  It should 

be noted, however, t ha t  although such a separat ion is of ten  

Although t h i s  i s  not  so  f o r  a general  off-  

.L 

t o  g e t  f i n i t e  matrix elements. 
S 

c 

usefu l ,  i t i s  possible  t o  evaluate  the g matrix f o r  the f u l l  

v ( r ) ,  by solving the  d i f f e r e n t i a l  equation (2.4) f o r  P(r), and 

t h i s  i s  usual ly  more convenient f o r  accurate  numerical work. 

--P 

The function 7 (r) corresponding t o  v has some use fu l  
S S 

features, Consider f o r  instance i t s  s-wave p a r t o  w r i t t e n  as 

- 9- 
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0 

usual  i n  t he  form Xs(dcThen  from ( 2 , 4 ) 9 x 0 ( r )  obeys 
S 

u- 

Ins ide  the hard c o r e , y ( r )  = 0 and hence)Ci(r)  = r jo (ko r )c  the 

free S-wave function. 

slope and value a t  r L d,  by d e f i n i t i o n  of d. 

been no a t t r a c t i o n  outs ide the cores then)Co(r) = e 

The a t t r a c t i v e  par t  makes the decay o f X i ( r )  only faster. 

Thus, a graph of )Cz(r) has an approamate shape shown i n  Fig. 1. 

Inside the core r ad ius s  the function)$ 3 r J (ko r )C  r f o r  

smallk, .  

so that ko c 

much with ko, espec ia l ly  f o r  large % 
dence outs ide  the core arises from the core boundary value 

> c ; ( C )  1 cjo(koc).  

Outside the  core9%: f a l l s  off t o  zero  

If there had 
- Y r  for  r7C. 

S 

0 

Deviation from thfs arises only f o r  large enough ko 

Furthere  outs ide  the core,K; does no t  vary 1. 

The largest ko depen- 

Therefore the outer  function,, when su i t ab ly  

9 normalized a t  the core radius, L e ,  either .&& o r  x ;  (d 

should be r e l a t i v e l y  independent of k . =kD @:I =io (bc) 
0 

Further, since)Lz is roughly triangular w i t h  a peak at 

r t cI its f ourier transform should be peaked around kc = T/2  

L e .  k ,., 4 Fa'. Thus, when the g, matrix acts on the filled 

Fermi sea, i t  tends t o  exci te  intermediate  states  of momenta 
i 

t y p i c a m  around 4 F-'. All these features of the defect func- 

t i o n  w i l l  be u s e f u l  in subsequent discussion,  

We can also make similar estimates f o r  t h e - r e a c t i o n  matrix 

We have, gSo 
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m 
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9" 

wherefiis the volume of in tegra t ion .  

case F} =-\z>. The i n t e g r a l  i n  (2,7) can be s p l i t  i n t o  two 

parts,  i n s ide  and outs ide the core radius  respec t ive ly ,  Ins ide  

the core, 5 (7) E f(?) = e 

Consider the diagonal 

-+ iko.r 
so tha t  

r 

we 

Outside the core* the  contr ibut ion i s  not  s o  t r i v i a l ,  but the  

shape of xo i n  Fig. I shows tha t  the r e s u l t  should be of the  same 

order  as the  core contr ibut ion,  

i s  reasonable. Thus 

S 

C 
Ap estimate of about 2Vc t o  3 V  

As an appl ica t ion ,  consider the first order d i r e c t  diagram i n  gs. 

Its contr ibut ion,  using an average value kn3 i s  approximately, 

% 
where M i s  the number of p a r t i c l e s  

3v\" 

For purposes of es t imat iono we can use 

(2.10) 

(see preceding a r t i c l e )  
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This gives  the  f i rs t  order gs contr ibut ioq from the "direct" 

diagram , 
E(') (0,170) (0.81) (1.5 kF2) CL 0.10 k F 2 x  8 MeV per  

p a r t i c l e  s = 5  

This i s ,  of courses only an estimate, and is given only t o  

i l l u s t r a t e  the e s s e n t i a l  s i m p l i c i t y  of the BBP method, 

exact  r e s u l t s  can always be obtained by solving (2.4) and 

evaluating (2.5). The estimate i n  eq. (2.9) f o r  (c I 
i s  very valuable i n  studying higher order diagrams, 

The 

/XQ> 
as  we w i l l  

see i n  t h e  next sect ion,  

It should be noted here tha t  the first order  contr ibut ion 

of gs i s  pos i t ive .  

large negative contr ibut ion (about -59 MeV) l3 through i ts  f irst  

~ r n  approximation, so t h a t  the  f u l l g  matrix g z g s  + va i s  

negative f o r  smallko.  

t i o n  t o  the  binding energy from the f irst  order d i r e c t  diagram, 

However, the  long range p a r t  vi makes a 

This gives, then, a p o s i t i v e  contribu- 

We f u r t h e r  note  t h a t  s ince gs i s  l a rge ly  ko independent, 

the diagonal  gs matrix element 
L z 

(i?d)ssrk5) ", k O +  ir G 172 
h w  

has a strong quadrat ic  dependence on ko. 

t h a t  t h i s  proves t o  be a troublesome f e a t u r e  i n  evaluating the 

three-body energy and a f u l l  s ec t ion  w i l l  be devoted t o  in- 

corporate t h i s  momentum dependence of gso 

We trill see i n  Sec. 5 

We have described above some se lec ted  p rope r t i e s  of the 

9 -12- 



two-body wave funct ion and reac t ion  matrixo which are needed 

fo r  the study of higher orders tha t  follows. 

ferred t o  the  preceding a r t i c l e  for fuller deta i l s  of the  two- 

body problem. 

The reader i s  re- 

E 
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3. Th e Converpence of the Brueckner-Goldstone Series  

We w i l l  study i n  t h i s  section the convergence of the 

Brueckner-Goldstone expansion order by order. 

the expansion will contain diagrams involving the single- 

p a r t i c l e  po ten t ia l  energy U (See A ) .  Obviously, their contri-  

bution w i l l  depend on the choice of U, which i n  turn depends 

In gene raa  

on what pure g matrix diagrams one i s  t rying t o  cancel out by 

these ItU diagrams". Therefore let us first concentrate on 

diagrams t h a t  do not involve U. 

The first order diagrams are shown i n  Fig. 2. Here, 

Fig. 2b i s  the "exchangen of 2a. In the previous section, we 

made a crude estimate of the direct  diagram 2a as ~ ~ $ + ~ & ' ~ ~  
k .k 

s', +8 -59 MeV = -51 HeV. The exchange diagram can be s imi la r ly  

evaluated. 

Italmosttt diagonal, inasmuch as the momentum transfer  m-n i s  

qui te  small, so that f o r  a given; and;, it should not be very 

d i f f e ren t  from the d i r e c t  term. But, fo r  a spin-isospin inde- 
pendent potential,  the s tates  2 and x must have the same spin- 

isospin values i n  the exchange diagram. Consequently, the ex- 

change diagram contribution is multiplied by an addi t ional  

f a c t o r  of -=+9 the minus sign ar isfng from the Goldstone rule 

mentioned ia A. As a r e s u l t ,  the  t o t a l  f i rs t  order contribu- 

t i on  should be about 3/L, the d i r e c t  term, L e .  about -39 MeV. 

However, one can see tha t  the exchange diagram I s  
3-9 

We wish t o  emphasize againo tha t  whereas the ease with which 

such estimates can be made is the  great advantage of the BBP 



method, i t  is always possible t o  get  more exact answers by 

solving the d i f f e r e n t i a l  equation for ; j ) ( r ) .  A recent such 

calculat ion by Kirson12 gives a value of -38.35 MeV f o r  the 

first order energy, using the Standard Hard Core potent ia l ,  

i n  very close agreement with our estimate, 

There a re  no second order diagrams i n  the Bureckner- 

Goldstone expansion, The th i rd  order d i r e c t  diagrams are  only 

a handful, a s  shown i n  F igo  3. Tlie remaining t h i r d  order dia- 

grams can be obtained by simply ltexchangingtl one or more of 

the g matrices i n  Fig. 3. O f  the th i rd  order diagrams, Fig. 

3a and Fig, 3c caught ear ly  a t tent ion,  i n  as much as they 

seemed t o  represent se l f  energy effects .  The ltbubble in te r -  

act iont t  <bn\ g / bn} in Fig. 3a s for example, when summed over 

the s t a t e  n,  may be considered as pa r t  of the s ingle-par t ic le  

energy of the s t a t e  b, and might therefore be counteracted by 

a sui table  U(b), A similar statement would be val id  f o r  Fig.  

3c, where the "bubble interact ion" (mnl g/ mn} may be included 

as part of the hole energy U(rn). This method, which corres- 

ponds t o  the Hartree method i n  atomic physics, is  explained i n  
Goldstone's p a p e s ,  and forms the basis of the BBP choice of 

their  s ingle-par t ic le  energies. 

discussed i n  Sec. 7, ,absorbs, on the average, diagrams 3a, 3c 

and their exchanges, as p a r t  of t he -  s ingle-par t ic le  energies. 

The BBP choice, which will be 

Concurrently, it was shown by Rajaraman" that the re- 

maining th i rd  order diagrams a re  comparable i n  size t o  the 

ds 
0 
F -15- 



bubble diagrans,  and should be taken i n t o  account t o  make a 

cons is ten t  approximation. However, he a l s o  showed t h a t  even 

though these a r e  not  obviously self-energy type diagrams, more 

than 90s of t h e i r  contr ibut ion could s t i l l  be absorbed i n t o  

the s ing le -pa r t i c l e  energies. 

then included by BBP i n  determining their  reference spectrum 

parameters. The s p i r i t  of the  e f f o r t s  a t  t h a t  time was s t i l l  

based on the  hope t h a t  the  Brueckner-Goldstone series converges 

as you go t o  higher order diagrams i n  g ,  and t ha t  if you have 

accounted f o r  a l l  t h i r d  order diagrams i n  the  above manner, 

t h i s  should leave only small e r r o r s  from fou r th  and higher 

order terms. 

These add i t iona l  diagrams were 

However when ca lcu la t ions  were performed by Razavy" f o r  

the  first order energy with such a s ing le -pa r t i c l e  spectrum, 

the r e s u l t i n g  binding energy was only about 8 MeV per  particle.  

Razavy used the  Hamada-Johnston p 0 t e n t i a 1 . l ~  A similar r e s u l t  

was obtained by Brueckner and Nastersonlb using the (very 

s i m i l a r )  B r e i t  po ten t ia l .  

showed t h a t  both the Razavy result and the  Brueckner-Masterson 

(Br-11) result  needed cor rec t ions  which coincidental ly  reduced 

both values  down t o  about 4 MeV o r  SO. 

Br-M ca lcu la t ions  d id  not  include t h e '  off-energy-shell  e f f e c t s  

on the  s ing le -pa r t i c l e  energies.  

Dabrowski'* have incorporate  f-energy-shell  -corrections 

i n t o  the Br-b: energies.  It showld be noted i n  t h i s  connection 

tha t  use of both the  Coon-Dabrowski and the  Brown e t  a1 

However, Browno Schappert and IJong 17 

In p a r t i c u l a r ,  the 

Flore r ecen t ly  Coon and 

- -  



c 

0 
D 
t 

correc t ions  t o  the  Br-II ca lcu la t ions  i s  wrong s ince  these cor- 

r ec t ions  dupl ica te  one another,  

that  Coon-Dabrowski inclusion of off-energy-shell  e f f e c t s  i n t o  

the s ingle-par t ic le  energies had already been achieved ear l ie r  

by the  BBP spectrum, 

It should a l s o  be remembered 

These remarks are a digression from our main point  t h a t  

the sum of the first and th i rd  order energies  af ter  these cor- 

r ec t ions  give only about 4 MeV of binding per p a r t i c l e  as  com- 

pared t o  the experimental value of 16 MeV. 

