ON CLOSED SHEIIS IN NUCLEI. II

Maria G. Mayer

April., 1949
Feenberg ${ }^{(1)}{ }^{(2)}$ and Nordlkeim ${ }^{(3)}$ have used the spins and magnetic moments of the even-odd nuclei to determine the angular momentum of the eigenfunction of the odd particle. The tabulations given by them indicate that spin orbit coupling favors the state of higher total angular momentum, If - strong spin.orbit coupling' increasing with angular momentum iS assumed, a level assignment encounters a very few contradictions. with experimental facts and requires no major crossing of the levels from those of a square well potential. The magic numbers 0,82 , and 126 occur at the' place of the spin-orbit splitting of levels of high angular momentum,

Table 1 contains in column two in order of decreasing binding energy the levels of the square well potential. The quantum number gives the number of radial nodes. Two levels of the same quantum number gives the number of radial nodes. Two levels of the same quantum number cannot cross for any type of potential well, except due to spin-orbit splitting. No evidence of any crossing is founds Column three contains the usual spectroscopic designation of the levels, as used. by Nordheim and Feenberg. Column one groups together those levels which are degenerate for a three dimensional isotropic oscillator potential. A well with rounded corners
(1)) Eugene Feenberg, PHYS, REV, 320, (1949)
(2) Eugene Feenberg, PHYS, REV, (1949)
(3): Iothar Nordheim, PHYS. REV, (1949)

The author is indebted to these authors for having obtained copies of both (2) and (3) before publication, $\quad \mathbf{x w W}$ Is

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic Image products. Images are produced from the best available original document.
will have a behAvior in between these two potentials. The shell grouping is given in column five, with the numbers of particles per shell and the total number of particles. up to and including each shell in column six and seven respectively.

Within each shell the levels may be expected to be close in energy, and not necessarily in the order of the table, although the order of levels of the same orbital angular momentum and different spin should be maintained. Two exceptions, $11 N a 23$ with spin $3 / 2$ instead of the expected $d_{5} / 2$, and 25M55 with $5 / 2$ instead of the expected $f 7 / 2$, are the only violations.

Table 2 lists the known spins and orbital assignments from magnetic moments (*) when these are known and unambiguous, for the even-odd nucleii up to 83. Beyond 83 the data is limited and no exceptions to the assignment appear.

Up to Z or $N=20$ the assignment is the same as that of Feenberg and No.rdheim. At the beginning of the next shell, $f_{7} / 2$ levels occur at 21 and 23, as they should. At 28 the the $f_{7} / 2$ levels should be filled, and no spins of $7 / 2$ are encountered any more in this shell. This subshell may contribute to the stquility of $\mathrm{Ca} 4^{8}$. If the $g_{g} / 2$ level did not cross the $\mathrm{p}_{1} / 2$ or $\mathbf{f}_{5} / 2$ levels, the first spin of $9 / 2$ should occur at 41 , which is indeed the case. Three nuclei with N or $Z=49$ have $g 9 / 2$ orbits. No s or d levels should occur in this shell and there is no evidence for any. The only exception to the proposed assignment in this shell is the spin $5 / 2$ instead of $7 / 2$ for Mq55 and the fact, that the magnetic moment of
(4) H. H. Goldsmith and D. A. Inglis, the Properties of Atomic Nuclei. I., Information and Publications Division, Brookhaven National laboratory.

$27 \mathrm{CO}^{5}$ • indicates a $\mathbf{g} \mathbf{7 / 2}$ orbit instead of the expected $f 7 / 2$.
In the next shell two exceptions to the assignment occur. The spin of $1 / 2$ for Mo95 with 53 would be a violation, but. is experimentally doubtfurl. The magnetic moment of $\mathrm{Eu}^{1} 5^{3}$ indicates $\mathrm{f}_{5} / 2$ instead of the predicted $d_{5} / 2$ No $h_{1 i} / 2$ levels appear. It seems that these levels are filled in pairs only which does not seem a serious drawback of the theory as this tendency already shows up at the filling of the levels. Otherwise, the agreement is satisfactory. The shell begins with 51 Sb , which has two isotopes with $d_{5} l_{2}$ and $g_{7} / 2$ levels respectively, as it should. The Thallium isotopes with 81 neutrons and a spin of $1 / 2$ indicate a crossing of the $h_{11} / 2$ and 3 s levels. This is not surprising, since the energies of these levels are close together in the square well. The assignment demands that there be no spins of $9 / 2$ in this shell, and none have been found. No f or \mathbf{p} levels should occur and, except for $E u^{153}$, there is no indication of are. The spin and magnetic moment of $83 \mathrm{k}-$, indicating an $\mathbf{h}_{\mathbf{g}} / \mathbf{2}$ state.. is a beautiful confirmation of the correct beginning of the next shell. Here information begins to be scarce. The spin and magnetic moment of Pb207 with 125 neutrons interpret as $p_{1 / 2}$. This is the expected end of the shell since $7 i$ and $4 p$ have practically the same energy in the square well model. No spins of $11 ; 2$ and no s, d or g orbits should occur in this shell and the data indicates none.

