ÿWPCD4 è­ 5:¤@Np±`m?]Ä +Àk £`–1¸¿žÌ­ñ¬•/à÷Hÿâò’°ßF ±³Céð„X]2ü Ÿ1tjD"žÝ+0QbŽ¨Ÿü›±IªŸÁ¶8\6*¿ 1¤Y"µ±Ÿ}P—û ,ÁMêûÈ£³ psb^GµLÒÂÔ:ÞoĈè¥#WPâªe÷[…ÁâÅVÚêì@9{tFKv2í7lÅ8íƒÈÅÁ–åË9õ|ÐÃØCv%ÉýS÷¢ºr(ž9Îúj!(–INu!oÂïV  ×-àˬkz‘…ªÁ,äþÊOFræ¡Ï“çgË#zêSEïÝ ÐŸù!*ñW\ø-eÙOâ-3Jš5 —UÜYß;z¦ûX»ºhz‹pl2ä‘» ''©`‹Ü¯][Ö‚}4f/[AÑxDèÕGG«KºWîaV,ÎåÒh¦BÁÂi­Í&U€þze²[1b ¨›§Äqî‹z@½ð¡ïìk¤/ÈÊdÔá¥Â8•·!|¹°Ÿ9ÃäÍdëÔØuÑbà,’» G,¥}©ÜºŠã‹˜’,0ž™¶ÂlE¸Ž}©7ÿ©Çobœ ¡j§©Ïç}^Š& ¦X‰Šq$ºÇ?è píGU>âÒ  0nò 0ú` U8*Z 0•„ UF 0›_ 0Yú 0ãS 0…6 0:»èõ 0ÑÝw®>²Æð 0Ѷ 0ч 0(X D+€ AQ«IüU.E<s"¯"ÑUFóU,9e 0Nu 0¶Ã#ÁyU N: %ˆMŽ(’Nº4¼Ð mÒ 0ôé 0ñÝ 0îÎ 0ë¼$§ ^ Ë 0è× 0å¿! 0â¤" 0߆# 0Üe$ 0âA% 0ß#& 0Ü' 0ÙÞ' 0Ö·( 0Ó) 0Ð`* 0Í0+ 0Êý+ 0áÇ, 0Þ¨- 0Û†. 0Øa/ 0Õ90 0Ò1 0Ïà1 0̯2 0É{3ô\  `‹&Times New Roman' Fish Passage through Dams in Large Temperate Floodplain Rivers: An Annotated Bibliography2notated Bibliography&Brian S. Ickes&0Brian S. Ickes .   <ÿÿ:Default ParaÔ€ôôôÔÔ€XXXÔ6Xl ÿÿ4Body TextÔ€&&&ÔÔ?€ô\  `Times?ÔÔ€XXXÔÔS€ô\  `‹&Times New RomanSÔô\  `Times:ž½ ÿÿ8Body Text 2Ô[€xä2¼A`.Univers 57Condensed[ÔÓ  ÓÓ8.ÜÜÜ4Œ ä <”ìDœôL¤ü!8ÓÓ  ÓÓ_UÜ„Ü4Œ ä <”ìDœôL¤ü!_ÓÔS€ô\  `‹&Times New RomanSÔxä2¼A`.Univers 57Condensed:¡À ÿÿ8Body Text 3Ô[€xä2¼A`.Univers 57Condensed[Ôò òÓ  ÓÓ8.ÜÜÜ4Œ ä <”ìDœôL¤ü!8ÓÓ  ÓÓ_UÜ„Ü4Œ ä <”ìDœôL¤ü!_ÓÔS€ô\  `‹&Times New RomanSÔó ó6ÿÿ4HyperlinkóóòòÔ ÿ ÔóóÔ  Ô<¶ñ ÿÿ:Body Text InÓ Ôþ ÓÔ€&&&ÔÔ?€ô\  `Times?ÔÓ , ÓÓ  ÓÓ;1Ü4Œ ä <”ìDœôL¤ü!;ÓÓ  ÓÓ  ÓÓbXÜ„Ü4Œ ä <”ìDœôL¤ü!bÓÔ€XXXÔÔS€ô\  `‹&Times New RomanSÔÓ Ôþ Ó0> ÿÿ.FooterÓ ÜÜìü!ÓÓ>4Ü„Ü4Œ ä <”ìDœôL¤ü!>Ó:ÿÿ8Page Number ÞÝ ƒ¬Þ)ÝÒÜ°ÒÒÜ°ÒÔ..ÔÔ  ÔÔ  ÔÓ  ÓÔ€"XuXX"XÔÔ€XuXX"XuÔÝ  ÝÔ_ÔÓ™ÒÓÐ ° Ð(©2¬Þ$©©Ý ƒ —æ!ÝÒÜ°ÒÒÜ°ÒÔ..ÔÔ  ÔÔ  ÔÓ  ÓÔ€"XfßXX"XÔÔ€XfßXX"XfßÔÝ  Ý 4Ý ƒ¬Þ)ÝÒÜ°ÒÒÜ°ÒÔ..ÔÔ  ÔÔ  ÔÓ  ÓÔ€"XuXX"XÔÔ€XuXX"XuÔÝ  ÝÔ_Ôò òÔ€uXXXuÔÔ€&EXXuÔÓB.ÜÜÜ4Œ ä <”ìDœôL¤ü!°œXBÓÔ_Ôó óÔ€X&EXX&EÔÔ€XuXXX&EÔÔ_ÔÌÓ õÓÓ êÓÓ6Ñ ÜÑ ä <”ìDœôÜÜÜŒX6ÓÌÓ õÓÓ êÓÓ' ÜÜÜü!Ñ ÜÑ ä †X'Óƒ Level 1 Level 2 Level 3 Level 4 Level 5(©2¬Þ$¢¢Ý ƒ —æ!ÝÒÜ°ÒÒÜ°ÒÔ..ÔÔ  ÔÔ  ÔÓ  ÓÔ€"XfßXX"XÔÔ€XfßXX"XfßÔÝ  Ý(©2¬Þ$££Ý ƒ —æ!ÝÒÜ°ÒÒÜ°ÒÔ..ÔÔ  ÔÔ  ÔÓ  ÓÔ€"XfßXX"XÔÔ€XfßXX"XfßÔÝ  Ý(ÿÿ$””'dxdCþÿ<< cÿÿ ?Ñ#€""Xÿÿd#ÑØØÖ€Ö2xÐðA`Univershttp://www.umesc.er.usgs.gov/ Ñ ° ÑÑ X Ñ Ñ ° ÑÑ X Ñnä2¼A`.Univers 57Condensed(ô\ Y`‹Symbol#|x(ÍO$——ÔÿÔòòóóÔÿÔ(Ž—æ$¡¡ÒÜ°ÒÒÜ°ÒÔ..ÔÔ  ÔÔ  ÔÓ  ÓÔ€"XfßXX"XÔÔ€XfßXX"XfßÔ˜\\IBSEMTC_PCS01\CTRL-5SIDÈØØÚÚØÈØ0(ÖÃ9 Z‹6Times New Roman Regular"XxDð*ê:i¢×+00¦ÿU‹ÿÀÀÀ2J+M ÿÿ0_level1Ó ¨ý ÓÓ X ÓÓ2( ` ¸ hÀpÈ xÐ 2ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2G+M ÿÿ0_level2Ó ¨ý ÓÓ ° ÓÓ/%` ` ¸ hÀpÈ xÐ /ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2D+M ÿÿ0_level3Ó ¨ý ÓÓ  ÓÓ,"¸ ¸ hÀpÈ xÐ ,ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2A+M ÿÿ0_level4Ó ¨ý ÓÓ ` ÓÓ) hÀpÈ xÐ )ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó Ù  ÙØØ­mh+ 2>+M ÿÿ0_level5Ó ¨ý ÓÓ ¸ ÓÓ&hhÀpÈ xÐ &ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2;+M ÿÿ0_level6Ó ¨ý ÓÓ  ÓÓ#ÀÀpÈ xÐ #ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó28+M ÿÿ0_level7Ó ¨ý ÓÓ h ÓÓ pÈ xÐ ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó25+M ÿÿ0_level8Ó ¨ý ÓÓ À ÓÓppÈ xÐ ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó22+M ÿÿ0_level9Ó ¨ý ÓÓ  ÓÓÈÈ xÐ ÓÔ2ÔÔ3  Ôà..àÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2JM ÿÿ0_levsl1Ó ¨ý ÓÓ X ÓÓ2( ` ¸ hÀpÈ xÐ 2ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2GM ÿÿ0_levsl2Ó ¨ý ÓÓ ° ÓÓ/%` ` ¸ hÀpÈ xÐ /ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2DM ÿÿ0_levsl3Ó ¨ý ÓÓ  ÓÓ,"¸ ¸ hÀpÈ xÐ ,ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2AM ÿÿ0_levsl4Ó ¨ý ÓÓ ` ÓÓ) hÀpÈ xÐ )ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2>M ÿÿ0_levsl5Ó ¨ý ÓÓ ¸ ÓÓ&hhÀpÈ xÐ &ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2;M ÿÿ0_levsl6Ó ¨ý ÓÓ  ÓÓ#ÀÀpÈ xÐ #ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó28M ÿÿ0_levsl7Ó ¨ý ÓÓ h ÓÓ pÈ xÐ ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó25M ÿÿ0_levsl8Ó ¨ý ÓÓ À ÓÓppÈ xÐ ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó22M ÿÿ0_levsl9Ó ¨ý ÓÓ  ÓÓÈÈ xÐ ÓÔ2ÔÔ3  Ô€Ó  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2JM ÿÿ0_levnl1Ó ¨ý ÓÓ X ÓÓ2( ` ¸ hÀpÈ xÐ 2ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2GM ÿÿ0_levnl2Ó ¨ý ÓÓ ° ÓÓ/%` ` ¸ hÀpÈ xÐ /ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2DM ÿÿ0_levnl3Ó ¨ý ÓÓ  ÓÓ,"¸ ¸ hÀpÈ xÐ ,ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2AM ÿÿ0_levnl4Ó ¨ý ÓÓ ` ÓÓ) hÀpÈ xÐ )ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2>M ÿÿ0_levnl5Ó ¨ý ÓÓ ¸ ÓÓ&hhÀpÈ xÐ &ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó2;M ÿÿ0_levnl6Ó ¨ý ÓÓ  ÓÓ#ÀÀpÈ xÐ #ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó28M ÿÿ0_levnl7Ó ¨ý ÓÓ h ÓÓ pÈ xÐ ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó25M ÿÿ0_levnl8Ó ¨ý ÓÓ À ÓÓppÈ xÐ ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý Ó22M ÿÿ0_levnl9Ó ¨ý ÓÓ  ÓÓÈÈ xÐ ÓÔ2ÔÔ3  ÔÓ  ÓÓ5+° °` ¸ hÀpÈ xÐ 5ÓÓ ¨ý ÓÝ ƒ —æ!ÝÒÜ°ÒÒÜ°ÒÔ..ÔÔ  ÔÔ  ÔÓ  ÓÔ€"XuXX"XÔÔ€XuXX"XuÔÝ  ÝÔ_ÔÑ  ÑÓ   ÓÓ  ÓÑÈÑÑXÑÑX°ÑÙÙÖ€ ÿÿÖÝ‚ÿÿÿÝÔ€X&EXXXuÔÓ  ÓÓB.ÜÜÜ4Œ ä <”ìDœôL¤ü!°œXBÓÝ  ÝÑ€RfÑÑ€.K ÑÝ‚ÿÿÿ*ÝÝ  Ýò òFish€Passage€through€Dams€in€Large€Temperate€Floodplain€Rivers:€An€AnnotatedÐ ° ÐBibliography݃ÿÿ*Ô݌Р¨ø ÐŒÓ  ÓÓ! °œXÜÜÜŒX!ÓÔ€XuXXX&EÔÝ  Ýó óÓ  ÓÓB.ÜÜÜ4Œ ä <”ìDœôL¤ü!°œXBÓÔ€„AŒ„XXuÔÔ€„¸„„„AŒÔÌÌÌÌÔ€X/GX„„¸ÔÌÌÌÌÌÌÌÔ€&€Ã%XX/GÔÔ€&™y%%&€ÃÔByÐ ‘á  ÐBrian€S.€Ickes,€Joseph€H.€Wlosinski,€Brent€C.€Knights,€and€Steven€J.€ZiglerÐ ]­ ÐU.S.€Geological€SurveyÐ )y ÐUpper€Midwest€Environmental€Sciences€CenterÐ õE Ð2630€Fanta€Reed€RoadÐ Á ÐLa€Crosse,€WI€54603Ô€X¾x X%&™yÔÔ€X/GX XX¾xÔÐ Ý ÐÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÓB+Ü Ü4Œ ä <”ìDœôL¤ü!ÜÜÜŒXBÓÔ€&€Ã%XX/GÔÔ€&™y%%&€ÃÔJune€2001Ð v,Æ'* ÐÓ  ÓÌÌÌÔ_ÔÐ ¦/ö*. ÐÑRfÑâ âÑ8€"u"XXdædÈ8ÑØØÖ€ ™ÒÖâ âÑ  ÑÌÓ  ÓÓE.ÜÜÜ4Œ ä <”ìDœôL¤ü!ÜÜ‹Xü!EÓÔ& ã ÔÔ€X¾x X%&™yÔÔ€X&EX XX¾xÔò òPrefaceÔB  ÔÔ  ÔPrefaceŽÔ Ý ~ÔÔC  ÔÐ |Ì ÐÔ€X/GXXX&EÔó óÔ'ã| ÔÌÌÓ  ÓÔ€&€Ã%XX/GÔà 4 àÔ€&™y%%&€ÃÔThe€Long€Term€Resource€Monitoring€Program€(Ô_ÔLTRMPÔ_Ô)€was€authorized€under€theÐ Jš ÐWater€Resources€Development€Act€of€1986€(Public€Law€99„662)€as€an€element€of€the€U.S.€ArmyÐ  f ÐCorps€of€Engineersðð€Environmental€Management€Program.€€The€Ô_ÔLTRMPÔ_Ô€is€implemented€by€theÐ â 2 ÐUpper€Midwest€Environmental€Sciences€Center,€a€U.S.€Geological€Survey€science€center,€inÐ ® þ Ðcooperation€with€the€five€Upper€Mississippi€River€System€(Ô_ÔUMRSÔ_Ô)€states€of€Illinois,€Iowa,Ð z Ê ÐMinnesota,€Missouri,€and€Wisconsin.€€The€mode€of€operation€and€respective€roles€of€the€agenciesÐ F –  Ðare€outlined€in€a€1988€Memorandum€of€Agreement.Ð  b  ÐÌà 4 àThe€Ô_ÔUMRSÔ_Ô€encompasses€the€commercially€navigable€reaches€of€the€Upper€Mississippi,Ð ªú  ÐIllinois,€Ô_ÔKaskaskiaÔ_Ô,€Black,€St.€Croix,€and€Minnesota€Rivers.€€Congress€has€declared€the€Ô_ÔUMRSÔ_Ô€toÐ vÆ  Ðbe€both€a€nationally€significant€ecosystem€and€a€nationally€significant€commercial€navigationÐ B’  Ðsystem.€€The€mission€of€the€Ô_ÔLTRMPÔ_Ô€is€to€provide€decision€makers€with€information€forÐ ^  Ðmaintaining€the€Ô_ÔUMRSÔ_Ô€as€a€sustainable€large€river€ecosystem€given€its€multiple„use€character.€Ð Ú*  ÐThe€long„term€goals€of€the€Program€are€to€improve€understanding€of€how€the€system€functions,Ð ¦ö  Ðdetermine€resource€trends,€develop€management€alternatives,€and€manage€information.Ð r ÐÌà 4 àThis€report€was€developed€with€funding€provided€by€U.S.€Army€Corps€of€EngineersÐ  Z Ðduring€fiscal€year€2000.Ð Ö& ÐÓB+Ü Ü4Œ ä <”ìDœôL¤ü!ÜÜÜŒXBÓÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÔ‡X¾x X%&™yÔSuggested€citation:Ð Æ%!) ÐÌÓ ¨ýÓÔ#†&™y% XX¾x##ÔÓ XÓÓ?( ` ¸ hÀpÈ xÐ ÜÜ‹Xü!?ÓÔ‡X¾x X%&™yÔÔ_ÔIckesÔ_Ô,€B.€S.,€J.€H.€Ô_ÔWlosinskiÔ_Ô,€B.€C.€Knights,€and€S.€J.€Ô_ÔZiglerÔ_Ô.€2001.€Fish€passage€throughÐ †'Ö"+ Ðdams€in€large€temperate€Ô_ÔfloodplainÔ_Ô€rivers:€an€annotated€bibliography.€U.S.Ð f(¶#, ÐGeological€Survey,€Upper€Midwest€Environmental€Sciences€Center,€La€Crosse,Ð F)–$- ÐWisconsin.€Ô_ÔLTRMPÔ_Ô€web„based€report€available€online€atÐ &*v%. Ðhttp://Ô_Ôwww.umesc.usgs.govÔ_Ô/Ô_Ôltrmp_fishÔ_Ô/Ô_Ôfish_passage_biblio.htmlÔ_Ô#lit.€(AccessedÐ +V&/ ÐJune€2001.)Ô#†&™y% XX¾xé#ÔÐ æ+6'0 ÐÓ  ÓÓB.ÜÜÜ4Œ ä <”ìDœôL¤ü!‹XBÓÔ€„$ô „%&™yÔÔ€„¸„ „„$ôÔÐ Æ,(1 ЇÝ‚ÿÿÿÝÔ€„ùì „„„¸Ôò òÓ  ÓÓE.ÜÜÜ4Œ ä <”ìDœôL¤ü!ÜÜÜŒXEÓÝ  ÝÝ‚ÿÿÿÅÝÝ  ÝÔ€X&EX „„ùìÔFish€Passage€through€Dams€in€Large€Temperate€Ô_ÔFloodplainÔ_Ô€Rivers:€An€AnnotatedÐ ° ÐBibliography݃ÿÿÅS݌Р¨ø ÐŒÓ  ÓÓ$ ÜÜÜŒXÜÜÜŒX$ÓÔ€X/GXXX&EÔó óÝ  ÝÐ  ð ÐÔ€&€Ã%XX/GÔÔ€&™y%%&€ÃÔBy€Brian€S.€Ô_ÔIckesÔ_Ô,€Joseph€H.€Ô_ÔWlosinskiÔ_Ô,€Brent€C.€Knights,€and€Steven€J.€Ô_ÔZiglerÔ_ÔÐ ‹Û ÐÔ€&€Ã%%&™yÔÐ W§ ÐÐ # s ÐÔ€X/GX%&€ÃÔÔ€X&EXXX/GÔAbstractÐ ú J ÐÔ€&°Þ%XX&EÔÔ€&€Ã%%&°ÞÔÐ ò B ÐÓ  Óà 4 àÔ€&™y%%&€ÃÔThis€report€contains€474€annotated€citations€that€are€relevant€to€fish€passage€throughÐ É  Ðdams€in€large€temperate€Ô_ÔfloodplainÔ_Ô€rivers.€€Our€goal€was€to€survey€the€literature€to€helpÐ • å  Ðdefine€the€potential€ecological€consequences€of€restricted€fish€passage€through€dams€inÐ a ±  Ðthe€Upper€Mississippi€River€System€and€to€identify€alternative€engineering€solutions€forÐ -}  Ðincreasing€fish€passage€in€large€temperate€Ô_ÔfloodplainÔ_Ô€rivers.€€Consequently,€topicÐ ùI  Ðcoverage€is€broad,€including€theoretical€concepts€in€large€river€ecology,€engineeringÐ Å  Ðdesign€of€fish€passage€structures,€ecological€responses€to€river€impoundment,€fishÐ ‘á  Ðswimming€performance,€and€relations€between€freshwater€mussels€and€fish.€€This€reportÐ ]­  Ðis€served€in€searchable€electronic€format€from€the€U.€S.€Geological€Surveyððs,€UpperÐ )y  ÐMidwest€Environmental€Sciences€Center€web€site€(Ô  ÔÔ  ÔòòÔÿÔÔ4‚Ý ßÔÝ‚ÍOÝÔÿÿÔòŽòÝ  ÝÔ5  ÔÝ‚ ÿÿÿÝóŽóòŽòÔÿÿÔÝ  Ýhttp://www.umesc.er.usgs.gov/Ý‚ ÿÿÿ“ƒ ÝóŽóÔÿÿÔÝ  ÝÔ6GÔÝ‚ÍO[ƒ ÝóóÔÿÿÔÝ  ÝÔ7Ý È‰ÔÔ  ÔÔ  ÔÔÿÔ).Ð õE ÐÐ Á ÐÐ Ý ÐÔ€X¾x X%&™yÔÔ€X&EX XX¾xÔÐ Y© ÐÑ€ÑÒ(ä Xä 4ü!4ü!(ÒÓ  ÓÔ& Ä ÔIntroductionÔB  ÔÔ  ÔIntroductionŽÔ Ý ‘ÔÔC  ÔÐ %u ÐÓ  ÓÔ€&°Þ%XX&EÔÔ€&™y%%&°ÞÔÔ'Ä\oÔÐ m ÐÓ  Óà 4 à€Ìà 4 àTwenty€seven€dams€on€the€UpperÐ µ ÐMississippi€River€System€(Ô_ÔUMRSÔ_Ô)Ð Ñ Ðallow€for€the€management€of€waterÐ M Ðlevels€during€low€flows.€€Most€ofÐ i Ðthese€dams€were€authorized€byÐ å5 ÐCongress€in€1930€to€maintain€a€9„Ð ± Ðfoot€navigation€channel€(Rivers€andÐ }Í ÐHarbor€Act,€July€3,€1930,€H.R.Ð I™ Ð11781).€€Fish€passage€through€theseÐ e  Ðdams€has€been€a€long„standingÐ á1! Ðconcern€on€the€Ô_ÔUMRSÔ_Ô€(Ô_ÔCokerÔ_Ô€1929;Ð ­ ý" ÐÔ_ÔFremlingÔ_Ô€et€al.€1989).€€A€reportÐ y!É# Ðfrom€the€Chief€of€Engineers€(WarÐ E"•$ ÐDepartment€1932)€that€served€as€theÐ #a% Ðbasis€for€authorization€of€the€UpperÐ Ý#-& ÐMississippi€River€9„foot€channelÐ ©$ù' Ðnavigation€project€states€theÐ u%Å ( Ðfollowing:Ð A&‘!) ÐÐ  ']"* Ðà 4 àð ðThe€strong€currents€through€theÐ Ù')#+ Ðgates,€locks,€and€other€openings€willÐ ¥(õ#, Ðattract€fish€to€these€openingsÐ q)Á$- Ðthrough€which,€the€Board€feels,€theyÐ =*%. Ðwill€be€able€to€pass€more€readilyÐ  +Y&/ Ðthan€through€any€Ô_ÔfishwayÔ_Ô.€Ð Õ+%'0 ÐÔ_ÔFishwaysÔ_Ô€through€the€dams€will,Ð ¡,ñ'1 Ðhowever,€be€installed€if€shown€to€beÐ m-½(2 Ðnecessary.ððÐ %u2 ÐÐ ñA3 ÐÐ ½ 4 Ðà p àSeveral€studies€have€documentedÐ ‰Ù5 Ðthat€some€fish€species€can€passÐ U¥6 Ðthrough€Ô_ÔUMRSÔ_Ô€dams€(e.g.,€BahrÐ !q7 Ð1977;€Ô_ÔHolzerÔ_Ô€and€Von€Ô_ÔRudenÔ_Ô€1982;Ð í=8 ÐHurley€1983;€Holland€et€al.€1984).€Ð ¹ 9 ÐHowever,€it€has€recently€becomeÐ …Õ: Ðevident€that€passage€opportunitiesÐ Q¡; Ðvary€in€space€and€time€because€ofÐ m< ÐÔ_ÔhydrologicÔ_Ô€conditions€at€the€dams,Ð é9= Ðdifferences€in€dam€design€andÐ µ> Ðoperation,€and€differences€in€theÐ  Ñ? Ðswimming€performance€of€fishÐ M!@ Ðspecies.€€Substantial€questionsÐ "iA Ðremain€about€whether€Ô_ÔUMRSÔ_Ô€dams,Ð å"5B Ðas€they€are€operated€presently,Ð ±#C Ðimpart€a€significant€influence€onÐ }$ÍD Ðfish€movement,€and€if€restricted€fishÐ I%™ E Ðpassage€has€significant€ecologicalÐ &e!F Ðconsequences.€€This€report€compilesÐ á&1"G Ðliterature€sources€for€assessingÐ ­'ý"H Ðecological€consequences€associatedÐ y(É#I Ðwith€restricted€fish€passage€in€theÐ E)•$J ÐÔ_ÔUMRSÔ_Ô€and€for€evaluating€fishÐ *a%K Ðpassage€alternatives.Ð Ý*-&L ÐÐ ©+ù&M Ðà p àThis€report€is€not€a€completeÐ u,Å'N Ðbibliography€on€fish€passage.€€WeÐ A-‘(O ÐÑÑâ âÑ°°ÑÑXXÑâ âÑ  Ñexcluded€most€of€the€prodigiousÐ ° Ðliterature€pertaining€to€PacificÐ |Ì Ðsalmon€(Ô_ÔOnchorhynchusÔ_Ô€spp.),Ð H˜ ÐAtlantic€salmon€(Salmo€salar),€andÐ d Ðshad€(Alosa€spp.).€€We€reasoned€thatÐ à0 Ðproblems€and€solutions€for€thoseÐ ¬ü Ðspecies€were€distinctly€differentÐ x È Ðfrom€those€of€interest€in€largeÐ D ” ÐÔ_ÔfloodplainÔ_Ô€rivers€in€general€and€theÐ  ` ÐÔ_ÔUMRSÔ_Ô€in€particular€(e.g.,€differentÐ Ü ,  Ðlife€historyÐ ¨ ø  Ðcharacteristicsð"ðÔ_ÔanadromyÔ_Ô€versusÐ t Ä  ÐÔ_ÔpotadromyÔ_Ôð"ðand€different€damÐ @  Ðcharacteristicsð"ðhigh„headÐ  \  Ðhydroelectric€versus€low„headÐ Ø(  Ðnavigation€dams).€€Rather,€we€took€aÐ ¤ô  Ðbroad€view€of€fish€passage€concernsÐ pÀ  Ðin€the€Ô_ÔUMRSÔ_Ô€and€included€citationsÐ <Œ  Ðon€theoretical€concepts€for€largeÐ X Ðrivers;€species„specific€behavior€andÐ Ô$ Ðswimming€performance;Ð  ð Ðengineering,€design,€andÐ l¼ Ðperformance€of€various€fish€passageÐ 8ˆ Ðdevices;€and€case€history€studiesÐ T Ðfrom€around€the€world.€Ð Ð  ÐAdditionally,€we€included€citationsÐ œì Ðrelated€to€freshwater€musselsÐ h¸ Ðbecause€mussel€distribution€andÐ 4„ Ðdispersal€are€directly€related€toÐ P Ðmovement€of€fish€that€act€as€hostsÐ Ì Ðfor€the€juvenile€parasitic€stage€ofÐ ˜è Ðmost€freshwater€mussels.Ð d´ Ðà 4 àÌà 4 àWe€searched€Aquatic€Sciences€andÐ üL! ÐFisheries€Abstracts€(1978ð!ðpresent),Ð È" ÐConference€Papers€IndexÐ ” ä# Ð(1982ð!ðpresent),€Water€ResourcesÐ `!°$ ÐAbstracts€(1967ð!ðpresent),€and€FishÐ ,"|% Ðand€Fisheries€WorldwideÐ ø"H& Ð(1971ð!ðpresent)€as€well€as€variousÐ Ä#' Ðother€sources€housed€at€the€U.€S.Ð $à( ÐGeological€Survey€(Ô_ÔUSGSÔ_Ô),€UpperÐ \%¬ ) ÐMidwest€Environmental€SciencesÐ (&x!* ÐCenter,€La€Crosse,€Wisconsin.€€Dr.Ð ô&D"+ ÐÔ_ÔMufeedÔ_Ô€Ô_ÔOdehÔ_Ô€(Ô_ÔUSGSÔ_Ô,€Ô_ÔLeetownÔ_ÔÐ À'#, ÐScience€Center,€S.€O.€ConteÐ Œ(Ü#- ÐAnadromous€Fish€Research€Center,Ð X)¨$. ÐTurner€Falls,€Massachusetts)Ð $*t%/ Ðgraciously€provided€access€to€aÐ ð*@&0 Ðbibliographic€database€onÐ ¼+ '1 Ðanadromous€fish€passage€developedÐ ˆ,Ø'2 Ðat€the€S.O.€Conte€Anadromous€FishÐ T-¤(3 ÐResearch€Center.€€Ð °3 Ðà p àÌà p àMost€abstracts€included€in€thisÐ H˜5 Ðreport€are€the€original€authorððsÐ d6 Ðabstracts.€€If€an€abstract€was€notÐ à07 Ðprovided,€we€wrote€one.€€AnÐ ¬ü8 Ðunderlined€citation€number€indicatesÐ x È9 Ðthe€abstracts€we€wrote.€€€€Ð D ”: Ðà p àÌà p àNo€attempt€was€made€to€standardizeÐ Ü ,< Ðunits€of€measure€across€citations.€€InÐ ¨ ø= Ðall€abstracts,€units€of€measure€areÐ t Ä> Ðfrom€the€original€paper.€€Titles€inÐ @ ? Ðbrackets€indicate€that€the€referenceÐ  \ @ Ðwas€previously€translated€by€otherÐ Ø( A Ðsources.à È àÐ ¤ô B ÐÐ pÀ C Ðà p àThis€report€is€served€in€searchableÐ <Œ D Ðformat€on€the€World€Wide€Web,Ð XE Ðthrough€the€Ô_ÔUSGSÔ_Ô,€Upper€MidwestÐ Ô$F ÐEnvironmental€Sciences€CenterððsÐ  ðG Ðweb€siteÐ l¼H Ð(Ô  ÔÔ  ÔòòÔÿÔhttp://www.umesc.er.usgs.gov/óóÔ  ÔÔ  ÔÔÿÔ).€€Ð 8ˆI ÐÔ€&€Ã%%&™yÔÐ TJ ÐÔ€X/GX%&€ÃÔÔ€X&EXXX/GÔAcknowledgmentsÐ Û+K ÐÔ€X/GXXX&EÔÐ Ó#L ÐÔ€&€Ã%XX/GÔà p àÔ€&™y%%&€ÃÔWe€thank€Daniel€B.€Wilcox€(U.S.Ð ¾M ÐArmy€Corps€of€Engineers,€St.€PaulÐ ŠÚN ÐDistrict)€and€Mark€A.€Cornish€(U.S.Ð V¦O ÐArmy€Corps€of€Engineers,€RockÐ "rP ÐIsland€District)€for€their€assistanceÐ î>Q Ðin€planning€this€work.€€We€alsoÐ º R Ðthank€Mike€A.€Ô_ÔCaucuttÔ_Ô€and€Dave€A.Ð †ÖS ÐÔ_ÔBergstedtÔ_Ô€(Ô_ÔUSGSÔ_Ô,€Upper€MidwestÐ R¢T ÐEnvironmental€Sciences€Center,€LaÐ  nU ÐCrosse,€Wisconsin)€for€theirÐ ê :V Ðassistance€in€serving€this€databaseÐ ¶!W Ðon€the€World€Wide€Web.€€ThisÐ ‚"ÒX Ðreport€was€developed€with€fundingÐ N#žY Ðprovided€by€the€U.€S.€Army€CorpsÐ $jZ Ðof€Engineers€during€Fiscal€YearÐ æ$6 [ Ð2000.Ð ²%!\ ÐÔ€„$ô „%&™yÔÔ€„¸„ „„$ôÔÐ ~&Î!] ÐÔ€X/GX„„¸ÔÔ€X&EXXX/GÔLiterature€CitedÐ J'š"^ ÐÔ€X/GXXX&EÔÐ B(’#_ ÐÓ Ôþ¨ýÓÓ ,XÓÓH1Ü4Œ ä <”ìDœôL¤ü!ÜÜÜŒXHÓÔ€&€Ã%XX/GÔÔ€&™y%%&€ÃÔBahr,€D.€M.€€1977.€€Homing,€swimmingÐ -)}$` Ðbehavior,€range,€activity€patterns,€andÐ ù)I%a Ðreaction€to€increasing€water€levels€ofÐ Å*&b ÐÔ_ÔwalleyesÔ_Ô€(òòStizostedion€vitreum€Ô_ÔvitreumÔ_Ôóó)Ð ‘+á&c Ðas€determined€by€radio„telemetry€inÐ ],­'d ÐNavigation€Pools€7€and€8€of€the€UpperÐ )-y(e ÐÑ.K Ñâ .âÙÙØØâ .âÑ  ÑÔ_ÔMississippi€River€during€spring€1976.€Ð ° ÐM.S.€Thesis.€€University€of€Wisconsin,Ð |Ì ÐLa€Crosse.Ð H˜ ÐÓ ÔþÓÓ ,ÓÓK.ÜÜÜ4Œ ä <”ìDœôL¤ü!Ü4‹XKÓÌÝ‚ ÿÿÿÝÓ ÔþÓÔ€&™y%%&™yÔÔ€&™y%%&™yÔÓ ,ÓÓ  ÓÓH1Ü4Œ ä <”ìDœôL¤ü!ÜÜÜŒXHÓÝ  ÝÝ‚ ÿÿÿtGÝÝ  ÝCoker,€R.€€1929.€€Studies€of€common€fishesÐ à0 Ðof€the€Mississippi€River€at€Keokuk.€Ð ¬ü ÐU.S.€Department€of€Commerce€BureauÐ x È Ðof€Fisheries.€€Fisheries€Document€No.Ð D ” Ð1072.€€Bulletin€of€the€Bureau€ofÐ  ` ÐFisheries€XLV.݃ ÿÿtG=HÝŒÐ Ü ,  ÐŒÓ ,ÓÓ  ÓÓ* ÜÜÜŒXÜ4‹X*ÓÔ€&™y%%&™yÔÔ€&™y%%&™yÔÓ ÔþÓÝ  ÝÌÓ ÔþÓÓ ,ÓFremling,€C.€R.,€J.€L.€Rasmussen,€R.€E.Ð t Ä  ÐSparks,€S.€P.€Cobb,€C.€P.€Bryan,€and€T.Ð @  ÐO.€Claflin.€€1989.€€Mississippi€RiverÐ  \  Ðfisheries:€A€case€history.€€Pages€309„351Ð Ø(  Ðòòinóó€D.€P.€Dodge,€editor,€Proceedings€ofÐ ¤ô  Ðthe€International€Large€RiverÐ pÀ  ÐSymposium€(LARS).€€Canadian€SpecialÐ <Œ  ÐPublication€of€Fisheries€and€AquaticÐ X ÐSciences€106.Ð Ô$ ÐÐ  ð ÐHolland,€L.,€D.€Huff,€S.€Littlejohn,€and€R.Ð l¼ ÐJacobson.€(1984).€€Analysis€of€existingÐ 8ˆ Ðinformation€on€adult€fish€movementsÐ T Ðthrough€dams€on€the€Upper€MississippiÐ Ð  ÐRiver.€Report€to€the€St.€Paul€District,€U.Ð ° ÐS.€Army€Corps€of€Engineers.€€U.S.€FishÐ |Ì Ðand€Wildlife€Service,€National€FisheriesÐ H˜ ÐResearch€Laboratory,€La€Crosse,Ð d ÐWisconsin.€€193€pp.Ð à0 ÐÓ ÔþÓÓ ,ÓÓE.ÜÜÜ4Œ ä <”ìDœôL¤ü!ÜÜÜŒXEÓÌÓ ÔþÓÓ ,ÓÓH1Ü4Œ ä <”ìDœôL¤ü!ÜÜÜŒXHÓHolzer,€J.€A.,€and€K.€Von€Ruden.€€1982.€Ð x È ÐWalleye€spawning€movements€in€Pool€8Ð D ” Ðof€the€Mississippi€River.€€Pages€1„40€òòinóóÐ  `  ÐWisconsin€Department€of€NaturalÐ Ü ,! ÐResources.€Mississippi€River€Work€UnitÐ ¨ ø" ÐAnnual€Report€1981„1982.€Madison,Ð t Ä# ÐWisconsin.€€Ð @ $ ÐHurley,€S.€T.€€1983.€€Habitat€associationsÐ  \ % Ðand€movements€of€shovelnose€sturgeonÐ Ø( & Ðin€Pool€13€of€the€Upper€MississippiÐ ¤ô ' ÐRiver.€€M.S.€Thesis.€€University€ofÐ pÀ ( ÐIowað!ðAmes.€€82€pp.Ð <Œ ) ÐÓ ÔþÓÓ ,ÓÓK.ÜÜÜ4Œ ä <”ìDœôL¤ü!Ü4‹XKÓÌÓ ÔþÓÓ ,ÓÓH1Ü4Œ ä <”ìDœôL¤ü!ÜÜÜŒXHÓWar€Department.€€1932.€€Survey€ofÐ Ô$+ ÐMississippi€River€between€MissouriÐ  ð, ÐRiver€and€Minneapolis.€Part€1:€Report.€Ð l¼- ÐHouse€Document€137.€€72òòndóó€Congress,Ð 8ˆ. Ð1òòstóó€Session.€€U.S.€Government€PrintingÐ T/ ÐOffice,€Washington,€D.C.€€120€pp.Ñ€ÑÐ Ð 0 ÐÒ(ä Xä ÀÀ(ÒÐ œì0 ÐÝ‚ÿÿÿÝÔ€&™y%%&™yÔÔ€&™y%%&™yÔÝ  ÝÓ ÔþÓÓ ,ÓÓ  ÓÝ‚ÿÿÿJTÝÝ  ÝÔ€&€Ã%%&™yÔ݃ÿÿJTËT݌̌Ô€&€Ã%%&€ÃÔÔ€&™y%%&€ÃÔÝ  ÝÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÐ _-¯(J ÐÑÑâ âÑ°°ÑÑXXÑâ âÑ  ÑÌÌÌÐ  d ÐØØÙÙÌà  àÌÓ  ÓÔ€X¾x X%&™yÔÔ€X&EX XX¾xÔList€of€Annotated€CitationsÐ H˜ ÐÔ€&°Þ%XX&EÔÔ€&°Þ%%&°ÞÔÌÓ  ÓÔ€&™y%%&°ÞÔÌÓ ¨ýÓÓ XÓÓH+4 44Œ ä <”ìDœôL¤ü!Ü4‹XHÓÓÈÓ1.à 4 àAdam,€B.€and€U.€Schwevers€(1998).€€Positioning€fish€migration€facilities€„€behaviouralÐ ï? Ðinvestigations€on€fish€in€a€hydraulic€flume.€Wasser€und€Boden.€€ò ò50ó ó:55„58.Ð ·  Ðà 4 àÌÓ X¨ýÓWe€investigated€typical€behavioural€patterns€of€rhithral€fish€in€a€hydraulic€flumeÐ G — Ð(18€m€x€1,5€m€x€1€m€deep),€in€order€to€determine€how€fish€migration€facilities€should€bestÐ  _  Ðbe€installed.€By€comparing€different€discharges€and€various€entrance€locations€of€aÐ × '  Ðsimulated€fishway,€we€found€that€the€most€effective€position€for€the€entrance€is€parallel€toÐ Ÿ ï  Ðthe€tailwater€flow€and€directly€at€the€obstacle.€In€contrast,€entrances€at€right„angles€to€theÐ g·  Ðflow€can€hardly€be€found€by€the€fish.€On€their€way€upstream,€they€pass€the€zone€ofÐ /  Ðturbulence€and€assemble€immediately€in€front€of€the€migration€barrier.Ð ÷G  ÐÐ ¿  ÐÓ ¨ýXÓÐ ‡×  Ð2.à 4 àAdams,€S.€R.,€G.€R.€Parsons,€J.€J.€Hoover€and€K.€J.€Killgore€(1997).€€Observations€ofÐ OŸ  Ðswimming€ability€in€shovelnose€sturgeon€òòScaphirhynchus€platorynchusóó.€Journal€ofÐ g ÐFreshwater€Ecology.€€ò ò12ó ó:631„633.Ð ß/ Ðà 4 àÌÓ X¨ýÓSwimming€performance€and€behaviour€of€five€adult€(57€„€69€cm€fork€length)Ð o¿ Ðshovelnose€sturgeon,€òòScaphirhynchus€platorynchusóó,€were€studied€in€a€945„L€swim€tunnelÐ 7‡ Ðat€16ÔÎÿÍÿOÔoÔ2ÿOÍÔ€C.€Fifteen„minute€critical€swimming€speeds€ranged€from€65€to€116€cm€sÔÎÿÍÿOÔ„1Ô2ÿOÍÔ.Ð ÿO ÐSturgeon€swam€volitionally€at€low€speeds€(5„30€cm€sÔÎÿ•åÇÔ„1Ô2Ç•åÔ),€but€at€higher€speeds€(40€„€120Ð Ç Ðcm€sÔÎÿ]­ßÔ„1Ô2ß]­Ô)€sturgeon€alternated€between€active€swimming€and€appressing€themselves€to€theÐ ß Ðbottom€of€the€tunnel.€This€second€behaviour€is€enhanced€by€sturgeon€morphology€„Ð W§ Ðstreamlined€body€shape,€flat€rostrum,€and€large€pectoral€fins.€It€allows€shovelnoseÐ o Ðsturgeon€to€exploit€river€bottoms€as€a€refugia€from€current€and€maintain€position€in€highÐ ç7 Ðvelocities.Ð ¯ÿ ÐÐ wÇ ÐÓ ¨ýXÓÐ ? Ð3.à 4 àAhmed,€F.€and€N.€Rajaratnam€(1997).€€Three„dimensional€turbulent€boundary€layers:€AÐ W  Ðreview.€Journal€of€Hydraulic€Research.€€ò ò35ó ó:81„98.Ð Ï! Ðà 4 àÌÓ X¨ýÓThe€nature€of€three„dimensional€turbulent€boundary€layers€(3DTBL)€areÐ _ ¯# Ðdiscussed€with€the€intention€of€applying€them€to€the€problems€encountered€in€hydraulicÐ '!w$ Ðengineering.€After€introducing€the€basic€concepts€of€3DTBL,€various€cross„flow€andÐ ï!?% Ðnear„wall€similarity€models€are€described.€A€comparison€between€the€flow€situationsÐ ·"& Ðcommonly€encountered€in€hydraulic€engineering€and€in€some€other€branches€of€fluidÐ #Ï' Ðmechanics€(which€initially€prompted€the€development€of€3DTBL€theories)€is€made€toÐ G$—( Ðexplore€the€possibilities€of€utilizing€the€3DTBL€theories€in€hydraulic€engineering.€ThereÐ %_ ) Ðappears€to€be€numerous€opportunities€to€fruitfully€apply€3DTBL€theories€in€hydraulicÐ ×%'!* Ðengineering.€One€such€application€is€presented€in€a€companion€paper.Ð Ÿ&ï!+ ÐÐ g'·", ÐÓ ¨ýXÓÐ /(#- Ð4.à 4 àAlexander,€T.€W.€(1992).€€Discharge€rates€for€tainter€and€roller€gates€at€Lock€and€DamÐ ÷(G$. ÐNo€25€on€the€Mississippi€River€near€Windfield,€Missouri.€U.S.€Geological€Survey,Ð ¿)%/ ÐWater„Resources€Investigations€Report€92„4118.Ð ‡*×%0 Ðà 4 àÌÓ X¨ýÓThe€water€surface€elevations€on€the€Inland€Waterway€Navigation€System€of€theÐ ,g'2 ÐUpper€Mississippi€River€are€controlled€during€normal€operating€conditions€by€variousÐ ß,/(3 Ðflow€controls€located€at€29€locks€and€dams.€The€headwater€(navigation€pool)€andÐ §-÷(4 Ðtailwater€elevations€at€Lock€and€Dam€No.€25€near€Windfield,€MO,€are€controlled€by€theÐ ° Ðregulation€of€14€tainter€gates€and€3€roller€gates.€Stage€discharge€ratings€for€these€tainterÐ xÈ Ðand€roller€gates€were€developed€for€use€in€computing€discharge€through€Dam€No.€25€andÐ @ Ðto€aid€in€regulating€the€navigation€pool€within€its€normal€operating€limits€of€429.70€toÐ X Ð434.00€ft.€A€total€of€57€measurements€of€discharge€that€ranged€from€370€to€9,220€cuÐ Ð  Ðft/sec€were€made€in€the€tainter€and€roller€gate€forebays.€The€measured€discharges€wereÐ ˜è Ðused€to€define€flow€regimes€as€a€function€of€static„headwater€depth€(h1),€static„tailwaterÐ ` ° Ðdepth€(h3),€and€vertical€height€of€tainter€or€roller€gate€opening€(hg).€Submerged€orificeÐ ( x Ðflow€is€the€predominant€flow€regime€at€lock€and€Dam€No.€25.€Thirty„seven€dischargeÐ ð @ Ðmeasurements€defining€coefficients€of€discharge€(Cgs)€ranging€from€0.087€(hg=1€ft)€toÐ ¸   Ð0.731€(hg=14€ft)€were€used€to€develop€the€submerged€orifice€discharge€coefficientÐ € Ð  Ðrelation€for€the€tainter€gates.€Seventeen€discharge€measurements€defining€coefficients€ofÐ H ˜  Ðdischarge€ranging€from€0.038€(hg=1€ft)€to€0.534€(hg=14€ft)€were€used€to€develop€theÐ `  Ðsubmerged€orifice€discharge€coefficient€relation€for€the€roller€gates.€Also,€three€dischargeÐ Ø(  Ðmeasurements€were€made€with€the€gates€closed€(hg=0)€to€evaluate€the€tainter€and€rollerÐ  ð  Ðgate€leakage€discharge€relations.€Theoretical€equations€that€express€discharge€per€gateÐ h¸  Ð(Q)€as€a€function€of€discrete€hydraulic€control€variables€were€developed€from€theseÐ 0€  Ðdischarge€coefficient€and€gate€leakage€discharge€relations.€The€resulting€equations€ofÐ øH  Ðdischarge€area€applicable€to€gate€openings€of€1€ft€to€14€ft€and€for€orifice€submergenceÐ À Ðratios€(h3/hg)€ranging€from€1.4€to€11.0;€thus,€these€equations€can€be€used€to€computeÐ ˆØ Ðdischarges€for€regulated€flow€conditions€not€otherwise€defined€by€the€current€meterÐ P  Ðdischarge€measurements.€Discharge€rating€tables€for€the€tainter€and€roller€gates€are€givenÐ h Ðfor€selected€combinations€of€headwater€and€tailwater€elevations.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð5.à 4 àAllan,€J.€D.€and€A.€S.€Flecker€(1993).€€Biodiversity€conservation€in€running€waters.Ð 8ˆ ÐBioscience.€€ò ò43ó ó:32„43.Ð P Ðà 4 àÌÓ X¨ýÓIn€this€article,€the€authors€describe€the€biological€diversity€of€running€waters€andÐ à Ðits€state€of€imperilment,€and€we€identify€six€major€factors€that€threaten€the€destruction€ofÐ X¨ Ðthese€species€and€ecosystems.€Finally,€although€few€steps€are€being€taken€to€protect€riverÐ  p Ðecosystems,€their€potential€for€recovery€is€considerable,€and€we€close€with€a€discussion€ofÐ è8 Ðmeasures€to€enhance€the€health€of€flowing€waters.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð6.à 4 àAllendorf,€F.€W.,€N.€Ryman€and€F.€M.€Utter€(1987).€€Genetics€and€fishery€management,Ð  X# Ðpast,€present€and€future.€Pages€€1„19€òòinóó€€N.€Ryman€and€F.€Utter,€eds.€Population€GeneticsÐ Ð $ Ðand€Fisheries€Management,€University€of€Washington€Press,€Seattle,€Washington€(USA).Ð ˜!è% Ðà 4 àÌÓ X¨ýÓA€review€is€made€of€the€genetic€management€of€fisheries,€examiningÐ (#x' Ðcharacteristics€of€fish€which€make€them€unique€from€a€genetic€perspective€and€thus€haveÐ ð#@( Ðresulted€in€the€delayed€application€of€basic€genetic€principles€to€fisheries€management.Ð ¸$ ) ÐFuture€directions€for€genetics€in€fisheries€management€are€indicated,€discussing€the€needÐ €%Ð * Ðfor€education,€application€of€existing€techniques€and€the€development€of€new€techniques.Ð H&˜!+ ÐÓ ¨ýXÓÐ '`", ÐÐ Ø'(#- Ð7.à 4 àAnderson,€R.€V.€(1989).€Environmental€aspects€of€river€control€in€the€Upper€MississippiÐ  (ð#. ÐRiver.€Pages€€74€òòinóó€M.€D.€Games,€ed.€National€Meeting€of€the€American€Association€forÐ h)¸$/ Ðthe€Advancement€of€Science,€New€Orleans,€Louisiana€(USA),€AAAS€Annual€MeetingÐ 0*€%0 ÐAbstracts.Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓThe€first€lock€and€dam€on€the€Mississippi€River€was€completed€in€1913€atÐ ˆ,Ø'3 ÐKeokuk,€Iowa.€The€resulting€impoundment€and€flooding€and€leveling€of€the€floodplainÐ P- (4 Ðforest€have€substantially€modified€the€river€environment.€The€annual€hydrologic€regimeÐ ° Ðhas€been€changed€with€increasing€flood€frequency€and€elevation.€The€loss€of€floodplainÐ xÈ Ðhabitat€has€altered€energy€flow€and€nutrient€cycles€by€removing€extensiveÐ @ Ðfloodplain/riverine€interactions€and€thus€altering€food€web€structures.€Bottom€substrateÐ X Ðhas€become€finer€grained€with€a€shift€in€benthic€organisms€from€cling€and€sprawling€toÐ Ð  Ðburrowing€forms.€As€silt€accumulates€in€impounded€river€reaches€aquatic€vascular€plantsÐ ˜è Ðbegin€to€grow€dramatically€reducing€benthic€production€and€shifting€communityÐ ` ° Ðcomposition.€Macrophyte€beds€further€accelerate€siltation€which€results€in€a€succession€ofÐ ( x Ðplant€communities€ultimately€reducing€the€permanent€aquatic€habitat.€PresentÐ ð @ Ðmanagement€programs€in€the€Upper€Mississippi€River€are€being€developed€which€shouldÐ ¸   Ðmitigate€some€of€these€environmental€effects.Ð € Ð  ÐÓ ¨ýXÓÐ H ˜  ÐÐ `  Ð8.à 4 àAnderson,€R.€V.,€J.€Eckblad,€T.€Claflin,€S.€Cobb€and€L.€Sanders€(1987).€Habitat€diversityÐ Ø(  Ðand€utilization€by€invertebrates€and€fish€along€the€Mississippi€River€continuum.€Pages€Ð  ð  Ð241€òòinóó€M.€P.€Lynch€and€K.€L.€McDonald,€eds.€Estuarine€and€Coastal€Management,€ToolsÐ h¸  Ðof€the€Trade,€New€Orleans,€Louisiana€(USA).Ð 0€  Ðà 4 àÌÓ X¨ýÓThe€Mississippi€River€from€Minnesota€to€the€Gulf€of€Mexico€represents€theÐ À Ðhigher€orders€(8„12)€of€the€stream€classification€system€arranged€along€an€increasingÐ ˆØ Ðcontinuum.€Theory€suggests€that€a€change€in€community€composition€of€fish€andÐ P  Ðmacroinvertebrates€should€occur€along€this€continuum.€However,€little€changes€in€speciesÐ h Ðcomposition€of€fish€and€trophic€guilds€of€benthic€invertebrates€was€found€whenÐ à0 Ðcomparing€these€communities€from€similar€habitat€types€down€the€length€of€theÐ ¨ø ÐMississippi€River.€Density€did€decline€in€the€lower€reaches€of€the€river€and€much€higherÐ pÀ Ðdensities€of€the€Asiatic€clam€did€occur€in€the€lower€river€reaches.€More€differences€wereÐ 8ˆ Ðfound€in€fish€and€macroinvertebrate€communities€along€a€lateral€gradient€throughout€theÐ P Ðsystem€than€a€longitudinal€gradient.€The€highest€densities€and€biomass€ofÐ È Ðmacroinvertebrates€and€fish€were€found€associated€with€potential€availability€ofÐ à Ðparticulate€organic€matter.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð9.à 4 àAnderson,€R.€V.,€J.€W.€Grubauch,€R.€E.€Sparks€and€K.€W.€Blodgett€(1989).€Mussels€ofÐ °  ÐPool€19,€75€years€behind€a€dam.€Pages€€13€òòinóó€J.€Rasmussen,€ed.€Proceedings€of€theÐ xÈ! ÐMississippi€River€Research€Consortium,€La€Crosse,€Wisconsin€(USA),€Mississippi€RiverÐ @" ÐResearch€Consortium.Ð  X# Ðà 4 àÌÓ X¨ýÓThe€river€reach€presently€designated€Pool€19€has€long€been€an€area€of€knownÐ ˜!è% Ðmussel€beds€with€history€notes€dating€to€the€early€19th€century.€€In€association€withÐ `"°& Ðcommercial€harvest€for€the€pearl€button€industry€and€construction€[sic]€of€Dam€19,€earlyÐ (#x' Ðresearchers€predicted€a€reduction€in€the€mussel€populations€of€the€river.€€QualitativeÐ ð#@( Ðconstruction€and€quantitative€records€for€the€past€75€years€were€examined€to€determine€ifÐ ¸$ ) Ðchanges€have€occurred€and€to€evaluate€those€changes€in€the€mussel€community.€€WhileÐ €%Ð * Ðcommercial€mussel€harvest€rapidly€declined€in€the€30's€and€40's€it€has€again€become€aÐ H&˜!+ Ðprevalent€activity€on€the€river€with€tons€of€mussels€being€removed€from€the€riverÐ '`", Ðannually.€€In€1930,€21€species€of€mussels€were€collected€from€this€Pool€while€in€the€mid„Ð Ø'(#- Ð1980's€29€species€were€present.€€Sampling€effort€and€the€number€of€habitats€examinedÐ  (ð#. Ðincreased€in€the€1980's.€€Even€though€simple€diversity€may€have€increased,€density€hasÐ h)¸$/ Ðdecreased.€€Though€more€species€are€presently€reported€from€this€river€reach,€shifts€inÐ 0*€%0 Ðdensity€and€composition€have€occurred€with€previously€abundant€species€becoming€rare.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð10.à 4 àAngermeier,€P.€L.€and€J.€R.€Karr€(1994).€€Biological€integrity€versus€biological€diversityÐ ° Ðâ âas€policy€directives.€BioScience.€€ò ò44ó ó:690„697.Ð xÈ Ðà 4 àÌÓ X¨ýÓThe€authors€argue€that€resource€policy€would€be€most€effective€if€the€goal€wereÐ X Ðthe€protection€of€biological€integrity.€€Biological€integrity€is€defined€as€biologicalÐ Ð  Ðdiversity€plus€the€processes€that€support€that€diversity.€€Thus,€it€is€a€truer€systemsÐ ˜è Ðapproach€to€resource€management€than€just€managing€for€the€greatest€different€types€ofÐ ` ° Ðorganisms.€€In€their€argument,€the€authors€stress€the€importance€of€understandingÐ ( x Ðorganizational€heirarchies€in€ecosystem€management.€€Objective€recognition€andÐ ð @ Ðassessment€of€changes€in€integrity€are€critical€for€the€concept's€use€in€resource€policy.€Ð ¸   ÐThus,€appropriate€benchmarks€need€to€be€established€against€which€future€system€statesÐ € Ð  Ðcan€be€compared€and€contrasted.€€Variation€in€elements€attributable€to€natural€processesÐ H ˜  Ðdoes€not€represent€a€variation€in€integrity,€but€variation€caused€by€humans€does.€€TheÐ `  Ðauthors€argue€further€that€evolotionary€history€should€provide€the€primary€basis€forÐ Ø(  Ðassessing€biological€integrity.€€A€keystone€concept€in€their€argument€is€that€ecologicalÐ  ð  Ðprocesses€are€buffered€from€perturbation€by€redundancy€among€ecosystem€elements€andÐ h¸  Ðprocesses.€€Anthropogenic€influences€often€simplify€systems,€reducing€their€redundancy,Ð 0€  Ðand€thus€negatively€impair€system€integrity.€€In€essence,€the€goals€of€biologicalÐ øH  Ðconservation€and€restoration€should€focus€on€protecting€integrity,€especially€theÐ À Ðorganizational€processes€that€generate€and€maintain€all€elements,€rather€than€focusing€onÐ ˆØ Ðthe€presence€or€absence€of€particular€elements.Ð P  ÐÐ h ÐÓ ¨ýXÓÐ à0 Ð11.à 4 àAnonymous€(1972).€€Upper€Mississippi€River€Comprehensive€Basin€Study:€Volume€I,Ð ¨ø ÐMain€Report.€Upper€Mississippi€River€Comprehensive€Basin€Study€CoordinatingÐ pÀ ÐCommittee.Ð 8ˆ Ðà 4 àÌÓ X¨ýÓThis€study€was€prepared€at€field€level€and€presents€data€for€a€framework€programÐ È Ðfor€the€development€and€management€of€the€water€and€related€land€resources€of€theÐ à ÐUpper€Mississippi€River€Basin.€The€main€report€summarizes€the€findings€of€the€17Ð X¨ Ðsupporting€appendices.€The€water€and€related€land€resources€of€the€basin€are€ample.Ð  p ÐThere€are€opportunities€for€further€resource€development.€Conservation€and€developmentÐ è8 Ðof€the€resources€are€needed€if€the€basin€is€to€maintain€its€relative€position€in€the€nationalÐ °  Ðeconomy.€The€study€presents€the€needs€for€water€and€related€land€resources€and€aÐ xÈ! Ðframework€for€development€of€such€resources.€The€estimated€total€first€cost€of€theÐ @" Ðrecommended€framework€for€development€is€$28.5€billion€of€which€$13.2€billion€isÐ  X# Ðfederal€and€$15.3€billion€is€non„federal.€The€annual€investment€ranges€from€$31€perÐ Ð $ Ðcapita€in€1980€to€$44€per€capita€by€2020.€The€current€annual€rate€of€investment€is€aboutÐ ˜!è% Ð$27€per€capita.€Recommendations€include€approval€and€adoption€of€the€framework€by€theÐ `"°& Ðfederal€government€and€the€seven€basin€states,€further€studies€to€develop€details€of€theÐ (#x' Ðframework,€periodic€review€of€the€framework,€and€continuation€of€the€presentÐ ð#@( Ðcoordinating€committee€pending€organization€of€the€Upper€Mississippi€River€BasinÐ ¸$ ) ÐCommission.Ð €%Ð * ÐÐ H&˜!+ ÐÓ ¨ýXÓÐ '`", Ð12.à 4 àAnonymous€(1978).€€Culvert€guidelines:€recommendations€for€the€design€and€installationÐ Ø'(#- Ðof€culverts€in€British€Columbia€to€avoid€conflict€with€anadromous€fish.€CanadianÐ  (ð#. ÐFisheries€and€Marine€Service,€Technical€Report€of€the€Fisheries€and€Marine€Service€811.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓThis€report€examines€the€hydraulic€criteria€that€should€be€satisfied€at€a€culvertÐ ø*H&1 Ðinstallation€to€ensure€that€fish€can€migrate€through€the€facility€with€a€minimum€of€stress.Ð À+'2 ÐThe€report€also€outlines€guidelines€that,€if€incorporated€into€the€culvert€design,€shouldÐ ˆ,Ø'3 Ðproduce€a€facility€that€will€permit€the€free€passage€of€fish€in€most€situations.€The€designÐ P- (4 Ðof€auxiliary€fish€passage€structures€such€as€culvert€baffles€and€tailwater€control€facilitiesÐ ° Ðare€discussed€and€exampled€by€drawings.€Consideration€is€also€given€to€the€installation€ofÐ xÈ Ðculverts€to€avoid€conflicts€with€fish€use€in€the€stream€both€during€and€after€theÐ @ Ðconstruction€period.€Guidance€is€also€given€concerning€the€procedures€to€follow€forÐ X Ðnecessary€approval€of€a€proposed€culvert€installation€by€the€Fisheries€and€Marine€Service.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð13.à 4 àAnonymous€(1978).€Environmental€issues€in€river€basin€development.€Pages€€1163„1172Ð ( x Ðòòinóó€U.€Nations,€ed.€Water€Management€and€Development,€Proceedings€of€the€UnitedÐ ð @ ÐNations€Water€Conference,€Mar€del€Plata€(Argentine),€Pergamon€Press.Ð ¸   Ðà 4 àÌÓ X¨ýÓEnvironmental€effects€of€dam€construction€in€river€basins€and€methods€ofÐ H ˜  Ðminimizing€such€effects€are€described.€Large€dams€tend€to€have€particularly€significantÐ `  Ðand€complex€effects€on€aquatic€ecosystem€which€must€be€carefully€evaluated€prior€toÐ Ø(  Ðconstruction.€Rational€development€involves:€(1)€a€comprehensive€basinwide€assesmentÐ  ð  Ðof€social,€economic,€and€ecological€characteristics€and€of€the€effects€of€development;€(2)Ð h¸  Ðevaluation€of€development€alternatives€reflecting€social,€economic,€and€environmentalÐ 0€  Ðfactors€to€provide€the€basis€for€environmental€management.€Dam€construction€canÐ øH  Ðprovide€the€water€supply,€hydroelectric€power,€and€flood€control,€and€can€greatlyÐ À Ðimprove€agriculture,€forestry,€and€livestock€management.€Excessive€use€of€water€andÐ ˆØ Ðagricultural€chemicals€can€however,€cause€waterlogging€and€salinization,€and€can€affectÐ P  Ðwater€quality€and€quantity.€Dams€produce€a€permanent€physical€transformation,Ð h Ðinundating€settled€areas€and€destroying€habitats€,€affecting€the€groundwater€regime€andÐ à0 Ðwater€table,€possibly€increasing€seismic€tendencies,€and€often€leading€to€explosiveÐ ¨ø Ðaquatic€weed€growth€and€the€spread€of€schistosomiasis€and€other€communicable€diseases.Ð pÀ ÐDams€in€tropical€areas€tend€to€favor€weed€propagation€and€vectors€of€parasitic€diseases,Ð 8ˆ Ðwhile€temperate„zone€dams€often€interfere€with€fish€migration.€Resettlement€ofÐ P Ðpopulation€displaced€by€dams€often€leads€to€housing,€disease,€and€social€problems.€LossÐ È Ðof€wetlands€endangers€many€plant€and€animal€species.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð14.à 4 àAnonymous€(1978).€€A€review€and€resolution€of€fish€passage€problems€at€culvert€sites€inÐ è8 ÐBritish€Columbia€(2nd€edition).€Fisheries€and€Marine€Service,€Technical€Report€of€theÐ °  ÐFisheries€and€Marine€Service€810.Ð xÈ! Ðà 4 àÌÓ X¨ýÓThe€success€or€failure€of€a€fish€in€migrating€through€a€culvert€depends€upon€theÐ  X# Ðswimming€ability€of€the€fish€and€the€hydraulic€conditions€present.€In€culverts€stream€flowÐ Ð $ Ðvelocities€are€maximized€and€usually€constant€throughout€most€of€the€culvert€length€asÐ ˜!è% Ðopposed€to€the€variety€of€conditions€in€a€natural€stream€channel.€From€documentation€ofÐ `"°& Ðswimming€ability€of€salmon€(Oncorhynchus€)€it€is€possible€to€determine€hydraulic€criteriaÐ (#x' Ðthat€must€be€satisfied€to€ensure€free€fish€passage,€especially€throughout€the€spawningÐ ð#@( Ðmigration€period.€Since€detailed€stream€flow€records€for€small€streams€in€BritishÐ ¸$ ) ÐColumbia€have€not€been€taken,€a€general€system€must€be€used.€Some€recommendationsÐ €%Ð * Ðfor€culvert€design€are€given.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð15.à 4 àAnonymous€(1978).€€A€study€of€model€and€prototype€culvert€baffling€for€fish€passage.Ð  (ð#. ÐFisheries€and€Marine€Service,€Technical€Report€of€the€Fisheries€and€Marine€Service€828.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓMost€streams,€crossed€by€roads€or€highways,€are€culverted.€Many€such€crossingsÐ ø*H&1 Ðare€impassable€to€migrating€fish€because€of€the€culvert€length€and€the€high€waterÐ À+'2 Ðvelocities€in€them.€A€hydraulic€model€study€tested€and€developed€devices€to€aid€fishÐ ˆ,Ø'3 Ðpassage€through€culverts.€Based€on€the€model€study€recommendations,€Offset€baffles€andÐ P- (4 ÐSpoiler€baffles€were€designed€and€installed€at€the€Mackenzie€Highway€crossing€of€theÐ ° ÐRedknife€River.€Field€testing€showed€good€agreement,€between€model€and€prototypeÐ xÈ Ðresults.€The€effectiveness€of€both€baffle€types€is€inversely€proportional€to€culvert€slope.Ð @ ÐMaximum€recommended€slope€is€5%.€A€method€of€judging€baffle€adequacy€is€provided.Ð X ÐThe€Offset€and€Spoiler€baffles€are€recommended,€primarily€for€correcting€existing€culvertÐ Ð  Ðinstallations€and€for€proposed€stream€crossings€where€alternative€designs€are€neitherÐ ˜è Ðpractical€nor€economical.€Minor€problems€were€presented€by€ice,€debris€and€sediment.Ð ` ° ÐUnsuccessful€attempts€by€Arctic€grayling€òòThymallus€arcticusóó€and€longnose€suckerÐ ( x ÐòòCatostomus€commersonióó,€to€enter€the€Redknife€River€culverts,€were€observed;€theirÐ ð @ Ðfailures€were€attributed€to€overwhelming€water€velocities€associated€with€elevated€culvertÐ ¸   Ðoutlets.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð16.à 4 àAnonymous€(1979).€€Anadromous€fisheries€management.€Massachusetts€Division€ofÐ Ø(  ÐMarine€Fisheries,€Completion€Report€.Ð  ð  Ðà 4 àÌÓ X¨ýÓDuring€the€project€period€AFCS€14„1€through€AFCS€14„5€(1974„1979),€eight€fishÐ 0€  Ðpassage€facilities€were€constructed,€four€fishways€were€improved€and€another€217€wereÐ øH  Ðadjusted€and€cleaned.€A€total€of€151,550€alewives€were€stocked€in€34€areas€whereÐ À Ðpassage€improvements€were€made€or€anticipated.€Smelt€eggs€(113.7€million)€wereÐ ˆØ Ðplanted€in€Millcreek,€Sandwich;€Bull€Brook,€Rowley,€and€Jones€River,€Kingston.€ShadÐ P  Ðeggs€were€stocked€in€Charles€River€(5,337,100),€Taunton€River€(11,908,200)€andÐ h ÐMerrimack€River€(12,104,700)€in€an€effort€to€establish€shad€populations.€A€total€of€2237Ð à0 Ðpre„spawning€adult€shad€were€transplanted€from€the€Holyoke€Fish€Lift€to€fourÐ ¨ø ÐMassachusetts€rivers.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð17.à 4 àAnonymous€(1989).€€Long„term€resource€monitoring€program€for€the€Upper€MississippiÐ È ÐRiver€system.€U.S.€Geologic€Survey,€Environmental€Management€Technical€Center,Ð à ÐAnnual€Report€EMTC„89/02.Ð X¨ Ðà 4 àÌÓ X¨ýÓThe€First€Annual€Report€of€the€Long€Term€Resource€Monitoring€Program€for€theÐ è8 ÐUpper€Mississippi€River€System€covers€the€period€from€September,€1986€throughÐ °  ÐJanuary€1989.€The€report€includes:€program€activities€information€concerningÐ xÈ! Ðcooperation€between€member€states€and€agencies;€a€summary€of€the€past€year's€dataÐ @" Ðcollection€effort€for€water€quality;€deviations€from€the€Operating€Plan;€critical€paths€andÐ  X# Ðfunding€requirements€through€1999;€plans€for€the€coming€year,€and;€management€of€theÐ Ð $ ÐEnvironmental€Management€Technical€Center.€Technical€Center€Staff€are€dividedÐ ˜!è% Ðbetween€Ecology€and€the€Computerized€River€Information€Center.€Ecology€is€responsibleÐ `"°& Ðfor€the€analysis€of€significant€resource€problems€and€for€long€term€resource€monitoring€ofÐ (#x' Ðthe€Upper€Mississippi€River€System.€The€Computerized€River€Information€Center€isÐ ð#@( Ðresponsible€for€supplying€the€necessary€computer€hardware€and€software€for€geographicalÐ ¸$ ) Ðinformation€systems,€data€base€management,€modeling€and€statistical€analysis.Ð €%Ð * ÐÐ H&˜!+ ÐÓ ¨ýXÓÐ '`", Ð18.à 4 àAnonymous€(1990).€€Environmental€management€program:€Long€term€resourceÐ Ø'(#- Ðmonitoring€program,€Upper€Mississippi€River€system.€U.S.€Geological€Survey,Ð  (ð#. ÐEnvironmental€Management€Technical€CenterEMTC„90/05.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓThe€Second€Annual€Report€of€the€Long€Term€Resource€Monitoring€Program€forÐ ø*H&1 Ðthe€Upper€Mississippi€River€System€covers€the€period€from€January€through€DecemberÐ À+'2 Ð1989.€The€report€summarizes€program€activities;€information€concerning€cooperationÐ ˆ,Ø'3 Ðbetween€member€states€and€agencies;€program€management€information€concerningÐ P- (4 Ðstaffing€and€budgeting;€variances€from€the€Annual€Work€Plan€and€task€scheduling€forÐ ° Ðcurrent€and€future€fiscal€years.€Environmental€Management€Center€and€Field€StationÐ xÈ Ðoperations€are€described€and€accomplishments€for€the€year€are€summarized.€A€listing€ofÐ @ Ðcompleted€publications€is€provided.Ð X ÐÐ Ð  ÐÓ ¨ýXÓÐ ˜è Ð19.à 4 àAnonymous€(1992).€€Bibliographical€materials€related€to€navigation€project.€Long€termÐ ` ° Ðresource€monitoring€program.€U.S.€Geological€Survey,€Environmental€ManagementÐ ( x ÐTechnical€Center,€Report€EMTC92S012.Ð ð @ Ðà 4 àÌÓ X¨ýÓThe€strategy€to€quantify€physical€impacts€of€commercial€traffic€is€included€in€theÐ € Ð  ÐLong€Term€Resource€Monitoring€Program€(LTRMP)€Operating€Plan€(USFWS€1992)€asÐ H ˜  ÐStrategy€1.2.2,€and€to€determine€effects€of€navigation€on€selected€components€andÐ `  Ðprocesses€of€the€Upper€Mississippi€River€System.€Future€navigation€studies€under€theÐ Ø(  ÐLTRMP€will€continue€in€conjunction€with€environmental€studies€yet€to€be€described€byÐ  ð  Ðthe€U.S.€Army€Corps€of€Engineers.€The€bibliography€is€intended€as€a€reference€documentÐ h¸  Ðfor€researchers€interested€in€retrieving€reports€prepared€by€the€Illinois€State€Water€SurveyÐ 0€  Ðwhile€under€contract€to€the€U.S.€Fish€and€Wildlife€Service€between€1986€and€1992.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð20.à 4 àAnonymous€(1998).€€National€strategy€for€the€conservation€of€native€freshwater€mussels.Ð P  ÐJournal€of€Shellfish€Research.€€ò ò17ó ó:1419„1428.Ð h Ðà 4 àÌÓ X¨ýÓOn€April€1995,€representatives€from€several€federal€and€state€natural€resourceÐ ¨ø Ðagencies,€the€commercial€mussel€industry€(Shell€Exporters€of€America),€academia,€andÐ pÀ ÐThe€Nature€Conservancy€met€to€discuss€freshwater€mussel€declines€and€gatherÐ 8ˆ Ðinformation€on€freshwater€mussel€trends,€research,€and€recovery€activities€(Appendix€I).Ð P ÐAs€a€result€of€the€magnitude€and€immediacy€of€the€nationwide€threats€to€the€freshwaterÐ È Ðmussel€fauna,€the€group€agreed€that€a€coordinated€effort€of€national€scope€was€needed€toÐ à Ðprevent€further€mussel€extinctions€and€population€declines.€To€address€this€need,€theÐ X¨ Ðgroup€decided€to€(1)€draft€a€National€Strategy€for€the€Conservation€of€Native€FreshwaterÐ  p ÐMussels€(National€Strategy)€and€(2)€establish€a€national€ad€hoc€committee€with€broad„Ð è8 Ðbased€representation€from€state,€tribal,€and€federal€agencies,€the€mussel€industry,€privateÐ °  Ðconservation€groups,€and€the€academic€community€to€help€implement€musselÐ xÈ! Ðconservation€at€the€national€level.€A€draft€National€Strategy€was€presented€at€the€secondÐ @" ÐSymposium€on€the€Conservation€and€Management€of€Freshwater€Mussels€organized€byÐ  X# Ðthe€Upper€Mississippi€River€Conservation€Committee,€in€St.€Louis,€Missouri€in€OctoberÐ Ð $ Ð1995.€Comments€received€at€and€subsequent€to€the€symposium€were€incorporated€intoÐ ˜!è% Ðanother€draft€dated€September€16,€1996.€The€September€1996€draft€was€presented€at€aÐ `"°& ÐFebruary€1997€meeting€of€the€newly€formed€National€Native€Mussel€ConservationÐ (#x' ÐCommittee€in€St.€Louis,€Missouri.€Comments€from€the€February€1997€meeting€have€beenÐ ð#@( Ðincorporated€into€this€current€document.Ð ¸$ ) ÐÐ €%Ð * ÐÓ ¨ýXÓÐ H&˜!+ Ð21.à 4 àAnonymous€(1999).€€A€comparison€of€genetic€variability€in€artificial€and€naturalÐ '`", Ðpopulations€of€brown€trout€in€a€regulated€river€system.€Regulated€Rivers:€Research€&Ð Ø'(#- ÐManagement.€€ò ò15ó ó:159„168.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓBrown€trout€òòSalmo€truttaóó€were€sampled€from€tributaries€of€Glomma,€the€largestÐ 0*€%0 Ðriver€system€in€Norway.€Brown€trout€were€formerly€known€to€migrate€long€distances,€butÐ ø*H&1 Ðseveral€dams€and€river€regulations€have€made€migration€difficult,€as€fishways€constructedÐ À+'2 Ðat€the€dams€are€not€efficient.€To€compensate€for€the€resultant€reduction€in€brown€trout,Ð ˆ,Ø'3 Ðthe€river€system€has€been€stocked€with€hatchery€fish€reared€from€native€brown€trout.Ð P- (4 ÐGenetic€analysis€by€enzyme€electrophoresis€was€conducted€to€monitor€possible€geneticÐ ° Ðeffects€on€native€fish.€Brown€trout€were€obtained€from€a€fishway€at€Lopet€in€the€SouthÐ xÈ ÐRena€River,€and€from€a€section€at€Deset,€16€km€upstream€of€the€fishway.€One€sample€wasÐ @ Ðtaken€from€a€cohort€of€first€generation€hatchery€fish,€based€on€only€six€spawning€fishÐ X Ðcollected€in€the€fishway,€and€one€sample€was€taken€from€the€second€hatchery€generation,Ð Ð  Ðbred€from€a€mixture€of€two€cohorts€of€first€generation€hatchery€fish.€The€pooledÐ ˜è Ðbroodstock€of€these€two€first€generation€cohorts€numbered€five€females€and€five€males.Ð ` ° ÐEight€samples€were€taken€from€second„,€third„€and€fourth„order€streams€containingÐ ( x Ðpopulations€differing€in€size€and€degree€of€isolation.€Tissue€samples€taken€from€eye,€liverÐ ð @ Ðand€muscle€were€analyzed€using€starch€gel€electrophoresis€for€protein€polymorphism€toÐ ¸   Ðdetermine€genetic€population€structures.€Allele€frequencies,€heterozygosity€andÐ € Ð  Ðpolymorphism€were€compared.€The€fraction€of€heterozygosity€ranged€from€3.3€to€13.5%Ð H ˜  Ðin€the€wild€populations,€and€the€lowest€fraction€was€found€in€the€most€isolatedÐ `  Ðpopulation.€Heterozygosity€was€8.0%€in€the€first€generation€of€hatchery€reared€fish€andÐ Ø(  Ð7.3%€in€the€second€generation.€The€number€of€detected€polymorphic€loci€ranged€fromÐ  ð  Ðone€to€seven,€with€a€mean€of€4.5,€in€wild€populations,€but€was€three€in€the€first€generationÐ h¸  Ðand€four€in€the€second€generation€of€hatchery€fish.€Polymorphism€seemed€to€be€lost€atÐ 0€  Ðthree€loci€in€the€first€generation,€but€one€locus€was€restored€in€the€second€generation,Ð øH  Ðprobably€due€to€breeding€with€another€hatchery€cohort.Ð À ÐÓ ¨ýXÓÐ ˆØ ÐÐ P  Ð22.à 4 àArrhenius,€F.,€B.€Benneheij,€L.€G.€Rudstam€and€D.€Boisclair€(2000).€€Can€stationaryÐ h Ðbottom€split„beam€hydroacoustics€be€used€to€measure€fish€swimming€speed€in€situ?Ð à0 ÐFisheries€Research.€€ò ò45ó ó:31„41.Ð ¨ø Ðà 4 àÌÓ X¨ýÓWe€used€split„beam€hydroacoustics€(Simrad€EY500,€70€kHz)€as€a€method€forÐ 8ˆ Ðestimating€fish€swimming€speed€in€situ.€The€method€was€first€evaluated€in€the€field€usingÐ P Ðunderwater€video€cameras€(stereocinematographic€method,€SCG)€to€estimate€accurateÐ È Ðfish€swimming€speeds.€The€mean€and€distribution€of€swimming€speeds€of€15„cm€brookÐ à Ðtrout€(òòSalvelinus€fontinalisóó)€obtained€by€the€two€methods€were€not€statistically€differentÐ X¨ Ð(average€17.8€cm€sÔÎÿî> pÔ„1Ô2 pî>Ô€with€split„beam€and€18.6€cm€sÔÎÿî> pÔ„1Ô2 pî>Ô€with€SCG).€We€then€used€the€split„Ð  p Ðbeam€technique€to€measure€swimming€performance€in€situ€for€fish€assumed€to€be€yellowÐ è8 Ðperch€(òòPerca€flavescensóó)€and€alewives€(òòAlosa€pseudoharengusóó)€in€two€lakes€in€New€YorkÐ °  ÐState,€USA.€The€measured€swimming€speeds€ranged€from€0.5€to€6€body€length€(BL)€perÐ xÈ! Ðsecond€for€juvenile€and€adult€fish.€Other€laboratory€studies€on€swimming€speeds€haveÐ @" Ðreported€values€in€the€same€range.€However,€measured€swimming€speeds€for€smaller€fishÐ  X# Ðwere€unrealistically€high€(2„32€BL€sÔÎÿž îÐ Ô„1Ô2Ð ž îÔ)€Advantages€of€the€split„beam€method€are€theÐ Ð $ Ðability€of€measuring€swimming€speed€independently€of€visibility,€with€minimalÐ ˜!è% Ðdisturbance€and€at€large€distances.€Disadvantages€are€the€inability€to€distinguish€speciesÐ `"°& Ðobserved€and€some€variance€in€target€location,€which€results€in€calculated€averageÐ (#x' Ðswimming€speeds€of€2.6€cm€sÔÎÿ¾#ð#@Ô„1Ô2ð#@¾#Ô€even€for€a€stationary€target.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð23.à 4 àArseneault,€M.€(1994).€€Salmon€saga:€Murphy's€law€as€a€fish€story.€Ceres.€Rome.€€ò ò26ó ó:10„Ð H&˜!+ Ð12.Ð '`", Ðà 4 àÌÓ X¨ýÓFor€thousands€of€years€salmon€(Salmonidae)€and€7€other€species€of€fish€migratedÐ  (ð#. Ðup€the€Dordogne€in€France.€At€the€turn€of€the€20th€Century€hydroelectric€dams€wereÐ h)¸$/ Ðconstructed€along€the€river,€impeding€salmon€reproduction;€despite€the€construction€ofÐ 0*€%0 Ðfish€ladders€at€the€dams,€by€1920€the€salmon€had€disappeared€from€the€Dordogne.