This can be inproved upon by using a tlsoft-corelt repul- 

s ion,  such as the  exponential  core of lJong 7 ins tead  of the 

i n f i n i t e  "hard corett .  

s ions  and was estimated by Wong t o  add about 4-5 14eV t o  the 

binding energy. 

the cause of which turned out t o  be connected with the under- 

lying hope t h a t  the Brueckner-Goldstone series converged order 

by order. 

This would c l e a r l y  decrease the repul- 

This s t i l l  leaves a discrepancy of over 7 MeV, 

This hope turned out  t o  be qu i t e  fa lse ,  as a c loser  in-  

spection of h igher  order diagrams revealed. It was shown by 

Rajaraman' t ha t  there  exist, i n  the  expansion, sub-sets of dia- 

grams characterized by the number of hole-Unes i n  them, where 

higher and higher order terms in. each sub-set do not  become 

smaller, so t h a t  evaluating the series order.-by order is no t  
I .  

t h e  proper procedureo 

s u b s e t s  should be summed i n  coordinate space and tha t  the 

It was a l s o  suggested tha t  each of these 
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5 CIS r e su l t i ng  sequence corresponding t o  an increasing number of 

ho le  l i n e s  w i l l  converge. We w i l l  now ou t l ine  these arguments. 

Consider the two fou r th  order diagrams i n  Fig.  4. Compare 

both of these t o  the t h i r d  order  diagram i n  Fig, 3b. Fig. 4a 

has one more f a c t o r  g/e  ( the Irbubblet1 i n t e rac t ion )  and has t o  

be in tegra ted  over one more independent s ta te ,  namely n,  as 

com$ared t o  Fig. 3b. O f  course,, the contr ibut ion of a diagram 

involves i n t e g r a l s  over a l l  t he  intermediate s t a t e  momenta, 

and although the integrand g-g-g-g 111 f a c t o r s  i n t o  contr ibut ions 

of the ind iv idua l  g matrices,  the in tegra ted  r e s u l t  w i l l  not. 
C e e  

Nevertheless, f o r  purposes of making estimates,, we can write 

%IC,$ 3 -’ -3 

with $, &’ (3 1) ”, p < q q Q  u 7L 
-4 

This is where our estimates f o r  <!-:/A 1 ke>t the end of the 

last sec t ion  are very useful.  
ci. 

There we showed tha t  

gives  a core contr ibut ion of Vcs  and something of the same 

order (2Vc t o  3 V  ) from outs ide  the  core. Thusv 
C 

where 2r, = I n t e r - p a r t i c l e  d i s tance  = 2.24 F. 
the other  hande the diagram 4b. 

t i o n a l f a c t o r  of g/e as compared t o  Fig .  3b, but the a d d i t i o n a l  

Considerr on the 

Here again we have an addi- 

independent momentum t o  be in tegra ted  over, whether i t  be p o r  

f& is above the  Fermi sea. Thus,, 

- 18- 



dia ram 4b - z 2  c ,xG&Zim k2$- e 

As we showed i n  the last sect ion,  the t y p i c a l  p a r t i c l e  momentum 

p exci ted  by the g matrix i s  about ~ ! X ~ + F ~ ' .  

by considering the Fowler t~arml'orm of y(r) a and the large 

value of the  momentum was seen t o  a r i s e  because of the hard 

core. Thus, even though the matrix element g/e I s  of the same 

order 83 before,  the ahase space over which t h i s  i s  integrated 

This we j u s t i f i e d  
2 s  

is much l a rge r  than the Fermi seao and we would ge t  a r e s u l t  

3 
diagram 49 3.5 1- 
diagram 3b u (3.3) 

On de ta i l ed  considerat ion,  t h i s  fac tor  turns  out  t o  be an 

over es t imate  i n  as much as g/e i s  smaller than 3*5 Ve f o r  

high momenta, and the t y p i c a l  momentum p i s  somewhat smaller 

t h a n E  e However, this r a t i o  i s  a t  least of the order of 

uni ty ,  as compared t o  the r a t i o  of w7th  i n  eq. (3.2). A 

b e t t e r  way of estimating this r a t i o  i s  given by Ben Daye9 We 

2c 

have 

= 7 & = 0 - )  

Once again we see t h a t  - t h i s  r a t i o  arises because y( r=o)  = 
+ k ( r ~ o ) ~  which i n  turn is because of the hard core. The argu- 

ment used here  i n  going from th i rd  t o  fou r th  orderp  i s  c l e a r l y  crd 



val id  a t  a l l  orders, We conclude then, t ha t  i n  going t o  a 

diagram of next higher order, i f  the extra independent in te r -  

mediate state introduced is a par t ic le ,  the higher order dfa- 

AlJ 
- * 

gram remains of the same s i zeo  whereas i f  the intermediate 
s t a t e  i s  a hole, then there  is a reduction by about a seventh. 

The above convergence behavior becomes more transparent 

when summarised i n  d l r e c t  physical  terms thus: 

c 

With an i n f i n i t e  hard core in the potent ia l ,  we must of 

course an t ic ipa te  convergence problems i n  powers of the poten- 

t i a l .  In f a c t ,  if we use the poten t ia l  as I t  is, even the 

matrix elements diverge, The s i tua t ion  i s  improved by the u8e 

of the react ion matrix g ,  which i s  a t  l e a s t  f i n i t e .  

every diagram i n  $ewers of g f i n i t e .  

imgly tha t  such a sequence of f i n i t e  diagrams will converge 

order by order. Now, i f  a diagram contains n hole l ines ,  i t  

corresdonds to  an interact ion between n par t ic les ,  since i t  is 

easy t o  note that  every hole l i n e  corresponds t o  one p a r t i c l e  
being excited out of the Fermi sea. Since i t  i s  the hard core 

which Leads t o  convergence problems, and s ince the proberbility 

of a l a r g e  number o f  p a r t i c l e s  being within each other 's  core 

radius  is small ( fc3< Jx we uld expect a diagram t o  g e t  

smaller as the  number of hole l i n e s  increases. But If the 

number of hole l ines i s  kept constant and the number of g 

matrices i s  increaeed by adding pa r t i c l e  lines only, then there 

i s  not  l i k e l y  t o  be good convergence. 

This remder$ 

However, t h i s  does n o t  

.? 

Our semi-quantitative 

20 



arguments ear l ier  simply corroborate t h i s  conjecture. This 

p o s s i b i l i t y  of convergence i n  @owers of the  dens i ty  had been 

suggested as early as i n  1957 by H u g e n h o l t ~ . ~ ~  

A t  t h i s  juncture,  i t  i s  again h e l p f u l  t o  separate the 

p o t e n t i a l  i n t o  vs and va. 

cons i s t  of an a r b i t r a r y  sequence of vs and vA i n t e rac t ions ,  

and if wrinterrugted two-body ladders of vs a r e  summed i n t o  

gs as usual,  then we have diagrams with arbitrary combinatfons 

of gs and ve. 

(a) Diagrams involving vL alone: 

asmuch as  the second Born term in vIe is seen t o  be 25 of the  

first. 

be clear i n  Sec. 7. 

show i n  Sec. 7 t h a t  these can be absorbed i n t o  the  single- 

p a r t i c l e  energies.  (c) Diagrams involving g, alone: It i s  

these diagrams which, owing t o  the hard core, lead t o  a non- 

convergent sequence f o r  a fixed number of hole  l i n e s ,  f o r  the 

reasons outlined- 

An arb i t ra ry  diagram would then 

These may be separated i n t o  three c lasses :  

These w i l l  be very small i n =  

The reason13 behind t h i s  large dimunition w i l l  11312 

(b) Diagrams mixed i n  vA and gs: We w i l l  

Neverthelesso i f  you consider one such sequence, say,  of 

a l l  diagrams with three hole l i n e s ,  i.e. the three-body clus- 

ters, then the contr ibut ions of successive orders  a l t e r n a t e  

i n  sign. That is ,  a seventh-order diagram as compared t o  a 
$_"d+= - 71 sixth order one, would contain an extra f a c t o r  
Ea -H -e 

which i s  negat ive s ince-gs  i s  posi t ive. .  ThusI it i s  possible  

t h a t  the sequence may have a f i n i t e  sum. 

21 



This was i n  f ac t  shown t o  be the  case. We w i l l  use now 

a convention f o r  drawing diagrams introduced by Rajaraman f o r  

handling n-body c l u s t e r  diagrams. Every nucleon i s  represented 

by a v e r t i c a l  l i n e ,  with i n t e r a c t i o n s  represented by ho r i zon ta l  

l ines  o r  wiggles  as  before, t tPa r t i c l e t l  and t tholett  s tates are 

dis t inguished only by arrows. 

representa t ion  i n  the new convention are shown i n  Fig. 5. 
A Goldstone diagram and i t s  

The 

disadvantage of the new convention i s  tha t  i t  does not  d i s t i n -  

guish between par t ic le  and hole states very c lear ly .  On the  

other hand, i t  brings out  the  uni ty  of a l l  n-body diagrams of 

all orderso  Thuso a l l  three-body diagrams a r e  ftLadders*l with 

these v e r t i c a l  l i nes .  

three-body ladders  may be swnmed i n  a manner similar t o  

BrU8Ckner's summation of a l l  two-body v-ladders i n t o  a g-matrix, 

It was shown t h a t  the  sum of such three-body ladders, ca l l ed  

the T matr ixo i s  f i n i t e  and can b evaluated i n  a manner s i m i -  

lar  t o  the reference sgectrum method f o r  the two-body g-matrix. 

A three-body wave function analogous t o  y 
which obeys a three-body Schrodinger type d i f f e r e n t i a l  equa- 

t ion.  If t h i s  equation can be solvedo then the T matrix, o r  

the three-body energy, can be easily obtained. The same pro- 

cedure can be adopted f o r  four-body and higher c l u s t e r  dia- 

gramso Whereas the corresponding n-body Schrodinger type  

equations would be harder and harder t o  solve a s  n increases ,  

the so lu t ion  nevertheless  e x i s t s p  and leads t o  f i n i t e  energies  

f o r  the  contr ibut ion of a l l  the  n-body diagrams. Furthermorer 

This already suggests tha t  a l l  these 

5 

&:p c.-ci*k 
an be def ined,  

22 



i n  view of the short  range nature of gs,  these contributions 

should converge as n increases. 

Although Rajaraman's work suggested the above poss ib i l i -  

t ies ,  i t  did not attempt the ac tua l  solution of the 3-body 

d i f f e r e n t i a l  equation t o  g e t  the  +body energy. This was done 

a year later by BetheS6 who, wi th  the help of Faddeyev's tech- 

nique*' obtained a sa t i s fac tory  solution t o  the three-body 

wave function and energy. 

de t a i l  the above convergence d i f f i c u l t i e s ,  and the e f f e c t  of 

going from th i rd  order t o  all three-body terms. 

