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CRITICAL DIMENSIONS OF WATER-TAMPED SLABS AND 
SPHERES OF ACTIVE MATERIAL 

By E. Greuling, H. Argo, G. Chew, M. E. Frankel, 
E. J. Kbnopinski, C. Marvin, and E. Teller 
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ABSTRACT 
__-- .-  

The-magnitude and distribution of the fission r a t e p e r  unit area 
produced by three energy groups of moderated neutrons reflected 
from a water tamper into one side of an infinite slab of active mate- 
rial is calculated approximately in section II. This rate is directly 
proportional to the current density of fast neutrons from the active 
material incident on the water tamper. 

inhomogeneous transport integral equation for the fast-neutron current 
density into the tamper. Extensive use is made of the formulae derived 

The critical slab thickness is obtained in section III by solving an 

in THE MATHEMATICAL DEVELOPMENT OF THE END-POINT 
METHOD by Frankel and Goldberg. (cf. LA-258, LADC-76, or  AECD- 
2056.) 

In section IV slight alterations in the theory outlined in sections 
11 and IlI were made so that one could approximately compute the 
critical radius of a water-tamper sphere of active material. 

The derived formulae were applied to calculate the critical 
dimensions of water-tamped slabs and spheres of solid UFt; leaving 

-- various (25) _ _  isotope _ _ _ _ _  enrichment .____ __ fractions. (cf. Fig. 6.) -~ - - 

I. INTRODUCTION 

The primary effect of placing water on one side of a slab of 
active material is to return slow neutrons to the slab. Fissions pro- 
duced by the slow neutrons reflected from the water give rise to a 

LA-609 i 
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distribution of fast fission neutrons which decreases rapidly as one 
goes into the active layer. 

this essentially asymmetric source. One may describe the process by 
which a time-independent fast-neutron density in the active layer is 
established as follows: 

Of the primary fission neutrons in the slab a certain fraction re- 
produce fission neutrons without having left the active material. The 
rest (a) suffer radiative capture before leaving the slab, o r  (b) they 
escape into the water on one side of the slab, o r  (c) they leak off the 
bare side never to return. Of those that enter the water, a certain 
fraction are returned to the slab after moderation and produce fis- 
sions. Let us indicate the number of fast neutrons per sec per cm2 
incident on the water as I. The number of fission per cm2 per sec that 

The multiplication of fission neutrons in the slab proceeds from 

slow neutrons returning from the water 
in the slab we shall call I fs(x) dx 

ACTIVE MATERIAL 

produce between x and x + dx 

WATER B 
Fig. I 

The problem of calculating the critical thickness, d, is now con- 
veniently broken up into two parts. The first is to determine the 
magnitude and distribution of the source fission rate per cm', I fs(x). 
The second is to compute the current of fast neutrons into the water 
which depends on the source strength of fission neutrons, v I fs(x), 
slab thickness, d, in units of fast neutron mean free path in the active 
material, and the value of f ,  defined in the usual manner as the excess 
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number of neutrons emerging per collision from an average nucleus 
in the active layer. 

11. DETERMINATION OF THE FISSION RATE PRODUCED BY 
REFLECTEDNEUTRONS 

In order to calculate approximately the distribution in the slab of 
fissions per unit fast neutron current into the water, fs(x), we defined 
a penetration length, I ,  of fast neutrons into the water such that 
I em[-x/Z] d(x/Z) represents an isotropic source of neutrons of age 
T~ = Z2 in the water. We assumed arbitrarily that neutrons entering 
the water had to suffer between 3 and 4 hydrogen collisions before 
they were sufficiently disoriented to be considered as an isotropic 
source. With such a source of neutrons in the water one may obtain 
the subsequent neutron flux distribution in the age group between T~ 

and T by solving the following diffusion-like equations: 

In water A(nv);1/3 - A ( ~ V ) ~ / ~ T '  + I exp[-x/Z]/Z = o 
x z o  

In active layer Al(Nu)f/3 - O(B~)(NV)~ = 0 
X I 0  

( I  a) 

Here A is the transport mean free path in water, hi is the first-group 
average transport mean free path in the active layer (assumed to ex- 
tend to x = - -), and 0:) is the first-group average total absorption 
cross section per cm3 in the active material. The latter two quantities 
were averaged over the first group energy range corresponding to 
neutrons of age T~ to T ~ .  