€AÐ ø*H&1 Ðsalmon€restoration€project€was€initiated€but€15€years€and€40€million€FF€later€the€salmonÐ À+'2 Ðhave€still€not€returned.€The€various€problems€encountered€in€trying€to€ensure€the€return€ofÐ ˆ,Ø'3 Ðthe€salmon€to€the€river€are€discussed.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð24.à 4 àAssis,€C.€A.€(1990).€€Threats€to€the€survival€of€anadromous€fishes€in€the€River€Tagus,Ð xÈ ÐPortugal.€Journal€of€Fish€Biology.€€ò ò37€(Suppl.€A)ó ó:225„226.Ð @ Ðà 4 àÌÓ X¨ýÓMost€European€anadromous€fish€are€threatened€species.€This€investigationÐ Ð  Ðconcerns€the€River€Tagus€(Iberian€Peninsula).€Four€anadromous€fish€spp€occur€in€thisÐ ˜è Ðbasin€but€they€no€longer€reach€the€upper€(Spanish)€part.€In€Portugal,€the€sea€lamprey,Ð ` ° ÐòòPetromyzon€marinusóó€(Petromyzontidae),€and€the€twaite€shad,€òòAlosa€fallax€óó(Clupeidae),Ð ( x Ðare€still€common,€the€allis€shad,€òòAlosa€alosaóó€(Clupeidae),€is€rapidly€declining€and€theÐ ð @ Ðriver€lamprey,€òòLampetra€fluviatilisóó€(Petromyzontidae),€is€rare.€The€sturgeon,€òòAcipenserÐ ¸   Ðsturioóó€(Acipenseridae),€no€longer€occurs€in€the€River€Tagus.€In€the€Tagus€basin€there€areÐ € Ð  Ðcountless€sources€of€all€types€of€industrial€and€urban€pollution.€Although€mostÐ H ˜  Ðanadromous€fish€species€used€to€live€in€the€whole€Tagus€basin,€reaching€its€SpanishÐ `  Ðportion,€they€are€now€limited€to€the€lower€200€km€of€the€main€Tagus€River.€ThisÐ Ø(  Ðlimitation€is€due€to€two€dams€which€are€impassable€barriers,€either€because€the€fishways,Ð  ð  Ðwhen€they€exist,€are€not€suitable€for€these€anadromous€species€or€because€they€areÐ h¸  Ðcurrently€not€in€use.€The€reservoir€at€Castelo€de€Bode€contains€a€land„locked€populationÐ 0€  Ðof€allis€shad.€This€population,€due€to€its€lower€condition,€size€and€weight€has€a€lowÐ øH  Ðcommercial€value.€The€impact€caused€by€fishermen€on€the€anadromous€fish€stocks€isÐ À Ðimportant€at€two€levels,€both€leading€to€low€recruitment.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð25.à 4 àAuer,€N.€A.€(1994).€€Effects€of€change€in€operation€of€a€small€hydroelectric€facility€onÐ à0 Ðspawning€characteristics€of€lake€sturgeon.€Lake€and€Reservoir€Management.€€ò ò9ó ó:52„53.Ð ¨ø Ðà 4 àÌÓ X¨ýÓMigratory€lake€sturgeon,€òòAcipenser€fulvescensóó,€which€spawn€below€a€smallÐ 8ˆ Ðhydroelectric€facility€located€on€the€Sturgeon€River,€Michigan€have€responded€to€aÐ P Ðchange€in€facility€operation€negotiated€during€recent€relicensing.€SpawningÐ È Ðcharacteristics€of€this€stock€of€fish€have€been€monitored€for€6€years.€The€facility€operatedÐ à Ðas€a€peaking€facility€from€1987€through€1989,€generating€electricity€from€0800€to€1700Ð X¨ Ðhrs.€Near€run„of„the„river€flows€were€provided€in€1991€and€1992.€The€facility€closelyÐ  p Ðmatched€discharge€from€the€plant€to€that€received€into€the€reservoir€24€hrs/day.€TheÐ è8 Ðchange€in€facility€operation€and€therefore€water€discharge€pattern,€created€changes€inÐ °  Ðseveral€characteristics€of€the€spawning€lake€sturgeon€population.€There€has€been€aÐ xÈ! Ðreduction€in€time€adult€lake€sturgeon€are€observed€on€site,€an€increase€in€total€number€andÐ @" Ðsize€of€adults,€an€increase€in€spawning„ready€fish,€and€a€change€in€location€of€capture.Ð  X# ÐConstant€and€non€fluctuating€water€flows€now€produced€by€run„of„the„river€operationÐ Ð $ Ðappear€to€be€triggers€to€reproductive€readiness€and€allow€more€and€larger€fish€to€moveÐ ˜!è% Ðonto€spawning€grounds.€These€changes€in€operation€are€beneficial€to€spawning€lakeÐ `"°& Ðsturgeon,€a€species€threatened€in€the€state€of€Michigan.€These€changes€may€be€applied€toÐ (#x' Ðother€small€hydropower€facilities€and€fisheries€to€improve€multiple€use€of€waterÐ ð#@( Ðresources.Ð ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * ÐÐ H&˜!+ Ð26.à 4 àAuer,€N.€A.€(1996).€€Importance€of€habitat€and€migration€to€sturgeons€with€emphasis€onÐ '`", Ðlake€sturgeon.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò53€(Suppl.€1)ó ó:152„Ð Ø'(#- Ð160.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓSturgeons€utilize€a€variety€of€habitat€types€throughout€their€life:€rivers€forÐ 0*€%0 Ðspawning;€rivers,€lakes,€estuaries,€or€the€sea€for€feeding€and€wintering€adults;€andÐ ø*H&1 Ðestuarine€areas€for€feeding€young.€Distances€covered€by€some€sturgeons€during€spawningÐ À+'2 Ðmigrations€show€a€positive€relationship€to€average€adult€size.€The€lake€sturgeon,Ð ˆ,Ø'3 ÐòòAcipenser€fulvescensóó,€is€the€only€sturgeon€endemic€to€the€Great€Lakes€basin.€MostÐ P- (4 Ðremaining€populations€in€the€basin€are€restricted€in€movement,€yet€in€a€few,€free„rangingÐ ° Ðpopulations€still€remain.€Study€of€these€populations€will€more€adequately€define€rangeÐ xÈ Ðand€habitat€preferences€of€the€species.€Some€state€and€federal€agencies€are€now€creatingÐ @ Ðmanagement€plans€for€lake€sturgeon.€Those€plans€need€to€be€based€on€informationÐ X Ðgathered€from€free„ranging€groups.€A€barrier„free€250„300€km€combined€river€and€lakeÐ Ð  Ðrange€is€suggested€as€a€minimum€distance€to€support€self„sustaining€populations€andÐ ˜è Ðdistances€of€750„1000€km€should€not€be€considered€unusual.€Fishery€managers€shouldÐ ` ° Ðgive€barrier€removal€or€fish€passage€greater€consideration€than€habitat€enhancement€forÐ ( x Ðpopulations€currently€isolated€and€restricted€in€range.Ð ð @ ÐÐ ¸   ÐÓ ¨ýXÓÐ € Ð  Ð27.à 4 àAuer,€N.€A.€(1996).€€Response€of€spawning€lake€sturgeons€to€change€in€hydroelectricÐ H ˜  Ðfacility€operation.€Transactions€of€the€American€Fisheries€Society.€€ò ò125ó ó:66„77.Ð `  Ðà 4 àÌÓ X¨ýÓSpawning€of€lake€sturgeon€òòAcipenser€fulvescensóó€was€documented€from€1987€toÐ  ð  Ð1992€below€the€Prickett€hydroelectric€facility€on€the€Sturgeon€River,€a€tributary€toÐ h¸  ÐPortage€Lake,€Michigan.€Lake€sturgeons€were€captured€at€the€spawning€site€with€dip€netsÐ 0€  Ðduring€periods€of€reduced€flow.€A€change€in€the€spawning€characteristics€of€theÐ øH  Ðpopulation€was€noted€that€corresponded€to€a€change€in€the€operation€of€the€hydroelectricÐ À Ðfacility.€In€1987€and€1988€the€facility€operated€in€a€peaking€mode,€which€resulted€in€largeÐ ˆØ Ðdaily€fluctuations€in€river€flows.€The€years€1989€and€1990€were€years€of€transition,€and€inÐ P  Ð1991€and€1992€the€facility€released€near€run„of„the„river€(ROR)€flows.€Under€near„RORÐ h Ðflows,€which€were€more€natural,€adult€lake€sturgeons€spent€4„6€weeks€less€at€theÐ à0 Ðspawning€sites,€74%€more€fish€were€observed,€weights€were€greater€due€to€a€68%Ð ¨ø Ðincrease€in€number€of€females,€and€fish€had€increased€reproductive€readiness.€The€changeÐ pÀ Ðin€flow€regime€was€the€result€of€a€Federal€Energy€Regulatory€Commission€relicensingÐ 8ˆ Ðaction.€The€positive€response€observed€in€lake€sturgeon€spawning€activity€that€resultedÐ P Ðfrom€the€change€of€facility€operation€to€near„ROR€flows€should€be€beneficial€to€theÐ È Ðsurvival€and€perpetuation€of€this€population.€Similar€results€may€be€experienced€in€otherÐ à Ðlake€sturgeon€waters€affected€by€manipulated€flow€regimes.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð28.à 4 àAuer,€N.€A.€(1999).€€Population€characteristics€and€movements€of€lake€sturgeon€in€theÐ °  ÐSturgeon€River€and€Lake€Superior.€Journal€of€Great€Lakes€Research.€€ò ò25ó ó:282„293.Ð xÈ! Ðà 4 àÌÓ X¨ýÓA€2.6„km€reach€of€the€Sturgeon€River,€containing€two€sets€of€rapids,€is€anÐ  X# Ðimportant€spawning€site€to€a€native€population€of€lake€sturgeon,€òòAcipenser€fulvescensóó,Ð Ð $ Ðwhich€ranges€widely€into€southern€Lake€Superior.€Similar€spawning€areas€in€other€GreatÐ ˜!è% ÐLake€tributaries€may€also€be€important€to€the€protection€and€rehabilitation€of€lakeÐ `"°& Ðsturgeon€throughout€this€region.€Information€on€range€and€habitat€needs€of€this€species,Ð (#x' Ðwhich€is€considered€"threatened"€in€the€State€of€Michigan,€was€obtained€from€theÐ ð#@( ÐSturgeon€River€spawning€population€from€1987€to€1995.€Radio„tracking€was€employed€toÐ ¸$ ) Ðdetermine€movements€and€habitat€use€by€post„spawning€lake€sturgeon.€Telemetry€dataÐ €%Ð * Ðfrom€25€fish€were€supplemented€with€data€obtained€through€identification€tag€returns.Ð H&˜!+ ÐDuring€the€study€925€lake€sturgeon€were€handled;€86€returned€to€spawn€1€time€and€12Ð '`", Ðreturned€2€times.€Spawning€intervals€for€male€lake€sturgeon€were€commonly€2,€3,€or€4Ð Ø'(#- Ðyears;€yearly€spawning€by€males€was€never€observed.€Females€returned€to€spawn€after€3Ð  (ð#. Ðto€7€years.€From€1991€to€1995€the€male:female€sex€ratio€at€the€spawning€site€was€1.25€toÐ h)¸$/ Ð2.7.€In€1990€13€of€18€adults€fitted€with€transmitters€moved€out€of€the€river€within€9€days.Ð 0*€%0 ÐUpon€reaching€Portage€Lake€nine€individuals€spent€time€in€shallow€(maximum€depth,€6Ð ø*H&1 Ðm)€Pike€Bay.€After€3€to€53€days€(mean,€22)€tagged€fish€moved€into€the€deeper€water€ofÐ À+'2 ÐPortage€Lake€(maximum€depth,€17€m)€and€ranged€more€widely.€Three€fish€were€locatedÐ ˆ,Ø'3 Ðin€Keweenaw€Bay,€Lake€Superior€by€late€August.€Identification€tag€returns€reveal€thatÐ P- (4 Ðlake€sturgeon€traveled€70€to€280€km€from€the€spawning€site€throughout€southern€LakeÐ ° ÐSuperior.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ð29.à 4 àBain,€M.€B.,€J.€T.€Finn€and€H.€E.€Booke€(1988).€€Streamflow€regulation€and€fishÐ Ð  Ðcommunity€structure.€Ecology.€€ò ò69ó ó:382„392.Ð ˜è Ðà 4 àÌÓ X¨ýÓMany€regulated€streams€are€characterized€by€highly€variable€and€unpredictableÐ ( x Ðflow€regimes.€Since€changes€in€streamflow€directly€modify€physical€habitat,€streams€withÐ ð @ Ðsuch€highly€variable€flows€provide€highly€unstable€aquatic€habitats.€The€authorsÐ ¸   Ðevaluated€the€effect€of€artificial€streamflow€fluctuation€on€stream€fish€communities€byÐ € Ð  Ðcomparing€fish€densities,€in€species€and€habitat€groups,€between€two€rivers€differing€inÐ H ˜  Ðdaily€flow€regime:€one€with€a€natural€flow,€and€one€with€highly€regulated€flows.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð30.à 4 àBainbridge,€R.€(1958).€€The€speed€of€swimming€as€related€to€size€and€to€the€frequencyÐ h¸  Ðand€amplitude€of€the€tail€beat.€Journal€of€Experimental€Biology.€€ò ò35ó ó:129„153.Ð 0€  Ðà 4 àÌÓ X¨ýÓThe€author€describes€an€apparatus€in€which€it€is€possible€to€study€and€record€theÐ À Ðcontinuous€swimming€of€fish€at€speeds€up€to€20€m.p.h.€€Records€made€of€the€swimmingÐ ˆØ Ðat€different€speeds€of€dace,€trout,€and€goldfish€measuring€up€to€30€cm€in€length€areÐ P  Ðreproduced.€€Speed€at€any€particular€frequency€of€tail€beat€is€shown€to€be€directly€relatedÐ h Ðto€the€length€of€the€specimen.€€Above€a€frequency€of€5€tail€beats€per€second,€speed€isÐ à0 Ðdirectly€dependent€upon€frequency€up€to€the€maximum€values€recorded.€€The€results€forÐ ¨ø Ðall€sizes€and€species€recorded€may€be€adequately€expressed€by€the€formula€V=1/4{L(3f„Ð pÀ Ð4)},€where€V€=€the€speed€in€cm/sec,€f€=€the€frequency€in€beats€per€second,€and€L€is€theÐ 8ˆ Ðbody€length€in€cm.€€The€distance€travelled€per€beat€(and€hence€the€speed)€is€directlyÐ P Ðdependent€upon€the€amplitude€of€the€tailbeat.Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð31.à 4 àBaldwin,€C.€K.€and€U.€Lall€(1999).€€Seasonality€of€streamflow:€The€Upper€MississippiÐ  p ÐRiver.€Water€Resources€Research.€€ò ò35ó ó:1143„1154.Ð è8 Ðà 4 àÌÓ X¨ýÓThe€understanding€of€seasonal€variations€in€streamflow€is€important€for€waterÐ xÈ! Ðresource€management.€The€dynamics€of€streamflow€are€often€dominated€by€annual€andÐ @" Ðintra„annual€variations,€and€the€global€warming€debate€has€also€generated€an€interest€inÐ  X# Ðpotential€changes€in€the€seasonal€cycle€of€hydroclimatic€variables.€Thus€there€areÐ Ð $ Ðmechanistic€as€well€as€policy€motivations€for€an€empirical€analysis€of€the€historicalÐ ˜!è% Ðseasonal€variations€in€streamflow.€The€seasonality€of€the€upper€Mississippi€RiverÐ `"°& Ðstreamflow€is€investigated€in€this€paper€using€a€123„year€record€of€daily€flow.€This€longÐ (#x' Ðstreamflow€series€provides€an€interesting€look€at€the€high„€and€low„flow€seasons€withinÐ ð#@( Ðthe€year,€their€interannual€variation,€and€within„season€attributes.€Evidence€for€changes€inÐ ¸$ ) Ðthe€timing€and€amplitude€of€these€seasons€and€the€annual€flow€extremes€is€presented.Ð €%Ð * ÐConnections€to€similar€trends€in€regional€climate€variables€are€noted.€The€upperÐ H&˜!+ ÐMississippi€River€streamflow€exhibits€bimodal€probability€distributions€for€monthlyÐ '`", Ðaverages€and€for€specific€seasons.€Transitions€across€the€high„€and€low„flow€regimesÐ Ø'(#- Ðcorresponding€to€these€modes€exhibit€memory€across€seasons€and€over€years.€Thus€anÐ  (ð#. Ðempirical€basis€for€seasonal€or€longer€prediction€is€provided.€Needs€for€developing€aÐ h)¸$/ Ðmechanistic€explanation€of€the€empirical€observations€offered€are€also€indicated.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð32.à 4 àBalon,€E.€K.€(1978).€€Kariba:€The€dubious€benefits€of€large€dams.€Ambio.€€ò ò7ó ó:40„48.Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓThe€ecological€consequences€of€dam€building€extend€far€beyond€the€commonÐ ° Ðcost„benefit€analysis.€On€the€Zambezi€River€for€example,€a€unique€and€stable€ecologicalÐ xÈ Ðsystem,€which€took€millenia€to€develop,€was€rapidly€changed€by€dams€into€lessÐ @ Ðproductive€lakes.€The€process€was€accompanied€by€widespread€destruction€and€misery.Ð X ÐThe€production€of€the€electricity€required€for€a€more€profitable€export€of€mineralÐ Ð  Ðresources€rendered€the€local€inhabitants€dependent€on€external€sources€of€food,€water,€etc,Ð ˜è Ðwhere€they€had€formerly€been€self„sufficient.€The€surface€of€the€lake€reflects€more€solarÐ ` ° Ðenergy€than€the€old€terrestrial€system.€As€a€consequence,€fish€production€is€lower€than€theÐ ( x Ðlost€production€of€plants€and€game.€Species€diversity€may€be€increased€by€naturalÐ ð @ Ðinvasion€and€artificial€introduction,€but€the€production€limits€of€the€system€can€not€beÐ ¸   Ðchanged.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð33.à 4 àBalon,€E.€K.,€S.€S.€Crawford€and€A.€Lelek€(1986).€€Fish€communities€of€the€upperÐ Ø(  ÐDanube€River€(Germany,€Austria)€prior€to€the€new€Rhein„Main„Donau€connection.Ð  ð  ÐEnvironmental€Biology€of€Fishes.€€ò ò15ó ó:243„271.Ð h¸  Ðà 4 àÌÓ X¨ýÓA€study€of€fish€communities€in€the€upper€Danube€was€carried€out€at€19€localitiesÐ øH  Ðin€1976€and€1984,€yielding€24€samples€with€over€23,000€specimens.€Forty„two€species€„€8Ð À Ðof€them€new€for€this€part€of€the€Danube€„€and€6€cyprinid€hybrids€were€identified.€TwoÐ ˆØ Ðdistinct€regions,€above€and€below€Ulm,€were€recognized€for€the€upper€Danube€on€theÐ P  Ðbasis€of€both€abiotic€(distance€from€source,€elevation,€river€gradient)€and€biotic€(speciesÐ h Ðrichness,€species€distribution)€characters€of€the€localities.€Nine€species€were€distributedÐ à0 Ðover€most€of€the€upper€Danube,€while€10€and€23€species€were€limited€mostly€to€theÐ ¨ø Ðupriver€and€downriver€sections,€respectively.€A€factor€analysis€of€ecomorphologicalÐ pÀ Ðattributes€for€28€dominant€species€revealed€a€generalist„specialist€pattern€among€theirÐ 8ˆ Ðswimming€behavior€and€feeding€modes.Ð P ÐÐ È ÐÓ ¨ýXÓÐ à Ð34.à 4 àBanarescu,€P.€M.€(1998).€€On€the€relations€between€hydrography€and€the€ranges€ofÐ X¨ Ðfreshwater€fish€species€and€subspecies.€Italian€Journal€of€Zoology.€€ò ò65ó ó:87„93.Ð  p Ðà 4 àÌÓ X¨ýÓRanges€of€freshwater€fish€species€depend€on€river€basins.€However,€most€speciesÐ °  Ðare€confined€to€a€limited€area€of€a€basin.€Some€limited€distributions€are€determined€by€theÐ xÈ! Ðecology€of€the€species,€most€have€historical€grounds.€Many€species€are€endemic€to€aÐ @" Ðrestricted€area€of€a€river€basin€(e.g.,€7€in€the€River€Danube;€more€than€80€in€theÐ  X# ÐMississippi€river€basin).€Most€non„endemics€confined€to€a€sector€of€a€river€basin€also€liveÐ Ð $ Ðin€one€or€more€adjacent€basins.€Cases€are€known€of€conspecific€subspecies€inhabitingÐ ˜!è% Ðdistinct€areas€within€a€river€basin,€some€of€them€being€also€present€in€a€neighbouringÐ `"°& Ðbasin.€Restricted€distributions€are€determined€by€the€fact€that€river€captures€usuallyÐ (#x' Ðinvolve€tributaries,€not€the€main€rivers€and€the€inhabitants€of€the€upper€and€middleÐ ð#@( Ðreaches€of€the€river€do€not€disperse€through€the€lower€reaches.Ð ¸$ ) ÐÐ €%Ð * ÐÓ ¨ýXÓÐ H&˜!+ Ð35.à 4 àBanneheka,€S.€G.,€R.€D.€Routledge,€I.€C.€Guthrie€and€J.€C.€Woodey€(1995).€€EstimationÐ '`", Ðof€in„river€fish€passage€using€a€combination€of€transect€and€stationary€hydroacousticÐ Ø'(#- Ðsampling.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò52ó ó:335„343.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓWe€describe€a€hydroacoustic€technique€that€uses€both€transect€and€stationaryÐ 0*€%0 Ðsampling€to€estimate€numbers€of€fish€migrating€in€a€river.€The€technique€includesÐ ø*H&1 Ðrefinements€and€additions€to€one€developed€by€the€International€Pacific€Salmon€FisheriesÐ À+'2 ÐCommission€to€estimate€sockeye€òòOncorhynchus€nerkaóó€and€pink€salmon€òòOncorhynchusÐ ˆ,Ø'3 Ðgorbuschaóó€migrations€in€the€Fraser€River.€The€estimator€is€independent€of€the€actualÐ P- (4 Ðshape€of€the€effective€acoustic€beam€and€the€distribution€of€target€strengths€when€theÐ ° Ðsame€hydroacoustic€equipment€and€settings€are€used€for€both€types€of€soundings.€Thus,Ð xÈ Ðthe€method€shares€with€the€duration„in„beam€method€the€advantages€that€equipmentÐ @ Ðcalibration€requirements€are€minimal€and€that€estimates€remain€valid€when€fish€sizes€varyÐ X Ðover€a€wide€range.€We€also€provide€formulae€for€the€variance€of€the€abundance€estimateÐ Ð  Ðand€illustrate€the€methods€with€example€calculations€of€daily€fish€passage€in€the€FraserÐ ˜è ÐRiver€at€Mission,€British€Columbia.€A€correction€procedure€is€proposed€to€compensateÐ ` ° Ðfor€bias€arising€from€violation€of€the€assumption€that€fish€speed€is€negligible€relative€toÐ ( x Ðboat€speed.Ð ð @ ÐÐ ¸   ÐÓ ¨ýXÓÐ € Ð  Ð36.à 4 àBaras,€E.,€H.€Lambert€and€J.€C.€Philippart€(1994).€€A€comprehensive€assessment€of€theÐ H ˜  Ðfailure€of€òòBarbus€barbusóó€spawning€migrations€through€a€fish€pass€in€the€canalized€RiverÐ `  ÐMeuse€(Belgium).€Aquatic€Living€Resources.€€ò ò7ó ó:181„189.Ð Ø(  Ðà 4 àÌÓ X¨ýÓThis€paper€presents€a€comprehensive€study€of€the€impact€of€damming€on€theÐ h¸  Ðspawning€migrations€of€òòBarbus€barbusóó€in€the€canalized€River€Meuse€(Belgium).€A€DenilÐ 0€  Ðfish€pass€on€the€Ampsin„Neuville€dam€was€controlled€251€times€in€1989„1993.€The€mostÐ øH  Ðstriking€feature€is€the€almost€complete€absence€of€barbel.€Most€captures€of€barbel€in€theÐ À Ðfish€pass€in€1989€were€clumped€and€related€with€spawning€migrations.€The€variablesÐ ˆØ Ðinvolved€in€the€attractivity€condition€set€refer€indirectly€to€the€influence€of€waterÐ P  Ðcatchment€by€a€hydroelectric€plant€and€to€the€relative€importance€of€the€flow€in€the€pass.Ð h ÐThe€study€concludes€that€this€additional€condition€set€significantly€interfere€with€theÐ à0 Ðnatural€environmental€stimuli€triggering€spawning€migrations€in€barbel€and€questions€theÐ ¨ø Ðeffectiveness€of€the€thermally€related€reproductive€strategy€of€the€species.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð37.à 4 àBarekyan,€A.€S.,€B.€S.€Malevanchik€and€M.€A.€Skorobogatov€(1988).€€Promising€designsÐ È Ðof€fishways.€Hydrotechnical€Construction.€€ò ò22ó ó:384„388.Ð à Ðà 4 àÌÓ X¨ýÓThe€designing€of€fishways€is€based€on€the€location€of€the€fishway€in€the€systemÐ  p Ðof€hydrologic€development€and€optimization€of€the€hydraulic€regimes€in€various€zones:€inÐ è8 Ðthe€fishway,€in€the€fish€attraction€zone€in€the€lower€pool€of€the€hydrologic€development,Ð °  Ðin€the€fish€release€zone€in€the€upper€pool,€etc.€The€effectiveness€of€a€fishway€largelyÐ xÈ! Ðdepends€on€its€design€and€on€the€technological€scheme€of€passage€of€the€fish€to€spawningÐ @" Ðgrounds.€To€eliminate€negative€aspects€of€the€operation€of€existing€fishways,€research€andÐ  X# Ðdevelopment€studies€were€carried€out€to€develop€new€promising€designs€andÐ Ð $ Ðtechnological€schemes€of€attracting,€holding,€and€conveying€spawners€from€the€lower€toÐ ˜!è% Ðthe€upper€pool€of€a€hydrologic€development.€The€realization€of€these€designs€will€make€itÐ `"°& Ðpossible€to€increase€the€number€of€fishes€being€passed€to€spawning€grounds,€to€reduceÐ (#x' Ðinjury€during€their€conveyance€from€the€lower€to€the€upper€pool,€and€to€reduce€theÐ ð#@( Ðnumber€of€downstream€migrants€that€pass€into€the€upper€pool.€The€main€group€ofÐ ¸$ ) Ðdevelopments€is€aimed€at€increasing€the€duration€of€active€attraction€of€fishes,€i.e.,Ð €%Ð * Ðattraction€at€speeds€close€to€the€optimal,€by€changing€the€technology€of€releasing€fish€intoÐ H&˜!+ Ðthe€upper€pool.€One€of€the€possible€ways€of€increasing€the€productivity€of€a€fishway€is€toÐ '`", Ðcontinuously€attract€fish€with€a€constant€current€speed€at€the€exit€of€the€fish„holdingÐ Ø'(#- Ðchute.€Also€effective€is€to€replace€the€exiting€stimulating€devices€with€netting€requiring€aÐ  (ð#. Ðreduction€of€the€current€speed€in€the€fish„holding€chutes€during€its€movement€by€devicesÐ h)¸$/ Ðusing€an€electrical€field€for€fish€stimulation.€Use€of€these€fishway€designs€will€make€itÐ 0*€%0 Ðpossible€to€increase€the€passage€of€spawners€to€spawning€grounds€and€thereby€to€increaseÐ ø*H&1 Ðthe€number€of€valuable€commercial€fish€species€in€inland€water€bodies.Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð38.à 4 àBarinaga,€M.€(1996).€€A€recipe€for€river€recovery?€Science.€€ò ò273ó ó:1648„1650.Ð ° Ðà 4 àÌÓ X¨ýÓThe€author€outlines€contemporary€approaches€to€river€recovery€that€are€moreÐ @ Ðholistic€in€nature€than€previous€management€initiatives;€namely€the€restoration€of€theÐ X Ðphysical€processes€that€shape€a€river's€habitats.€€This€contemporary€managementÐ Ð  Ðapproached€is€guided€by€major€advances€in€river€ecology€and€theoretical€concepts.€Ð ˜è ÐHowever,€the€author€also€highlights€that€political€issues€may€limit€its€application.€Ð ` ° ÐPolitical€roadblocks€to€river€restoration€are€especially€acute€in€regions€of€the€UnitedÐ ( x ÐStates€experiencing€water€shortages.€€€Competing€water€demands€among€agriculture,Ð ð @ Ðindustry,€and€municipalities€create€a€charged€political€environment€in€which€to€attemptÐ ¸   Ðlarge„scale€river€restoration.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð39.à 4 àBarry,€T.€and€B.€Kynard€(1986).€€Attraction€of€adult€American€shad€to€fish€lifts€atÐ Ø(  ÐHolyoke€Dam,€Connecticut€River.€North€American€Journal€of€Fisheries€Management.€Ð  ð  Ðò ò6ó ó:233„241.Ð h¸  Ðà 4 àÌÓ X¨ýÓThe€movements€of€18€radio„tagged€American€shad€(òòAlosa€sappidissimaóó)€wereÐ øH  Ðstudied€in€1980€and€1981€as€they€attempted€to€locate€the€upstream€fish€collectionÐ À Ðfacilities€of€two€fish€lifts€at€Holyoke€Dam€on€the€Connecticut€River€in€Massachusetts.€Ð ˆØ ÐNine€fish€(50%)€were€passed€by€the€lifts€during€the€2€years€and,€in€1980,€the€efficiency€ofÐ P  Ðthe€tailrace€lift€was€estimated€at€42%.€€The€mean€delay€time€of€the€seven€fish€passed€byÐ h Ðthe€tailrace€lift€during€the€two€years€was€3.3€d€(range€2„5€d);€the€delay€of€the€two€fishÐ à0 Ðpassed€by€the€spillway€lift€in€1981€was€6€and€7€d.€€Fish€were€repelled€by€the€turbulenceÐ ¨ø Ðcaused€by€the€turbine€discharge€into€the€head€of€the€tailrace€and€only€entered€the€vicinityÐ pÀ Ðof€the€tailrace€lift€during€55%€of€all€upstream€trips€in€1980€and€67%€of€the€trips€in€1981.€Ð 8ˆ ÐDuring€high€river€flows,€fish€were€attracted€to€the€spillage€over€the€dam,€not€the€flowÐ P Ðfrom€the€tailrace.€€The€inefficiency€of€either€lift€to€pass€early€migrating€American€shadÐ È Ðand€of€the€tailrace€lift€to€pass€fish€efficiently€at€any€time€may€limit€upstream€passageÐ à Ðduring€some€years.€€The€situation€at€Holyoke€Dam,€together€with€similar€problems€atÐ X¨ Ðother€upstream€dams,€prevents€many€fish€from€reaching€the€historical€upstream€limits€ofÐ  p Ðtheir€range€and€creates€a€poor€or,€at€best,€and€unpredictable€sport€fishery€upstream.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð40.à 4 àBarthem,€R.€B.,€M.€C.€L.€B€Ribeiro€and€M.€Petrere€(1991).€€Life€strategies€of€some€long„Ð @" Ðdistance€migratory€catfish€in€relation€to€hydroelectric€dams€in€the€Amazon€Basin.Ð  X# ÐBiological€Conservation.€€ò ò55ó ó:339„345.Ð Ð $ Ðà 4 àÌÓ X¨ýÓResults€of€sampling€from€1982€to€1989€indicated€that€the€long„distance€migratoryÐ `"°& Ðcatfish€òòBrachyplatystoma€filamentosumóó,€òòB.€flavicansóó,€òòB.€vaillantiióó,€òòGoslinia€platynemaóó,Ð (#x' Ðand€òòLithodoras€dorsalisóó€spawn€in€the€headstreams€of€the€Amazon€River€and€its€tributariesÐ ð#@( Ðand€that€the€estuary€of€the€Amazon€is€the€main€nursery€ground€utilized€by€their€alevins.Ð ¸$ ) ÐHydroelectric€dams€are€a€potential€threat€to€these€fish,€interrupting€the€downstreamÐ €%Ð * Ðmovement€of€catfish€eggs€or€young€(provided€they€do€spawn€in€the€upper€tributaries)€orÐ H&˜!+ Ðobstructing€the€upstream€migrations€that€annually€restore€catfish€stocks€upriver.€TheÐ '`", Ðsynergistic€effects€of€flood€control€over€the€entire€basin€may€also€harm€the€species,€sinceÐ Ø'(#- Ðtheir€hydrological€requirements€are€drastically€modified.€The€only€hope€for€preservingÐ  (ð#. Ðmigratory€catfish€stocks€above€the€dams€will€be€for€them€to€spawn€upstream€from€theÐ h)¸$/ Ðreservoirs€if€their€pre„recruits€manage€to€survive€in€floodplains€outside€the€estuary.Ð 0*€%0 ÐOtherwise,€artificial€measures€such€as€fish€ladders€or€side€channels€would€have€to€beÐ ø*H&1 Ðemployed.€Stocking€could€also€be€tried,€producing€the€alevins€in€fish€culture€stations,€orÐ À+'2 Ðby€transporting€mature€individuals€when€they€stop€below€the€barrage€during€theirÐ ˆ,Ø'3 Ðupstream€migrations.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð41.à 4 àBates,€K.€(1991).€Pool„and„chute€fishways.€Pages€€268„277€òòinóó€J.€Colt€and€R.€J.€White,Ð xÈ Ðeds.€Fisheries€Bioengineering€Symposium,€Bethesda,€Maryland€(USA),€AmericanÐ @ ÐFisheries€Society€Bioengineering€Section.Ð X Ðà 4 àÌÓ X¨ýÓThe€pool„and„chute€fishway€is€an€economical€means€of€providing€fish€passageÐ ˜è Ðover€constructed€barriers.€Pool„and„chute€fishways€resemble€pool„and„weir€fishways€atÐ ` ° Ðlow€flows€and€become€baffled€chutes€at€moderate€to€high€flows.€The€economy€of€theÐ ( x Ðconcept€is€achieved€by€exceeding€the€usual€criteria€of€fishway€pool€volume€based€onÐ ð @ Ðenergy€dissipation€in€each€pool.€The€size€and€complexity€of€the€structure€are€thusÐ ¸   Ðreduced.€Design€guidelines€covering€appropriate€application€and€geometry€ensureÐ € Ð  Ðhydraulic€conditions€that€allow€fish€passage.€Cost€comparisons€based€on€actual€andÐ H ˜  Ðestimated€construction€costs€of€pool„and„chute€and€other€styles€of€fishways€verify€theÐ `  Ðeconomic€benefit€of€the€concept.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð42.à 4 àBaxter,€R.€M.€(1977).€€Environmental€effects€of€dams€and€impoundments.€AnnualÐ 0€  ÐReview€of€Ecology€and€Systematics.€€ò ò8ó ó:255„183.Ð øH  Ðà 4 àÌÓ X¨ýÓThe€morphology€and€physical€and€chemical€limnology€of€man„made€lakes,€theÐ ˆØ Ðbiology€of€reservoir€ecosystems€and€the€downstream€and€other€effects€of€impoundmentsÐ P  Ðare€discussed.€Reservoirs€are€probably€best€regarded€as€a€distinct€type€of€freshwaterÐ h Ðecosystem€distinct€from€both€streams€and€lakes.€Because€they€are€frequently€built€onÐ à0 Ðstreams€carrying€a€heavy€sediment€load,€the€deposition€and€distribution€of€this€material€isÐ ¨ø Ðoften€more€important€than€in€natural€lakes.€Therefore€constraints€on€the€nature€of€theÐ pÀ Ðdeveloping€biological€community€are€imposed€when€a€new€reservoir€is€constructed.€TheÐ 8ˆ Ðenvironmental€changes€below€a€dam€may€be€as€dramatic€as€those€above€it.€The€effects€ofÐ P Ðfuture€tropical€impoundments€should€be€predictable€on€the€basis€of€the€first€great€AfricanÐ È Ðimpoundments.€The€development€of€reservoirs€in€temperate€regions€occurred€moreÐ à Ðgradually€and€due€to€this€and€the€lower€rate€of€biological€processes,€the€effects€were€lessÐ X¨ Ðdramatic€than€in€the€tropics.€Large„scale€surprises€are€not€expected€from€future€temperateÐ  p Ðregion€impoundment.€However,€much€remains€to€be€learned€of€the€importance€to€man€atÐ è8 Ða€more€detailed€scale,€such€as€the€effects€on€the€fur€bearing€animals€in€the€area,€or€onÐ °  Ðresources€such€as€salmon.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð43.à 4 àBayley,€P.€B.€(1995).€€Understanding€large€river„floodplain€ecosystems.€BioScience.€Ð Ð $ Ðò ò45ó ó:152„158.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓSignificant€economic€advantages€and€increased€biodiversity€and€stability€wouldÐ (#x' Ðresult€from€restoration€of€impaired€systems.€€Funding€for€experimental€restoration€andÐ ð#@( Ðevaluation€should€take€priority€over€ecological€research€on€severely€impaired€ecosystems.Ð ¸$ ) ÐÐ €%Ð * ÐÓ ¨ýXÓÐ H&˜!+ Ð44.à 4 àBeach,€M.€H.€(1984).€€Fish€pass€design€„€criteria€for€the€design€and€approval€of€fishÐ '`", Ðpasses€and€other€structures€to€facilitate€the€passage€of€migratory€fish€in€rivers.€FisheriesÐ Ø'(#- ÐResearch€Technical€Report.€€ò ò46ó ó:1„47.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓThis€report€explains€in€simple€terms€how€the€fish€and€water€control€requirementsÐ 0*€%0 Ðcan€be€reconciled€and€proposes€design€criteria€to€enable€fish€to€negotiate€structures€suchÐ ø*H&1 Ðas€sluice€gates,€weirs€and€fish€passes.€€It€also€explains€the€Ministry's€legal€position€withÐ À+'2 Ðregard€to€obstructions€in€migratory€fish€rivers€and€gives€examples€of€the€proceduresÐ ˆ,Ø'3 Ðnecessary€to€obtain€approval€for€satisfactory€structures.€€The€information€on€fishÐ P- (4 Ðswimming€speeds€and€endurance€and€the€relation€of€three€parameters€to€water€controlÐ ° Ðstructures€and€fish€passes€is€essential€to€the€effective€management€of€migratory€fish€in€ourÐ xÈ Ðrivers.Ð @ ÐÐ X ÐÓ ¨ýXÓÐ Ð  Ð45.à 4 àBeamesderfer,€R.€C.€P.,€T.€A.€Rien€and€A.€A.€Nigro€(1995).€€Differences€in€the€dynamicsÐ ˜è Ðand€potential€production€of€impounded€and€unimpounded€white€sturgeon€populations€inÐ ` ° Ðthe€lower€Columbia€River.€Transactions€of€the€American€Fisheries€Society.€€ò ò124ó ó:857„872.Ð ( x Ðà 4 àÌÓ X¨ýÓWhite€sturgeons€òòAcipenser€transmontanusóó€were€sampled€in€three€lowerÐ ¸   ÐColumbia€River€reservoirs€from€1987€to€1991€to€describe€population€dynamics,€theÐ € Ð  Ðability€of€these€stocks€to€sustain€harvest,€and€differences€among€reservoir€andÐ H ˜  Ðunimpounded€populations.€Significant€differences€were€observed€among€reservoirs€inÐ `  Ðwhite€sturgeon€abundance,€biomass,€size€composition,€sex€ratio,€size€of€females€atÐ Ø(  Ðmaturity,€growth€rate,€condition€factor,€and€rate€of€exploitation.€No€differences€amongÐ  ð  Ðreservoirs€were€detected€in€fecundity,€natural€mortality€rate,€or€longevity,€in€part€becauseÐ h¸  Ðof€sampling€difficulties.€Recruitment€rates€and€densities€in€reservoirs€were€inverselyÐ 0€  Ðcorrelated€with€growth€rate,€condition€factor,€and€size€of€females€at€maturity.€DifferencesÐ øH  Ðin€population€dynamics€resulted€in€substantial€differences€in€sustainable€yields.Ð À ÐMaximum€yields€per€recruit€were€predicted€at€annual€exploitation€rates€between€5€andÐ ˆØ Ð15%.€Most€characteristics€of€reservoir€populations€were€less€than€or€equal€to€optimaÐ P  Ðreported€for€the€unimpounded€lower€river;€as€a€result,€yield€per€recruit,€reproductiveÐ h Ðpotential€per€recruit,€and€the€number€of€recruits€were€less€in€reservoirs€than€in€theÐ à0 Ðunimpounded€river.€Comparisons€with€pristine€standing€stocks€suggest€that€theÐ ¨ø Ðunimpounded€river€may€approximate€preimpoundment€conditions€for€white€sturgeon.€WeÐ pÀ Ðconclude€that€potential€yield€from€impounded€populations€has€been€reduced€by€damÐ 8ˆ Ðconstruction,€which€restricts€populations€to€river€segments€that€may€not€includeÐ P Ðconditions€optimal€for€all€life€stages.€Alternatives€for€enhancement€of€reservoirÐ È Ðpopulations€might€include€improved€passage€at€dams,€increased€spring€flow€to€improveÐ à Ðspawning€success,€transplants€from€productive€populations,€hatchery€supplementation,Ð X¨ Ðand€more€intensive€harvest€management.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ðòò46.óóà 4 àBeamish,€F.€W.€H.€(1978).€€Swimming€capacity.€Pages€€101„187€òòinóó€€W.€S.€Hoar€and€D.€J.Ð xÈ! ÐRandall,€eds.€Fish€physiology,€Academic€Press,€New€York,€New€York€(USA).Ð @" Ðà 4 àÌÓ X¨ýÓThis€book€chapter€presents€a€physiological€account€of€swimming€capacity€inÐ Ð $ Ðfishes.€€As€such,€it€describes€both€field€and€laboratory€methods€for€determiningÐ ˜!è% Ðswimming€capacity,€paying€particular€attention€to€biological€and€environmentalÐ `"°& Ðconstraints€on€physiological€processes€responsible€for€defining€species„specificÐ (#x' Ðswimming€capacities.€€In€addition,€an€account€is€provided€the€energetics€of€swimming€inÐ ð#@( Ðfishes.€€Numerous€tables,€containing€species„specific€swimming€performanceÐ ¸$ ) Ðinformation,€are€presented€along€with€citations€to€the€original€research€conducted€toÐ €%Ð * Ðdetermine€swimming€preformance.€€Finally,€a€discussion€of€the€application€€of€swimmingÐ H&˜!+ Ðperformance€data€to€management€practices€concludes€the€chapter.Ð '`", ÐÓ ¨ýXÓÐ Ø'(#- ÐÐ  (ð#. Ðòò47.óóà 4 àBecker,€G.€C.€(1983).€€Fishes€of€Wisconsin.€University€of€Wisconsin€Press,€Madison,Ð h)¸$/ ÐWisconsin€(USA).Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓThis€book€is€a€classical€text€on€the€fishes€endemic€to€Wisconsin€waters.€€In€it,Ð À+'2 ÐBecker€discusses€the€biogeologic€history€of€Wisconsin€waters€as€well€as€stresses€onÐ ˆ,Ø'3 ÐWisconsin€freshwater€systems€at€the€time€of€publishing.€€Background€on€the€managementÐ P- (4 Ðof€Wisconsin€fisheries€is€provided,€including€discussion€on€limnological€studies,€fishÐ ° Ðculture€and€stocking,€fish€rescue€and€transfer,€fishkills,€demands€on€the€fishery€resources,Ð xÈ Ðtrends€in€management,€nongame€fishes,€exotic€introductions,€and€endangered€orÐ @ Ðextirpated€species.€€Additional€information€includes€a€key€to€Wisconsin€fishes,€a€briefÐ X Ðaccount€of€fish€parasites€in€Wisconsin€waters,€and€detailed€species€accounts€that€includeÐ Ð  Ðamong€many€things€distributional€maps.Ð ˜è ÐÐ ` ° ÐÓ ¨ýXÓÐ ( x Ð48.à 4 àBehlke,€C.€E.€(1987).€Hydraulic€relationships€between€swimming€fish€and€water€flowingÐ ð @ Ðin€culverts.€Pages€€112„132€òòinóó€D.€W.€Smith€and€T.€Tilsworth,€eds.€Proceedings€of€theÐ ¸   ÐCold€Regions€Environmental€Engineering€Conference,€Edmonton,€Alberta€(Canada),Ð € Ð  ÐUniversity€of€Alberta,€Department€of€Civil€Engineering.Ð H ˜  Ðà 4 àÌÓ X¨ýÓProper€passage€of€fish€through€culverts€is€an€important€element€of€design€ofÐ Ø(  Ðhighways,€railroads€and€pipelines€for€the€North.€€Though€several€investigators€haveÐ  ð  Ðattempted€to€define€swimming€capabilites€of€fish,€it€does€not€appear€that€the€swimmingÐ h¸  Ðrequirements€for€fish€to€pass€through€culverts€and€other€fish€passage€structures€have€beenÐ 0€  Ðproperly€analyzed€and€defined.€€This€paper€defines€and€analyzes€the€forces€which€fish€areÐ øH  Ðconfronted€with€in€entering€and€passing€through€barrels€of€sloping€culverts€flowing€fullÐ À Ðand€as€open€channels.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð49.à 4 àBehlke,€C.€E.€(1991).€Power€and€energy€implications€of€passage€structures€for€fish.€Pages€Ð à0 Ð289„298€òòinóó€J.€Colt€and€R.€J.€White,€eds.€Fisheries€Bioengineering€Symposium,€Bethesda,Ð ¨ø ÐMaryland€(USA),€American€Fisheries€Society.Ð pÀ Ðà 4 àÌÓ X¨ýÓFluid€mechanic€equations€are€used€to€show€effects€of€virtual€mass€force,€non„Ð P ÐArchimedean€buoyant€force,€and€profile€drag€force€on€fish€in€several€fish€passageÐ È Ðstructures.€Example€problems€are€worked€to€show€computational€procedures€forÐ à Ðcalculating€net€propulsive€force,€net€power,€and€net€energy€necessary€for€fish€to€swim€in€aÐ X¨ Ðlake,€up€a€steep€chute,€and€through€the€outlet,€barrel,€and€inlet€of€a€culvert.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð50.à 4 àBehlke,€C.€E.,€D.€L.€Kane,€R.€F.€McLean€and€M.€D.€Travis€(1993).€€Fundamentals€ofÐ xÈ! Ðculvert€design€for€passage€of€weak„swimming€fish.€Alaska€Department€of€TransportationÐ @" Ðand€Public€Facilities,€Report€FH€WA„AK„RD„90„10.Ð  X# Ðà 4 àÌÓ X¨ýÓThis€manual€presents€design€procedures€to€pass€upstream„migrating,€weak„Ð ˜!è% Ðswimming€fish.€€The€manual€also€displays€criteria€for€retrofitting€existing€culverts.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð51.à 4 àBelaud,€A.,€R.€Labat,€D.€Trivellato€and€G.€Tison€(1987).€[Hydraulic€and€ichthyologicalÐ ¸$ ) Ðexperiments€with€an€automatic€trapping€system€for€migrating€fish€at€Golfech].€Pages€€73„Ð €%Ð * Ð80€òòinóó€€Definition€and€Efficiency€Control€of€Fishways,€Paris€(France),€de€la€SocieteÐ H&˜!+ ÐHydrotechnique€de€France€et€l'Agence€de€Bassin€Loire„Bretagne.Ð '`", Ðà 4 àÌÓ X¨ýÓPrevious€studies€relating€to€the€frequent€visits€of€migrating€fish€in€the€outlet€ofÐ  (ð#. Ðthe€Golfech€complex€have€illustrated€the€need€to€build€an€automatic€crossing€device.€ToÐ h)¸$/ Ðproduce€a€current€which€would€attract€fish,€experiments€on€a€reduced€model€have€beenÐ 0*€%0 Ðfirstly€carried€out€and€are€intended€to€define€(installation,€flowrate,€speed€and€swell)Ð ø*H&1 Ðcharacteristics€of€the€improvements€required.€After€the€partial€completion€of€theÐ À+'2 Ðautomatic€trap,€the€1985€migration€season€has€proved€how€efficient€the€system€is€forÐ ˆ,Ø'3 ÐSalmonoidea€and€for€Alosa€during€the€peak€migration€period.€As€regards€smallerÐ P- (4 Ðaffluxes,€the€jet€remains€attractive€but€the€speed€needs€to€be€increased€inside€the€passageÐ ° Ðof€storage€tanks€in€order€to€drive€the€alosa€into€the€trap.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ðòò52.óóà 4 àBell,€M.€C.€(1973).€€Fisheries€handbook€of€engineering€requirements€and€biologicalÐ Ð  Ðcriteria.€U.S.€Army€Corps€of€Engineers,€North€Pacific€Division,€Portland,€Oregon€(USA).Ð ˜è Ðà 4 àÌÓ X¨ýÓThis€report€covers€all€aspects€of€fish€behavior€and€passage€through€and€aroundÐ ( x Ðobsructions€encountered€during€movements€and€migrations,€man„made€or€natural.€€ThisÐ ð @ Ðreport€is€widely€considered€the€first€full€and€detailed€account€of€fish€passage€issues,€fishÐ ¸   Ðbehavior€at€obstructions,€and€engineering€and€mitigating€measures.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ðòò53.óóà 4 àBell,€M.€C.€(1986).€€Fisheries€handbook€of€engineering€requirements€and€biologicalÐ Ø(  Ðcriteria.€U.S.€Army€Corps€of€Engineers,€North€Pacific€Division,€Fish€PassageÐ  ð  ÐDevelopment€and€Evaluation€Program€Report€.Ð h¸  Ðà 4 àÌÓ X¨ýÓThis€report€covers€both€fish€facility€design€problems€and€the€operation€of€fishÐ øH  Ðfacilities.€Chapters€on€swimming€speeds,€spawning€criteria,€and€food€and€oxygenÐ À Ðrequirement€for€several€species€of€fish€are€included.€The€effects€of€temperature,€waterÐ ˆØ Ðquality,€silt€and€turbidity€on€fish€are€discussed.€The€toxicity€on€fish€of€elements€andÐ P  Ðcompounds,€including€metals,€plastics,€pesticides,€and€herbicides€are€reviewed.Ð h ÐHatcheries,€rearing€ponds€and€fish€pumps€are€described.€The€subjects€of€fish€behavior€andÐ à0 Ðdiseases€are€addressed.€Fishway€structures€at€natural€obstructions€and€dams€are€examined,Ð ¨ø Ðas€is€the€related€subject€of€artificial€guidance€of€fish.Ð pÀ ÐÓ ¨ýXÓÐ 8ˆ ÐÐ P Ð54.à 4 àBellariva,€J.€L.€and€A.€Belaud€(1998).€€Environmental€factors€influencing€the€passage€ofÐ È ÐAllice€shad€òòAlosa€alosaóó€at€the€Golfech€Fish€Lift€on€the€Garonne€River,€France.€Pages€Ð à Ð171„179€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€Fish€Migration€and€FishÐ X¨ ÐBypasses,€Fishing€News€Books,€Vienna€(Austria).Ð  p Ðà 4 àÌÓ X¨ýÓSince€1973,€the€operation€of€the€hydropower€facility€Malause„Golfech€on€theÐ °  ÐGaronne€River€(south„west€France)€has€prevented€allice€shad€òòAlosa€alosaóó€from€accessingÐ xÈ! Ðupstream€spawning€grounds,€thus€endangering€the€population€(Cassou„Leins€&€Cassou„Ð @" ÐLeins,€1981).€From€1981€to€1986,€allice€shad€were€captured€just€downstream€of€theÐ  X# Ðpower€plant€during€their€spawning€migration€and€manually€carried€and€released€above€theÐ Ð $ Ðweir.€These€measures€resulted€in€significant€population€increases€and€led€to€the€designÐ ˜!è% Ðand€installation€of€a€fish€lift€near€the€power€plant,€which€began€operating€in€1987.€SinceÐ `"°& Ð1981,€data€on€both€environmental€factors€and€fish€passage€have€been€recorded€daily.Ð (#x' ÐFrom€1987€to€1991€and€in€1993,€peak€migration€occurred€in€June.€In€1992,€1994€andÐ ð#@( Ð1995€peak€migration€occurred€in€May.€In€1994€and€1995€the€earlier€appearance€of€alliceÐ ¸$ ) Ðshad€at€the€Golfech€passage€facility€was€due€to€the€disappearance€of€an€old€dam€whichÐ €%Ð * Ðwas€a€brake€for€the€migration.€There€was€a€significant€correlation€between€daily€shadÐ H&˜!+ Ðpassage€and€water€temperature.€The€Golfech€fish€lift€provides€the€means€to€quantitativelyÐ '`", Ðcontrol€the€allice€shad€migration.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð55.à 4 àBemis,€W.€E.,€V.€J.€Birstein€and€J.€R.€Waldman€(1997).€€Sturgeon€biodiversity€andÐ 0*€%0 Ðconservation:€An€introduction.€Environmental€Biology€of€Fishes.€€ò ò48ó ó:13„14.Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓThis€volume€includes€many€of€the€papers€presented€at€the€internationalÐ ˆ,Ø'3 ÐConference€on€Sturgeon€Biodiversity€and€Conservation€which€took€place€at€TheÐ P- (4 ÐAmerican€Museum€of€Natural€History€(AMNH),€New€York,€on€28„30€July€1994.€TheÐ ° Ðmain€goal€of€the€conference€was€to€attract€attention€to€sturgeons€and€paddlefishes,€stillÐ xÈ Ðthe€most€speciose€group€of€'living€fossil'€fishes,€but€now€fast€disappearing€from€our€planetÐ @ Ð(Birstein€1993,€Bemis€and€Findeis€1994,€Waldman€1995).€Some€presentations€at€theÐ X Ðconference€described€basic€aspects€of€acipenseriform€biology,€including€evolution,Ð Ð  Ðgenetics,€and€life€cycles.€Others€focused€on€the€contemporary€status€of€a€particularÐ ˜è Ðspecies€or€a€few€species€inhabiting€the€same€basin€or€region;€most€of€these€contributionsÐ ` ° Ðalso€addressed€ongoing€conservation€efforts.€Still€other€speakers€examined€currentÐ ( x Ðcontroversies€at€the€interface€between€science€and€society,€bringing€information€from€aÐ ð @ Ðvariety€of€sources€to€enrich€our€meeting.€These€three€approaches€are€reflected€by€theÐ ¸   Ðthree€part€organization€of€this€volume:€part€1,€Diversity€and€evolution;€Part€2,€BiologyÐ € Ð  Ðand€status€reports;€and€Part€3,€Controversies,€conservation€and€summary.€We€hope€thatÐ H ˜  Ðthe€included€papers€offer€a€broad€perspective€about€contemporary€work€on€the€phylogenyÐ `  Ðof€Acipenseriformes,€as€well€as€a€review€of€the€worldwide€status€of€almost€all€of€theÐ Ø(  Ðspecies€constituting€this€order.Ð  ð  ÐÐ h¸  ÐÓ ¨ýXÓÐ 0€  Ð56.à 4 àBemis,€W.€E.€and€B.€Kynard€(1997).€€Sturgeon€rivers:€An€introduction€to€acipenseriformÐ øH  Ðbiogeography€and€life€history.€Environmental€Biology€of€Fishes.€€ò ò48ó ó:167„183.Ð À Ðà 4 àÌÓ X¨ýÓWe€present€an€overview€of€the€global€distribution€of€all€27€living€species€ofÐ P  ÐAcipenseriformes€in€an€attempt€to€understand€their€biogeographic€history€and€the€rangeÐ h Ðof€life€history€patterns€displayed€by€different€species.€Our€biogeographic€analysis€(basedÐ à0 Ðon€the€most€recent€phylogenetic€analysis€including€fossil€Acipenseriformes)€suggests€thatÐ ¨ø ÐAcipenseriformes€originated€in€Europe,€and€that€early€diversification€took€place€in€Asia.Ð pÀ ÐAcipenseriformes€do€not€have€a€common€life€history;€variation€within€and€betweenÐ 8ˆ Ðspecies€is€the€rule€rather€than€the€exception.€The€few€relatively€well„known€case€studiesÐ P Ð(e.g.€Caspian€Sea€sturgeons,€European€Atlantic€sturgeons€in€the€Gironde€system,€andÐ È Ðshortnose€and€North€American€Atlantic€sturgeons€in€rivers€of€the€east€coast€of€America)Ð à Ðgreatly€influence€what€we€think€we€know€about€sturgeon€biology.€Our€present€level€ofÐ X¨ Ðphylogenetic€understanding€does€not€allow€us€to€determine€whether€anadromy€orÐ  p Ðpotamodromy€is€the€plesiomorphic€life€history€pattern€for€Acipenseriformes.€We€proposeÐ è8 Ðthat€rivers€in€which€spawning€occurs€must€be€the€central€unit€for€biogeographic€analysisÐ °  Ðof€living€Acipenseriformes.€After€mapping€these€rivers,€we€recognized€nineÐ xÈ! Ðbiogeographic€provinces€for€acipenseriforms.€Some€repeated€historical€patterns€emergeÐ @" Ðfrom€this€analysis,€but,€again,€we€are€limited€by€our€current€understanding€ofÐ  X# Ðphylogenetic€relationships€within€the€genus€Acipenser€in€particular.€Distribution€andÐ Ð $ Ðbiogeographic€data€are€central€to€deciding€where€to€make€new€efforts€to€update€existingÐ ˜!è% Ðstatus€information€for€acipenseriform€species.€We€single€out€a€widely€ranging€and€highlyÐ `"°& Ðvariable€species,€Acipenserruthenus,€as€particularly€intriguing,€for€it€spans€three€of€ourÐ (#x' Ðnine€biogeographic€provinces,€and€apparently€has€different€life€history€patterns€inÐ ð#@( Ðdifferent€river€systems.€Finally,€we€note€new€areas€in€need€of€basic€research,€particularlyÐ ¸$ ) Ðthe€need€for€more€detailed€descriptions€and€analyses€of€life€histories€of€differentÐ €%Ð * Ðpopulations€of€sturgeons.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð57.à 4 àBender,€M.€J.,€C.€Katopodis€and€S.€P.€Simonovic€(1992).€A€prototype€expert€system€forÐ  (ð#. Ðfishway€design.€Pages€€115„127€òòinóó€A.€H.€El„Shaarawi€and€D.€C.€L.€Lam,€eds.€ExpertÐ h)¸$/ Ðsystems€and€statistical€methods€in€water€resources,€Burlington,€Ontario€(Canada),Ð 0*€%0 ÐEnvironmental€Monitoring€and€Assessment.Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓThe€design€of€structures€for€fish€passage€in€rivers€and€streams€provides€anÐ ˆ,Ø'3 Ðopportunity€to€apply€expert€system€concepts€to€a€design€problem.€Fishways€contribute€toÐ P- (4 Ðthe€sustainable€development€of€water€resources€projects€by€providing€a€path€that€allowsÐ ° Ðfish€migrations€to€be€maintained.€A€prototype€expert€system€(FDES)€has€been€developedÐ xÈ Ðto€recommend€the€most€suitable€fishway€type€for€given€design€conditions.€AÐ @ Ðrecommendation€is€provided€on€the€basis€of€fishway€hydraulics,€fish€passageÐ X Ðperformance,€and€cost€requirements.€Fishway€design€demands€expertise€in€variousÐ Ð  Ðscientific€disciplines€such€as€hydrology,€hydraulics,€and€fish€biology.€Expert€systemÐ ˜è Ðtechnology€may€be€used€to€reduce€design€time€requirements€and€to€serve€as€a€teaching€aidÐ ` ° Ðto€inexperienced€engineers€by€organizing€and€accessing€the€cumulative€knowledge€of€theÐ ( x Ðmost€experienced€designers.€The€rule„based€expert€system€development€tool,€VP„Expert,Ð ð @ Ðsupplies€the€backward€chaining€control€structure€for€accessing€the€knowledge€within€theÐ ¸   Ðprototype.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð58.à 4 àBenke,€A.€C.,€C.€A.€S.€Hall,€C.€P.€Hawkins,€R.€H.€Lowe„McConnell,€J.€A.€Standford,€K.Ð Ø(  ÐSuberkropp€and€J.€V.€Ward€(1988).€€Bioenergetic€considerations€in€the€analysis€of€streamÐ  ð  Ðecosystems.€Journal€of€the€North€American€Benthological€Society.€€ò ò7ó ó:480„502.Ð h¸  Ðà 4 àÌÓ X¨ýÓMost€bioenergetics€studies€to€date€have€been€descriptive,€and€there€is€a€majorÐ øH  Ðneed€to€study€those€abiotic€and€biotic€factors€which€control€bioenergetics€in€streamsÐ À Ðacross€biomes€and€latitudes.€The€importance€of€floodplains€and€the€role€of€dissolvedÐ ˆØ Ðorganic€matter€have€not€been€adequately€incorporated€into€our€understanding€of€streamÐ P  Ðbioenergetics.€We€need€to€determine€if€some€generally€applicable€organismal„Ð h Ðenvironmental€relationships€can€be€used€to€predict€energetic€characteristics€acrossÐ à0 Ðstreams.€Major€new€initiatives€are€required€to€answer€some€of€the€larger€scale€questions.Ð ¨ø ÐSeveral€approaches€are€possible:€(1)€synoptic€analysis€of€multiple€streams€to€compareÐ pÀ Ðwithin„region€variance€with€between„region€variance,€(2)€experimental€manipulation€ofÐ 8ˆ Ðentire€streams€or€their€catchments€to€test€factors€that€control€bioenergetics,€(3)€the€use€ofÐ P Ðbatteries€of€experimental€streams€to€help€isolate€cause„effect€relationships,€and€(4)€theÐ È Ðfurther€development€of€computer€models€that€incorporate€abiotic€forcings€andÐ à Ðbioenergetics.€(DBO)Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð59.à 4 àBenstead,€J.€P.,€J.€G.€March,€C.€M.€Pringle€and€F.€N.€Scatena€(1999).€€Effects€of€a€low„Ð °  Ðhead€dam€and€water€abstraction€on€migratory€tropical€stream€biota.€EcologicalÐ xÈ! ÐApplications.€€ò ò9ó ó:656„668.Ð @" Ðà 4 àÌÓ X¨ýÓMigration€of€large„bodied€"macroconsumers"€(e.g.,€fishes,€shrimps,€and€snails)€isÐ Ð $ Ðan€important€functional€linkage€between€many€tropical€rivers€and€their€estuaries.Ð ˜!è% ÐIncreasingly,€this€linkage€is€being€severed€by€dams€and€water€abstraction.€The€ecologicalÐ `"°& Ðimpacts€of€these€activities€are€poorly€understood€and€are€largely€being€ignored€by€damÐ (#x' Ðoperators.€We€investigated€the€direct€effects€of€a€water€intake€and€low„head€dam€on€theÐ ð#@( Ðmigration€of€amphidromous€freshwater€shrimps€between€the€headwater€streams€andÐ ¸$ ) Ðestuary€of€the€Rio€Espiritu€Santo,€Puerto€Rico,€USA.€Both€downstream€migratory€drift€ofÐ €%Ð * Ðlarvae€and€upstream€migration€of€postlarvae€had€strong€diel€patterns,€with€most€activityÐ H&˜!+ Ðoccurring€at€night.€Unlike€large€dams€on€the€island,€this€low„head€dam€did€not€act€as€aÐ '`", Ðcomplete€barrier€to€the€upstream€migration€of€metamorphosed€postlarvae.€However,€theÐ Ø'(#- Ðdam€did€cause€large€numbers€of€postlarval€shrimps€to€accumulate€directly€downstream€ofÐ  (ð#. Ðthe€structure.€Mortality€of€drifting€first„stage€larvae€by€entrainment€into€the€water€intakeÐ h)¸$/ Ðduring€downstream€migration€averaged€42%€during€the€69„d€study€period.€During€lowÐ 0*€%0 Ðdischarges,€100%€of€the€drifting€larvae€were€entrained€by€the€intake.€The€rate€ofÐ ø*H&1 Ðnocturnal€entrainmentinduced€mortality€averaged€233€larvae/s€and€peaked€at€1167Ð À+'2 Ðlarvae/s.€We€used€our€field€data€and€a€30„yr€discharge€record€to€model€the€long„termÐ ˆ,Ø'3 Ðimpacts€of€different€intake€management€strategies€on€the€entrainment€mortality€at€thisÐ P- (4 Ðdam.€The€simulation€model€estimated€long„term€mean€daily€entrainment€mortality€at€34„Ð ° Ð62%,€depending€on€the€amount€of€water€extracted€from€the€river.€Monthly€differences€inÐ xÈ Ðmean€daily€entrainment€mortality€(27„76%€depending€on€estimates€of€abstraction)€wereÐ @ Ðcaused€by€seasonal€variation€in€discharge.€Modeling€of€mitigation€options€suggested€thatÐ X Ðdaily€entrainment€mortality€of€larvae€could€be€reduced€to€11„20%€if€water€abstractionÐ Ð  Ðwas€halted€for€5€h€during€evening€periods€of€peak€drift.€Impacts€of€the€dam€andÐ ˜è Ðoperations€can€be€significantly€ameliorated€by€3„5€h€stoppages€in€water€abstractionÐ ` ° Ðduring€peak€nocturnal€larval€drift,€upkeep€of€a€functional€fish€ladder,€and€maintenance€ofÐ ( x Ðminimum€flow€over€the€dam.€Since€the€impacts€of€dams€depend€on€the€hydrology€andÐ ð @ Ðdesign€of€specific€water€intake€systems,€mitigation€strategies€must€be€tailored€toÐ ¸   Ðindividual€dams€and€intakes.