This work also  revealed i n  greater 

We w i l l  des- 

c r ibe  t h i s  work i n  d e t a i l  i n  the next section. We only need 

t o  mention here that  Bethe's work, subsequently fur ther  in-  

proved by Day21 and Kirson,12 leads t o  a three-body energy of 

about -5 14eV. which, compared t o  the -38.3 MeV f o r  the two- 

body energy, ind ica tes  a good rate of convergence i n  the  

c lus t e r  expansion, thus giving us hope tha t  the four-body 

energy would be l e s s  than 1 MeV. 

h 
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4. The Three-Bodv Enerav 

1 ds We yill now discuss a method for determining the three-body wave 

function and energy in nuclear matter, developed by Bethe in 1964. '* The 

wave function and energy correspond to the s u m  of all Goldstone diagrams 

with three hole lines, 

c * 

5 
We will use the convetion' mentioned in the last  

section for drawing cluater diagrams, whereby all three-hole-line diagrams 

will consist of three upgoing lines. 

lines as before, and energy denominators are just the energies of the inter- 

mediate states shown minus the starting energies, as can be verified by 

comparing the two diagrams in fig. 5. Subject to a handful of exceptions, the 

The interactions g a r e  wiggly horizontal 

set of all allowed three-hole-line Goldstone diagrams is just  the set of all 

possible three-body ladders one can draw, in the new convention. The excep- 
8 

tions arise because there are some "three-hole" Goldstone diagrams, such 

as the llhole-bubblel' diagram in fig. 3c which cannont be represented as part  

of the ladder sequence, and conversely there a r e  a few ladder  diagrams that 

have no Goldstone analogues and should be subtracted away, These anamolies 

will be taken into account later on, but let us for the moment consider the sum 

of all  three-body ladder diagrams. 

Let us denote by T, the matrix denoting the sumpf all three-body 

ladders,  analogous to the g matrix for the two-body ladders. In other words, 

c l m n  1 T I l m n >  

on states 1, m, and n retpectively. Since binding energy diagrams a r e  

"vacuum to vacuum" in the second qu-wtised language, the states 1, m and n 

a r e  below the sea. We will start by evaluating only direct diagrams i. e. where 

44 4 44 4 

is the sum of all three-body diagrams that begin and end 

" 4 4  -# 

i 
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au the three Darticles are restored to the same resnective state in which they 

/-i 4 -. 
started. Exchange diagrams, belonging for instance torm 1 n 1 T I T'G ;>* - 
are related in a fairly simnle way to the direct diagrams, as in the two-body 

case and will be dealt with later. Needless to say, exceDt for the initial and 

final states T, %, z, all other states in the ladders should be above the Fermi 

sea, and no two successive g matrices should refer to the same nair of 

intermediate states. 

diagrams. Fig. 6 shows a typical diagram belonging t o ( i 2  

These rules are directly carried over from Goldstone 
w 4  -8 1 TI 1 m n>. 

Clearly this set of diagrams can be divided into three distinct grouDs 

denending on which pair of particles is involved in the last g interaction. 

(3)  Let us define T ( l )  , T") and T to be the s u m  of the g r o w  of diagrams in 

.*I whose last interaction the narticle 1, 2, and 3 resvectively is a spectator. 

Clearly, 

- 

(4. 1) T = T ( l )  f T(2) .+ T (3)  

20 such a separation was suggested by Faddeyev 

3-body scattering matrix. Now, a diagram belonging to T , such 8'8 the one 

in connection with the 

(3) 
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in fig. 6 ,  must have g 

must therefore be either g 

as its last interaction. The next lower interaction 

Thus, the part of the diagram below 

12 

13 Or g23 ' 

, itself corresponds to a te rm in either T ( l )  or T"). The only excep- - the g12 
0 

tion to this is if there is no interaction at all below g12 i. e. if the entire 

diagram corresponds only to gI2. Thus, 

and cyclic permutations 

which corresponds to  the third 12 , The first t e rm on the right hand side, g 

particle not interacting at  all, is really part of the two-body energy and ie an 

example of the unwanted exceptions we spoke of earlier. 

subtract away its effect from T 

We wil l  eventually 
0 

(3 1 . 
Equation (4.2) and its two  cyclic permutations, foy& & b e e t  of three 

coupled integral equations for T ( l)  I T(2) and T (3). As in the case of the two- 

body g matrix, theae integral equations are best solved by transforming the 

problem into coordinate space and Solving for  suitably defined wave functions. 

It should be noted that in Eg. (4.2) we have dropped the exclusion operator Q 

which would ensure that the intermediate states of particles 1 and 2 remain 

above the sea. This approximation is similar to  the one made in A for the 

two-body g matrix and is justified by the same arguments. The single- 

particle energies that go into the denominator e, a r e  given by the same 

reference spectrum as in the two-body case. 
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Let us now define three-body wave functions Y(i) by, 

T(3)  - Y(3), and cyclic permutations, - g12 (4.3) 

where @is the unperturbed plane wave three particle state. It follows from 

Eq. (4.2) that 

1 = i -  - Y(') + g13 Y (2 1 1, and cyclic permutations (4.4) E g23 e 

the wave functions ,(i) and the above equation (4.4) a r e  the three-body 

analogues of Y (r)  and its equation (2.2) for the two-body case. 
- 

As in the 

b into differential operators in the variables 1 two-body case,  if we convert; 

r 

gi j 
(i). w 

then (4.4) would give a set of coupled differential equations for Y i j  * 

The operator e , deceptive in its abbreviated form, is more compli- 

cated than in the two-body case. fn every three-body diagram, the first  and 

last energy denominators correepond to two nucleons being excited and the 

third below the  ea. Thus, in fig. 6 ,  at the level C, nucleons 1 and 2 are in 

excited states a and p whereas 3 has returned to the state n below the sea. 
-8 + 4 

Every energy denominator except the first and the last, such as at level D in 

fig. 6 ,  corresponds to all three nucleons in excited states. Using the reference 

spectrum (Bee A) both types of energy denominators can be expressed in '22. 

1 2 '2 the form - (-V.. t ) , but the value of y, using typical values for all m? IJ 

the momenta involved, is higher when all  three nucleons are excited. To be 

i 
more explicit, at level D, G.$ 
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a 

f- 1 [ a 2 t b 2 t d  2 - 4  2 - m  2 - n  2 t 6 A k _ F  
an* 

2 2 2 ' pab 2 , d 2 - 1  2 - m  - n  t 3Ak f '1 1 

m 
= -  

e a t b  a + m + n - d  by momentum conservation 2 
But Pab = - = 2 

2 2 2 2 2 - a  t m  t n  t d  - averaging over angles pab 4 

2 3d2 a 2 t m  2 t n  2 1 

m 4 
e = y  [kab t-- 

4 

t ( 3 A -  0. 45) k, 
m 

1 2 2 
thus e E: - * ( -  v12 + Y ,  1 

m 

3d2 t (311 - 0.45) k:F 2 with Y = - 
1 4 

(4.5) 

n 
The value of the particle momentum d can be typically taken as -- from the 

arguments in Sec. 2 for the most probable momenta excited. 

2c 
i 

Q 
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On the other hand, at the level C in fig, 6, where only two particles 

a r e  excited, the energy denominator is on the energy shell, i. e. 

e = E(a) f E(p) - E@) - E(m) 

2 2 2 = 
2Ak-F - kem where Y 2  

(4.8) 
2 2 = (211- 0.3) k Y1 . *F 

Therefore, even using average values for the momenta involved, there a r e  

two distinct energy denominators, similar in form, but with different Y's. 

operates on the two-body In either case, we know from Sec. 2 how - gij 

plane wave state. 

1 
e 

It effects only the relative coordinate r. .  and gives 
1J 

-4 

where 5 ,  ~ (r. .) can be obtained from (2.4) and its general features such as 
U 

"healing" etc. were discussed. 
k* P 

Clearly I: depends on the value of Y ;  let US 

use the symbol 7 to denote this function when Y = y2 and 6 itself when Y = Y1 . 
To incorporate the distinction between (r. .) and C (r .) , the former occuring 

when two particlee a r e  excited and the latter when all three a re ,  we split the 

4 , 
1J 'J 

/ 1 
in Eq. ( 2 .  4)  into (4'' - *)  and CP. When ; gij acts on 9 ,  clearly only the 

- 29- 



th th i and j particle a r e  excited. Hence 

Here we have used the limit of zero momenta 

(4.10) 

for all hole states,  so that 

4 = 1. 

tum in 

Eq. (4.4) becomes 

This approximation, reasonable inasmuch as the average hole momen- 

Fi kf - 1/3c, will  be used in all subsequent discussion. Thus, 

(4.11) 

We thus have to  solve the three coupled differential equations implied in 

(4. ll), for theZ(i). Since each 2 

function with no initial state in it, the operation of - g.. on it wi l l  involve only 

= (P - y(i)  represents an excited wave 

1 
e 1J 

-.. 
the function 5 (G. .) , and not n(3 ). 

1J 3 
However, the Z(i) a r e  functions of all three coordinates. Therefore, 

1 (3) - - - to find the result of operating - g12 on 2 (rl, r2, r 3 ) ,  one must first e 

ik r12 4 Fourier analyse 2 (3 1 , replace e in each Fourier com- by 6 -. -8 ( f l 2 )  
ks-p 

ponent and then perform the inverse Fourier transformation. The resulting 

(3) -8 -e function is of course not related in any simple way to Z (rl, r2, r3) and the 
P 

coupled equations (4.11) a r e  not easy to solve. Consequently, two approximtione 

- 
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a simpler one due to Bethe, and an improved version due to Day have been 

suggested for obtaining the Z(i). We wil l  present both of them here. Once 

the Z(i) are known, the kree-body energy is easily obtained in terms of these 

functions. Thus <AmnI T(3) 18mn> is just the sum of all diagrams of the type 

-0 
1 

in fig. 6 ,  which end with g and have all possible combinations of g.. under- 
12 'J 

neath with one e ? E g f $ O Z L  The diagrams clhown in %7 have no analogues in 

the Goldstone ser ies  sincethey don't conserve momentum. 

at the level D in fig. 6 i s  y' 

Noting that the state 

, whereas it is 4 at level D in fig. 7, we get, 

on removing the t e rm of fig. 7, 

where h is the volume of integration. (4.12) 

Some comments a r e  due concerning equation (4. 12). In deriving it, we 

have explicitly written out two powers of g, i. e. the top two"runge" of the 

three-body ladder, and left the res t  in the wave function8 2(l) and 2"). To be 

- more precise, we have written 
* 

0 
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(4. 13) 

Ad 
* instead of the original definition 

(4.14) 

There are many reasons for this. First of all, this explicity brings out the last 

energy denominator which corresponds to two excited particles, and leads to 

1 . Secondly, the pure two-body t e r m  < HI g 1 present in 
1 

<@ I g12 ; = <qI2 12 

(4.13) has been removed in (4.14). Thirdly, of course, the unwanted diagrams 

in fig. 7 have also been removed by the use  of Z(l) and 2"' instead of Y")  and 

*(Z) 

It should also be noted that the g matrix is not a function of the coordi- 

natee alone, as assumed in the las t  line of (4.12). Whereas at large dietances 

g(r) -P v ( r )  , at ehort distances g is highly momentum dependent. As shown in 
-0 4 

Sec. 2, and in  Day's preceding article,  one may write 

1 
e - g  * = 5 ,  

where, inside the core,  5 = Q. Hence, inside the core g = e = 7,. G2 t y 2 )  

in  the reference approximation, where k is the momentum corresponding to the 

relative coordinate r in g(r). Incorporating this momentum dependence is com- 

23 ' plicated by the fact that the integral (4. 12) involves g which depends on k 
3 . 9  

along with functions qf )and 2(')fl r2 r3) which involve other coordinates. 12 
/ \  
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This problem wil l  be discussed in Section 5. For the time being let us consider 

the gc23>""d the gf13)in (4.12) to be independent of momentum, but evaluated 

at a suitable average value of the relevant momentum. Finally, as mentioned 

at the beginning of this section, there a r e  some Goldstone diagrams which a r e  

not present in such "laddert' sequences. 

