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Abstract 

A summary of the results o f  the Brookhaven solar neutrino experi- 
ment is given and discussed i n  relation t o  solar model calcula- 
t ions .  
neutrino detectors t h a t  have been proposed. 

A review is given o f  the merits of  various new solar 

I NTRODU CT I ON 

We would like t o  review the present status of the solar neutrino 
problem. First will be a report on the Brookhaven 3 7 ~ 1  detector 
that has been i n  operation f o r  10 years. The results obtained 
d u r i n g  the l a s t  7 years will  be compared w i t h  the current solar  
model calculations. In recent years a number o f  new solar 
neutrino detectors have been proposed. These various detectors 
will be discussed i n  l i g h t  of some of the current ideas on solar 
model s and neutri no properties . 
The sun i s  generating energy principally by the proton-proton 
chain o f  reactions. 

These reactions and 
decay processes are l isted i n  Ta,ble 1 along w i t h  the neutron 
energy s ectra and fluxes a t  t h y  earth. highest f l u x  
(6 x 101 cm-2 sec-1) arises from the P-P reaction b u t  these 
neutrinos have very low energies (<0.4 MeV). 
of processes emitting neutrinos w i t h  energies up t o  1.7 MeV w i t h  
fluxes i n  the range o f  2-34 x 108 cm-2 sec-1. The neutrinos from 
8B decay have relatively h i g h  ener ies b u t  the f l u x  of these 
neutrinos is very low (3  x 106 cm-8 sec-1). Since the solar 
neutrinos have very low energies and the f l u x  a t  the earth i s  low 

The neutrinos are produced by the P-P 
action and a few beta decay processes. 

There are a group 
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the only means o f  observing t 
radiochemical technique based e inverse-beta processes. We 
developed a radiochemical detector based upon the neutrino capture 
reaction, 37Cl( v ,e')37Ar. 
the ca7 cul ated sol a r  neutrino w 
1967. Actually a t  the time three d i  
b u i l t .  Two were based on inverse beta processes, D(v,e'H)H and 
7Li ( v  ,e')7Be , respectively , and one was based upon neutrino 
electron scattering.l I t  i s  interesting t o  note t ha t  these experi- 
mental approaches t o  observing the energetic 8B so lar  neutrinos 
are now be ing  reconsidered. 
summary o f  the present results from the 37C1 experiment. 

been developed is  a 

A 1 arge detector capabl e o f  observing 
l t  i n  the period 1964- 
o u n t i  ng detectors were 

We would 7 i ke now t o  g ive  you a 

THE 3 7 ~ ~  EXPERIMENT 

Table 1 shows the flux-cross section product for each of the 
neutrino sources i n  the sun. 
the standard solar model ,2 and the cross sec t ions-are  from 
Bahcall.3 The to ta l  neutrino capture ra te  expected from the 

The fluxes are those derived from 

Table 1. Solar Neutrino Fluxes2 and Cross Sections3 for  
37Cl( v , e- ) 37Ar. 

Capture Rate 
i n  37CI 

Neutrino Sources Flux  on Earth Cross Section @a x 1036 
and Energies i n  MeV 9 i n  cm-2 sec-1 Q i n  cm2 sec-1 SNU 

H+H+D+e++v (0-0.42) 6.1 x 1010 0 0 

H+H+e'+D+v ( 1.44) 1.5 x lo8 1.54 x 10-45 0.23 
7Be decay (0.86) 3.4 lo9 2.4  x 10-46 0.80 
8B decay (0-14) 3.2 x lo6 1.08 x 10-42 3.46 