€However,€our€approach€and€results€are€likely€to€apply€toÐ € Ð  Ðlow„head€dams€throughout€the€range€of€amphidromous€species.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð60.à 4 àBerg,€D.€J.,€E.€G.€Cantonwine,€W.€R.€Hoeh€and€S.€I.€Guttman€(1998).€€Genetic€structureÐ  ð  Ðof€òòQuadrula€quadrulaóó€(Bivalvia:€Unionidae):€Little€variation€across€large€distances.Ð h¸  ÐJournal€of€Shellfish€Research.€€ò ò17ó ó:1365„1373.Ð 0€  Ðà 4 àÌÓ X¨ýÓNorth€American€freshwater€bivalves€of€the€families€Unionidae€andÐ À ÐMargaritiferidae€represent€one€of€the€endangered€faunas€of€the€world.€EffectiveÐ ˆØ Ðmanagement€of€threatened€and€endangered€species€requires€knowledge€not€only€ofÐ P  Ðabundances€of€these€species€but€also€the€degree€of€variation€within€species€and€theÐ h Ðgeographic€distribution€of€this€intraspecific€variation.€We€used€allozyme€electrophoresisÐ à0 Ðto€examine€the€genetic€structure€of€seven€òòQuadrula€quadrulaóó€populations€from€the€Ohio,Ð ¨ø ÐTennessee,€and€Tensas€Rivers.€We€then€considered€the€implications€of€our€results€for€theÐ pÀ Ðdevelopment€of€effective€bivalve€conservation€strategies.€Descriptive€measures€of€geneticÐ 8ˆ Ðvariation€within€populations€are€quite€high€(2.1€plus€or€minus€0.1(se)€alleles€per€locus;Ð P Ð61.4€plus€or€minus€2.6%€polymorphic€loci;€0.24€plus€or€minus€0.01€heterozygosity)Ð È Ðrelative€to€other€unionids.€Genotype€frequencies€met€Hardy„Weinberg€expectations€at€allÐ à Ðpolymorphic€loci.€Among„population€variation€was€low€and€mostly€confined€toÐ X¨ Ðdifferences€between€the€Tensas€River€population€(lower€Mississippi€River€basin)€and€theÐ  p ÐOhio€River€basin€populations.€Significant€differences€in€allele€frequencies€amongÐ è8 Ðpopulations€were€only€detected€at€3€of€10€loci;€no€differences€in€allele€frequencies€wereÐ °  Ðfound€among€Ohio€River€basin€populations.€Genetic€distances,€though€all€small,€wereÐ xÈ! Ðsignificantly€correlated€with€geographic€distance.€Estimated€gene€flow€was€high€amongÐ @" Ðpopulations,€but€variation€among€populations€did€tend€to€follow€the€predictions€of€anÐ  X# Ðisolation„by„distance€model€of€dispersal.€The€low€levels€of€among„population€geneticÐ Ð $ Ðvariation€are€remarkable€given€that€these€populations€are€separated€by€distances€as€greatÐ ˜!è% Ðas€2,500+€river€kilometers.€High€levels€of€gene€flow€may€ensure€that€within„populationÐ `"°& Ðvariation€remains€high€and€that€populations€do€not€become€differentiated€due€to€geneticÐ (#x' Ðdrift.€An€optimum€conservation€strategy€for€this€species€in€the€mainstem€of€the€OhioÐ ð#@( ÐRiver€would€center€on€the€protection€of€a€number€of€large€populations€and€maintenanceÐ ¸$ ) Ðof€corridors€for€dispersal€of€host€fishes.€Successful€protection€of€threatened€andÐ €%Ð * Ðendangered€species€requires€conservation€of€both€abundance€and€genetic€diversity€ofÐ H&˜!+ Ðunionids.€Further€work€is€needed€to€characterize€general€patterns€of€genetic€structureÐ '`", Ðwithin€freshwater€bivalve€species.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð61.à 4 àBerg,€D.€J.,€W.€R.€Hoeh€and€S.€I.€Guttman€(1997).€€Alternate€models€of€genetic€structureÐ 0*€%0 Ðin€unionid€populations:€Conservation€and€management€implications.€Journal€of€ShellfishÐ ø*H&1 ÐResearch.€€ò ò16ó ó:322„323.Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓNorth€America€is€a€region€of€immense€freshwater€mussel€diversity.€However,Ð ° Ðâ âmany€of€the€endemic€taxa€are€threatened€with€extirpation.€To€successfully€conserveÐ xÈ Ðvariation€within€taxa,€management€agencies€must€understand€the€genetic€structure€ofÐ @ Ðpopulations.€We€used€allozyme€electrophoresis€to€characterize€partitioning€of€geneticÐ X Ðvariation€within„populations€(w„p)€and€among€populations€(a„p)€of€unionids€in€the€OhioÐ Ð  ÐRiver€system€and€within€the€Big€Darby€Creek€system€of€central€Ohio.€òòQuadrula€quadrulaóóÐ ˜è Ðtypically€occupies€large€rivers,€while€òòElliptio€dilatataóó€is€a€common€resident€of€smallÐ ` ° Ðstreams€such€as€Big€Darby€Creek.€On€average,€populations€of€òòQ.€quadrulaóó€containedÐ ( x Ðgreater€w„p€variation€(2.1€alleles/locus,€61%€polymorphic€loci,€24%€heterozygosity)€thanÐ ð @ Ðpopulations€of€òòE.€dilatataóó€(1.6,€32%,€10%,€respectively).€Patterns€of€a„p€variation€differedÐ ¸   Ðbetween€species.€Allele€frequencies€of€òòQ.€quadrulaóó€were€not€different€among€populationsÐ € Ð  Ð>1000€km€apart.€Populations€of€òòE.€dilatataóó€showed€differences€in€allele€frequenciesÐ H ˜  Ðbetween€populations€<100€km€apart.€Unionid€species€illustrate€at€least€2€models€of€theÐ `  Ðpartitioning€of€genetic€variation.€Model€I€species€such€as€òòQ.€quadrulaóó€have€a€high€geneÐ Ø(  Ðflow€among€populations;€each€population€contains€much€of€the€total€variation€presentÐ  ð  Ðwithin€a€large€geographic€region.€Model€II€species€such€as€òòE.€dilatataóó€have€restrictedÐ h¸  Ðgene€flow€and€large€amounts€of€a„p€variation;€individual€populations€exhibit€uniqueÐ 0€  Ðarrays€of€alleles.€Large€river€habitats€are€more€stable,€capable€of€supporting€largerÐ øH  Ðpopulations€of€mussels,€and€may€contain€fishes€with€greater€dispersal€capability€thanÐ À Ðsmall€streams.€The€result€of€this€combination€is€a€single€large€metapopulation€in€bigÐ ˆØ Ðrivers.€Preservation€of€several€populations€in€big€rivers€will€conserve€most€of€a€taxon'sÐ P  Ðgenetic€diversity.€Conservation€of€similar€amounts€of€genetic€diversity€in€small€streamsÐ h Ðwill€require€protection€of€a€large€number€of€populations€within€any€geographic€region.Ð à0 ÐSuch€differences€require€that€management€agencies€consider€the€genetic€structure€ofÐ ¨ø Ðmussel€taxa€when€developing€conservation€plans.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð62.à 4 àBertrand,€B.€A.€(1997).€€Changes€in€the€Mississippi€River€fishery€along€Illinois,€1976„Ð È Ð1996.€Journal€of€Freshwater€Ecology.€€ò ò12ó ó:585„597.Ð à Ðà 4 àÌÓ X¨ýÓIn€the€1970s€the€Great€River€Environmental€Action€Team€(GREAT)€proposed€aÐ  p Ðlong„range€management€strategy€for€the€Mississippi€River.€GREAT€predicted€thatÐ è8 Ðbackwater€habitat€would€be€lost€and€the€fishery€would€decline€riverwide€over€a€50„yearÐ °  Ðperiod€unless€management€changed.€Twenty€years€into€that€50„year€period,€long€termÐ xÈ! Ðdata€from€fisheries€monitoring€along€581€miles€of€the€river€bordering€Illinois€has€beenÐ @" Ðgathered.€From€1976„95,€483€electrofishing€collections€totaling€125,503€fish€of€98Ð  X# Ðspecies€were€made€at€33€locations.€Species€richness€and€catch€per€unit€of€effort€analysesÐ Ð $ Ðindicate€that€certain€backwater€fish€species€have€declined,€while€river€channel€speciesÐ ˜!è% Ðhave€increased€in€number€and€frequency€of€occurrence.Ð `"°& ÐÓ ¨ýXÓÐ (#x' ÐÐ ð#@( Ð63.à 4 àBeumer,€J.€P.€(1984).€€Lerderderg€River€fish„ladder.€Aqua.€€ò ò23ó ó:16„17.Ð ¸$ ) Ðà 4 àÌÓ X¨ýÓA€study€was€undertaken€to€examine€the€movement€of€fish€through€a€fish€ladderÐ H&˜!+ Ðinstalled€in€a€diversion€weir€on€the€Lerderderg€River.€The€River€is€a€60€km€long€tributaryÐ '`", Ðforming€part€of€the€Werribee€River€coastal€drainage.€The€Merrimu€Reservoir€ProjectÐ Ø'(#- Ðproviding€a€domestic€water€supply€for€Melton€and€Bacchus€Marsh€involved€constructionÐ  (ð#. Ðof€diversion€weirs€on€Goodman€Creek€and€the€Lerderderg€River.€The€ladder€incorporatesÐ h)¸$/ Ð42€steps€with€a€trap€bay€at€step€36.€It€has€a€slope€of€1:10.€A€Nylex€plastic€screen€coveringÐ 0*€%0 Ðthe€ladder€prevents€fish€escaping€and€reduces€the€amount€of€leaf„litter€and€other€debrisÐ ø*H&1 Ðfalling€into€the€ladder.€A€two€way€trap€covered€by€a€fine€mesh€was€installed€in€the€trapÐ À+'2 Ðbay€to€monitor€fish€usage€of€the€ladder.€Monitoring€of€the€trap€and€electrofishing€wereÐ ˆ,Ø'3 Ðcarried€out€on€a€weekly€basis€for€21€weeks.€A€total€of€69€specimens€were€taken€in€the€trapÐ P- (4 Ðduring€the€monitoring€period,€about€half€in€each€trap€section.€While€the€fish€ladder€designÐ ° Ðwas€suitable€for€the€larger€river€blackfish€and€larger€brown€trout,€few€smaller€specimensÐ xÈ Ðof€these€two€species€were€caught€in€the€trap.€The€other€three€species,€short„finned€eel,Ð @ Ðroach€and€Australian€smelt,€were€poorly€represented€in€trap€catches€suggesting€that€theyÐ X Ðcould€not€cope€with€the€fish„ladder€in€its€then€existing€design.€A€number€of€designÐ Ð  Ðmodifications€to€the€ladder€and€alterations€to€the€flow€pattern€downstream€of€the€spillwayÐ ˜è Ðshould€improve€the€efficiency€of€the€ladder.Ð ` ° ÐÐ ( x ÐÓ ¨ýXÓÐ ð @ Ð64.à 4 àBhowmik,€N.€G.€(1993).€€Commercial€navigation€in€large€rivers€and€the€development€ofÐ ¸   Ðappropriate€management€alternatives.€USGS€Environmental€Management€TechnicalÐ € Ð  ÐCenter,€Report€EMTC93R017.Ð H ˜  Ðà 4 àÌÓ X¨ýÓLarge€rivers€of€the€United€States€of€America€such€as€the€Mississippi€River€areÐ Ø(  Ðused€for€the€transport€of€goods€and€commodities€as€well€as€for€recreational€activities.€TheÐ  ð  ÐUpper€Mississippi€River€System€(UMRS)€is€used€extensively€by€commercial€bargeÐ h¸  Ðtraffic.€The€research€involves€collecting€a€comprehensive€set€of€data€and€analyzing€theseÐ 0€  Ðdata€for€the€development€of€various€functional€relationships.€These€relationships€willÐ øH  Ðform€the€starting€point€for€the€determination€of€biological€changes€that€may€be€associatedÐ À Ðwith€the€frequent€movement€of€commercial€traffic€within€large€river€systems.€UltimatelyÐ ˆØ Ðall€the€functional€relationships€will€be€used€to€formulate€and€develop€comprehensiveÐ P  Ðmanagement€alternatives€for€the€UMRS.Ð h ÐÐ à0 ÐÓ ¨ýXÓÐ ¨ø Ð65.à 4 àBhowmik,€N.€G.€(1993).€€Physical€changes€due€to€navigation€in€the€Upper€MississippiÐ pÀ ÐRiver€system.€Long€term€resource€monitoring€program.€USGS€EnvironmentalÐ 8ˆ ÐManagement€Technical€Center,€Report€EMTC93R019.Ð P Ðà 4 àÌÓ X¨ýÓThe€Mississippi,€Illinois,€Ohio,€and€Missouri€Rivers€are€used€extensively€for€theÐ à Ðtransport€of€goods€and€commodities,€as€well€as€for€recreational€activities.€The€changes€inÐ X¨ Ðthe€river€environment€resulting€from€the€movement€of€such€traffic€may€include€creationÐ  p Ðof€waves€and€drawdown,€altered€velocity€and€pressure€regimes,€resuspension€and€lateralÐ è8 Ðmovement€of€sediment,€and€temporary€changes€in€flow€direction€due€to€the€return€flow.Ð °  ÐResearch€has€been€initiated€to€determine€the€physical€changes€associated€with€navigationÐ xÈ! Ðwithin€the€Illinois€and€Mississippi€Rivers.€Field€data€on€various€hydraulic€and€sedimentÐ @" Ðresuspension€characteristics€have€been€collected€and€analyzed€to€determine€functionalÐ  X# Ðrelationships.€These€physical€relationships€will€be€used€in€the€biological€models€toÐ Ð $ Ðidentify€and€determine€changes€in€the€aquatic€environment€due€to€navigation€traffic.€TheÐ ˜!è% Ðpaper€discusses€some€of€the€physical€changes€in€a€large€river€environment€due€toÐ `"°& Ðnavigation€traffic.€Biological€effects€of€navigation€are€given€in€a€companion€paper€thatÐ (#x' Ðfollows€this€article.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð66.à 4 àBhowmik,€N.€G.€and€J.€R.€Adams€(1989).€Successional€changes€in€habitat€caused€byÐ H&˜!+ Ðsedimentation€in€navigation€pools.€Pages€€17„27€òòinóó€P.€G.€Sly€and€B.€T.€Hart,€eds.Ð '`", ÐSediment/Water€Interactions,€€Melbourne€(Australia),€Hydrobiologia.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓUpstream€of€St.€Louis,€Missouri,€navigation€on€the€Upper€Mississippi€River€isÐ h)¸$/ Ðmade€possible€by€a€series€of€lock€and€dam€structures.€Many€of€the€pools€formed€by€theseÐ 0*€%0 Ðnavigation€dams€have€nearly€reached€a€new€equilibrium€condition€for€scour€andÐ ø*H&1 Ðdeposition€of€sediment.€Several€pools€with€extensive€backwater€or€channel€border€areasÐ À+'2 Ðare€still€accumulating€sediment€at€rates€similar€to€those€for€man„made€lakes.€The€originalÐ ˆ,Ø'3 Ðopen„water€habitats€in€these€pools€are€changing€to€aquatic€macrophyte€beds€and€then€toÐ P- (4 Ðmarsh€or€terrestrial€floodplain€conditions€because€of€sediment€deposition.€Two€pools€areÐ ° Ðused€as€examples€of€this€phenomenon.€1)€Pool€19€on€the€Mississippi€River€was€formedÐ xÈ Ðwhen€the€lock,€dam,€and€power€house€at€Keokuk,€Iowa€were€completed€in€1913;€and€2)Ð @ ÐPeoria€Lake€which€has€been€affected€by€the€diversion€of€Lake€Michigan€water€into€theÐ X ÐIllinois€River€in€1900€and€the€construction€of€a€lock€and€dam€in€1939.€Both€pools€haveÐ Ð  Ðhad€well€over€50€percent€of€their€original€volume€filled€with€sediment.€Three€areas€inÐ ˜è ÐPool€19€illustrate€the€successional€changes€that€occur€as€sedimentation€raises€the€riverÐ ` ° Ðbottom€into€the€photic€zone.€Sedimentation€has€made€boating€impossible€on€large€areasÐ ( x Ðof€both€pools.€The€continuing€process€is€likely€to€change€open€waters€to€floodplains.Ð ð @ ÐPeoria€Lake€lacks€aquatic€plant€beds€because€of€excessive€turbidity€and€frequentÐ ¸   Ðresuspension€of€bed€material€by€wind„€or€boat„generated€waves.€It€seems€likely€that€theseÐ € Ð  Ðriver€reaches€will€become€a€narrow€channel€without€any€broad€and€highly€productiveÐ H ˜  Ðchannel€borders.Ð `  ÐÓ ¨ýXÓÐ Ø(  ÐÐ  ð  Ð67.à 4 àBlaxter,€J.€H.€S.€and€W.€Dickson€(1959).€€Observations€on€the€swimming€speeds€of€fish.Ð h¸  ÐJournal€Du€Conseil€International€pour€l'Exploration€de€la€Mer.€€ò ò24ó ó:472„479.Ð 0€  Ðà 4 àÌÓ X¨ýÓSwimming€speeds€have€been€measured€in€a€number€of€ways:€1)€Timing€theÐ À Ðmovements€of€fish€in€tanks,€culverts,€fish€passes,€or€from€ships€at€sea,€2)€Measuring€theÐ ˆØ Ðspeed€of€lines€running€out€after€hooking€fish,€3)€Cine„photography€of€fish€in€aquaria,€andÐ P  Ð4)€Measuring€the€speed€of€rotation€of€annular„shaped€tanks€in€which€fish€are€keptÐ h Ðstationary€relative€to€the€ground.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð68.à 4 àBogan,€A.€E.€(1993).€€Freshwater€bivalve€extinctions€(Mollusca:€Unionoida):€A€searchÐ 8ˆ Ðfor€causes.€American€Zoologist.€€ò ò33ó ó:599„609.Ð P Ðà 4 àÌÓ X¨ýÓThe€freshwater€bivalves€(Mollusca:€Order€Unionoida)€are€classified€in€sixÐ à Ðfamilies€and€about€165€genera€worldwide.€Worldwide€rate€of€extinction€of€freshwaterÐ X¨ Ðbivalves€is€poorly€understood€at€this€time.€The€North€American€freshwater€fauna€north€ofÐ  p ÐMexico€is€represented€by€297€taxa€in€two€families.€There€are€19€taxa€presumed€extinct,Ð è8 Ð44€species€listed€or€proposed€as€federally€endangered,€and€there€are€another€69€speciesÐ °  Ðthat€may€be€endangered.€A€number€of€these€endangered€species€are€functionally€extinctÐ xÈ! Ð(individuals€of€a€species€surviving€but€not€reproducing).€Extinction€of€North€AmericanÐ @" Ðunionoid€bivalves€can€be€traced€to€impoundment€and€inundation€of€riffle€habitat€in€majorÐ  X# Ðrivers€such€as€the€Ohio,€Tennessee€and€Cumberland€and€Mobile€Bay€Basin.€DammingÐ Ð $ Ðresulted€in€the€local€loss€of€the€bivalves'€host€fish.€This€loss€of€the€obligate€host€fish,Ð ˜!è% Ðcoupled€with€increased€siltation,€and€various€types€of€industrial€and€domestic€pollutionÐ `"°& Ðhave€resulted€in€the€rapid€decline€in€the€unionoid€bivalve€fauna€in€North€America.Ð (#x' ÐFreshwater€communities€in€Europe€have€experienced€numerous€problems,€some€localÐ ð#@( Ðunionoid€populations€have€been€extirpated,€but€no€unionoid€species€are€extinct.€ThreeÐ ¸$ ) Ðtaxa€from€Israel€are€now€reported€as€extinct.€Other€nations€such€as€China€that€haveÐ €%Ð * Ðproblems€with€soil€erosion€and€industrial€pollution€or€have€numerous€dams€on€some€ofÐ H&˜!+ Ðthe€rivers€(e.g.,€South€America:€Rio€Parana)€are€probably€experiencing€problems€of€localÐ '`", Ðextirpation€if€not€the€extinction€of€their€endemic€freshwater€bivalve€fauna.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð69.à 4 àBorges€Barthem,€R.,€M.€Brito€Ribeiro€and€M.€Petrere,€Jr.€(1991).€€Life€strategies€of€someÐ 0*€%0 Ðlong„distance€migratory€catfish€in€relation€to€hydroelectric€dams€in€the€Amazon€Basin.Ð ø*H&1 ÐBiological€Conservation.€€ò ò55ó ó:339„345.Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓIn€this€paper,€we€present€evidence€that€the€long„distance€migratory€catfishÐ ° Ðâ âòòBrachyplatystoma€filamentosumóó,€òòB.€flavicansóó,€òòB.€vaillantiióó,€òòGoslinia€platynemaóó€andÐ xÈ ÐòòLithodoras€dorsalisóó€spawn€in€the€headstreams€of€the€Amazon€River€and€its€tributaries€andÐ @ Ðthat€the€estuary€of€the€Amazon€is€the€main€nursery€ground€utilized€by€their€alevins.€TheÐ X Ðimpact€of€hydroelectric€dams€on€their€populations€are€discussed€in€terms€of€interruptionÐ Ð  Ðto€fish€migration€routes€up€river€and€to€larvae€moving€down€river,€provided€that€theÐ ˜è Ðhypothesis€above€holds.€Ways€of€mitigating€the€impact€are€also€considered.Ð ` ° ÐÐ ( x ÐÓ ¨ýXÓÐ ð @ Ð70.à 4 àBorghetti,€J.€R.,€D.€P.€Chena€and€S.€V.€G.€Nogueira€(1993).€€Installation€of€a€fishÐ ¸   Ðmigration€channel€for€spawning€at€Itaipu.€International€Water€Power€and€DamÐ € Ð  ÐConstruction.€€ò ò45ó ó:24„25.Ð H ˜  Ðà 4 àÌÓ X¨ýÓA€fish€migration€channel€for€spawning€at€the€Itaipu€(Brazil€and€Paraguay)Ð Ø(  Ðhydroelectric€station€was€installed€to€improve€fish€recovery€downstream€from€the€dam.Ð  ð  ÐThe€complex€had€caused€a€significant€reduction€in€the€spawning€area,€with€a€deleteriousÐ h¸  Ðeffect€on€the€reproductive€cycle€of€the€native€species.€An€experimental€model€of€a€fishÐ 0€  Ðmigration€channel€was€installed,€having€a€system€of€'tank€steps'€at€the€foot€of€the€dam,€aÐ øH  Ðsheet„metal€ladder,€a€serpentine„style€channel€for€the€spawning€of€the€fish,€and€twoÐ À Ðmarginal€lagoons€for€incubation€of€the€eggs€and€growth€of€the€larvae.€The€returnÐ ˆØ Ðmigration€of€the€hatchlings€will€be€made€through€a€trough€linking€the€marginal€lagoonsÐ P  Ðdirectly€to€the€Parana€River.€The€first€phase€of€the€project€is€formed€by€a€56„m„longÐ h Ðladder.€Preliminary€data€from€the€first€phase€has€proved€that€fish€(3000/day)€of€tropicalÐ à0 Ðclimates€can€ascend€ladders€exceeding€8€m.€The€results€of€the€first€phase€indicate€theÐ ¨ø Ðefficiency€of€the€experimental€project,€with€the€entry€and€ascendancy€of€fish€in€aÐ pÀ Ðmigration€channel€ladder.€These€data€now€provide€the€technical€basis€for€implementationÐ 8ˆ Ðof€the€complementary€spawning€channel€stage.Ð P ÐÐ È ÐÓ ¨ýXÓÐ à Ð71.à 4 àBorghetti,€J.€R.,€V.€S.€G.€Nogueira,€N.€R.€B.€Borghetti€and€C.€Canzi€(1994).€€The€fishÐ X¨ Ðladder€at€the€Itaipu€binational€hydroelectric€complex€on€the€Parana€River,€Brazil.Ð  p ÐRegulated€Rivers:€Research€&€Management.€€ò ò9ó ó:127„130.Ð è8 Ðà 4 àÌÓ X¨ýÓA€study€was€carried€out€from€23€October€to€19€November€1992€to€determine€theÐ xÈ! Ðability€of€fish€to€ascend€the€fish€ladder€at€the€ITAIPU€dam,€to€identify€the€speciesÐ @" Ðattracted€and€to€evaluate€possible€fish€selection.€The€results€show€that€some€species€ofÐ  X# Ðfish€can€ascend€the€latter€during€the€migratory€period;€the€dam€is€non„selective€withÐ Ð $ Ðrespect€to€species,€but€selective€with€respect€to€fish€size€as€a€result€of€the€presence€ofÐ ˜!è% Ðreduced€openings.€The€ladder€was€ascended€by€both€scaly€species€from€surface€watersÐ `"°& Ð(agile€movers)€and€by€deep€water€species€which€were€characterized€by€slow€movements.Ð (#x' ÐAn€average€of€2892€fish€ascended€the€ladder€each€day.€The€weight€and€length€of€fishÐ ð#@( Ðrecorded€ranged€from€336.0€to€3676.0€g€and€from€30.2€to€71.3€cm,€respectively.€TheÐ ¸$ ) Ðlargest€group€of€migrating€fish€was€the€curimba€òòProchilodus€scrofaóó.€The€high€ratio€ofÐ €%Ð * Ð72%€of€fish€in€the€gonadal€development€stage,€classified€as€"maturing",€indicates€that€theÐ H&˜!+ Ðspecies€caught€in€the€ladder€were€migrating€for€reproduction€purposes.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ðòò72.óóà 4 àBrett,€J.€R.€(1965).€€The€relation€of€size€to€rate€of€oxygen€consumption€and€sustainedÐ h)¸$/ Ðswimming€speed€of€sockeye€salmon€òòOnchorynchus€nerkaóó.€Journal€of€the€FisheriesÐ 0*€%0 ÐResearch€Board€of€Canada.€€ò ò22ó ó:1491„1501.Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓThe€relation€of€size€(log€weight,€g)€to€metabolic€rate€(log€OÔÎÿV,¦'ˆ,Ø'Ô2Ô2ˆ,Ø'V,¦'Ô„uptake,€mg€OÔÎÿV,¦'ˆ,Ø'Ô2Ô2ˆ,Ø'V,¦'Ô/hr)Ð ˆ,Ø'3 Ðof€sockeye€salmon€was€found€to€have€a€continuous€change€in€slope€(0.78„0.97)€withÐ P- (4 Ðincreasing€activity€at€15€ÔÎÿ~Îÿ°ÔoÔ2°~ÎÿÔC.€€The€slope€of€the€equation€relating€the€60„min€sustainedÐ ° Ðswimming€speed€(log€speed,€cm/sec)€to€length€(cm)€had€a€value€of€0.50,€demonstrating€aÐ xÈ Ðrapid€decrease€in€relative€performance€with€increasing€size.Ð @ ÐÐ X ÐÓ ¨ýXÓÐ Ð  Ðòò73.óóà 4 àBrett,€J.€R.€(1967).€€Swimming€performance€of€sockeye€salmon€òòOnchorynchus€nerkaóó€inÐ ˜è Ðrelation€to€fatigue€time€and€temperature.€Journal€of€the€Fisheries€Research€Board€ofÐ ` ° ÐCanada.€€ò ò24ó ó:1731„1741.Ð ( x Ðà 4 àÌÓ X¨ýÓFurther€studies€on€the€swimming€performance€of€fingerling€sockeye€salmon€atÐ ¸   Ðfixed€velocities€have€been€conducted€in€relation€to€fatigue€time.€€The€method€of€probitÐ € Ð  Ðanalysis,€commonly€used€in€dealing€with€bioassay€data,€was€found€to€be€suitable€forÐ H ˜  Ðdetermining€times€to€50%€fatigue€and€in€providing€a€measure€of€variance€despite€theÐ `  Ðpresence€of€some€erratic€behaviour.€€For€sockeye€acclimated€to€15€ÔÎÿ¦ö Ø( ÔoÔ2Ø( ¦ö ÔC€(mean€length€=Ð Ø(  Ð13.6€cm)€the€velocity€at€which€50%€fatigued€was€54.4€cm/sec€of€4.0€lengths/sec€(L/sec).€Ð  ð  ÐThe€5%€and€95%€fatigue€velocities€were€3.1€and€4.8€L/sec,€respectively.€€Larger€fishÐ h¸  Ðrequired€longer€exposure€times€for€determining€maximum€sustained€speeds,€extendingÐ 0€  Ðfrom€approximately€120€min€for€fingerlings€to€500€min€for€adults.€€Using€the€method€ofÐ øH  Ðincreasing€velocity€steps€the€effect€of€temperatures€from€5€to€27.5€ÔÎÿŽÞ ÀÔoÔ2ÀŽÞ ÔC€was€examined.€Ð À ÐWhen€acclimated€to€15€ÔÎÿV¦ˆØÔoÔ2ˆØV¦ÔC€fingerling€sockeye€exhibited€only€a€4%€reduction€inÐ ˆØ Ðswimming€speed€at€10€and€20€ÔÎÿnP ÔoÔ2P nÔC.€€Temperatures€above€the€lethal€level€caused€a€rapidÐ P  Ðdecline€in€swimming€ability€approaching€the€extinction€point€at€27.5€ÔÎÿæ6hÔoÔ2hæ6ÔC.€Ð h ÐRecommendations€for€standard€procedures€in€the€study€of€swimming€speeds€are€made.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð74.à 4 àBuckley,€J.€and€B.€Kynard€(1985).€€Habitat€use€and€behavior€of€pre„spawning€andÐ 8ˆ Ðspawning€shortnose€sturgeon,€òòAcipenser€brevirostrumóó,€in€the€Connecticut€River.€Pages€Ð P Ð111„117€òòinóó€€F.€P.€Binkowski€and€S.€I.€Doroshov,€eds.€North€American€Sturgeons,€W.Ð È ÐJunk€Publishers,€Dordrecht,€Netherlands.Ð à Ðà 4 àÌÓ X¨ýÓMovements€and€ecology€of€pre„spawning€and€spawning€shortnose€sturgeon,Ð  p ÐòòAcipenser€brevirostrumóó€,€were€studied€through€1979„1982€in€a€2€km€reach€of€theÐ è8 ÐConnecticut€River.€€Radio€telemetry€was€used€to€monitor€the€movements€of€18€sturgeon.€Ð °  ÐAn€additional€165€sturgeon,€captured€by€gillnets,€provided€information€on€spawning€siteÐ xÈ! Ðselection,€sex€ratio,€and€reproductive€condition.€€For€3€years€the€mean€water€velocitiesÐ @" Ðduring€the€spawning€period€ranged€from€0.36€to€1.2€m€secÔÎÿÖ& XÔ„1Ô2 XÖ&Ô€in€the€spawning€area.€Ð  X# ÐSubstrate€was€cobble€and€rubble.€€Sturgeon€spawned€over€a€short€time€period€(3„5€days),Ð Ð $ Ðduring€decreasing€river€discharge€of€679€to€301€mÔÎÿf!¶˜!èÔ3Ô2˜!èf!¶Ô€secÔÎÿf!¶˜!èÔ„1Ô2˜!èf!¶Ô€and€rising€water€temperatureÐ ˜!è% Ðbetween€11.5€to€14.0€ÔÎÿ."~`"°ÔoÔ2`"°."~ÔC.€€High€river€discharge€over€a€prolonged€period€during€theÐ `"°& Ðnormal€spawning€season€may€preclude€reproduction.Ð (#x' ÐÐ ð#@( ÐÓ ¨ýXÓÐ ¸$ ) Ð75.à 4 àBuckley,€J.€and€B.€Kynard€(1985).€€Yearly€movements€of€shortnose€sturgeons€in€theÐ €%Ð * ÐConnecticut€River.€Transactions€of€the€American€Fisheries€Society.€€ò ò114ó ó:813„820.Ð H&˜!+ Ðà 4 àÌÓ X¨ýÓMovements€of€shortnose€sturgeon€òòAcipenser€brevirostrumóó,€an€endangeredÐ Ø'(#- Ðspecies,€were€studied€for€5€years€by€radio€telemetry€and€mark„recapture€in€the€lower€140Ð  (ð#. Ðkm€of€the€Connecticut€River€to€Long€Island€Sound,€Ninety€fish€(range,€54„97€cm€forkÐ h)¸$/ Ðlength;€1.2„9.2€kg€weight)€were€equipped€with€radio€transmitters.€The€cycle€of€annualÐ 0*€%0 Ðmovement€consisted€of€several€up„€and€downriver€migrations€between€four€discrete€areasÐ ø*H&1 Ðthat€were€used€for€summer€feeding,€spawning,€and€overwintering.Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð76.à 4 àBudweg,€F.€M.€G.€(1980).€€Environmental€engineering€for€dams€and€reservoirs€in€Brazil.Ð ° ÐWater€Power€Dam€Construction.€€ò ò32ó ó:19„23.Ð xÈ Ðà 4 àÌÓ X¨ýÓThe€social€and€ecological€impact€of€large€dams€in€Brazil€cannot€easily€beÐ X Ðmitigated€by€procedures€developed€in€other€countries.€Fish€ladders€for€instance€are€veryÐ Ð  Ðoften€inappropriate€for€the€indigenous€fish€and€other€solutions€have€been€adapted€whichÐ ˜è Ðhave€maintained€or€even€enhanced€the€fishstocks.€Major€afforestation€schemes€are€alsoÐ ` ° Ðneeded€for€most€projects,€and€a€change€in€farming€techniques€is€strongly€recommended€toÐ ( x Ðkeep€reservoirs€free€from€pollution€and€silt.Ð ð @ ÐÐ ¸   ÐÓ ¨ýXÓÐ € Ð  Ð77.à 4 àBunt,€C.€M.,€C.€Katopodis€and€R.€S.€McKinley€(1999).€€Attraction€and€passage€efficiencyÐ H ˜  Ðof€white€suckers€and€smallmouth€bass€by€two€Denil€fishways.€North€American€Journal€ofÐ `  ÐFisheries€Management.€€ò ò19ó ó:793„803.Ð Ø(  Ðà 4 àÌÓ X¨ýÓWe€compared€two€Denil€fishways,€located€on€the€west€(low€velocity,€10%€slope)Ð h¸  Ðand€east€(high€velocity,€20%€slope)€sides€of€the€Mannheim€weir,€Grand€River,€Ontario,Ð 0€  Ðfor€use€by€upstream„migrating€white€suckers€òòCatostomus€commersonióó€and€smallmouthÐ øH  Ðbass€òòMicropterus€dolomieuóó.€Mark„recapture€and€radiotelemetry€were€used€to€assessÐ À Ðattraction€and€fish€passage.€Movement€of€85€radio„tagged€fish€was€monitoredÐ ˆØ Ðcontinuously€during€spring€and€early€summer€of€1995€and€1996.€Attraction€and€passageÐ P  Ðefficiencies€of€white€suckers€at€the€west€fishway€were€approximately€50%,€and€55%,Ð h Ðrespectively.€Attraction€efficiency€of€white€suckers€at€the€east€fishway€was€approximatelyÐ à0 Ð59%,€and€passage€efficiency€was€38%.€The€attraction€and€passage€efficiencies€ofÐ ¨ø Ðsmallmouth€bass€at€the€west€fishway€were€approximately€82%€and€36%,€respectively.€AtÐ pÀ Ðthe€east€fishway,€attraction€efficiency€of€smallmouth€bass€was€approximately€55%,€andÐ 8ˆ Ðpassage€efficiency€was€33%.€There€was€an€exponential€decline€in€the€numbers€of€bothÐ P Ðspecies€that€used€each€fishway€relative€to€water€velocity.€The€maximum€water€velocityÐ È Ðused€by€white€suckers€was€0.96€m/s€and€that€used€by€smallmouth€bass€was€0.99€m/s.Ð à ÐDistracting€flows€near€the€west€fishway€appeared€to€affect€attraction.€Both€fishwaysÐ X¨ Ðpassed€equal€numbers€of€smallmouth€bass€per€year,€and€smallmouth€bass€that€used€theÐ  p Ðeast€fishway€were€significantly€larger€than€individuals€that€used€the€west€fishway.€InÐ è8 Ðcontrast,€more€than€twice€as€many€white€suckers€used€the€west€fishway,€and€these€fishÐ °  Ðwere€significantly€larger€than€those€that€used€the€east€fishway.€Differences€in€passageÐ xÈ! Ðwere€related€to€burst€and€critical€swimming€speeds€and€the€use€of€velocity€refugia€withinÐ @" Ðthe€fishways.Ð  X# ÐÓ ¨ýXÓÐ Ð $ ÐÐ ˜!è% Ð78.à 4 àBurkhardt,€R.€W.,€M.€Stopyro,€E.€Kramer,€A.€Bartels€and€M.€C.€Bowler€(1998).€€AnnualÐ `"°& ÐStatus€Report,€1997:€A€Summary€of€fish€data€in€six€reaches€of€the€Upper€MississippiÐ (#x' ÐRiver€System.€USGS€Long€Term€Resource€Monitoring€Program,€Report€LTRMP„98„Ð ð#@( ÐP008.Ð ¸$ ) Ðà 4 àÌÓ X¨ýÓThe€Long€Term€Resource€Monitoring€Program€(LTRMP)€completed€2,797Ð H&˜!+ Ðcollections€of€fishes€from€stratified€random€and€permanently€fixed€sampling€locations€inÐ '`", Ðsix€study€reaches€of€the€Upper€Mississippi€River€System€during€1997.€The€six€LTRMPÐ Ø'(#- Ðstudy€reaches€are€Pools€4€(excluding€Lake€Pepin),€8,€13,€and€26€of€the€Upper€MississippiÐ  (ð#. ÐRiver,€an€unimpounded€reach€of€the€Mississippi€River€near€Cape€Girardeau,€Missouri,Ð h)¸$/ Ðand€the€La€Grange€Pool€of€the€Illinois€River.€A€total€of€66„€76€fish€species€were€detectedÐ 0*€%0 Ðin€each€study€reach.€For€each€of€the€six€LTRMP€study€reaches,€this€report€containsÐ ø*H&1 Ðsummaries€of:€(1)€sampling€efforts€for€each€combination€of€gear€type€and€aquatic€areaÐ À+'2 Ðclass;€(2)€total€catches€of€each€species€from€each€gear€type;€(3)€mean€catch„per„unit€ofÐ ˆ,Ø'3 Ðeffort€statistics€and€standard€errors€for€common€species€from€each€combination€of€aquaticÐ P- (4 Ðarea€class€and€selected€gear€type;€and€(4)€length€distributions€of€common€species€fromÐ ° Ðselected€gear€types.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ð79.à 4 àCada,€G.€F.€(1998).€€Fish€Passage€Mitigation€at€Hydroelectric€Power€Projects€in€theÐ Ð  ÐUnited€States.€Pages€€208„219€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€FishÐ ˜è ÐMigration€and€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð ` ° Ðà 4 àÌÓ X¨ýÓRecent€efforts€of€the€US€Department€of€Energy's€(DOE)€Hydropower€ProgramÐ ð @ Ðhave€focused€on€the€mitigation€of€adverse€effects€of€dams€on€upstream€and€downstreamÐ ¸   Ðfish€passage.€An€initial€study€of€707€recently€licensed€hydropower€projects€in€the€UnitedÐ € Ð  ÐStates€indicated€that€approximately€11%€were€required€to€provide€upstream€fish€passageÐ H ˜  Ðand€28%€were€required€to€provide€downstream€fish€passage.€Despite€considerable€effortÐ `  Ðto€design€and€install€fish€passage€devices,€many€projects€had€no€detailed€performanceÐ Ø(  Ðcriteria€and€no€performance€monitoring€requirements.€A€follow„up€study€examined€theÐ  ð  Ðeffectiveness€of€fish€passage€mitigative€measures€at€16€hydropower€projects€that€hadÐ h¸  Ðconducted€performance€monitoring.€Fish€ladders€and€lifts€can€be€very€effective€in€movingÐ 0€  Ðfish€upstream€past€a€dam;€some€of€the€case€study€projects€were€nearly€100%€effective.Ð øH  ÐThree€of€the€12€case€studies€with€downstream€passage€measures€have€successfullyÐ À Ðincreased€the€survival€of€downstream„migrating€fish.€However,€in€other€instances€theÐ ˆØ Ðdevices€have€failed€or,€more€commonly,€operational€monitoring€has€not€been€adequate€toÐ P  Ðmake€a€judgement€about€their€effectiveness.€As€an€alternative€to€downstream€fish€passageÐ h Ðscreening,€the€DOE€Advanced€Hydropower€Turbine€Systems€Program€has€begun€aÐ à0 Ðphased€effort€to€design,€build€and€test€fishfriendly€turbines,€i.e.€turbine€systems€in€whichÐ ¨ø Ðenvironmental€attributes€such€as€entrainment€survival,€instream€flow€needs,€and/or€waterÐ pÀ Ðquality€enhancement€are€emphasised.€Such€turbine€systems€could€allow€the€efficientÐ 8ˆ Ðgeneration€of€electricity€while€miniraising€the€damage€to€fish€and€their€habitats.Ð P ÐÐ È ÐÓ ¨ýXÓÐ à Ð80.à 4 àCairns,€J.,€Jr.€(1995).€€Ecological€integrity€of€aquatic€systems.€Regulated€Rivers:Ð X¨ ÐResearch€&€Management.€€ò ò11ó ó:313„323.Ð  p Ðà 4 àÌÓ X¨ýÓFocusing€on€the€ecological€integrity€of€large€river€systems€has€suggested€theÐ °  Ðrethinking€of€the€entire€issue€from€a€landscape€perspective.€Ecological€integrity€isÐ xÈ! Ðimpossible€without€biological€integrity.€However,€it€appears€improbable€that€highlyÐ @" Ðlocalized€measures€of€biological€integrity€can€be€used€for€effective,€scientificallyÐ  X# Ðjustifiable€extrapolations€to€landscape„€or€system„level€ecological€integrity.€It€may€beÐ Ð $ Ðmore€reasonable€to€make€measurements€at€the€level€of€organization€of€interest,€i.e.€largerÐ ˜!è% Ðspatial€and€temporal€scales.€In€addition,€human€society€and€natural€systems€have€beenÐ `"°& Ðcoevolving€since€the€agricultural€revolution€and,€arguably,€well€before€then.€Two€types€ofÐ (#x' Ðcoevolution€between€human€society€and€natural€systems€appear€possible:€(1)€an€'arms„Ð ð#@( Ðrace'€in€which€human€society€ignores€changes€in€natural€systems„essential€ecosystemÐ ¸$ ) Ðservices€are€lost,€resulting€in€unpleasant€consequences€for€society;€or€(2)€mutualism€inÐ €%Ð * Ðwhich€environmental€literacy€and€a€feeling€of€responsibility€for€natural€systems€motivateÐ H&˜!+ Ðrapid€societal€response€to€ecosystem€changes€and€the€preservation€of€ecological€integrity.Ð '`", ÐThe€simplest€measures€of€ecological€integrity€may€be€the€actions€of€human€society€likelyÐ Ø'(#- Ðto€minimize€or€markedly€reduce€negative€impacts€on€natural€systems.€This€does€not€meanÐ  (ð#. Ðsubstituting€such€measures€for€more€customary€ecological€measures,€but€rather€using€bothÐ h)¸$/ Ðtypes€of€measurements€simultaneously.Ð 0*€%0 ÐÐ ø*H&1 Ðâ âÓ ¨ýXÓÐ À+'2 Ð81.à 4 àCambray,€J.€A.€(1990).€€Adaptive€significance€of€a€longitudinal€migration€by€juvenileÐ ° Ðfreshwater€fish€in€the€Gamtoos€River€system,€South€Africa.€South€Africa€Journal€ofÐ xÈ ÐWildlife€Research.€€ò ò20ó ó:148„156.Ð @ Ðâ âà 4 àÌÓ X¨ýÓAfter€flooding€of€the€Groot€River,€the€major€tributary€of€the€Gamtoos€RiverÐ Ð  Ðsystem,€during€March€1988€several€species€of€freshwater€fish€underwent€a€mass€upstreamÐ ˜è Ðmigration.€The€dominant€group€of€fish€consisted€of€juvenile€moggel€òòLabeo€umbratusóó€.Ð ` ° ÐThere€were€also€small„scale€redfin€minnows€òòPseudobarbus€asperóó€,€Mozambique€tilapiaÐ ( x ÐòòOreochromis€mossambicusóó€and€several€chubbyhead€barbs€òòBarbus€anoplusóó€.€FishÐ ð @ Ðaccumulated€below€a€weir€and€began€to€migrate€late€in€the€morning.€Migration€activityÐ ¸   Ðcontinued€throughout€the€afternoon€until€dusk€when€the€fish€dispersed€downstream.€TheÐ € Ð  Ðobserved€movement€of€fish€was€clearly€a€diurnal€migration.€The€weir€had€altered€theÐ H ˜  Ðgeneral€riverine€habitat€and€influenced€the€natural€migratory€movement€of€fish€within€theÐ `  ÐGamtoos€River€system.€Data€are€presented€which€would€be€useful€in€the€design€of€aÐ Ø(  Ðfishway€at€this€weir.Ð  ð  ÐÓ ¨ýXÓÐ h¸  ÐÐ 0€  Ð82.à 4 àCarter,€B.€T.€(1954).€€The€movement€of€fishes€through€navigation€lock€chambers€in€theÐ øH  ÐKentucky€River.€Transactions€of€the€Kentucky€Academy€of€Science.€€ò ò15ó ó:48„56.Ð À Ðà 4 àÌÓ X¨ýÓThis€is€an€investigation€of€the€extent€to€which€fishes€use€navigation€locks€in€theÐ P  ÐKentucky€River.€€It€was€initiated€in€response€to€possible€discontinued€operations€at€lockÐ h Ð#7€of€the€Kentucky€River.€€Discontinued€operation€of€the€lock€and€dam€would€result€in€aÐ à0 Ðpermanent,€rather€than€a€semi„permanent,€barrier€to€fish€passage€above€lock€#7.Ð ¨ø ÐÓ ¨ýXÓÐ pÀ ÐÐ 8ˆ Ð83.à 4 àCasselman,€J.€M.,€T.€Penczak,€L.€Carl,€R.€H.€K.€Mann€and€J.€Holcik€(1990).€€AnÐ P Ðevaluation€of€fish€sampling€methodologies€for€large€river€systems.€Polskie€ArchiwumÐ È ÐHydrobiologii.€€ò ò37ó ó:521„551.Ð à Ðà 4 àÌÓ X¨ýÓFish€sampling€methodologies€for€large€rivers€were€reviewed€at€the€Large€RiverÐ  p ÐSymposium€by€surveying€64€diverse€sampling€methods,€their€application€and€efficiencyÐ è8 Ðunder€various€riverine€conditions,€diversity€of€habitat,€and€extreme€environmentalÐ °  Ðconditions€in€large€rivers.€Fishways€and€fish€ladders€are€uniquely€applicable€for€samplingÐ xÈ! Ðmigrating€fish€in€rivers,€especially€those€with€large€control€dams€or€high€flows.€RemoteÐ @" Ðsensing€by€stationary€hydroacoustics€has€been€used€where€spawning€migrations€areÐ  X# Ðassessed.€Trawling€may€be€used€where€the€current€is€relatively€slow.€There€are€noÐ Ð $ Ðstandardized€sampling€techniques€for€large€rivers€because€environmental€conditions€areÐ ˜!è% Ðoften€extremely€variable.€Usually€attempts€are€made€to€sample€selectively€only€thoseÐ `"°& Ðparts€of€the€river€that€have€low€flow€and€are€amenable€to€bottom„set€stationary€gear€suchÐ (#x' Ðas€gill€nets,€trap€nets,€and€other€fixed€gear.€Sampling€riverine€fishes€at€the€communityÐ ð#@( Ðlevel€is€much€more€difficult€and€requires€combining€the€results€of€several€types€ofÐ ¸$ ) Ðsampling€gear€(e.g.,€quantitative€sampling€using€electrofishing€or€explosives,€inÐ €%Ð * Ðcombination€with€large€lift€nets€or€block€off€nets).€Portable€fish€diversion€systems€existÐ H&˜!+ Ðthat€could€make€fish€sampling€in€large€rivers€much€more€efficient.€Some€of€theseÐ '`", Ðsystems,€such€as€portable€marine€fences,€weak€electric€fields,€bubble€currents,€andÐ Ø'(#- Ðhydrosonic€pulsers€could€be€used€to€direct€and€concentrate€fish€to€improve€the€actualÐ  (ð#. Ðsampling€procedure.€Because€environmental€conditions€are€more€variable€in€rivers€than€inÐ h)¸$/ Ðlakes,€it€is€essential€that€if€sampling€efficiencies€are€to€be€compared,€environmentalÐ 0*€%0 Ðconditions€must€be€the€same.€Sampling€of€fish€populations€in€rivers€where€discharge€isÐ ø*H&1 Ðvariable€should€be€conducted€in€relation€to€velocity,€rather€than€at€fixed€stations.Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð84.à 4 àCederholm,€C.€J.,€M.€D.€Kunze,€T.€Murota€and€A.€Sibatani€(1999).€€Pacific€salmonÐ ° Ðcarcasses:€Essential€contributions€of€nutrients€and€energy€for€aquatic€and€terrestrialÐ xÈ Ðecosystems.€Fisheries.€€ò ò24ó ó:6„15.Ð @ Ðà 4 àÌÓ X¨ýÓPacific€salmon€and€other€anadromous€salmonids€represent€a€major€vector€forÐ Ð  Ðtransporting€marine€nutrients€across€ecosystem€boundaries€(i.e.,€from€marine€toÐ ˜è Ðfreshwater€and€terrestrial€ecosystems).€Salmon€carcasses€provide€nutrients€and€energy€toÐ ` ° Ðbiota€within€aquatic€and€terrestrial€ecosystems€through€various€pathways.€In€this€paperÐ ( x Ðwe€review€and€synthesize€the€growing€number€of€studies€documenting€this€process€inÐ ð @ Ðdifferent€localities.€We€also€discuss€the€implications€for€maintaining€the€nutrient€feedbackÐ ¸   Ðsystem.€Our€findings€show€that€future€management€will€need€to€view€spawning€salmonÐ € Ð  Ðand€their€carcasses€as€important€habitat€components€for€sustaining€the€production€of€fishÐ H ˜  Ðas€well€as€other€salmon„dependent€species€within€watersheds.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð85.à 4 àChamani,€M.€R.€and€N.€Rajaratnam€(1999).€€Characteristics€of€skimming€flow€overÐ h¸  Ðstepped€spillways.€Journal€of€Hydraulic€Engineering.€€ò ò125ó ó:361„368.Ð 0€  Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€a€laboratory€study€on€the€characteristics€of€fullyÐ À Ðdeveloped€skimming€flow€in€a€large€model€of€a€stepped€spillway€for€two€slopes,€for€aÐ ˆØ Ðrange€of€discharges€with€yÔ2‚ÒP ÔcÔÎÿP ‚ÒÔ/h€in€the€range€of€0.7„4.4.€Fully€developed€aerated€flow€on€aÐ P  Ðstepped€spillway€can€be€divided€into€lower€and€upper€regions,€similar€to€those€for€self„Ð h Ðaerated€flow€in€steep€chutes.€The€air€concentration€distributions€in€these€two€regionsÐ à0 Ðagree€with€the€equations€developed€by€Straub€and€Anderson€for€flow€in€steep€chutes.€ItÐ ¨ø Ðwas€found€that€the€depth€at€which€the€air€concentration€is€equal€to€90%€can€be€consideredÐ pÀ Ðas€the€depth€of€aerated€flow€on€stepped€spillways.€In€the€lower€region,€the€velocityÐ 8ˆ Ðprofiles€were€described€by€the€Karman„Prandtl€equation€for€rough€turbulent€flow€whenÐ P Ðan€equivalent€bed€roughness€was€used.€A€correlation€was€developed€for€the€skin€frictionÐ È Ðcoefficient€to€predict€the€Reynolds€shear€stress€at€the€virtual€bed€of€the€stepped€spillway.Ð à ÐIt€was€found€that€the€relative€energy€loss€in€the€stepped€spillway€is€in€the€range€of€48„Ð X¨ Ð63%.€It€was€also€found€that€the€mean€air€concentration€on€a€stepped€spillway€is€largerÐ  p Ðthan€that€in€a€corresponding€chute.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð86.à 4 àCharlebois,€P.€M.,€R.€G.€Goettel,€D.€J.€Jude,€J.€E.€Marsden,€R.€K.€Wolfe€and€S.€RudnikaÐ @" Ð(1997).€€The€round€goby,€òòNeogobius€melanostomusóó€(Pallas),€a€review€of€European€andÐ  X# ÐNorth€American€literature.€INHS,€Special€Publication€20.Ð Ð $ Ðà 4 àÌÓ X¨ýÓWhen€a€nonindigenous€species€becomes€established€in€a€new€area,€the€scientificÐ `"°& Ðcommunity€often€is€asked€to€predict€potential€ecological€effects€and€range€expansion€ofÐ (#x' Ðthe€species.€In€order€to€make€these€predictions,€scientists€must€have€basic€biologicalÐ ð#@( Ðinformation€on€the€organism.€This€document€provides€the€scientific€community€withÐ ¸$ ) Ðbasic€biological€information€on€the€round€goby,€Neogobius€melanostomus€(Pallas),€whichÐ €%Ð * Ðentered€North€America€in€1990.€We€have€reviewed€the€currently€available€European€andÐ H&˜!+ ÐNorth€American€literature€and€compiled€a€comprehensive€bibliography€of€goby€literature,Ð '`", Ðincluding€annotations€and€abstracts.€We€also€have€included€a€listing€and€examples€ofÐ Ø'(#- Ðoutreach€materials€available€on€the€round€goby.€We€have€not€attempted€to€evaluate€theÐ  (ð#. Ðmaterial.€Obvious€typographical€errors€(e.g.,€misspellings)€in€the€published€abstracts€haveÐ h)¸$/ Ðbeen€corrected.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð87.à 4 àClancy,€C.€G.€and€D.€R.€Reichmuth€(1990).€€A€detachable€fishway€for€steep€culverts.Ð ˆ,Ø'3 ÐNorth€American€Journal€of€Fisheries€Management.€€ò ò10ó ó:244„246.Ð P- (4 Ðà 4 àÌÓ X¨ýÓA€fishway€constructed€of€angle€iron€and€reinforcing€bar€was€installed€in€a€high„Ð xÈ Ðgradient€culvert€to€allow€the€passage€of€Yellowstone€cutthroat€trout€òòOncorhynchus€clarkiÐ @ Ðbouvierióó€to€upstream€spawning€areas.€The€structure€was€detachable€from€the€culvert,Ð X Ðinexpensive,€and€portable.€The€fishery€was€still€effective€8€years€after€installation.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð88.à 4 àCochran,€P.€A.€(1993).€The€Fox€River€as€an€avenue€for€fish€dispersal.€Pages€€116€òòinóó€€36thÐ ( x ÐConference€of€the€€International€Association€for€Great€Lakes€Research,€De€Pere,Ð ð @ ÐWisconsin€(USA),€International€Association€for€Great€Lakes€Research.Ð ¸   Ðà 4 àÌÓ X¨ýÓDispersal€of€fishes€and€other€organisms€along€the€Fox€River€has€been€of€interestÐ H ˜  Ðfor€two€reasons.€First,€concerns€have€been€raised€about€the€potential€for€exotic€species€toÐ `  Ðspread€from€Green€Bay€up€to€lower€Fox€River€to€Lake€Winnebago€and€its€tributaries.Ð Ø(  ÐIndeed,€closure€of€the€Rapid€Croche€lock€in€1988€has€been€followed€by€the€appearance€ofÐ  ð  Ðwhite€perch€òòMorone€americanaóó,€sea€lamprey€òòPetromyzon€marinusóó,€and€zebra€musselsÐ h¸  ÐòòDriessena€polymorphaóó,€in€the€lower€river.€Second,€a€canal€dug€in€the€1800's€at€Portage,Ð 0€  ÐWisconsin,€connected€the€upper€Fox€River€and€the€Wisconsin€River€of€the€MississippiÐ øH  ÐRiver€drainage.€A€number€of€fishes€and€other€organisms€gained€access€to€the€Great€LakesÐ À Ðdrainage€through€this€connection.€Those€that€have€dispersed€all€the€way€to€Green€Bay€areÐ ˆØ Ðtypical€large€river€species,€whereas€species€typical€of€smaller€streams€have€beenÐ P  Ð"sidetracked"€into€the€Wolf€River€drainage.€The€suitability€of€the€Fox€River€as€a€dispersalÐ h Ðroute€has€apparently€been€enhanced€through€improvements€in€water€quality.€Over€fortyÐ à0 Ðfish€species€have€been€collected€in€recent€years€in€a€sea€lamprey€assessment€trap€set€in€theÐ ¨ø Ðlower€river.€These€include€several€species€typically€associated€with€habitats€of€highÐ pÀ Ðquality.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ðòò89.óóà 4 àCoker,€R.€E.€(1929).€€Keokuk€dam€and€the€fisheries€of€the€Upper€Mississippi€River.Ð à ÐUnited€States€Department€of€Commerce,€Bureau€of€Fisheries,€Document€1063.Ð X¨ Ðà 4 àÌÓ X¨ýÓA€detailed€account€of€the€Keokuk€dam€(the€first€dam€on€the€Upper€MississippiÐ è8 ÐRiver)€is€provided.€€Observations€on€the€Keokuk€dam€as€a€possible€obstruction€to€fish,€anÐ °  Ðaccount€of€the€migratory€movements€in€the€area€of€the€dam,€evidence€of€migration,€andÐ xÈ! Ðthe€effect€of€the€dam€on€myriad€physical€properties€of€the€river€are€tendered.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ðòò90.óóà 4 àCoker,€R.€E.€(1929).€€Studies€of€common€fishes€of€the€Mississippi€River€at€Keokuk.Ð ˜!è% ÐUnited€States€Department€of€Commerce,€Bureau€of€Fisheries,€Document€1072.Ð `"°& Ðà 4 àÌÓ X¨ýÓObservations€on€the€natural€history€of€a€wide€range€of€fish€species€found€in€theÐ ð#@( Ðarea€around€the€Keokuk€dam€during€and€after€construction€are€presented.€€Taxon€detailedÐ ¸$ ) Ðinclude€the€sturgeons,€gars,€paddlefish,€bowfin,€several€herring„like€species,€Americal€eel,Ð €%Ð * Ðseveral€catfish,€bass,€and€sucker€species,€perches,€buffalos,€pike,€lamprey,€and€drum.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð91.à 4 àColavecchia,€M.,€C.€Katopodis,€R.€Goosney,€D.€A.€Scruton€and€R.€S.€McKinley€(1998).€Ð  (ð#. ÐMeasurement€of€burst€swimming€performance€in€wild€Atlantic€salmon€(òòSalmo€salaróó€L.)Ð h)¸$/ Ðusing€digital€telemetry.€Regulated€Rivers:€Research€&€Management.€€ò ò14ó ó:41„51.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓSwimming€performance€of€wild€Atlantic€salmon€(òòSalmo€salaróó€L.)€wasÐ À+'2 Ðinvestigated€in€an€experimental€flume€using€coded€radio€signals.€To€calculate€swimmingÐ ˆ,Ø'3 Ðspeed,€distance€moved€and€time€elapsed€were€measured€with€a€digital€spectrum€processorÐ P- (4 Ðusing€near€real„time€spectrum€analysis.€This€device€was€designed€to€be€used€in€aÐ ° Ðcoprocessing€arrangement€with€a€receiver,€thereby€providing€pulse€position€codeÐ xÈ Ðdiscrimination,€verification€and€continuous€data€storage.€Radio„tagged€adults€(48.3€toÐ @ Ð54.8€cm€long)€voluntarily€swam€against€water€velocities,€ranging€from€1.32€to€2.85€m€sÔÎÿÖ&XÔ„1Ô2XÖ&Ô,Ð X Ðin€an€18€m€long€flume€at€a€mean€water€temperature€of€10.1€plus€or€minus€1.6€ÔÎÿžîÐ ÔoÔ2Ð žîÔC.€AtÐ Ð  Ðwater€velocities€of€1.32„1.55€m€sÔÎÿf¶˜èÔ„1Ô2˜èf¶Ô,€individuals€successfully€ascended€the€flume€atÐ ˜è Ðswimming€speeds€of€1.61„2.55€m€sÔÎÿ. ~` °Ô„1Ô2` °. ~Ô,€or€3.30„4.79€body€lengths€per€second€(l€sÔÎÿ. ~` °Ô„1Ô2` °. ~Ô),Ð ` ° Ðrespectively.€At€high€water€velocities€ranging€from€1.92€to€2.85€m€sÔÎÿö F( xÔ„1Ô2( xö FÔ,€individualÐ ( x Ðswimming€speeds€increased€from€2.55€to€3.60€m€sÔÎÿ¾ ð @Ô„1Ô2ð @¾ Ô,€or€4.94„7.27€l€sÔÎÿ¾ ð @Ô„1Ô2ð @¾ Ô,€respectively.Ð ð @ ÐHowever,€above€a€threshold€value€of€1.92€m€sÔÎÿ† Ö¸ Ô„1Ô2¸ † ÖÔ,€individuals€traversed€shorter€distancesÐ ¸   Ðand€were€unable€to€ascend€the€flume.€The€highest€swimming€speed€observed€was€4.13€mÐ € Ð  ÐsÔÎÿ fH ˜Ô„1Ô2H ˜ fÔ,€or€8.35€l€sÔÎÿ fH ˜Ô„1Ô2H ˜ fÔ.€The€results€of€this€study€indicate€that€in€addition€to€its€applicability€inÐ H ˜  Ðthe€determination€of€burst€swimming€speeds,€digital€telemetry€could€prove€a€useful€toolÐ `  Ðin€the€design€and€evaluation€of€future€fishways€and€culvert€installations.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð92.à 4 àColt,€J.€and€R.€J.€While,€eds.€(1991).€€Fisheries€Bioengineering€Symposium.€AmericanÐ 0€  ÐFisheries€Society,€Bethesda,€Maryland€(USA).Ð øH  Ðà 4 àÌÓ X¨ýÓSome€68€papers€are€presented€in€sections:€habitats;€fish€passage;€and€fishÐ ˆØ Ðhatcheries.€Each€contribution€is€abstracted€and€indexed€separately.Ð P  ÐÐ h ÐÓ ¨ýXÓÐ à0 Ð93.à 4 àConley,€S.€(1990).€€Upstream€downstream.€Atlantic€Salmon€Journal.€€ò ò39ó ó:30„31.Ð ¨ø Ðà 4 àÌÓ X¨ýÓThe€author€describes€the€efforts€of€one€man€to€manage€anadromous€fish,Ð 8ˆ Ðparticularly€with€respect€to€Connecticut€River€Atlantic€salmon€òòSalmo€salaróó€and€theÐ P Ðcomplicated€problem€of€fish€passage€„„€how€to€get€fish€around€the€many€formidableÐ È Ðbarriers€blocking€their€annual€migrations€to€and€from€the€sea.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ðòò94.óóà 4 àConover,€G.€A.€and€J.€M.€Grady€(2000).€€Mississippi€River€Basin€paddlefish€researchÐ è8 Ðcoded„wire€tagging€project€„€1998€Annual€Report.€Mississippi€Interstate€CooperativeÐ °  ÐResource€Association,€Annual€Report€.Ð xÈ! Ðà 4 àÌÓ X¨ýÓThis€most€recent€MICRA€report€provides€some€preliminary€analyses€ofÐ  X# Ðpaddlefish€movements€in€the€Mississippi€River€Basin€based€on€mark„recapture€studiesÐ Ð $ Ðusing€coded„wire€tagging€methods.€€Both€hatchery€reared€and€wild€fish€have€been€markedÐ ˜!è% Ðsince€1995.€€The€authors€report€on€paddlefish€growth€and€movements,€tagging€andÐ `"°& Ðsampling€effort,€recaptures,€and€the€progress€made€to€date€on€the€deveolpment€of€a€GISÐ (#x' Ðdatabase€that€will€permit€spatial€analysis€of€paddlefish€movements€throughout€theÐ ð#@( ÐMississippi€River€Basin.Ð ¸$ ) ÐÐ €%Ð * ÐÓ ¨ýXÓÐ H&˜!+ Ð95.à 4 àCopp,€G.€H.€(1989).€€The€habitat€diversity€and€fish€reproductive€function€of€floodplainÐ '`", Ðecosystems.€Environmental€Biology€of€Fishes.€€ò ò26ó ó:1„27.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓFish€reproduction€in€floodplain€ecosystems,€based€on€relative€abundance€andÐ h)¸$/ Ðtotal€biomass€of€0+€juveniles,€was€studied€using€the€synchronic€approach€to€typologicalÐ 0*€%0 Ðanalysis€in€conjunction€with€Point€Abundance€Sampling€by€modified€electrofishing.€In€3Ð ø*H&1 Ðdifferent€flood€plains€of€the€Upper€Rhone€River,€1015€point€samples€yielding€4573Ð À+'2 Ðjuveniles€(0+)€from€21€species€were€collected€from€48€ecosystems€of€variousÐ ˆ,Ø'3 Ðgeomorphological€origin.€The€results€demonstrate€the€lotic„to„lentic€succession€ofÐ P- (4 Ðfloodplain€ecosystems€to€be€a€series€of€non„sequential€reproductive€zones,€with€spawningÐ ° Ðconditions€being€reflected€by€the€specific€composition€and€guild€structure€of€the€YOYÐ xÈ Ðfish€assemblages.€The€habitat€diversity€and€the€fish€reproductive€potential€of€floodplainÐ @ Ðecosystems€are€strongly€influenced€by€geomorphological€origin€and€by€past€and€presentÐ X Ðhydrological€conditions.Ð Ð  ÐÓ ¨ýXÓÐ ˜è ÐÐ ` ° Ð96.à 4 àCowx,€I.€G.€(1998).€€Fish€passage€facilities€in€the€UK:€issues€and€options€for€futureÐ ( x Ðdevelopment.€Pages€€220„235€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€FishÐ ð @ ÐMigration€and€Fish€Bypass€Channels€Symposium,€Fishing€News€Books,€ViennaÐ ¸   Ð(Austria).Ð € Ð  Ðà 4 àÌÓ X¨ýÓProvision€for€the€migration€of€fish€has€a€long€tradition€in€the€UK.€However,€theÐ `  Ðmechanisms€by€which€it€has€been€achieved€have€varied€greatly€as€has€the€degree€ofÐ Ø(  Ðsuccess€in€maintaining€migratory€pathways.€Most€attention€has€focused€on€upstreamÐ  ð  Ðmigration€of€salmonids€past€medium€and€large€impoundments€(weirs€and€reservoir€dams).Ð h¸  ÐMore€recently,€attention€has€focused€on€using€alternative€channels,€such€as€canoeÐ 0€  Ðslaloms,€to€bypass€weirs€and€barrages,€and€improving€access€to€natural€spawning€bedsÐ øH  Ðpast€small€man„made€obstructions€such€as€road€culverts€and€badly€designed€or€locatedÐ À Ðlow€weirs€which€impede€upstream€movement.€In€recent€years,€in€the€face€of€decliningÐ ˆØ ÐEuropean€eel€Anguilla€anguilla€stocks€and€emphasis€on€improving€fishing€for€other€non„Ð P  Ðsalmonid€fishes,€provision€has€been€made€for€improving€upstream€migration€of€elvers€andÐ h Ðnon„salmonids€over€difficult€and€insurmountable€man„made€obstructions.€Legislation€andÐ à0 Ðprovision€for€the€design€of€fish€passage€facilities€for€migratory€salmonids€are€under€theÐ ¨ø Ðdirect€control€of€the€Environment€Agency.€They€impose€strict€guidelines€for€designingÐ pÀ Ðpasses€and€require€that€facilities€at€new€barrages,€particularly€in€estuaries,€are€adequatelyÐ 8ˆ Ðtested€before€they€are€given€approval.€With€increasing€pressure€on€improving€riverÐ P Ðfisheries€and€the€environment,€there€are€many€rivers€now€being€considered€forÐ È Ðrehabilitation.€This€includes€providing€fish€passage€facilities€at€the€many€weirs€built€onÐ à Ðrivers€in€the€industrial€past€to€providing€renewed€access€to€the€headwater€spawning€andÐ X¨ Ðnursery€areas.