The quantity A/37' is the absorption cross section per cm', crab, 
effective in removing neutrons from the age group between T' = 0 and 
T' = T = - T ~  in water. It was estimated as "ab = os(H)/N where os(H) 
is the hydrogen scattering cross section per cm3 and N is the average 
number of collisions required to moderate a neutron from age T~ to T 

or from an energy Eo to E. Assuming unit average logarithmic energy 
loss per collision in water, one obtains according to age theory: 

N = Zn(Eo/E) = 3(7 - T ~ )  us (H)/A (2) 

TinnPl 
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Therefore Dab = us(H)/N = X/37' where T' = T - T ~ .  

continuity of neutron density and current boundary conditions were 
applied, namely: 

At the interface betbebn active material "an& water (x = 0) the usual 

ni(0) = Ni(0) and A(nv)i = Ai(Nv)i (3 1 " ,  

In Eqs. 1 and 3 and hereafter the neutron density and mean free path 
are designated respectively by lower case n and h in the water, and 
upper case N and A in the active material. 

and i b  are 
Applying the boundary conditions (3) the solutions satisfying Eqs. l a  

and 

(4b) ( N V ) ~  = (31V)(AZ)-' A(7') B(T') e 'I- x/L 

where 

The diffusion length in the active layer, of neutrons in the age group 
7' = 0 to 7' = 7 1  - To is assumed constant; it is 

L, = 4 x p q J  
The dimensionless quantity Si is the ratio between the active layer 
average mean free path and diffusion length of first-group neutrons. 

si = (7) 

The flux, ( N V ) ~  expressed in Eq. 4b, gives the exponential distribu- 
tion of those neutrons in the active material that have been reflected 
by the water and have energies corresponding to the age range between 
T~ and T (Le., 0 to 7' where 0 5 r' 5 T~ - T~ = ri). By differentiating 
( N V ) ~  with respect to T' one obtains the flux between T' and 7' + dT'. 
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Multiplying this differential flux in the active material by the fission 
cross section per cm’, u+, considered as a function of T’ and integrat- 
ing from 7‘ = 0 to 7‘ = 7{, one obtains the fission rate per cm2 produced 
between x and x + dx by first group neutrons reflected from the water. 

If: (x) dx = I Fi exp(x/Ll) d(x/&), x 0 (8) 

Here, Fi is a dimensionless constant representing the total fission rate 
per cm2 of slab, produced by first-group reflected slow neutrons, per 
unit incident fast-neutron current into the water. 

Fi = (3L1)/(2Xz) &“ d7’ of AB(A+ B) 

A and B are the functions of T’ defined in Eq. 5. For a given active 
material Fi may be determined by numerical integration. 

A second group of neutrons, T = 71 to r2, where 72 is the age of 
thermalized neutrons in water was similarly treated. The diffusion 
equations for this group are similar to Eqs. la and lb. The source 
term, Q2, replacing I exp[-x/ZVZ in Eq. l a  is simply the number of 
neutrons removed per sec per cms from group I, namely according 
Eq. 4a: 

(9) 

to 

Q2 E [X(nv)1/3~’] = ( I / Z ) ( l  - W/Z)-’ A(Ti)[e”/z - (@/Z)(l + SIZ/X) 

The effective absorption rate per cms from the second-group neu- 
trons of age betweeif TI and T (rl c: r E T ~ )  is A(nv),/37”, where r” = r - 
rl. Equation l b  is altered only insofar as to replace A, and OB) by A, 
and up), the average mean free path and absorption cross section per 
cms of second group neutrons in the active material. 

Eqs. 4a and 4b. 
The solutions for the second-group neutron flux are similar to 
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where A2 = (I - T ~ / Z ~ ) - '  (1 - V / Z  2 1  )- 

B2 = A(Ti) B(T~) ( I  - 7"/7i)-' - (I - T [ / Z ~ ) - ' ( ~  - T " / T { ) - ~  

C2 = (I + S g F / X ) - '  [(w/Z)(l + S2Z/X) A2 

+ d m  (I + S2m/X) Bz] 

and 

The expression for the distribution of fissions produced by second- 
group neutrons obtained by differentiating Eq. l i b  with respect to r", 
multiplying by af considered as a function of r", and integrating from 
7" = 0 to 7'' = rp = r2 - r1 is 

I ff)(x) dx = I F2 exp(x/b) d(x/b), x = 0 (13) 

where 

F2 = [(3b)/(2AZ)(I - Ti /Z*) ]  {JT dT" ofA'B'(A' + B') 

- (m/Z)(l + SIZ/A) B ( T ~ )  K*'d7'' qC'B'(C' + B')] (14) 

The functions A', B', and C' are similar to A and B defined in Eq. 5. 
They are: 

Here Sz is the ratio between the second-group average mean free path 
(A,) and diffusion length (b) in the active material. 