I3N decay (0-1.19) 2.6 x lo8 1.6 x 10-46 0.04 

C$a = 4.65 

The 

I5O decay (0-1.74) 1.8 x lo8 6 .6 ,  x 0.12 

standard so la r  model calculation i s  4.7 SNU where SNU represents a 
so la r  neutrino uni t  (SNU z 10-36 captures/sec-37Cl atom). 
Brookhaven detector contains 615 tons o f  1 iquid C2Cl4 o r  2.18 x 
1030 atoms of 3 7 ~ 1 .  The expected so lar  neutrino capture rate i s  
0.88 per day from the current standard so la r  model calculations.  
The detector is located deep underground t o  reduce the production 
o f  37Ar i n  the l i q u i d  from cosmic ray muons. I t  i s  located i n  the 
Homestake Gold Mine a t  Lead, SD a t  a depth o f  4850 f e e t ,  corre- 
sponding t o  4400 hg/cm2 of overhead shielding. The t a n k  contain- 
i n g  the l iquid is  also shielded with water t o  eliminate the 
production of 37Ar from f a s t  neutrons from the sur rounding  rock 



wall. 

The 37Ar i s  removed from the t a n k  periodically by purg ing  wi th  
helium gas. Argon i s  collected from the helium stream by a 
charcoal f i l t e r .  I t  i s  f i n a l l y  pu r i f i ed  by gas chromatography, 
gettered w i t h  ho t  t i tanium, and placed i n  a small low-level propor- 
t iona l  counter t o  observe the 37Ar decay events. The detailed 
procedures are described i n  earl ier re ~ r t s . ~  The small propor- 

anticoincidence w i t h  a well-type sodium iodide scinti l lat ion 
counter t o  eliminate cosmic ray events. The counters are operated 
inside a 20 cm thick mercury shield. Pulse rise-time, pulse height 
and time of occurrence are recorded for each count, along w i t h  
auxillary information t o  check the performance of the recording 
system. Argon-37 decay events produce a fas t  rising pulse t h a t  can 
be clearly distinguished from background events from beta rays 
and Compton electrons. The 37Ar-1 i ke events are thereby charac- 
terized by their  energy and pulse r ise  time. Indiv idua l  samples 
are counted for lon periods of time, usually 150 t o  250 days, so 

During the entire period only a small number o f  counts are recorded 
(12 on the average). The time of occurrence of the counts w i t h  the 
characteristic energy and rise-time was treated by a maximum 
1 i kel i hood s ta t is t ical  treatment devel oped by one of us ( B  .T.C. ) 
t o  separate the 35 day decaying component from the presumed 
constant background counting rate. This treatment yields a most 
likely value f o r  the 37Ar production rate i n  the t a n k ,  and 
includes fluctuations (1) i n  the 37Ar production i n  the tank, 
( 2 )  i n  the decay dur ing  the production period, (3) du r ing  the 
extraction, and (4)  i n  the counting. 
taking the upper and lower bounds defined by 34 percent of  the 
to t a l  area under the likelihood function on either side of  the most 
likely value. 
for this procedure t o  be followed, the upper error given corre- 
sponds t o  the bound that includes 68 percent of the area under the 
likelihood function. To o b t a i n  an average of a number o f  runs one 
uses the 1 i kel i hood function formed by mu1 t i p l y i n g  the separate 
1 i kel i hoad functions for  each run.  

The 37Ar production rates derived from this analysis are shown i n  
Fig.  1. These are 30 individual  runs, nos. 18 t o  51, t h a t  
were made from 1970 t o  1977. 
pulse rise-time discrimination; results from these ear l ier  experi- 
ments are given i n  reference 5. 
except r u n  no. 23; i t  was a poor run  due t o  a valve leak. 
missing r u n  numbers correspond t o  runs i n  which special tests were 
performed. 
0.41 20.06 37Ar atoms per day i n  615 tons of  C2Cl4. 
cosmic ray background production of  37Ar i n  the tank from muons 
and cosmic ray produced muon-neutrinos t h a t  m u s t  be subtracted t o  

tional counter (internal volume 0.6 cm s ) i s  operated i n  

that the decay of 3 3 Ar (half-l ife 35 days) could be observed. 