€To€date,€little€attention€has€been€paid€to€the€economics€of€such€activitiesÐ  p Ðbut€this€situation€is€changing€rapidly€and€demands€for€cost€benefit€analysis€are€beingÐ è8 Ðimposed.€An€example€is€described€where€the€decision€to€build€fish€passes€on€the€manyÐ °  Ðweirs€impeding€upstream€migration€was€deferred€on€economic€grounds.€Finally,€there€areÐ xÈ! Ðsome€controversial€situations,€where€passage€past€natural€barriers€to€previouslyÐ @" Ðinaccessible€spawning€and€nursery€grounds€are€discussed.Ð  X# ÐÐ Ð $ ÐÓ ¨ýXÓÐ ˜!è% Ð97.à 4 àCurtis,€G.€L.,€J.€S.€Ramsey€and€D.€L.€Scarnecchia€(1997).€€Habitat€use€and€movements€ofÐ `"°& Ðshovelnose€sturgeon€in€Pool€13€of€the€Upper€Mississippi€River€during€extreme€low€flowÐ (#x' Ðconditions.€Environmental€Biology€of€Fishes.€€ò ò50ó ó:175„182.Ð ð#@( Ðà 4 àÌÓ X¨ýÓWe€monitored€habitat€use€and€movement€of€27€adult€shovelnose€sturgeon€in€PoolÐ €%Ð * Ð13€of€the€Upper€Mississippi€river,€Iowa„Illinois,€by€radio„telemetry€in€April€throughÐ H&˜!+ ÐAugust€1988.€Our€objective€was€to€determine€the€response€of€this€species€to€unusuallyÐ '`", Ðlow€water€conditions€in€the€Upper€Mississippi€River€in€1988.€Most€(94%)€telemetryÐ Ø'(#- Ðcontacts€were€made€in€3€habitat€types:€main€channel€(50%),€main€channel€border€whereÐ  (ð#. Ðwing€dams€were€present€(29%),€and€tailwaters€of€Lock€and€Dam€12€(15%).€Habitat€use€inÐ h)¸$/ Ðspring€was€affected€by€the€extreme€low€flows.€We€often€found€tagged€shovelnoseÐ 0*€%0 Ðsturgeon€in€the€main€channel€and€tailwaters€during€the€spring€period€(11€March„20€May)Ð ø*H&1 Ðwhere€water€velocities€were€highest.€This€was€in€contrast€to€other€sites€where€shovelnoseÐ À+'2 Ðsturgeon€did€not€occupy€those€areas€during€years€with€normal€spring€flows.€ShovelnoseÐ ˆ,Ø'3 Ðsturgeon€were€typically€found€in€areas€with€a€sand€bottom,€mean€water€depth€of€5.8€m,Ð P- (4 Ðand€mean€bottom€current€velocity€of€0.23€m€secÔÎÿ~Îÿ°Ô„1Ô2°~ÎÿÔ.€They€occupied€areas€of€swifter€currentÐ ° Ðbut€were€not€always€found€in€the€fastest€portion€o€f€the€pool,€and€we€observed€noÐ xÈ Ðemigration€from€the€study€pool.€Linear€total€range€of€movement€from€the€tagging€siteÐ @ Ðranged€from€1.9€to€54.5€km€during€the€study€period.Ð X ÐÐ Ð  ÐÓ ¨ýXÓÐ ˜è Ð98.à 4 àDahlberg,€M.€L.,€D.€L.€Shumway€and€P.€Doudorff€(1968).€€Influence€of€dissolved€oxygenÐ ` ° Ðand€carbon€dioxide€on€swimming€performance€of€largemouth€bass€and€coho€salmon.Ð ( x ÐJournal€of€the€Fisheries€Research€Board€of€Canada.€€ò ò25ó ó:49„70.Ð ð @ Ðà 4 àÌÓ X¨ýÓThe€final€swimming€speed€of€juvenile€largemouth€bass,€òòMicropterus€salmoidesóó,Ð € Ð  Ðwas€reduced€markedly€at€oxygen€concentrations€below€5€or€6€mg€/liter€in€tests€at€25€ÔÎÿ fH ˜ÔoÔ2H ˜ fÔC€inÐ H ˜  Ða€tubular€chamber€in€which€the€velocity€of€water€was€increased€gradually,€at€10€minuteÐ `  Ðintervals,€until€the€fish€were€forced€by€the€current€permanently€against€a€screen.€€At€levelsÐ Ø(  Ðabove€6€mg€per€liter,€the€final€swimming€speed€was€virtually€independent€of€the€oxygenÐ  ð  Ðconcentration.€€The€performance€of€bass€that€had€been€acclimated€overnight€to€elevatedÐ h¸  Ðcarbon€dioxide€levels€was€not€materially€affected€by€the€highest€tested€concentrations€ofÐ 0€  Ðfree€current€dioxide,€averaging€48€mg€per€liter,€at€any€tested€level€of€dissolved€oxygen.€Ð øH  ÐFor€juvenile,€coho€salmon,€òòOnchorynchus€kisutchóó,€at€temperatures€near€20€ÔÎÿŽÞ ÀÔoÔ2ÀŽÞ ÔC€and€carbonÐ À Ðdioxide€concentrations€near€2€mg€per€liter,€any€considerable€reduction€of€the€oxygenÐ ˆØ Ðconcentration€from€about€9€mg€per€liter,€the€air„saturation€level,€resulted€in€someÐ P  Ðreduction€of€the€final€swimming€speed.€€The€performance€of€the€salmon€was€impairedÐ h Ðmuch€more€markedly€than€was€that€of€the€bass€by€the€same€reduction€of€the€oxygenÐ à0 Ðconcentration.€€At€oxygen€concentrations€near€and€above€the€air„saturation€level,€highÐ ¨ø Ðconcentrations€of€free€carbon€dioxide,€averaging€15€and€61€mg€per€liter,€had€a€depressingÐ pÀ Ðeffect€on€the€final€swimming€speed€of€coho€salmon,€even€after€overnight€acclimation.€Ð 8ˆ ÐHowever,€this€effect€decreased€at€reduced€oxygen€and€concentrations.€€No€measurementÐ P Ðeffect€of€free€carbon€dioxide€concentrations€near€61€mg€per€liter€was€evident€at€2€mg€perÐ È Ðliter€dissolved€oxygen,€and€concentrations€near€18€mg€per€liter€had€little€or€no€effect€evenÐ à Ðat€moderately€reduced€dissolved€oxygen€levels€after€overnight€acclimation€of€the€salmonÐ X¨ Ðto€these€carbon€dioxide€concentrations.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð99.à 4 àDaum,€D.€W.€and€B.€M.€Osborne€(1998).€€Use€of€fixed„location,€split„beam€sonar€toÐ xÈ! Ðdescribe€temporal€and€spatial€patterns€of€adult€fall€chum€salmon€migration€in€theÐ @" ÐChandalar€River,€Alaska.€North€American€Journal€of€Fisheries€Management.€€ò ò18ó ó:477„Ð  X# Ð486.Ð Ð $ Ðà 4 àÌÓ X¨ýÓFixed„location,€split„beam€hydroacoustics€was€used€to€describe€temporal€andÐ `"°& Ðspatial€patterns€of€upstream„swimming€fall€chum€salmon€òòOncorhynchus€ketaóó€in€theÐ (#x' ÐChandalar€River,€a€tributary€of€the€Yukon€River,€Alaska.€Split„beam€techniques€allow€forÐ ð#@( Ðthree„dimensional€tracking€of€fish€targets€as€they€pass€through€the€sonar€beam.€Elliptical„Ð ¸$ ) Ðbeam€transducers€were€deployed€from€opposite€river€banks€to€optimize€acoustic€coverageÐ €%Ð * Ðand€were€aimed€perpendicular€to€the€current.€Sonar€systems€were€operated€continuouslyÐ H&˜!+ Ðfrom€August€8€through€September€22,€1996.€Acoustic€data€on€positional€information€ofÐ '`", Ð204,153€upstream„traveling€chum€salmon€were€collected.€Diel€patterns€in€hourly€passageÐ Ø'(#- Ðrates€differed€between€banks.€On€the€left€bank,€chum€salmon€passage€was€highest€duringÐ  (ð#. Ðnighttime€hours.€On€the€right€bank,€fish€did€not€show€any€consistent€trend€in€diel€passageÐ h)¸$/ Ðrates.€Chum€salmon€were€generally€shore€oriented€and€swam€near€the€river€bottom.Ð 0*€%0 ÐDuring€daylight€hours,€fish€were€further€offshore€and€closer€to€the€bottom€than€duringÐ ø*H&1 Ðnight.€Besides€providing€accurate€counts€of€fish€passage,€riverine€split„beamÐ À+'2 Ðhydroacoustics€proved€a€nonintrusive€method€for€studying€the€migratory€behavior€of€fish.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð100.à 4 àDe€Carvalho,€J.€L.€and€B.€De€Merona€(1986).€€[Studies€on€two€migratory€fish€from€LowerÐ xÈ ÐTocantins€River€before€closure€of€Tucurui€Dam].€Amazoniana.€€ò ò4ó ó:595„607.Ð @ Ðà 4 àÌÓ X¨ýÓMigratory€fish€species€are€generally€the€most€important€species€for€the€fishingÐ Ð  Ðindustry€as€well€as€for€artesanal€fishing.€In€the€lower€Tocantins,€Brazil,€two€species€ofÐ ˜è Ðmigratory€fish€dominate€the€captures:€the€mapara€òòHypophthalmus€marginatusóó€and€theÐ ` ° Ðcurimata€òòProchilodus€nigricansóó.€These€species€were€studied€before€the€damming€of€thisÐ ( x Ðriver€by€the€Tucurui€hydroelectric€dam€as€part€of€a€larger€study€of€commercial€fisheriesÐ ð @ Ðencompassing€the€Tocantins€basin€from€the€mouth€to€Maraba€(Para).€Based€principally€onÐ ¸   Ðlanding€records,€this€study€describes€the€migration€cycles€of€the€two€species.€A€classicalÐ € Ð  Ðand€simple€pattern€of€migration€can€be€recognized:€an€upstream€movement€of€immatureÐ H ˜  Ðforms€and€adults€in€the€upper€part€of€the€distribution€area,€and€the€reverse€or€downstreamÐ `  Ðmovement€of€larvae€and€adults€in€a€dispersion€phase.€The€main€difference€between€theseÐ Ø(  Ðtwo€species€lies€in€the€size€of€the€distribution€area.€The€mapara€is€limited€to€part€of€theÐ  ð  Ðriver€downstream€from€the€dam,€and€so€would€not€be€affected€by€its€presence.€TheÐ h¸  Ðcurimata€has€a€much€larger€geographic€range€in€the€Tocantins€basin.€The€part€of€theÐ 0€  Ðpopulation€living€downstream€will€probably€be€profoundly€perturbed€by€the€dam€due€toÐ øH  Ðthe€blockage€of€its€migratory€route.Ð À ÐÐ ˆØ ÐÓ ¨ýXÓÐ P  Ð101.à 4 àDominy,€C.€L.€(1971).€€Changes€in€blood€lactic€acid€concentrations€in€alewives€òòAlosaÐ h Ðpseudoharengusóó€during€passage€through€a€pool€and€weir€fishway.€Journal€of€the€FisheriesÐ à0 ÐResearch€Board€of€Canada.€€ò ò28ó ó:1215„1217.Ð ¨ø Ðà 4 àÌÓ X¨ýÓBlood€lactic€acid€concentration€of€anadromous€òòA.€pseudoharengusóó€sampledÐ 8ˆ Ðduring€their€upstream€migration€through€a€pool€and€weir€fishway€was€not€extremely€highÐ P Ð(46.7€mg/100€ml)€and€the€degree€of€exercise€exhibited€during€ascent€was€judged€to€beÐ È Ðmoderate.€for€fish€that€were€subjected€experimentally€to€severe€exercise,€theÐ à Ðconcentration€(108.7€mg/100€ml)€was€more€than€5€times€that€for€rested€fish€(18.9€mg/100Ð X¨ Ðml).€of€the€3€groups€of€fish€sampled€directly€from€the€fishway€pools,€only€1€had€anÐ  p Ðaverage€concentration€that€differed€significantly€from€that€for€the€rested€state.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð102.à 4 àDominy,€C.€L.€(1973).€€Effect€of€entrance„pool€weir€elevation€and€fish€density€on€passageÐ @" Ðof€alewives€òòAlsoa€pseudoharengusóó€in€a€pool€and€weir€fishway.€Transactions€of€theÐ  X# ÐAmerican€Fisheries€Society.€€ò ò102ó ó:398„404.Ð Ð $ Ðà 4 àÌÓ X¨ýÓA€comparison€of€the€rates€of€passage€of€alewives€òòAlosa€pseudoharengusóó€into€aÐ `"°& Ðpool€and€weir€fishway€throughout€the€peak€of€the€alewife€run€(22€May€„€6€June)€in€aÐ (#x' ÐNova€Scotia€river€revealed€that€one€entrance€weir,€built€at€an€elevation€0.21€m€(8.0€in)Ð ð#@( Ðlower€than€the€existing€conventional€weir,€passed€alewives€at€a€significantly€greater€meanÐ ¸$ ) Ðrate€(65.25/min)€than€the€conventional€weir€(23.25/min).€€The€mean€rate€of€passage€ofÐ €%Ð * Ðalewives€from€pool€to€pool€within€the€fishway€(37.59/min)€was€not€significantly€greaterÐ H&˜!+ Ðor€less€than€the€mean€rate€for€either€of€the€entrance€weirs.€€Density€tests€at€twoÐ '`", Ðintermediate€fishway€pools€revealed€that€the€relationship€between€alewife€density€andÐ Ø'(#- Ðexit€rate€may€be€described€by€a€curve€that€rises€to€a€peak€exit€rate€of€80/min€at€a€densityÐ  (ð#. Ðof€75mÔÎÿ6)†$h)¸$Ô3Ô2h)¸$6)†$Ô€and€then€levels€of€to€70€/min€at€higher€densities.€€It€is€concluded€that€crowdingÐ h)¸$/ Ðand€delay€is€not€likely€to€occur€within€the€fishway€at€the€peak€of€the€alewife€run.€€ValuesÐ 0*€%0 Ðfor€substitution€in€the€formula€of€Clay€(1961)€for€calculating€fishway€capacity€determinedÐ ø*H&1 Ðfor€the€alewife€show€that€this€species€does€not€require€any€more€time€per€fishway€poolÐ À+'2 Ðthan€Pacific€salmon€and€that€the€demands€of€alewives€on€water€volume€are€about€sixÐ ˆ,Ø'3 Ðtimes€less€than€for€Pacific€salmon.€€These€determinations€permit€more€generalÐ P- (4 Ðapplication,€by€fisheries€resource€biologists€and€engineers,€of€the€data€presented€onÐ ° Ðcrowding,€delay€and€capacity€for€alewives€in€a€pool€and€weir€fishway.Ð xÈ ÐÓ ¨ýXÓÐ @ ÐÐ X Ð103.à 4 àDuncan,€R.€E.€and€P.€A.€Thiel€(1983).€€A€survey€of€the€mussel€densities€in€Pool€10€of€theÐ Ð  ÐUpper€Mississippi€River.€U.S.€Fish€and€Wildlife€Service,€Fisheries€Resource€Office,Ð ˜è ÐTechnical€Bulletin€139.Ð ` ° Ðà 4 àÌÓ X¨ýÓImpoundment,€water€quality,€and€other€factors€have€had€an€impact€on€the€musselÐ ð @ Ðfauna€of€the€Upper€Mississippi€River.€The€primary€objective€of€this€survey€was€toÐ ¸   Ðquantitatively€define€the€diversity€and€relative€density€of€the€mussel€community€in€PoolÐ € Ð  Ð10€of€the€river.€Pool€10€extends€from€Lock€and€Dam€No.€9€near€Lynxville,€Wisconsin,€toÐ H ˜  ÐLock€and€Dam€No.€10€at€Guttenberg,€Iowa€,€a€total€of€32.8€river€miles.€Of€the€309€sitesÐ `  Ðsampled,€mussels€were€found€at€224€sites,€or€72%.€The€East€Channel€near€Prairie€duÐ Ø(  ÐChien,€Wisconsin€had€the€richest€mussel€fauna€with€an€average€density€of€2.964€musselsÐ  ð  Ðper€square€foot;€and€only€6%€of€the€sites€were€nonproductive.€The€lower€end€of€Pool€10Ð h¸  Ðhad€the€lowest€mussel€density€at€0.655€per€square€foot€and€the€highest€percentage€ofÐ 0€  Ðnonproductive€sites,€38%.€The€mussel€density€in€the€main€channel€border€was€two€timesÐ øH  Ðgreater€than€in€the€main€channel€and€backwater.€A€total€of€12,150€live€specimensÐ À Ðrepresenting€31€species€of€freshwater€mussels€were€collected€from€Pool€10;€an€additionalÐ ˆØ Ð7€species€were€represented€only€by€dead€specimens.€Threeridge,€òòAmblema€plicataóó,€wasÐ P  Ðby€far€the€most€abundant€mussel€species,€comprising€52.9%€of€the€catch€and€having€anÐ h Ðaverage€density€of€0.832€per€square€foot.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð104.à 4 àDurbin,€A.€G.,€S.€W.€Nixon€and€C.€A.€Oviatt€(1979).€€Effects€of€the€spawning€migrationÐ 8ˆ Ðof€the€alewife,€òòAlosa€pseudoharengusóó,€on€freshwater€ecosystems.€Ecology.€€ò ò60ó ó:8„17.Ð P Ðà 4 àÌÓ X¨ýÓThe€influx€of€large€numbers€of€òòA.€pseudoharengusóó€,€into€relatively€smallÐ à Ðfreshwater€systems€may€have€a€considerable€impact€upon€pre„established€food€chains€andÐ X¨ Ðnutrient€cycles.€The€total€nutrient€input€to€Pausacaco€Pond,€Rhode€Island,€USA,€fromÐ  p Ðalewives€is€estimated€to€amount€to€0.43€g€P,€2.7€g€N,€and€16.8€g€C/mÔÎÿ¶è8Ô2Ô2è8¶Ô€over€a€2„monthÐ è8 Ðperiod.€This€is€largely€through€mortality€of€the€spawning€fish,€and€to€a€lesser€extentÐ °  Ðthrough€excretion.€These€inputs€were€much€greater€than€the€eventual€nutrient€loss€to€theÐ xÈ! Ðsystem€through€emigration€of€juvenile€fish.€In€tank€experiments€using€pond€microcosms,Ð @" Ðthe€initial€response€to€the€addition€of€the€fish€was€a€large€phytoplankton€bloom€and€anÐ  X# Ðincrease€in€litter€respiration.€The€phytoplankton€bloom€was€shortlived,€and€the€mostÐ Ð $ Ðlasting€effect€was€an€increase€in€production€and€respiration€in€the€leaf€litter.€ThisÐ ˜!è% Ðincreased€production€in€the€litter€community€would€support€a€long€lasting€supply€ofÐ `"°& Ðinsect€and€benthic€invertebrate€food€for€young€fish.€The€respiration€rate€of€autumn€leavesÐ (#x' Ðincubated€in€alewife€streams€during€the€migration€was€significantly€higher€than€that€ofÐ ð#@( Ðleaves€incubated€simultaneously€in€a€stream€which€had€no€alewife€run.€Respiration€ratesÐ ¸$ ) Ðof€leaves€incubated€in€the€same€streams€before€the€arrival€of€alewives€did€not€differÐ €%Ð * Ðsignificantly.€The€increase€in€litter€respiration,€an€indication€of€microbial€and€invertebrateÐ H&˜!+ Ðactivity€on€the€leaf€surface,€was€attributed€to€the€additional€nutrients€supplied€by€the€fish.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð105.à 4 àDynesius,€M.€and€C.€Nilsson€(1994).€€Fragmentation€and€flow€regulation€of€river€systemsÐ h)¸$/ Ðin€the€northern€third€of€the€world.€Science.€€ò ò266ó ó:753„762.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓSeventy„seven€percent€of€the€total€water€discharge€of€the€139€largest€riverÐ À+'2 Ðsystems€in€North€America€north€of€Mexico,€in€Europe,€and€in€the€republics€of€the€formerÐ ˆ,Ø'3 ÐSoviet€Union€is€strongly€or€moderately€affected€by€fragmentation€of€the€river€channels€byÐ P- (4 Ðdams€and€by€water€regulation€resulting€from€reservoir€operation,€interbasin€diversion,€andÐ ° Ðirrigation.€The€remaining€free„flowing€large€river€systems€are€relatively€small€and€nearlyÐ xÈ Ðall€situated€in€the€far€north,€as€are€the€59€medium„sized€river€systems€of€Norway,Ð @ ÐSweden,€Finland,€and€Denmark.€These€conditions€indicate€that€many€types€of€riverÐ X Ðecosystems€have€been€lost€and€that€the€populations€of€many€riverine€species€have€becomeÐ Ð  Ðhighly€fragmented.€To€improve€the€conservation€of€biodiversity€and€the€sustainable€useÐ ˜è Ðof€biological€resources,€immediate€action€is€called€for€to€create€an€internationalÐ ` ° Ðpreservation€network€of€free„flowing€river€systems€and€to€rehabilitate€exploited€rivers€inÐ ( x Ðareas€that€lack€unaffected€watercourses.Ð ð @ ÐÓ ¨ýXÓÐ ¸   ÐÐ € Ð  Ð106.à 4 àEberstaller,€J.€and€C.€Gumpinger€(1997).€€Low„gradient€nature„like€bypass€channel€on€theÐ H ˜  Ðriver€Pielach.€Osterreichs€Fischerei.€€ò ò50ó ó:47„51.Ð `  Ðà 4 àÌÓ X¨ýÓThis€low„gradient€bypass€channel€at€the€"Tessmer„Wehr",€on€the€river€Pielach,€isÐ  ð  Ðthe€first€of€its€kind€(i.e.€without€vertical€drops)€in€the€province€of€Lower€Austria.€TheÐ h¸  Ðauthors€know€of€only€one€other€such€bypass€constructed€in€Austria,€located€on€the€middleÐ 0€  Ðportion€of€the€river€Salzach.€The€morphology€of€the€bypass€channel€resembles€a€natural,Ð øH  Ðstructure„rich€tributary€of€the€Pielach€and€the€entrance€to€the€bypass€is€locatedÐ À Ðimmediately€beside€the€weir.€Both€factors€help€guarantee€permanent€passage€for€allÐ ˆØ Ðoccuring€species€and€their€corresponding€life€history€stages.€The€discharge€of€the€channelÐ P  Ðcorresponds€to€the€natural€discharge€regime€of€the€Pielach,€providing€optimal€conditionsÐ h Ðfor€passage€during€the€spring€spawning€migrations€of€the€dominant€occurring€species.Ð à0 ÐDetailed€plans€of€the€construction€were€not€made€before€hand,€in€order€to€allow€more€on„Ð ¨ø Ðsite€flexibility€whereby€trained€field€consultants€supervised€the€construction€crew€inÐ pÀ Ðcreating€a€highly€variable€and€more€nature„like€channel.€Particulary€important€in€reachingÐ 8ˆ Ðthis€goal€were€the€fine€adjustments€made€to€the€channel's€structure€after€the€flow€inlet€wasÐ P Ðopened€and€the€consultants€could€observe€potential€problem€areas€for€passing€fish.Ð È ÐÓ ¨ýXÓÐ à ÐÐ X¨ Ð107.à 4 àEberstaller,€J.,€M.€Hinterhofer€and€P.€Parasiewicz€(1998).€€The€effectiveness€of€twoÐ  p Ðnature„like€bypass€channels€in€an€upland€Austrian€river.€Pages€€363„383€òòinóó€€M.€Jungwirth,Ð è8 ÐS.€Schmutz€and€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,Ð °  ÐVienna€(Austria).Ð xÈ! Ðà 4 àÌÓ X¨ýÓIn€Austria,€the€construction€of€fishways€had€come€to€a€virtual€standstill€forÐ  X# Ðseveral€decades€because€existing€facilities€did€not€operate€effectively.€However,€anÐ Ð $ Ðincreasing€number€of€nature„like€bypass€channels€have€now€been€built.€These€new€bypassÐ ˜!è% Ðsystems€resemble€natural€streams€with€regard€to€morphology,€gradient,€hydraulicÐ `"°& Ðconditions€and€substrate€composition.€In€order€to€evaluate€the€effectiveness€of€these€newÐ (#x' Ðsystems,€two€such€constructions€were€studied€on€the€Mur€River,€in€southern€Austria.Ð ð#@( ÐWith€the€exception€of€adult€Danube€salmon€Hucho€hucho,€all€occurring€fish€species€andÐ ¸$ ) Ðtheir€respective€life„history€stages€were€documented€passing€through€the€channels.Ð €%Ð * ÐDuring€and€just€prior€to€their€spawning€season,€adult€European€grayling€ThymallusÐ H&˜!+ Ðthymallus€ascended€these€bypass€channels.€The€number€of€fish€caught€in€traps€at€the€topÐ '`", Ðof€the€bypasses€was€equal€to€17%€of€the€estimated€adult€populations€in€the€5.5€and€4.5Ð Ø'(#- Ðkm„long€tailwater€reaches€below€the€weirs.€Periodic€sampling€with€backpack€electroÐ  (ð#. Ðfishing€gear€demonstrated€that€both€channels€were€colonised€with€a€fish€assemblageÐ h)¸$/ Ðcorresponding€to€natural€tributaries€of€the€Mur€River.€Because€there€are€no€generallyÐ 0*€%0 Ðaccepted€criteria€for€evaluating€fish€passes,€four€criteria€were€established€a€priori€to€assessÐ ø*H&1 Ðthe€efficiency€of€these€bypass€channels.€Concerning€upstream€migration€only,€one€bypassÐ À+'2 Ðchannel€(Unzmarkt)€was€rated€as€'effective'€and€another€(Fisching)€as€'effective€to€highlyÐ ˆ,Ø'3 Ðeffective'.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð108.à 4 àEicher,€G.€J.€(1982).€€Fish€passage€in€New€South€Wales.€Fisheries.€€ò ò7ó ó:2„4.Ð xÈ Ðà 4 àÌÓ X¨ýÓThe€author€investigated€the€fisheries€of€New€South€Wales€in€relationship€toÐ X Ðdams.€It€is€recommended€that€fish€be€trapped€and€released€above€the€dams.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð109.à 4 àElvira,€B.,€G.€G.€Nicola€and€A.€Almodovar€(1998).€€A€catalogue€of€fish€passes€at€dams€inÐ ( x ÐSpain.€Pages€€203„207€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€Fish€MigrationÐ ð @ Ðand€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð ¸   Ðà 4 àÌÓ X¨ýÓAn€inventory€of€fish€passes€at€Spanish€dams€was€made,€and€their€effectivenessÐ H ˜  Ðand€level€of€maintenance€were€estimated.€A€total€of€108€passes€were€catalogued,€31%€ofÐ `  Ðwhich€were€constructed€after€1990.€These€passes€are€placed€at€weirs€and€dams€ofÐ Ø(  Ðmoderate€height€(1.5€to€25€m).€Many€of€them€are€located€in€northern€Spain€and€areÐ  ð  Ðmainly€devoted€to€salmonid€passage.€Thus,€61%€of€the€passes€coincide€with€theÐ h¸  Ðoccurrence€of€brown€trout€òòSalmo€truttaóó,€and€28%€with€the€occurrence€of€both€AtlanticÐ 0€  Ðsalmon€òòSalmo€salaróó€and€brown€trout.€The€most€common€fish€pass€design€is€the€pool„and„Ð øH  Ðweir€(87%),€followed€by€the€Denil€type€(5%).€With€regard€to€effectiveness,€it€wasÐ À Ðestimated€that€58%€of€surveyed€facilities€can€be€passed€by€target€species.€As€forÐ ˆØ Ðmaintenance€status,€61%€of€the€passes€are€in€good€condition.€A€significant€result€of€theÐ P  Ðsurvey€is€that€a€large€majority€of€the€approximate€1100€large€dams€built€in€Spain€lack€fishÐ h Ðpasses.€Likewise,€it€was€confirmed€that€alternative€fish€passage€facilities,€i.e.€fish€locks,Ð à0 Ðfish€lifts€or€bypass€channels,€are€still€absent€from€Spanish€dams.Ð ¨ø ÐÐ pÀ ÐÓ ¨ýXÓÐ 8ˆ Ð110.à 4 àEnzenhofer,€H.€J.€and€G.€Cronkite€(1998).€€In„river€accessory€equipment€for€fixed„Ð P Ðlocation€hydroacoustic€systems.€,€Canadian€Technical€Report€of€Fisheries€and€AquaticÐ È ÐSciences€2250.Ð à Ðà 4 àÌÓ X¨ýÓThis€report€describes€the€design,€construction€and€use€of€the€in„river€equipmentÐ  p Ðthat€aids€the€operation€of€a€fixed„location€hydroacoustic€system€located€near€theÐ è8 Ðconfluence€of€Qualark€Creek€with€the€Fraser€River€near€Yale,€British€Columbia,€Canada.Ð °  ÐThe€equipment€can€be€easily€deployed€by€one€person€and€is€designed€to€withstand€theÐ xÈ! Ðforces€created€by€strong€current€flow.€This€equipment€is€essential€to€the€operation€of€theÐ @" Ðhydroacoustic€system€to€maintain€accurate€and€defensible€enumeration€of€migratingÐ  X# Ðsalmon.€Fish€migrating€in€rivers€with€higher€current€flow€tend€to€be€shore€and€bottomÐ Ð $ Ðoriented€and€require€a€shore€based€system€aimed€close€to€the€river€bottom€andÐ ˜!è% Ðperpendicular€to€the€flow.€Specialised€equipment€must€be€used€to€move€fish€away€fromÐ `"°& Ðthe€shore€so€they€can€be€counted.€The€operator€must€be€able€to€aim€the€transducerÐ (#x' Ðprecisely€to€ensure€that€the€beam€is€close€to€the€river€bottom€and€covers€the€volumeÐ ð#@( Ðwhere€fish€passage€occurs.€The€beam€aim€must€be€repeatable€after€moving€the€equiment.Ð ¸$ ) ÐSince€the€detection€characteristics€vary€between€transducers,€the€ability€to€detect€shouldÐ €%Ð * Ðbe€determined€for€each€transducer€in€the€environment€where€it€is€used.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð111.à 4 àEwers,€H.€(1995).€€[Fishladder€at€the€lower€Wupper€River].€Wasser€und€Boden.€€ò ò47ó ó:50.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓThe€restoration€of€free€fish€passage€along€a€river€regulated€with€barrages€isÐ 0*€%0 Ðessential€for€the€interactive€environment€of€wild€life.€Fishladders€will€have€to€be€installed,Ð ø*H&1 Ðbecause€the€barrages€are€inevitable.€Several€types€of€fishladders€constructed€by€theÐ À+'2 ÐWupperverband€along€the€lower€Wupper€are€introduced.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð112.à 4 àFarabee,€G.€B.€(1979).€€Life€histories€of€important€sport€and€commercial€fishes€of€theÐ xÈ ÐUpper€Mississippi€River.€Pages€€259€òòinóó€€J.€L.€Rasmussen,€ed.€A€Compendium€of€FisheryÐ @ ÐInformation€on€the€Upper€Mississippi€River,€2nd€edition,€Upper€Mississippi€RiverÐ X ÐConservation€Commission,€.Ð Ð  Ðà 4 àÌÓ X¨ýÓThis€section€of€the€Compendium€presents€a€brief€summary€of€the€known€lifeÐ ` ° Ðhistory€characteristics€of€sixteen€major€sport€and€commercial€fish€species€or€speciesÐ ( x Ðgroups€in€the€Upper€Mississippi€River.€€The€life€history€of€each€species€or€species€groupÐ ð @ Ðhas€been€divided€into€seven€categories:€€fecundity€and€breeding€habits,€life€history,€ageÐ ¸   Ðand€growth,€age€and€size€at€maturity,€survival€ability,€relative€importance€to€the€fishery,Ð € Ð  Ðand€management€implications.€€These€categories€are€provided€for€the€convenience€of€theÐ H ˜  Ðreader,€to€enable€a€quick,€brief€review€of€existing€information.€€Detailed€information€onÐ `  Ðthe€relative€value€of€these€species€to€the€sport€and€commercial€fishery€can€be€found€inÐ Ø(  ÐSections€VI€and€VII€of€this€Compendium,€respectively.€€The€data€compiled€in€this€SectionÐ  ð  Ðhas€generally€been€gathered€from€surveys€and€research€conducted€on€the€MississippiÐ h¸  ÐRiver€by€UMRCC€biologists.€€However,€in€cases€where€Mississippi€River€data€wereÐ 0€  Ð(SIC)€not€available,€other€sources€were€used.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð113.à 4 àFarlinger,€S.€and€F.€W.€H.€Beamish€(1977).€€Effects€of€time€and€velocity€increments€onÐ P  Ðthe€critical€swimming€speed€of€largemouth€bass€òòMicropterus€salmoidesóó.€Transactions€ofÐ h Ðthe€American€Fisheries€Society.€€ò ò106ó ó:436„439.Ð à0 Ðà 4 àÌÓ X¨ýÓCritical€swimming€speed€was€measured€for€largemouth€bass€and€found€to€beÐ pÀ Ðrelated€to€the€increments€of€both€time€and€water€velocity.€Critical€speed€decreased€withÐ 8ˆ Ðincrease€in€time€interval,€and€reached€a€peak€and€declined€thereafter€with€increasingÐ P Ðvelocity€increment.Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð114.à 4 àFarlinger,€S.€and€F.€W.€H.€Beamish€(1978).€€Changes€in€blood€chemistry€and€criticalÐ  p Ðswimming€speed€of€largemouth€bass,€òòMicropterus€salmoidesóó,€with€physical€conditioning.Ð è8 ÐTransactions€of€the€American€Fisheries€Society.€€ò ò107ó ó:523„527.Ð °  Ðà 4 àÌÓ X¨ýÓPhysical€conditioning€at€swimming€speeds€of€2€and€3€body€lengths€per€second€forÐ @" Ðperiods€up€to€30€days€increased€critical€swimming€speed€by€as€much€as€15%€over€thatÐ  X# Ðfound€for€unconditioned€fish.€Haemoglobin€increased€significantly€with€conditioning,Ð Ð $ Ðsuggesting€an€enhancement€of€aerobic€capacity.€Conditioning€did€not,€in€general,€increaseÐ ˜!è% Ðthe€production€of€lactate€dehydrogenase€in€blood€serum.€Following€periods€of€swimmingÐ `"°& Ðat€critical€speeds,€blood€volume€decreased€in€unconditioned€bass€but€with€conditioningÐ (#x' Ðremained€relatively€stable.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð115.à 4 àFausch,€K.€D.€and€M.€K.€Young€(1995).€Evolutionarily€significant€units€and€movement€ofÐ H&˜!+ Ðresident€stream€fishes:€A€cautionary€tale.€Pages€€360„370€òòinóó€J.€L.€Nielsen,€ed.€EvolutionÐ '`", Ðand€the€Aquatic€Ecosystem:€Defining€Unique€Units€in€Population€Conservation,Ð Ø'(#- ÐMonterey,€CA€(USA),€American€Fisheries€Society€Symposium.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓMany€taxa€of€resident€stream€fishes€are€reported€to€be€relatively€sedentaryÐ 0*€%0 Ðthroughout€their€lives.€Such€discrete€populations€would€make€identification€andÐ ø*H&1 Ðmanagement€of€evolutionarily€significant€units€(ESUs)€straightforward.€However,€inÐ À+'2 Ðcontrast€to€this€prevailing€restricted€movement€paradigm,€recent€evidence€indicates€thatÐ ˆ,Ø'3 Ðeven€resident€salmonids,€such€as€interior€stocks€of€cutthroat€trout€òòOncorhynchus€clarkióóÐ P- (4 Ðliving€in€headwater€streams,€move€often,€sometimes€over€relatively€long€distances.Ð ° ÐResident€stream€fishes€likely€move€in€response€to€various€ecological€constraints,Ð xÈ Ðincluding€the€need€to€garner€enough€scarce€resources€or€find€a€critical€resource,€orÐ @ Ðbecause€the€habitat€they€occupy€becomes€suboptimal€or€unsuitable.€This€emergingÐ X Ðparadigm€shift€has€important€implications€for€defining€and€managing€ESUs€of€residentÐ Ð  Ðstream€fishes.€For€example,€timing€of€sampling€may€affect€which€of€several€differentÐ ˜è Ð"populations"€mobile€individuals€are€chosen€to€represent.€Isolating€small€populations€ofÐ ` ° Ðnative€fishes€above€barriers€to€prevent€invasion€by€exotic€species€may€trade€this€risk€forÐ ( x Ðother€environmental,€demographic,€or€genetic€risks€caused€by€eliminating€dispersal.Ð ð @ ÐMoreover,€isolating€small€population€fragments€via€natural€or€anthropogenicÐ ¸   Ðdisturbances,€or€management€actions,€may€create€artificial€ESUs.€Biologists€mustÐ € Ð  Ðunderstand€not€only€the€genetics€and€taxonomy,€but€also€the€spatial€and€temporalÐ H ˜  Ðdynamics€of€component€populations€of€species€if€they€are€to€accurately€identify€andÐ `  Ðwisely€manage€ESUs.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð116.à 4 àFremling,€C.€R.€(1987).€Human€impacts€on€Mississippi€River€ecology.€Pages€€235„240€òòinóóÐ 0€  ÐM.€P.€Lynch€and€K.€L.€McDonald,€eds.€Estuarine€and€Coastal€Management,€Tools€of€theÐ øH  ÐTrade,€New€Orleans,€Louisiana€(USA).Ð À Ðà 4 àÌÓ X¨ýÓThe€Mississippi€drains€a€basin€of€4,759,049€kmÔÎÿnP Ô2Ô2P nÔ,€about€12%€of€North€America.Ð P  ÐIt€is€the€third€longest€river€in€the€world,€has€the€second€largest€drainage€basin,€and€is€theÐ h Ðfifth€largest€worldwide€in€average€discharge.€For€the€purposes€of€this€paper,€theÐ à0 ÐMississippi€River€(MR)€is€delineated€into€three€reaches:€1)€the€Lower€Mississippi€RiverÐ ¨ø Ð(LMR)€extending€from€the€Head„of„Passes€upstream€to€the€mouth€of€the€Ohio€River,€2)Ð pÀ Ðthe€Upper€Mississippi€River€(UMR)€extending€from€the€mouth€of€the€Ohio€to€St.Ð 8ˆ ÐAnthony€Falls,€Minnesota,€and€3)€the€Headwaters€(HW)€extending€upstream€to€the€river'sÐ P Ðsource€at€Lake€Itasca.Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð117.à 4 àFremling,€C.€R.€and€T.€O.€Claflin€(1984).€Ecological€history€of€the€Upper€MississippiÐ  p ÐRiver.€Pages€€17„18€òòinóó€J.€G.€Weiner,€R.€V.€Anderson€and€D.€R.€McConville,€eds.Ð è8 ÐContaminants€in€the€Upper€Mississippi€River:€Proceedings€of€the€15th€Annual€Meeting€ofÐ °  Ðthe€Mississippi€River€Research€Consortium,€La€Crosse,€Wisconsin€(USA),€MississippiÐ xÈ! ÐRiver€Research€Consortium.Ð @" Ðà 4 àÌÓ X¨ýÓThe€Upper€Mississippi€Valley,€opened€to€Caucasians€by€Joliet€'s€explorations€inÐ Ð $ Ð1673,€was€the€site€of€rapid€population€growth€and€trading€during€the€1700's.€This€sectionÐ ˜!è% Ðof€the€river€was€surveyed€in€the€early€19th€century.€The€beginning€of€steamboat€travel€inÐ `"°& Ð1823€led€to€navigation€improvements€by€the€Army€Corps€of€Engineers€starting€in€1824.Ð (#x' ÐSettlements€continued€to€grow€in€number€and€population,€stimulating€cutting€of€forestsÐ ð#@( Ðfor€lumber€and€agricultural€activities,€particularly€steepland€farming.€These€practicesÐ ¸$ ) Ðcontributed€to€erosion€and€degradation€of€the€river€system.€The€Rivers€and€Harbors€ActsÐ €%Ð * Ðof€1878,€1890,€and€1907€resulted€in€channel€deepening€and€other€construction€works€inÐ H&˜!+ Ðthe€section€from€Minneapolis€to€the€Ohio€River.€These€works€used€wing€and€closingÐ '`", Ðdams,€shore€protection,€and€auxiliary€dredging,€permitting€open„channel€navigation.€ByÐ Ø'(#- Ð1870€the€fisheries€were€rapidly€declining€as€a€result€of€wide€fluctuations€in€water€levelÐ  (ð#. Ðwhich€stranded€fish€in€backwaters.€Fish€rescue€operations€were€begun€in€1879€andÐ h)¸$/ Ðcontinued€until€the€1950€'s€in€a€few€locations.€In€the€1930€'s€more€extensiveÐ 0*€%0 Ðchannelization€projects€started.€The€channel€was€deepened€to€9€ft€by€construction€of€locksÐ ø*H&1 Ðand€dams€(29€built€during€this€period),€supplemented€by€dredging.€As€a€result€of€theÐ À+'2 Ðimpoundments,€the€river€habitat€has€changed,€vastly€increasing€the€marsh€area€and€slackÐ ˆ,Ø'3 Ðwater€area€habitat€available€for€invertebrates,€periphyton,€fish€(139€species),€furbearers,Ð P- (4 Ðand€waterfowl.€Some€long„term€detrimental€changes€caused€by€the€channel€modificationsÐ ° Ðinclude€accelerated€sedimentation€(changing€wetlands€into€floodplains),€eutrophication,Ð xÈ Ðand€accumulation€of€industrial€wastes.Ð @ ÐÐ X ÐÓ ¨ýXÓÐ Ð  Ð118.à 4 àFremling,€C.€R.,€J.€L.€Rasmussen,€R.€E.€Sparks,€S.€P.€Cobb,€C.€F.€Bryan€and€T.€O.€ClaflinÐ ˜è Ð(1989).€Mississippi€River€fisheries:€a€case€history.€Pages€€309„351€òòinóó€D.€P.€Dodge,€ed.Ð ` ° ÐProceedings€of€the€International€Large€River€Symposium,€Honey€Harbour,€OntarioÐ ( x Ð(Canada),€Canadian€Special€Publication€of€Fisheries€and€Aquatic€Sciences.Ð ð @ Ðà 4 àÌÓ X¨ýÓThe€Mississippi€River€(MR)€is€severely€regulated,€mainly€for€transportation€andÐ € Ð  Ðflood€control.€Coastal€wetlands€are€critical€to€marine€fishes€and€invertebrates,€and€aboutÐ H ˜  Ð0.6%€are€being€lost€yearly€to€natural€and€human„induced€forces,€including€levees€whichÐ `  Ðdivert€sediment€directly€into€the€Gulf€of€Mexico,€instead€of€allowing€it€to€build€up€theÐ Ø(  Ðdelta€during€annual€floods.€Distribution€of€241€fish€species€reported€from€mainstreamÐ  ð  ÐMR€has€been€influenced€mainly€by€glaciation,€natural€barriers€and€human€activities;Ð h¸  Ðspecies€diversity€generally€increases€downstream.Ð 0€  ÐÐ øH  ÐÓ ¨ýXÓÐ À Ð119.à 4 àFrost,€S.€L.€and€W.€J.€Mitsch€(1989).€€Resource€development€and€conservation€historyÐ ˆØ Ðalong€the€Ohio€River.€Ohio€Journal€of€Science.€€ò ò89ó ó:143„152.Ð P  Ðà 4 àÌÓ X¨ýÓThe€1578€km„long€Ohio€River€has€a€rich€history€of€natural€resource€use€andÐ à0 Ðabuse,€starting€with€the€development€of€the€river€itself€for€navigational€purposes.€There€isÐ ¨ø Ða€rich€early€record€of€natural€history€studies€by€Bartram,€Michaux,€Lesueur,€RafinesqueÐ pÀ Ðand€others.€The€navigational€use€of€the€river€began€with€snag€pulling€and€has€progressedÐ 8ˆ Ðto€modern€high„lift€dams.€Flood€control,€navigational€use€of€tributaries,€and€canal„Ð P Ðbuilding€have€been€water€resource€development€projects€of€the€past.€Early€industries€thatÐ È Ðdeveloped€around€the€availability€and€abundance€of€coal,€oil,€natural€gas,€salt,€iron€ore,Ð à Ðtimber,€and€clay€in€the€valley€ultimately€led€to€the€more€recent€pottery,€iron€and€steel,Ð X¨ Ðchemical,€and€power€generation€industries€along€the€river€and€its€tributaries.€There€wereÐ  p Ðalso€major€horticultural€developments€of€apple€orchards,€wine€vineyards,€and€even€silkÐ è8 Ðworm€farms€along€the€river€and€a€modest€button€industry€from€the€mussels€in€the€riverÐ °  Ðitself.€The€pollution€of€the€Ohio€River€has€been€a€concern€for€decades,€and€theÐ xÈ! Ðinvolvement€of€the€federal€government€and€the€establishment€of€interstate€compacts€haveÐ @" Ðled€to€the€development€of€significant€understanding€of€the€science€of€water€pollution€andÐ  X# Ðto€the€general€improvement€of€the€river's€water€quality.Ð Ð $ ÐÐ ˜!è% ÐÓ ¨ýXÓÐ `"°& Ð120.à 4 àFruget,€J.€F.€(1992).€€Ecology€of€the€lower€Rhone€after€200€years€of€human€influence:€AÐ (#x' Ðreview.€Regulated€Rivers:€Research€&€Management.€€ò ò7ó ó:233„246.Ð ð#@( Ðà 4 àÌÓ X¨ýÓEmbankments€of€the€last€century€and€contemporary€channelization€andÐ €%Ð * Ðdevelopment€of€urban€and€industrial€areas€along€the€Rhone€Valley€have€greatly€changedÐ H&˜!+ Ðthe€river.€The€impacts€of€these€on€three€biological€descriptors€of€the€hydrosystem€(benthicÐ '`", Ðinvertebrates,€fish€communities€and€aquatic€birds)€have€been€studied.€A€reduction€in€theÐ Ø'(#- Ðmorphological€diversity€of€the€regulated€hydrosystem€has€caused€a€reduction€inÐ  (ð#. Ðbiological€diversity.€This€system€has€become€a€slow€potamic€system€as€a€consequence€ofÐ h)¸$/ Ðthe€more€uniform€environmental€conditions:€the€benthic€macroinvertebrate€fauna€hasÐ 0*€%0 Ðbecome€eurytopic€and€pollution€tolerant,€with€very€localized€potamic€species;€fishÐ ø*H&1 Ðcommunities€are€dominated€by€limnophilic€cyprinids;€and€water€bird€communities€areÐ À+'2 Ðlimited€by€the€absence€of€typical€species€of€fluvial€areas,€such€as€terns.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð121.à 4 àGebler,€R.€J.€(1998).€€Examples€of€near„natural€fish€passes€in€Germany:€drop€structureÐ xÈ Ðconversions,€fish€ramps€and€bypass€channels.€Pages€€403„419€òòinóó€€M.€Jungwirth,€S.Ð @ ÐSchmutz€and€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,Ð X ÐVienna€(Austria).Ð Ð  Ðà 4 àÌÓ X¨ýÓSince€1990,€several€different€types€of€near„natural€fish€passes€have€beenÐ ` ° Ðconstructed€by€the€author.€This€chapter€presents€a€short€compendium€of€near„naturalÐ ( x Ðfishways,€including€the€design€criteria,€costs€and€comments€concerning€the€practicalÐ ð @ Ðexperience€gained€in€both€the€construction€and€monitoring€phases.€Addressed€areÐ ¸   Ðengineers,€biologists€and€other€faculties€involved€in€fish€pass€construction.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð122.à 4 àGehrke,€P.€C.,€P.€Brown,€C.€B.€Schiller,€D.€B.€Moffatt€and€A.€M.€Bruce€(1995).€€RiverÐ Ø(  Ðregulation€and€fish€communities€in€the€Murray„Darling€River€System,€Australia.Ð  ð  ÐRegulated€Rivers:€Research€&€Management.€€ò ò11ó ó:363„375.Ð h¸  Ðà 4 àÌÓ X¨ýÓFish€communities€from€four€catchments€in€the€Murray„Darling€river€system€wereÐ øH  Ðanalysed€in€relation€to€climate,€hydrology€and€river€regulation.€Using€the€annualÐ À Ðproportional€flow€deviation€as€a€measure€of€river€regulation,€the€Paroo€River€catchmentÐ ˆØ Ðwas€assessed€as€unregulated,€the€Darling€River€catchment€as€mildly€regulated€and€theÐ P  ÐMurrumbidgee€River€and€River€Murray€catchments€as€highly€regulated.€A€total€of€11€010Ð h Ðfish,€representing€nine€native€and€three€alien€species,€was€caught€during€high€and€lowÐ à0 Ðflow€seasons€in€the€four€catchments.€Native€species,€such€as€golden€perch€òòMacquariaÐ ¨ø Ðambiguaóó€(Percichthyidae),€bony€herring€òòNematalosa€erebióó€(Clupeidae)€and€spangledÐ pÀ Ðperch€òòLeiopotherapon€unicoloróó€(Terponidae),€dominated€fish€communities€in€the€ParooÐ 8ˆ Ðand€Darling€catchments,€but€alien€species,€mostly€carp,€òòCyprinus€carpioóó€(Cyprinidae),Ð P Ðwere€also€abundant.€Both€native€and€alien€species€were€more€abundant€in€theseÐ È Ðcatchments€after€flooding,€but€there€was€little€change€in€species€composition€betweenÐ à Ðhigh€and€low€flow€seasons€at€the€catchment€level.€Carp€dominated€communities€in€theÐ X¨ ÐMurray€and€Murrumbidgee€catchments.€There€was€a€significant€trend€for€reduced€speciesÐ  p Ðdiversity€in€increasingly€regulated€catchments.€River€regulation€may€alter€the€relativeÐ è8 Ðabundance€of€native€and€alien€fish€by€desynchronizing€environmental€cycles€and€theÐ °  Ðreproductive€cycles€of€native€species.€Ordination€of€species€abundances€showed€discreteÐ xÈ! Ðfish€communities€that€reflect€the€geographical€separation€between€catchments.Ð @" ÐDifferences€between€communities€are€related€to€opportunities€for€dispersal,€theÐ  X# Ðenvironmental€tolerances€of€dominant€species€and€the€modifying€effects€of€riverÐ Ð $ Ðregulation.€Fish€communities€in€lakes€exhibited€less€seasonal€variation€than€riverineÐ ˜!è% Ðcommunities€within€the€same€catchment,€indicating€the€greater€seasonal€stability€of€lakesÐ `"°& Ðcompared€with€regulated€and€unregulated€river€reaches.€Management€of€fish€resourcesÐ (#x' Ðneeds€to€include€catchment„specific€strategies€within€current€State€and€basin„wideÐ ð#@( Ðmanagement€programmes.Ð ¸$ ) ÐÐ €%Ð * ÐÓ ¨ýXÓÐ H&˜!+ Ð123.à 4 àGodinho,€H.€P.,€A.€L.€Godinho,€P.€S.€Formagio€and€V.€C.€Torquato€(1991).€€Fish€ladderÐ '`", Ðefficiency€in€a€southeastern€Brazilian€river.€Ciencia€e€Cultura.€€ò ò43ó ó:63„67.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓFish€were€captured€in€the€fish€ladder€of€the€Salto€do€Morais€hydroelectric€dam€onÐ h)¸$/ Ðthe€Tijuco€River,€part€of€the€upper€Parana€basin,€in€the€state€of€Minas€Gerais,€in€order€toÐ 0*€%0 Ðevaluate€their€capacity€to€move€up€the€ladder€steps.€The€ladder€has€25€steps€(tanks),€78.3Ð ø*H&1 Ðm€long€and€10.8€m€high.€Over€41€species€were€captured€in€the€region€of€the€Salto€doÐ À+'2 ÐMorais€dam,€at€least€34€of€which€were€present€in€the€ladder.€However,€there€were€fewÐ ˆ,Ø'3 Ðindividuals€of€each€species€and€only€2%€of€them€reached€the€upper€section€of€the€ladder.Ð P- (4 ÐThis€suggests€that€the€ladder€is€selective€for€certain€species,€the€most€affected€being€theÐ ° ÐPimelodidae€family.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ð124.à 4 àGollmann,€G.,€Y.€Bouvet,€R.€M.€Brito,€M.€M.€Coelho,€M.€J.€Collares„Pereira,€A.Ð Ð  ÐImsiridou,€Y.€Karakousis,€E.€Pattee€and€C.€Triantaphyllidis€(1998).€€Effects€of€riverÐ ˜è Ðengineering€on€genetic€structure€of€European€fish€populations.€Pages€€113„126€òòinóó€€M.Ð ` ° ÐJungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,€FishingÐ ( x ÐNews€Books,€Vienna€(Austria).Ð ð @ Ðà 4 àÌÓ X¨ýÓPopulations€of€cyprinid€fishes€from€several€rivers€in€Portugal€„„€òòChondrostomaÐ € Ð  Ðpolylepisóó,€France€European€chub€òòLeuciscus€cephalusóó,€roach€òòRutilus€rutilusóó,€Austria€naseòòÐ H ˜  ÐChondrostoma€nasusóó,€òòR.€rutilusóó€and€Greece€òòL.€cephalus€óó„„€€were€investigated€by€allozymeÐ `  Ðelectrophoresis€to€assess€the€effects€of€river€engineering€on€their€genetic€diversity.€NoÐ Ø(  Ðeffects€of€dams€on€genetic€variability€were€apparent€in€most€places;€this€may€be€explainedÐ  ð  Ðeither€by€the€permeability€of€dams€to€fish€dispersal,€by€recent€dates€of€isolation,€and/or€byÐ h¸  Ðthe€fact€that€the€populations€were€large€enough€for€genetic€drift€not€to€take€place.Ð 0€  ÐHowever,€a€change€in€genotype€structure€caused€by€the€dams€may€be€suspected€in€theÐ øH  ÐLower€Rhone.€The€chub€and€roach€populations€of€the€reservoirs€and€residual€flowÐ À Ðstretches€show€affinity€with€upstream€lentic€populations€and€not€with€upstream€loticÐ ˆØ Ðpopulations€as€would€be€expected€according€to€the€mean€gradient€of€their€habitats.€TheyÐ P  Ðare€unstable€populations€in€which€extinction€and€colonisation€from€lentic€upstreamÐ h Ðhabitats€presumably€determine€genetic€structure.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð125.à 4 àGowan,€C.,€M.€K.€Young,€K.€D.€Fausch€and€S.€C.€Riley€(1994).€€Restricted€movement€inÐ 8ˆ Ðresident€stream€salmonids:€A€paradigm€lost?€Canadian€Journal€of€Fisheries€and€AquaticÐ P ÐSciences.€€ò ò51ó ó:2626„2637.Ð È Ðà 4 àÌÓ X¨ýÓThe€restricted€movement€paradigm€(our€term)€hold€that€resident€streamÐ X¨ Ðsalmonids€are€sedentary.€Numerous€studies€have€supported€the€restricted€movementÐ  p Ðparadigm,€but€nearly€all€have€relied€on€the€recapture€of€marked€fish€from€the€same€areasÐ è8 Ðin€which€they€were€released,€an€approach€we€believe€is€biased€against€detectingÐ °  Ðmovement.€Substantial€movement€was€found€of€trout€in€streams€in€Colorado€andÐ xÈ! ÐWyoming€using€two„way€weirs€and€radio€telemetry.€A€review€of€the€research€onÐ @" ÐLawrence€Creek,€Wisconsin,€also€showed€that€movement€was€important€in€the€responseÐ  X# Ðof€the€trout€population€to€habitat€enhancement.€Movement€of€resident€stream€fish€hasÐ Ð $ Ðprofound€implications€for€research€and€management.Ð ˜!è% ÐÓ ¨ýXÓÐ `"°& ÐÐ (#x' Ð126.à 4 àGrady,€J.€M.€and€G.€A.€Conover€(1998).€€Mississippi€River€Basin€paddlefish€researchÐ ð#@( Ðcoded„wire€tagging€project€„€1997€Annual€Report.€Mississippi€Interstate€CooperativeÐ ¸$ ) ÐResource€Association,€MICRA€Annual€Report.Ð €%Ð * Ðà 4 àÌÓ X¨ýÓThe€Mississippi€Interstate€Cooperative€Resource€Association€(MICRA)€planned,Ð '`", Ðorganized,€and€initiated€a€long„term,€multi„state,€multi„jurisdictional€paddlefish€study€toÐ Ø'(#- Ðassess€the€status€of€paddlefish€stocks€throughout€the€Mississippi€River€Basin€in€1994.€Ð  (ð#. ÐTwo€previous€Interim€reports€contained€information€regarding€fish€tagging€efforts€inÐ h)¸$/ Ð1995€(Oven€and€Fiss€1996)€and€tag€reading€and€database€construction€(Bettoli€andÐ 0*€%0 ÐBrennan€1997).€€This€report€summarizes€progress€made€through€1997.€€MICRAÐ ø*H&1 Ðparticipants€participated€in€420€sampling€trips€in€1996€and€1997€resulting€in€about€10,400Ð À+'2 Ðhours€of€effort.€€Biologists€captured,€tagged,€and€released€2,455€wild€paddlefish€in€1996Ð ˆ,Ø'3 Ðand€2,244€fish€in€1997.€€More€hatchery€reared€paddlefish€were€released€to€date€in€1997Ð P- (4 Ð(127,743)€than€in€1996€(113,306).€€The€total€number€of€hatchery€paddlefish€released€byÐ ° ÐMICRA€cooperators€is€437,022.€€Through€January€1997,€701€paddlefish€released€byÐ xÈ ÐMICRA€cooperators€have€been€recaptured.€€Dossiers€on€each€recaptured€paddlefish€wereÐ @ Ðcompleted€and€provided€to€MICRA€cooperators.€€Care€and€maintenance€of€the€paddlefishÐ X Ðdatabases€were€transferred€from€Tennessee€Technological€University€to€the€U.S.€Fish€andÐ Ð  ÐWildlife€Service€in€March€1998.€€Changes€in€datasheet€protocols€were€made€afterÐ ˜è Ðconsultation€with€MICRA€cooperators€and€are€presented€in€Appendix€B.Ð ` ° ÐÐ ( x ÐÓ ¨ýXÓÐ ð @ Ð127.à 4 àGraham,€K.€(1997).€€Contemporary€status€of€the€North€American€paddlefish,€òòPolyodonÐ ¸   Ðspathulaóó.€Environmental€Biology€of€Fishes.€€ò ò48ó ó:279„289.Ð € Ð  Ðà 4 àÌÓ X¨ýÓNorth€American€paddlefish,€òòPolyodon€spathulaóó,€were€once€abundant€in€mostÐ `  Ðlarge€rivers€and€tributaries€of€the€Mississippi€River€basin,€but€numbers€have€declinedÐ Ø(  Ðdramatically€in€most€areas€during€the€past€100€years.€habitat€destruction€and€riverÐ  ð  Ðmodification€are€the€most€obvious€changes€affecting€their€distribution€and€abundance.Ð h¸  ÐAlthough€peripheral€range€has€dwindled,€paddlefish€still€occur€over€most€of€their€historicÐ 0€  Ðrange€and€are€still€found€in€22€states.€Populations€are€currently€increasing€in€3€states,Ð øH  Ðstable€in€14,€declining€in€2,€unknown€in€3,€and€extirpated€in€4.€Sport€harvests€presentlyÐ À Ðoccur€in€14€states,€however€two€states€with€traditionally€important€sport€fisheries€reportÐ ˆØ Ðdecreased€recruitment€into€the€population€and€are€planning€more€restrictive€regulations.Ð P  ÐCommercial€fisheries€are€reported€in€only€six€states.€During€the€past€10€years,€five€statesÐ h Ðhave€removed€paddlefish€from€their€commercial€list€primarily€because€of€declines€inÐ à0 Ðadult€stocks€due€to€overfishing€or€illegal€fishing.€Ten€states€are€currently€stockingÐ ¨ø Ðpaddlefish€to€supplement€existing€populations€or€to€recover€paddlefish€populations€in€theÐ pÀ Ðperiphery€of€its€native€range.Ð 8ˆ ÐÓ ¨ýXÓÐ P ÐÐ È Ð128.à 4 àGrande,€R.€and€D.€Matzow€(1998).€€A€new€type€of€fishway€in€Norway:€how€a€regulatedÐ à Ðand€acidified€river€was€restored.€Pages€€236„245€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.Ð X¨ ÐWeiss,€eds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð  p Ðà 4 àÌÓ X¨ýÓTo€reduce€the€negative€effects€of€a€hydroelectric€plant,€a€fish€pass€Facility€wasÐ °  Ðconstructed€at€Rygenefossen,€a€23€m„high€waterfall€on€the€Nidelva€River€at€Arendal.€TheÐ xÈ! Ðpower€plant,€with€a€6€m„high€dam,€is€located€on€the€upper€portion€of€the€waterhall.€TheÐ @" Ðfishway€consists€of€a€pool„and„weir€pass€in€the€lower€part€of€the€waterfall,€linked€to€aÐ  X# Ðpressure„chamber€fishway€(a€kind€of€fish€lock)€in€the€dam.€Between€the€dam€and€theÐ Ð $ Ðpowerhouse€downstream,€there€is€a€2€km„long€residual€flow€stretch.€Fishways€were€alsoÐ ˜!è% Ðbuilt€at€three€weirs€within€this€residual€flow€stretch.€The€pressure„chamber€fishway€isÐ `"°& Ðnew€for€Norway.€Fish€swim€into€a€chamber€at€the€base€of€the€dam€and€when€a€sufficientÐ (#x' Ðnumber€have€entered,€a€diffuser€closes€and€the€pressure€is€increased€to€equal€that€foundÐ ð#@( Ðupstream€of€the€dam.€Another€diffuser€opens€giving€the€fish€access€to€a€duct€leading€toÐ ¸$ ) Ðthe€river€above€the€waterfall.€The€system€was€constructed€to€take€Atlantic€salmon€SalmoÐ €%Ð * Ðsalar€and€sea„run€brown€trout€S.€trutta€past€the€dam.€Four€years€of€trials€have€givenÐ H&˜!+ Ðpositive€results.€This€chapter€describes€the€construction€of€this€pressure„chamber€fishway,Ð '`", Ðhow€it€works€and€our€operating€experience€so€far.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð129.à 4 àGregoire,€A.€and€F.€Travade€(1987).€[EDF's€experience€relating€to€fish€ladders€andÐ 0*€%0 Ðefficiency€follow„up].€Pages€€65„72€òòinóó€€Definition€and€Efficiency€Controls€of€Fishways,Ð ø*H&1 ÐParis€(France),€Houille€Blanche.Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓSince€1982,€and€in€accordance€with€the€provisions€of€the€EDF/EnvironmentÐ ° Ðâ âMinistry/Energy€State€Secretariat€agreement,€EDF€contributed€to€the€national€effort€madeÐ xÈ Ðto€re„establish€migrating€fish€populations,€by€providing€measures€intended€to€facilitateÐ @ Ðthe€crossing€of€a€certain€number€of€dikes.€Currently,€many€undertakings€have€beenÐ X Ðcompleted.€Amongst€the€main€ones€are€those€at€Belleville€in€the€Loire,€at€Bergerac€in€theÐ Ð  ÐDordogne,€at€Poutes€in€the€Haut„Allier€and€the€fish€lift€in€the€Garonne€and€whoseÐ ˜è Ðdownstream€part€is€currently€in€operation.€Some€research€and€follow„up€activitiesÐ ` ° Ðconcerning€the€effectiveness€of€these€works€are€also€being€carried€out.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð130.à 4 àGurram,€S.€K.€and€T.€Pohjamo€(1999).€€Hydraulic€assessment€of€a€fish€and€boat€passÐ € Ð  Ðchannel.€International€Journal€on€Hydropower€and€Dams.€€ò ò6ó ó:65„67.Ð H ˜  Ðà 4 àÌÓ X¨ýÓA€concept€has€been€proposed€to€combine€a€fishway€and€a€boat€channel€at€narrowÐ Ø(  Ðsites€where€two€separate€channels€cannot€be€constructed.€This€article€describes€the€resultsÐ  ð  Ðof€model€and€prototype€studies€of€the€combined€channel€structure€recently€built€atÐ h¸  ÐEvijarvi,€in€central€Finland.€The€baffles€were€designed€to€reduce€the€water€velocities€onÐ 0€  Ðthe€sides€and€bottom€of€the€channel€by€reflecting€the€water€current€back€on€itself,€so€thatÐ øH  Ðboth€fish€and€boats€can€ascend€the€channel.Ð À ÐÐ ˆØ ÐÓ ¨ýXÓÐ P  Ð131.à 4 àGutreuter,€S.€(1992).€€Systemic€features€of€fisheries€of€the€Upper€Mississippi€RiverÐ h Ðsystem:€1990€fisheries€component€annual€report.€United€States€Geological€Survey,€ReportÐ à0 ÐEMTC„92/T001.Ð ¨ø Ðà 4 àÌÓ X¨ýÓDuring€1990,€the€fisheries€component€of€the€Long€Term€Resource€MonitoringÐ 8ˆ ÐProgram€(LTRMP)€conducted€standardized€sampling€in€Pools€4,€8,€13,€and€26€of€theÐ P ÐUpper€Mississippi€River€and€La€Grange€Pool€of€the€Illinois€River.€Fixed€sampling€sitesÐ È Ðfrom€up€to€nine€habitat€classes€were€surveyed€by€seining,€small€'minnow'€fyke€netting,Ð à Ðelectrofishing,€fyke€netting,€and€hoop€netting€during€two€fish€community€sampling€timeÐ X¨ Ðperiods€(June€25€to€August€3€and€August€1€to€September€17)€and€three€special€efforts€toÐ  p Ðsample€black€crappie€(òòPomoxis€nigromaculatusóó),€channel€catfish€(òòIctalurus€punctatusóó),Ð è8 Ðand€sauger€(òòStizostedeon€canadenseóó).€Differences€in€fish€community€structure€acrossÐ °  Ðpools€and€habitat€classes€were€tested€using€multivariate€analysis€of€variance€models€fittedÐ xÈ! Ðto€data€from€each€sampling€gear.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð132.à 4 àGutreuter,€S.€(1997).€€Fish€Monitoring€by€the€Long€Term€Resource€Monitoring€ProgramÐ ˜!è% Ðon€the€Upper€Mississippi€River€System:€1990„1994.€United€States€Geological€Survey,Ð `"°& ÐReport€LTRMP„97„T004.Ð (#x' Ðà 4 àÌÓ X¨ýÓThe€Long€Term€Resource€Monitoring€Program€(LTRMP)€of€the€UpperÐ ¸$ ) ÐMississippi€River€System€(UMRS)€conducts€highly€standardized€monitoring€of€fishes€inÐ €%Ð * ÐPools€4,€8,€13,€and€26,€in€a€segment€of€the€unimpounded€Mississippi€River,€and€in€the€LaÐ H&˜!+ ÐGrange€Pool€of€the€Illinois€River.€The€mission€of€the€LTRMP€is€to€provide€decisionÐ '`", Ðmakers€with€information€for€managing€the€UMRS€as€a€sustainable€large€river€ecosystemÐ Ø'(#- Ðgiven€its€multiple„user€character.€In€the€report,€the€author€summarizes€the€initial€5€yearsÐ  (ð#. Ðof€fish€monitoring€by€the€LTRMP.