Neutrons which have been thermalized in the water (i.e., reached 
an age r2) are considered as the source of a thermal neutron group 
designated by the subscript, 3. Their energy is limited to an approxi- 
mately Maxwellian distribution. The strength of the source of thermal 
neutrons, Q, is simply the number of neutrons per cm' removed per 
sec from the second group given by Eq. lla. 
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(nv)J - (nvl3/L2 + QS/L~ = o (17) 

Here 
water and L is the thermal diffusion length in water; 
and L = 2.88 cm. 

diffusion length are designated as As and &, respectively. Thermal 
neutrons which enter the active layer obey the diffusion equation, 

is the hydrogen thermal absorption cross  section per cm3 in 
= 0.0208 cm" 

In the active material the thermal neutron mean free path and 

( N v ) ~  - ( N u ) S / G  = 0 (1 8) 

The boundary conditions at x = 0 that the solutions of Eqs. 17 and 18 
satisfy are: 

- - ~ 

I L2 uiH)(nv3)r = (A3/3) (Nv)i\and )(nH)) - _  = ( N V ) ~  ~ 

- 
(19) 

Multiplying the thermal-neutron flux in the active material ( N V ) ~  
by the thermal-neutron fission cross section per cm3, up), one obtains 
the third-group fission distribution, 

where F3 is the long expression, 

In the next section we will consider the fast neutron multiplication 
that proceeds from the fission neutron source, +(x), given by v times 
the sum of the three fission rate distributions, Eqs. 8, 13, and 20. 
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3 3 

i=1 i l l  
@(x) dx = I v E ff)  (x) = I v E F i q  exp(-qx) dx 

Here we have used as unit of length the inverse transport cross  section 
per cm3, u-', of the fast neutrons in the active material. The three 
constants ai are thus ai = l / O L i ;  i = I, 2, and 3. For convenience the 
sign of x has been reversed to conform with Fig. 2. The constants Fi 
are  given by Eqs. 9, 14, and 21. 

III. DETERMINATION OF THE FAST-NEUTRON CURRENT 
INTO THE WATER 

The treatment of the fast-neutron multiplication in the slat of active 
material outlined here makes extensive use of the work done by Frankel, 
Goldberg, and Nelson in solving the inhomogeneous transport integral 
equation as reported in (LA-258). Throughout the treatment we make 
use of the fact that +(x) [Equation (22)] becomes negligibly small at a 
distance x a few mean free paths into the active material as shown in 
the figure below. 

/'/ 
-c -. ' /  

ACTIVE MATERIAL 

'+Q ----. 

\ n 
I \  

. -  

Fig. 2 
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The two quantities necessary to describe the flux of fast neutrons 
in the active material of thickness ‘‘a” = ad are the transport cross 
section per cm’, u, and the net number of neutrons emerging per 
collision I + f = (vuf + us)/u. Here u, af and us are the one-group 
fast neutron total transport, fission, and scattering cross  sections 
cm’, respectively. 

The actual flux at x, generated by last collisions at x‘ is given by 

where Ei(x) is the exponential integral, JT dy e-xY/Y. ~~ ~ Let us _ _  define a 
function n(x) for both positive and negative values of x as follows: 

m(x) v + +(x)/(i + f )  x L o 
m(x) v x < o  

n(x) = 

From Eq. 23 one then obtains an inhomogeneous integral equation for n, 

where @(x) is zero for x < 0 and is given by Eq. 22 for x L 0. 
The water acts as an absorber of fast neutrons, none being re- 

turned to the active material without having been moderated. One may 
interpret the quantity n(x) dx in the region x < 0 given by Eq. 25 as the 
absorption rate per unit area between x and x + dx of a medium having 
zero elastic scattering cross section for fast neutrons and an absorption 
mean free path just equal to the transport mean free path of fast neu- 
trons in the active material to the right of x = 0. Thus the current 
density crossing the surface at x = 0 to the left is simply 

Now one may distort 3. 25 by letting the upper limit of the inte- 
gral approach 
and thus n(x) (since $I becomes negligibly small) vanishes at x = a + XO. 