T ( l )  -+ T(2) t Tt3)  defined above does not include the "hole-bubble" diagram and 

the "hole-hole" diagram shown in fig. 8(a) and 8(b) respectively. 

fig. 8a is a component of the standard expression for the potential energy of hole 

states (see also Sec. 7). Diagram 8b can be explicitly calculated by integrating 

s 0 
5\ 

For the three-body case, the sum 

However, 

the product of the three g matrices over the independent niomenta. This diagram 

1. has been shown by Rajaraman(14) to be smaller by a factor of about - compared 

with 8a; it could probably be absorbed into U(m) and U(n). 

B 32 

Subject to these remarks,  T(3) and similarly T( l )  and Tt2) can be evalu- 

ated from Eq. (4.121, once the functions Z ( i ) c l  z2 ."3 )are  known. Let us now 

proceed to evaluate these functions from the coupled equations (4. 11) 

Three-Body Wave Function 

It is useful to Shange the coordinates in (4.11) from r1 , r2 ,  r to 
- # a +  

We then have, 2 +  r t f  
1 - - + 4 - 0 4  - *3' 2 r = r1 - r2, P 3  12 
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- 0 - 0  
where Z F ' @  k, r3) is the Fourier transform of 2 given by 

-b 
The coordinate r3 is unaffected and this corresponde to keedng the particle 

3 fixed instead of the center-of-mass. It should be noted that 6 
.$ f<2) k P  

actually denends also on the momentum of the third -article through the factor 

(see eq. 4. 6), but as can be seen from fig. 1, the function does 
y1 

not vary much wit4 y ,  for  largey so that an average value may be used. 
1' 

Subject to this, eq. (4. AS) is still an exact reDresentation of the onerator 

1 Now, for r e C, we have - 
e g i2  12 

1 

so that, 

(4. 17) 

For r 12 > c, both the Day and Bethe annroximations involve nulling 
3 

the function g (r12) outside the integral in eq. (4. 15) , in some average sense. 

To justify this, we first note that in the reference awroximation, the strongest 

dependence of C 

PL pk. $'-* ) 
\ 12 

k, P ('12) 

\ 

-# 4 4 r )  

( r  12) on the angles of P , k and r is contained in 12 
3 k, p 

so that upon integration over d k, only the S-wave nart 

survives. Of course, the integrand also contains the 2 function C0 
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,u which depends on k as well, However, Kiraon has shown that the conclusion, 

viZ. that only the S-wave Dart of 6 matters, is nevertheless justified. 

One reason for this is that the comnonents 6 

small because the core does not have a etrong effect. 

1 

L for L = 0 are relatively 

There is only a very 

small debendence on the angle'between P and k due to Pauli corrections, etc. 

Further, as shown in sec. 2, 'for r > c, the S-wave function 6' fr ) 12 k, P \ 12,i 

is nearly independent of k and P. 

to which C k D P  (. 3 is not very sensitive, and the largest  dependence on k 

The deoendence on P arises through y 1n  

arises because of matching the function at the core radius c, with the interior 

solution j 0 (kr). Thus it is reasonable to treat 6 i t P  Pi,) - - GD(rl2) 
E (kc) 

0 

as essentially independent of k, and P, ae long as these momenta are not 

large cornbared to A .  1.. Hence, we may write 
C 

(4. 18) 

r )  r )  

This is the Day aDproximation. The vector c is directed along r 12 @ and 

6 I) (r12)which is normalieed to unity at the core radius, has to be 
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i0 
T 

(3). is evaluated for values of k and P at which the Fourier transform 2 

peaked. Kirson 

shows that 2 (3) is peaked around k P - . This will be elaborated 

12 , who explains the above approximation with greater care, 

0 . 6  
C 

on later, 
0 

The Bethe approximation treats 

D 
independent of k , P  rather than 6 . In this approximation, 

(4. 19). 

g12 simply by a 1 This is the Bethe approximation, which replaces 

B multiplicative factor 6 

which, because of the above simnlicity, leads to an algebraic solution to the 

(" 12)' W e  wil l  first use the Bethe apmoximation 

couoled equations (4. l l ) ,  and reveals transnarently some of the features of 

the three-body nroblem involved. 'iccurate but 

more complicated Day annroximation and discuss i ts  mer i t s  over the Bethe 

approximation. 

W e  will then use the more 

In the approximation of eq. (4. 19), the couvled equation6 (4. 11) 

become, .. 

and cyclic permutations 
(4.20) 
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Equation8 (4.20) can be solved algebraically for the 2' s in te rms  of the 
i 

7)'s and 6 ' 8 ,  which we know by solving the reference equation (2.4). We  get 
a 

where u.. = 1 - ' B i j  = I - c B  ( ;ij) 
1J 

and rl.. = V( ;ij) 
1J 

(4.21) 

W e  can inser t  these Z(i) into the integral (4.12) for the three-body energy. 

Take, for instance, diagrams of the tym shown in fig. 6. These 

diagrams, summed over 1, m, n, give, 

r ) - B  

W = P2 f 7 ) j t  g., f' r2J Z( ' ) ( t l  r2 r d? d?2 wr oarticle 
c 1 12 3 /' (4.22) 

0 

where particle 3, instead of the center of mass, is kent fixed. Note that one 

of the Q'e in eq. (4. 12) is cancelled by integration over the coordinate of the 

fixed barticle 3. 
2 

The result (4.22) is pronortional to P , as exnected on 

physical grounds for three-body clusters. 

Whereas w e  can evaluate 2") from eq. (4.21) and integrate (4.22) for 

W, it is useful as shown by Bethe, to study the solution in certain limiting 

cases using simdifying apnroximationa, to gain some insight into what is 

going on. 

momenta are small. Let us also take 7) (r', ) and 6 ( 
on the magnitude of r. .. 
are using averages over the momenta anyway and the angular averaging 

will nick out only the S-wave parts. (BBP show, 

Let us, as before replace 4 = Ilmn > by unity since the hole atate 

) to depend only 
13 

This is reasonable as exnlained before since we 
lJ . 

63 for instance, that 7) and 6 
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outside e - y r  
for L f 0 can be represented by a function of the type iu 
the core with a somewhat larger value of y than the true value). 

approximation and in uniform nuclear matter, the functions 

In this 

g# Xti )  and 2 ti) 

all depend only on the relative separation distances r..* since no directions 

have been nicked out in enace. 

1J 

Now take the case when all three particles are far apart, 3. e, r.. e -. 
1J 

and 
f 

(4.23) 

It is easy to see that eq. (4.24) is just the sum of the third order direct - 
diagrams in fig. 3a and 3 b. K ~ h l e r ~ ~  had obtained a similar form for  the 

diagram 3b. The fact that W becomes juet the third order energy for large r.. 
1J 

is reasonable since a t  these distances the notential ia weak enough to give a 

good convergence order by order and the third order clearly dominate8 the 

three-body energy. 

look at the case 

To see the behavior for smaller  values if r . .  * let US 
1J 

5 2  = r23 -= ‘13 

then u12 = u13 = uZ3 = u = 1 - C and q I 2  = q Z 3 =  V l 3  = rl 

Thus , 
z ( l )  - 2rl 2q (4.25) -- = - 

3 - 2 u  1 + 2 6  

63 If the distances r.. are very emall (within the core  radii) then c = 1, and 
11 
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This clearly corresponds to the very strong potential in the core  region, and 

hence represents all orders  of nerturbation. This result  is a third of eq, (4.23) 

which represents only the third order contribution. 

factor of 3 in the core region, in going from third order to all orders,  may be 

partly understood thus: When two nucleons are within a core radius apart, the 

This diminution by a 

infinite core completely destroys the wave function in that region and leads 

to a large 6 and large energy. When three nucleone are all within each other's 

cores, an uncorrelated treatment will give three times this energy since 

three such wirs are involved. This ia what happens in third order. In actuality 
* 

however, we can do no more than destroy the wavefunction once when all 

(. 
the nucleone are close together, 80 that a fully correlated treatment 

(full three-body energy to all orders)  will give only 

energy. Actually, when all r 

conditione, C i j  = q.. = - 
(4. 11) become 

of the third order 

< c, this solution is exact, since under these 
i j  

= 1 so that the original counled equatione 1 
1J e gij 

However, when all r , .  e c, the three tar t ic lee  are in identical situations and 
U 

(2) s Z(3) . 'Thie solution, simple and = 5  hence by symmetry 2 = 2 

exact for all r 

approximation as well. 

c should be remembered in the context of the Day 
ij 

Finally, for  emall c ,  one can expand (4.25) as 

39 
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iu This series represents the contribution of three-body diagrams order by 

For large inter -particle 1 
2'  order. It is clearly not convergent for 6 > 

separations, C 4  0, and hence the series converges rapidly, so that a few lower 

order diagrams euffice for the Dure long r a n g e ' w r t  of the force. Within the 

hard core, however, 6 =  1 and the terms in the expansion (4.27) keen 

Z q  increasing alth.ough the whole series has a closed sum of - . Even for any 3 
1 
2 reasonable "soft" r ewls ive  core, 5 is still a little greater than - and the 

wrturbation expaneion above will not converge. 

Bhargavs's work 

(See for instance Snrung and 

with only a finite core of 8 7 using the Bresael notential 

about 650MeVj ) . 
Thus we see many of the anticiwted features of the three-body problem 

0 in this simplified discussion. More exact results can, of course, be obtained 

from eq. (4.21) and (4.22). W e  note at this point that eq. (4.22) may be 

z f  F 'G '\ dT23 
25 written as 

*III= ) f23') a \  23/ -- 
where 

Similarly, for the f u l l  three-body energy 

(4.28) 

(4.29) 

W e  will give graphs of the functions F 

the more accurate Day approximation for the Z(i), which we will aoutline 

F and their ratio f = '1 , using b -  F a' 1 

now. drs 
40 



Day's Approximation 

by eq. (4. 18) 1 
$0 

Z gij Day approximates the action of the operator 

as combared to the simder multinlicative atmroximation by Bethe in  eq. (4. 19). 

It is clear that Day retains more of the oberative character of - g.. , and 

as we shall see, his resulting solutions for the 2'l) are considerably better. 

As the 2 are functions only of the interparticle diotances, we can rewrite 

1 
e 1J 

( 1 )  

the Day anproximation (4. 18) as 

D z(3) ,! 

= 6 (r12) (.t "23@ '13) 
(4. 30) 

e 
- + - b  -0 

where r' and r' corresnond to the coordinates C, P and r in the 
23 13 3, 3 

0 eq (4.18) , and their meaning can be read from fig. 9. The Day amroximation 

thus differs from that of Bethe, in that i t  "shrinks" the triangle of the 

barticles in addition to multinlying by 5 D +- . Note that for r e c, 12) 12 ( r 

Substituting (4. 30) into the coupled equations. (4. 11) , we get, 

i 

(4.31) 
,(2) f . t 

(r12' '23, c )  if rZ3 > c 

0 These equations correspond to eq. (4.20) of the Bethe approximation, and 

unlike the latter, cannot be solved algebraically, since 2 (3) at one set of points 
0 
- - 

41 



is coupled to  Z(2) and 2 ( l )  at other mints  on the "reduced triangle. 'I Of 

course, if all r., c, then the solution is 2 
1J 

r > c, then r '  ' and r *' 

' ) = ,,C, =23* '13 

13. Similarly, if only (1) 2 
= 3  

are necessarily lese than c, so that 12 13 23 
2 

r) , and this again leads to an analytical solution of (4. 31). z ( ; b (  t 

But, for the general case where at least two of the r . .  are greater than c, 

one has  to resort to a numerical method. 
1J 

The method involves substituting 

I 
(') Tr' , c, r13) and Z for the Z 12, <3,, 3 in eq. (4.31) f rom the i 12 

other two coupled equations, which leads to points on a smaller triangle. 