€The€report€documents€temporal€variability€that€will€beÐ h)¸$/ Ðcritical€to€interpretation€of€future€events€and€trends€(consistent€temporal€changes),€andÐ 0*€%0 Ðdocuments€important€spatial€patterns.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð133.à 4 àGutreuter,€S.,€R.€W.€Burkhardt,€M.€Stopyro,€A.€Bartels€and€E.€Kramer€(1997).€€AnnualÐ ° Ðâ âStatus€Report,€1992.€A€Summary€of€Fish€Data€in€Six€Reaches€of€the€Upper€MississippiÐ xÈ ÐRiver€System.€Long€Term€Resource€Monitoring€Program.€United€States€GeologicalÐ @ ÐSurvey,€Report€LTRMP„97„P006.Ð X Ðà 4 àÌÓ X¨ýÓThe€Long€Term€Resource€Monitoring€Program€(LTRMP)€completed€2,221Ð ˜è Ðcollections€of€fishes€from€stratified€random€and€permanently€fixed€sampling€locations€inÐ ` ° Ðsix€study€reaches€of€the€Upper€Mississippi€River€System€during€1992.€CollectionÐ ( x Ðmethods€included€day€and€night€electrofishing,€hoop€netting,€fyke€netting€(two€net€sizes),Ð ð @ Ðgill€netting,€seining,€and€trawling€in€select€aquatic€area€classes.€The€six€LTRMP€studyÐ ¸   Ðareas€are€Pools€4€(excluding€Lake€Pepin),€8,€13,€and€26€of€the€Upper€Mississippi€River,Ð € Ð  Ðan€unimpounded€reach€of€the€Mississippi€River€near€Cape€Girardeau,€Missouri,€and€theÐ H ˜  ÐLa€Grange€Pool€of€the€Illinois€River.€A€total€of€56„70€fish€species€were€detected€in€eachÐ `  Ðstudy€area.€For€each€of€the€six€LTRMP€study€areas,€this€report€contains€summaries€of:€(1)Ð Ø(  Ðsampling€efforts€in€each€combination€of€gear€type€and€aquatic€area€class,€(2)€total€catchesÐ  ð  Ðof€each€species€from€each€gear€type,€(3)€mean€catch„€per„unit€of€gear€effort€statistics€andÐ h¸  Ðstandard€errors€for€common€species€from€each€combination€of€aquatic€area€class€andÐ 0€  Ðselected€gear€type,€and€(4)€length€distributions€of€common€species€from€selected€gearÐ øH  Ðtypes.Ð À ÐÐ ˆØ ÐÓ ¨ýXÓÐ P  Ð134.à 4 àGutreuter,€S.,€R.€W.€Burkhardt,€M.€Stopyro,€A.€Bartels€and€E.€Kramer€(1997).€€AnnualÐ h ÐStatus€Report,€1993.€A€Summary€of€Fish€Data€in€Six€Reaches€of€the€Upper€MississippiÐ à0 ÐRiver€System.€Long€Term€Resource€Monitoring€Program.€United€States€GeologicalÐ ¨ø ÐSurvey,€Report€LTRMP„97„P008.Ð pÀ Ðà 4 àÌÓ X¨ýÓThe€Long€Term€Resource€Monitoring€Program€(LTRMP)€completed€1,994Ð P Ðcollections€of€fishes€from€stratified€random€and€permanently€fixed€sampling€locations€inÐ È Ðsix€study€reaches€of€the€Upper€Mississippi€River€System€during€1993.€CollectionÐ à Ðmethods€included€day€and€night€electrofishing,€hoop€netting,€fyke€netting€(two€net€sizes),Ð X¨ Ðgill€netting,€seining,€and€trawling€in€select€aquatic€area€classes.€The€six€LTRMP€studyÐ  p Ðreaches€are€Pools€4€(excluding€Lake€Pepin),€8,€13,€and€26€of€the€Upper€Mississippi€River,Ð è8 Ðan€unimpounded€reach€of€the€Mississippi€River€near€Cape€Girardeau,€Missouri,€and€theÐ °  ÐLa€Grange€Pool€of€the€Illinois€River.€A€total€of€62„78€fish€species€were€detected€in€eachÐ xÈ! Ðstudy€reach.€For€each€of€the€six€LTRMP€study€reaches,€this€report€contains€summaries€of:Ð @" Ð(1)€sampling€efforts€in€each€combination€of€gear€type€and€aquatic€area€class,€(2)€totalÐ  X# Ðcatches€of€each€species€from€each€gear€type,€(3)€mean€catch„€per„unit€of€gear€effortÐ Ð $ Ðstatistics€and€standard€errors€for€common€species€from€each€combination€of€aquatic€areaÐ ˜!è% Ðclass€and€selected€gear€type,€and€(4)€length€distributions€of€common€species€fromÐ `"°& Ðselected€gear€types.Ð (#x' ÐÐ ð#@( ÐÓ ¨ýXÓÐ ¸$ ) Ð135.à 4 àGutreuter,€S.,€R.€W.€Burkhardt,€M.€Stopyro,€A.€Bartels€and€E.€Kramer€(1998).€€AnnualÐ €%Ð * ÐStatus€Report,€1991.€A€Summary€of€€Fish€Data€in€Six€Reaches€of€the€Upper€MississippiÐ H&˜!+ ÐRiver€System.€Long€Term€Resource€Monitoring€Program.€United€States€GeologicalÐ '`", ÐSurvey,€Report€LTRMP„98„P001.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓThe€Long€Term€Resource€Monitoring€Program€(LTRMP)€completed€2,053Ð h)¸$/ Ðcollections€of€fishes€from€permanently€fixed€sampling€locations€in€six€study€reaches€ofÐ 0*€%0 Ðthe€Upper€Mississippi€River€System€during€1991.€The€six€LTRMP€study€areas€are€PoolsÐ ø*H&1 Ð4€(excluding€Lake€Pepin),€8,€13,€and€26€of€the€Upper€Mississippi€River,€an€unimpoundedÐ À+'2 Ðreach€of€the€Mississippi€River€near€Cape€Girardeau,€Missouri,€and€the€La€Grange€Pool€ofÐ ˆ,Ø'3 Ðthe€Illinois€River.€For€each€of€the€six€LTRMP€study€areas,€this€report€contains€summariesÐ P- (4 Ðof:€(1)€sampling€efforts€in€each€combination€of€gear€types€and€aquatic€area€class,€(2)€totalÐ ° Ðcatches€of€each€species€from€each€gear€type,€(3)€mean€catch„per„unit€of€gear€effortÐ xÈ Ðstatistics€and€standard€errors€for€common€species€from€each€combination€of€aquatic€areaÐ @ Ðclass€and€selected€gear€type,€and€(4)€length€distributions€of€common€species€fromÐ X Ðselected€gear€types.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð136.à 4 àHaag,€W.€R.€and€M.€L.€Warren,€Jr.€(1997).€€Host€fishes€and€reproductive€biology€of€6Ð ( x Ðfreshwater€mussel€species€from€the€Mobile€Basin,€USA.€Journal€of€the€North€AmericanÐ ð @ ÐBenthological€Society.€€ò ò16ó ó:576„585.Ð ¸   Ðà 4 àÌÓ X¨ýÓHost€fishes€were€identified€for€6€species€of€freshwater€mussels€(Unionidae)€fromÐ H ˜  Ðthe€Black€Warrior€River€drainage,€Mobile€Basin,€USA:€òòStrophitus€subvexusóó,€òòPleurobemaÐ `  Ðfurvumóó,€òòPtychobranchus€greenióó,€òòLampsilis€perovalisóó,€òòMedionidus€acutissimusóó,€andÐ Ø(  ÐòòVillosa€nebulosaóó.€Hosts€were€determined€as€those€that€produced€juvenile€mussels€fromÐ  ð  Ðglochidial€infestations€in€the€laboratory.€The€following€mussel„fish„host€relationshipsÐ h¸  Ðwere€established:€òòStrophitus€subvexusóó€with€10€species€including€Cyprinidae,Ð 0€  ÐCatostomidae,€Fundulidae,€Centrarchidae,€and€Percidae;€òòPleurobema€furvumóó€withÐ øH  ÐòòCampostoma€oligolepisóó,€òòCyprinella€callistiaóó,€òòC.€venustaóó,òò€Semotilus€atromaculatusóó,€andÐ À ÐòòFundulus€olivaceusóó;€òòPtychobranchus€greeni€óówith€òòEtheostoma€bellatoróó,€òòE.€douglasióó,Ð ˆØ ÐòòPercina€nigrofasciataóó,€and€òòPercina€sp.€cf.€caprodesóó;€òòLampsilis€perovalisóó€withÐ P  ÐòòMicropterus€coosae,óó€òòM.€punctulatusóó,€and€òòM.€salmoidesóó;€òòMedionidus€acutissimusóó€withÐ h ÐòòFundulus€olivaceusóó,€òòEtheostoma€douglasióó,€òòE.€whippleióó,€òòPercina€nigrofaciataóó,€andÐ à0 ÐòòPercina€sp.€cf.€caprodesóó;€and€òòVillosa€nebulosaóó€with€òòLepomis€megalotisóó,€òòMicropterusÐ ¨ø Ðcoosaeóó,€òòM.€punctulatusóó,€and€òòM.€salmoidesóó.€òòFundulus€olivaceusóó€served€as€hosts€for€3Ð pÀ Ðspecies€and€carried€glochidia€for€long€periods€for€2€other€species,€suggesting€thatÐ 8ˆ Ðtopminnows€may€serve€as€host€for€a€wide€variety€of€otherwise€host„specialist€musselÐ P Ðspecies.€Host€relationships€for€the€species€tested€are€similar€to€congeners.€Methods€ofÐ È Ðglochidial€release,€putative€methods€of€host„fish€attraction,€and€gravid€periods€areÐ à Ðdescribed€for€the€6€species.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð137.à 4 àHackney,€P.€A.€(1986).€€Research€and€development€of€fish€passage€technology.Ð °  ÐTennessee€Valley€Authority,€Report€TVA/ONRED/WRF„8.Ð xÈ! Ðà 4 àÌÓ X¨ýÓAny€fish€passage€provided€at€TVA's€John€Sevier€Fossil€Plant€(JSF)€wouldÐ  X# Ðinvolve€only€warmwater€species.€Although€some€anadromous€(marine)€warmwaterÐ Ð $ Ðspecies€(e.g.,€American€shad,€blueback€herring)€are€currently€passed€upstream€andÐ ˜!è% Ðdownstream€through€structures€deliberately€built€for€that€purpose,€effectiveness€of€thisÐ `"°& Ðtechnology€for€passage€of€adults€and€young€of€potential€target€species€(e.g.,€paddlefishÐ (#x' Ðand€sauger/walleye)€in€Cherokee€Reservoir€is€unproven.€Downstream€passage€is€by€farÐ ð#@( Ðthe€larger€and€more€poorly€understood€subject€of€fish€migration€and€should€beÐ ¸$ ) Ðinvestigated€first.€Currently,€the€Electric€Power€Research€Institute€(EPRI)€is€conductingÐ €%Ð * Ðresearch€on€downstream€fish€passage€(Project€RP€2694).€It€will€ultimately€be€necessary€toÐ H&˜!+ Ðadapt€this€information€to€the€target€species€and€site€specificity€at€JSF€(DBO).Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð138.à 4 àHall,€A.€S.€(1972).€€Migration€and€metabolism€in€a€temperate€stream€ecosystem.€Ecology.€Ð h)¸$/ Ðò ò53ó ó:585„604.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓFish€migration,€total€stream€metabolism,€and€phosphorus€were€studied€in€NewÐ À+'2 ÐHope€Creek,€North€Carolina,€from€April€1968€to€June€1970.€Upstream€and€downstreamÐ ˆ,Ø'3 Ðmovement€of€fish€was€monitored€using€weirs€with€traps.€Most€of€the€27€species€had€aÐ P- (4 Ðconsistent€pattern€of€larger€fish€moving€upstream€and€smaller€fish€moving€downstream.Ð ° ÐDiurnal€oxygen€series€were€run€to€measure€the€metabolism€of€the€aquatic€community.Ð xÈ ÐGross€photosynthesis€ranged€from€0.21€to€almost€9€g€OÔ2rÂ@Ô2ÔÎÿ@rÂÔ€mÔÎÿ^@Ô„2Ô2@^Ô€dayÔÎÿ^@Ô„1Ô2@^Ô,€and€communityÐ @ Ðrespiration€from€0.4€to€13€g€OÔ2:ŠXÔ2ÔÎÿX:ŠÔ€mÔÎÿÖ&XÔ„2Ô2XÖ&Ô€dayÔÎÿÖ&XÔ„1Ô2XÖ&Ô€(mean€of€290€and€479€g€OÔ2:ŠXÔ2ÔÎÿX:ŠÔ€mÔÎÿÖ&XÔ„2Ô2XÖ&Ô€dayÔÎÿÖ&XÔ„1Ô2XÖ&Ô).€BothÐ X Ðwere€highest€in€the€spring.€Production€per€volume€and€respiration€per€volume€wereÐ Ð  Ðalways€much€larger€near€the€headwaters€than€farther€downstream,€apparently€due€to€theÐ ˜è Ðdilution€effect€of€the€deeper€water€downstream.€Migration€may€maintain€young€fish€inÐ ` ° Ðareas€of€high€productivity.€Other€effects€of€migration€may€include:€prey€control,Ð ( x Ðrecolonization€of€defaunated€regions,€genetic€exchange,€and€mineral€distribution.€AnÐ ð @ Ðenergy€diagram€was€drawn€comparing€energies€of€isolation,€leaf€inputs,€currents,€totalÐ ¸   Ðcommunity€respiration,€fish€populations,€and€migrations.€About€1%€of€the€totalÐ € Ð  Ðrespiration€of€the€stream€was€from€fish€populations,€and€over€1€year€about€0.04%€of€theÐ H ˜  Ðtotal€energy€used€by€the€ecosystem€was€used€for€the€process€of€migration.€Each€calorieÐ `  Ðinvested€by€a€fish€population€in€migration€returns€at€least€3€calories.€Analysis€ofÐ Ø(  Ðphosphorus€entering€and€leaving€the€watershed€indicated€that€flows€were€small€relative€toÐ  ð  Ðstorages€and€that€this€generally€undisturbed€ecosystem€is€in€approximate€phosphorusÐ h¸  Ðbalance.€Upstream€migrating€fish€were€important€in€maintaining€phosphorus€reserves€inÐ 0€  Ðthe€headwaters.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð139.à 4 àHammer,€C.€(1995).€€Fatigue€and€exercise€tests€with€fish.€Comparative€Biochemistry€andÐ P  ÐPhysiology,€A.€€ò ò112Aó ó:1„20.Ð h Ðà 4 àÌÓ X¨ýÓThe€terminology€and€classification€of€swimming€speeds€are€summarized.€TheÐ ¨ø Ðphysiological€basis€for€the€classification€of€swimming€speeds€is€briefly€explained€withÐ pÀ Ðregard€to€burst,€prolonged,€cruising€speed,€and€the€velocity€which€is€critical€to€fish.€TheÐ 8ˆ Ðprotocols€of€fixed€(fatigue)€velocity€tests€and€increased€(incremental)€velocity€tests€areÐ P Ðreviewed.€The€experiments€carried€out€by€different€authors€are€compared€with€respect€toÐ È Ðtheir€methodological€approaches,€the€main€focus€being€on€the€different€time€intervals€andÐ à Ðvelocity€increments€employed.€From€the€comparison,€it€appears€that€time€intervalsÐ X¨ Ðbetween€2€and€75€min€have€been€employed.€Yet,€it€is€shown€that€there€is€agreement€thatÐ  p Ðtime€intervals€of€longer€than€15„20€min€are€not€necessary€if€the€critical€velocity€alone€isÐ è8 Ðneeded.€The€dependency€of€the€critical€swimming€speed€(CSS)€on€factors€such€as€raceÐ °  Ðand€population,€size,€season€and€temperature,€sex,€pollutants,€light,€food,€training,€andÐ xÈ! Ðambient€gas€content€is€outlined.€The€comparison€shows€that€only€the€influence€ofÐ @" Ðpollutants€and€training€on€the€CSS€have€been€investigated€in€more€detail,€making€furtherÐ  X# Ðcomparative€studies€on€the€dependence€of€the€critical€velocity€on€these€factors€necessary.Ð Ð $ ÐEvaluation:€since€the€CSS€of€fish€depends€on€all€these€factors,€it€would€appear€to€be€aÐ ˜!è% Ðvery€sensitive€measure€for€environmental€or€physiological€factors.€However,€it€is€difficultÐ `"°& Ðto€compare€even€intraspecific€studies€because€of€the€individual€variability€and€theÐ (#x' Ðdependence€of€swimming€performance€on€the€stock,€population,€gender€and€preconditionÐ ð#@( Ðlevel,€making€the€calibration€of€the€tests€very€complicated.€It€is€shown€that€little€is€knownÐ ¸$ ) Ðabout€the€mechanistic€influence€of€internal€or€external€factors€on€the€CSS.€Therefore,€theÐ €%Ð * ÐCSS€is€of€less€interest€for€the€physiologist€than€for€the€ecologist.€Tests€on€the€criticalÐ H&˜!+ Ðvelocity€have€been€successfully€employed€as€an€alternative€to€LDÔ2B'’"'`"Ô50ÔÎÿ'`"B'’"Ô€tests,€although,€onceÐ '`", Ðagain,€it€is€difficult€to€standardize€the€tests,€and€environmental€factors,€such€as€pollutants,Ð Ø'(#- Ðmay€themselves€influence€the€swimming€performance€since€the€metabolism€can,€in€turn,Ð  (ð#. Ðin€some€cases€depend€upon€the€level€of€swimming€performance€itself.Ð h)¸$/ ÐÐ 0*€%0 ÐÓ ¨ýXÓÐ ø*H&1 Ðòò140.óóà 4 àHarden„Jones,€F.€R.€(1968).€€Fish€Migration.€Edward€Arnold€Publishers,€Ltd.,€LondonÐ À+'2 Ð(England).Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓThe€author€pursues€a€treatment€of€the€biological€aspects€of€migration€in€this€earlyÐ ° Ðclassical€book€on€migration€in€fishes.€€Treatment€is€provided€both€environmental€factorsÐ xÈ Ðaffecting€migration€as€well€as€physiological€adaptations€that€permit€and€aid€fishÐ @ Ðmigration.€€Means€by€which€to€study€migration€in€fishes€are€presented€and€elucidatedÐ X Ðfully.€€The€author€then€provides€several€"case€history"€examples€of€migration€in€fishes€byÐ Ð  Ðdiscussing€Salmonid,€Anguillid,€and€Clupeid€migrational€strategies€as€anadromousÐ ˜è Ðexamples.€€Two€Gadiid€examples,€the€cods€and€the€plaice,€are€presented€as€examples€ofÐ ` ° Ðoceanic€migration.€€Reactions€to€external€stimuli,€including€temperature,€current,Ð ( x Ðchemical,€and€light,€are€presented€based€on€findings€from€many€scientific€studies,€bothÐ ð @ Ðlab€and€field„based.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð141.à 4 àHaro,€A.€and€B.€Kynard€(1997).€€Video€evaluation€of€passage€efficiency€of€AmericanÐ `  Ðshad€and€sea€lamprey€in€a€modified€ice€harbor€fishway.€North€American€Journal€ofÐ Ø(  ÐFisheries€Management.€€ò ò17ó ó:981„987.Ð  ð  Ðà 4 àÌÓ X¨ýÓMovement€and€behavior€of€adult€American€shad€òòAlosa€sapidissimaóó€and€seaÐ 0€  Ðlamprey€òòPetromyzon€marinusóó€were€monitored€by€closed„circuit€video€at€several€locationsÐ øH  Ðwithin€a€modified€Ice€Harbor€fishway.€American€shad€ascended€and€descended€theÐ À Ðfishway€exclusively€by€surface€weirs,€while€sea€lampreys€used€both€surface€weirs€andÐ ˆØ Ðsubmerged€orifices.€Upstream€movement€of€American€shad€during€the€day€was€higherÐ P  Ðthan€at€night€at€both€lower€and€middle€fishway€observation€sites.€Peak€downstreamÐ h Ðmovement€of€American€shad€at€both€locations€was€associated€with€decreasing€light€levelsÐ à0 Ðin€the€evening.€Sea€lampreys€moved€primarily€at€night€at€the€lower€and€middle€fishwayÐ ¨ø Ðsites.€Mean€daily€passage€efficiency€was€low€(1%€for€American€shad,€„2%€for€seaÐ pÀ Ðlamprey)€at€the€lower€fishway€surface€weir,€but€passage€efficiency€at€the€middle€fishwayÐ 8ˆ Ðsurface€weir€was€moderate€(70%€for€American€shad,€35%€for€sea€lamprey).€High€waterÐ P Ðvelocity,€air€entrainment,€and€turbulence€of€the€modified€Ice€Harbor€fishway€designÐ È Ðappeared€to€inhibit€American€shad€and€sea€lamprey€passage€by€disrupting€upstreamÐ à Ðmigratory€motivation€and€visual€and€rheotactic€orientation.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð142.à 4 àHaro,€A.,€M.€Odeh,€T.€Castro„Santos€and€J.€Noreika€(1999).€€Effect€of€slope€andÐ °  Ðheadpond€on€passage€of€American€shad€and€blueback€herring€through€simple€Denil€andÐ xÈ! Ðdeepened€Alaska€steeppass€fishways.€North€American€Journal€of€Fisheries€Management.€Ð @" Ðò ò19ó ó:51„58.Ð  X# Ðà 4 àÌÓ X¨ýÓPassage€and€transit€time€of€adult€upstream„migrant€American€shad€òòAlosaÐ ˜!è% Ðsapidissimaóó€and€blueback€herring€òòA.€aestivalisóó€were€investigated€in€standard€Denil€andÐ `"°& ÐAlaska€steeppass€fishways€with€variable€slope€and€headpond€under€semicontrolledÐ (#x' Ðconditions.€Percent€of€American€shad€passed€per€unit€time€(percent€passage)€increasedÐ ð#@( Ðwith€temperature,€while€time€required€to€ascend€from€the€fishway€entrance€to€the€exitÐ ¸$ ) Ð(transit€time)€decreased€with€increasing€temperature€for€both€species.€Increasing€fishwayÐ €%Ð * Ðslope€decreased€percent€passage€of€American€shad,€regardless€of€fishway€type.€HigherÐ H&˜!+ Ðfishway€slope€decreased€percent€passage€of€blueback€herring€in€the€steeppass€fishwayÐ '`", Ðonly.€Low€headpond€enhanced€percent€passage€of€American€shad€in€the€Denil€fishway,Ð Ø'(#- Ðbut€decreased€percent€passage€of€American€shad€in€the€steeppass€fishway.€HeadpondÐ  (ð#. Ðlevel€had€no€effect€on€percent€passage€of€blueback€herring€in€either€fishway.€BecauseÐ h)¸$/ Ðheadpond€level€in€the€steeppass€fishway€affected€percent€passage€of€American€shad€butÐ 0*€%0 Ðnot€the€smaller€blueback€herring,€the€relatively€small€cross„sectional€area€of€the€steeppassÐ ø*H&1 Ðfishway€operated€at€low€headpond€may€inhibit€passage€of€larger€species€such€asÐ À+'2 ÐAmerican€shad.€Transit€time€of€American€shad€decreased€with€both€increasing€slope€andÐ ˆ,Ø'3 Ðhigh€headpond,€and€American€shad€increased€through„water€swimming€speed€under€theseÐ P- (4 Ðconditions.€American€shad€appeared€to€regulate€their€swimming€speed€through€Denil„Ð ° Ðtype€fishways€below€maximal€values.€Blueback€herring€ascended€the€fishways€at€speedsÐ xÈ Ðcomparable€to€those€of€American€shad.€Shorter€transit€times€were€not€associated€withÐ @ Ðincreased€percent€passage.€Turbulence€and€air€entrainment€may€influence€percent€passageÐ X Ðof€American€shad€more€than€longitudinal€water€velocity.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð143.à 4 àHaro,€A.,€M.€Odeh,€J.€Noreika€and€T.€Castro„Santos€(1998).€€Effect€of€water€accelerationÐ ( x Ðon€downstream€migratory€behavior€and€passage€of€Atlantic€salmon€smolts€and€juvenileÐ ð @ ÐAmerican€shad€at€surface€bypasses.€Transactions€of€the€American€Fisheries€Society.€Ð ¸   Ðò ò127ó ó:118„127.Ð € Ð  Ðà 4 àÌÓ X¨ýÓBehavior€and€passage€rate€of€smolts€of€Atlantic€salmon€òòSalmo€salaróó€and€juvenileÐ `  ÐAmerican€shad€òòAlosa€sapidissimaóó€were€compared€between€a€standard€(sharp„crested)€andÐ Ø(  Ða€modified€surface€bypass€weir€that€employs€uniform€flow€velocity€increase€(1€m€sÔÎÿn¾  ð Ô„1Ô2 ð n¾ Ô€mÔÎÿn¾  ð Ô„1Ô2 ð n¾ ÔÐ  ð  Ðof€linear€distance).€Within€the€first€30€min€after€release,€significantly€more€smolts€passedÐ h¸  Ðthe€modified€weir€than€the€standard€weir,€but€no€differences€in€passage€rate€between€weirÐ 0€  Ðtypes€were€noted€for€juvenile€American€shad.€More€Atlantic€salmon€smolts€and€juvenileÐ øH  ÐAmerican€shad€were€passed€by€the€modified€weir€in€groups€of€two€or€more€than€wereÐ À Ðpassed€by€the€standard€weir.€Mean€lengths€of€passed€and€nonpassed€smolts€were€notÐ ˆØ Ðsignificantly€different€between€weir€types,€but€American€shad€passed€by€the€sharp„crestedÐ P  Ðweir€were€significantly€smaller€than€nonpassed€fish.€Most€individuals€of€both€species€thatÐ h Ðpassed€the€modified€weir€maintained€positive€rheotaxis€and€strong€swimming€throughoutÐ à0 Ðthe€length€of€the€weir.€In€addition€to€acceleration,€visual€cues€may€be€an€important€factorÐ ¨ø Ðin€avoidance€behaviors€near€bypass€entrances.€The€observed€reduction€of€delay€timeÐ pÀ Ðbefore€passage€and€maintenance€of€school€integrity€may€facilitate€appropriate€timing€ofÐ 8ˆ Ðemigration€and€enhance€passage€survival.Ð P ÐÓ ¨ýXÓÐ È ÐÐ à Ð144.à 4 àHarris,€J.€H.€(1984).€€Impoundment€of€coastal€drainages€of€south„eastern€Australia,€and€aÐ X¨ Ðreview€of€its€relevance€to€fish€migrations.€Australian€Zoologist.€€ò ò21ó ó:235„250.Ð  p Ðà 4 àÌÓ X¨ýÓA€study€was€carried€out€to€estimate€the€proportion€of€the€freshwater€fish€habitatÐ °  Ðin€coastal€drainages€of€south„eastern€Australia€that€has€been€affected€by€streamÐ xÈ! Ðimpoundments.€The€results€indicated€that€fish€passage€in€about€half€of€the€aquatic€habitatÐ @" Ðof€Australia's€south„eastern€coastal€drainages€has€been€obstructed€by€dams,€weirs€andÐ  X# Ðother€man„made€physical€barriers.€Migratory€patterns€of€the€region's€fish€species€wereÐ Ð $ Ðreviewed.€Ways€in€which€impoundments€affect€the€26€species€that€were€identified€asÐ ˜!è% Ðmigratory€are€discussed€in€relation€to€the€ability€of€fish€to€bypass€barriers,€the€nature€ofÐ `"°& Ðtheir€migrations,€and€the€role€of€flooding.€The€presence€of€about€eight€catadromousÐ (#x' Ðspecies€in€the€region€creates€a€special€problem€in€fish€passage.€It€is€concluded€that€there€isÐ ð#@( Ðcause€for€concern€over€the€status€of€the€region's€fish€populations€and€that€there€is€a€needÐ ¸$ ) Ðfor€a€much€greater€awareness€of€the€nature€and€extent€of€this€problem.Ð €%Ð * ÐÐ H&˜!+ ÐÓ ¨ýXÓÐ '`", Ð145.à 4 àHarris,€J.€H.€(1984).€€A€survey€of€fishways€in€streams€of€coastal€south„eastern€Australia.Ð Ø'(#- ÐAustralian€Zoologist.€€ò ò21ó ó:219„234.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓA€survey€has€identified€29€fishways€on€coastal€streams€of€south„easternÐ 0*€%0 ÐAustralia,€between€the€Mary€River€in€southern€Queensland€and€Lakes€Entrance€in€easternÐ ø*H&1 ÐVictoria.€Only€9.2%€of€293€dams€and€weirs€and€23€causeways€surveyed€had€provision€forÐ À+'2 Ðfish€passage.€Among€37€fish€species€native€to€the€study€area,€about€70%€require€passageÐ ˆ,Ø'3 Ðwithin€river€systems,€either€for€survival€or€for€maintenance€of€population€abundance€andÐ P- (4 Ðdistribution.€Despite€this€need€for€fish€passage,€the€behavioural€responses€andÐ ° Ðphysiological€limits€of€Australian€fish€that€control€their€use€of€fishways€are€poorlyÐ xÈ Ðknown.€Of€the€29€fishways€recorded,€18€were€of€two€metres€or€less€in€height,€and€noneÐ @ Ðwas€higher€than€eight€metres.€Design,€maintenance€and€water€flow€deficiencies€resultedÐ X Ðin€23€fishways€failing€to€provide€suitable€conditions€for€fish€passage€at€the€time€of€theÐ Ð  Ðsurvey.Ð ˜è ÐÐ ` ° ÐÓ ¨ýXÓÐ ( x Ð146.à 4 àHarris,€J.€H.,€G.€Thorncraft€and€P.€Wem€(1998).€€Evaluation€of€rock„ramp€fishways€inÐ ð @ ÐAustralia.€Pages€€331„347€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€FishÐ ¸   ÐMigration€and€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð € Ð  Ðà 4 àÌÓ X¨ýÓMost€of€Australia's€freshwater€fish€species€are€considered€migratory,€and€all€haveÐ `  Ðsome€requirement€for€movement€within€streams.€Many€fish€in€coastal€drainages€areÐ Ø(  Ðcatadromous,€while€inland„drainage€species€are€commonly€potamodromous.€DecliningÐ  ð  Ðpopulations€have€been€linked€with€fish„passage€obstruction€through€water„supplyÐ h¸  Ðdevelopment,€with€thousands€of€instream€barriers.€Attempts€to€restore€fish€passage€areÐ 0€  Ðinhibited€by€the€large€numbers€of€barriers,€and€by€the€high€cost€of€established€technicalÐ øH  Ðfishways.€The€need€for€low„cost€fishways€has€led€to€a€test€of€rock„ramps,€which€use€largeÐ À Ðrocks€in€transverse€ridges,€creating€pools€and€small€falls,€to€mimic€stream€riffles.€TwelveÐ ˆØ Ðrockramps€have€been€built,€generally€sloping€at€1:20.€Some€occupy€only€part€of€the€widthÐ P  Ðof€the€stream€channel,€but€most€are€built€full„width.€Problems€encountered€includedÐ h Ðstructural€movement€in€unsupported€ramps,€excessive€head€losses,€and€fish€missing€theÐ à0 Ðentrance€of€partial„width€ramps.€To€assess€the€effectiveness€of€four€rock„ramps€of€up€toÐ ¨ø Ð1.5€m€head€loss,€we€compared€species€representation€and€length€frequencies€among€fishÐ pÀ Ðarriving€at€the€base€of€the€ramps€with€those€caught€at€the€upstream€exit.€PreliminaryÐ 8ˆ Ðresults€show€rockramp€fishways€can€be€cheaper€than€technical€fishways,€and€can€provideÐ P Ðpassage€for€the€species€and€sizes€of€native€fish€examined.Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð147.à 4 àHarvie,€C.€J.€and€B.€M.€Jessop€(1990).€€Evaluation€of€designs€of€periodic€count€surveysÐ  p Ðfor€the€estimation€of€escapement€at€a€fishway.€North€American€Journal€of€FisheriesÐ è8 ÐManagement.€€ò ò10ó ó:39„45.Ð °  Ðà 4 àÌÓ X¨ýÓCounts€of€the€number€of€alewives€òòAlosa€pseudoharengusóó€migrating€through€theÐ @" Ðfishway€on€the€Gaspereau€River,€Nova€Scotia,€were€used€to€evaluate€the€accuracy€andÐ  X# Ðprecision€of€various€sampling€schemes€for€estimating€the€population€mean€(true€meanÐ Ð $ Ðcount/sample€unit€(15€min)).€High€variability€in€counts€within€day€and€season€requiredÐ ˜!è% Ðmore€intensive€sampling€than€suggested€by€previous€studies€to€estimate€the€populationÐ `"°& Ðmean€to€within€a€given€percent€relative€error.€Stratification€in€some€cases€doubled€orÐ (#x' Ðtrebled€the€precision€of€the€estimated€mean€relative€to€the€mean€obtained€from€simpleÐ ð#@( Ðrandom€sampling,€whereas€systematic€sampling€produced€no€gain€in€precision.Ð ¸$ ) ÐStratification€to€reduce€the€number€of€sample€units€required€for€a€given€precision€mayÐ €%Ð * Ðreduce€the€power€of€a€test€to€detect€differences€between€annual€estimates€of€populationÐ H&˜!+ Ðmeans,€depending€on€their€variances.€The€importance€of€these€interrelated€factors€shouldÐ '`", Ðbe€determined€before€a€particular€scheme€and€level€of€effort€are€chosen€for€sampling.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð148.à 4 àHatch,€D.€R.,€J.€K.€Fryer,€M.€Schwartzberg,€D.€R.€Pederson€and€A.€Wand€(1998).€€AÐ 0*€%0 Ðcomputerized€editing€system€for€video€monitoring€of€fish€passage.€North€AmericanÐ ø*H&1 ÐJournal€of€Fisheries€Management.€€ò ò18ó ó:694„699.Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓWe€designed€and€tested€a€videotape€editing€system€that€selected€and€removedÐ ° Ðâ âvideo€frames€not€containing€fish€images€from€source€videotapes€previously€recorded€inÐ xÈ Ð24,€48,€or€72€h€time„lapse€modes.€The€system,€based€on€image„processing€software€and€aÐ @ Ðpersonal€computer,€compressed€videotapes€of€the€passage€of€Pacific€salmonÐ X ÐòòOncorhynchus€spp.óó€by€75%€(€plus€or€minus€6.8%).€The€system€reduced€the€length€of€tapeÐ Ð  Ðthat€had€to€be€reviewed€without€significantly€altering€fish€counts€made€from€the€tapes.Ð ˜è ÐFish€counts€made€from€visual€review€of€both€the€edited€and€source€videotapes€wereÐ ` ° Ðsimilar€(P€=€0.925).€Using€stratified€random€sampling,€we€selected€and€edited€a€sample€ofÐ ( x Ð200€d€of€recordings€made€at€five€different€locations.€The€combined€location€and€time€dataÐ ð @ Ðformed€a€1,890„d€statistical€population€of€fish€passage.€This€sample€of€source€tapes€wasÐ ¸   Ðstratified€post€hoc€into€three€different€categories€of€fish„passage€densities,€measured€byÐ € Ð  Ðthe€number€of€fish€on€every€24€h€of€recorded€tape€(<100,€100„400,€and€>400€fish/d).Ð H ˜  ÐSource€tape€compression€was€inversely€related€to€fish€passage€density.€The€editingÐ `  Ðsystem€processed€and€compressed€source€videotape€recordings€representing€24€h€ofÐ Ø(  Ðmonitoring€at€a€particular€site€in€approximately€2€h.€The€system€was€simple€to€use€andÐ  ð  Ðdid€not€require€operator€attention€during€the€automated€editing€process.€The€videotapeÐ h¸  Ðediting€system€can€make€it€easier,€faster,€and€less€expensive€to€review€videotapes€ofÐ 0€  Ðmigratory€fish€passage€and€is€most€useful€at€locations€or€during€times€when€relatively€fewÐ øH  Ðfish€will€be€observed€per€day.Ð À ÐÐ ˆØ ÐÓ ¨ýXÓÐ P  Ð149.à 4 àHaymes,€G.€T.,€P.€H.€Patick€and€L.€J.€Onisto€(1984).€€[Attraction€of€fish€to€mercury€vaporÐ h Ðlight€and€its€application€in€a€generating€station€forebay].€Internationale€Revue€derÐ à0 ÐGesamten€Hydrobiologie.€€ò ò69ó ó:867„876.Ð ¨ø Ðà 4 àÌÓ X¨ýÓLaboratory€and€field€tests€were€conducted€to€determine€the€effectiveness€ofÐ 8ˆ Ðfiltered€mercury€vapor€lights€in€attracting€fish€with€possible€utilization€in€a€fishÐ P Ðconserving€scheme€at€an€electrical€generating€station.€In€laboratory€tests,€alewifeÐ È Ðdemonstrated€an€attraction€to€the€mercury€vapor€light€which€was€associated€with€anÐ à Ðincrease€in€swimming€activity.€This€response€was€maintained€over€a€48€hour€period.Ð X¨ ÐWhen€the€filtered€mercury€vapor€lights€were€utilized€in€association€with€a€fish€pump€inÐ  p Ðthe€Nanticoke€Generating€Station€forebay,€juvenile€gizzard€shad€and€smelt€were€attractedÐ è8 Ðto€the€pump€area.€Although€there€was€variation€with€time€of€day,€turbidity€and€lightingÐ °  Ðarray;€the€results€suggested€that€the€number€of€fish€passing€through€the€pump€increasedÐ xÈ! Ðwhen€the€mercury€lights€alone€or€when€the€mercury€lights€in€association€with€a€whiteÐ @" Ðstrobe€light€were€employed.Ð  X# ÐÐ Ð $ ÐÓ ¨ýXÓÐ ˜!è% Ð150.à 4 àHeggenes,€J.€and€T.€Traaen€(1988).€€Downstream€migration€and€critical€water€velocitiesÐ `"°& Ðin€stream€channels€for€fry€of€four€salmonid€species.€Journal€of€Fish€Biology.€€ò ò32ó ó:717„727.Ð (#x' Ðà 4 àÌÓ X¨ýÓFry€of€brown€trout,€Atlantic€salmon,€brook€trout€and€lake€trout€were€tested€forÐ ¸$ ) Ðdownstream€migration€and€critical€velocities€with€a€method€of€stepwise€increasing€waterÐ €%Ð * Ðvelocities.€€Each€velocity€was€tested€for€15€min€before€increase€to€the€next€step.€€CriticalÐ H&˜!+ Ðvelocities€for€fry€entering€the€free„feeding€stage,€defined€as€the€stage€when€the€fry€hasÐ '`", Ðresorbed€its€yolk€sac€and€will€have€to€ascend€from€the€bottom€to€catch€food,€wereÐ Ø'(#- Ðbetween€it€0.10€and€0.25€m/sec,€varying€among€individuals€and€depending€on€species€andÐ  (ð#. Ðwater€temperature.€€Downstream€displacement€started€at€lower€velocities.€€Lake€trout€hadÐ h)¸$/ Ðthe€lowest€critical€velocity.€€Temperature€influenced€swimming€performanceÐ 0*€%0 Ðconsiderably.€€On€average,€a€7€ÔÎÿÆ*&ø*H&ÔoÔ2ø*H&Æ*&ÔC€increase€in€temperature€resulted€in€a€0.05€m/secÐ ø*H&1 Ðincrease€in€critical€velocity.€€The€fry€actively€search€out€the€low„velocity€niches€in€theÐ À+'2 Ðâ âchannels.€€Flow„sensitivity€gradually€decreases€with€fry€development;€when€the€fry€hadÐ ˆ,Ø'3 Ðreached€a€length€of€40€„€50€mm€they€were€able€to€tolerate€water€velocities€higher€thanÐ ° Ð0.50€m/sec.Ð xÈ Ðâ âÐ @ ÐÓ ¨ýXÓÐ X Ð151.à 4 àHelfrich,€L.€A.,€C.€Liston,€S.€Hiebert,€M.€Albers€and€K.€Frazer€(1999).€€Influence€of€low„Ð Ð  Ðhead€diversion€dams€on€fish€passage,€community€composition,€and€abundance€in€theÐ ˜è ÐYellowstone€River,€Montana.€Rivers.€€ò ò7ó ó:21„32.Ð ` ° Ðà 4 àÌÓ X¨ýÓThe€influence€of€three€low„head€irrigation€diversion€dams€on€the€fishÐ ð @ Ðcommunities€in€the€middle€Yellowstone€River€was€examined€by€down„€and€upstreamÐ ¸   Ðelectrofishing€and€trammel€net€comparisons€of€fish€distribution,€relative€abundance,€andÐ € Ð  Ðsize„structure.€Fish€passage€at€Huntley€and€Intake€dams€was€evaluated€by€mark„recaptureÐ H ˜  Ðtechniques€in€July€and€September€following€maximum€annual€discharge.€CatostomidsÐ `  Ðand€cyprinids€dominated€the€fish€community€at€all€sites.€Mean€relative€abundanceÐ Ø(  Ð(CPUE)€ranged€from€1.58€to€5.13€fish/min,€but€no€significant€differences€were€detectedÐ  ð  Ðbetween€sites.€Shovelnose€sturgeon€(òòScaphirhynchus€platorynchusóó)€were€consistentlyÐ h¸  Ðmore€abundant€in€the€trammel€net€and€electrofishing€collections€downstream€ofÐ 0€  ÐCartersville€and€Intake€dams.€Species€richness€ranged€from€7€to€24,€depending€on€site€andÐ øH  Ðsampling€method,€but€did€not€differ€between€down„€and€upstream€sites.€Of€4,430€fish€(37Ð À Ðspecies)€marked€downstream€of€Huntley€Dam,€13€fish€(7€species)€passed€upstream€and€3Ð ˆØ Ðfish€(2€species)€of€the€1,032€fish€marked€upstream€passed€downstream€during€high€flowsÐ P  Ðin€June€1997.€Of€4,080€fish€marked€downstream€of€Intake€Dam,€17€fish€(4€species)Ð h Ðpassed€upstream€in€June€1998.€Fish€species€(swimming€ability)€appeared€to€be€related€toÐ à0 Ðdam€passage,€but€fish€size€was€not€an€important€variable.€Our€results€suggest€that€fishÐ ¨ø Ðpassage€was€feasible€at€individual€dams€at€high€flows€for€some€species€such€as€saugerÐ pÀ Ð(òòStizostedion€canadenseóó),€white€sucker€(òòCatostomus€commersonióó),€goldeye€(òòHiodonÐ 8ˆ Ðalosoidesóó),€shorthead€redhorse€(òòMoxostoma€macrolepidotumóó),€walleye€(òòStizostedionÐ P Ðvitreumóó),€and€carp€(òòCyprinus€carpioóó).€However,€the€six€dams€in€series€on€the€YellowstoneÐ È ÐRiver€represent€a€cumulative€fish€passage€challenge€that,€in€combination,€may€ultimatelyÐ à Ðrestrict€fish€distributions€and€limit€abundance,€especially€during€low€flows€in€dry€years.Ð X¨ ÐEnhancing€natural€bypass€channels€and€constructing€artificial€riffles€may€be€usefulÐ  p Ðstrategies€for€promoting€fish€passage€at€low„head€dams.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð152.à 4 àHendershot,€R.€G.,€W.€C.€Acker€and€R.€D.€Sullivan€(1984).€Doppler€techniques€applied€toÐ @" Ðfisheries€hydroacoustics.€Pages€€15„20€òòinóó€€Oceans€'84€Conference€Record:€Industry,Ð  X# ÐGovernment,€Education.€Designs€for€the€Future,€Washington,€DC€(USA),€???Ð Ð $ Ðà 4 àÌÓ X¨ýÓFisheries€management€agencies€are€in€need€of€better€technologies€to€monitor€theÐ `"°& Ðruns€of€migratory€species€in€free„flowing€rivers.€This€paper€describes€a€long„pulse€420Ð (#x' ÐkHz€riverine€Doppler€sonar€designed€to€detect€upstream€migrating€fish€in€shallow€watersÐ ð#@( Ðand€to€reject€false€targets€and€large€reverberations€from€the€surface€and€bottom.€The€useÐ ¸$ ) Ðof€Hanning„shaped€long€pulses€(30€msec)€results€in€good€spectral€separation€betweenÐ €%Ð * Ðreverberations€and€Doppler„shifted€echoes€from€upstream€migrants.€A€correlationÐ H&˜!+ Ðdetector€rejects€certain€classes€of€false€targets€by€comparing€shapes€of€the€transmit€pulseÐ '`", Ðand€Doppler„shifted€echoes.€The€correlation€detector€also€improves€the€system's€rangeÐ Ø'(#- Ðresolution.€In€field€tests€the€system€has€provided€an€accurate€run€timing€index€of€theÐ  (ð#. Ðspring€1983€sockeye€salmon€òòOncorhynchus€nerkaóó€run€on€the€Quinault€River€inÐ h)¸$/ ÐWashington€State.€Current€research€includes€investigating€bistatic€configurations€forÐ 0*€%0 Ðmonitoring€fish€passage€through€specific€regions€and€the€use€of€echo€integrationÐ ø*H&1 Ðtechniques€to€sum€the€total€energy€in€the€received€signal.Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð153.à 4 àHesse,€L.€W.€(1987).€€Taming€the€wild€Missouri€River:€What€has€it€cost?€Fisheries.€€ò ò12ó ó:2„Ð ° Ð9.Ð xÈ Ðà 4 àÌÓ X¨ýÓThe€most€significant€legislation€that€authorized€the€alteration€of€the€MissouriÐ X ÐRiver€is€reviewed€from€a€fisheries€position.€An€outline€of€the€dollar€costs€to€achieveÐ Ð  Ðchange€along€the€river€shows€that€the€U.S.€taxpayer€has€spent€more€than€$6€billion€in€theÐ ˜è ÐMissouri€River€Basin.€Broad€ecological€concern€about€lost€riverine€resources€is€raised.Ð ` ° ÐMitigation,€management,€or€enhancement€of€riverine€resources€has€not€been€successfullyÐ ( x Ðcompleted.€Alternatives€to€impoundment€and€channelization€were€not€adequatelyÐ ð @ Ðdiscussed,€and€the€extent€of€environmental€damage€was€unknown,€unexpected,€andÐ ¸   Ðunstudied€at€the€time€these€projects€were€planned.€There€was€sufficient€latitude€inÐ € Ð  Ðcongressional€action€after€1944€to€have€provided€some€safeguard,€had€these€laws€beenÐ H ˜  Ðinterpreted€with€a€concern€for€wildlife.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð154.à 4 àHesse,€L.€W.€(1994).€€The€status€of€Nebraska€fishes€in€the€Missouri€River,€3.€ChannelÐ h¸  Ðcatfish€(Ictaluridae:€òòIctalurus€punctatusóó).€Transactions€of€the€Nebraska€Academy€ofÐ 0€  ÐSciences.€€ò ò21ó ó:73„87.Ð øH  Ðà 4 àÌÓ X¨ýÓThe€average€size€of€Missouri€River€channel€catfish€òòIctalurus€punctatusóó€hasÐ ˆØ Ðdeclined.€The€percentage€10€years€old€or€older€is€4.8%€compared€with€an€unexploitedÐ P  Ðpopulation€in€which€32%€are€10€years€and€older.€From€1944€through€1988€commercialÐ h Ðharvest€declined€as€much€as€64%.€Total€mortality€was€37%€at€age€4€and€79%€at€age€5.Ð à0 ÐThe€increased€mortality€occurred€as€they€reached€13€inches€and€became€fully€recruited€toÐ ¨ø Ðthe€commercial€fishery.€Harvest€statistics€are€not€wholly€reliable€because€reports€are€notÐ pÀ Ðverifiable€and€commercial€fishers€do€not€return€fish€tags.€Harvest€exceeded€a€reasonableÐ 8ˆ Ðlimit€for€maximum€sustained€yield.€Commercial€minimum„size€limits€have€beenÐ P Ðineffective€due€to€their€design€and€because€they€are€not€easily€enforced.€CommercialÐ È Ðcatfishing€was€closed€in€action€taken€by€the€Nebraska€Game€and€Parks€Commission€inÐ à ÐNovember€1990€to€take€effect€1€January€1992.€Since€then€the€mean€size€has€increasedÐ X¨ Ðfrom€286€mm€total€length€(TL)€to€324€mm€TL€in€25.4„mm€mesh€net€samples€from€theÐ  p Ðchannelized€section€of€the€Missouri€River,€and€the€percentage€of€fish€longer€than€330€mmÐ è8 ÐTL€increased€from€8%€in€1987€to€44%€in€1993.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð155.à 4 àHesse,€L.€W.€(1994).€€The€status€of€Nebraska€fishes€in€the€Missouri€River,€4.€FlatheadÐ  X# Ðcatfish€òòPylodictis€olivarisóó,€and€blue€catfish,€òòIctalurus€furcatusóó€(Ictaluridae).€TransactionsÐ Ð $ Ðof€the€Nebraska€Academy€of€Sciences.€€ò ò21ó ó:89„98.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓFlathead€òòPylodictis€olivarisóó€and€blue€òòIctalurus€furcatusóó€catfish€in€the€MissouriÐ (#x' ÐRiver€have€been€over„exploited.€Commercial€harvest€of€both€species€ended€in€1992,€butÐ ð#@( Ðcommercial€fishing€was€only€part€of€the€problem.€The€percentage€of€flathead€catfishÐ ¸$ ) Ðlonger€than€407€mm€total€length€is€very€low.€The€density€of€flathead€catfish€in€the€upperÐ €%Ð * Ðunchannelized€Missouri€River€is€6€to€10%€of€the€density€in€the€lower€unchannelizedÐ H&˜!+ Ðreach,€and€channelized€section€density€is€six€times€greater€than€unchannelized€density.Ð '`", ÐTagging€studies€have€revealed€that€the€population€of€flathead€catfish€in€the€upperÐ Ø'(#- Ðunchannelized€reach€consists€of€less€than€1,000€individuals.€Blue€catfish€have€been€nearlyÐ  (ð#. Ðextirpated€and€should€be€listed€as€endangered€in€Nebraska's€portion€of€the€MissouriÐ h)¸$/ ÐRiver.€Overharvest,€reduced€turbidity,€and€the€removal€of€large€woody€debris€has€causedÐ 0*€%0 Ðthe€reduced€population€density.€Management€must€include€restricted€harvest,€closedÐ ø*H&1 Ðareas,€protected€size€classes,€increased€turbidity,€and€restoration€of€a€floodplain€withÐ À+'2 Ðseasonal€flooding.€In€the€near€term,€large€trees€from€the€river€bottom€or€fromÐ ˆ,Ø'3 Ðcommunities€near€the€river€should€be€placed€in€the€channel€to€enhance€in„stream€cover.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð156.à 4 àHesse,€L.€W.€(1994).€€The€status€of€Nebraska€fishes€in€the€Missouri€River.€6.€SaugerÐ xÈ Ð(Percidae:€òòStizostedion€canadenseóó).€Transactions€of€the€Nebraska€Academy€of€Sciences.€Ð @ Ðò ò21ó ó:109„122.Ð X Ðà 4 àÌÓ X¨ýÓSaugers€òòStizostedion€canadenseóó€were€once€common€representatives€of€theÐ ˜è ÐMissouri€River€fish€assemblage.€Prior€to€channelization€and€impoundment,€theyÐ ` ° Ðcomprised€from€10€to€65%€of€the€main€channel€big„river€fish€group.€They€utilized€theÐ ( x Ðslower€side€channels€and€backwaters€seasonally€for€feeding,€resting,€and€maturing,€butÐ ð @ Ðthe€main€channel€was€important€for€breeding€habitat.€Since€the€onset€of€channelizationÐ ¸   Ðand€impoundment,€saugers€have€been€reduced€by€as€much€as€98%€in€some€areas,€and€theÐ € Ð  Ðtrend€toward€extirpation€continues€unabated€today.€Recovery€of€native€sauger€stocks€willÐ H ˜  Ðrequire€a€complete€cessation€of€harvest,€recovery€of€the€natural€hydrograph,€recovery€ofÐ `  Ðsediment€transport,€recovery€of€snags€and€organic€matter€dynamics,€and€re„connection€ofÐ Ø(  Ðcut„off€side€channel€morphology.Ð  ð  ÐÐ h¸  ÐÓ ¨ýXÓÐ 0€  Ð157.à 4 àHesse,€L.€W.€and€G.€E.€Mestl€(1993).€€The€status€of€Nebraska€fishes€in€the€MissouriÐ øH  ÐRiver.€1.€Paddlefish€(Polyodontidae:€òòPolyodon€spathulaóó).€Transactions€of€the€NebraskaÐ À ÐAcademy€of€Sciences.€€ò ò20ó ó:53„65.Ð ˆØ Ðà 4 àÌÓ X¨ýÓThe€mean€larval€paddlefish€density€was€60€times€higher€in€the€upperÐ h Ðunchannelized€section€of€the€Missouri€River€in€Nebraska€compared€to€the€lowerÐ à0 Ðunchannelized€section,€and€was€three€times€higher€than€the€channelized€section's€density.Ð ¨ø ÐWithin€the€upper€unchannelized€section,€96.2%€of€the€larvae€were€collected€in€theÐ pÀ Ðdischarge€of€two€tributaries,€which€lie€in€the€lower€one„third€of€the€reach.€Survival€fromÐ 8ˆ Ðlarval€to€young„of„the„year€stage€(June€through€August)€was€highest€during€1991€due,€inÐ P Ðpart,€to€the€recent€drought.€Reduced€fluctuation€of€river€stages€occurred€as€a€result€ofÐ È Ðreduced€runoff,€which€minimized€the€need€to€reduce€discharge€to€prevent€flooding€in€theÐ à Ðlower€basin.€The€mean€weight€of€paddlefish€captured€during€the€1991€snagging€seasonÐ X¨ Ðincreased€from€6.89€kg€in€1990€to€7.45€kg,€while€the€mean€length€increased€from€739€mmÐ  p Ð(eye„to„fork€length)€to€753€mm.€The€percentage€of€snagged€paddlefish€10€years€old€orÐ è8 Ðolder€decreased€from€15.3%€in€1990€to€9.5%€in€1991.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð158.à 4 àHesse,€L.€W.,€J.€C.€Schmulbach,€J.€M.€Carr,€K.€D.€Keenlyne,€D.€G.€Unkenholz,€J.€W.Ð  X# ÐRobinson€and€G.€E.€Mestl€(1989).€Missouri€River€fishery€resources€in€relation€to€past,Ð Ð $ Ðpresent,€and€future€stresses.€Pages€€352„371€òòinóó€€Conference€International€Large€RiverÐ ˜!è% ÐSymposium,€Honey€Harbour,€Ont.€(Canada),€Canadian€Special€Publications€of€FisheriesÐ `"°& Ðand€Aquatic€Sciences.Ð (#x' Ðà 4 àÌÓ X¨ýÓNearly€one„third€of€the€Missouri€River€has€been€impounded,€one„thirdÐ ¸$ ) Ðchannelized,€and€the€hydrologic€cycle,€including€temporal€flow€volume€and€sedimentÐ €%Ð * Ðtransport,€has€been€altered€on€the€remainder.€The€floodplain€along€the€lower€one„third€hasÐ H&˜!+ Ðbeen€converted€from€riparian€forest€and€prairie€to€agriculture.€The€changes€in€basin€andÐ '`", Ðfloodplain€physiography€and€channel€morphology€have€reduced€commercial€fish€harvestÐ Ø'(#- Ðby€more€than€80%€and€are€implicated€in€the€demise€of€native€species.€In€some€instancesÐ  (ð#. Ðnonnative€fish€have€replaced€endemic€species€in€the€mainstream€reservoirs,€whereÐ h)¸$/ Ðbreeding€and€maturing€habitat€for€riverine€species€has€been€eliminated.€SuggestedÐ 0*€%0 Ðsolutions€include€a€holistic€approach€to€future€research€and€management.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð159.à 4 àHillegass,€K.€R.€and€M.€C.€Hove€(1997).€Suitable€fish€hosts€for€glochidia€of€threeÐ ° Ðâ âfreshwater€mussels:€strange€floater,€ellipse,€and€snuffbox.€Pages€€14€òòinóó€M.€Olekszyn€andÐ xÈ ÐM.€Steingraeber,€eds.€Proceedings€of€the€Mississippi€River€Research€Consortium,€LaÐ @ ÐCrosse,€Wisconsin€(USA),€Mississippi€River€Research€Consortium.Ð X Ðà 4 àÌÓ X¨ýÓOf€297€freshwater€mussels€species€living€in€North€America,€213€are€eitherÐ ˜è Ðendangered,€threatened,€or€of€special€concern.€€The€identification€of€fish€hosts€is€listed€inÐ ` ° Ðthe€National€Strategy€for€Freshwater€Mussel€Conservation€as€an€urgent€researchÐ ( x Ðobjective.€€We€conducted€laboratory€studies€to€determine€suitable€fish€hosts€for€threeÐ ð @ Ðspecies€of€freshwater€mussels:€strange€floater€òòStrophitus€undulatusóó,€€ellipseÐ ¸   ÐòòVenustaconcha€ellipsiformisóó,€and€snuff€box€òòEpioblasma€triquetraóó.€€Various€fish€speciesÐ € Ð  Ðwere€exposed€to€mussel€larvae€via€artificial€infestation.€€A€fish€was€considered€a€suitableÐ H ˜  Ðhosed€when€larval€metamorphosis€to€the€juvenile€stage€was€observed.€€Juvenile€strangeÐ `  Ðfloater€were€collected€from€five€of€seven€species€tested:€largemouth€bass,€green€sunfish,Ð Ø(  Ðblack€bullheads,€bluegills,€and€yellow€perch.€€Of€nine€fish€species€exposed€to€ellipseÐ  ð  Ðglochidia,€only€blackside€darters€were€suitable€hosts.€€Snuff€box€glochidiaÐ h¸  Ðmetamorphosed€on€log€perch€and€blackside€darters.€€Host€requirements€for€strange€floaterÐ 0€  Ðglochidia€appeared€to€be€quite€general,€whereas€the€ellipse€glochidia€were€more€selective.€Ð øH  ÐSpecies„specific€molecular€markers€are€being€developed€for€use€in€the€identification€ofÐ À Ðglochidia€collected€from€naturally€infested€fish.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð160.à 4 àHoggarth,€M.€A.€(1992).€€An€examination€of€the€glochidia„host€relationships€reported€inÐ à0 Ðthe€literature€for€North€American€species€of€Unionacea€(Molluske:€Bilvalvia).Ð ¨ø ÐMalacology€Data€Net.€€ò ò3ó ó:1„30.Ð pÀ Ðà 4 àÌÓ X¨ýÓThis€was€an€extensive€list€of€many€of€the€parasite„host€relationships€from€theÐ P Ðliterature.€€It€is€valuable€for€its€inclusion€of€the€methods€of€infestation€in€each€case:Ð È Ðnatural,€artificial,€transformed,€etc...€(from€Watters€1994).Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð161.à 4 àHolland,€L.,€D.€Huff,€S.€Littlejohn€and€R.€Jacobson€(1984).€€Analysis€of€existingÐ è8 Ðinformation€on€adult€fish€movements€through€dams€on€the€Upper€Mississippi€River.€U.S.Ð °  ÐFish€and€Wildlife€Service,€National€Fisheries€Research€Laboratory,€U.S.€GovernmentÐ xÈ! ÐReport€84(14):37.Ð @" Ðà 4 àÌÓ X¨ýÓThis€report€provides€input€towards€the€completion€of€the€final€feasibility€reportÐ Ð $ Ðand€draft€Environmental€Impact€Statements€for€hydropower€development€at€Locks€andÐ ˜!è% ÐDams€5€and€8€of€the€Upper€Mississippi€River€(UMR),€scheduled€for€completion€byÐ `"°& ÐSeptember€1985.€€This€report€has€the€following€objective:€to€compile,€review,€andÐ (#x' Ðanalyze€existing€information€on€movements€of€adult€fish€through€dams€on€the€UMR€fromÐ ð#@( ÐSt.€Anthony€Falls€to€Lock€and€Dam€14.€€Secondary€objectives€include€(1)€identificationÐ ¸$ ) Ðof€information€gaps€about€adult€fish€movements€and€UMR€fisheries€in€general€that€wouldÐ €%Ð * Ðprevent€an€accurate€assessment€of€the€impacts€of€small„scale€hydropower€development€onÐ H&˜!+ ÐUMR€fisheries;€and€(2)€identification€of€impact€assessment€techniques,€approaches,€andÐ '`", Ðmethods€for€obtaining€the€necessary€data€for€an€assessment€of€the€impacts€of€small„scaleÐ Ø'(#- Ðhydropower€development€on€UMR€fisheries.€€This€report€provides€pool„by„pool€reportingÐ  (ð#. Ðof€available€adult€fish€movement€information€and€makes€recommendations€onÐ h)¸$/ Ðrepresentative,€important€fish€species€for€future€studies.Ð 0*€%0 ÐÐ ø*H&1 Ðâ âÓ ¨ýXÓÐ À+'2 Ð162.à 4 àHolland„Bartels,€L.€E.€(1990).€€Physical€factors€and€their€influence€on€the€mussel€fauna€ofÐ ° Ða€main€channel€border€habitat€of€the€Upper€Mississippi€River.€Journal€of€the€NorthÐ xÈ ÐAmerican€Benthological€Society.€€ò ò9ó ó:327„335.Ð @ Ðâ âà 4 àÌÓ X¨ýÓThe€habitats€of€mussel€species€in€a€portion€of€the€main€stem€of€Navigation€PoolÐ Ð  Ð10€of€the€Upper€Mississippi€River€were€examined.€Population€composition,€abundance,Ð ˜è Ðand€sediment€and€current€preferences€were€measured€at€186€sites€in€the€East€Channel€ofÐ ` ° Ðthe€pool.€Although€total€mussel€abundance€varied€significantly€as€a€function€of€sedimentÐ ( x Ðand€current€(P€<=€0.05),€abundance€could€be€predicted€in€only€44%€of€sites€byÐ ð @ Ðdiscriminant€analysis€models.€Accurate€prediction€of€abundance€for€most€species€alsoÐ ¸   Ðwas€poor.€Species€showed€little€discrimination€in€choosing€main€channel€habitats,€butÐ € Ð  Ðcould€be€broadly€classified€into€species€preferring€fine€to€medium„fine€sands€(e.g.,Ð H ˜  ÐòòTruncilla€truncataóó€and€òòPotamilus€alatusóó)€or€coarser€sands€(e.g.,€òòLampsilis€cardiumóó€andÐ `  ÐòòTruncilla€donaciformisóó).€The€endangered€òòLampsilis€higginsióó€was€found€in€a€broad€rangeÐ Ø(  Ðof€habitats€similar€to€those€occupied€by€many€of€the€more€common€species,€suggestingÐ  ð  Ðfactors€other€than€loss€of€adult€habitat€for€the€rarity€of€this€species.Ð h¸  ÐÐ 0€  ÐÓ ¨ýXÓÐ øH  Ð163.à 4 àHolland„Bartels,€L.€E.€and€T.€W.€Kammer€(1989).€€Seasonal€reproductive€development€ofÐ À ÐòòLampsilis€cardiumóó,€òòAmblema€plicata€plicataóó,€and€òòPotamilus€alatusóó€(Pelecypoda:Ð ˆØ ÐUnionidae)€in€the€Upper€Mississippi€River.€Journal€of€Freshwater€Ecology.€€ò ò5ó ó:87„92.Ð P  Ðà 4 àÌÓ X¨ýÓAdult€specimens€of€three€species€of€freshwater€mussels€common€to€the€UpperÐ à0 ÐMississippi€River€were€examined€histologically€to€determine€seasonal€patterns€ofÐ ¨ø Ðdevelopment€in€gametogenesis€and€release€of€glochidia.€Full€maturation€of€gonadalÐ pÀ Ðmaterials€in€òòLampsilis€cardiumóó€(formerly€òòL.€ovata€ventricosaóó),€a€long„term€breeder,Ð 8ˆ Ðoccurred€when€ambient€river€temperatures€reached€24€to€26€ÔÎÿÎPÔoÔ2PÎÔC,€between€late„July€andÐ P Ðearly„August.€By€mid„August,€glochidia€were€present€in€the€marsupia.€Glochidia€wereÐ È Ðreleased€from€late„May€through€mid„June€of€the€following€year€once€water€temperaturesÐ à Ðreached€20€ÔÎÿ&vX¨ÔoÔ2X¨&vÔC.€The€long„term€breeder€òòPotamilus€alatusóó€demonstrated€full€gonadalÐ X¨ Ðmaturation€earlier€than€seen€in€òòL.€cardiumóó€with€reproduction€completed€by€late„July€(26Ð  p ÐÔÎÿ¶è8ÔoÔ2è8¶ÔC).€Glochidia€of€òòP.€alatusóó€were€released€over€a€period€similar€to€that€observed€for€òòL.Ð è8 Ðcardiumóó,€late„May€through€early„July€of€the€following€year.€Fully€mature€òòAmblemaÐ °  Ðplicata€plicataóó,€a€short„term€breeder,€were€collected€from€late„May€through€early„July€(18Ð xÈ! Ðto€21€ÔÎÿ^@ÔoÔ2@^ÔC).Ð @" ÐÓ ¨ýXÓÐ  X# ÐÐ Ð $ Ð164.à 4 àHooli,€J.€(1988).€€[Studies€in€the€fishway€models].€Aqua€Fennica.€€ò ò18ó ó:171„178.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓIn€order€to€conduct€field€experiments€of€fishways,€scale€models€were€constructedÐ (#x' Ðin€Keminmaa€and€at€the€Kirakkakongas€hydropower€plant.€The€models€were€made€for€aÐ ð#@( Ðfishway€with€vertical€slots.€The€Kirakkakongas€model€was€30€m€long€with€a€verticalÐ ¸$ ) Ðascent€of€2€m.€The€Keminmaa€model€was€made€on€a€scale€of€1:4.€The€ascent€behavior€ofÐ €%Ð * Ðfish€was€studied€at€discharges€of€30„100€L/s.€The€depth€of€the€basins€was€30„60€m.€TheÐ H&˜!+ ÐKeminmaa€model€allowed€evaluation€of€different€experimental€designs,€measuringÐ '`", Ðequipment,€and€the€methodology€of€fish€behavior€experiments.€The€KirakkakongasÐ Ø'(#- Ðmodel€made€it€possible€to€carry€out€parallel€and€more€detailed€experiments.€AtÐ  (ð#. ÐKarakkakongas€most€fish€swam€up€to€the€lower€basin€from€the€entrance€downstream,€inÐ h)¸$/ Ðwhich€the€flow€was€strengthened€by€the€flow€from€the€lower€channel.€The€flow€velocityÐ 0*€%0 Ðwas€0.3„1.5€m/s,€depending€on€the€magnitude€of€the€discharge€used€in€the€mouth€of€theÐ ø*H&1 Ðfishway.€In€the€Kirakkakongas€fishway,€fish€swimming€behavior€was€significantlyÐ À+'2 Ðaffected€by€the€temperature€of€the€water€and€the€flows€in€the€basins€and€openings.€At€theÐ ˆ,Ø'3 Ðlowest€discharge€(33€L/s),€most€fish€swam€up€and€at€the€highest€(100€L/s)€only€a€fewÐ P- (4 Ðswam€up.€At€the€lowest€discharge€it€was€possible€to€obtain€flow€conditions€in€the€modelÐ ° Ðin€which€whitefish€of€different€sizes€were€able€to€swim€without€difficulty.€The€suitableÐ xÈ Ðflow€rate€greatly€depends€on€the€species€for€which€the€fishway€has€been€designed.€ForÐ @ Ðtrout€and€salmon€the€flow€can€be€very€strong€but€whitefish€require€a€calmer€flow.€In€theÐ X ÐKeminmaa€models€the€greatest€proportion€of€the€fish€swam€up€the€fishway€when€theÐ Ð  Ðwater€temperature€was€16„19€ÔÎÿf¶˜èÔoÔ2˜èf¶ÔC.€The€origin€of€the€fish€did€not€affect€their€rising€activity.Ð ˜è ÐThe€best€discharge€for€whitefish€in€this€fishway€model€was€25„35€L/s.