The errors were obtained by 

In the event that the most likely value i s  too low 

Prior t o  r u n  18 we d i d  n o t  use 

Every long  exposure r u n  i s  given 
The 

The average 37Ar production for a l l  runs shown i s  
There i s  a 
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Figure 1. Summary o f  results 
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Figure 2. Yearly averages 
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obtain the 37Ar production rate that we could assign t o  solar 
neutrinos.6 The results are as follows: 

37Ar atoms/day 
Average 37Ar Production Rate (18-51) = 0.41 + 0.06 
Cosmic ray background (muons and v ~ )  = 0.08 0.03 

0.33 2 0.03 Rate above known backgrounds 
Possible solar neutrino rate = 

5.31 x (0.33 2 0.07) = 1.75 + 0.4 SNU 

I t  is  interesting t o  see i f  there is  any change i n  the neutrino 
f l u x  d u r i n g  the l a s t  7 years that is  observable w i t h  the 37c1 
experiment. 
i n  the solar neutrino f lux  on time scales less than about lo4  
years. We have made yearly averages and these are presented i n  
F ig .  2 .  
and therefore dominates the 1972 value. Shown for 1972 are two 
values, one including r u n  27 (dotted), and one w i t h o u  
this p l o t  i t  is evident that there has not been any change i n  the 
37Ar production rate outside of o u r  s ta t is t ical  errors. 

COMPARISON WITH THE STANDARD SOLAR MODEL 

One can compare this result  w i t h  the generally accepted solar model 
calculation o f  4 . 7  SNU. I t  is diff icul t  t o  assign an error t o  the 
standard solar model calculation. I f  the errors i n  the va 
i n p u t  data used i n  the calculation are evaluated one can e 
an error of about +30 p e r ~ e n t . ~  The standard solar model presumes 
that the s u n  i s  a Fpherical non-rotating body w i t h  an in i t ia l  
composition identical to  that observed now i n  its photosphere. The 
structure is derived from a se t  of differential equations fo r  
hydrostatic equilibrium, for radiation transport, and for  energy 
production. I t  is assumed that the energy is derived solely from 
the thermal fusion reactions of the P-P and CNO chains. An ideal 
equation of s ta te  i s  used and the kinetic velocities are considered 
t o  be accurately Maxwellian, 
calculations, some are very well determined l ike the mass, age and 
luminosity of the s u n ,  and others are n o t  as well known. 
laboratory derived nuclear reaction cross sections are used, and 
the theoretical l y  calculated opacities. The standard model 
predicts that  the sun  is  operat ing on the P-P cycle and less than 
2 percent of the energy i s  produced by the CNO cycle. T h i s  
prediction agrees w i t h  our experiment, since i f  the s u n  were 
operating on the CNO cycle the neutrino capture rate would be 
25 SNU. Another conclusion i s  that the luminosity of the s u n  
increases w i t h  time a t  the rate o f  5 percent per b i l l i o n  years. 
T h i s  result has been discussed i n  relation t o  the earth 's  ~ l i m a t e , ~  
and some have concluded that i f  the earth's atmospheric composition 

Theoretically there i s  no reason t o  expect any change 

Run no. 27,  our h ighes t  experiment, was a long exposure 

Various data are used i n  these 

The 



has not  changed a 5 percent drop i n  solar luminosity would cause 
the oceans t o  freeze. 