If this is rebeated successively, you eventually reach (in general) a triangle 

where at least two of r.. 
'J 

this numerical solution for several  values of r. . .  However, the method does 
13 

not work for some instances such as when all three barticlee are collinear, 

c ,  when the solution is known. Day has calculated 

0 

0 

in which cases you never reach a stage when two of the distances are less 

than c. In the more  general case, the numerical solution is laborious. 

Consequently, Day has suggested that equations (4.31) be replaced by 

an approxirrate form, which is amenable to an analytic solution. The wave 

function defects Z(i) are large only when the r .. - c, and all the 6's and rl ' a  
'J 

dron off rabidly for  r 

r' 

> c. But i f  r12 is not much larger  than c, then 

Thus, one might t ry  to replace eq. (4.31) by 23 c. '23' 

ij 
r: and r 

I* '13 13 

Gs 
(4.32) 
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These equations are amenable to an analytic solution. 

substituting for 2(l)  and 2(2) from the other two coupled equations when 

you get two of the r.. to be equal to. One can then exdoi t  symmetry pronerties 

This simply involves 

5 

1J 

to solve the set of three equations imdied  in (4. 32). The result  is 

(4.33) 

0 
This is Day's analytic solution to (4. 32). Day finds 21 that it agrees 

very well with 'the numerical solution to his original equations (4. 31). 

Further,  Kirson 12 finds that when the analytic solution (4. 33) is substituted 

into the right hand side of (4. 31), the resulting iterated solution for 

z(3) I- ( r l2 ,  rZ3, r13:) is very close t o  the analytic solution. Two of Kirson's 

graphs comparing the analytic solution (4.33) and its f i rs t  iteration are 

given in fig. 10. 

f i r s t  iterate and with the numerical solution to the more  exact equations (4. 31) 

Since the analytic solution*agrees very closely with its 

evaluated by Day for several  sets of values of r .  ., and since (4.31) itself is 
1J 

(i) only an anproximation, we will use eq. (4.33) for the 2 . 
This analytic solution by Day is .considerably better than the simpler 

solution (4.21) for the Z(i). First of all, the underlying approximation for 

gij , in eq. (4. 18) is more  accurate than the corresponding the onerator - 1 
e 

ds 
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Bethe approximation in eq. (4. 19). Secondly, the Bethe solution has drastic 

diecontinuities which occur sometimes when one of the r. .  equals c. 
1J 

t 
may be partly understood by considering the solution (4.21) when all r.. -9 c . 

B Then the u.. = 1 - 6 . .  tend to  vanish and the solution approaches the 
1J 1J 

0 
indeterminate form- , whereas when all r.. 

This 

1J 

c, we know the result to  be 
0 1J 

2 (i) =- When r23 and r are less than c, the Bethe solution gives 
3 .  13 

(3 )  - 1 - Q12 2 -  

&?12 (4.34) 

If now r 

to the exact behavior of ‘rl 

it is equal to - . 

apnroaches c from outside, the above solution is highly sensitive 12 

12 < cD near the core, whereas for r and 5 12 
B 

12 
2 
3 

There are no such discontinuities in the Day solution 

A comnarison of the Day and Bethe solutions is given in fig. 11. 

Of course, thethreebody energy and the function Fa and F involve integrals 

of the 2(i) and consequently the two solutions give combarable results since 

the discontinuities do not matter here. But Dahlblom 

c o r r e s a o d n g  oallculatioh~fa~ ten6Gr & r a .  (-e! sec. 6 ) ,  Guad that .the Bethe 

procedure led to great diffixulties while the Day method was straight-forward. 

Also with central forces, the Day solution is clearly more  accurate. 

especially clear from Kirson’s work: If the solution (4. 21) is used on the 

right hand side of (4. 31), the resulting iterated solution is comnletely 

1 

26 , doing the 

This is 

different, i n  contrast to the behavior of the Day solution, Fig. 10. 

It should be mentioned a t  this stage that having obtained the 2 (i) 

by the above methods, Kirson evaluates their momentum transform and finds 

0. 6 it neaked a t  k, P ‘-Fa. - . This was mentioned earlier in  connection with 
C 

drs 
.. 
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tq. (4. 18) and (4. 19), where the function 5 had to be factored out of the 

integral for the Z 

relatively indeoendent of k, P, which is t rue only if they are less than - . 
(1 1 . This factoring was justified only if  the 6 was 
g 

1 
C 

It is therefore gratifying that the momentum dependence of the 2 (a ) conforms 

0. 6 to this requirement. Further Kirson finds that i f  k, P - are used as 

input in eq. (4. 19), the resulting 2 

C 

($1 give an outout momentum dependence 

which agrees well with the inout. 

This comdetes  our discussion of the evaluation of the three-body wave- 

(1) function defects 2 . The Day solution (4. 33) may be used for evaluating 

the function F , o r  the more comnlicated exnressions derived in Sec. 5 and 6 ,  
d, 

and the three-body energy as defined by equations (4.29) and (4. 12) 

resnectively. W e  will quote the results after discussing exchange diagrams. 

Exchange Diagrams 

The nroblem of exchange diagrams may seem comnlicated inasmuch as 

for every direct  diagram you can exchange any of the interactions, or "rungs 

of the ladder" in the diagram. However, as is illustrated in the examnle in 

fig. 12, when you exchange an intermediate interaction, the resulting diagram 

can be redrawn so that i t  looks like a direct  diagram, with two of the final 

momenta 1 and m exchanged, as compared to the initial ordering of the three 
-b -b 

momenta. Thus fig. 12a and 12b are equivalent. It is clear therefore that no 

matter how many of the interactions are exchanged, the result  would simnly 

amount to permuting the final momenta 1, m and n. 
' - s M  -4 

Thus, all direct  and 

exchange diagrams would be contained in (lmn 1 T 1 lmn> , ;mln 1 T 1 lmn), 

(lnm \TI  lrnn>, (nml 1 TI l r n n r  , Cmnl IT! lmn> and a l m  IT1 l m n b  . Grs 
- 
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The exchange diagrams, however, ca r ry  additional statistical weights 

as compared to the direct  diagrams, if one uses soin-isosnin independent 

forces  . For  such forces,  each Darticle retains i ts  spin-isosnin values 

and hence all statea on a given vertical line in the direct  diagram have the 

- 
i 14 

same value of s 

snin and isosnin comDonents. 

the ones in fig. 12, both the states 1 and m must have the same spin-isosnin 

and 7 , although any two vertical lines may have different 
2 z 

However, for an exchange diagram such as 
4 4 

D 

since a narticle from each of these states goes into the other. 

number of allowed states, and hence the contribution to the energy is 

reduced by a factor of 4. In addition, i f  these diagrams are drawn in the 

Thus, the 

Goldstone Convention, it can be seen that fig. 12 corresponds to only two 

nucleon loons, unlike the three in a direct  diagram. 

to the Goldstone rule, there is an  additional minus sign associated with fig. 12, 

due to the above arguments. and altogether, therefore, it  is multiplied by 

Similarly, when all three nucleons interchange momenta, as in <mnl\ T 1 lmn}, 

there is a multiplicative factor of - since now all three nucleons must have 

the same s and 7 , with only one nucleon loon altogether. These arguments 

clearly have to be modified for tensor forces. 

Consequently, according 

1 
-'4 

16 

z z 

But for these statistical factors, the matrix elements (lmn 1 T 1 lmn> 

and any one of its exchanges, say L lnm IT(lrnn> , are not very different. 

Comnare, for instance, the two diagrams in fig, 13 which are corresnonding 

terms belonging to (lmn IT I l m n b  and clnm I T 1 l m n l  

For every set of intermediate momenta in fig. 13a there is a te rm with the 

same set in fig. 13b. The only difference is in the final interaction. The 

respectively. 
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5 

final interaction has different matrix elements for the two cases, since the 
- 4 - + - D  

momentum transfer in the two cases  is different by q = m - n, But since 
-- -+ -4 

m and n are holes, the average value of qc = dl.  2 kF c ?r 0.6  , and it was 

shown 14 in the context of third order diagrams, that the resulting difference 

1 2 2  is only a factor of about r q  c i. e. about 6'1 . - Therefore,  ut) to a few 

nercent, the direct  and exchange matrix elements of T are equal1 

6 It was also shown by Bethe , that in the awroximation of neglecting 

2 2  
q c , the inclusion of all exchange terms, amounts to using even angular 

momentum contributions only. This has no effect for a Serber tyDe attractive 

force which acts only on even L states anyway, but it cuts down the rebulsive 

core effect to only the even L states, sunporting such an assumntion that had 

been made by Brueckner and Gammel 27 
in their g matrix calculations. 

Several calculations have been made, using the above method for 

.24! , evaluating the three-body energy by Swung, Bhargava and Dahlblom 

and by Kirson'  

including the short  and long range Darts, to obtain an energy of -5.15 MeV 

12! . Kirson uses the full standard hard-core notential, 
I 

r \  
a , 2 3 1  for the three-body clusters. His curves for the functions F 

and f / r  ) defined ear l ier  are denicted in fig. 14. As anticinated, for 

large 23 , all three functions annroach the same value, 1. At small 

b 231 
r - 

C 

distances, F is about a third of F as exnected from eq. (4. 26). The 
1 a' 

curves have been drawn to a scale where F ( r  o 23) , the corresbonding 

function for just  the third order bubble diagram is taken to be unity. 

The diminution from -38. 35 MeV to -5. 15 MeV in going from the 

two-body to the three-body contribution indicates that our hones of 
(rls 
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0 convergence in Dowers of density amear justified. 

section 7 that the long-range nar t  v 4 
three-body energy, and that the energy for just  the short range nart  is a 

small nositive amount. 

It will be seen in . 
contributes most of the -5 MeV in the 

I 

W e  therefore can exnect a four-body energy of much 

less than 1 MeV for v 

order  effects of v 

notential energy U(b).  

It will be shown in section 7 that most of the higher E 
can, on the other hand, be absorbed in the single-narticle 4 

A more  recent calculation by Dahlblom of the functions F1 Fa and 

f is given in fig. 15. This calculation usee the recent Reid notential for 7 
b 

trinlet states,  which has a hard core  of about 0. 52 F and consequently a stronger 

attraction outside. The resulting three -body energy is consequently more 

negative (about -7 MeV). 
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iu 
II 

5. Effect of t h e  Momentum Dependence of the g Matrix 

We now proceed t o  a systematic evaluat ion of the three-body 

energy. I n  pa r t i cu la r ,  we sha l l  take i n t o  account the  momentum 

dependence of g which was mentioned below eq. (4.14) but was then 

ignored i n  the  remainder of Sec. 4. To do t h i s ,  w e  must go back 

t o  the fundamental eq. (4.12), l i n e  before the l as t .  From th is ,  

o r  from Fig. 16 (which i s  j u s t  Fig.  6 with d i f f e r e n t  f ea tu re s  

emphasized) we f ind ,  i n  s l i g h t l y  d i f f e ren t  notat ion,  

Here each Ki s tands f o r  the momenta of a l l  t h ree  p a r t i c l e s ;  

s p e c i f i c a l l y  KO r e f e r s  t o  the i n i t i a l  and the o thers  t o  the  two 

intermediate states.  The f i n a l  state i s  of course i d e n t i c a l  w i t h  a 

the  i n i t i a l .  

been denoted by a A . The f irst  operator represents  

The ‘2, g ,  and 2 are operators and have therefore  

i . e ,  the  last in t e rac t ion  and the preceding propagator. The l a s t  

interaction is separated from the rest in this manner because the 
t l  e here corresponds t o  the  exc i t a t ion  of 2 p a r t i c l e s  while 

propagators correspond t o  exc i t a t ion  of 3 p a r t i c l e s ,  as explained 

i n  (4.5), (4 .6) .  

that  the  momenta i n  i n i t i a l  and f i n a l  s t a t e  a r e  not ye t  put t o  

zero. Following Kirson and the  discussion i n  Sec. 4, we shal l  

assume that the three-body wave funct ion operator  Z ( l ) ,  operating 

on the unperturbed wave funct ion = $, may be wr i t ten  as 

e a r l i e r ”  

(5.1) is  somewhat more general  than (4.12) i n  

1 KO) 
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T G.3 ( 5 . 3 )  
c - where &(KO) is the unperturbed wave function (produce of three plane 

waves) and the function Z(l) depends only on the distances between 
the three particles, not on the directions of the vectors q2, etc. 