€At€lowerÐ ` ° Ðdischarges€the€whitefish€also€rose€well.€At€discharges€over€35€L/s,€the€swimming€wasÐ ( x Ðuncontrolled€and€only€a€few€whitefish€were€able€to€swim€up.€The€rising€activity€ofÐ ð @ Ðwhitefish€increased€towards€autumn,€although€the€water€was€still€warm.€Fish€swam€upÐ ¸   Ðmost€actively€in€the€morning.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð165.à 4 àHove,€M.€C.,€R.€A.€Engelking,€E.€R.€Evers,€M.€E.€Peteler€and€E.€M.€Peterson€(1995).Ð Ø(  ÐSuitable€fish€hosts€of€six€freshwater€mussels.€Pages€€57€òòinóó€M.€Sandheinrich,€ed.Ð  ð  ÐProceedings€of€the€Mississippi€River€Research€Consortium,€La€Crosse,€WisconsinÐ h¸  Ð(USA),€Mississippi€River€Research€Consortium.Ð 0€  Ðà 4 àÌÓ X¨ýÓMost€freshwater€mussels€(unionids)€must€briefly€attach€to€a€fish€in€order€toÐ À Ðcomplete€their€life€cycle.€€Management€of€rare€unionids€frequently€demands€knowledgeÐ ˆØ Ðof€their€fish€host(s).€€Studies€were€conducted€in€1994€to€determine€suitable€fish€hosts€ofÐ P  Ðthe€following€unionids:€€purple€wartyback€òòCyclonaias€tuberculataóó,€creek€heelsplitterÐ h ÐòòLasmigona€compressaóó,€fluted„shell€òòL.€costataóó,€black€sandshell€òòLigumia€rectaóó,€cylindricalÐ à0 Ðpapershell€òòAnodontoides€ferussacianusóó,€and€squawfoot€òòStrophitus€undulatusóó.€€SuitableÐ ¨ø Ðfish€hosts€were€determined€by€artificially€exposing€fish€to€mussel€glochidia€andÐ pÀ Ðdetermining€if€they€facilitated€glochidia€metamorphosis€to€the€juvenile€stage.€€Six€fishÐ 8ˆ Ðspecies€were€infested€with€òòC.€tuberculataóó€glochidia,€but€only€the€yellow€bullheadÐ P ÐòòAmeiurus€natalisóó€served€as€a€suitable€host.€€Four€of€ten€fish€species€tested€were€found€toÐ È Ðbe€suitable€hosts€for€òòLasmigona€compressaóó:€€spotfin€shiner€òòCyprinella€spilopteraóó,€slimyÐ à Ðsculpin€òòCottus€cognatusóó,€black€crappie€òòPomoxis€nigromaculatusóó,€and€yellow€perch€òòPercaÐ X¨ Ðflavescensóó.€€Juvenile€òòLasmigona€costataóó€were€collected€from€one€(slimy€sculpin)€of€fourÐ  p Ðfish€species€tested.€€Of€eight€fish€species€tested,€òòLigumia€rectaóó€glochidia€completelyÐ è8 Ðmetamorphosed€only€on€bluegill€òòLepomis€macrochirusóó.€€Six€of€eleven€species€tested€wereÐ °  Ðfound€to€be€suitable€hosts€foròò€S.€undulatusóó€glochidia:€€spotfin€shiner,€fathead€minnowÐ xÈ! ÐòòPimephales€promelasóó,€bluegill,€largemouth€bass€òòMicropterus€salmoidesóó,€yellow€bullhead,Ð @" Ðand€black€bullhead€òòAmeiurus€melasóó.€€Juvenile€òòAnodontoides€ferussacianusóó€were€collectedÐ  X# Ðfrom€aquaria€holding€spotfin€shiner€and€black€crappie.€€Stuidies€in€1994€combined€withÐ Ð $ Ðearlier€studies€at€the€University€of€Minnesota€have€identified€several€previously€unknownÐ ˜!è% Ðsuitable€fish€hosts€for€a€variety€of€unionids.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð166.à 4 àHove,€M.€C.,€R.€A.€Engelking,€E.€M.€Long,€M.€E.€Peteler€and€L.€A.€Sovell€(1994).Ð ¸$ ) ÐSuitable€fish€hosts€of€three€freshwater€mussels€from€the€St.€Croix€River,€Minnesota.Ð €%Ð * ÐPages€€11€òòinóó€T.€Naimo,€M.€Sandheinrich,€C.€Theiling€and€N.€Mundahl,€eds.€ProceedingsÐ H&˜!+ Ðof€the€Mississippi€River€Research€Consortium,€La€Crosse,€Wisconsin€(USA),€MississippiÐ '`", ÐRiver€Research€Consortium.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓMost€species€of€freshwater€mussels€must€briefly€parasitize€a€fish€in€order€toÐ h)¸$/ Ðcomplete€their€life€cycle.€€Management€of€rare€mussel€species€frequently€demandsÐ 0*€%0 Ðknowledge€of€the€mussel's€fish€host(s).€€Suitable€fish€hosts€of€òòCyclonaias€tuberculataóó,Ð ø*H&1 ÐòòLasmigona€costataóó,€and€òòLigumia€rectaóó€were€determined€by€artificially€exposing€fishÐ À+'2 Ðspecies€to€mussel€glochidia€and€then€determining€if€juvenile€mussels€were€produced.€Ð ˆ,Ø'3 ÐFifty„one€fish€species€were€infested€with€òòC.€tuberculataóó€glochidia,€but€only€the€yellowÐ P- (4 Ðbullhead€(òòAmeiurus€natalisóó)€and€channel€catfish€(òòIctalurus€punctatusóó)€served€as€hosts.€Ð ° ÐSix€of€eight€fish€species€tested€were€found€to€be€suitable€hosts€for€òòLasmigona€costataóó:Ð xÈ Ðbowfin€(òòAmia€calvaóó),€northern€pike€(òòEsox€luciusóó),€bluegill€(òòLepomis€macrochirusóó),Ð @ Ðlargemouth€bass€(òòMicropterus€salmoidesóó),€yellow€perch€(òòPerca€flavescensóó)€and€walleyeÐ X Ð(òòStizostedion€vitreumóó).€€Juvenile€òòLigumia€rectaóó€were€collected€from€only€two€(largemouthÐ Ð  Ðbass€and€walleye)€of€thirteen€fish€species€tested.€€Suitable€fish€hosts€identified€for€òòC.Ð ˜è Ðtuberculataóó€and€òòLasmigona€costataóó€were€previously€unknown.€€This€is€the€first€time€theÐ ` ° Ðwalleye€has€been€identified€as€a€suitable€host€foròò€Ligumia€rectaóó.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð167.à 4 àHoxmeier,€R.€J.€H.€and€D.€R.€DeVries€(1996).€€Status€of€paddlefish€in€the€AlabamaÐ € Ð  Ðwaters€of€the€Tennessee€River.€North€American€Journal€of€Fisheries€Management.€Ð H ˜  Ðò ò16ó ó:935„938.Ð `  Ðà 4 àÌÓ X¨ýÓThe€Alabama€waters€of€the€Tennessee€River€have€historically€contained€abundantÐ  ð  Ðpopulations€of€paddlefish€òòPolyodon€spathulaóó.€During€the€later€half€of€this€century,Ð h¸  Ðoverexploitation€has€reduced€the€number€of€paddlefish€in€the€Tennessee€River.€WeÐ 0€  Ðattempted€to€determine€whether€paddlefish€populations€in€the€Tennessee€River€withinÐ øH  ÐAlabama€had€recovered€from€this€overexploitation€since€the€implementation€of€aÐ À Ðstatewide€moratorium€in€1988.€We€failed€to€collect€paddlefish€after€an€effort€of€346€gill„Ð ˆØ Ðnet„hours€and€20€h€of€electrofishing€pedal€time€from€November€1993€through€June€1994.Ð P  ÐLow€abundance€of€paddlefish€in€the€Tennessee€River€is€likely€the€result€of€a€combinationÐ h Ðof€continuing€commercial€harvest€in€bordering€states,€loss€of€habitat,€and€slowÐ à0 Ðrecruitment€due€to€a€relatively€old€age€at€maturity.€Recovery€may€require€additional€time,Ð ¨ø Ðstocking,€or€both.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð168.à 4 àHubley,€R.€C.,€Jr.€(1963).€€Movement€of€tagged€channel€catfish€in€the€Upper€MississippiÐ È ÐRiver.€Transactions€of€the€American€Fisheries€Society.€€ò ò92ó ó:165„168.Ð à Ðà 4 àÌÓ X¨ýÓResults€from€a€tagging€study€on€Mississippi€River€channel€catfish€from€Bay€City,Ð  p ÐWI€to€Lansing,€IO€€are€presented.€€Greater€than€6100€individual€fish€were€tagged,€withÐ è8 Ðreturns€coming€from€both€recreational€and€commercial€fisheries€operating€on€the€river.€Ð °  ÐFive€"batches"€of€fish€were€tagged.€€Some€of€the€batches€were€released€at€the€site€ofÐ xÈ! Ðcapture€(residents)€while€others€were€re„located€greater€than€100€miles€from€the€captureÐ @" Ðsite€(transplants).€€Resident€fish€movements€were€described€as€principally€downstream.€Ð  X# ÐA€majority€of€transplanted€fish€were€reported€to€move€upstream,€in€contrast€to€residentÐ Ð $ Ðfish.€€No€evidence€of€homing€was€observed.€€The€effects€of€obstructions€(dams)€areÐ ˜!è% Ðdiscussed.€€The€author€reported€that€the€locks€and€dams€on€the€Mississippi€River€did€notÐ `"°& Ðpresent€obstacles€to€channel€catfish€movements€within€the€river.€€Nearly€a€quarter€of€theÐ (#x' Ðrecaptured€fish€had€moved€through€one€or€more€dams.€€No€information€of€theÐ ð#@( Ðdirectionality€of€passage€through€the€dams€is€provided€(e.g.,€upstream€vs.€downstreamÐ ¸$ ) Ðpassage).Ð €%Ð * ÐÐ H&˜!+ ÐÓ ¨ýXÓÐ '`", Ð169.à 4 àHurley,€P.€J.€(1932).€€Letter€from€the€Secretary€of€War€transmitting€report€from€the€ChiefÐ Ø'(#- Ðof€Engineers€on€survey€of€the€Mississippi€River€between€Missouri€River€andÐ  (ð#. ÐMinneapolis,€with€a€view€to€securing€a€channel€depth€of€9€feet€at€low€water,€with€suitableÐ h)¸$/ Ðwidths.€Washington€D.C.,€U.S.€Government€Printing€Office:ò ò€ó ó120.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓDear€Mr.€Speaker:€€I€am€transmitting€herewith€a€report€dated€December€9,€1931,Ð À+'2 Ðfrom€the€Chief€of€Engineers,€United€States€Army,€on€survey€authorized€by€the€river€andÐ ˆ,Ø'3 Ðharbor€act€approved€January€21,€1927,€of€"Mississippi€River€between€Missouri€River€andÐ P- (4 ÐMinneapolis,€with€a€view€to€securing€a€channel€depth€of€9€feet€at€low€water,€with€suitableÐ ° Ðwidths,"€together€with€accompanying€papers€and€maps.€€Sincerely€yours,€Patrick€J.Ð xÈ ÐHurley,€Secretary€of€War.Ð @ ÐÓ ¨ýXÓÐ X ÐÐ Ð  Ð170.à 4 àHurley,€S.€T.,€W.€A.€Hubert€and€J.€G.€Nickum€(1987).€€Habitats€and€movements€ofÐ ˜è Ðshovelnose€sturgeons€in€the€Upper€Mississippi€River.€Transactions€of€the€AmericanÐ ` ° ÐFisheries€Society.€€ò ò116ó ó:655„662.Ð ( x Ðà 4 àÌÓ X¨ýÓHabitats€and€movements€of€shovelnose€sturgeons€òòScaphirhynchus€platorynchusóóÐ ¸   Ðin€Pool€13€of€the€Upper€Mississippi€River€were€ascertained€during€April„September€1982Ð € Ð  Ðby€radiotelemetry,€drifted€trammel€net,€and€mark„recapture€methods.€The€fish€wereÐ H ˜  Ðmostly€sedentary,€but€sometimes€they€moved€up€to€11.7€km/d.€Most€movements€occurredÐ `  Ðin€May€and€July€and€the€fewest€in€April€and€June.€Long„range€movements€up€to€17€kmÐ Ø(  Ðwere€noted€between€activity€centers€(areas€occupied€for€3„93€d).€Among€22€radio„taggedÐ  ð  Ðshovelnose€sturgeons,€eight€showed€homing€behavior.Ð h¸  ÐÐ 0€  ÐÓ ¨ýXÓÐ øH  Ð171.à 4 àIversen,€T.€M.,€B.€Kronvang,€B.€L.€Madsen,€P.€Markmann€and€M.€B.€Nielsen€(1993).€€Re„Ð À Ðestablishment€of€Danish€streams:€Restoration€and€maintenance€measures.€AquaticÐ ˆØ ÐConservation:€Marine€and€Freshwater€Ecosystems.€€ò ò3ó ó:73„92.Ð P  Ðà 4 àÌÓ X¨ýÓPrior€to€1983€the€Danish€legislation€concerning€streams€gave€priority€to€drainageÐ à0 Ðof€water.€The€revision€of€The€Watercourse€Act€gave€balanced€priority€to€drainage€ofÐ ¨ø Ðwater€and€environmental€quality,€focusing€on€an€ecologically€more€appropriateÐ pÀ Ðmaintenance€practice€and€giving€special€provisions€for€stream€restoration€activities.Ð 8ˆ ÐDifferent€measures€of€single€structure€restoration€have€been€used,€the€most€commonÐ P Ðbeing€replacement€of€weirs,€dams€or€other€obstacles€by€rapids,€establishment€of€salmonidÐ È Ðspawning€grounds,€and€installation€of€new€or€improved€fish€ladders.€The€most€commonÐ à Ðstream€channel€restoration€method€is€integrated€use€of€a€number€of€single€structureÐ X¨ Ðmeasures.€Establishment€of€a€two„stage€channel€and€re„opening€of€small€piped€streamsÐ  p Ðhave€also€been€used.€Stream€valley€restoration€includes€restoration€of€old€meanders€orÐ è8 Ðestablishment€of€a€new€sinuous€channel€and€involves€the€adjacent€riparian€areas.€TheÐ °  Ðchanged€stream€maintenance€practice€involves€a€new€strategy€for€dredging€and€cutting€ofÐ xÈ! Ðweeds€and€bank€vegetation€in€order€to€minimize€the€ecological€damage€caused€byÐ @" Ðkeeping€a€reasonable€discharge€capacity.€In€1990,€environmentally€acceptable€weed„Ð  X# Ðcutting€was€performed€in€37%€of€all€municipal€streams€and€the€bank€vegetation€was€leftÐ Ð $ Ðuncut€in€a€third€of€the€streams.€Similarly,€more€than€half€of€the€county€streams€wereÐ ˜!è% Ðmaintained€using€hand€scythes€and€in€74%€of€the€streams€the€bank€vegetation€was€leftÐ `"°& Ðuncut.€Quantitatively,€stream€restoration€has€contributed€little€to€the€general€improvementÐ (#x' Ðof€Danish€streams€compared€with€changed€maintenance€practice.€Stream€restorationÐ ð#@( Ðprojects€create€public€interest€in€the€environmental€quality€of€streams,€but€majorÐ ¸$ ) Ðimprovements€in€the€physical€properties€of€Danish€streams€depend€on€future€maintenanceÐ €%Ð * Ðpractice.€Due€to€major€changes€predicted€in€Danish€agriculture€many€riparian€areas€andÐ H&˜!+ Ðwetlands€will€reappear€and€the€natural€or€semi„natural€physical€properties€of€streams€willÐ '`", Ðbe€re„established€by€natural€processes€or€changed€in€maintenance€practice.€However,Ð Ø'(#- Ðthere€will€still€be€large€areas€with€intensive€agriculture,€where€environmental€andÐ  (ð#. Ðagricultural€interests€must€be€balanced.€The€Danish€experience€has€shown€that€this€isÐ h)¸$/ Ðpossible.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð172.à 4 àJackson,€G.€A.,€C.€E.€Korschgen,€P.€A.€Thiel,€J.€M.€Besser,€D.€W.€Steffeck€and€M.€H.Ð ˆ,Ø'3 ÐBockenhauer€(1984).€Problems€on€the€Upper€Mississippi€River€and€its€tributaries:€NeedÐ P- (4 Ðfor€a€long„term€resource€monitoring€program.€Pages€€325„344€òòinóó€J.€G.€Wiener,€R.€V.Ð ° ÐAnderson€and€D.€R.€McConville,€eds.€Contaminants€in€the€Upper€Mississippi€River:€Ð xÈ ÐProceedings€of€the€15th€annual€meeting€of€the€Mississippi€River€Research€Consortium,Ð @ ÐLa€Crosse,€WI€(USA),€Butterworth€Publishers.Ð X Ðà 4 àÌÓ X¨ýÓThis€paper€outlines€a€general€plan€for€implementing€a€comprehensive€and€totallyÐ ˜è Ðintegrated€long„term€resource€monitoring€program€on€the€Upper€Mississippi€River€and€itsÐ ` ° Ðmajor€tributaries.€This€program€is€to€ensure€the€productivity€of€the€fishery€and€wildlifeÐ ( x Ðresources,€while€maintaining€its€multiple„use€character€through€a€coordinated€process€ofÐ ð @ Ðdata€collection,€analysis€and€interpretation.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð173.à 4 àJennings,€C.€A.,€H.€Bolton,€M.€J.M.€and€S.€T.€Yess€(1992).€Status€and€distribution€ofÐ `  Ðpaddlefish€in€the€Upper€Mississippi€River.€Pages€€28€òòinóó€J.€Wlosinski€and€M.€Dewey,€eds.Ð Ø(  Ð24th€Annual€Meeting€of€the€Mississippi€River€Research€Consortium,€La€Crosse,Ð  ð  ÐWisconsin€(USA),€Mississippi€River€Research€Consortium,€Inc.Ð h¸  Ðà 4 àÌÓ X¨ýÓIn€July,€1989,€the€U.S.€Fish€and€Wildlife€Service€was€petitioned€to€list€theÐ øH  Ðpaddlefish€òòPolyodon€spathulaóó€as€a€threatened€species.€€Data€on€the€status€and€distributionÐ À Ðof€paddlefish€populations€in€the€Upper€Mississippi€River€needed€to€respond€to€theÐ ˆØ Ðpetition€data€were€scarce€or€lacking.€€Thus,€a€mail€survey€was€conducted€to€assess€theÐ P  Ðdistribution€and€status€of€paddlefish€populations€in€the€upper€river.€€During€the€summerÐ h Ðof€1990,€705€questionnaires€were€mailed€to€fishery€scientists€and€commercial€fishermenÐ à0 Ðfrom€the€five€states€bordering€the€Upper€Mississippi.€€Thirty€seven€percent€of€theÐ ¨ø Ðquestionnaires€(260€of€705)€were€completed€and€returned.€€A€significant€portion€of€theÐ pÀ Ðrespondents€(59%)€indicated€that€they€have€caught€paddlefish€in€the€Upper€MississippiÐ 8ˆ ÐRiver.€€Of€those,€about€half€had€caught€paddlefish€rarely,€and€one„third€had€commonly€orÐ P Ðfrequently€caught€paddlefish.€€Most€paddlefish€were€found€in€navigation€Pools€8,€10,€13,Ð È Ðand€19.€€Fishery€classification€status€ranged€from€commercial€to€protected€for€the€fiveÐ à Ðstates€surveyed.€€The€results€of€this€survey€suggest€that€paddlefish€populations€in€theÐ X¨ ÐUpper€Mississippi€River€still€occupy€much€of€their€historic€range.€€Moreover,€many€ofÐ  p Ðthe€fishery€biologists€surveyed€believed€that€paddlefish€populations€in€the€UpperÐ è8 Ðmississippi€River€are€stable€and€may€be€increasing.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð174.à 4 àJennings,€C.€A.€and€D.€M.€Wilson€(1993).€€Spawning€activity€of€paddlefish€òòPolyodonÐ  X# Ðspathulaóó€in€the€lower€Black€River,€Wisconsin.€Journal€of€Freshwater€Ecology.€€ò ò8ó ó:261„Ð Ð $ Ð262.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓWe€present€indirect€evidence€of€successful€paddlefish€òòPolyodon€spathulaóóÐ (#x' Ðreproduction€in€1989€and€1991€in€the€lower€Black€River,€Wisconsin,€about€5€kmÐ ð#@( Ðupstream€of€the€confluence€with€the€Upper€Mississippi€River.€This€is€the€first€indicationÐ ¸$ ) Ðof€successful€reproduction€by€paddlefish€at€the€northern€end€of€its€range€in€the€centralÐ €%Ð * ÐUnited€States.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð175.à 4 àJens,€G.€(1983).€€[Upstream€migrations€via€fishways].€Fischwirt.€€ò ò33ó ó:9„11.Ð  (ð#. Ðà 4 àÌÓ X¨ýÓIn€the€Mosel€River€(Germany,€Fed.€Rep.)€two€kinds€of€fishways€exist€since€20Ð 0*€%0 Ðyears€which€differ€concerning€construction€and€current€conditions.€Comparative€studiesÐ ø*H&1 Ðhad€been€made,€mainly€using€òòAlburnus€alburnusóó€and€òòRutilus€rutilusóó,€to€investigate€theÐ À+'2 Ðtime€needed€for€passage€and€the€fraction€of€fish€which€migrated€upstream.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð176.à 4 àJens,€G.€(1988).€€[Do€fish€passes€really€make€no€sense?].€Fischwirt.€€ò ò38ó ó:3„7;€9„11.Ð xÈ Ðà 4 àÌÓ X¨ýÓCritical€evaluation€in€favour€of€fish€passes€in€Moselle€River€concerningÐ X Ðmethodical€approaches€and€conclusions€of€some€other€investigators.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð177.à 4 àJernejcic,€F.€(1986).€Walleye€migration€through€Tygart€Dam€and€angler€utilization€of€theÐ ( x Ðresulting€tailwater€and€lake€fisheries.€Pages€€294„300€òòinóó€€Reservoir€FisheriesÐ ð @ ÐManagement:€Strategies€for€the€80's,€Bethesda,€Maryland€(USA),€American€FisheriesÐ ¸   ÐSociety.Ð € Ð  Ðà 4 àÌÓ X¨ýÓFish€populations€in€1740„acre€Tygart€Lake,€West€Virginia€and€its€tailwater€wereÐ `  Ðsampled€to€provide€information€needed€to€evaluate€impacts€associated€with€the€additionÐ Ø(  Ðof€hydropower€facilities€to€the€Tygart€Lake€projects.€Walleyes€òòStizostedium€vitreumÐ  ð  Ðvitreumóó€dominate€the€sport€fishery€of€the€lake€and€migrate€through€the€dam,€providing€aÐ h¸  Ðmajor€tailwater€fishery.€Anglers€caught€6042€walleyes€from€the€lake€and€8724€from€theÐ 0€  Ðtailwater€during€a€1„year€period.€Walleye€fishing€success€was€higher€in€the€tailwater€thanÐ øH  Ðin€the€lake€(0.56€vs.€0.32€caught€per€hour).€Walleye€fishing€success€was€highest€duringÐ À Ðthe€fall€in€the€lake€but€during€the€spring€in€the€tailwater.€Tag€returns€indicated€a€6%Ð ˆØ Ðexploitation€rate€for€lake€walleyes€during€a€15„month€period.€Tailwater€walleyesÐ P  Ðexperienced€a€25%€exploitation€rate€during€a€7„month€period.€Nine€percent€of€walleyesÐ h Ðtagged€in€the€lake€were€caught€by€anglers€in€the€tailwater€from€December€through€March.Ð à0 ÐAge„0€and€Age„1€walleyes€migrated€through€the€dam€more€readily€than€older€walleyes.Ð ¨ø ÐWalleye€migration€occurred€during€the€winter,€December€through€April,€at€times€whenÐ pÀ Ðthe€pool€elevation€was€decreasing€at€a€rate€of€at€least€6„ft€per€24€hours.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ð178.à 4 àJessop,€B.€M.€and€C.€J.€Harvie€(1990).€€Evaluation€of€designs€of€periodic€count€surveysÐ à Ðfor€the€estimation€of€escapement€at€a€fishway.€North€American€Journal€of€FisheriesÐ X¨ ÐManagement.€€ò ò10ó ó:39„45.Ð  p Ðà 4 àÌÓ X¨ýÓCounts€of€the€number€of€alewives€òòAlosa€pseudoharengusóó€migrating€through€theÐ °  Ðfishway€on€the€Gaspereau€River,€Nova€Scotia,€were€used€to€evaluate€the€accuracy€andÐ xÈ! Ðprecision€of€various€sampling€schemes€for€estimating€the€population€mean€(true€meanÐ @" Ðcount/sample€unit€(15€min)).€High€variability€in€counts€within€day€and€season€requiredÐ  X# Ðmore€intensive€sampling€than€suggested€by€previous€studies€to€estimate€the€populationÐ Ð $ Ðmean€to€within€a€given€percent€relative€error.€Stratification€in€some€cases€doubled€orÐ ˜!è% Ðtrebled€the€precision€of€the€estimated€mean€relative€to€the€mean€obtained€from€simpleÐ `"°& Ðrandom€sampling,€whereas€systematic€sampling€produced€no€gain€in€precision.Ð (#x' ÐStratification€to€reduce€the€number€of€sample€units€required€for€a€given€precision€mayÐ ð#@( Ðreduce€the€power€of€a€test€to€detect€differences€between€annual€estimates€of€populationÐ ¸$ ) Ðmeans,€depending€on€their€variances.€The€importance€of€these€interrelated€factors€shouldÐ €%Ð * Ðbe€determined€before€a€particular€scheme€and€level€of€effort€are€chosen€for€sampling.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð179.à 4 àJirka,€K.€J.€and€R.€J.€Neves€(1992).€€Reproductive€biology€of€four€species€of€freshwaterÐ  (ð#. Ðmussels€(Mollusca:€Unionidae)€in€the€New€River,€Virginia€and€West€Virginia.€Journal€ofÐ h)¸$/ ÐFreshwater€Ecology.€€ò ò7ó ó:35„44.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓThe€gametogenic€cycle,€spawning€and€glochidial€release€periods,€and€age€atÐ À+'2 Ðsexual€maturity€were€determined€for€four€unionid€species€from€the€New€River€in€VirginiaÐ ˆ,Ø'3 Ðand€West€Virginia:€musket,€òòActinonaias€ligamentinaóó€;€spike,€òòElliptio€dilatataóó€;€purpleÐ P- (4 Ðwartyback€òòCyclonaias€tuberculataóó€;€and€pistolgrip,€òòTritogonia€verrucosaóó€.€The€mucket€isÐ ° Ða€long„term€brooder,€spawning€in€mid„summer,€brooding€glochidia€throughout€fall€andÐ xÈ Ðwinter,€and€releasing€them€in€spring.€The€spike,€purple€wartyback,€and€pistolgrip€areÐ @ Ðshort„term€brooders.€Spawning€began€in€mid„March€and€continued€into€May€for€òòT.Ð X Ðverrucosaóó€,€into€June€for€òòC.€tuberculataóó€,€and€into€July€for€òòE.€dilatataóó€.€Glochidia€wereÐ Ð  Ðrelease€upon€maturation,€beginning€in€mid„April€and€continuing€through€June€for€òòT.Ð ˜è Ðverrucosaóó€,€into€August€for€òòE.€dilatataóó€,€and€extending€from€March€through€June€for€òòC.Ð ` ° Ðtuberculataóó.€€All€four€species€are€sexually€mature€at€4€to€6€years€of€age.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð180.à 4 àJohnson,€B.€L.,€B.€C.€Knights,€J.€W.€Barko,€R.€F.€Gaugush,€D.€M.€Soballe€and€W.€F.Ð € Ð  ÐJames€(1998).€€Estimating€flow€rates€to€optimize€winter€habitat€for€centrarchid€fish€inÐ H ˜  ÐMississippi€River€(USA)€backwaters.€Regulated€Rivers:€Research€&€Management.€Ð `  Ðò ò14ó ó:499„510.Ð Ø(  Ðà 4 àÌÓ X¨ýÓThe€backwaters€of€large€rivers€provide€winter€refuge€for€many€riverine€fish,€butÐ h¸  Ðthey€often€exhibit€low€dissolved€oxygen€levels€due€to€high€biological€oxygen€demand€andÐ 0€  Ðlow€flows.€Introducing€water€from€the€main€channel€can€increase€oxygen€levels€inÐ øH  Ðbackwaters,€but€can€also€increase€current€velocity€and€reduce€temperature€during€winter,Ð À Ðwhich€may€reduce€habitat€suitability€for€fish.€In€1993,€culverts€were€installed€to€introduceÐ ˆØ Ðflow€to€the€Finger€Lakes,€a€system€of€six€backwater€lakes€on€the€Mississippi€River,€aboutÐ P  Ð160€km€downstream€from€Minneapolis,€Minnesota.€The€goal€was€to€improve€habitat€forÐ h Ðbluegills€and€black€crappies€during€winter€by€providing€dissolved€oxygen€concentrationsÐ à0 Ð>€3€mg/L,€current€velocities€<€1€cm/s,€and€temperatures€>€1€ÔÎÿvƨøÔoÔ2¨øvÆÔC.€To€achieve€theseÐ ¨ø Ðconditions,€we€used€data€on€lake€volume€and€oxygen€demand€to€estimate€the€minimumÐ pÀ Ðflow€required€to€maintain€3€mg/L€of€dissolved€oxygen€in€each€lake.€Estimated€flowsÐ 8ˆ Ðranged€from€0.02€to€0.14€mÔÎÿÎPÔ3Ô2PÎÔ/s€among€lakes.€Data€gathered€in€winter€1994€after€theÐ P Ðculverts€were€opened,€indicated€that€the€estimated€flows€met€habitat€goals,€but€thatÐ È Ðthermal€stratification€and€lake€morphometry€can€reduce€the€volume€of€optimal€habitatÐ à Ðcreated.€This€article€is€a€U.S.€government€publication€and€is€in€the€public€domain€in€theÐ X¨ ÐUnited€States.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð181.à 4 àJohnson,€B.€L.,€W.€B.€Richardson€and€T.€J.€Naimo€(1995).€€Past,€present,€and€futureÐ xÈ! Ðconcepts€in€large€river€ecology.€Bioscience.€€ò ò45ó ó:134„141.Ð @" Ðà 4 àÌÓ X¨ýÓHow€rivers€function€and€how€human€activities€influence€river€processes.€ManyÐ Ð $ Ðimportant€questions€are€likely€to€require€natural€experiments€or€large„scale€manipulationsÐ ˜!è% Ðthat€compare€rivers€or€river€reaches.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð182.à 4 àJohnson,€J.€H.€and€N.€H.€Ringler€(1995).€€Estimating€losses€to€predation€of€recentlyÐ ¸$ ) Ðreleased€American€shad€larvae€in€the€Juniata€River,€Pennsylvania.€North€AmericanÐ €%Ð * ÐJournal€of€Fisheries€Management.€€ò ò15ó ó:854„861.Ð H&˜!+ Ðà 4 àÌÓ X¨ýÓPredation€on€recently€released€larval€American€shad€òòAlosa€sapidissimaóó€wasÐ Ø'(#- Ðquantified€in€the€Juniata€River,€Pennsylvania,€on€10€occasions€during€1991€and€1992.€OfÐ  (ð#. Ðthe€four€sites€examined€(the€stocking€site€and€100,€200,€and€350€m€downstream)Ð h)¸$/ Ðpredation€on€shad€larvae€was€highest€at€the€stocking€site;€44%€of€the€total€estimatedÐ 0*€%0 Ðlosses€occurred€within€this€30„m€zone.€Percentage€predation€mortality€was€weakly€andÐ ø*H&1 Ðinversely€related€to€the€number€of€shad€larvae€released,€and€it€ranged€from€0€to€2.2%Ð À+'2 Ðamong€sites.€Overall€percent€mortality€of€larvae€within€the€first€2€h€of€release€was€aboutÐ ˆ,Ø'3 Ð5%€(range,€2„10%).€Major€predators€included€juvenile€smallmouth€bass€òòMicropterusÐ P- (4 Ðdolomieuóó,€the€spotfin€shiner€òòCyprinella€spilopteraóó,€and€the€mimic€shiner€òòNotropisÐ ° Ðvolucellusóó.€Predation€by€these€species€varied€among€sites.€Percent€mortality€of€AmericanÐ xÈ Ðshad€larvae€after€nocturnal€releases€(0.17%)€was€significantly€lower€than€after€diurnalÐ @ Ðreleases€(1.18%).€For€most€predators,€the€length€of€shad€eaten€increased€with€predatorÐ X Ðlength.€However,€among€predators€of€similar€size,€there€were€significant€differences€inÐ Ð  Ðthe€length€of€shad€consumed.€Estimated€losses€to€predation€were€about€equally€dividedÐ ˜è Ðamong€small€(<50€mm,€30%)€medium€(50„99€mm,€37%),€and€large€(>99€mm,€33%)Ð ` ° Ðpredators.€Because€30%€of€the€estimated€number€of€shad€larvae€lost€to€predation€wereÐ ( x Ðeaten€by€predators€less€than€50€mm€long,€releasing€slightly€larger€shad€might€reduceÐ ð @ Ðpredation.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð183.à 4 àJohnson,€J.€H.,€R.€C.€Solomon,€C.€R.€Bingham,€B.€K.€Colbert€and€W.€P.€Emge€(1974).€Ð `  ÐEnvironmental€analysis€and€assessment€of€the€Mississippi€River€9„ft€Channel€ProjectÐ Ø(  Ðbetween€St.€Louis,€Missouri,€and€Cairo,€Illinois.€Army€Engineer€Waterways€ExperimentÐ  ð  ÐStation,€Report€Y„74„1.Ð h¸  Ðà 4 àÌÓ X¨ýÓThe€Mississippi€River€9„ft€channel€project€was€authorized€by€the€River€andÐ øH  ÐHarbor€Acts€of€1927€and€1930.€The€purpose€of€the€project€was€to€maintain€navigationÐ À Ðfrom€the€confluence€of€the€Missouri€River€to€the€confluence€of€the€Ohio€River.€The€mainÐ ˆØ Ðchannel€will€be€contracted€to€1500€ft€between€riverward€ends€of€dikes€throughout€the€areaÐ P  Ðto€maintain€the€9„ft€depth€during€periods€of€low€flow.€A€comprehensive€study€of€theÐ h Ðhistorical€geomorphology€supplemented€by€physical€models€of€the€river€and€sideÐ à0 Ðchannels€was€made€to€determine€the€physica€impact€of€river€contraction€works€on€riverÐ ¨ø Ðmorphology€and€behavior.€An€intensive€study€of€the€terrestrial€flora€and€fauna€wasÐ pÀ Ðconducted€to€inventory€the€existing€organisms€and€communities€located€in€theÐ 8ˆ Ðunprotected€floodplain€and€to€assess€the€impacts€of€operation€and€maintenance€activities.Ð P ÐThe€aquatic€flora€and€fauna€were€studied€to€inventory€the€aquatic€communities€present€inÐ È Ðthe€study€area€and€to€assess€the€importance€of€side€channels€to€the€riverine€ecosystem.Ð à ÐThe€relative€biological€importance€of€each€side€channel,€established€by€rankingÐ X¨ Ðprocedures,€provided€a€rational€choice€of€those€side€channels€that€could€provideÐ  p Ðmaximum€benefit€to€the€river€'s€ecology.€Operation€and€maintenance€activities€includeÐ è8 Ðmaintenance€dredging,€disposal€of€dredged€material,€and€construction€and€maintenance€ofÐ °  Ðlevees,€dikes,€and€bank€revetments.€The€mentioned€activities€were€examined,€and€theÐ xÈ! Ðpotential€environmental€impacts€resulting€therefrom€were€discussed.€(Adams„ISWS)Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð184.à 4 àJokela,€J.€and€P.€Palokangas€(1993).€€Reproductive€tactics€in€Anodonta€clams:€ParentalÐ ˜!è% Ðhost€recognition.€Animal€Behaviour.€€ò ò46ó ó:618„620.Ð `"°& Ðà 4 àÌÓ X¨ýÓWe€studied€the€reproductive€behaviour€of€a€common€European€freshwater€clam,Ð ð#@( ÐòòAnodonta€piscinalisóó€Nills.,€a€generalist€with€respect€to€habitat€and€range€of€hosts.€In€aÐ ¸$ ) Ðlaboratory€experiment,€we€found€that€female€clams€released€more€glochidia€when€in€theÐ €%Ð * Ðpresence€of€a€fish,€suggesting€that€they€recognized€its€presence.€In€a€second€experiment,Ð H&˜!+ Ðclams€responded€positively€but€nonspecifically€to€tactile,€chemical€and€visual€stimuli€thatÐ '`", Ðmight€indicate€the€presence€of€a€fish.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð185.à 4 àJokela,€J.,€E.€T.€Valtonen€and€M.€Lappalainen€(1991).€€Development€of€glochidia€ofÐ 0*€%0 ÐòòAnodonta€piscinalisóó€and€their€infection€of€fish€in€a€small€lake€in€northern€Finland.€ArchivÐ ø*H&1 Ðfur€Hydrobiologie.€€ò ò120ó ó:345„355.Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓThe€development€of€glochidia€in€òòAnodontaóó€,€their€seasonal€patterns€of€infectionÐ ° Ðâ âin€four€fish€species€and€their€infection€in€relation€to€length€and€sex€of€the€host€individualÐ xÈ Ðwere€studied€in€a€small€hyper„eutrophic€lake€in€Northern€Finland.€Glochidia€developmentÐ @ Ðtook€place€from€June€to€August€and€they€were€fully€developed€when€the€waterÐ X Ðtemperature€began€to€fall€in€autumn.€The€glochidia€were€stored€in€the€gill€blades€to€beÐ Ð  Ðreleased€in€spring.€All€four€fish€species,€the€perch€òòPerca€fluviatilisóó,€roach€òòRutilus€rutilusóó,Ð ˜è Ðpike€òòEsox€luciusóó€and€ruffe€òòLota€lotaóó,€were€infected€in€spring.€The€prevalence€of€infectionÐ ` ° Ðof€the€perch€was€high€throughout€the€infection€period€whereas€the€roach€had€a€highÐ ( x Ðprevalence€of€infection€only€at€breeding€season.€The€larger€roach€were€infected€moreÐ ð @ Ðoften€than€smaller€ones.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð186.à 4 àJones,€D.€R.,€J.€W.€Kiceniuk€and€O.€S.€Bamford€(1974).€€Evaluation€of€the€swimmingÐ `  Ðperformance€of€several€fish€species€from€the€Mackenzie€River.€Journal€of€the€FisheriesÐ Ø(  ÐResearch€Board€of€Canada.€€ò ò31ó ó:1641„1647.Ð  ð  Ðà 4 àÌÓ X¨ýÓCritical€velocities€of€17€species€of€fish€from€the€Mackenzie€River€had€beenÐ 0€  Ðdetermined€from€increasing€velocity€tests€in€both€field€and€laboratory,€and€the€effects€onÐ øH  Ðcritical€velocity€of€different€acclimation€temperatures€and€of€temperature€shock€wereÐ À Ðexamined.€€In€five€species€the€relation€between€fatigue€time€and€swimming€speed€wasÐ ˆØ Ðinvestigated.€€Critical€velocity€data€from€10€species€were€analyzed€by€solving€theÐ P  Ðregression€equation€V€=€KLÔÎÿæ6hÔeÔ2hæ6Ô€(where€V€=€critical€velocity€in€cm/s,€L€=€fork€length,€K€=Ð h Ðconstant,€e€=€exponent).€€Neither€acclimation€to€different€temperatures€nor€temperatureÐ à0 Ðshock€over€a€range€of€+/„€7€ÔÎÿvƨøÔoÔ2¨øvÆÔC€from€acclimation€temperature€had€€a€significant€impact€onÐ ¨ø Ðcritical€velocity.€€Intraspecific€variation€was€found€to€be€unrelated€to€maturity,€sex,€orÐ pÀ Ðcondition€factor.€€From€a€graphical€presentation€of€body€length€vs.€maximum€flow€rateÐ 8ˆ Ðallowable€in€a€100€m€culvert,€it€appears€that€culvert€flow€rates€should€be€kept€below€30„Ð P Ð40€cm/s€to€allow€successful€passage€of€the€majority€of€mature€individuals€of€migratoryÐ È Ðspecies.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð187.à 4 àJonsson,€N.€(1991).€€Influence€of€water€flow,€temperature€and€light€on€fish€migration€inÐ è8 Ðrivers.€Nordic€Journal€of€Freshwater€Research.€€ò ò66ó ó:20„35.Ð °  Ðà 4 àÌÓ X¨ýÓWater€flow,€water€temperature€and€light€are€environmental€variables€thatÐ @" Ðinfluence€when€fish€migrate€and€the€intensity€of€the€migration€itself.€These€variablesÐ  X# Ðapply€both€to€up„€and€downstream€migration,€but€their€effects€may€among€rivers€andÐ Ð $ Ðspecies.€During€the€ontogeny,€migratory€fish€in€different€life€history€stages€areÐ ˜!è% Ðtransported€downstream€by€the€water€flow.€Changes€in€water€flow€may€influence€whenÐ `"°& Ðthe€fish€migrate.€To€be€carried€downstream,€the€fish€must€position€themselves€within€theÐ (#x' Ðwater€column€and€actively€swim€of€out€sloughs€and€backwaters.€High€water€dischargeÐ ð#@( Ðmay€stimulate€the€river€ascent.€Water€temperature€is€an€important€factor€initiating€up„€andÐ ¸$ ) Ðdownstream€migrations€of€several€fish€species.€In€particular,€this€may€be€the€case€in€riversÐ €%Ð * Ðwhere€freshets€do€not€regularly€occur€at€the€time€when€the€environmental€shift€isÐ H&˜!+ Ðfavourable.€Migrations€of€juveniles€and€adults€are€mainly€nocturnal,€but€sometimesÐ '`", Ðdiurnal.€When€the€migration€occurs€during€dark€hours€this€is€expected€to€be€an€adaptationÐ Ø'(#- Ðto€avoid€visual€predators.Ð  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ ÐÐ 0*€%0 Ð188.à 4 àJowett,€I.€G.€and€J.€Richardson€(1994).€€Comparison€of€habitat€use€by€fish€in€normal€andÐ ø*H&1 Ðflooded€river€conditions.€New€Zealand€Journal€of€Marine€and€Freshwater€Research.€Ð À+'2 Ðò ò28ó ó:409„416.Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓFloods€are€often€considered€one€of€the€major€regulators€of€fish€populations,€butÐ ° Ðthere€are€few€observations€of€fish€behaviour€or€habitat€use€at€such€times.€To€investigateÐ xÈ Ðhabitat€use€and€fish€movement€during€floods,€two€locations€on€the€Pohangina€River,Ð @ ÐNorth€Island,€were€sampled€at€the€peak€of€a€small€flood.€Habitat€use€at€normal€flows€wasÐ X Ðdetermined€by€repeating€the€same€sampling€procedure€in€runs€and€riffles€on€theÐ Ð  ÐPohangina€and€two€nearby€rivers.€The€sampling€procedure€was€to€electrofish€runs€andÐ ˜è Ðriffles€in€lanes,€stratified€by€depth€(0„0.125€m,€0.125„0.25€m,€0.25„0.5€m,€and€0.5„0.75Ð ` ° Ðm).€Water€depths€and€velocities€were€measured€in€each€sampling€lane.€Fish€were€mostÐ ( x Ðabundant€along€the€river€margins€less€than€0.25€m€deep,€both€during€the€flood€and€inÐ ð @ Ðnormal€flows.€Two€days€after€the€flood,€these€shallow€areas,€that€had€been€occupied€byÐ ¸   Ðfish€during€the€flood,€were€dry€again.€This€suggests€that€the€edge„dwelling€fish€species€inÐ € Ð  Ðthese€rivers€respond€quickly€to€flow€changes,€moving€with€the€river€margins€to€minimiseÐ H ˜  Ðany€change€in€depth.€Response€to€changes€in€velocity€were€less€apparent€and€the€waterÐ `  Ðvelocity€in€the€areas€occupied€by€edge„dwelling€fish€during€the€food€was€sub„optimal€inÐ Ø(  Ðterms€of€normal€habitat€preference.€The€response€of€fish€to€flow€and€habitat€change€andÐ  ð  Ðthe€use€of€sub„optimal€habitat€for€short€periods€of€time€highlights€the€difficulty€ofÐ h¸  Ðinterpreting€a€time€series€of€weighted€usable€area.Ð 0€  ÐÓ ¨ýXÓÐ øH  ÐÐ À Ð189.à 4 àJude,€D.€J.€(1997).€€Round€gobies:€Cyberfish€of€the€third€millennium.€Great€LakesÐ ˆØ ÐResearch€Review.€€ò ò3ó ó:27„34.Ð P  Ðà 4 àÌÓ X¨ýÓThe€problem€of€transport€of€non„indigenous€species€from€one€place€to€anotherÐ à0 Ðtransacts€boundaries,€jurisdictions,€and€most€of€the€efforts€of€humans€to€contain€them.€AÐ ¨ø Ðrecent€study€by€Mills€et€al.€(1995)€lists€139€species€that€have€made€a€substantial€impactÐ pÀ Ðon€Great€Lakes€ecosystems€and€they€include€organisms€from€bacteria,€such€asÐ 8ˆ Ðfurunculosis,€through€purple€loosestrife€òòLythrum€salicariaóó€and€Eurasian€watermilfoilÐ P ÐòòMyriophyllum€spicatumóó,€to€fish.€The€transfer€of€these€organisms€was€broughtÐ È Ðdramatically€to€the€attention€of€businesses€and€the€public€with€the€discovery€of€zebraÐ à Ðmussels€òòDreissena€polymorphaóó€in€1986€(Herbert€et€al.€1986)€as€water€intakes€becameÐ X¨ Ðclogged,€power€plant€pipes€became€plugged,€and€boats€and€motors€became€covered€withÐ  p Ðthis€species.€The€homogenization€of€our€aquatic€communities,€loss€of€biodiversity,€andÐ è8 Ðamalgamation€of€our€gene€pools€because€of€the€introduction€of€exotic€species€is€aÐ °  Ðworldwide€problem€of€which€the€round€goby€òòNeogobius€melanostomusóó€is€just€anotherÐ xÈ! Ðsymptom.€The€round€goby€òòProterorhinus€marmoratusóó,€are€our€latest€uninvited€piscineÐ @" Ðimmigrants€joining€Great€Lakes€fish€communities.€These€fish€are€cyberfish,€because€theyÐ  X# Ðcame€from€a€distant€universe€and€have€the€unusual€ability€to€attain€high€abundances€inÐ Ð $ Ðoptimal€rocky€substrate€areas€in€the€face€of€native€fish€communities€and€they€also€are€ableÐ ˜!è% Ðto€disperse€rapidly€using€Great€Lakes€freighters€as€transport€vectors.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð190.à 4 àJude,€D.€J.€and€G.€Crawford€(1995).€Impact€and€expansion€of€the€latest€exotic€fishÐ ¸$ ) Ðinvaders,€the€tubenose€and€round€gobies.€Pages€€61€òòinóó€I.€A.€f.€G.€L.€Research,€ed.€38thÐ €%Ð * ÐConference€of€the€International€Association€for€Great€Lakes€Research,€Ann€Arbor,Ð H&˜!+ ÐMichigan€(USA),€International€Association€for€Great€Lakes€Research.Ð '`", Ðà 4 àÌÓ X¨ýÓThe€round€goby,€first€noted€in€1990€in€the€St.€Clair€River,€is€now€found€in€highÐ  (ð#. Ðabundances€in€Lake€St.€Clair,€near€the€Grand€River€in€Lake€Erie,€and€near€the€GrandÐ h)¸$/ ÐCalumet€River€in€southern€Lake€Michigan.€The€round€goby€now€has€access€to€theÐ 0*€%0 ÐMississippi€River€system€via€the€Grand€Calumet€River.€Tubenose€gobies€(a€small€fishÐ ø*H&1 Ð<120€mm)€have€only€been€found€in€the€St.€Clair€River€and€Lake€St.€Clair,€and€maintainÐ À+'2 Ðsmall€to€rare€populations€there.€The€round€goby€is€much€larger€(up€to€300€mm),€is€aÐ ˆ,Ø'3 Ðmultiple€spawner,€feeds€almost€exclusively€on€a€relatively€unutilized€resource,€zebraÐ P- (4 Ðmussels,€when€it€is€>60€mm,€and€occupies€depths€to€10€m,€but€prefers€nearshore€areas.€ItÐ ° Ðhas€decimated€populations€of€mottled€sculpin€and€apparently€depressed€those€of€logperchÐ xÈ Ðin€the€St.€Clair€River,€probably€by€driving€competing€species€from€prime€feeding,Ð @ Ðsecurity,€and€spawning€sites.€Many€piscine€predators€eat€gobies.€Gobies€are€ideally€suitedÐ X Ðfor€freighter€transport€because:€(1)€they€can€feed€in€the€dark,€(2)€prefer€holes€or€crevices,Ð Ð  Ðand€(3)€can€tolerate€degraded€water€quality€conditions.€We€expect€them€to€continue€toÐ ˜è Ðspread€and€severely€disrupt€benthic€fish€communities€in€rocky,€cobble,€and€vegetatedÐ ` ° Ðareas,€with€the€potential€to€also€affect€deepwater€sculpin.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð191.à 4 àJude,€D.€J.€and€S.€F.€Deboe€(1996).€Possible€impact€of€gobies€and€other€introducedÐ € Ð  Ðspecies€on€habitat€restoration€efforts.€Pages€€136„141€òòinóó€J.€R.€M.€Kelso,€ed.€Workshop€onÐ H ˜  Ðthe€Science€and€Management€for€Habitat€Conservation€and€Restoration€StrategiesÐ `  Ð(HABCARES)€in€the€Great€Lakes,€Ottawa,€Ontario€(Canada),€Canadian€Journal€ofÐ Ø(  ÐFisheries€and€Aquatic€Sciences.Ð  ð  Ðà 4 àÌÓ X¨ýÓMany€fish€habitat€modifications€involve€riprap€placement€on€sandy€substrate.Ð 0€  ÐBecause€exotic€species€may€be€favored,€a€field€experiment€was€designed€to€testÐ øH  Ðdifferences€in€fish€abundance€in€riprap,€sand,€and€macrophyte„dominated€substrate.€A€3„Ð À Ðm€long€seine€was€used€to€sample€areas€of€sand,€riprap€and€aquatic€macrophytes€threeÐ ˆØ Ðtimes€during€1994€in€the€St.€Clair€River€near€Algonac,€Michigan.€Diversity€was€high,Ð P  Ðwith€24€species€of€fish€collected.€Round€gobies€òòNeogobius€melanostomusóó€were€mostÐ h Ðoften€collected€in€riprap€and€macrophyte€habitat,€with€riprap€habitat€having€aÐ à0 Ðsignificantly€greater€mean€catch€on€16€August.€On€the€other€two€dates,€mean€catchesÐ ¨ø Ðwere€not€significantly€different€between€macrophyte€and€riprap€habitat,€but€both€wereÐ pÀ Ðsignificantly€greater€than€the€mean€catch€in€sandy€areas.€Densities€of€tubenose€gobiesÐ 8ˆ ÐòòProterorhinus€marmoratusóó€were€similar€between€sandy€and€macrophyte€habitats,€butÐ P Ðsignificantly€greater€in€riprap€habitat.€Gizzard€shad€òòDorosoma€cepedianumóó,€alewife€òòAlosaÐ È Ðpseudoharengusóó,€and€white€perch€òòMorone€americanaóó€were€mostly€associated€with€openÐ à Ðwater€sandy€habitat.€Zebra€mussels€òòDreissena€polymorphaóó€were€common€on€riprapÐ X¨ Ðsubstrate€but€were€rarely€seen€on€sandy€substrate.Ð  p ÐÓ ¨ýXÓÐ è8 ÐÐ °  Ð192.à 4 àJude,€D.€J.,€R.€H.€Reider€and€G.€R.€Smith€(1991).€First€evidence€of€Gobiidae€in€the€GreatÐ xÈ! ÐLakes€basin.€Pages€€124€òòinóó€???,€ed.€The€34th€Conference€of€the€International€AssociationÐ @" Ðfor€Great€Lakes€Research,€Buffalo,€New€York€(USA),€International€Association€for€GreatÐ  X# ÐLakes€Research.Ð Ð $ Ðà 4 àÌÓ X¨ýÓA€tubenose€goby€òòProterorhinus€marmoratusóó,€a€European€endangered€speciesÐ `"°& Ðnative€to€the€Black€and€Caspian€Seas,€was€recovered€on€11€April€1990€from€the€travellingÐ (#x' Ðscreens€of€the€Belle€River€Power€Plant€located€on€the€St.€Clair€River,€south€of€St.€Clair,Ð ð#@( ÐMichigan.€Subsequently€on€28€June,€18€July,€and€23€September,€a€Canadian€and€twoÐ ¸$ ) ÐAmerican€anglers€each€caught€a€round€goby€òòNeogobius€melanostomusóó€in€the€St.€ClairÐ €%Ð * ÐRiver€near€Sarnia,€Ontario.€Three€tubenose€gobies€and€four€round€gobies€were€impingedÐ H&˜!+ Ðon€the€Belle€River€Power€Plant€screens€in€fall€1990,€and€17€round€gobies€and€27€tubenoseÐ '`", Ðgobies€were€trawled€from€an€area€near€the€Belle€River€Power€Plant€intake€structure€on€30Ð Ø'(#- ÐNovember,€and€12€and€17€December€1990.€These€species€are€believed€to€have€beenÐ  (ð#. Ðtransported€to€the€Great€Lakes€in€ballast€water.€They€are€expected€to€directly€impact€otherÐ h)¸$/ Ðbenthic€fishes,€such€as€sculpins€òòCottus€spp.óó,€darters€òòEtheostoma€spp.óó,€and€logperchÐ 0*€%0 ÐòòPercina€caprodesóó,€and€in€turn€act€as€prey€for€walleye€òòStizostedion€vitreumóó.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð193.à 4 àJude,€D.€J.,€R.€H.€Reider€and€G.€R.€Smith€(1992).€€Establishment€of€Gobiidae€in€the€GreatÐ ° Ðâ âLakes€basin.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò49ó ó:416„421.Ð xÈ Ðà 4 àÌÓ X¨ýÓA€tubenose€goby€òòProterorhinus€marmoratusóó,€a€European€endangered€speciesÐ X Ðnative€to€the€Black€and€Caspian€seas,€was€recovered€on€11€April€1990€from€the€travellingÐ Ð  Ðscreens€of€the€Belle€River€Power€Plant€located€on€the€St.€Clair€River,€Michigan.Ð ˜è ÐSubsequently,€anglers€caught€three€round€gobies€òòNeogobius€melanostomusóó€in€the€St.€ClairÐ ` ° ÐRiver€near€Sarnia,€Ontario.€Thirty„one€tubenose€gobies€and€11€round€gobies€wereÐ ( x Ðimpinged€or€trawled€at€or€near€the€Power€Plant€in€the€fall€and€winter€of€1990„91.€NineÐ ð @ Ðround€gobies€(29„61€mm€total€length)€are€believed€to€be€young„of„the„year.€These€speciesÐ ¸   Ðwere€probably€transported€to€the€Great€Lakes€in€ballast€water,€may€have€successfullyÐ € Ð  Ðcolonized€the€St.€Clair€River,€and€will€probably€spread€throughout€the€Great€Lakes.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð194.à 4 àJune,€F.€C.€(1977).€€Reproductive€patterns€in€seventeen€species€of€warmwater€fishes€in€aÐ  ð  ÐMissouri€river€reservoir.€Environmental€Biology€of€Fishes.€€ò ò2ó ó:285„296.Ð h¸  Ðà 4 àÌÓ X¨ýÓThe€timing€of€ovarian€maturation€and€spawning€of€17€warmwater€fish€species€inÐ øH  ÐLake€Oahe€(South€and€North€Dakota)€was€estimated€from€changes€in€the€mean€ovaryÐ À Ðindices€(ratios€of€ovary€weight€to€fish€length).€The€onset€of€vitellogenesis€varied€withinÐ ˆØ Ðspecies€(up€to€2€months).€Maturation€of€the€ova€took€from€7€.€5€to€10€months,€dependingÐ P  Ðon€species.€Annual€variations€in€the€mean€date€of€peak€spawning€of€individual€speciesÐ h Ðduring€1964„71€were€usually€less€than€a€week.€There€was€little€overlap€of€the€annualÐ à0 Ðmean€peak€spawning€dates€of€the€17€species,€and€an€established€sequence€of€spawningÐ ¨ø Ðamong€species€was€shown.€A€relatively€high€incidence€of€atresia€in€the€shovelnoseÐ pÀ Ðsturgeon,€northern€pike,€and€carp€indicated€that€these€species€had€apparently€not€yetÐ 8ˆ Ðadapted€to€the€altered€and€variable€spawning€conditions€in€this€reservoir.€Regularity€ofÐ P Ðspawning€would€seem€to€provide€the€best€chance€for€spawning€success€in€variableÐ È Ðenvironments€such€as€Lake€Oahe.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð195.à 4 àJungwirth,€M.€(1996).€€Bypass€channels€at€weirs€as€appropriate€aids€for€fish€migration€inÐ è8 Ðrhithral€rivers.€Regulated€Rivers:€Research€and€Management.€€ò ò12ó ó:483„492.Ð °  Ðà 4 àÌÓ X¨ýÓIn€most€cases,€the€design€of€currently€deployed€migration€aids€is€based€onÐ @" Ðtechnical€concepts,€e.g€fish€ladders,€fish€lifts,€etc.€€These€systems€meet€the€swimming€andÐ  X# Ðmigratory€requirements€of€commercially€interesting€species€such€as€salmonids,€but€not€ofÐ Ð $ Ða€smaller€fish€species€and/or€juvenile€stages.€€In€this€context,€bypass€channels€designed€toÐ ˜!è% Ðresemble€natural€stream€channels„with€a€comparatively€flat€gradient€and€a€highÐ `"°& Ðmorphological,€current€and€substrate€diversity„are€a€viable€alternative.€€The€utility€of€suchÐ (#x' Ðsystems,€in€compensating€for€the€interrupted€river€course€and€in€supporting€migrations€ofÐ ð#@( Ðvarious€rhithral€fish€species,€has€been€demonstrated€in€an€investigation€of€a€bypassÐ ¸$ ) Ðchannel€on€the€Mur€River€in€Styria,€Austria.€€This€200€m€long€system€with€a€total€of€30Ð €%Ð * Ðpools€and€riffle„like€connections€was€successfully€navigated€by€all€seven€existing€fishÐ H&˜!+ Ðspecies€and€was€additionally€used€by€juvenile€fish€as€habitat.€€During€the€main€spawningÐ '`", Ðperiods€April€„€June€and€September„December,€a€total€of€3,658€fish€ascended€the€bypass,Ð Ø'(#- Ð94%€of€which€did€so€in€the€spring.€€In€the€5.5€km€stretch€of€river€below€the€weir,€theÐ  (ð#. Ðgrayling€€òòThymallus€thymallusóó€was€the€dominant€species.€€From€an€estimated€populationÐ h)¸$/ Ðof€13300€adults,€17%€migrated€through€the€pass.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð196.à 4 àJungwirth,€M.€(1998).€€River€continuum€and€fish€migration„€going€beyond€theÐ ˆ,Ø'3 Ðlongitudinal€river€corridor€in€understanding€ecological€integrity.€Pages€€19„32€òòinóó€€M.Ð P- (4 ÐJungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,€FishingÐ ° ÐNews€Books,€Vienna€(Austria).Ð xÈ Ðà 4 àÌÓ X¨ýÓOne€of€the€central€ecological€problems€of€running€water€systems,€which€areÐ X Ðsubject€to€multiple€uses€and€therefore€suffer€disproportionate€damage€worldwide€inÐ Ð  Ðcomparison€to€other€ecosystems,€is€the€fragmentation€of€the€longitudinal€corridor€byÐ ˜è Ðweirs€of€hydroelectric€power€plants€and€other€water€engineering€measures.€RestoringÐ ` ° Ðpreviously€interrupted€migratory€pathways€of€fishes€using€bypass€systems€is€one€potentialÐ ( x Ðapproach,€but€simply€passing€fish€generally€tends€to€overestimate€the€'feasibility'€andÐ ð @ Ðultimate€success€of€amelioration€strategies€in€the€framework€of€river€revitalisationÐ ¸   Ðprojects.€This€chapter€attempts€to€show€that€running€waters€are€far€more€than€mereÐ € Ð  Ðlongitudinal€river€corridors.€Modern€concepts€of€ecology€describe€running€waters€asÐ H ˜  Ðcomplex,€four„dimensional€systems.€While€longitudinal€river€corridors€represent€anÐ `  Ðimportant€dimension,€they€are€merely€one€of€numerous€factors€whose€interactions€defineÐ Ø(  Ðecological€integrity.€The€long„term€preservation€and€sustainable€utilisation€of€runningÐ  ð  Ðwater€ecosystems€can€therefore€only€be€achieved€by€fully€considering€all€four€dimensionsÐ h¸  Ðthat€contribute€to€overall€ecological€integrity.Ð 0€  ÐÐ øH  ÐÓ ¨ýXÓÐ À Ð197.à 4 àJungwirth,€M.,€S.€Schmutz€and€S.€Weiss,€eds.€(1998).€€Fish€Migration€and€Fish€Bypasses.Ð ˆØ ÐFishing€News€Books,€Vienna€(Austria).Ð P  Ðà 4 àÌÓ X¨ýÓThe€symposium€Fish€Migration€and€Fish€Bypass€Channels€was€held€on€24„27Ð à0 ÐSeptember€1996€by€the€University€of€Agricultural€Sciences,€Department€of€HydrobiologyÐ ¨ø ÐFisheries€and€Aquaculture€in€Vienna,€Austria.€The€meeting€was€attended€by€a€diverseÐ pÀ Ðgroup€of€engineers€and€biologists€primarily€involved€in€various€aspects€of€fish€passageÐ 8ˆ Ðdesign€and€evaluation,€river€restoration€or€the€study€of€migratory€fish.€This€publicationÐ P Ðcontains€the€majority€of€the€oral€presentations€in€article€format,€together€with€some€posterÐ È Ðmaterial€extended€into€articles.€Since€the€publication€of€Charles€Clay's€The€Design€ofÐ à ÐFishyways€and€Fishpass€Facilities€in€1961,€the€joint€efforts€of€hydraulic€engineers€andÐ X¨ Ðfishery€biologists€have€led€to€tremendous€improvements€in€the€technical€design€andÐ  p Ðefficiency€of€a€whole€array€of€fish€passage€facilities,€together€with€an€increasedÐ è8 Ðunderstanding,€at€least€for€a€handful€of€well„researched€species€such€as€anadromousÐ °  Ðsalmonids,€of€the€complexities€of€fish€migration€and€behaviour€important€to€fish€passage.Ð xÈ! ÐThis€research€has€reached€perhaps€its€zenith€in€cost,€scale€and€complexity€with€theÐ @" Ðpassage€facilities€on€a€series€of€dams€on€the€Columbia€River€in€the€north„western€UnitedÐ  X# ÐStates.€Here,€one€can€boast€of€passing€adult€salmon€through€a€staircase€of€concrete€andÐ Ð $ Ðmetal€baffles,€orifices€and€louvres€with€an€elevation€gain€of€35€m€across€1300€m€of€lengthÐ ˜!è% Ðin€under€4€hours€(Williams,€Chapter€13).Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð198.à 4 àJunk,€W.€J.€(1999).€€The€flood€pulse€concept€of€large€rivers:€learning€from€the€tropics.Ð ¸$ ) ÐLarge€Rivers.€€ò ò11ó ó:261„280.Ð €%Ð * Ðà 4 àÌÓ X¨ýÓRiver„floodplain€systems€are€specific€ecosystems€with€very€complex€land„waterÐ '`", Ðinteractions€and€a€highly€adapted€flora€and€fauna.€€In€temperate€zones,€they€have€beenÐ Ø'(#- Ðintensively€modified€by€man€for€many€decades,€and€only€small€areas€are€left€in€aÐ  (ð#. Ðrelatively€undisturbed€condition.€€Furthermore,€the€impact€of€the€flood€pulse€is€oftenÐ h)¸$/ Ðcamoflagued€by€the€annual€temperature/light€pulse.€€In€the€humid€tropics€there€are€stillÐ 0*€%0 Ðlarge€undisturbed€river„floodplain€systems,€where€the€impact€of€the€flood€pulse€can€beÐ ø*H&1 Ðstudied€without€the€interference€of€the€temperature/light€pulse.€€The€flood€pulse€conceptÐ À+'2 Ðis€presented€and€its€implications€for€temperate€river„floodplain€systems€are€discussed.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð199.à 4 àJunk,€W.€L.,€P.€B.€Bayley€and€R.€E.€Sparks€(1989).€The€flood€pulse€concept€in€river„Ð xÈ Ðfloodplain€systems.€Pages€€110„127€òòinóó€D.€P.€Dodge,€ed.€Proceedings€of€the€InternationalÐ @ ÐLarge€River€Symposium,€Canadian€Special€Publication€of€Fisheries€and€AquaticÐ X ÐSciences.Ð Ð  Ðà 4 àÌÓ X¨ýÓThe€principal€driving€force€responsible€for€the€existence,€productivity,€andÐ ` ° Ðinteractions€of€the€major€biota€in€river„floodplain€systems€is€the€flood€pulse.€€A€spectrumÐ ( x Ðof€geomorphological€and€hydrological€conditions€produces€flood€pulses,€which€rangeÐ ð @ Ðfrom€unpredictable€to€predictable€and€from€short€to€long€duration.€€Short€and€generallyÐ ¸   Ðunpredictable€pulses€occur€in€low„order€streams€or€heavily€modified€systems€withÐ € Ð  Ðfloodplains€that€have€been€levied€and€drained€by€man.€€Because€low„order€stream€pulsesÐ H ˜  Ðare€brief€and€unpredictable,€organisms€have€limited€adaptations€for€directly€utilizing€theÐ `  Ðaquatic/terrestrial€transition€zone€(ATTZ),€although€aquatic€organisms€benefit€indirectlyÐ Ø(  Ðfrom€transport€of€resources€into€the€lotic€environment.€€Conversely,€a€predictable€pulse€ofÐ  ð  Ðlong€duration€engenders€organismic€adaptations€and€strategies€that€efficiently€utilizeÐ h¸  Ðattributes€of€the€ATTZ.€€This€pulse€is€coupled€with€a€dynamic€edge€effect,€which€extendsÐ 0€  Ða€"moving€littoral"€throughout€the€ATTZ.€€The€moving€littoral€prevents€prolongedÐ øH  Ðstagnation€and€allows€rapid€recycling€of€organic€matter€and€nutrients,€thereby€resulting€inÐ À Ðhigher€productivity.€€Primary€production€associated€with€the€ATTZ€is€much€higher€thanÐ ˆØ Ðthat€of€permanent€water€bodies€in€unmodified€systems.€€Fish€yields€and€production€areÐ P  Ðstrongly€related€to€the€extent€of€accessible€floodplain,€whereas€the€main€river€is€used€as€aÐ h Ðmigration€route€by€most€of€the€fishes.