Here xo is the usual extrapolated end point and a is the critical slab 
thickness. 

and at the same time impose the restriction that m(x) v 

xo = 0.71/(1 + f )  and a = ud (27) 
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If one defines two functions f (x) and g(x) as follows: 

Eq. 25 may be rewritten as 

f(x) + g(x) = (I + f )  /z dx’ [El IX - ~’1/2] f(x’) + @(x)/(I + f )  (29) 

with the condition that f(a + xo) = 0. 

geneous Weiner-Hopf -type integral equation for the current density 
given by Eq. 26. Let us define the following Laplace transforms: 

We shall outline the procedure used in solving the above inhomo- 

F(k) = h* dx f(x) e-& = dx n(x) e’kx 

The last two transforms are simply 
3 3 

Fl(k) = Iv Fi So* dx cyIe-((yi*)b = Iv 
f=1 i=1 

Fiai/(ai + k) 

and 

P(k) = (2k)“ In [(I + k)/(l - k)] (32) 

By taking the Laplace transform of a. 29, using the definitions (30), 
and inserting the expressions (31) and (32), one obtains 

K(k) + G(k) = (I + f )  F(k) P(k) + Fl(k)/(I + f )  
3 

= (I + f )  F(k)(2k)-’ In [(I + k)/(l - k)IL 
1 + f iZ1 

= Fiai/(ai + k) (33 1 
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Clearly the current to the left across the interface at x = 0 as defined 
by Eq. 26 is just G(O), which, according to the above equation, is 

I = G(0) = f F(0) + IVF,/(I + f )  (34) 

where 

Fs = Fi 

We are left with the problem of finding F(0) if the current is to be 
calculated by Eq. 34. 

Consider now the homogeneous integral equation (i.e., set @ = 0 in 
Eq. 29). The homogeneous solutions in the regions x L 0 and x < 0 are 
designated with a zero subscript. They are respectively, fo(x) and 
go(x) and their Laplace transforms were shown to be given by the fol- 
lowing expressions derived exactly by Frankel and Nelson in (LA-258). 

3 

i=l 

where 

The constant ko is given by the relation, 

k0/tan" ko = 1 + f (37) 

In Appendix 11 of (LA-258) it is shown that the particular solution 
of Eq. 29, where +(x)/(i + f) is a single exponential term, e-(yx, has 
the Laplace transform, 

F(k) = - Fo(k)/[(k + a) Go(-a)] (3 8) 

For our problem the inhomogeneous term is a sum of exponentials, 
@(x) being given by Eq. 22. The general solution thus has the Laplace 
transform 

f 
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I 

1 

I v  Fi ai Fo(k) F(k) = A Fo(k) - - 2 
I + f (k + ai) Go(-ai) 

i=1 

(d/dx + ai) fi(X) = sin ko(X + ~ g ) ,  f i (O) = 0 (44) 

The solution of Eq. 44 is simply 

(39) 

+ (ko COS kdr, - ai sin kso) e-aix} (45) 

Here A is a constant determining the relative amount of homogeneous 
and particular solution. A is to be chosen in such a manner as to 
satisfy the condition, f (a + xg) = 0. 

general solution 
By taking the inverse Laplace transform of Eq. 39 one obtains the 

3 I v  Fi ai 
f(X) = A fo(x) - - fi (x) 1 + F i=1 Go(-ai) 
Here we shall make use of the asympototic expressions for fo(x), fi(x) 
and their corresponding Lap lac e transforms . 

Multiplying Eq. 42 by k + ai and integrating the first term of the right 
member by parts, one obtains: 

- - __ __. 

= fi(0) + ha dx e'kx (d/dx + ai) fi(x) (43 1 

By equating Eqs. 43 and 41 one obtains the following differential equa- 
tion for fi(x): 

Inserting Eq. 45 and fo(x) = sin ko(x + XO) into Eq. 40 one evaluates the 
constant A by setting f (a + xo) = 0. 



where 6i = tan" (ai/ko). 
One may neglect the terms containing e'a (a+xo) as factors because, 

for all cases treated, ai has values sufficiently large to make these 
terms negligibly small compared to 

(at - koai cot ko(a + 2x0)(k?0 +a:)-' - 

Inserting A into Eq. 39, neglecting the last terms of Eq. 46, and setting 
k = 0, one obtains: 

From Eqs. 35 and 36 one obtains the ratio: 

Here 4 = (i/n) 
Table I1 of (LA-258).* Upon inserting F(o), given by Eqs. 47 and 48 
into Eq. 34, one obtains the current density of fast neutrons into the 
water tamper, 

ds Tc/(i + ais) is the expression tabulated in 

The relation (49) enables one to compute the critical slab thickness 
66 JJ d in cm. as a function of v ,  u, f ,  ai, cy2, as, Fi, F2, and F3. 