The prevalence of isomerism in certain regions of the isotope chart, noticed by both Feenberg and Nordheimp is readily understood by this assignment. Long-lived isomeric states will occur in regions where levels of very different spin lie close together. These regions lie toward the
end of the shells of 50,82 , and 126 , where the levels of lowest angular momentum of one oscillator level almost coincide in energy with those of highest angular momentum from the next oscillator level. One is lead to the prediction that for nuclei of odd A isomerism should occur between $39{ }^{\mathrm{c}}{ }^{-} \mathrm{Z}$ or $\mathrm{N}:!\mathrm{E}$ 49. This is the region where the $\mathrm{g} 9 \mathrm{l}_{2}$ and $p_{1} / 2$ levels have closely the same energy and compete for the ground state. From 51 on there is a competition between $g 7 / 2$ and $d 5 / 2$, which would not lead to long-lived isomers. Later in the shell, from about 65 on., competition should occur between the $h \mathbf{i i} / 2$ and the $s l / 2$ and $d_{\mathbf{3}} \mathbf{1}_{2}$ levels, and the occurrence of isomerism is predicted between 65 `j- Z or $N \sim 81$. The beginning of the new shell should again be free of isomerism. The experimental facts bear out the conclusions exceedingly well. Below are listed the number of long-lived isomeric states known and listed as A in the table by Seaborg and Perlman. Only isomers of odd A are used, and these are attributed to the odd one of the numbers N or Z .

- or $\mathrm{z}=2931-37394143454749$ 51-61
- of isomers $\begin{array}{llllllllll}1 & 0 & 3 & 3 & 3 & 2 & 5 & 4 & 0\end{array}$

In both regions, the level of high spin has opposite parity to the one of low spin. Consequently, one would expect electric ${ }^{5 t h}$ pole and magnetic 4 th pole radiation to'occur, but not electric 4th pole.

The assignment of orbits makes possible the prediction of spin and parity in cases in which the spin has not been observed. Since spin change and change of parity determine the selection rules for decay, it should be possible to test the theory against experiment. Work on this is in progress.

TABLE 1.

$\begin{aligned} & 00 \mathrm{c} . \\ & \text { No. } \end{aligned}$	Square Well	Spect. termm	Spin term	Vo of States	Shells	Total No.,
0	is	is	${ }^{1} \mathrm{a} / \mathrm{l} / 2$	2	2	2
1	${ }^{1} \mathrm{P}$	2-p	pl/2 " ${ }^{i}$ i/ $\overline{2}$	$\begin{aligned} & 44 \\ & 2 \mathrm{~J} \end{aligned}$	v6	8
	id	3 d	ld5/2	6	-	
2	A	2s	$\begin{array}{r} \operatorname{Id} d / 2 \\ 28 \\ 1 / 2 \end{array}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$		20
3	$\begin{gathered} i f \\ C 2 p \end{gathered}$	$4 S$ A	$\begin{aligned} & \text { if } f \mathrm{~V} / \\ & \mathrm{If} \\ & 2 \mathrm{p}_{1}^{5} \\ & 47 V^{2} \\ & 47 \end{aligned}$	8 6 .4	$8 ?$ 22	$28 ?$ 50
	(${ }^{\text {ig }}$	$5 g$	$1^{9} 7 / 2$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$		
4	$2 d$ 35	$4 d$ A	$\begin{aligned} & 2 d_{3 / 2} \\ & 381 / 2 \end{aligned}$ 2	21	32	82
		A				
5	$2 f$ tL3p	A 4 P	$\begin{aligned} & \text { IN/2 } \\ & 2 \mathbf{9} \cdot \mathbf{a} \\ & { }_{2} \mathrm{f} / 2 \\ & { }_{3} \mathrm{f} / 2 \\ & { }_{3} \mathrm{P} 3 / 2 \\ & \mathrm{pj} / 2 \\ & { }^{11}{ }_{\mathbf{i} \sim 3 / 2} \end{aligned}$	$\begin{gathered} 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ 14 \end{gathered}$		126
	\{ 1 i	7 i				
6	$\begin{aligned} & \mathrm{Ag} \\ & 3 \mathrm{~d} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~g} \\ & 5 \mathrm{~d} \\ & \mathrm{~A} \end{aligned}$	U11/7-			

TABLE 2