€€In€temperate€regions,€light€and/or€temperatureÐ à0 Ðvariations€may€modify€the€effects€of€the€pulse,€and€€anthropogenic€influences€on€the€floodÐ ¨ø Ðpulse€or€floodplain€frequently€limit€production.€€A€local€floodplain,€however,€can€developÐ pÀ Ðby€sedimentation€in€a€river€stretch€modified€by€a€low€head€dam.€€Borders€of€slowlyÐ 8ˆ Ðflowing€rivers€turn€into€floodplain€habitats,€becoming€separated€from€the€main€channelÐ P Ðby€levees.€€The€flood€pulse€is€a€"batch"€process€and€is€distinct€from€concepts€thatÐ È Ðemphasize€the€continuous€processes€in€flowing€water€environments,€such€as€the€riverÐ à Ðcontinuum€concept.€€Floodplains€are€distinct€because€they€do€not€depend€on€upstreamÐ X¨ Ðprocessing€inefficiencies€of€organic€matter,€although€their€nutrient€pool€is€influenced€byÐ  p Ðperiodic€lateral€exchange€of€water€and€sediments€with€the€main€channel.€€The€pulseÐ è8 Ðconcept€is€distinct€because€the€position€of€a€floodplain€within€the€river€network€is€not€aÐ °  Ðprimary€determinant€of€the€processes€that€occur.€€The€pulse€concept€requires€an€approachÐ xÈ! Ðother€than€the€traditional€limnological€paradigms€used€in€lotic€or€lentic€systems.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð200.à 4 àKanciruk,€P.€and€C.€H.€Penington€(1985).€€Hydroacoustic€fishery€assessment€techniques:Ð ˜!è% ÐA€feasibility€study€on€the€Mississippi€River.€U.S.€Army€Corps€of€Engineers€WaterwaysÐ `"°& ÐExperimental€Station,€Technical€Report€WES/TR/E„85„10.Ð (#x' Ðà 4 àÌÓ X¨ýÓThis€study€was€initiated€to€evaluate€the€usefulness€of€hydroacoustic€techniques€inÐ ¸$ ) Ðlarge,€alluvial€river€systems.€The€hydroacoustic€equipment€evaluated€operated€at€aÐ €%Ð * Ðfrequency€of€420€kHz€and€included€down„€and€side„facing€transducers,€dual„beam€echoÐ H&˜!+ Ðintegrators,€and€digital€recording€equipment€operated€in€mobile€and€stationary€surveys.€ItÐ '`", Ðwas€found€to€be€reliable,€fairly€easy€to€use€(with€adequate€training),€and€providedÐ Ø'(#- Ðinformation€of€fish€abundance,€distribution,€and€behavior€patterns€not€easily€attainableÐ  (ð#. Ðusing€conventional€fishery€assessment€tools€such€as€netting€or€electrofishing.Ð h)¸$/ ÐÓ ¨ýXÓÐ 0*€%0 ÐÐ ø*H&1 Ð201.à 4 àKapasa,€C.€K.€and€I.€G.€Cowx€(1991).€€Post„impoundment€changes€in€the€fish€fauna€ofÐ À+'2 ÐLake€Itezhi„tezhi,€Zambia.€Journal€of€Fish€Biology.€€ò ò39ó ó:783„793.Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓThe€fish€fauna€of€the€newly€inundated€Lake€Itazhi„tezhi,€Zambia€was€observedÐ ° Ðbetween€1980€and€1985.€Marked€changes€in€the€community€structure€were€identified.Ð xÈ ÐThe€most€obvious€were€a€decline€in€species€diversity€and€a€shift€in€species€compositionÐ @ Ðfrom€a€community€with€a€preponderance€of€òòAlestes€lateralisóó€(Boulenger)€(Characidae),€toÐ X Ðone€dominated€by€cichlids.€These€changes€were€primarily€due€to€members€of€the€familiesÐ Ð  ÐCyprinidae,€Mormyridae€and€Schilbeidae€being€unable€to€adapt€to€the€new€environmentalÐ ˜è Ðconditions,€such€as€spawning€and€feeding€grounds,€and€their€inability€to€cope€withÐ ` ° Ðfluctuating€water€levels€in€the€lake.€It€was€suggested€that€a€sound€fishery€data€collectionÐ ( x Ðsystem€be€implemented€to€provide€reliable€information€on€which€to€base€managementÐ ð @ Ðpolicy.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð202.à 4 àKarp,€W.€A.,€P.€Nealson,€D.€J.€Lispi€and€Q.€Ross€(1987).€Behavior€of€adult€bluebackÐ `  Ðherring€migrating€upstream€through€Lock€2€of€the€Erie€Canal.€Pages€€556€òòinóó€M.€J.Ð Ø(  ÐDadswell,€R.€J.€Klauda,€C.€M.€Moffitt,€R.€L.€Saunders,€R.€A.€Rulifson€and€J.€E.€Copper,Ð  ð  Ðeds.€International€Symposium€on€Common€Strategies€of€Anadromous€and€CatadromousÐ h¸  ÐFishes,€Seattle,€Washington€(USA),€American€Fisheries€Society.Ð 0€  Ðà 4 àÌÓ X¨ýÓHydroacoustic€techniques€were€used€to€observe€movement€of€adult€bluebackÐ À Ðherring€òòAlosa€aestivalisóó€immediately€upstream€and€downstream€of€the€first€lock€on€theÐ ˆØ ÐErie€Canal€at€Waterford,€New€York,€in€May€1985.€Objectives€were€to€document€fishÐ P  Ðmovements€in€response€to€lockages,€to€develop€recommendations€for€modified€lockÐ h Ðoperations,€and€to€evaluate€hydroacoustic€techniques€for€monitoring€fish€passage.€At€theÐ à0 Ðlower€gates,€estimates€of€fish€passage€into€the€lock€increased€with€duration€of€opening.€AtÐ ¨ø Ðthe€upper€gates,€a€pulse€of€fish€was€generally€observed€to€move€out€of€the€lockÐ pÀ Ðimmediately€after€the€gates€opened,€and€duration€of€opening€did€not€appear€to€influenceÐ 8ˆ Ðrate€of€fish€passage€from€the€lock€into€the€canal.€Fish€were€observed€to€moveÐ P Ðdownstream,€away€from€the€lock€gates,€to€avoid€turbulence€created€by€water€dumpingÐ È Ðduring€the€initial€stages€of€drawdown.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð203.à 4 àKarr,€J.€R.€(1991).€€Biological€integrity:€A€long„neglected€aspect€of€water€resourceÐ è8 Ðmanagement.€Ecological€Applications.€€ò ò1ó ó:66„84.Ð °  Ðà 4 àÌÓ X¨ýÓWater€of€sufficient€quality€and€quantity€is€critical€to€all€life.€Increasing€humanÐ @" Ðpopulation€and€growth€of€technology€require€human€society€to€devote€more€and€moreÐ  X# Ðattention€to€protection€of€adequate€supplies€of€water.€Although€perception€of€biologicalÐ Ð $ Ðdegradation€stimulated€current€state€and€federal€legislation€on€the€quality€of€waterÐ ˜!è% Ðresources,€that€biological€focus€was€lost€in€the€search€for€easily€measured€physical€andÐ `"°& Ðchemical€surrogates.€The€"fishable€and€swimmable"€goal€of€the€Water€Pollution€ControlÐ (#x' ÐAct€of€1972€(PL€92„500)€and€its€charge€to€"restore€and€maintain"€biotic€integrity€illustrateÐ ð#@( Ðthat€law's€biological€underpinning.€Further,€the€need€for€operational€definitions€of€termsÐ ¸$ ) Ðlike€"biological€integrity"€and€"unreasonable€degradation"€and€for€ecologically€soundÐ €%Ð * Ðtools€to€measure€divergence€from€societal€goals€have€increased€interest€in€biologicalÐ H&˜!+ Ðmonitoring.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð204.à 4 àKarr,€J.€R.€(1999).€€Defining€and€measuring€river€health.€Freshwater€Biology.€€ò ò41ó ó:221„Ð h)¸$/ Ð234.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓSociety€benefits€immeasurably€from€rivers.€Yet€over€the€past€century,€humansÐ À+'2 Ðhave€changed€rivers€dramatically,€threatening€river€health.€As€a€result,€societal€well„beingÐ ˆ,Ø'3 Ðis€also€threatened€because€goods€and€services€critical€to€human€society€are€beingÐ P- (4 Ðdepleted.€'Health'€„€shorthand€for€good€condition€(eg€healthy€economy)€„€is€grounded€inÐ ° Ðscience€yet€speaks€to€citizens.€Applying€the€concept€of€health€to€rivers€is€a€logicalÐ xÈ Ðoutgrowth€of€scientific€principles,€legal€mandates,€and€changing€societal€values.€SuccessÐ @ Ðin€protecting€the€condition,€or€health,€of€rivers€depends€on€realistic€models€of€theÐ X Ðinteractions€of€landscapes,€rivers,€and€human€actions.€Biological€monitoring€andÐ Ð  Ðbiological€endpoints€provide€the€most€integrative€view€of€river€condition,€or€river€health.Ð ˜è ÐMultimetric€biological€indices€are€an€important€and€relatively€new€approach€to€measuringÐ ` ° Ðriver€condition.€Effective€multimetric€indices€depend€on€an€appropriate€classificationÐ ( x Ðsystem,€the€selection€of€metrics€that€give€reliable€signals€of€river€condition,€systematicÐ ð @ Ðsampling€protocols€that€measure€those€biological€signals,€and€analytical€procedures€thatÐ ¸   Ðextract€relevant€biological€patterns.€Communicating€results€of€biological€monitoring€toÐ € Ð  Ðcitizens€and€political€leaders€is€critical€if€biological€monitoring€is€to€influenceÐ H ˜  Ðenvironmental€policies.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð205.à 4 àKatopodis,€C.€(1994).€Analysis€of€ichthyomechanical€data€for€fish€passage€or€exclusionÐ h¸  Ðsystem€design.€Pages€€318„323€òòinóó€D.€D.€MacKinlay,€ed.€International€Fish€PhysiologyÐ 0€  ÐSymposium,€Vancouver,€British€Columbia€(Canada),€Fish€Physiology€Association.Ð øH  Ðà 4 àÌÓ X¨ýÓFish€speed€and€stamina,€locomotion€and€the€mechanics€of€fish€swimming,€are€keyÐ ˆØ Ðto€the€development€and€design€of€passage,€exclusion,€and€guidance€systems€suchÐ P  Ðfishways€(including€culverts),€fish€screens,€fish€barriers€(including€sea€lamprey€velocityÐ h Ðbarriers),€and€fish€louvers.€The€large€amount€of€data€available,€although€primarily€fromÐ à0 Ðlaboratory€respirometer€studies€and€unevenly€distributed€between€species,€offered€anÐ ¨ø Ðopportunity€to€consider€its€systematic€application€to€the€development,€design€and€testingÐ pÀ Ðof€such€devices.€With€this€motive,€comprehensive€searches€were€made€and€literature€onÐ 8ˆ Ðfish€swimming€performance€tests€was€compiled,€and€published€data€were€entered€onÐ P Ðspreadsheets.€This€data€base€includes€the€following€information:€scientific€and€commonÐ È Ðfish€species€name,€swimming€mode,€fish€length€(l€in€m),€swimming€speed€(U€in€m/s),Ð à Ðendurance€or€time€to€fatigue€(t€in€s),€water€temperature€during€testing,€life€stage€(e.g.Ð X¨ Ðjuvenile€or€adult),€test€method€(e.g.€constant€or€increasing€velocity),€number€of€fishÐ  p Ðtested,€regressions€of€swimming€speed€versus€fish€length€for€specific€endurance€times€asÐ è8 Ðreported€in€the€literature,€publication€reference€(author€and€date),€and€relevant€commentsÐ °  Ð(Katopodis€and€Gervais€1991).€The€data€base€may€be€consulted€for€information€onÐ xÈ! Ðspecific€species,€although€many€species€either€have€very€limited€data€or€are€notÐ @" Ðrepresented€at€all.€The€data€base,€which€is€available€on€request,€is€presently€being€revisedÐ  X# Ðand€updated.€Investigators€with€additional€data€which€do€not€appear€in€primaryÐ Ð $ Ðpublications,€are€encouraged€to€provide€it€for€inclusion.Ð ˜!è% ÐÐ `"°& ÐÓ ¨ýXÓÐ (#x' Ð206.à 4 àKatopodis,€C.,€A.€J.€Derksen€and€B.€L.€Christensen€(1991).€Assessment€of€two€DenilÐ ð#@( Ðfishways€for€passage€of€freshwater€species.€Pages€€306€„€324€òòinóó€J.€Colt€and€R.€J.€White,Ð ¸$ ) Ðeds.€American€Fisheries€Society€Symposium,€Bethesda,€Maryland€(USA),€AmericanÐ €%Ð * ÐFisheries€Society€Symposium.Ð H&˜!+ Ðà 4 àÌÓ X¨ýÓFish€movements€through€two€Denil€fishways€were€assessed€by€means€of€traps€atÐ Ø'(#- Ðthe€fish€exit€(upstream€end)€of€each€facility.€Located€in€the€Canadian€prairies,€the€FairfordÐ  (ð#. Ð(Manitoba)€and€Cowan€(Saskatchewan)€fishways€are€similar€in€design€and€operation.€AtÐ h)¸$/ ÐFairford,€8,871€fish€representing€13€species€were€caught€in€the€trap.€White€suckersÐ 0*€%0 ÐòòCatostomus€commersonióó€,€walleyes€òòStizostedion€vitreumóó€,€and€saugers€òòStizostedionÐ ø*H&1 Ðcanadenseóó€made€up€93.0%€of€the€run.€At€Cowan€fishway€four€species€caught€were€whiteÐ À+'2 Ðsuckers,€longnose€suckers€òòCatostomus€catostomusóó€,€northern€pike€òòEsox€luciusóó,€andÐ ˆ,Ø'3 Ðwalleyes;€11,294€fish€were€trapped,€although€it€was€estimated€that€over€23,000€fishÐ P- (4 Ðpassed€through€the€fishway.€The€size€range€of€fish€that€passed€through€the€fishways€wasÐ ° Ð212„800€mm.€The€longest€Denil€fishway€section€negotiated€was€9.5€m€at€a€12.6%€slope.Ð xÈ ÐHeadwater€levels,€water€depths€and€water€velocities€were€monitored.€Although€fishÐ @ Ðmovements€at€both€sites€were€likely€obstructed€by€dams€for€several€decades,€all€speciesÐ X Ðpresent€ascended€the€fishways€readily.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð207.à 4 àKatopodis,€C.€and€N.€Rajaratnam€(1983).€€A€review€and€laboratory€study€of€theÐ ( x Ðhydraulics€of€Denil€fishways.€Canadian€Technical€Report€of€Fisheries€and€AquaticÐ ð @ ÐSciences.€€ò ò1145ó ó:1„181.Ð ¸   Ðà 4 àÌÓ X¨ýÓThe€development€of€Denil€fishways€is€reviewed€and€the€hydraulics€of€three€DenilÐ H ˜  Ðdesigns,€referred€to€as€Denil€1,€2€and€3,€are€studied€experimentally€and€analytically.€TheÐ `  Ðvery€turbulent€nature€of€the€flow€in€the€fishways€is€described€and€extensive€velocityÐ Ø(  Ðmeasurements€are€presented.€Velocity€profiles€in€the€centerline€of€Denil€1€and€2€areÐ  ð  Ðdistinct€and€display€characteristic€shapes€amenable€to€similarity€analysis,€while€velocityÐ h¸  Ðprofiles€for€Denil€3€are€inconclusive€in€this€respect.€Depth€averaged€velocities€through€theÐ 0€  Ðfishways€are€found€to€be€only€11%€to€14%€of€the€average€velocities€expected€inÐ øH  Ðrectangular€channels€of€the€same€dimensions.€Energy€dissipation€in€the€three€fishways€isÐ À Ðhigh.€For€slopes€of€20%€or€more€the€fishways€are€more€efficient€than€a€hydraulic€jump€inÐ ˆØ Ðdissipating€flow€energy.€At€lower€slopes,€the€fishways€create€flow€resistance€conditionsÐ P  Ðthat€are€similar€to€those€of€boulder„filled€headwater€streams.€A€semi„empirical€method€isÐ h Ðdeveloped€for€the€design€of€Denil€fishways€involving€a€fluid€friction€coefficient.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð208.à 4 àKatopodis,€C.€and€N.€Rajaratnam€(1984).€Similarity€of€scale€models€of€Denil€fishways.Ð 8ˆ ÐPages€€2.8„1€to€2.8„6€òòinóó€H.€Kobus,€ed.€International€Association€for€Hydraulic€ResearchÐ P ÐSymposium€on€Scale€Effects€in€Modelling€Hydraulic€Structures,€Esslingen,€WestÐ È ÐGermany,€Technische€Akademie.Ð à Ðà 4 àÌÓ X¨ýÓThis€paper€discusses€scale€effects€on€modelling€Denil€fishways.€€The€overallÐ  p Ðobjective€of€this€research€effort€is€to€develop€a€general€design€method€for€Denil€fishways.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð209.à 4 àKatopodis,€C.€and€N.€Rajaratnam€(1990).€€Hydraulics€of€culvert€fishways€III:€weir€baffleÐ @" Ðculvert€fishways.€Canadian€Journal€of€Civil€Engineering.€€ò ò17ó ó:558„568.Ð  X# Ðà 4 àÌÓ X¨ýÓThe€hydraulics€of€culvert€fishways€with€weir„type€baffles€were€studied€in€theÐ ˜!è% Ðlaboratory.€Weir€baffles€without€slots€would€be€less€expensive€to€build€than€slotted„weirÐ `"°& Ðbaffles€and€would€resemble€a€pool„weir€fishway.€Baffles€with€heights€equal€to€0.15€andÐ (#x' Ð0.1€times€the€diameter€(D)€of€the€culvert€were€studied€with€longitudinal€spacings€of€0.5DÐ ð#@( Ðand€1.2D.€Equations€were€developed€to€describe€the€relation€between€the€discharge,Ð ¸$ ) Ðslope,€diameter,€and€the€depth€of€flow.€Using€these€equations€it€was€possible€to€predictÐ €%Ð * Ðthe€barrier€velocity€that€would€exist€at€the€baffles.€The€performance€of€the€weir€bafflesÐ H&˜!+ Ðwas€found€to€be€as€good€as€that€of€the€slotted„weir€baffles€or€slightly€better€by€producingÐ '`", Ðlarger€depths€for€smaller€flow€rates.€A€spacing€of€0.6D€was€very€effective,€whereas€aÐ Ø'(#- Ðspacing€of€1.2D€appeared€to€be€somewhat€too€large.€During€low€flows,€sediment€mayÐ  (ð#. Ðsettle€in€the€pools,€but€this€might€be€eroded€and€transported€by€larger€flows.€A€certainÐ h)¸$/ Ðamount€of€maintenance€of€the€culvert€may€be€needed.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð210.à 4 àKatopodis,€C.,€N.€Rajaratnam,€S.€Wu€and€D.€Tovell€(1997).€€Denil€fishways€of€varyingÐ ˆ,Ø'3 Ðgeometry.€Journal€of€Hydraulic€Engineering.€€ò ò123ó ó:624„631.Ð P- (4 Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€an€extensive€laboratory€study€aimed€atÐ xÈ Ðimproving€the€design€of€Denil€fishways.€For€the€standard€design€of€the€simple€Denil,€anÐ @ Ðequation€has€been€developed€between€the€dimensionless€discharge€QÔ2:ŠXÔ*ÔÎÿX:ŠÔ€and€the€relativeÐ X Ðdepth€of€flow€d/b€for€d/b€as€large€as€5.5.€The€normalized€velocity€distributions€in€theÐ Ð  Ðcenterplane€of€the€Denil€were€found€to€have€certain€shapes€depending€upon€the€d/b€ratio.Ð ˜è ÐFor€the€nonstandard€designs€of€the€Denil€fishway,€based€on€the€results€of€about€660Ð ` ° Ðexperiments,€a€method€has€been€found€to€predict€not€only€the€relation€between€QÔ2Z ª( xÔ*ÔÎÿ( xZ ªÔ€andÐ ( x Ðd/b€but€also€the€normalized€velocity€profiles€in€the€centerplane€of€the€Denil.€TheÐ ð @ Ðcoefficient€of€friction€between€the€central€stream€in€the€Denil€and€the€circulating€water€onÐ ¸   Ðthe€sides€as€well€as€the€bottom€has€been€evaluated€along€with€the€equivalent€Manning's€nÐ € Ð  Ðfor€the€Denil€fishway.€These€results€are€believed€to€be€important€in€extending€the€depthÐ H ˜  Ðrange€of€the€standard€Denils€as€well€as€making€changes€to€the€standard€Denil€for€passingÐ `  Ðdifferent€species€of€fish.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð211.à 4 àKatopodis,€C.,€P.€R.€Robinson€and€B.€G.€Sutherland€(1978).€€Study€of€model€andÐ 0€  Ðprototype€culvert€baffling€for€fish€passage.€Department€of€Fisheries€and€the€EnvironmentÐ øH  ÐFisheries€and€Marine€Service€Western€Region,€Technical€Report€828.Ð À Ðà 4 àÌÓ X¨ýÓMost€streams,€crossed€by€roads€or€highways,€are€culverted.€€Many€such€crossingsÐ P  Ðare€impassable€to€migrating€fish€because€of€the€culvert€length€and€the€high€waterÐ h Ðvelocities€in€them.€€A€hydraulic€model€study€tested€and€developed€devices€to€aid€fishÐ à0 Ðpassage€through€culverts.€€Based€on€the€model€study€recommendations,€Offset€baffles€andÐ ¨ø ÐSpoiler€baffles€were€designed€and€installed€at€the€MacKenzie€Highway€crossing€of€theÐ pÀ ÐRedknife€River.€€Field€testing€showed€good€agreement,€between€model€and€prototypeÐ 8ˆ Ðresults.€€The€effectiveness€of€both€baffle€types€is€inversely€proportional€to€culvert€slope.€Ð P ÐMaximum€recommended€slope€is€5%.€€A€method€of€judging€baffle€adequacy€is€provided.€Ð È ÐThe€Offset€and€Spoiler€baffles€are€recommended,€primarily€for€correcting€existing€culvertÐ à Ðinstallations€and€for€proposed€stream€crossings€where€alternative€designs€are€neitherÐ X¨ Ðpractical€nor€economical.€€Minor€problems€were€presented€by€ice,€debris€and€sediment.€Ð  p ÐUnsuccessful€attempts€by€Arctic€grayling€and€longnose€sucker,€to€enter€the€RedknifeÐ è8 ÐRiver€culverts,€were€observed;€their€failures€were€attributed€to€overwhelming€waterÐ °  Ðvelocities€associated€with€elevated€culvert€outlets.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð212.à 4 àKeenlyne,€K.€D.€(1997).€€Life€history€and€status€of€the€shovelnose€sturgeon,Ð Ð $ ÐòòScaphirhynchus€platorynchusóó.€Environmental€Biology€of€Fishes.€€ò ò48ó ó:291„298.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓThe€shovelnose€sturgeon,€òòScaphirhynchus€platorynchusóó,€is€a€freshwater€sturgeonÐ (#x' Ðof€the€Mississippi€and€Missouri€rivers€and€their€tributaries.€It€is€one€of€the€smaller€NorthÐ ð#@( ÐAmerican€sturgeons,€seldom€weighing€more€than€2.5kg€over€most€of€its€range€except€inÐ ¸$ ) Ðthe€upper€Missouri€River,€where€individuals€of€over€7kg€have€been€found.€SpawningÐ €%Ð * Ðoccurs€in€spring€at€temperatures€between€17€and€21€ÔÎÿ&f!H&˜!ÔoÔ2H&˜!&f!ÔC€over€rock€or€gravel€substrateÐ H&˜!+ Ðdownstream€from€dams,€near€rock€structures,€or€in€tributaries,€most€males€reach€sexualÐ '`", Ðmaturity€at€5€years,€most€females€at€7€years.€Adults€do€not€spawn€every€year.€ShovelnoseÐ Ø'(#- Ðsturgeon€are€found€in€large,€turbid€rivers€and€frequently€concentrate€in€areas€downstreamÐ  (ð#. Ðfrom€dams€or€at€the€mouths€of€tributaries.€Population€densities€range€up€to€2500€fish€perÐ h)¸$/ Ðkm.€They€are€commonly€found€in€areas€of€current€over€sandy€bottoms€or€near€rockyÐ 0*€%0 Ðpoints€or€bars,€where€they€feed€primarily€on€aquatic€invertebrates.€The€shovelnoseÐ ø*H&1 Ðsturgeon€is€classified€as€a€sport€species€in€12€of€24€states€where€it€occurs.€CommercialÐ À+'2 Ðharvest€is€allowed€in€seven€states,€where€fresh€shovelnose€sturgeon€sell€for€55€to€88€centsÐ ˆ,Ø'3 Ðper€kg,€smoked€shovelnose€for€about€$5.75€per€kg,€and€roe€from€33€to€110€dollars€per€kg.Ð P- (4 ÐAbout€25€tons€of€shovelnose€sturgeon€are€harvested€commercially€each€year.€ShovelnoseÐ ° Ðsturgeon€are€considered€extirpated€in€three€states,€fully€protected€in€four€states,€and€rare,Ð xÈ Ðthreatened,€or€of€special€concern€in€eight€states.€Populations€are€considered€stableÐ @ Ðthroughout€most€of€the€upper€Mississippi,€lower€Missouri,€Red,€and€Atchafalaya€rivers.Ð X ÐThree€states,€Wyoming,€West€Virginia,€and€New€Mexico,€have€developed€plans€toÐ Ð  Ðreintroduce€the€species€into€rivers€where€it€has€been€extirpated.Ð ˜è ÐÐ ` ° ÐÓ ¨ýXÓÐ ( x Ð213.à 4 àKeenlyne,€K.€D.,€C.€J.€Henry,€A.€Tews€and€P.€Clancey€(1994).€€MorphometricÐ ð @ Ðcomparisons€of€upper€Missouri€River€sturgeons.€Transactions€of€the€American€FisheriesÐ ¸   ÐSociety.€€ò ò123ó ó:779„785.Ð € Ð  Ðà 4 àÌÓ X¨ýÓMorphometric€comparisons€were€made€among€three€isolated€populations€ofÐ `  Ðpallid€sturgeon€òòScaphirhynchus€albusóó€and€shovelnose€sturgeon€òòS.€platorynchusóó€from€theÐ Ø(  Ðupper€Missouri€River.€Six€measurements€were€made€on€89€pallid€and€204€shovelnoseÐ  ð  Ðsturgeons.€Means€of€several€morphometric€characteristics€were€statistically€differentÐ h¸  Ðbetween€populations€of€both€species.€Pallid€sturgeon€means€showed€proportional€trendsÐ 0€  Ðrelative€to€location€on€the€river.€Toward€the€headwaters,€relative€head€and€interrostralÐ øH  Ðlengths€were€progressively€shorter€and€outer€barbel€length€relatively€longer.€The€onlyÐ À Ðtrend€observed€for€the€shovelnose€sturgeon€was€that€relative€head€length€became€longerÐ ˆØ Ðupriver.€This€was€the€opposite€of€the€trend€observed€for€the€pallid€sturgeon.Ð P  ÐMorphometric€ratios€commonly€used€to€differentiate€the€two€species€were€usefulÐ h Ðmeasures€for€live€fish€from€isolated€populations€of€Missouri€River€sturgeon€but€not€forÐ à0 Ðthe€overall€sturgeon€population.€The€exclusivity€of€morphometric€ratios€currently€used€toÐ ¨ø Ðdistinguish€between€the€two€species€did€not€hold€for€our€larger€fish€and€large€sample€size.Ð pÀ ÐA€cumulative€morphometric€characteristic€index€is€described€to€aid€managers€inÐ 8ˆ Ðcomparing€individual€fish€within€a€composite€sturgeon€population,€and€the€finding€ofÐ P Ðthree€possible€hybrids€is€discussed.Ð È ÐÓ ¨ýXÓÐ à ÐÐ X¨ Ð214.à 4 àKeenlyne,€K.€D.€and€L.€G.€Jenkins€(1993).€€Age€at€sexual€maturity€of€the€pallid€sturgeon.Ð  p ÐTransactions€of€the€American€Fisheries€Society.€€ò ò122ó ó:393„396.Ð è8 Ðà 4 àÌÓ X¨ýÓAge€at€sexual€maturity€has€not€been€described€previously€for€the€pallid€sturgeonÐ xÈ! ÐòòScaphirhynchus€albusóó,€an€endangered€species.€Age€and€reproductive€data€were€obtainedÐ @" Ðfor€five€male€and€nine€female€pallid€sturgeons€collected€from€1983€to€1991.€SpawningÐ  X# Ðbands€were€observed€in€pectoral€fin€ray€sections€of€age„25€and€age„41€females.€MalesÐ Ð $ Ðreached€sexual€maturity€at€ages€5„7.€Females€began€egg€development€at€age€9„12€and€firstÐ ˜!è% Ðspawned€at€age€15.€Eight€of€the€specimens€were€collected€from€the€head„waters€of€theÐ `"°& ÐAtchafalaya€River,€where€pallid€sturgeons€had€not€been€previously€reported.Ð (#x' ÐÐ ð#@( ÐÓ ¨ýXÓÐ ¸$ ) Ð215.à 4 àKieffer,€M.€C.€and€B.€Kynard€(1993).€€Annual€movements€of€shortnose€and€AtlanticÐ €%Ð * Ðsturgeons€in€the€Merrimack€River,€Massachusetts.€Transactions€of€the€American€FisheriesÐ H&˜!+ ÐSociety.€€ò ò122ó ó:1088„1103.Ð '`", Ðà 4 àÌÓ X¨ýÓWe€used€biotelemetry€to€study€the€movements€of€23€adult€shortnose€sturgeonsÐ  (ð#. ÐòòAcipenser€brevirostrumóó€and€23€subadult€Atlantic€sturgeons€òòAcipenser€oxyrhynchusÐ h)¸$/ Ðoxyrhynchusóó€in€the€lower€46€km€of€the€Merrimack€River€between€1987€and€1990.Ð 0*€%0 ÐShortnose€sturgeons€used€two€freshwater€reaches€and€one€saline€reach€annually.€SexuallyÐ ø*H&1 Ðmature€fish€began€moving€upriver€from€freshwater€wintering€areas€to€a€spawning€site€inÐ À+'2 ÐApril,€when€increasing€river€temperature€reached€about€7€ÔÎÿV,¦'ˆ,Ø'ÔoÔ2ˆ,Ø'V,¦'ÔC€and€decreasing€riverÐ ˆ,Ø'3 Ðdischarge€reached€about€570€mÔÎÿ-n(P- (Ô3Ô2P- (-n(Ô/s.€Following€spawning€in€late€April„early€May,€fishÐ P- (4 Ðmoved€downriver€either€to€a€freshwater€reach€where€they€remained€all€year€or€fartherÐ ° Ðdownriver€to€a€saline€reach€where€they€remained€for€up€to€6€weeks.€After€fish€used€theÐ xÈ Ðsaline€reach,€they€returned€upriver€to€fresh€water.€Atlantic€sturgeons€entered€the€riverÐ @ Ðfrom€coastal€waters€by€mid„late€May,€when€increasing€river€temperatures€reached€14.8„Ð X Ð19.0€ÔÎÿžîÐ ÔoÔ2Ð žîÔC€and€decreasing€river€discharge€reached€303„675€mÔÎÿžîÐ Ô3Ô2Ð žîÔ/s,€occupying€a€saline€reachÐ Ð  Ðwith€0.0„27.5%€salinity.€After€using€the€same€saline€reach€visited€briefly€in€spring€byÐ ˜è Ðshortnose€sturgeons,€Atlantic€sturgeons€emigrated€from€the€river€by€October€whenÐ ` ° Ðmaximum€river€temperatures€were€13.0„18.4€ÔÎÿö F( xÔoÔ2( xö FÔC.€We€observed€no€tagged€AtlanticÐ ( x Ðsturgeons€in€the€river€in€successive€years.€Except€for€use€of€the€saline€reach€duringÐ ð @ Ðspring,€the€two€species€were€spatially€separate.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð216.à 4 àKieffer,€M.€C.€and€B.€Kynard€(1996).€€Spawning€of€the€shortnose€sturgeon€in€theÐ `  ÐMerrimack€River,€Massachusetts.€Transactions€of€the€American€Fisheries€Society.€Ð Ø(  Ðò ò125ó ó:179„186.Ð  ð  Ðà 4 àÌÓ X¨ýÓWe€tracked€10€ultrasonically€tagged€shortnose€sturgeons€òòAcipenser€brevirostrumóóÐ 0€  Ðduring€spring€in€the€Merrimack€River€to€investigate€spawning.€Seven€fish€in€1989€and€sixÐ øH  Ðfish€in€1990€were€tracked€intensively€to€identify€the€timing€and€location€of€spawning€andÐ À Ðto€characterize€spawning€habitat.€In€mid„April€1989€and€1990,€fish€moved€upstream€toÐ ˆØ Ðjust€below€head€of€tide,€concentrating€in€a€2„km€reach€at€river€kilometers€30„32Ð P  Ð(measured€from€the€mouth)€at€Haverhill,€Massachusetts.€The€estimated€spawning€timeÐ h Ðwas€a€5„d€period€(26„30€April)€in€1989€and€an€8„d€period€(22„29€April)€in€1990.Ð à0 ÐSpawning€sites€covered€about€10.5€ha€in€1989€and€13.5€ha€in€1990.€Fish€spawned€as€riverÐ ¨ø Ðtemperature€increased€from€9.6€to€14.0€ÔÎÿ>ŽpÀÔoÔ2pÀ>ŽÔC€and€river€discharge€decreased€from€390€to€240Ð pÀ ÐmÔÎÿV8ˆÔ3Ô28ˆVÔ/s.€Physical€characteristics€of€spawning€sites€were€boulder„rubble€substrate,€waterÐ 8ˆ Ðdepth€of€1.8„5.5€m,€and€bottom€water€velocity€of€0.3„0.7€m/s.€We€captured€no€ovulatingÐ P Ðfemales€but€verified€successful€spawning€in€1990€by€capturing€two€live€embryos.€Gill„netÐ È Ðcaptures€and€telemetry€during€spring€showed€that€some€males€moved€to€the€spawningÐ à Ðarea€annually.€The€low€abundance€estimates€of€spawning€fish€(9€in€1989€and€16€in€1990)Ð X¨ Ðindicate€that€the€shortnose€sturgeon€population€in€the€Merrimack€River€is€the€smallest€yetÐ  p Ðidentified€as€is€likely€vulnerable€to€extirpation.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð217.à 4 àKline,€T.€C.,€Jr.,€J.€J.€Goering,€O.€A.€Mathisen,€P.€H.€Poe,€P.€L.€Parker€and€R.€S.€ScalanÐ @" Ð(1993).€€Recycling€of€elements€transported€upstream€by€runs€of€Pacific€salmon:€II.€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔÔÎÿÖ& XÔ15Ô2 XÖ&ÔNÐ  X# Ðand€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔ€ÔÎÿž îÐ Ô13Ô2Ð ž îÔC€evidence€in€the€Kvichak€River€watershed,€Bristol€Bay,€southwestern€Alaska.Ð Ð $ ÐCanadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò50ó ó:2350„2365.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓBiota€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔÔÎÿö"F(#xÔ15Ô2(#xö"FÔN€and€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔ€ÔÎÿö"F(#xÔ13Ô2(#xö"FÔC€values€(deviations€from€recognized€isotope€standards)Ð (#x' Ðfrom€Iliamna€Lake€(a€major€anadromous€sockeye€salmon€òòOncorhynchus€nerkaóó€nurseryÐ ð#@( Ðlake€supporting€peak„year€runs€>10€million)€and€several€other€anadromous„salmon„freeÐ ¸$ ) Ðlakes€in€the€Kvichak€River€watershed,€Bristol€Bay,€southwestern€Alaska,€were€comparedÐ €%Ð * Ðto€determine€the€significance€of€marine„derived€nitrogen€(MDN)€delivered€by€returningÐ H&˜!+ Ðadult€salmon.€Biota€in€Iliamna€Lake€had€higher€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔÔÎÿÞ&."'`"Ô15Ô2'`"Þ&."ÔN€compared€with€control€lakes,Ð '`", Ðverifying€a€mixing€model€correlating€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔÔÎÿ¦'ö"Ø'(#Ô15Ô2Ø'(#¦'ö"ÔN€with€MDN.€Periphyton€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔÔÎÿ¦'ö"Ø'(#Ô15Ô2Ø'(#¦'ö"ÔN€valuesÐ Ø'(#- Ðreflected€localized€input€from€populations€of€spawning€salmon.€Juvenile€sockeye€MDNÐ  (ð#. Ðvaried€in€response€to€escapement€size,€suggesting€the€importance€of€large€escapementsÐ h)¸$/ Ð(>10€million)€for€maintaining€a€predominantly€MDN€lacustrine€N€pool.€Other€residentÐ 0*€%0 Ðfishes€showed€shifts€in€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔÔÎÿÆ*&ø*H&Ô15Ô2ø*H&Æ*&ÔN€between€years€of€high€and€low€escapement.€The€dual„Ð ø*H&1 Ðisotope€approach,€using€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔÔÎÿŽ+Þ&À+'Ô15Ô2À+'Ž+Þ&ÔN€and€Ô€&³Ø%%&™yÔDÔ€&™y%%&³ØÔ€ÔÎÿŽ+Þ&À+'Ô13Ô2À+'Ž+Þ&ÔC€together,€suggested€that€fish€production€isÐ À+'2 Ðâ âprimarily€dependent€on€limnetic€primary€and€secondary€production.€The€dual„isotopeÐ ˆ,Ø'3 Ðapproach€indicated€that€the€coast€range€sculpin€òòCottus€aleuticusóó€was€the€only€fish€with€anÐ ° Ðappreciable€dietary€component€consisting€of€salmon€eggs€or€emergent€fry.Ð xÈ Ðâ âÐ @ ÐÓ ¨ýXÓÐ X Ð218.à 4 àKlinge,€M.€(1994).€€Fish€migration€via€the€shipping€lock€at€the€Hagestein€barrage:€ResultsÐ Ð  Ðof€an€indicative€study.€Pages€€357„361€òòinóó€€J.€A.€Van€de€Kraats,€ed.€Water€Science€andÐ ˜è ÐTechnology,€Tarrytown,€New€York€(USA).Ð ` ° Ðà 4 àÌÓ X¨ýÓIn€the€Dutch€part€of€the€Rhine€many€hydraulic€works€(sluices,€barrages,€etc.)€areÐ ð @ Ðsituated€which€are€considered€to€be€barriers€for€upstream€fish€migration.€Because€ofÐ ¸   Ðintensive€shipping€these€works€are€always€combined€with€big€shipping€locks.€UntilÐ € Ð  Ðrecently€no€data€were€available€concerning€fish€migration€via€this€locks.€This€was€studiedÐ H ˜  Ðin€the€river€Lek€at€the€Hagestein€barrage.€Due€to€the€short€length€of€the€study€period€andÐ `  Ðfew€recaptured€salmonids€(salmon,€sea€trout,€rainbow€trout)€no€conclusive€evidence€aboutÐ Ø(  Ðthe€effects€of€the€shipping€lock€on€salmonid€migration€was€obtained.€However,€the€resultsÐ  ð  Ðdo€suggest€that€the€Hagestein€barrage€complex€forms€a€serious€barrier€for€upstreamÐ h¸  Ðmigration€of€salmonids.€Several€other€fish€species€on€other€hand€were€observed€toÐ 0€  Ðmigrate€through€the€lock.€Therefore,€depending€on€target€species€and€management€goals,Ð øH  Ðthe€presence€of€shipping€locks€should€be€taken€into€account€when€considering€improvingÐ À Ðfish€migration€possibilities.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð219.à 4 àKolok,€A.€S.€(1991).€€Photoperiod€alters€the€critical€swimming€speed€of€juvenileÐ à0 Ðlargemouth€bass,€òòMicropterus€salmoidesóó,€acclimated€to€cold€water.€Copeia.€€ò ò4ó ó:1085„1090.Ð ¨ø Ðà 4 àÌÓ X¨ýÓThe€objective€of€this€research€was€to€determine€whether€the€critical€swimmingÐ 8ˆ Ðspeed€of€juvenile€largemouth€bass,€òòMicropterus€salmoidesóó,€was€influenced€by€prolongedÐ P Ðexposure€to€seasonally€inconsistent€photoperiods.€To€test€this€hypothesis,€the€criticalÐ È Ðswimming€speeds€(UÔ2ÂàÔcritÔÎÿàÂÔ)€of€fish€laboratory€acclimated€to€5,€10,€15,€or€19€ÔÎÿ^®àÔoÔ2à^®ÔC,€andÐ à Ðseasonally€consistent€or€12:12€light„dark€photoperiods,€were€compared€to€that€of€field„Ð X¨ Ðacclimatized€bass.€In€early€winter€the€UÔ2R¢ pÔcritÔÎÿ pR¢Ô€of€largemouth€bass€laboratory€acclimated€to€5Ð  p ÐÔÎÿ¶è8ÔoÔ2è8¶ÔC€and€a€12:12€light„dark€photoperiod€was€significantly€reduced€relative€to€that€of€fishÐ è8 Ðfield€acclimatized€to€5€ÔÎÿ~ΰÔoÔ2°~ÎÔC€but€was€not€significantly€different€when€compared€to€that€ofÐ °  Ðfish€acclimated€to€5€ÔÎÿF–xÈÔoÔ2xÈF–ÔC€and€a€seasonally€consistent€9:15€light„dark€photoperiod.€In€earlyÐ xÈ! Ðsummer€the€UÔ2rÂ@ÔcritÔÎÿ@rÂÔ€of€largemouth€bass€laboratory€acclimated€to€10€ÔÎÿ^@ÔoÔ2@^ÔC€and€a€12:12€light„Ð @" Ðdark€photoperiod€was€significantly€reduced€relative€to€the€UÔ2: Š XÔcritÔÎÿ X: ŠÔ€of€fish€either€acclimatedÐ  X# Ðto€10€ÔÎÿž îÐ ÔoÔ2Ð ž îÔC€and€a€seasonally€consistent€15:9€light„dark€photoperiod€or€field€acclimatized€toÐ Ð $ Ð10€ÔÎÿf!¶˜!èÔoÔ2˜!èf!¶ÔC.Ð ˜!è% ÐÐ `"°& ÐÓ ¨ýXÓÐ (#x' Ð220.à 4 àKolok,€A.€S.€(1992).€€The€swimming€performance€of€individual€largemouth€bassÐ ð#@( ÐòòMicropterus€salmoidesóó€are€repeatable.€Journal€of€Experimental€Biology.€€ò ò170ó ó:265„270.Ð ¸$ ) Ðà 4 àÌÓ X¨ýÓPrevious€studies€have€shown€that€critical€swimming€speed€(UÔ2z&Ê!H&˜!ÔcritÔÎÿH&˜!z&Ê!Ô)€of€theÐ H&˜!+ Ðlargemouth€bass,€òòMicropterus€salmoidesóó€Lacepede,€is€significantly€influenced€by€aÐ '`", Ðnumber€of€factors€including€body€mass,€training,€water€temperature€and€photoperiod.€Ð Ø'(#- ÐRecent€research€into€locomotor€performance€of€amphibians€and€reptiles€has€suggestedÐ  (ð#. Ðthat€individual€variation€is€substantial€and€repeatable.€€The€results€of€this€study€suggestsÐ h)¸$/ Ðthat€variation€in€the€swimming€performance€of€individual€and€juvenile€largemouth€bass€isÐ 0*€%0 Ðsubstantial€and€repeatable€for€fish€tested€twice€at€one€temperature,€tested€at€differentÐ ø*H&1 Ðtemperatures,€or€tested€after€a€4€week€acclimation€to€different€temperature.€€These€resultsÐ À+'2 Ðstrongly€suggested€that€individual€variation€in€UÔ2º, (ˆ,Ø'ÔcritÔÎÿˆ,Ø'º, (Ô€is€more€than€statistical€noise€and€thatÐ ˆ,Ø'3 Ðit€is€a€source€of€variation€that€can€be€exploited€when€designing€future€experiments.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð221.à 4 àKolok,€A.€S.€(1999).€€Interindividual€variation€in€the€prolonged€locomotor€performanceÐ xÈ Ðof€ectothermic€vertebrates:€A€comparison€of€fish€and€herptofaunal€methodologies€and€aÐ @ Ðbrief€review€of€the€recent€fish€literature.€Canadian€Journal€of€Fisheries€and€AquaticÐ X ÐSciences.€€ò ò56ó ó:700„710.Ð Ð  Ðà 4 àÌÓ X¨ýÓPhysiological€research€of€locomotor€performance€in€fishes€has€traditionallyÐ ` ° Ðadopted€an€approach€in€which€the€mean€performance€of€a€number€of€fish€was€consideredÐ ( x Ð`real'€and€variation€around€the€mean€was€considered€statistical€noise.€Drawing€onÐ ð @ Ðadvances€made€in€herpetofaunal€studies,€an€alternative€approach€has€recently€appeared€inÐ ¸   Ðthe€fish€literature€in€which€variation€among€individual€fish€has€been€shown€to€beÐ € Ð  Ðrepeatable€and€statistically€valid.€The€incorporation,€rather€than€suppression,€of€individualÐ H ˜  Ðvariation€in€experimental€design€has€revealed€interesting€and€biologically€relevantÐ `  Ðrelationships€between€morphological€and€physiological€traits€and€swimming€performanceÐ Ø(  Ðthat€can€be€masked€by€the€traditional€use€of€group€means.€Considering€the€promisingÐ  ð  Ðnature€of€these€initial€studies€incorporating€individual€variability€in€fish€performance,€thisÐ h¸  Ðpaper€has€two€primary€objectives.€The€first€is€to€compare€methodologies€that€have€beenÐ 0€  Ðused€in€studies€involving€intraspecific€variability€in€the€locomotor€performance€of€fishÐ øH  Ðand€herptofauna.€The€second€is€to€review€the€fish€literature€regarding€interindividualÐ À Ðvariation€in€prolonged€swimming€performance.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð222.à 4 àKolok,€A.€S.€and€J.€T.€Oris€(1995).€€The€relationship€between€specific€growth€rate€andÐ à0 Ðswimming€performance€in€male€fathead€minnows€òòPimephales€promelasóó.€CanadianÐ ¨ø ÐJournal€of€Zoology.€€ò ò73ó ó:2165„2167.Ð pÀ Ðà 4 àÌÓ X¨ýÓThe€objective€of€this€study€was€to€test€the€hypothesis€that€the€specific€growth€rateÐ P Ðof€male€fathead€minnows€òòPimephales€promelasóó€was€positively€correlated€with€swimmingÐ È Ðperformance.€Subadult€fish€were€allowed€to€grow€into€adults€over€a€period€of€31„55€days,Ð à Ðafter€which€the€critical€swimming€speed€of€each€fish€was€determined.€Variation€in€criticalÐ X¨ Ðswimming€speed€was€substantial€(greater€than€50%),€and€a€significant€positive€correlationÐ  p Ðwas€found€between€number€of€growing€days€and€critical€swimming€speed,€whereas€aÐ è8 Ðsignificant€negative€correlation€was€found€between€specific€growth€rate€and€criticalÐ °  Ðswimming€speed.€A€multiple€regression€using€specific€growth€rate€and€number€ofÐ xÈ! Ðgrowing€days€explained€over€47%€of€the€variation€in€swimming€performance.€FatheadÐ @" Ðminnows€that€grow€fast€are€poor€swimmers,€suggesting€a€trade„off€between€swimmingÐ  X# Ðperformance€and€specific€growth€rate€in€this€species.Ð Ð $ ÐÐ ˜!è% ÐÓ ¨ýXÓÐ `"°& Ð223.à 4 àKolok,€A.€S.,€E.€P.€Plaisance€and€A.€Abdelghani€(1998).€€Individual€variation€in€theÐ (#x' Ðswimming€performance€of€fishes:€An€overlooked€source€of€variation€in€toxicity€studies.Ð ð#@( ÐEnvironmental€Toxicology€and€Chemistry.€€ò ò17ó ó:282„285.Ð ¸$ ) Ðà 4 àÌÓ X¨ýÓA€commonly€used€indicator€of€sublethal€stress€in€fish€òòPimephales€promelasóó€isÐ H&˜!+ Ðimpaired€swimming€performance.€Analysis€of€performance€data€usually€employs€a€simpleÐ '`", Ðcomparison,€in€which€the€mean€of€a€stressed€group€of€fish€is€compared€to€that€of€a€controlÐ Ø'(#- Ðgroup.€Although€such€a€comparison€is€satisfactory€in€many€cases,€a€comparisonÐ  (ð#. Ðemphasizing€individual€variation€in€performance€can€yield€valuable€informationÐ h)¸$/ Ðunattainable€by€a€means€comparison.€In€this€experiment,€we€determined€criticalÐ 0*€%0 Ðswimming€speeds€of€subadult€male€fathead€minnows€before€and€after€exposure€toÐ ø*H&1 Ðcontaminated€sediments€from€Devil's€Swamp,€Louisiana,€USA.€The€data€were€thenÐ À+'2 Ðanalyzed€using€a€means€comparison€and€an€individual€approach€to€illustrate€theÐ ˆ,Ø'3 Ðdifferences€in€explanatory€power€between€the€two€approaches.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð224.à 4 àKowarsky,€J.€and€A.€H.€Ross€(1981).€€Fish€movement€upstream€through€a€CentralÐ xÈ ÐQueensland€(Fitzroy€River)€coastal€fishway.€Australian€Journal€of€Marine€and€FreshwaterÐ @ ÐResearch.€€ò ò32ó ó:93„109.Ð X Ðà 4 àÌÓ X¨ýÓA€two„part€study€was€made€of€fish€movement€past€the€Fitzroy€River€barrage€atÐ ˜è ÐRockhampton,€Queensland,€to€assess€the€feasibilities€of€routes€other€than€that€through€theÐ ` ° Ðsimple€pool€and€weir€fishway€situated€at€the€barrage,€and€to€monitor€fish€passageÐ ( x Ðupstream€through€the€fishway€by€placing€a€V„trap€immediately€above€the€fishway€exit.€ItÐ ð @ Ðis€concluded€that€while€there€is€a€need€for€facilitating€fish€movement€upstream€past€theÐ ¸   Ðbarrage,€the€present€fishway€does€not€seem€to€be€particularly€effective€in€this€regard.Ð € Ð  ÐStructural€and€management€changes€to€the€fishway€which€may€improve€its€efficiency€areÐ H ˜  Ðproposed.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð225.à 4 àKynard,€B.€(1997).€€Life€history,€latitudinal€patterns,€and€status€of€the€shortnose€sturgeon,Ð h¸  ÐòòAcipenser€brevirostrumóó.€Environmental€Biology€of€Fishes.€€ò ò48ó ó:319„334.Ð 0€  Ðà 4 àÌÓ X¨ýÓHistorically,€shortnose€sturgeon€inhabited€most€major€rivers€on€the€Atlantic€coastÐ À Ðof€North€America€south€of€the€Saint€John€River,€Canada.€Today,€only€16€populations€mayÐ ˆØ Ðremain.€Major€anthropogenic€impacts€on€shortnose€sturgeon€are€blockage€of€spawningÐ P  Ðruns€by€dams,€harvest€of€adults€(bycatch€and€poaching),€dredging€of€fresh€/saltwaterÐ h Ðriverine€reaches,€regulation€of€river€flows,€and€pollution.€The€pattern€of€anadromy€(adultÐ à0 Ðuse€of€salt€water)€varies€with€latitude.€The€pattern€may€reflect€bioenergetic€adaptations€toÐ ¨ø Ðlatitudinal€differences€between€fresh€and€salt€water€habitats€for€thermal€and€foragingÐ pÀ Ðsuitability.€The€greater€adult€abundance€in€northern€and€north„central€populations€likelyÐ 8ˆ Ðreflects€a€historical€difference€with€southern€populations€that€is€currently€accentuated€byÐ P Ðincreased€anthropogenic€impacts€on€southern€populations.€Adult€abundance€is€less€thanÐ È Ðthe€minimum€estimated€viable€population€abundance€of€1000€adults€for€5€of€11€surveyedÐ à Ðpopulations,€and€all€natural€southern€populations.€Across€the€latitudinal€range,€spawningÐ X¨ Ðadults€typically€travel€to€about€river€km200€or€farther€upstream.€Dams€built€downstreamÐ  p Ðof€spawning€reaches€block€spawning€runs,€and€can€divide€amphidromous€populationsÐ è8 Ðinto€up„€and€downstream€segments.€Conservation€efforts€should€correct€environmentalÐ °  Ðand€harvest€impacts,€not€stock€cultured€fish€into€wild€populations.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð226.à 4 àKynard,€B.€(1998).€€Twenty„two€years€of€passing€shortnose€sturgeon€in€fish€lifts€on€theÐ Ð $ ÐConnecticut€River:€what€has€been€learned?€Pages€€255„266€òòinóó€€M.€Jungwirth,€S.€SchmutzÐ ˜!è% Ðand€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,€ViennaÐ `"°& Ð(Austria).Ð (#x' Ðà 4 àÌÓ X¨ýÓThe€shortnose€sturgeon€òòAcipenser€brevirostrumóó€population€in€the€ConnecticutÐ ¸$ ) ÐRiver€has€been€physically€separated€into€upstream€and€lower€river€groups€by€HolyokeÐ €%Ð * ÐDam€at€river€km€140€since€1849.€Some€lower€river€pre„spawning€adults€annually€migrateÐ H&˜!+ Ðto€the€dam,€enter€fish€lifts€and€are€passed€upriver.€I€examined€the€passage€pattern€of€97Ð '`", Ðmigrants€lifted€from€1975€to€1996.€The€annual€number€of€fish€passed€was€0„16€(mean€=Ð Ø'(#- Ð4.4,€SE€=€0.86,€mode€and€median€=€4€ind/yr).€There€was€no€trend€in€annual€abundanceÐ  (ð#. Ðduring€the€22€year€period.€Most€fish€(N€=€67)€were€lifted€individually€during€a€day.Ð h)¸$/ ÐAdults€were€passed€each€month€that€the€lift€operated€(April„October).€Fish€were€lifted€atÐ 0*€%0 Ðwater€temperatures€of€10€to€27€ÔÎÿÆ*&ø*H&ÔoÔ2ø*H&Æ*&ÔC,€with€86%€lifted€between€12€and€23€ÔÎÿÆ*&ø*H&ÔoÔ2ø*H&Æ*&ÔC.€RiverÐ ø*H&1 Ðdischarge€may€affect€when€fish€migrate€upstream,€or€enter€the€lift,€or€both,€e.g.€60€of€71Ð À+'2 Ðdates€that€fish€passed€were€within€23€days€(mean€„8.5€days,€95%€CI€=€6.9„10.2€days)Ð ˆ,Ø'3 Ðfollowing€a€river€discharge€>€600€mÔÎÿ-n(P- (Ô3Ô2P- (-n(Ô/s.€Most€fish€entered€during€decreasing€discharge€ofÐ P- (4 Ð200„450€mÔÎÿ~Îÿ°Ô3Ô2°~ÎÿÔ/s€(mean€=€312€mÔÎÿ~Îÿ°Ô3Ô2°~ÎÿÔ/s).€Fish€were€passed€by€the€spillway€lift€where€waterÐ ° Ðdepth€at€the€entrance€is€more€shallow€than€at€the€tailrace€lift€entrance.€Shortnose€sturgeonÐ xÈ Ðpassage€can€be€enhanced€by€improving€the€approach€route€to€the€spillway€lift,€liftingÐ @ Ðmigrants€during€late€May„October€when€fish€are€in€good€physiological€condition,Ð X Ðincreasing€lift€frequency€and€attraction€flow€during€summer€and€fall,€and€increasingÐ Ð  Ðefforts€to€pass€fish€within€10€days€following€natural€discharge€that€exceeds€600€mÔÎÿf¶˜èÔ3Ô2˜èf¶Ô/s.Ð ˜è ÐÐ ` ° ÐÓ ¨ýXÓÐ ( x Ð227.à 4 àKynard,€B.€and€C.€Buerkett€(1997).€€Passage€and€behavior€of€adult€American€shad€in€anÐ ð @ Ðexperimental€louver€bypass€system.€North€American€Journal€of€Fisheries€Management.€Ð ¸   Ðò ò17ó ó:734„742.Ð € Ð  Ðà 4 àÌÓ X¨ýÓWe€tested€436€adult€American€shad€òòAlosa€sapidissimaóó€in€an€experimental€louverÐ `  Ðbypass€system,€which€was€similar€to€a€system€operating€at€Holyoke€Dam,€Massachusetts,Ð Ø(  Ðto€determine€guidance€and€passage€efficiency€and€to€study€fish€response€to€stimuli€fromÐ  ð  Ðphysical€structures,€light€intensity,€and€water€velocity.€Groups€of€5„29€fish€were€exposedÐ h¸  Ðto€combinations€of€two€bypass€exits€(wide„shallow€and€vertical„slot€sharp„crested€weirs)Ð 0€  Ðand€two€louver€arrays€(7.6„€and€15.2„cm€slat€spacing)€oriented€20€degree€to€water€flowÐ øH  Ðdirection.€Underwater€video€observations€showed€fish€responded€to€louvers€as€a€physicalÐ À Ðbarrier€during€the€day,€when€they€stayed€30„55€cm€(1.3€cm/5€klx)€away€from€and€orientedÐ ˆØ Ðparallel€to€louvers,€and€as€a€behavioral€barrier€at€night,€when€they€moved€closer€toÐ P  Ðlouvers€and€oriented€into€the€current.€Both€louver€arrays€guided€fish€effectively,€(i.e.,Ð h Ðprevented€fish€from€passing€through€the€slats)€100%€for€narrow€spacing€and€97%€forÐ à0 Ðwide€spacing.€Adults€avoided€moving€closer€than€0.5€m€to€either€exit€type;€instead,€fishÐ ¨ø Ðremained€0.8„1.4€bodylengths€upstream,€depending€on€light€intensity€(farther€upstreamÐ pÀ Ðduring€daytime,€similar€to€behavior€at€louvers).€At€exits,€water€velocity€increased€fromÐ 8ˆ Ð0.4€m/s€to€0.8€m/s€or€more€in€a€distance€of€0.9€m€(rate€of€velocity€increase,€0.44€m/s€perÐ P Ðmeter).€This€rapid€velocity€increase€elicited€an€avoidance€response€by€fish€that€resulted€inÐ È Ðfew€fish€(5%)€passing.€Our€results€provide€behavioral€explanations€for€the€efficientÐ à Ðguidance€of€adult€American€shad€by€louvers€and€for€the€fishes'€avoidance€of€the€exit€atÐ X¨ Ðthe€Holyoke€Dam.€From€this,€we€provide€suggestions€on€how€to€prevent€fish€avoidanceÐ  p Ðof€exits.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð228.à 4 àKynard,€B.,€M.€Horgan,€M.€Kieffer€and€D.€Seibel€(2000).€€Habitats€used€by€shortnoseÐ @" Ðsturgeon€in€two€Massachusetts€rivers,€with€notes€on€estuarine€Atlantic€sturgeon:€AÐ  X# Ðhierarchical€approach.€Transactions€of€the€American€Fisheries€Society.€€ò ò129ó ó:487„503.Ð Ð $ Ðà 4 àÌÓ X¨ýÓBiotelemetry€of€shortnose€sturgeon€òòAcipenser€brevirostrumóó€and€Atlantic€sturgeonÐ `"°& ÐòòA.€oxyrinchus€oxyrinchusóó€was€used€to€study€fish€uses€of€habitat€in€several€hierarchicalÐ (#x' Ðclasses€in€the€Connecticut€and€Merrimack€rivers.€Hierarchical€classes€wereÐ ð#@( Ðgeomorphological€region€(straight€river€run,€run€with€an€island,€and€river€curve),€riverÐ ¸$ ) Ðcross€section€(channel€or€shoal),€and€microhabitat€(water€depth,€bottom€current,€substrate,Ð €%Ð * Ðand€illumination).€Coastal€wandering€juvenile€Atlantic€sturgeon€were€summer€visitors€toÐ H&˜!+ Ðthe€Merrimack€River,€where€they€used€a€narrow€range€of€habitat€on€all€spatial€scales,€e.g.,Ð '`", Ðrun„with„island,€the€channel€portion€of€the€cross€section,€and€sand€substrate.€ShortnoseÐ Ø'(#- Ðsturgeon,€year„round€residents€in€both€rivers,€showed€great€individual€variation€in€habitatÐ  (ð#. Ðuse,€and€all€ages€selected€a€broad€range€of€habitats€on€all€spatial€scales.€However,Ð h)¸$/ Ðshortnose€sturgeon€in€both€rivers€preferred€curves€with€sand€or€cobble€substrate€andÐ 0*€%0 Ðavoided€runs€regardless€of€substrate.€Individuals€used€channel€or€shoal€at€rates€rangingÐ ø*H&1 Ðfrom€0€to€100%€on€a€weekly€time€scale€in€an€unpredictable€manner.€Connecticut€RiverÐ À+'2 Ðshortnose€sturgeon€increased€their€use€of€curves,€channels€(deep€water),€and€sandÐ ˆ,Ø'3 Ðsubstrate€in€the€fall.€This€strategy€may€conserve€energy€because€these€conditions€usuallyÐ P- (4 Ðreflect€slow€water€velocity.€Winter€habitat€selection€continued€the€fall€pattern,€but€wasÐ ° Ðless€variable€because€habitat€affinity€was€highest€among€wintering€fish.€DocumentingÐ xÈ Ðindividual€fish€use€of€large„scale€habitat€revealed€habitat€relationships€that€would€notÐ @ Ðhave€been€discovered€if€only€fish€use€of€microhabitat€had€been€studied.Ð X ÐÐ Ð  ÐÓ ¨ýXÓÐ ˜è Ð229.à 4 àKynard,€B.€and€J.€O'Leary€(1993).€€Evaluation€of€a€bypass€system€for€spent€AmericanÐ ` ° Ðshad€at€Holyoke€Dam,€Massachusetts.€North€American€Journal€of€Fisheries€Management.€Ð ( x Ðò ò13ó ó:782„789.Ð ð @ Ðà 4 àÌÓ X¨ýÓA€bypass€system€for€post„spawned€American€shad€òòAlosa€sapidissimaóó€beganÐ € Ð  Ðoperation€in€1980€on€the€Connecticut€River€canal€system€at€Holyoke€Dam.€The€purposeÐ H ˜  Ðof€the€bypass€was€to€enable€downstream€migrants€that€enter€the€canal€to€exit€and€avoidÐ `  Ðdeath€due€to€delay€or€passage€through€hydroelectric€turbines€at€water€use€facilities.€TheÐ Ø(  Ðbypass€system€had€the€following€elements:€(1)€an€underwater€AC€electrical€or€acousticÐ  ð  Ðbarrier€to€prevent€American€shad€from€leaving€the€bypass€area,€(2)€an€underwater€DCÐ h¸  Ðelectrical€field€to€immobilize€fish€for€collection,€and€(3)€a€collection€box€with€transferÐ 0€  Ðpipe€to€carry€fish€to€the€river€below€the€dam.€During€studies€of€the€bypass€system€fromÐ øH  Ð1979€to€1983,€we€found€that€the€fish€barriers€were€ineffective,€the€collection€system€wasÐ À Ðpartially€effective€for€American€shad€but€not€for€anadromous€species€that€passed€throughÐ ˆØ Ðtrashracks,€and€American€shad€could€be€immobilized€and€transported€at€high€velocityÐ P  Ðthrough€a€pipe€and€have€only€low€mortality€(4„9%).€Radio„tagged€American€shad,Ð h Ðunwilling€to€pass€through€trashracks€at€water€exits€on€the€canal,€behaved€like€trapped€fishÐ à0 Ðand€were€delayed€an€average€of€two€or€more€days€before€dying€or€exiting€the€canal.€AnÐ ¨ø Ðestimated€10€of€47€(21%)€of€the€radio„tagged€fish€were€passed.€In€1980,€when€the€greatestÐ pÀ Ðnumber€of€American€shad€were€passed,€an€estimated€142,000€(37%€of€the€fish€lifted€atÐ 8ˆ Ðthe€dam)€survived€spawning€and€used€the€bypass.€After€several€years€of€operation,€it€wasÐ P Ðevident€that,€even€with€major€improvements,€the€bypass€could€not€pass€the€availableÐ È ÐAmerican€shad,€and€it€was€not€useful€for€protecting€other€anadromous€migrants€that€didÐ à Ðnot€avoid€trashracks.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð230.à 4 àLaasonen,€J.€(1994).€€Designing€hydraulic€structures€using€a€2„dimensional€numericalÐ °  Ðmodel.€Vesitalous.€€ò ò5ó ó:29„31.Ð xÈ! Ðà 4 àÌÓ X¨ýÓA€numerical€model€based€on€the€finite„difference€integration€of€non„linearÐ  X# Ðequations€for€2„dimensional€unsteady€flow€in€a€horizontal€plane€is€presented.€NearlyÐ Ð $ Ðhorizontal€flow€and€hydrostatic€pressure€are€assumed€in€the€equations.€The€algorithmÐ ˜!è% Ðused€in€the€model€has€two€parts.€The€one€calculates€the€linearized€terms,€includingÐ `"°& Ðresistance€and€bed€forms,€using€the€scheme€of€Abbott„Ionescu€and€the€AlternatingÐ (#x' ÐDirection€(ADI)€method;€the€other€calculates€the€convective€terms€explicitly.€An€operatorÐ ð#@( Ðaccurate€to€the€third€order€for€both€space€and€time€is€employed.€Use€of€this€mathematicalÐ ¸$ ) Ðmodel€for€the€lay„out€of€a€hydraulic€structure€is€described.€Koivukoski€hydro€powerplantÐ €%Ð * Ðis€on€the€River€Kymijoki€in€Finland.€It€was€found€that€fish€migration€through€the€fishÐ H&˜!+ Ðladder€was€better€during€the€flood€than€at€other€times.€To€improve€the€operation€of€theÐ '`", Ðfishway€it€was€decided€to€release€auxiliary€water€through€the€gates€of€the€regulating€dam.Ð Ø'(#- ÐThe€area€below€the€fishway€was€modelled€to€find€the€optimal€flow€pattern€at€the€entranceÐ  (ð#. Ðof€the€fishway.Ð h)¸$/ ÐÐ 0*€%0 ÐÓ ¨ýXÓÐ ø*H&1 Ð231.à 4 àLaine,€A.€(1990).€€The€effects€of€a€fishway€model€hydraulics€on€the€ascend€(sic)€ofÐ À+'2 Ðvendace,€whitefish€and€brown€trout€in€Inari,€northern€Finland.€Aqua€Fennica.€€ò ò20ó ó:191„Ð ˆ,Ø'3 Ð198.Ð P- (4 Ðà 4 àÌÓ X¨ýÓThe€behaviour€of€vendace,€òòCoregonus€albulaóó€,€whitefish,€òòC.€lavaretusóó,€òòC.Ð xÈ Ðpidschianóó,€òòC.€wartmannióó€,€and€brown€trout,€òòSalmo€truttaóó€,€was€studied€in€a€30€m€longÐ @ Ðvertical€slot€fishway€model€in€Inari,€northern€Finland.€The€discharge€of€the€fishway€wasÐ X Ðmodifiable.€Most€of€the€fish€ascended€in€the€smallest€test€discharge.€Improper€energyÐ Ð  Ðdissipation,€high€drops€between€pools€(20„30€cm),€high€velocities€(over€1.4€m/s)€andÐ ˜è Ðswirling€of€the€water€in€the€pools€delayed€or€prevented€the€passage€of€vendace€andÐ ` ° Ðwhitefish.€Water€velocity€at€the€most€favourable€resting€areas€corresponded€to€1/2„1€fishÐ ( x Ðbody€lengths€per€second€(BlsÔÎÿ¾ ð @Ô„1Ô2ð @¾ Ô),€but€even€areas€with€a€velocity€of€2„4€BlsÔÎÿ¾ ð @Ô„1Ô2ð @¾ Ô€were€used.Ð ð @ ÐAlthough€the€pool€dimensions€were€similar,€there€were€differences€in€the€flowÐ ¸   Ðcharacteristics€of€the€pools€and€slots.€Certain€pools€seemed€to€be€popular€at€eachÐ € Ð  Ðdischarge€rate,€in€some€pools€the€flow€conditions€changed€remarkably€between€dischargeÐ H ˜  Ðrates€affecting€the€behaviour€of€the€fish.€Learning€played€an€important€role€as€the€fishÐ `  Ðascended€the€fishway.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð232.