where ko/tan-' ko = i + f > 1, and xo = 0.71/(1 + f). 

water being present, (f = 0) a finite critical thickness is possible for 
If the active material is just critical in an infinite amount, no 

* The notation used in (LA-258) identifies 1 + f as c, and ai as k. 
S. Frankel has had Table II extended to the much larger values of k = cui 
required for this problem. We are greatly indebted to Frankel for 
suggesting the method outlined in this section. 

f 
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a half water-tamped slab. The number of fission neutrons, vFs, pro- 
duced per cm' per sec be reflected slow neutrons must be greater than 
the unit flux of neutrons entering the water. In this case the critical 
thickness as given by Eq. 50 reduces to 

for f = ko = 0 
In case the water is a sufficiently good tamper to make vFs > I it 

is possible, even though f is less than zero in the active material, for 
the tamped slab to become critical with a finite thickness. As usual we 
designate a negative f as -g. Equation 50 is then altered to read: 

3 

i d  
F, - (I - g)/v + ki Fie"iAi/(cYi - k$ 

coth ko(Od + 2x0) = 3 (52) 
ko FicYie "iAi/(cY: - ki) 

i=1 

where kdtanh-', ko = I - g < I, and q = 0.71/(1 - g) 

when g reaches the value, 
Finally, for this case (vF, > I) a semi-infinite slab is just critical 

IV. APPROXIMATE TREATMENT OF A WATER-TAMPED 
SPHERE 

One may estimate the critical radius of a water-tamped sphere of 
active material by altering the theory developed in sections 11 and III 
slightly. We shall assume that the source of fission neutrons produced 
by the three groups of slow neutrons reflected from the water is dis- 
tributed as 

3 

i=l 
@ (x) = Iv Biaie -"iX 

where x is the distance in units of cr-' along a radius of the sphere 
from the sphere surface. Here again when x has reached the value 
"a" (sphere radius) we obtain a negligible value for 4. In order to 

(54) 

I 



LA-609 15 

put the inhomogeneous integral equation in the form of the equivalent 
slab problem @(x) must be interpreted as radial coordinate, (a - x), 
times source per unit volume per unit time. Thus if the total number 
of fissions per unit current into the water is defined as F' for each 
group, one may determine the constants Bi from 

FI = 4nBiai J;dx .(a - x) e-aix (55) 

Here we allow the upper limit to approach Q) and obtain approximately: 

Bi = Fi/[(4ra)(I - I/aia)] (56) 

The values of Fi are obtained approximately from the Fi values for the 
slab (Eqs. 9, 14, and 21) by taking into account the sphericity of the 
water-active material boundary according to a suggestion by E. Teller. 

F; = Fi/(l + I u/a) 

Thus Eq. 56 becomes 

(57) 

Bi = Fi/[(4na)(I - l/aia)(l + I u/a)] (58) 

One may solve for the current of fast neutrons leaving the sphere 
in a manner exactly analogous to the treatment given in section 111. 
The integral equation to be solved is identical to Eq. 29 except that not 
f(x) and g(x) are respectively n(x) - (a - x), x I 0 and n(x) - (a - x), x < 0. 
Thus G(o) is no longer the current but instead of Eq. 26 one has 

The equations analogous to (34) and (47) are obviously 
3 

I = f  F(o) + & Bi  
i=l 

G(o) * 4aa(1 + l/a) 

and 

3 
I v  2 1  B eaiAi [ki + ko Ai cot(a + xo)] (ki + ai)- f F(o) = - I + f  

i=l 
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Here we have made use of the fact that f (a) = 0 instead of f (a + xo) = 0 
as was the case for the slab. Inserting the quantities Bi given by Eq. 58, 
one obtains from Eqs. 60 and 61 the following relation from which the 
critical radius may be obtained: 

where a = R 0, R = critical radius in cm, and kdtan-' ko = I + f > 0. 
The above critical equation cannot be expected to yield a satisfac- 

tory critical radius for active material of high enrichment (i.e., small 
a) because then e'CYiais not negligible and inclusion of the factors (I - 
l/aia) is inconsistent with the neglection of the exponential terms. 