During the las t  10 years almost a l l  o f  the basic ideas of solar 
structure have been reexamined. Many effects such as  r a p i d  
i n ternal ro ta t i  on , peri odi c m i  x i  ng , pure he1 i um core , and i n tense 
magnetic fields have been invoked i n  an effort  t o  reduce the tem- 
perature i n  the central regions and thereby reduce the 8B f l u x .  
These models are n o t  satisfactory i n  that they are not  consistent 
w i t h  observation, are n o t  stable for long periods, or violate some 
concepts generally accepted i n  s te l la r  evolution. There has been 
an extensive examination of the possibility that the sun i s  
periodically mixed. However, as this question now stands there i s  
no satisfactory mechanism. 
sufficiently t o  account for  our observation requires mixing a large 
fraction of the interior of the sun. 
models that i s  consistent w i t h  o u r  results is one i n  which the 
interior of the sun is essentially devoid of  heavy elements. 
reduces the opacity and allows rad ia t ion  t o  escape more readily 
from the interior. The reduced central temperature results i n  a 
dramatic reduction i n  the 8B f l u x .  
convincing one needs a mechanism for  adding the heavy elements t o  
the solar surface after the sun  becomes a stable main-sequence 
star.  Several mechanisms have been proposed, the in fa l l  of 
cometary-like debris or the collection of  material by the sun 
dur ing  i t s  travel around the galaxy. 
models have been discussed i n  various review articles.  However, 
there i s  t o  date no cri t ical  review of a l l  the aspects o f  the 
solar neutrino question. 

Furthermore t o  reduce the 8B f l u x  

One of the most reasonable 

This 

For this model t o  be 

These various non-standard 
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There has been an extensive examination of the laboratory measure- 
ments of  nuclear reaction cross-sections of  specific interest t o  
the P-P chain and possible var ia t ions.  
nuclear physicists feel content t h a t  a l l  the questions of cross- 
secti on val ues , possi bl e resonances i n cri tical reactions , and 
possible new nuclear reactions have been answered. Neutrino 
properties are another question t h a t  has been w i t h  us for about 
10 years. 
of matter that the neutrino must pass th rough  are large for solar 
neutrinos i t  i s  possible t h a t  neutrino decay, oscillations, and 
small scattering processes could effect the terrestrial  f l u x .  All 
of these possible processes have been considered. 
osci 11 a t ions  have been d i  scussed considering b o t h  vacuum osci 11 a- 
t i o n s l l  and matter oscillations.12 
occur i t  could severely al ter  the interpretation of any solar 
neutrino observation. In fact  this i s  an important consideration 
i n  o u r  t h i n k i n g  abou t  new solar neutrino experiments. 

A t  the present time the 

Since the travel time for  the neutrino and the amount 

Neutrino 

If either of these oscillations 
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NEW EXPERIMENTS 

A number of new experimental approaches have been proposed i n  
recent years. The 37C1 experiment i s  relatively easy and simple 
t o  carry o u t  and the target element i s  rather inexpensive. This 
will n o t  be the case for the next solar neutrino experiment! In 
addi t ion  t o  the usual difficult ies,  there are some added require- 
ments imposed by our theoretical interest. The  rate of the 
init iating P-P reaction i n  the sun i s  essentially independent of 
the variations i n  the solar structure. All solar models forecast 
the same f l u x  of these low energy neutrinos (0-0.42 MeV). 
the viewpoint of astrophysics one has great confidence that these 
low energy neutrinos are being produced i n  the sun a t  the 
calculated rate. This i s  an important consideration i f  one uses a 
solar neutrino experiment t o  t es t  for neutrino osci 11 ations . 
Needless t o  say a solar neutrino experiment tests for oscillation 
lengths much greater than i s  possible w i t h  experiments a t  reactors 
or accelerators. With these considerations i n  mind we favor an 
experiment that i s  capable of observing the P-P reaction neutrinos, 
though any w i t h  sufficient sensitivity t o  observe any par t  of the 
solar neutrino spectrum would be very important.  The ultimate 
goal i s  t o  determine the energy spectrum of neutrinos from the 
sun, and a way of  o b t a i n i n g  this information i s  t o  use several 
radiochemical detectors w i t h  different thresholds. The ultimate 
technique would be a direct counting method t h a t  observes the 
energy of the neutrino and i t s  direction. 