This The problem then is the matrix element of g 23 
quantity depends appreciably on the relative momentum of particles 

2 and 3 in state K1. To see this, we write 
* 

A 

(5.4 

V! where / 23 is the two-body defect function as defined in Sec. 3, 

and the operator e may be written in the reference spectrum 

approximat ion 

b 
e = y 2  - v &  (5.5) 

AS is shown in BBP, {increases with increasing excitation of the 

state K1. 

(ref. 6, p. 8 0 9 ) ~  g is very sensitive: 
increasing energy. 

Therefore, just because 7 is very insensitive to K1 

it increases rapidly with 

This is particularly true for the contribution 

from ins ide  the core; we have 

where k is the relative momentum of particles 2 and 3 in state 23 

K1. 
is less sensitive to the energy of state K1, and that from the 

long-range, attractive forces is insensitive, viz. 

The contribution from the core surface (ref. 4, Eq.(5.28)) 
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i i  A simple approximation was made by Kirson: He replaced g 

by i ts  value f o r  the average momentum k 

p a r t i c l e s .  He j u s t i f i e d  t h i s  approximation by h i s  f ind ing  t h a t  

of the  in t e rac t ing  - 23 

the d i s t r i b u t i o n  of the momentum k 23 
around i t s  average value of about o . ~ / c  ( c f .  t h i s  paper above (4.19)).  

Hence Kirson puts  

i n  s t a t e  K1 i s  sharply peaked 

where 4 (K1) i s  the  product of th ree  plane waves corresponding t o  

If 23' the momenta i n  state K1, and gZ3  is  simply a funct ion of r 

t h i s  i s  assumed, t h e  i n t eg ra t ion  over K1 and $ i n  (5.1) can be 

done immediately and gives 

L 

subs t an t i a l ly  equivalent t o  (4.12). 

Because of the considerable s e n s i t i v i t y  of g t o  k 23' the 23 
choice of k23 i n  the  Kirson approximation i s  r a the r  c r i t i c a l ,  

and it  is not  c l e a r  what c r i t e r i a  t o  use. Bethe has given a more 

general  so lu t ion .  He wri tes  

( 5  11.1 

where P and k are, reapect ively,  the average and the r e l a t i v e  

momentum of p a r t i c l e s  2 and 3 i n  the state K1. 

depends on both these parameters, and it is  therefore  not possible  

The function g 

t o  e f f e c t  "closure" w i t h  respect  t o  K1. 

poss ib le  w i t h  respect  t o  K2, and leads t o  the r e s u l t  

However, c losure - i s  
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+ 4  Here p1,p2,T3 a r e  the i n i t i a l  momenta of the three  p a r t i c l e s  
-+ 

i n  s t a t e  KO, and 2k, as i n  (s.ll), is  the  difference between the 

momenta of p a r t i c l e s  2 and 3 i n  the intermediate s t a t e  K1. 

Two a l t e r n a t i v e s  a r e  now open. One i s  t o  ca l cu la t e  and use 

the exact expression f o r  gpk (F" ); then no f u r t h e r  s impl i f ica t ion  

of (5.13) seems possible .  

approximation t o  the dependence of g on P and k; t h i s  i s  probably 

s u f f i c i e n t  because the  e n t i r e  three-body co r re l a t ion  contr ibutes  

23 
The other  i s  t o  find a manageable 

1 

l e s s  than 20% t o  the t o t a l  po ten t i a l  energy of nuclear  matter.  

Such an approximation i s  suggested by (5.7) and (5.8), toge ther  
6 

w i t h  (4.5) and the discussion of BBP Sec. 7. 
character ized by the  exc i t a t ion  of only two p a r t i c l e s ,  1 and 2. 

I n  t h i s  case, i f  $ denotes the momentum of p a r t i c l e  2, (4.5) 

The s t a t e  K1 i s  

shows that  in (5.7) 

neglect ing kF2 compared w i t h  kb2. 
components (5.7) and (5.8) of g .and  assuming tha t  the cont r ibu t ion  

from the  core surface has an intemnediate 'behavior, '  it i s  

reasonable t o  set 

Then, considering the two 
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Here we have used both equations (5.15). 
Before (5.16) can be used, i t  i s  s t i l l  necessary t o  make . 

assumptions about the  nuclear force,  as follows: 

1, An ordinary (non-exchange, c e n t r a l )  force  between the  

nucleons, which may include a repuls ive core, can be represented 

qu i t e  w e l l  by (5.16). I n  evaluat ing g1 and g2, the  de f in i t i on  of 

where $ = e i' *' and 3.' = $ -  ? 
w i t h  i n t e rac t ion .  I n  p rac t i ce  i t  i s  probably best t o  ca l cu la t e  

gpk by e x p l i c i t  i n t eg ra t ion  of the Schrodinger equation f o r  two 

values of k on both sides of the most probable value of k determined 

by Kirson (k=o.cq/c), and then t o  deduce gl and g2 from these.  

Such a program i s  present ly  being ca r r i ed  out by Dahlblom. 

is  the two-particle wave funct ion 

26 

If (5.16) i s  accepted, i n t eg ra t ion  of (5.13) over K1 is  

s t ra ightforward f o r  g1'28. The f a c t o r  k multiplying g2, on the 

o ther  hand, can be combined w i t h  t h e y  matrix element, if we &s~wne 

2 

(5.18) 
4 

153 - PJ << 2k 
which is  genera l ly  a good approximation s ince  p 3 and p i  a re  < k F .  

The r e s u l t  i s  then 29 

Since both 7 and 2 ( l )  a r e  e s s e n t i a l l y  independent of the momenta 

pl,p,,p3, t h i s  r e s u l t  may simply be mul t ip l ied  by t o  give the  

energy per  p a r t i c l e .  

can be t r ea t ed  approximately, using the method of Kirson 

- 3 -  
P2 

4 -  3 

The e f f e c t  of non-vanishing momenta p1,p2,p3 
12 . 
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L 

u 

Eq. (5.19) can be further simplified. Since Q depends 

only on r 

keeping r23 fixed. This yields i.e. over ,r12, 

we can integrate over the position of particle 1, 23’ 
d 

(5.20) 

The function F1 is identical with the F introduced in ref.6, 

Eq. (5.1) which was there shown to be small if r23 is inside the 

core and to increase rapidly (by about a factor 3 )  outside. The 

other correlation function, F2, was introduced in ref. %g. 

2. A more realistic nuclear force may be considered, in 

first approximation, as a superposition of two parts, (a) a Serber 

force 

(5.23) 

and (b) an additional attractive force acting in the S state only 

(5.24) 
with ‘yo denoting the L = 0 component of the wave function (sub- 

scriptse for even L,S for S-state), The Serber force acts in all 

two-body states of even L, with L = 0 and 2 being the only 

important ones, while the need for the force (b) arises from the 

observed fact 30;31that the nucleon-nucleon potential is more 
- 

1 . attractive in the S than in the D state.. 
a. If it is assumed that the’Serber force ve acts only for 

large r, we can proceed as in (5.8) and can replace 39 (T) by the 
unperturbed wave function (F) = eiker. In this case, (5.22) 

--& 
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s ds is  replaced by 29 

(5.25) 

Here the f i rs t  term v), (r12), a r i s e s  from the  "d i r ec t "  term i n  the  

Serber force ,  (7) i n  (5.23), while ?(rl3) arises from the 

13' exchange term, (3).  But Z (  1) is c l e a r l y  symmetric i n  r12 and r 

therefore  the two terms 

cont r ibu t ions ,  and the Serber force gives exac t ly  the  same r e s u l t  

i n  the bracket of (5.23) give equal 

as an ordinary force .  T h i s  i s  i n  accord w i t h  the  discussion a t  

the end of Sec. 4. 

It i s  then possible  t o  drop the assumption that vs a c t s  

only a t  long d is tances  r, and t o  assume instead 

i n  analogy with (5.16). The r e s u l t  i s  exac t ly  (5.22).  

b. The S - s t a t e  force  (5.24) i s  somewhat more complicated. 

Assuming, again i n  analogy w i t h  (5.16), 

Bethe obtains  

X J  

w ( x )  = y (x) + x@& (5.31) 
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3.  The tensor  force  between nucleons 2 and 3 i s  con- 

venient ly  replaced by the  c e n t r a l  force  which r e s u l t s  from it* 

i n  second order  per turba t ion  theory. 

on k, so  that i t  should,be a good approximation t o  wr i te  

32 

This force  depends s l i g h t l y  

w i t h  gT1 a t t r a c t i v e  and &r2 repuls ive.  

i s  reduced t o  the same form as the o ther  p a r t s .  

Thereby the  tensor  force  

Summary 

as a sum of an ordinary, a Serber, an S - s t a t e  and a tensor  force .  

The ordinary fo rce  may be chosen t o  include the e f f e c t  of the  

repuls ive force  i n  the iP s t a t e  and the repuls ive core. 

terms except the s-state force  reduce t o  a r e s u l t  of the type 

(5.20)-(5.22), the  s - s t a t e  force  gives (5.28)-(5.32). 

The t o t a l  nuclear force may be w e l l  represented 

A l l  
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6. 

The 

i n i t i a l  and 

Tensor Forces 
6 21 theo r i e s  of Bethe , Day 

f i n a l  i n t e rac t ions  i n  the  

and Kirson12 assume that the  

th ree -pa r t i c l e  ladder  
26 involve c e n t r a l  forces ,  including a repuls ive core.  Dahlblom 

has treated the case of a tensor  force i n  the  i c i t i a l  and f i n a l  

i n t e rac t ion ,  w i t h  c e n t r a l  forces  i n  all intermediate in t e rac t ions .  

He assumes tha t  the in i -b ia l  and f i n a l  p a r t i c l e  momenta a re  zero.  

Then the  force  i n  the 3S-state modifies the two-part ic le  

f u n c t i o n +  = 1 i n t o  

where is  t h e  s - s t a t e  defec t  function, previously ca l l ed  y1 

i n  Sec.4 and 5, while the last  term i s  the D-state which i s  

introduced by the  tensor  force .  S12 i s  the  usua l  tensor  operator  

h 
w i t h  r a u n i t  vec tor  i n  the d i r ec t ion  

the tensor  force  t o  the three-body energy 

a numerical f a c t o r )  

(6.2) 

The cont r ibu t ion  of 

i s  wr i t t en  (apar t  from 

Because of the sp in  operators  i n  S12, WT i s  not  symmetric i n  

p a r t i c l e s  2 and 3,  i n  con t r a s t  t o  (4 .33) .  

approximation, Dahlblorn f inds  

Using otherwise Day's 
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I n  t h i s  expression, 5 is  the wave-function defec t  due t o  

c e n t r a l  forces  i n  an intermediate s t a t e ,  the same as  i n  (4 .33) .  

(6.4) contains  no counterpart  t o  the  last term i n  (4.33) which 

arose t he re  from the 2 i n s ide  the repuls ive core:  The tensor  

fo rce  in s ide  the core is zero, hence t h i s  term is  absent i n  (6.4).  