V. APPLICATION TO WATER-TAMPED SLAB AND SPHERE OF 
ENRICHED SOLID UFa 

The three values of Fi were calculated according to Eqs. 9, 14, and 
21 for six enrichments of a UF6 (density = 4.68 gm/cms) half water 
tamped slab; (25)/(25 + 28) = 6, 8, 15, 25, 50, and 100%. In each case 
the 'penetration length, I, corresponds to a degradation of neutron en- 
ergy from EI to EI/39 = Eo, where EI is a guess at the average energy 
of the neutrons that are incident on the water tamper and Eo is their 
energy in the water at age T~ = I2 when they are considered as an 
isotropic source for further age diffusion. Below is tabulated the 
percentage enrichment, (25)/(25 + 28), incident energy E,, penetration 
length I ,  the three fission rates per unit incident current, and their sum. 

E1 
(25)/(25 + 28) MeV 

6% 0.92 
8% 1.05 

15% 1.27 
25% 1.38 
50% 1.47 

100% 1.51 

I 
cm 

3.0 
3.25 
3.60 
3.76 
3.88 
3.94 

TABLE I 

Fl 

0.024 
0.027 
0.038 
0.048 
0.064 
0.080 

F2 

0.071 
0.081 
0.107 
0.126 
0.148 
0.167 

FS 

0.304 
0.286 
0.265 
0.2 53 
0.242 
0.233 

FS 

0.399 
0.3 94 
0.410 
0.427 
0.454 
0.480 



LA-609 17 

The decrease of the thermal-neutron fission rate, F3, with in- 
creasing enrichment is produced by the increase of the penetration 
length. Spreading thermal neutrons further into the tamper because 
of their higher incident energy allows the absorption by water to com- 
pete successfully against an increasing fission cross section in the 
active material. 

In all cases the first and second groups correspond respectively 
to the range of ages T{ = 2 cm2 and 7a = 3.3 cm2. It was convenient to 
split the two groups in this manner because, at an energy corresponding 
to the age T~ = Z2 + ~i from incidence, a sharp increase in the UFs ab- 
sorption cross  section with age set in. The correlation between neutron 
energy and age in water was made by referring to the report by Nord- 
heim, Nordheim, and Soodak. (CP-1251). 

The three diffusion lengths Li, b, and 
centage enrichment, (25)/(25 + 28), in solid UFe are shown in Fig. 3. 

The calculations of the critical slab thickness by Eq. 50 requires 
knowledge of v, u, and f. Throughout we used v = 2.47 and u and f are 
shown in Fig. 4 as functions of enrichment percentage. They depend on 
Ef, the average fast neutron energy in the UF6, which is shown in the 
same figure. 

The rapid decline of u between 6 and 15% enrichment shows the 
effect of the low energy resonance in the Fluorine cross  section. 

In estimating Ef one must bear in mind the fact that it is certainly 
less than the average energy of neutrons incident on the water tamper, 
El, because a sizable fraction of the total current I going into the water 
consists of fission neutrons that come directly from the slow neutron 
fission source, $(x), without suffering any collisions in the UFG. This 
part of the current of neutrons which suffers no moderation in the UF6 
is 

as a function of per- 

where 

E2(x) = Lw dy e-V/y' 

By extending the upper limit of integration to - ($(x) E2(x) is negligible 
for x > a), one obtains, upon inserting Eq. 22 for @(x) into Eq. 63 

3 

i=1 
= I(v/2) Fi[i - a:* In (I + ai)] 
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According to Eq. 64 the fraction of the current into the water, b/I, 
which is made up of unmoderated fission neutrons, increases from 
30% to 41% in going from an uranium enrichment of 15% to 100%. We 
estimated the average fast neutron energy in the UFs, Eft by assuming 
E, = 1.3 Ef. 

The critical thickness in centimeters of a slab of UF6 tamped by 
water on one side as given by Q. 50 is the curve (b) plotted versus 
enrichment percentage in Fig. 5. 

Fi to approach zero in Q. 50. Thus one obtains for the untamped slab 
a critical thickness in centimeters, d, given by: 

Removal of the water is equivalent to allowing the source strengths 

1 cot ko(a d + 2x0) - --eg or d = (a/ko - 2xo)/a (65) 

Curve (a) in Fig. 5 shows the above untamped UF6 critical slab thick- 
ness for comparison. 

R, calculated according to Eq. 62 for a water-tamped sphere of UF6. 
The lowest curve, (c) in Fig. 5 is the critical radius in centimeters, 
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Fig. 5-Critical thickness of UF,; (a) untamped slab, (b) half water- 
tamped slab. Critical radius of UFs; (c) water-tamped sphere. 
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