If one examines a l l  beta emitters w i t h  allowed o r  superallowed 
transitions and low disintegration energies t h a t  could be used 
for observing low energy neutrinos one f i n d s  only very few t h a t  
are suitable. Table 2 is a l i s t  of the ones t h a t  are considered 
reasonably satisfactory and are now being considered i n  various 
laboratories. The table i s  divided i n t o  radiochemical detectors 
and direct counting neutrino detectors. 

From 
. 

I 

Let us f i r s t  discuss the various radiochemical approaches. The 
reaction w i t h  the lowest threshold is  the one w i t h  thallium i n  
which 205Tl (70.9% captures a neutrino t o  form 205mPb which 
rap id ly  decays t o  io5Pb.  The product 205Pb has a very long half- 
l i f e  (1.6 x 107 y )  , so i t  is necessary t o  use a very o l d  mineral 
as the target material. 
Argonne National Laboratory propose using 3-10 kg of a mineral low 
i n  lead t h a t  has been exposed a t  depth underground. l 3  There is 
some difficulty i n  o b t a i n i n g  the mineral, and there i s  a t  present 
an uncertainty i n  knowing the exact value of the cross-section. 
Another similar case i s  the neutrino capture i n  81Br t o  form 81mBr 
that decays t o  the long-lived 81Kr (half-l ife 2.1 x lo5 y ) .  The 
target material suggested i s  a s a l t  deposit t h a t  has a small 
amount of bromine present. l4 These experiments have the unique 
a b i l i t y  of measuring the neutrino f l u x  i n  the past, the thallium 

Me1 Freedman and his associates a t  
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experiment measures the H-H reaction, and the bromine experiment 
could measure the 7Be decay occurring i n  the sun. 
experiment t h a t  uses a natural deposit can have serious b u i l t - i n  
background effects. 

However, any 
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A very attractive reaction i s  the one us ing  gallium. I t  has a low 
threshold and therefore the dominant signal would come from the 
low energy neutrinos from the H-H reaction. The product 71Ge has 
a convenient half-life and i t s  decay is  relatively easy t o  observe 
i n  a gas-proportional counter us ing  germane (GeHq) as the counting 
gas. The chemical procedures for efficiently extracting 71Ge from 
gal 1 i um metal or gal 1 i urn chl ori de sol u t i o n  have been devel oped. 
The major problem w i t h  this approach is t o  obtain the use of 50 
tons of gallium for a few years. The material i s  produced on a I 

sufficient scale, b u t  i t  i s  expensive. O f  course i t  can be 
returned t o  the industr ia l  market a t  the end of the experiment and 
t h u s  recover the cost of  the material. A solar n ri no detector 
based on the 7Li(v,e-)7Be reaction has many advantages. The 
neutrino capture reaction has a relatively h i g h  cross-section 
(super allowed). The threshold i s  s l i g h t l y  higher t h a n  chlorine, 
b u t  because of  the superallowed character o f  the transition this 
experiment would have a h i g h  sensitivity t o  the medium energy 
neutrinos from the H + H + e- + D + u reaction, and from the decay 
of  13N, 150, and 8B. Because of  the superallowed character of the 
7Li (v,e')7Be transition the l i t h i u m  experiment requires the least  
amount o f  material, only 5 tons for 1 capture per day-standard 
model! The ma o r  difficulty w i t h  the l i t h i u m  experiment i s  i n  

could be used, b u t  as yet no really satisfactory method has been 
developed. Table 3 compares the relative sensitivity o f  the three 
radiochemical detectors usi ng ga l  7 i urn, chl ori ne, and 1 i t h i  um as 
target material. Examining this table makes clear t h a t  the 
ga l l ium detector responds mainly t o  P-P neutrinos, the chlorine 
detector responds primarily t o  the energetic neutrinos from 8B, 
and the l i t h i u m  detector has a more uniform response t o  a l l  
neutrino sources. I f  we had results from a l l  three o f  these radio- 
chemical detectors there would be sufficient information t o  deter- 
mine the solar neutrino spectrum. This i s  the goal  o f  the 
Brookhaven program. 