Since VT = 0 f o r  r < c, the  funct ion IT rises only slowly outs ide 

the core,  (see the  curve u21 ( O )  i n  ref. 4, Fig.13).  

hand 5 drops rap id ly  f o r  r 7 c (see curve x o i n  the  same f i g u r e ) .  

On the o ther  

Hence products T l i k e  T12 pli which occur i n  (6.4) are r a the r  

unimportant: 

d i f f e ren t ,  and the  product qT(r12) 
cannot make r12 l a rge  while r If rZ3)) c, 

we may in t eg ra t e  over r e s s e n t i a l l y  independently of r12; then 

again the term 7 (r13) has l i t t l e  influence because i-t i s  

appreciable only over such a small volume. Moreover, the terms 

If r23 is  s m a l l ,  then r12 and r a r e  not very 13 
(r13) i s  small because we 

r e m i n s  of order  c .  13 

13 

17 have small coe f f i c i en t s .  Thus (6.4) reduces e s s e n t i a l l y  

t o  the simple expression 

Dahlblom has confirmed t h i s  q u a l i t a t i v e  argument by 

ca l cu la t ing  

which i s  analogous t o  (5 .20)  and may be used t o  ca l cu la t e  WT i n  

(6.3). He f inds  that  f o r  a l l  values of r23, FT i s  within about 

which corresponds t o  the approximation (6.5). Now t h i s  
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approximation does not contain 7 , and hence corresponds exactly 

to the third order of the Gol&tc.ne expansion. Thus, if the 

initial and final interaction are both tensor, the old-fashioned . 

third order calculation of the three-body energy is adequate. 

If (6 .7)  is inserted into (6.3), the first term, 
[tT(r12)] ', corresponds to the"bubb1e" diagram 3a, the second 
term to the "ring" diagram 3b. In the bubble diagram, the middle 

interaction g leaves the states of the two interacting particles 

unchanged, viz. b and r, respectively; in 3b, the two particles 
23 

are effectively exchanged by the middle interaction, i.e. particle 

2 goes from the excited state b to the state m in the Fermi sea, 

while 3 goes from its normal state m to a highly excited state 

whose momentum is close to b. Hence, taking into account that 

(6 .7 )  contains 2 VIl2 - t13, the effective middle interaction is 

This is in marked contrast to the case when initial and f inal  

interaction are central: in that case, as discussed in the last 

part of Sec. 4, the interaction g Z 3  is purely in even states. 

It is well known that the interaction is more attractive 

in even than in odd states: The long-range force is attractive 

only in even states, repulsive in iP and essentially zero in other 

odd states. The repulsive core is assumed to exist in all states. 

Hence the three-body energy is less  attractive if the initial a n d  

final interactions are tensor than if they are central. 
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.crs Tensor Forces a t  o ther  l eve l s  

We have only discussed the  case when tensor  forces  a c t  a t  

the  beginning and the end of the Goldstone diagram. 

mediate leve l ,  w e  can have a tensor  force  a c t  twice i n  succession 

on the same pair of p a r t i c l e s :  

force  which can be t r ea t ed  l i k e  a c e n t r a l  force,  c f .  item 3 near 

the  end of Sec. 5. 

A t  any i n t e r -  

t h i s  gives an e f f ec t ive  c e n t r a l  

Two tensor  in t e rac t ions  between two d i f f e ren t  p a i r s  of 

p a r t i c l e s ,  a t  any two leve ls ,  give only a smll contr ibut ion,  

because the average over spins  give near ly  zero. 

the  case of an i n i t i a l  and f i n a l  tensor  in t e rac t ion  between 

d i f f e ren t  pairs, 12 and 13, which cont r ibu tes  the term 2 f('13) 
i n  (6.5):  as Dahlblom has shown, t h i s  i s  due t o  the f a c t  t ha t  the 

momenta of the various p a r t i c l e s  are s t rongly  co r re l a t ed  i n  t h i s  

simple case which i s  not t r u e  i n  general .  

An exception is  

Three tensor  in t e rac t ions ,  without any c e n t r a l  ones, have 

been treated by Dahlblom 33 using the OPEP in t e rac t ion  without 

modification. T h i s  overestimates the i n t e rac t ion  because w e  k n o w  

that the  l/r 

cont r ibu t ions .  Even so, D a h l b l o m  found only about 1/2 Mev 

3 s ingu la r i ty  of OPEP must be compensated by o ther  

cont r ibu t ion .  
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7. Single-Particle Potential Energies 

We will now discuss the choice of the single-particle 

potential U (See A ) ,  which affects the value of the g matrix, and 

consequently every diagram in the expansion. In principle, of 

course, any convenient choice of U which gives a finite g matrix 

is permitted, but an educated choice that enhances the convergence 

of the Brueckner-Goldstone expansion is clearly preferable. 

In simple physical terms, the potential U, which is added 

and subtracted from the total Hamiltonian is supposed to reduce 

the size of the perturbation H, by absorbing some of the inter- - 
particle potential energy <.into the unperturbed Ho. This 

t + i  d 
would clearly enhance conveFgence. 

introduction of U results in some additional Goldstone diagrams 

besides the pure g matrix diagrams, and the choice of U is 

designed to cancel some of the latter by the former. 

In diagrammatic language, the 

Thus, one choice of U(b) for "particle"-states3 would be 

such as to cancel the third order "particle-bubble" diagram 

(fig.17b) with the corresponding diagram involving U ( b ) .  

to effect such a cancellation between Fig.l?a and 17b for: a given 

value of momenta 1, a and m, we clearly require 

In order 

U(b) = z (bnl Q (W)/ bn) ( 7 4  
4 -*-< kF 

where W is the starting energy as defined in BBP and in A . 
Now, W, and hence <bn I g (W) 1 bn)depend on the states 1, m and a, 

so that the choice U(b) eq. (7.1) is not a function of the state b 
alone. Thus, the cancellation of,Fig,l7a by Fig.17b for all 

1, m and a, can be achieved only in an average sense, by choosing 
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U ( b )  as i n  eq. (7.1) w i t h  some t y p i c a l  values of 1, m and a. This 

i s  p rec i se ly  what BBP do i n  their  choice of U(b) f o r  p a r t i c l e  

states.  They not only t r y  t o  cancel Fig.l ' /b on the average, but 

a l s o  the diagram with the  middle g matrix exchanged. Thus, they 

choose 

which are t y p i c a l  values.  This choice i s  somewhat modified by 

including o ther  t h i r d  order diagrams of comparable s i ze  as shown 

by Rajaraman . 14 

It should be noted that there is a self-consis tency 

requirement implied i n  eq. (7 .2)  s ince  the  g(W) used t o  define 

U(b) i t s e l f  depends on U ( b ) .  

according t o  the above prescr ip t ion  and show that t h i s  p o t e n t i a l  

can be approximated by a quadrat ic  form A + Bb2, which agrees wi th  

BBP define a se l f -cons is ten t  U ( b )  

the exact U ( b )  i n  the  important range of b = 2 to 5F-I. 

BBP's Reference Spectrum f o r  p a r t i c l e  s ta tes .  Extensive work goes 

i n t o  the  ca l cu la t ion  of U(b), ensuring self consistency, and the  

reader i s  referred t o  BBP and the subsequent work of Sprung 

and Razavy 10,34 f o r  detai ls .  

T h i s  i s  

34 

The BBP choice for the hole-s ta te  p o t e n t i a l  energy U(m) 

i s  similar t o  (7.2),  except for the important difference that  the 

g matrices are on the energy s h e l l .  - 

where Wo = Em + En. T h i s  choice i s  simpler because i t  does 

not  depend on the o ther  p a r t i c l e s  i n  the diagram, unlike U ( b )  i n  

eq. (7.1) where such a dependence arises because of the off-energy 

-shell  nature .  BBP also show, using an elegant i d e n t i t y  



*i 
. 

generalized from an idea of Brueckner and G01dman~~ that this 

choice of U(m) cancels not only the "hole-bubble" diagram, but 

a whole sequence of diagrams shown in Fig. 18. There is no 

corresponding identity for the particle energy U(b) and the 

off-energy.shel1 dependence of (7.2) has to be retained. 

We will now show that according to our present understand- 

ing of the subject, the choice of the particle potential energy 

U(b) above should be modified. As mentioned in Sec.3, at the 

time of the BBP work, it was hoped that the Brueckner-Goldstone 

expansion converges order by order. If thfs were so, then the 

first order diagrams, using the BBP choice of U(b) and U(m) should 
5 give a good approximation to the binding energy since second order 

diagrams don't exist and third order diagrams are cancelled by 

the above potential energies. We now know from the subsequent 

research described in sections 3 to 6 that there is no convergence 

order by order in the Q matrix, and that the third order diagrams 

cancelled by U(b) are the lowest order terms in an alternating 

Grs 

and non-convergent series of three-body ladders. As equations 
(4.23) and (4.26) show, the third order terms are nearly three 

times the full three-body energy, and therefore by cancelling them 

off the BBP choice of U(b) may do more harm than good. 

On the other hand, the choice.(7.3) of the hole energy 

U(m) is still good because the.diagrams in Fig. 18 that it absorbs 
do not belong to the three-body ladder sequence of sec. 4. This 

can be readily seen by attempting to draw the diagrams in Fig.18 

in the ladder notation. Thus, we will retain the BBP choice of 
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U ( m )  which absorbs Goldstone diagrams not summed i n  the three-body 

energy, bu t  look f o r  a l t e r n a t e  p re sc r ip t ions  f o r  the p a r t i c l e  
.o 
D p o t e n t i a l  U(b). 

Several  choices have been suggested i n  the l i t e r a t u r e .  We 

have mentioned i n  

amounts t o  the BBP prescr ip t ion .  More recent ly  Brandow-' has 

suggested that U(b) = 0 be used. 

because of i t s  s impl ic i ty ,  but  because it gives a s i zeab le  energy 

gap between p a r t i c l e  and hole  spectra ,  thus f a c i l i t a t i n g  the use 

of the reference method. 

-90 MeV.) 

Sec.3, t h a t  the Coon and Dabrowsky choice 17 

This  is appealing not only 

,(The average value of U ( m )  i s  around 

On the o ther  hand, the Brandow choice does not  absorb 

any s p e c i f i c  higher order  cor rec t ion  terms. Thus the problem of 

eva lua t ing  four-body cor rec t ions ,  e t c . ,  i s  s t i l l  l e f t  open. 
6 Bethe has suggested that  U ( b )  be defined. so  as t o  absorb 

the f u l l  three-body energy evaluated i n  Sec.4. 

U ( b )  should be chosen such t h a t  the three-body energy may be 

I n  o the r  words, 

.- wri t t en  as 

where 

a tnd 1 y(b )  I i s  the p robab i l i t y  that a p a i r  of nucleons i s  exc i ted  
3 

from a state i n  the Fermi sea t o  a state of momenta +b and -2 
(the momenta of the i n i t i a l - h o l e  states have been. neglected, and \ 
has been assumed independent of these momenta). Obviously, (7.4) 

is  only one condi t ion on the funct ion U(b) which s t i l l  permits 
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6 *&d wide l a t i t u d e  i n  i t s  choice. Bethe proposed t o  set  

U ( b )  = lY(b)l  -2 Jd3rp3 g,(b,r ,3)5(r23)  (7 .6)  
a 

w i t h  F1 given by ( 5 . 2 0 ) .  

s a t i s f y  (7.4) .  

Bhargava and D a h l b l o n ~ ~ ~  have ca lcu la ted  U(b), and the l a t t e r  

workers a l s o  include t o  some exten t  the e f f e c t  of tensor  forces .  