A direct observation of the neutrino interaction i t se l f  could give 
information on the energy o f  the neutrino and i ts  direction. 
These features are only possible i f  the neutrino energy i s  
relatively h i g h .  
neutrinos have been discussed f o r  15 years . l2l7 However, i t  i s  
very diff icul t  t o  reduce the background counting rate of a few t o n  
detector sufficiently low t o  observe the feeble signal from solar 
neutrinos. 
very unique signal from the neutrino interaction o r  t o  observe a 
neutrino interaction w i t h  energy release above t h a t  of background 

measuring the .i Be produced. There are several techniques t h a t  

Direct counting experiments t o  observe solar 

The only hope o f  success i s  t o  take advantage o f  a 
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processes. Recently R. S. Raghavan of  Bell Labs has proposed using 
the neutrino capture i n  1I5In t o  produce an isomeric s ta te  i n  115Sn 
t h a t  rapidly decays ( 3 . 2  psec) by emi t t ing  two successive charac- 
t e r i s t i c  gamma rays. This unique delayed t r ip le  coincidence 
process cou'ld identify the neutrino capture event sufficiently t o  
distinguish the process from various background events. The 
reaction has a low threshold and could observe the neutrinos from 
the H-H reaction. A particular arrangement of  ind ium loaded 
1 iquid scintillation counters has been suggested,18 b u t  background 
effects must be carefully studied before feasibil i ty can be clearly 
demonstrated. 
principle a1 so measure the energy spectrum of 1 ow energy neutrinos. 

A detector based upon this reaction can i n  

One of the early processes considered for observing 8B neutrinos 
was the capture i n  deuterium producing an electron w i t h  an energy 
above 7 MeV. A detector was built by T. L. Jenkins (Case) about  
10 years ago t h a t  used 2000 l i t e r s  of D20, b u t  various background 
processes limited i ts  sensitivity. We know now t h a t  the 8B f l u x  
i s  below 1 x 106 cm-2 sec-1 from the chlorine experiment so t h a t  
observing 8B neutrinos by this method i s  extremely diff icul t .  
Recently A. Fainberg (Brookhaven-Syracuse) has proposed b u i l d i n g  
a 020 Cerenkov detector of  h i g h  r e s 0 7 u t i o n . ~ ~  His present aim i s  
t o  study backgrounds t o  determine if  such a detector i s  capable of 
observing the low fluxes of 8B neutrinos. A deuterium detector of 
this design i s  needed for observing pulses of neutrinos from 
coll aps ing  stars.  Present theories of s te l la r  coll apses predict 
an i n i t i a l  pulse o f  neutrinos a few hundredths of a second dura- 
t i o n  followed by a continued pulse of neutrino-antineutrino 
pairs t h a t  may las t  many tens o f  seconds. 
Cerenkov detector of the type proposed by Fainberg i s  the best 
means o f  observing this sharp characteristic pulse from a super 
nova event. Such a detector'could observe the constant f l u x  of 
energeti c solar neutrinos. 

Neutrino-electron scattering also has been regarded as  a promising 
means of observing energetic 88 neutrinos. 
scattering event by a sandwich detector system made of a1 ternating 
layers of thick plastic scint i l la tor  slabs and spark chamber 
modules has been recently suggested by H .  Chen of  the University 
of California,  Irvine.20 Studies of background processes have 
been made w i t h  a pilot system a t  the LAMPF accelerator t h a t  
indicate a detector of this design would have a sufficiently low 
background t o  allow observing the 86 f l u x .  A detector of  this 
design w i t h  the a b i l i t y  of defining the direction of the scattered 
electron would identify the sun  as the source of the neutrinos 
that are observed. These various direct counting experiments look 
promising and perhaps i n  a future neutrino '80-'90 conference the 
direct observation of solar neutrinos will be reported. 

I 

A 10-30 ton D20 

Observing the 
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