A t  least  approximately, t h i s  should 

Using th i s  prescr ip t ion ,  Kirsonl* and Sprung, 

(7.6) may be c r i t i c i z e d  on f i v e  counts: 1) It i s  not 

established by any fundamental theory, 2) 

t o  s a t i s f y  (7.4), 3)  

4)  
U ( b )  tended t o  become smaller than U ( m )  f o r  states m s l i g h t l y  

below kF, thus giving a 

They a r b i t r a r i l y  removed t h i s  unacceptable negative gap. 5 )  In  

three-body ladder diagrams, a l l  three nucleons are i n t e r a c t i n g  

w i t h  each other ,  and it i s  therefore somewhat a r t i f i c i a l  to t r e a t  

t h i s  e f fec t  as a s ing le  p a r t i c l e  p o t e n t i a l  on one of them. 

it is  not even proved 

it has a s i n g u l a r i t y  i f  y ( b )  = 0 f o r  some b, 

Sprung -- e t  a124. found t h a t  f o r  b s l i g h t l y  g rea t e r  than kF, 

11 negative gap" i n  the energy spectrum. 

A more systematic d e f i n i t i o n  of U(b) has recent ly  been 
29 He starts from our eq. (5.13) and f i n d s  given by Bethe. r 

For the values of b which are most important according t o  K rson, 

v i z .  b ~ 0 . 6 / c ,  r12jo(br12) has i t s  peak at  about the same value 

of r12 as l ( r12) ;  then Y ( r  

and the new d e f i n i t i o n  (7.7)  of U(b) reduces t o  the old one, (7.5).  

) is  proport ional  t o  F1, eq. (5.20), b 23 
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On the other hand, for small b, jo in (7.8) is 5 1  80 that Yb is 

nearly independent of r (while for larger b, Yb increases with 

r23 

23 
); therefore, for  small b, the repulsive contribution from 

I;, c in (7 .7 )  is not suppressed by the factor Yb: This 

automatically eliminates the negative energy gap of Sprung 7 et -*, a1 

discussed as point 4 above. 

by the new definition (7.7); point 5 of course remains. 

Points 1 and 2 are clearly satisfied 

The problem about the denominator y(b) is removed by 

remembering that the initial interaction may be alternatively 

tensor o r  central. Then it can easily be shown that a suitable 

definition is 

where yc(b) and yT(b) are the expressions (7 .5 ) ,  calculated 

respectively with the defect functions IC and IT for central and 
tensor forces, and Uc, UT are defined correspondingly. 

denominator of (7.9) does not vanish for any b, so that criticism 
3 above is now also taken care of. 

The 

Multi-particle clusters 

Ra jaraman13 has emphasized the usefulness of defining a 

U(b) in order to absorb the principal effect of many-body clusters. 

His argument runs briefly as follows: 

ladders to be divided into the three groups as suggested in Sec.3: 

(i) those involving gshort only, (ii) those with vd only, and 

Consider all three-body 

(iii) those mixed in gs and v b  . For class (i), we expect the 
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four-body energy t o  be much smaller than the three-body energy 
and so  on, because of the  short-rangedness of the force  (pc 3 41). 

The c l a s s  (ii) diagrams are similar t o  higher Born terms i n  v4, 

and should be very small s ince  even the second Born term i s  

only 2% of the f i rs t  Born term. 11,12 This  then leaves diagrams 

of c l a s s  ( i i i )  as the leading cont r ibu tors  t o  the four-body energy 

and larger c l u s t e r s .  I n  f a c t ,  even f o r  the three-body energy of 

about -5 MeV, we w i l l  show that  the dominant contr ibut ion comes 

from a diagram of t h i s  c l a s s .  

Now, f o r  any typ ica l  po ten t i a l ,  such as the standard hard- 

core po ten t i a l ,  the matrix element (cl v , ~  / g )  i s  s t rongly 
-? 33 -3 

dependent on t h e  momentum t r a n s f e r  q=k-ko, although the diagonal 

element <?I v,; 1;) i s  r e l a t i v e l y  independent of IC. A graph 

of 

that  a t y p i c a l  off-diagonal matrix element i s  about 1/7 or less, 

L 
v41 g) f o r  ko = kF i s  given i n  Fig. 19, and shows 

of the diagonal one. T h i s ,  f o r  instance,  i s  the reason why the 

second order term i n  v f ,  namely v CJv i s  only 298 of the f irst  
d e  8' 

order v . The former Contains t w 6  off-diagonal matrix elements 

compared t o  the diagonal f i rs t  order  term. On the other hand, the 
t! 

dependence of gs on t h e  momentum transfer is  not  s t rong.  

From t h i s ,  we would expect that the most important diagrams 

of c l a s s  (iii) should involve diagonal elements of v-..  A diagonal 

matrix element i n  a Goldstone diagram corresponds t o  '"bubble 

in t e rac t ions . "  

Fig. 20a, t o  be larger than the one - in  20b although both belong 

t o  class (iii) and a r e  four-body terms. I n  addi t ion,  a diagram 

I. 

Thus, w e  would expect a diagram of the type i n  

-67- 



w i t h  a bubble- interact ion contains  one less exc i ted  p a r t i c l e ,  and r -  

a 

hence smaller energy denominators, which also enhances i t s  

importance. It should be noted here tha t  i f  one uses a Serber 

fo rce  f o r  v ,  ins tead  of a Wigner force,  then the exchange of the ', 
bubble in tepac t ion  i s  also important. The best way t o  take i n t o  

account diagrams of the type i n  Fig. 20a w i t h  exchanges, i s  t o  

absorb them i n t o  the s ing le -pa r t i c l e  energy wi th  a p o t e n t i a l  

(7.10) 
F 

The f a c t o r  of -.E. i n  f r o n t  of the exchange term arises f o r  spin-  

independent forces  because of the s t a t i s t i c a l  weight arguments 

given ea r l i e r14 .  For Serber forces ,  of course, 

i f  states b and'n agree i n  spin'and i sosp in .  

It i s  worth not ing that three-body ladders can have a t  most 

one bubble in t e rac t ion ,  so  tha t  the only diagram of c l a s s  ( i i i )  

w i t h  a diagonal v , i s  the t h i r d  order  diagram i n  Fig.  21. An 

estimate of t h i s  diagram, along with i t s  exchange using a typ ica l  

value of b, gives about -5 MeV. While th i s  is only an estimate, 

it  revea ls  the dominance of such diagonal v, terms i n  the  three- 

body energy. Accordingly, Rajaraman13 propdsed t o  use only the 

long-range bubble terms i n  -the d e f i n i t i o n  of U(b). However, i f  

t h i s  were taken l i t e r a l l y ;  t h i s  would enhance the t rouble  found 

by Sprung -- e t  a l .  

new Bethe p resc r ip t ion  (,7.7) o r  (7.3) a l s o  emphasizes the long- 

range fo rce  ac t ing  on highly excited states b, and i s  therefore  

' 

> >> 

and l i s t e d  as criticism, point  4 above. The 

acceptable from the point  of view of Rajaraman. 
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Since Rajaraman has shown that bubble interactions 

involving v 

we may expedt that the use of (7.9) for U(b) will absorb a major 

part of these many-body clusters. The prescription for nuclear 

give the main contribution to the many-body energy, 
$9 

matter calculations is then the same as has been used in the past 

by Brueckner's group and others, viz: 

Calculate the 2-body g matrix from the integral equation 

(7.11) 
Q(a,b) 

T(a) + T ( b )  + U(a) + U(b) - E(m) - E(n) 
where T(a) is the kinetic and U(a) the potential energy of the 

particle state a, and E(m) the total energy of a hole state m. 

Similar prescriptions hold if the initial state includes one or 

two particles rather than two holes. Calculate U(b) from (7.9). 

Summing the diagonal elements of g, we get the total, two- 

body nuclear energy. If now the denominator of (7.11) is expanded 

in powers of U(a) + U(b), the term independent of U will give the 

two-body energy according to Brandow's prescription.' 

linear in U(a) + U(b) will give the three-body energy, because 
U satisfies (7.4). The remainder represents the part of the 

multi-body energy which we can.take into account by our simple 

The term 

scheme. This remainder then is the only term by which our 

prescription differs from Brandow's if both are consistently 

carried oul;. Since the potential U(b)-is likely to be negative 

for a11 important intermediate states, our prescription will 
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provide more a t t r a c t i o n  than h i s .  

important f o r  the low par t ic le  states, w i t h  b s l i g h t l y  above kF, 

which are reached mostly by the tensor force .  We guess that  the  

e f f e c t  of pu t t i ng  U ( a )  e U(b) i n t o  the denominator of (7.11) may 

be about 1-3 MeV. 

i n  such ca lcu la t ions  as that  of Sprung -- e t  al.24, so  tha t  it cannot 

be invoked t o  give a larger binding energy than previously found. 

T h i s  w i l l  be especially 

This a t t r a c t i o n  is, however, already contained 
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Figure Captions 

0 Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig.  4. 

Fig.  5. 

Fig. 6 ,  

Fig. 7. 

Fig. 8. 

Fig. 9.  

S-wave p a r t  of the two-body defend funct ion f o r  low 
r e l a t i v e  momentum. 

F i r s t  o rder  diagrams. 

Third order  d i r e c t  diagrams. 

Two fou r th  order  diagrams. 
independent hole l i n e  as compared t o  f i g .  3b, while 
diagram ( b )  has an e x t r a  p a r t i c l e  l i n e .  

A fou r th  order  term represented i n  (a)  the Goldstone 
convention, and (b) the Rajaraman convention. 

Diagram ( a )  contains  one extra  

A t y p i c a l  three-boay c l u s t e r  term belonging t o  
(1mnl T I l m n )  . 
Two "three-body l adde r"  diagrams which have no Goldstone 
analogue. 

Two Goldstone diagrams i n  t h i r d  order,  which are not 
contained i n  

Triangle formed by the three p a r t i c l e s  i n  coordinate space. 
- . A  

Fig. 10. Two graphs due t o  Kirson" comparing Day's a n a l y t i c a l  
so lu t ion  (solid l i n e )  and i t s  f irst  i t e r a t e  (dashed l i n e ) .  
Graph (a )  is for a l l  r i j  = r while graph (b) has r = 13 

'23-'12 / and r12 = 1 . 5 ~ .  

Fig. 11. A comparison of the Day and Bethe so lu t ions ,  exh ib i t i ng  
the s t rong  d i s c o n t i n u i t i e s  of the l a t t e r  ( s o l i d  l i n e )  as 
compared t o  the former (dashed l i n e ) .  The graph i s  drawn 

Fig.  12. An exchange diagram represented i n  two equivalent ways. 

Fig.  13. Comparison of a direct  diagram 
and an exchange diagram 
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Fig. 14. 

Fig. 15. 

Fig. 16. 

Fig. 17. 

Fig. 18. 

Fig. 19. 

Fig. 20. 

Fig. 21. 

A graph of the functions Fa, F1 and fb defined in text, 
for a standard hard core potential . 12 

The functions Fa., F1 and fb using the Reid potential 7 
for triplet states. 

A three-body diagram. 
momenta of a l l  three particles at the respective stages. 

KO, K1 and 5 each stand for the 

The third order "bubble diagram" and the third order 

designed to cancel these terms with one another. 

Diagrams showing the absorption of a whole sequence of 
terms by the choice of the hole potential energies U ( m )  
on the energy she l l .  

U-diagram. Goldstone 3 suggested a choice of U(b) 

Dependence of the long-range force matrix elements on 
the momentum transfer. 

Two four-body terms. Diagram (a) contains one diagonal 
matrix element while (b) has 

The long range "bubble" diagram 
three-body energy. 

two off -diagonal ones. 

which dominates the 
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