à 4 àLaine,€A.,€R.€Kamula€and€J.€Hooli€(1998).€€Fish€and€lamprey€passage€in€a€combinedÐ 0€  ÐDenil€and€vertical€slot€fishway.€Fisheries€Management€and€Ecology.€€ò ò5ó ó:31„44.Ð øH  Ðà 4 àÌÓ X¨ýÓA€fishway€(fish€pass),€consisting€of€vertical€slot€and€Denil€sections,€wasÐ ˆØ Ðconstructed€at€the€lowest€dam€on€the€River€Kemijoki,€northern€Finland,€in€1993.€TheÐ P  Ðriver€was€one€of€the€best€salmon€rivers€in€Europe€until€1949,€when€the€dam€and€theÐ h Ðhydropower€plant€were€completed€close€to€the€river€mouth.€From€1993€to€1995,€nearlyÐ à0 Ð1000€adult€salmonids€passed€through€the€fishway€despite€heavy€fishing€below€the€dam.Ð ¨ø ÐOf€environmental€variables€measured,€water€temperature,€headwater€level,€and€dischargeÐ pÀ Ðthrough€the€power€plant€in€relation€to€season€changes€explained€most€of€the€variation€inÐ 8ˆ ÐBaltic€salmon,€òòSalmo€salaróó€L.,€numbers.€They€had€a€minor€effect€on€trout,€òòSalmo€truttaóó€L.Ð P ÐMigratory€whitefish,€òòCoregonus€lavaretusóó€(L.),€entered€the€fishway€but€were€notÐ È Ðobserved€in€its€uppermost€pool.€River€lamprey,€òòLampetra€fluviatilisóó€(L.),€passed€throughÐ à Ðthe€vertical€slot€section€of€the€fishway€after€plastic€bristles€were€fastened€into€the€bottomÐ X¨ Ðof€the€slots.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð233.à 4 àLam,€K.€(1982).€€An€ex„post€benefit„cost€analysis€of€the€Meziadin€Fishway.€CanadianÐ xÈ! ÐManuscript€Reports€of€Fisheries€and€Aquatic€Sciences.€€ò ò1643ó ó:44.Ð @" Ðà 4 àÌÓ X¨ýÓSalmonid€Enhancement€Program€facilities€for€sockeye€salmon€òòOncorhynchusÐ Ð $ Ðnerkaóó€are€currently€being€evaluated€using€a€multiple€objective€planning€frameworkÐ ˜!è% Ðreferred€to€as€the€Five€Account€Methodology.€The€five€accounts€to€be€assessed€includeÐ `"°& ÐNational€Income,€Regional€Development,€Native€People,€Employment,€and€Resource€andÐ (#x' ÐEnvironmental€Preservation.€The€Meziadin€fishway€is€evaluated€using€the€sameÐ ð#@( Ðmethodology.€However,€rather€than€relying€totally€on€projected€cost€and€productionÐ ¸$ ) Ðinformation,€historical€data€is€available€for€a€number€of€years.€By€carrying€out€ex„postÐ €%Ð * Ðbenefit„cost€analyses€on€pre„S.E.P.€facilities,€their€overall€performance€can€be€assessedÐ H&˜!+ Ðand€the€information€used€to€increase€the€net€benefits€of€S.E.P.€facilities.Ð '`", ÐÓ ¨ýXÓÐ Ø'(#- ÐÐ  (ð#. Ð234.à 4 àLarinier,€M.€(1983).€€[Guide€for€planning€passage€facilities€at€dams€for€migratory€fish].Ð h)¸$/ ÐBulletin€Francais€Pisciculture,€Tolosan,€France.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓThe€basic€principles€which€can€be€used€as€a€guide€for€planning€fish€passageÐ À+'2 Ðfacilities€at€dams€or€obstructions€are€outlined.€Special€reference€is€made€to€the€attractionÐ ˆ,Ø'3 Ðof€fishway€entrances.€Information€is€presented€concerning€functional€features€and€designÐ P- (4 Ðparameters€for€different€types€of€fish€facilities:€pool€passes,€Denil€fishways,€fish€locksÐ ° Ðand€fish€lifts.€A€list€of€data€required€for€planning€fish€facilities€is€included.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ð235.à 4 àLarinier,€M.€(1983).€€[Let€them€swim€upstream:€Fishways€for€migrating€species].€AdourÐ Ð  ÐGaronne€Review€Ear€Midi€Atlantic.€€ò ò27ó ó:5„10.Ð ˜è Ðà 4 àÌÓ X¨ýÓThe€different€types€of€fishways€are€reviewed€and€analyzed.€The€choice€must€beÐ ( x Ðmade€as€a€function€of€topography,€existing€works,€river€flow€and€possible€flooding,€andÐ ð @ Ðfish€behavior.€The€fishway€must€also€be€accessible€for€cleaning.€Examples€of€fishwaysÐ ¸   Ðbuilt€in€the€southwest€of€France€are€cited.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð236.à 4 àLarinier,€M.€(1998).€€Upstream€and€downstream€fish€passage€experience€in€France.€Pages€Ð Ø(  Ð127„146€òòinóó€€M.€Jungwirth,€S.€Schmultz€and€S.€Weiss,€eds.€Fish€Migration€and€FishÐ  ð  ÐBypasses,€Fishing€News€Books,€Vienna€(Austria).Ð h¸  Ðà 4 àÌÓ X¨ýÓPlans€for€the€restoration€or€enhancement€of€anadromous€fish€stocks€were€initiatedÐ øH  Ðin€France€more€than€15€years€ago.€A€1984€law€concerning€freshwater€fisheries€requiresÐ À Ðthat€any€obstruction€in€streams€or€parts€thereof,€in€the€list€specified€by€decree,€mustÐ ˆØ Ðinclude€facilities€to€ensure€the€passage€of€migratory€fish.€As€a€result,€more€than€400€fishÐ P  Ðpasses€were€built€or€improved,€and€significant€advances€in€the€design€of€upstream€fishÐ h Ðpassage€facilities€have€occurred€during€the€last€15€years.€This€chapter€provides€anÐ à0 Ðoverview€of€the€functional€features€and€design€parameters€used€in€the€different€types€ofÐ ¨ø Ðpassage€facilities:€Denil€fish€passes,€pool€fish€passes,€fish€elevators€and€natural€bypassÐ pÀ Ðchannels.€The€relative€advantages€and€drawbacks€of€each€type€of€fish€pass€are€discussed,Ð 8ˆ Ðwith€reference€to€the€requirements€of€specific€migratory€species€and€site„specificÐ P Ðconstraints.€Emphasis€is€placed€on€the€problem€of€maintenance.€The€various€techniquesÐ È Ðused€in€France€to€evaluate€the€existing€or€newly€constructed€fish€passes,€as€well€as€theÐ à Ðtopic€of€downstream€migration€at€turbine€intakes,€are€reviewed.€Recent€experiments€haveÐ X¨ Ðtested€surface€bypasses€designed€to€provide€a€safe€downstream€route€for€smolts€at€small„Ð  p Ðscale€hydroelectric€plants.€The€efficiency€of€such€bypasses€is€evaluated€by€radioÐ è8 Ðtelemetry€and€release„recapture€tests.€Results€from€some€field€studies€are€outlined.€TheÐ °  Ðeffect€of€mercury€lights€to€increase€bypass€attraction€is€discussed.€The€behaviour€of€fishÐ xÈ! Ðin€relation€to€the€hydraulic€flow€patterns€at€the€intake€should€be€considered€whenÐ @" Ðdesigning€a€downstream€bypass€system.€In€conclusion,€the€author€presents€his€view€onÐ  X# Ðthe€priorities€for€future€research€on€fish€passage€facilities,€insisting€on€the€need€for€closeÐ Ð $ Ðcollaboration€between€engineers€and€biologists,€in€particular€fish€behaviourists.€SomeÐ ˜!è% Ðpriorities€include€the€use€of€radio„telemetry€to€track€Atlantic€salmon€òòSalmo€salaróó€on€theÐ `"°& Ðmigratory€rivers,€and€research€aimed€at€gaining€a€better€understanding€of€downstreamÐ (#x' Ðmigration€of€salmon,€brown€trout€òòS.€truttaóó,€and€European€eel€òòAnguilla€anguillaóó.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð237.à 4 àLarinier,€M.€and€S.€Boyer„Bernard€(1991).€€[Smolts€downstream€migration€at€Poutes€DamÐ H&˜!+ Ðon€the€Allier€River:€Use€of€mercury€lights€to€increase€the€efficiency€of€a€fish€bypassÐ '`", Ðstructure].€Bulletin€Francais€de€la€Peche€et€de€la€Pisciculture.€€ò ò323ó ó:129„148.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓDownstream€migration€of€Atlantic€salmon€òòSalmo€salaróó€smolts€was€studied€inÐ h)¸$/ Ð1989€at€Poutes€Dam€on€the€Allier€River€to€evaluate€the€effectiveness€of€mercury€lights€inÐ 0*€%0 Ðmodifying€behavioral€responses€of€smolts€at€a€fish€bypass€structure.€Daily€and€hourlyÐ ø*H&1 Ðpassage€of€smolts€was€accessed€by€video€recording.€Migratory€activity€was€mainlyÐ À+'2 Ðnocturnal,€diurnal€movements€increasing€at€the€end€of€emigration€period.€Analysis€ofÐ ˆ,Ø'3 Ðresults€showed€that€the€lights€significantly€increased€the€rate€of€passage.€VisualÐ P- (4 Ðobservation€showed€that€illumination€duration,€light€location€and€intensity€may€beÐ ° Ðimportant€parameters€in€effective€application€of€mercury€lights€for€attraction.€Three€toÐ xÈ Ðeight€times€as€many€fish€were€bypassed€with€the€lights€on€than€with€the€lights€off.Ð @ ÐÐ X ÐÓ ¨ýXÓÐ Ð  Ð238.à 4 àLarinier,€M.€and€A.€Miralles€(1992).€€The€hydraulic€characteristics€of€baffle„equippedÐ ˜è Ðfishways.€Canadian€Translations€of€Fisheries€and€Aquatic€Sciences,€Tolosan€(France).Ð ` ° Ðà 4 àÌÓ X¨ýÓThis€brief€report€is€a€partial€summary€of€the€findings€of€research€on€baffle„Ð ð @ Ðequipped€fishways€that€was€conducted€on€a€model€system€at€the€fish„farming€facility€inÐ ¸   ÐPont€Crouzet,€in€the€department€of€the€Tarn.€The€experimental€setup€consisted€of€2€basinsÐ € Ð  Ðin€which€fish€could€be€kept,€connected€by€a€glass„lined€flume€0.30€m€wide€and€4.6€mÐ H ˜  Ðlong€with€a€variable€slope€(ranging€between€0€and€>€20%).Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð239.à 4 àLarinier,€M.,€J.€P.€Porcher€and€F.€Travade€(1994).€€[Fishways.€Valuation,€conception€ofÐ h¸  Ðfish€passes€structures.].€Conseil€Superieur€de€la€Peche,€Paris€(France).Ð 0€  Ðà 4 àÌÓ X¨ýÓMore€than€10€years€theoretical€and€applied€research€and€a€French€experience€ofÐ À Ðdesign€and€conception€of€fishways€make€these€authors€the€French€specialists€of€theseÐ ˆØ Ðhydraulic€structures.€This€book€is€a€technical€document€about€conception,€and€design€ofÐ P  Ðfish€passes€including€the€biological€approach€of€the€users€of€these€constructions:€theÐ h Ðmigratory€fishes.€Numerous€photographs€and€diagrams€illustrate€the€document.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð240.à 4 àLarinier,€M.,€J.€P.€Porcher,€F.€Travade€and€C.€Gosset€(1995).€€[Fish€pass€engineering.].Ð 8ˆ ÐConseil€Superieur€de€la€Peche,€Paris€(France).Ð P Ðà 4 àÌÓ X¨ýÓThis€book€presents€the€results€of€ten€years€of€the€French€research€on€fish€passesÐ à Ðengineering€for€the€migratory€fish€species.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð241.à 4 àLarkin,€G.€A.€and€P.€A.€Slaney€(1997).€€Implications€of€trends€in€marine„derived€nutrientÐ °  Ðinflux€to€south€coastal€British€Columbia€salmonid€production.€Fisheries.€€ò ò22ó ó:16„24.Ð xÈ! Ðà 4 àÌÓ X¨ýÓMarine€nutrients€and€carbon€transported€by€adult€salmon€are€important€to€theÐ  X# Ðproductivity€of€the€oligotrophic€lakes€and€streams€in€which€salmon€spawn.€ReducedÐ Ð $ Ðcarcass€availability€results€in€a€decline€in€nutrient€and€carbon€sources€for€stream„rearingÐ ˜!è% Ðsalmonids.€We€examined€42€years€of€escapement€records€for€five€species€of€PacificÐ `"°& Ðsalmon€for€Georgia€Strait,€the€west€coast€of€Vancouver€Island,€and€the€mainland€coast€ofÐ (#x' ÐBritish€Columbia€to€estimate€the€status€of€this€nutrient€source.€Salmon€stocks€fromÐ ð#@( Ðenhanced€streams€frequently€dominated€the€total€escapement€of€entire€regions.€As€aÐ ¸$ ) Ðresult,€most€of€the€influx€of€marine€nutrients€is€focused€toward€a€few€large€streamÐ €%Ð * Ðsystems€already€undergoing€significant€salmon€enhancement,€while€nutrient€influx€to€theÐ H&˜!+ Ðmore„numerous€unenhanced€streams€is€declining.€In€the€large€number€of€streams€withÐ '`", Ðsmaller€salmon€escapements,€stream„rearing€species€already€in€decline€may€decreaseÐ Ø'(#- Ðfurther€from€oligotrophication.€Risk„averse€escapement€targets€for€wild€salmon€stocksÐ  (ð#. Ðneed€to€include€sufficient€spawners€to€provide€the€nutrient€influx€linked€to€theÐ h)¸$/ Ðmaintenance€of€stream€productivity.€Declining€trends€in€nutrient€influx€to€wild€salmonÐ 0*€%0 Ðstreams€in€most€regions€are€a€cause€for€concern€and€more€intensive€examination.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð242.à 4 àLayzer,€J.€B.€(1979).€€Transportation€of€adult€American€shad€past€dams€on€theÐ ° Ðâ âConnecticut€River,€Massachussetts.€Progressive€Fish€Culturist.€€ò ò41ó ó:7„9.Ð xÈ Ðà 4 àÌÓ X¨ýÓAdult€American€shad€òòAlosa€sapidissimaóó€were€obtained€from€the€Holyoke€DamÐ X Ðfish€lift,€Massachusetts,€and€transported€68€km€by€truck€to€the€pool€above€the€TurnersÐ Ð  ÐFalls€Dam.€From€1973€to€1976€,€6373€shad€were€transported;€average€annual€mortalityÐ ˜è Ðwas€25%.€Mortality€of€trucked€fish€was€related€to€river€temperature€and€the€number€ofÐ ` ° Ðfish€transported€at€any€one€time.€During€trucking€a€differential€mortality€occurredÐ ( x Ðbetween€sexes:€2.4€times€more€females€died€than€males.Ð ð @ ÐÐ ¸   ÐÓ ¨ýXÓÐ € Ð  Ð243.à 4 àLayzer,€J.€B.€(1996).€€The€importance€of€habitat€hydraulics€in€the€restoration€of€nativeÐ H ˜  Ðfreshwater€mussels.€Journal€of€Shellfish€Research.€€ò ò15ó ó:485.Ð `  Ðà 4 àÌÓ X¨ýÓFreshwater€mussel€populations€in€North€America€have€been€devastated€by€a€wideÐ  ð  Ðarray€of€physical€and€chemical€perturbations.€In€some€cases,€habitat€destruction€and€theÐ h¸  Ðloss€of€mussel€populations€is€essentially€permanent€as€in€the€case€of€the€construction€ofÐ 0€  Ðdams€which€inundate€riverine€habitat,€change€water€quality,€and€eliminate€hosts€fishÐ øH  Ðpopulations.€In€many€other€cases,€the€factors€responsible€for€the€extirpation€of€musselÐ À Ðpopulations€have€largely€been€corrected€and€conditions€may€now€be€suitable€for€theÐ ˆØ Ðreestablishment€of€mussels;€however,€it€is€suggested€that€during€the€intervening€timeÐ P  Ðbetween€the€extirpation€of€mussels€and€improvement€in€stream€conditions€other€factorsÐ h Ðaffecting€stream€hydraulics€may€prevent€the€successful€reintroduction€of€mussels.€InÐ à0 Ðparticular,€land„use€practices€within€watersheds€may€have€profoundly€affected€streamÐ ¨ø Ðhydrographs€by€increasing€peak€discharges€following€precipitation€and€decreasing€baseÐ pÀ Ðflows€during€dry€periods.€Lower€base€flows€may€expose€mussel€beds,€eliminateÐ 8ˆ Ðsettlement€of€juveniles€from€otherwise€suitable€habitat,€and€affect€host€fish€populationÐ P Ðdynamics€and€movements.€Conversely,€results€of€recent€research€indicate€that€high€shearÐ È Ðstress€associated€with€peak€discharge€is€likely€responsible€for€unsuccessful€settlement€ofÐ à Ðjuvenile€mussels€in€a€headwater€stream.€Measuring€or€modelling€simple€hydraulicÐ X¨ Ðvariables€such€as€mean€water€column€velocity€is€inadequate€for€assessing€the€affects€ofÐ  p Ðaltered€stream€hydrographs€on€potential€mussel€habitat.€In€contrast,€complex€hydraulicÐ è8 Ðvariables€such€as€shear€stress€and€Reynolds€boundary€number€are€potentially€betterÐ °  Ðpredictors€of€hydraulically€suitable€sites€for€mussel€reintroductions.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð244.à 4 àLee,€H.€L.,€D.€DeAngelis€and€H.€L.€Koh€(1998).€Modeling€spatial€distribution€of€theÐ Ð $ ÐUnionid€mussels€and€the€coresatellite€hypothesis.€Pages€€73„79€òòinóó€W.€O.€K.€Grabow,€M.Ð ˜!è% ÐDohmann,€C.€Haas,€E.€R.€Hall,€A.€Lesouef,€D.€Orhon,€A.€Van€Der€Vlies,€Y.€Watanabe,Ð `"°& ÐA.€Milburn,€C.€D.€Purdon€and€P.€T.€Nagle,€eds.€Biennial€Conference€of€the€InternationalÐ (#x' ÐAssociation€on€Water€Quality,€Vancouver€(Canada),€Elsevier€Science€Ltd.Ð ð#@( Ðà 4 àÌÓ X¨ýÓThis€paper€discusses€the€spatial€distribution€patterns€of€the€various€species€of€theÐ €%Ð * ÐUnionid€mussels€as€functions€of€their€respective€life„cycle€characteristics.€ComputerÐ H&˜!+ Ðsimulations€identify€two€life„cycle€characteristics€as€major€factors€governing€theÐ '`", Ðabundance€of€a€species,€namely€the€movement€range€of€their€fish€hosts€and€the€successÐ Ø'(#- Ðrate€of€the€parasitic€larval€glochidia€in€finding€fish€hosts.€Core€mussels€species€have€fishÐ  (ð#. Ðhosts€with€large€movement€range€to€disperse€the€parasitic€larval€glochidia€to€achieve€highÐ h)¸$/ Ðlevels€of€abundance.€Species€associated€with€fish€host€of€limited€movement€range€requireÐ 0*€%0 Ðhigh€success€rate€of€finding€fish€host€to€achieve€at€least€an€intermediate€level€ofÐ ø*H&1 Ðabundance.€Species€with€low€success€rate€of€finding€fish€hosts€coupled€with€fish€hostsÐ À+'2 Ðhaving€limited€movement€range€exhibit€satellite€species€characteristics,€namely€rare€inÐ ˆ,Ø'3 Ðnumbers€and€sparse€in€distributions.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð245.à 4 àLegault,€A.€(1992).€€[Technical€note€„„€study€of€some€selectivity€factors€in€eel€ladders].Ð xÈ ÐBulletin€Francais€de€la€Peche€et€de€la€Pisciculture.€€ò ò325ó ó:83„91.Ð @ Ðà 4 àÌÓ X¨ýÓSelectivity€factors€of€eel€ladders€were€studied€just€below€an€obstacle€to€eelÐ Ð  ÐòòAnguilla€anguillaóó€anadromous€migration€in€Dordogne€River.€An€experimental€deviceÐ ˜è Ðcaught€6€276€eels€for€180,5€hours.€The€range€size€of€eels€varied€from€120€to€395€mmÐ ` ° Ð(mean€length:€223€mm)€which€is€smaller€than€range€size€of€eels€caught€by€a€neighbouringÐ ( x Ðfish€ladder.€This€result€seems€to€show€the€selectivity€of€usual€fishways.€VariousÐ ð @ Ðconfigurations€of€the€experimental€device€allowed€to€test€some€selectivity€factors.€SlopeÐ ¸   Ðand€substrate€factors€seem€to€influence€the€efficiency.€For€a€given€slope,€the€eel€sizeÐ € Ð  Ðdistribution€depends€on€the€substrate,€more€dense€brushes€involve€a€smaller€averageÐ H ˜  Ðlength€of€migrants.€Selectivity€also€changes€according€to€gradients.€Slight€slopes€(15„30Ð `  Ðdegree€)€should€be€recommended€for€such€devices€and€the€substrate€should€be€adapted€toÐ Ø(  Ðsize€distribution€of€eels€in€migration.Ð  ð  ÐÐ h¸  ÐÓ ¨ýXÓÐ 0€  Ð246.à 4 àLein,€G.€M.€and€D.€R.€DeVries€(1998).€€Paddlefish€in€the€Alabama€River€drainage:Ð øH  Ðpopulation€characteristics€and€the€adult€spawning€migration.€Transactions€of€theÐ À ÐAmerican€Fisheries€Society.€€ò ò127ó ó:441„454.Ð ˆØ Ðà 4 àÌÓ X¨ýÓPaddlefish€òòPolyodon€spathulaóó€were€sampled€by€boat„mounted€electrofishing€andÐ h Ðgill€netting€in€the€Tallapoosa€and€Cahaba€rivers€and€in€oxbow€lakes€of€the€Alabama€RiverÐ à0 Ðfloodplain,€Alabama,€during€January„June€of€1992€and€1993.€Tagging€studies,Ð ¨ø Ðcharacterization€of€spawning€migrations,€and€comparative€analyses€of€catches€suggestedÐ pÀ Ðthat€paddlefish€in€the€Tallapoosa€and€Cahaba€rivers€represented€functionally€discreteÐ 8ˆ Ðpopulations€that€reside€in€the€adjacent€reservoirs.€Variation€in€population€characteristicsÐ P Ðappeared€to€be€related€to€differences€in€the€hydrologic€and€thermal€regimes€of€the€twoÐ È Ðstudy€rivers€and€to€differences€in€historical€exploitation€of€populations€in€the€two€residentÐ à Ðreservoirs.€Growth€(calculated€via€back„calculated€body€length€at€age)€differed€betweenÐ X¨ Ðpopulations€in€the€upper€and€lower€Alabama€River,€probably€reflecting€the€relativelyÐ  p Ðlentic€(upper)€and€lotic€(lower)€nature€of€habitats€in€these€two€reaches.€Life€historyÐ è8 Ðcharacteristics€of€paddlefish€in€the€Alabama€River€drainage€differed€from€fish€in€theÐ °  ÐMississippi€River€drainage.€Growth,€fecundity,€spawning€frequency,€and€age€at€maturityÐ xÈ! Ðall€were€advanced€for€Alabama€River€fish€relative€to€Mississippi€River€fish,€whereasÐ @" Ðmaximum€age€and€size€of€Alabama€River€fish€were€less€than€had€been€previouslyÐ  X# Ðreported€for€populations€in€the€Mississippi€River€drainage.€Differences€betweenÐ Ð $ Ðpopulations€in€the€two€drainages€may€reflect€geographic€variation€in€biotic€and€abioticÐ ˜!è% Ðvariables€as€well€as€long„term€geographic€and€reproductive€isolation.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð247.à 4 àLelek,€A.€(1987).€€Threatened€fishes€of€Europe.€Aula„Verlag,€Wiesbaden€(Germany).Ð ¸$ ) Ðà 4 àÌÓ X¨ýÓThe€primary€aim€of€this€volume€is€to€provide€a€general€review€of€the€freshwaterÐ H&˜!+ Ðfish€fauna€of€Europe.€Attention€is€directed€to€the€status€of€the€survival€of€each€species.Ð '`", ÐWherever€possible,€suggestions€have€been€made€of€immediate€protection€of€individualÐ Ø'(#- Ðspecies.€However,€the€actual,€modern€conservation€has€to€be€based€on€the€protection€ofÐ  (ð#. Ðspecies€communities€and€their€environments.€It€is€hoped€this€publication€will€stimulateÐ h)¸$/ Ðthe€effort€to€overcome€the€existing€gaps€in€the€knowledge€of€the€fish€communities€inÐ 0*€%0 Ðrivers,€and€particularly€of€their€dynamics€in€artificially€modified€environments.€PastÐ ø*H&1 Ðexperience€has€proved€that€exaggerated€attention€to€a€few€"useful"€species€influences€theÐ À+'2 Ðremaining€fish€community€negatively.€A€separation€of€the€"utilitarian"€and€"conservation"Ð ˆ,Ø'3 Ðusages€of€the€aquatic€environment€and€its€fish€fauna€is€thus€called€for.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð248.à 4 àLelek,€A.€and€G.€Buhse€(1992).€€[Fishes€of€the€Rhein€river€„„€former€times€and€today].Ð xÈ ÐSpringer„Verlag,€Berlin€(Germany).Ð @ Ðà 4 àÌÓ X¨ýÓThis€book€presents€a€historical€overview€of€fish€fauna€in€the€Rhein€River.Ð Ð  ÐInformation€about€geological,€hydrological,€hydrographical€aspects€are€given.€TheÐ ˜è Ðramifications€of€man„induced€changes€to€the€river€environment€are€discussed.Ð ` ° ÐCommercial€use€with€respect€to€the€river€fisheries€are€considered€with€emphasis€on€futureÐ ( x Ðpotential.Ð ð @ ÐÓ ¨ýXÓÐ ¸   ÐÐ € Ð  Ð249.à 4 àLeonard,€J.€(1997).€€The€Energetics€of€Swimming€and€Upstream€Migration€in€AdultÐ H ˜  ÐAmerican€Shad€òòAlosa€sapidissimaóó€in€the€Connecticut€River.€PhD€Dissertation.€UniversityÐ `  Ðof€Michigan272€pp.Ð Ø(  Ðà 4 àÌÓ X¨ýÓThis€study€was€designed€to€assess€the€energetic€cost€of€upstream€migration€inÐ h¸  ÐAmerican€shad€òòAlosa€sapidissimaóó€and€to€examine€physiological€changes€duringÐ 0€  Ðmigration€that€relate€to€swimming€performance€or€energetic€efficiency.€Overall€totalÐ øH  Ðstored€energy€expenditure€ranged€from€35„60%€during€upstream€migration.€MigratingÐ À ÐAmerican€shad€preferentially€use€energy€stores€(lipid€and€protein)€in€some€tissues,€suchÐ ˆØ Ðas€the€skin€and€its€sub„dermal€fat€layer€(depleted€by€63%),€while€sparing€other€tissueÐ P  Ðstores€such€as€red€muscle€protein.€American€shad€generally€increased€the€activity€ofÐ h Ðaerobic€and€energy€mobilization€enzymes€as€much€as€60%,€while€decreasing€the€activityÐ à0 Ðof€anaerobic€enzymes€as€much€as€80%€during€upstream€migration.€There€was€aÐ ¨ø Ðgeneralized€reversal€of€these€enzyme€changes€seen€during€migration€at€the€most€upriverÐ pÀ Ðsite€sampled.€It€is€suggested€that€American€shad€may€be€able€to€metabolically€prepare€forÐ 8ˆ Ðmigration€prior€to€its€onset€and€cessation.€The€data€demonstrate€that€fish€migrating€in€theÐ P Ðmiddle€of€the€migratory€period€possessed€higher€(5„42%)€total€stored€energy€content€thanÐ È Ðfish€migrating€early€or€late€in€the€season,€primarily€due€to€elevated€lipid€in€the€whiteÐ à Ðmuscle€and€the€sub„dermal€fat€layer.€American€shad€demonstrate€a€spleen„€controlledÐ X¨ Ðincrease€in€available€blood€hemoglobin€(22%)€and€hematocrit€likely€resulting€inÐ  p Ðincreased€oxygen€carrying€capacity€during€upstream€migration.€Active€and€standardÐ è8 Ðmetabolic€rates€of€American€shad,€determined€by€respirometry,€were€intermediateÐ °  Ðbetween€salmonids€and€fast„swimming€perciforms.€Active€metabolic€rate€wasÐ xÈ! Ðlogarithmically€related€to€swimming€speed€(rÔÎÿ^@Ô2Ô2@^Ô€=€0.26;€slope€=€0.2)€and€tailbeat€frequencyÐ @" Ð(rÔÎÿÖ& XÔ2Ô2 XÖ&Ô€=€0.36;€slope€=€0.002).€Directly€determined€standard€metabolic€rate€was€71„198Ð  X# ÐmgOÔÎÿž îÐ Ô2Ô2Ð ž îÔkgÔÎÿž îÐ Ô„1Ô2Ð ž îÔhÔÎÿž îÐ Ô„1Ô2Ð ž îÔ.€The€energetically€optimal€swimming€speed€was€1.45€plus€or€minus€0.51Ð Ð $ Ðbody€lengths€per€second.€Using€the€data€from€the€swimming€respirometer,€an€empiricalÐ ˜!è% Ðmodel€of€the€Cabot€Station€fish€ladder€in€Turners€Falls,€MA€was€constructed€whichÐ `"°& Ðsuggests€that€the€impact€of€the€fish€ladder€on€migration€is€highly€dependent€on€passageÐ (#x' Ðtime.€This€study€demonstrates€that€American€shad€are€equipped€with€a€variety€ofÐ ð#@( Ðmechanisms€for€increasing€energetic€efficiency€during€upstream€migration€and€highlightsÐ ¸$ ) Ðthe€importance€of€short„term€physiological€adaption€to€migration€and€the€ultimate€successÐ €%Ð * Ðof€an€iteroparous,€anadromous€fish.Ð H&˜!+ ÐÓ ¨ýXÓÐ '`", ÐÐ Ø'(#- Ð250.à 4 àLibby,€D.€A.€(1981).€€Difference€in€sex€ratios€of€the€anadromous€alewife,€òòAlosaÐ  (ð#. Ðpseudoharengusóó,€between€the€top€and€bottom€of€a€fishway€at€Damariscotta€Lake,€Maine.Ð h)¸$/ ÐFishery€Bulletin.€€ò ò79ó ó:207„211.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓThe€Damariscotta€River€alewife,€òòAlosa€pseudoharengusóó€,€fishery€has€beenÐ À+'2 Ðmonitored€every€year€since€1971€for€abundance€of€fish,€length€and€weight€frequencies,Ð ˆ,Ø'3 Ðage€distribution,€and€sex€ratios.€From€1977€through€1979,€sampling€plans€were€alsoÐ P- (4 Ðdevised€to€estimate€numbers,€size,€and€sex€composition€of€ripe€alewives€escaping€theÐ ° Ðfishery€and€entering€the€lake€to€spawn.€While€sampling€the€1977€escapement€run€itÐ xÈ Ðbecame€evident€that€a€greater€number€of€males€than€females€were€entering€the€lake€toÐ @ Ðspawn.€This€male€dominance€was€not€unusual€as€it€was€reported€in€other€alewife€runs€asÐ X Ðwell.€What€prompted€this€investigation€was€the€fact€that€while€the€escapement€runs€hadÐ Ð  Ðsignificantly€more€males€than€females,€the€samples€from€the€commercial€catch€revealed€aÐ ˜è Ðconsistent€sex€ratio€of€1:1.€The€explanation€for€the€change€in€the€sex€ratio€from€the€tidalÐ ` ° Ðarea€to€the€lake€appears€to€be€an€effect€of€the€fishway.€The€greatest€disproportionate€ratioÐ ( x Ðof€male€to€female€alewives€occurred€at€the€first€part€of€the€escapement€run€when€theÐ ð @ Ðlargest€fish€were€in€the€fishway.€It€seemed€that€the€construction€of€the€fishway€wasÐ ¸   Ðselective€against€the€largest€or€heaviest€fish€which€were€the€females€at€that€time.€As€theÐ € Ð  Ðsize€of€females€tended€to€decrease,€the€male€to€female€ratio€became€more€equal.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð251.à 4 àLiew,€P.€K.€L.€(1982).€Impact€of€the€eel€ladder€on€the€upstream€migrating€eel€òòAnguillaÐ  ð  Ðrostrataóó€population€in€the€St.€Lawrence€River€at€Cornwall:€1974„1978.€Pages€€17„21€òòinóó€K.Ð h¸  ÐH.€Loftus,€ed.€The€1980€North€American€Eel€Conference,€Toronto,€Ontario€(Canada),Ð 0€  ÐOntario€Fisheries€Technical€Report€Series.Ð øH  Ðà 4 àÌÓ X¨ýÓAn€eel€ladder€was€constructed€in€1974€at€the€Moses„Saunders€Dam,€situated€inÐ ˆØ Ðthe€St.€Lawrence€river€at€Cornwall,€Ontario,€to€facilitate€the€upstream€migration€of€theÐ P  ÐAmerican€eel€òòAnguilla€rostrataóó.€Several€million€eels€passed€through€this€fishway€betweenÐ h Ð1974€and€1979.€Age,€length€and€growth€characteristics€of€the€eels€using€the€ladder€wereÐ à0 Ðexamined€annually€between€1974€and€1978.€Trends€in€the€reduction€of€mean€weight€andÐ ¨ø Ðmean€length€at€corresponding€ages€suggest€that€the€eel€ladder€has€reduced€the€effect€ofÐ pÀ Ðthe€dam€as€an€obstacle€to€eel€migration.€The€results€suggest€that€during€the€first€year€ofÐ 8ˆ Ðoperation€the€majority€of€the€eels€moved€were€those€whose€migration€had€been€blockedÐ P Ðby€the€dam€for€several€years.€In€subsequent€years,€the€ladder€appears€to€have€moved€eelsÐ È Ðinto€the€upper€St.€Lawrence€River€almost€as€fast€as€they€reached€the€dam.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð252.à 4 àLoch,€J.€J.€and€S.€A.€Bonar€(1999).€€Occurrence€of€grass€carp€in€the€Lower€Columbia€andÐ è8 ÐSnake€Rivers.€Transactions€of€the€American€Fisheries€Society.€€ò ò128ó ó:374„379.Ð °  Ðà 4 àÌÓ X¨ýÓForty„nine€adult€grass€carp€òòCtenopharyngodon€idellaóó€were€observed€migratingÐ @" Ðupriver€past€Lower€Columbia€and€Snake€river€hydroelectric€dams€between€August€1,Ð  X# Ð1996,€and€September€30,€1997,€representing€the€first€recorded€sightings€of€this€fishÐ Ð $ Ðspecies€in€this€system.€From€videotape€records€and€visual€counts,€grass€carp€wereÐ ˜!è% Ðestimated€to€range€between€55€and€77€cm€in€total€length€(TL).€One€7.7„kg,€86„cmÐ `"°& Ðindividual€captured€in€a€gill€net€was€identified€as€a€sterile€triploid.€Although€the€source€ofÐ (#x' Ðthese€fish€is€unknown,€their€appearance€in€the€Columbia€and€Snake€rivers€might€haveÐ ð#@( Ðbeen€related€to€extensive€flooding€that€occurred€in€western€Washington€and€Oregon€inÐ ¸$ ) ÐFebruary€1996.€The€unintentional€escape€of€grass€carp€into€this€large€river€systemÐ €%Ð * Ðreemphasizes€the€need€for€the€current€requirement€that€all€grass€carp€stocked€in€PacificÐ H&˜!+ ÐNorthwest€lakes€be€sterile€triploids.€It€also€suggests€that€increased€attention€to€effectiveÐ '`", Ðbarrier€construction€and€maintenance€is€important€to€prevent€grass€carp€impacts€inÐ Ø'(#- Ðnontarget€areas.Ð  (ð#. ÐÐ h)¸$/ ÐÓ ¨ýXÓÐ 0*€%0 Ð253.à 4 àLubinski,€K.,€R.€Gaugush,€S.€Gutreuter,€T.€Owens€and€S.€Rogers€(1993).€€CurrentÐ ø*H&1 Ðecological€conditions.€Long€term€resource€monitoring€program.€USGS€EnvironmentalÐ À+'2 ÐManagement€Technical€Center,€Report€EMTC93R021.Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓDescribing€the€status€of€the€Upper€Mississippi€River€is€a€continuing€function€ofÐ ° Ðthe€Long€Term€Resource€Monitoring€Program.€Some€ecologically€importantÐ xÈ Ðcharacteristics€that€serve€as€indices€of€overall€system€status€include€depositional€habitats,Ð @ Ðvegetation,€invertebrates,€fish€biodiversity,€and€our€capability€to€apply€information€toÐ X Ðachieve€ecological€goals.€The€filling€of€depositional€aquatic€habitats€has€been€measuredÐ Ð  Ðsufficiently€to€identify€this€as€the€major€long€term€resource€problem€in€navigation€pools.Ð ˜è ÐMany€depositional€habitats€currently€are€at€high€risk€of€entering€a€successional€phase€thatÐ ` ° Ðwill€be€characterized€by€poor€water€quality€and€reduced€aquatic€vegetation.€One€of€theÐ ( x Ðfirst€steps€in€the€strategy€will€be€the€establishment€of€ecological€objectives€and€actionÐ ð @ Ðlevels€appropriate€for€a€large€flood€plain€river.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð254.à 4 àLubinski,€K.€S.€(1995).€€Bridging€the€gap€between€theory€and€practice€on€the€UpperÐ `  ÐMississippi€River.€Regulated€Rivers:€Research€&€Management.€€ò ò11ó ó:137„138.Ð Ø(  Ðà 4 àÌÓ X¨ýÓIn€July€1994,€the€Upper€Mississippi€River€(UMR)€served€as€a€nexus€forÐ h¸  Ðcoalescing€scientific€information€and€management€issues€related€to€worldwide€floodplainÐ 0€  Ðriver€ecosystems.€The€objective€of€the€conference€'Sustaining€the€Ecological€Integrity€ofÐ øH  ÐLarge€Floodplain€Rivers:€Application€of€Ecological€Knowledge€to€River€Management',Ð À Ðwas€to€provide€presentations€of€current€ideas€from€the€scientific€community.€To€translateÐ ˆØ Ðthe€many€lessons€learned€on€other€river€systems€to€operational€decisions€on€the€UMR,€aÐ P  Ðcompanion€workshop€for€managers€and€the€general€public€was€held€immediately€after€theÐ h Ðconference.€Regardless€of€authority€or€responsibility,€management€agencies€supported€theÐ à0 Ðconference€and€workshop€for€the€purpose€of€providing€state„of„the„science€ecologicalÐ ¨ø Ðguidance.€Data€and€interpretations€were€presented€through€150€platform€and€posterÐ pÀ Ðpapers€on€the€definition€of€river€ecological€integrity,€the€ways€by€which€rivers€have€beenÐ 8ˆ Ðimpacted€by€human€activity,€the€future€of€rivers,€and€river€rehabilitation.€This€issue€ofÐ P ÐRegulated€Rivers:€Research€and€Management€is€intended€to€group€papers€on€the€UMR€orÐ È Ðclosely€related€topics.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð255.à 4 àLubinski,€K.€S.,€G.€Carmody,€D.€Wilcox€and€B.€Drazkowski€(1991).€€Development€ofÐ è8 Ðwater€level€regulation€strategies€for€fish€and€wildlife,€Upper€Mississippi€River€System.Ð °  ÐRegulated€Rivers:€Research€&€Management.€€ò ò6ó ó:117„124.Ð xÈ! Ðà 4 àÌÓ X¨ýÓWater€level€regulation€has€been€proposed€as€a€tool€for€maintaining€or€enhancingÐ  X# Ðfish€and€wildlife€resources€in€navigation€pools€and€associated€flood€plains€of€the€UpperÐ Ð $ ÐMississippi€River€System.€Research€related€to€the€development€of€water€levelÐ ˜!è% Ðmanagement€plans€is€being€conducted€under€the€Long€Term€Resource€MonitoringÐ `"°& ÐProgram.€Research€strategies€include€investigations€of€cause€and€effect€relationships,Ð (#x' Ðspatial€and€temporal€patterns€of€resource€components,€and€alternative€problem€solutions.Ð ð#@( ÐThe€principal€hypothesis€being€tested€states€that€water€level€fluctuations€resulting€fromÐ ¸$ ) Ðnavigation€dam€operation€create€less€than€optimal€conditions€for€the€reproduction€andÐ €%Ð * Ðgrowth€of€target€aquatic€macrophyte€and€fish€species.€Representative€navigation€poolsÐ H&˜!+ Ðhave€been€selected€to€describe€hydrologic,€engineering,€and€legal€constraints€withinÐ '`", Ðwhich€fish€and€wildlife€objectives€can€be€established.€Spatial€analyses€are€underway€toÐ Ø'(#- Ðpredict€the€magnitude€and€location€of€habitat€changes€that€will€result€from€controlledÐ  (ð#. Ðchanges€in€water€elevation.Ð h)¸$/ ÐÐ 0*€%0 ÐÓ ¨ýXÓÐ ø*H&1 Ð256.à 4 àLubinski,€K.€S.,€G.€Carmody,€D.€Wilcox€and€B.€Drazkowski€(1993).€€Development€ofÐ À+'2 Ðâ âwater€level€regulation€strategies€for€fish€and€wildlife,€Upper€Mississippi€River€system.Ð ˆ,Ø'3 ÐLong€Term€Resource€Monitoring€Program.€USGS€Environmental€Management€TechnicalÐ ° ÐCenter,€Report€EMTC93R005.Ð xÈ Ðâ âà 4 àÌÓ X¨ýÓWater€level€regulation€has€been€proposed€as€a€tool€for€maintaining€or€enhancingÐ X Ðfish€and€wildlife€resources€in€navigation€pools€and€associated€flood€plains€of€the€UpperÐ Ð  ÐMississippi€River€System.€Research€related€to€the€development€of€water€levelÐ ˜è Ðmanagement€plans€is€being€conducted€under€the€Long€Term€Resource€MonitoringÐ ` ° ÐProgram.€Research€strategies€include€investigations€of€cause„and„effect€relationships,Ð ( x Ðspatial€and€temporal€patterns€of€resource€components,€and€alternative€problem€solutions.Ð ð @ ÐThe€principal€hypothesis€being€tested€states€that€water€level€fluctuations€resulting€fromÐ ¸   Ðnavigation€dam€operation€create€less€than€optimal€conditions€for€the€reproduction€andÐ € Ð  Ðgrowth€of€target€aquatic€macrophyte€and€fish€species.€Representative€navigation€poolsÐ H ˜  Ðhave€been€selected€to€describe€hydrologic,€engineering,€and€legal€constraints€withinÐ `  Ðwhich€fish€and€wildlife€objectives€can€be€established.€Spatial€analyses€are€under€way€toÐ Ø(  Ðpredict€the€magnitude€and€location€of€habitat€changes€that€will€result€from€controlledÐ  ð  Ðchanges€in€water€elevation.Ð h¸  ÐÐ 0€  ÐÓ ¨ýXÓÐ øH  Ð257.à 4 àLucas,€M.€C.€and€E.€Batley€(1996).€€Seasonal€movements€and€behaviour€of€adult€barbelÐ À ÐòòBarbus€barbusóó,€a€riverine€cyprinid€fish:€Implications€for€river€management.€Journal€ofÐ ˆØ ÐApplied€Ecology.€€ò ò33ó ó:1345„1358.Ð P  Ðà 4 àÌÓ X¨ýÓTo€provide€information€on€the€movements€and€localized€activity€of€barbelÐ à0 ÐòòBarbus€barbusóó€(Cyprinidae)€in€a€river€containing€potentially€obstructing€weirs,€31€adultÐ ¨ø Ðbarbel€were€radio„tracked€in€the€River€Nidd,€a€tributary€of€the€Yorkshire€Ouse,€NorthÐ pÀ ÐEast€England€between€June€1993€and€September€1994.€Barbel€exhibited€substantialÐ 8ˆ Ðmovements,€ranging€from€2€to€nearly€20€km.€Four€fish€are€known€to€have€moved€betweenÐ P Ðthe€Nidd€and€the€Ouse,€demonstrating€that€at€least€a€part€of€the€barbel€population€utilizeÐ È Ðthe€Nidd€and€Ouse€at€different€times€of€the€year.€Range€of€upstream€movement€wasÐ à Ðrestricted€by€the€presence€and€nature€of€several€weirs,€including€Skip€Bridge€flow„Ð X¨ Ðgauging€weir.€Low€levels€of€spawning€downstream€of€Skip€Bridge€weir€appear€to€haveÐ  p Ðbeen€due€to€a€lack€of€suitable€spawning€habitat.€Movements€followed€a€seasonal€pattern,Ð è8 Ðwith€males€and€females€migrating€upstream€in€spring€to€spawn€on€gravel€beds.€FemalesÐ °  Ðmoved€downstream€more€quickly€than€males€over€the€summer€months.€Both€sexes€movedÐ xÈ! Ðdownstream€in€autumn€and€winter.€Day€length€and€water€temperature€were€the€bestÐ @" Ðpredictors€in€relation€to€distance€moved€up€the€River€Nidd.€Descriptive€models,€relatingÐ  X# Ðmovement€to€water€temperature€and€day€length,€are€provided.€For€both€sexes,€localizedÐ Ð $ Ðactivity€varied€greatly€on€both€diel€and€seasonal€scales,€and€was€mainly€associated€withÐ ˜!è% Ðforaging.€During€summer€there€was€typically€a€bimodal€pattern€of€diel€activity€with€peaksÐ `"°& Ðusually€in€early€morning€and€late€evening.€In€winter,€mean€daily€activity€was€less€thanÐ (#x' Ð20%€of€peak€summer€levels€and€fish€were€relatively€dormant.€In€winter,€diel€activityÐ ð#@( Ðpatterns€exhibited€a€single€peak€towards€dusk.€Mean€daily€activity€levels€for€each€monthÐ ¸$ ) Ðwere€linearly€correlated€with€mean€monthly€water€temperatures,€even€during€the€monthsÐ €%Ð * Ðwhere€movement€to€and€on€the€spawning€sites€occurred.€The€importance€of€naturalÐ H&˜!+ Ðmigrations€and€seasonal€activity€patterns€for€barbel,€and€likewise€many€other€riverineÐ '`", Ðcyprinids,€has€probably€been€underestimated€for€a€wide€variety€of€river€systems.€AsÐ Ø'(#- Ðmajor€components€of€riverine€fish€communities,€the€importance€of€seasonal€movementsÐ  (ð#. Ðof€mobile€cyprinid€species€should€be€considered€when€constructing€weirs€and€otherÐ h)¸$/ Ðobstructions.€Greater€consideration€should€be€given€to€ways€of€mitigating€effects€ofÐ 0*€%0 Ðexisting€barriers€to€movement€of€non„salmonid€species.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð258.à 4 àLucas,€M.€C.€and€P.€A.€Frear€(1997).€€Effects€of€a€flow„gauging€weir€on€the€migratoryÐ ° Ðâ âbehaviour€of€adult€barbel,€a€riverine€cyprinid.€Journal€of€Fish€Biology.€€ò ò50ó ó:382„396.Ð xÈ Ðà 4 àÌÓ X¨ýÓBarbel€òòBarbus€barbusóó€exhibited€substantial€movements€in€the€River€NiddÐ X Ðbetween€March€and€July€1994,€with€some€individuals€moving€nearly€20€km€upstream,Ð Ð  Ðalthough€there€was€considerable€individual€variation.€Most€upstream€movement€occurredÐ ˜è Ðduring€May.€Fifteen€of€the€23€fish€tracked€attempted€to€pass€the€weir,€and€of€these€sixÐ ` ° Ðwere€successful.€Barbel€tended€to€approach€the€weir€around€dusk€and€dawn,€reflectingÐ ( x Ðobserved€patterns€of€localized€activity,€or€at€night,€but€crossed€the€weir€only€at€night.Ð ð @ ÐThose€fish€which€crossed€the€weir€moved€substantial€distances€upstream€to€spawn,€whileÐ ¸   Ðthose€that€were€unsuccessful€moved€downstream.€The€weir€delayed€the€net€upstreamÐ € Ð  Ðprogress€of€all€adult€barbel.€Successful€traversal€was€not€closely€related€to€flow€or€waterÐ H ˜  Ðtemperature€conditions.€The€study€emphasizes€the€impact€of€relatively€minor€obstructionsÐ `  Ðon€the€natural€migrations€of€barbel.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð259.à 4 àLucas,€M.€C.,€T.€Mercer,€J.€D.€Armstrong,€S.€McGinty€and€P.€Rycroft€(1999).€€Use€of€aÐ 0€  Ðflat„bed€passive€integrated€transponder€antenna€array€to€study€the€migration€andÐ øH  Ðbehaviour€of€lowland€river€fishes€at€a€fish€pass.€Fisheries€Research€(Amsterdam).€Ð À Ðò ò44ó ó:183„191.Ð ˆØ Ðà 4 àÌÓ X¨ýÓThe€suitability€of€fish€pass€designs€currently€installed€in€rivers€for€non„salmonidÐ h Ðspecies€is€poorly€known,€particularly€in€terms€of€their€efficiency.€The€use€of€an€automatedÐ à0 Ðflat„bed€passive€integrated€transponder€(PIT)€antenna€array€to€study€the€behaviour€of€fishÐ ¨ø Ðat€a€Denil€pass€on€the€Yorkshire€Derwent,€North€East€England,€is€described.€The€arrayÐ pÀ Ðcomprised€four€flat€PIT€antennae,€each€connected€to€a€detector€unit.€Two€antennae€wereÐ 8ˆ Ðpositioned€at€the€downstream€end€of€the€fish€pass,€and€two€at€the€upstream€end.€EachÐ P Ðdetector€unit€sent€interrogation€signals,€received€transponded€signals€from€tags,€andÐ È Ðstored€the€data€in€a€memory€chip.€Efficiency€of€the€upstream€detectors€was€validated€asÐ à Ðnear€100%€using€tagged€brown€trout€òòSalmo€truttaóó€introduced€below€the€detectors€andÐ X¨ Ðobserved€to€swim€past€them.€Between€22€May€1998€and€23€June€1998€a€total€of€284€fish,Ð  p Ðcomprising€11€species€with€a€combined€length€range€of€9„95€cm,€were€PIT€tagged€andÐ è8 Ðreleased€downstream€of€the€fish€pass.€Continuous€recording€between€23€May€1998€andÐ °  Ð31€August€1998€demonstrated€the€effectiveness€of€the€PIT€array€at€this€site,€for€recordingÐ xÈ! Ðentry€to,€and€successful€exit€from€the€pass.€A€total€of€160€separate€entires€from€36Ð @" Ðdifferent€fish€were€recorded€at€the€downstream€detectors,€and€six€fish€successfully€exitedÐ  X# Ðfrom€the€top€of€the€pass,€giving€a€pass€efficiency€of€16.7%,€based€on€the€proportion€ofÐ Ð $ Ðdifferent€fish€which€passed.€Overall€12.7%€of€tagged€fish€entered€the€pass,€comprisingÐ ˜!è% Ðchub€òòLeuciscus€cephalusóó,€dace€òòLeuciscus€leuciscusóó,€roach€òòRutilus€rutilusóó,€perch€òòPercaÐ `"°& Ðfluviatilisóó,€bleak€òòAlburnus€alburnusóó€and€brown€trout.Ð (#x' ÐÐ ð#@( ÐÓ ¨ýXÓÐ ¸$ ) Ð260.à 4 àLupton,€C.€J.,€M.€J.€Heidenreich€and€P.€Byrne€(1995).€€An€assessment€of€fisheriesÐ €%Ð * Ðresources€and€fishway€modification€on€the€Ben€Anderson€tidal€barrage€in€the€BurnettÐ H&˜!+ ÐRiver,€Queensland€1994.€Department€of€Primary€Industries,€Brisbane,€QueenslandÐ '`", Ð(Australia).Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓDue€to€community€concern€about€the€perceived€decline€in€fish€stocks€above€andÐ h)¸$/ Ðbelow€the€tidal€barrage€in€the€Burnett€River,€a€project€was€undertaken€to:€documentÐ 0*€%0 Ðspecies€diversity,€abundance,€reproductive€condition€and€the€migratory€timing€of€theÐ ø*H&1 Ðspecies€in€the€upper€estuarine€limits€of€the€river;€assess€and€compare€modified€verticalÐ À+'2 Ðâ âslots€and€the€existing€pool„weir€configuration;€identify€design€and€operationalÐ ˆ,Ø'3 Ðdeficiencies€whilst€offering€feasible€modifications€and€preliminary€costings€that€wouldÐ ° Ðenhance€the€fishway's€performance.€Results€and€recommendations€are€reported.Ð xÈ Ðâ âÐ @ ÐÓ ¨ýXÓÐ X Ð261.à 4 àMader,€H.,€G.€Unfer€and€S.€Schmutz€(1998).€€The€effectiveness€of€nature„like€bypassÐ Ð  Ðchannels€in€a€lowland€river,€the€Marchfeldkanal.€Pages€€384„402€òòinóó€€M.€Jungwirth,€S.Ð ˜è ÐSchmultz€and€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,Ð ` ° ÐVienna€(Austria).Ð ( x Ðà 4 àÌÓ X¨ýÓWe€investigated€the€effectiveness€of€two€nature„like€bypass€channels€in€aÐ ¸   Ðlowland€river,€the€Marchfeldkanal€(MFK),€a€man„made€side€channel€of€the€Danube€river.Ð € Ð  ÐThe€flow€of€the€MFK€is€controlled€by€several€weirs,€each€circumvented€by€a€fish€passÐ H ˜  Ðconsisting€of€a€sequence€of€nature„like€pools€connected€by€flumes.€Physical€conditionsÐ `  Ðwere€measured€in€the€bypasses€and€at€the€entrances€across€varying€discharges.€FishÐ Ø(  Ðpassage€was€recorded€using€traps€during€spring€and€early€summer€from€1993€to€1995.Ð  ð  ÐElectrofishing€samples€in€the€pools€below€the€weirs,€and€in€a€stretch€of€the€canal€belowÐ h¸  Ðthe€lowermost€weir,€were€compared€with€the€species€composition€found€in€the€traps.Ð 0€  ÐFlow€experiments€showed€that€the€most€efficient€bypass€channel€discharge€is€about€0.25Ð øH  ÐmÔÎÿŽÞ ÀÔ2Ô2ÀŽÞ ÔuÔÎÿŽÞ ÀÔ3Ô2ÀŽÞ Ô/s,€which€provides€both€large€cross„sectional€areas€with€low€flow€velocities€andÐ À Ðhigh€water€depths€within€the€flumes.€There€was€no€significant€correlation€betweenÐ ˆØ Ðattraction€flow€(412%€of€the€MFK€mean€flow)€and€fish€passage.€From€1993€to€1995€moreÐ P  Ðthan€150000€individuals€of€40€species€passed€the€bypass€channels.€Species€compositionÐ h Ðwas€dominated€by€so„called€'non„migratory'€small„sized€species;€juvenile€fish€comprisedÐ à0 Ð14%€of€the€catch.€Comparing€species€composition€below€the€weirs€with€passage€providedÐ ¨ø Ða€useful€tool€to€assess€species„specific€efficiency€of€the€bypass.€This€study€proved€theÐ pÀ Ðeffectiveness€of€two€nature„like€bypass€channels€in€a€lowland€river€for€almost€allÐ 8ˆ Ðoccurring€species€and€lifehistory€stages.Ð P ÐÐ È ÐÓ ¨ýXÓÐ à Ð262.à 4 àMallen„Cooper,€M.€and€J.€H.€Harris€(1992).€€Fish€migration€in€the€Murray€Darling€systemÐ X¨ Ðand€the€decline€of€the€silver€perch.€Newsletter€of€the€Australian€Society€of€FishÐ  p ÐBiologists.€€ò ò22ó ó:41.Ð è8 Ðà 4 àÌÓ X¨ýÓUpstream€movements€of€fish€were€studies€in€the€River€Murray€at€TorrumbarryÐ xÈ! ÐWeir€(near€Echuca),€which€is€the€site€of€a€new€vertical„slot€fishway€that€has€beenÐ @" Ðoperating€since€February€1991.€Sites€were€established€35€km€above€the€weir€and€less€thanÐ  X# Ð1km€and€6km€below€the€weir.€These€sites€were€sampled€monthly€with€gill„nets€and€fyke„Ð Ð $ Ðnets€from€January€1990€to€June€1992.€Upstream€fish€movement€was€inferred€fromÐ ˜!è% Ðdifferences€in€relative€fish€density€between€the€three€sites.€Potentially€migrating€fishÐ `"°& Ðwhich€entered€the€base€of€the€fishway€were€also€trapped€each€month,€and€the€numbersÐ (#x' Ðand€species€of€fish€reaching€the€top€of€the€fishway€were€monitored€daily€at€other€times.Ð ð#@( ÐLarge€accumulations€of€fish€were€recorded€below€the€weir,€particularly€of€golden€perchÐ ¸$ ) Ðand€silver€perch.€In€these€two€species€the€dominant€migrating€group€was€immature€sub„Ð €%Ð * Ðadults,€which€appeared€to€move€upstream€in€response€to€a€wider€range€of€environmentalÐ H&˜!+ Ðcues€than€adults.€Over€4500€fish€used€the€new€fishway€in€the€first€ten€weeks€of€operationÐ '`", Ðand€most€size„classes€and€species€of€fish€moving€upstream€appeared€able€to€ascend€theÐ Ø'(#- Ðfishway.€Reproductively€mature€silver€perch€moved€upstream€during€small€increases€inÐ  (ð#. Ðflow€in€summer.€These€flow€events€are€severely€affected€by€river€regulation,€which€mayÐ h)¸$/ Ðexplain€the€decline€in€silver€perch€indicated€by€commercial€catches€in€the€river€and€alsoÐ 0*€%0 Ðsupported€by€historical€data€of€fish€movements€through€weirs.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð263.à 4 àMallen„Cooper,€M.,€J.€H.€Harris€and€G.€A.€Thorncraft€(1992).€Enhancing€upstreamÐ ° Ðâ âpassage€of€fish€through€a€navigation€lock€on€the€River€Murray.€Pages€€41„42€òòinóó€€AnnualÐ xÈ ÐConference€and€Workshop:€Australian€Society€for€Fish€Biology,€Victor€Harbour,€S.A.Ð @ Ð(Australia),€Newsletter€of€the€Australian€Society€of€Fish€Biologists.Ð X Ðà 4 àÌÓ X¨ýÓThe€potential€for€using€the€navigation€locks€of€the€River€Murray€to€enhance€theÐ ˜è Ðpassage€of€migratory€fish€was€examined.€The€upstream€movement€of€fish€through€LockÐ ` ° Ð15€at€Euston€Weir€was€monitored€during€simulated€standard€operations€of€the€lock€andÐ ( x Ðduring€modified€operations.€The€latter€operation€used€the€gates€of€the€lock€partially€openÐ ð @ Ðwith€a€one€metre€gap€and€water€flowing€through€this€gap€at€0.5€m/s.€Fish€movement€wasÐ ¸   Ðmeasured€during€three€replicates€of€each€type€of€operation.€The€modified€operation€of€theÐ € Ð  Ðlock€led€to€a€marked€increase€in€fish€passage.€Thirteen€fish€moved€upstream€through€theÐ H ˜  Ðlock€during€three€standard€operations,€and€601€fish€moved€through€the€lock€during€theÐ `  Ðthree€modified€operations.€Native€fish€constituted€90%€of€the€catch.€Using€the€navigationÐ Ø(  Ðlocks€to€pass€migratory€fish€is€valuable€for€enhancing€fish€passage€in€the€River€MurrayÐ  ð  Ðbut€not€a€substitute€for€new€fishways.€Because€the€entrances€of€the€locks€are€downstreamÐ h¸  Ðof€the€face€of€the€weir€they€can€never€act€as€highly€efficient€fishways.€Nevertheless,€theÐ 0€  Ðsimple€modifications€to€standard€lock„operating€procedures€can€provide€a€worthwhileÐ øH  Ðadjunct€to€fishways€in€meeting€the€migration€requirements€of€the€River€Murray€nativeÐ À Ðfish€fauna.€This€study€was€funded€by€the€Murray„Darling€Basin€Commission,€which€hasÐ ˆØ Ðsince€agreed€to€modify€the€operating€procedures€of€the€locks€under€its€control.Ð P  ÐÐ h ÐÓ ¨ýXÓÐ à0 Ð264.à 4 àMann,€R.€H.€K.€(1988).€€Fish€and€fisheries€of€regulated€rivers€in€the€UK.€RegulatedÐ ¨ø ÐRivers:€Research€&€Management.€€ò ò2ó ó:411„424.Ð pÀ Ðà 4 àÌÓ X¨ýÓThis€paper€examines€the€historical€and€recent€influences€of€river€regulation€onÐ P Ðfish€populations€and€fisheries€in€Britain.€The€construction€of€a€series€of€canals€andÐ È Ðinterconnecting€waters€during€the€18th€and€19th€centuries€facilitated€the€spread€of€someÐ à Ðspecies€between€catchments.€These€slow„flowing€habitats€allowed€many€lowland€speciesÐ X¨ Ðto€thrive€and€this€is€reflected€today€in€the€fish€community€structure€in€some€rivers.€TheÐ  p Ðproblems€to€barriers€to€the€movement€of€migratory€species€imposed€by€dams€and€weirsÐ è8 Ðand€the€efficacy€of€compensation€measures€are€discussed.€The€latter€embrace€fish€passes,Ð °  Ðadult€fish€and€smolt€transport,€and€stocking.€Potential€problems€for€the€future€include€theÐ xÈ! Ðdisruption€of€the€homing€of€salmon€to€their€natal€rivers€caused€by€transfers€of€waterÐ @" Ðbetween€catchments.Ð  X# ÐÓ ¨ýXÓÐ Ð $ ÐÐ ˜!è% Ð265.à 4 àMann,€R.€H.€K.€(1996).€€Environmental€requirements€of€European€non„salmonid€fish€inÐ `"°& Ðrivers.€Hydrobiologia.€€ò ò323ó ó:223„235.Ð (#x' Ðà 4 àÌÓ X¨ýÓThere€is€much€evidence€to€show€that€the€bottlenecks€to€recruitment€in€many€non„Ð ¸$ ) Ðsalmonid€fish€populations€relate€principally€to€spawning€success€and€to€the€growth€andÐ €%Ð * Ðsurvival€rates€of€newly„hatched€larvae€(Mills€&€Mann,€1985).€This€review€deals€withÐ H&˜!+ Ðthese€parts€of€the€life„cycle,€together€with€the€habitat€requirements€of€adult€fishes€and€theÐ '`", Ðwider€aspects€of€fish€community€structure.€The€review€concentrates€on€the€most€commonÐ Ø'(#- ÐEuropean€species,€especially€those€that€are€of€commercial€or€angling€importance€(TableÐ  (ð#. Ð1).€However,€data€on€habitat€requirements€are€available€for€only€some€of€these€32Ð h)¸$/ Ðspecies.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð266.à 4 àMaracek,€S.€and€J.€Wlosinski€(1996).€Fish€movement€through€dams€on€the€UpperÐ ˆ,Ø'3 ÐMississippi€River.€Pages€€13€òòinóó€J.€T.€Dukerschein,€ed.€Proceedings€of€the€MississippiÐ P- (4 ÐRiver€Research€Consortium,€La€Crosse,€Wisconsin€(USA),€Mississippi€River€ResearchÐ ° ÐConsortium.Ð xÈ Ðà 4 àÌÓ X¨ýÓWe€analyzed€the€results€from€89,€mark„recapture€and€telemetry€studies€whichÐ X Ðwere€performed€by€others€on€the€Upper€Mississippi€River€as€part€of€an€investigation€onÐ Ð  Ðfish€passage€opportunities.€€Fish€were€marked€in€Pools€4€through€18€and€26.€€StudiesÐ ˜è Ðincluded€information€for€15€species€of€fish;€black€crappie,€white€crappie,€bluegillÐ ` ° Ðnorthern€pike,€common€carp,€channel€catfish,€freshwater€drum,€flathead€catfish,Ð ( x Ðlargemouth€bass,€paddlefish,€sauger,€shovelnose€sturgeon,€smallmouth€bass,€walleye,€andÐ ð @ Ðwhite€bass.€€The€total€number€of€fish€marked€in€59€of€the€studies€was€62,618.€€TotalsÐ ¸   Ðwere€not€available€for€the€remaining€30€studies.€€Less€than€ten€percent€of€the€marked€fishÐ € Ð  Ðwere€recaptured.€€No€black€crappie,€white€crappie,€bluegill,€northern€pike,€or€commonÐ H ˜  Ðcarp€were€found€to€move€across€a€single€lock€and€dam,€either€in€an€up€or€down€direction.€Ð `  ÐOf€the€total€number€of€fish€recaptured€in€all€studies€4,594€(79.7%)€were€in€the€pool€whereÐ Ø(  Ðthe€fish€was€initially€marked,€712€(12.4%)€moved€upriver€and€458€(7.9%)€movedÐ  ð  Ðdownriver.€€We€also€investigated€the€head€differential€between€headwaters€and€tailwatersÐ h¸  Ðfor€each€day€the€fish€was€at€large.€€Unfortunately,€most€fish€were€at€large€for€fairly€longÐ 0€  Ðperiods,€so€we€could€not€pinpoint€the€head€differential€when€the€fish€actually€crossed€aÐ øH  Ðdam.€€The€minimum€head€differential€during€the€period€when€fish€were€at€large€was€usedÐ À Ðto€conservatively€estimate€fish€passage€opportunities.€€Of€the€fish€moving€upriver€throughÐ ˆØ Ðdams€88.0%€crossed€with€a€head€differential€less€than€2.0€feet.€€Of€the€fish€movingÐ P  Ðdownriver€through€dams€72%€crossed€with€a€head€differential€less€than€2.0€feet.€€OnlyÐ h Ð3.9%€of€the€fish€that€moved€upriver€did€so€when€the€head€differential€was€at€least€4.0€feetÐ à0 Ðand€19.4%€of€the€fish€that€moved€downriver€did€so€at€that€head€differential.€€Of€theÐ ¨ø Ðwalleyes,€which€made€up€53%€of€the€total€number€of€fish€that€moved,€78%€movedÐ pÀ Ðupriver€through€at€least€one€dam.€€Of€the€walleyes€that€moved€upriver,€the€majorityÐ 8ˆ Ðcrossed€1€to€5€dams.€€Ninety„one€percent€of€the€sauger,€which€made€up€15%€of€theÐ P Ðobservations,€also€moved€upriver€through€at€least€one€dam.€€In€contrast,€94%€of€theÐ È Ðchannel€catfish,€which€made€up€20%€of€the€observations,€moved€downriver€through€atÐ à Ðleast€one€dam.€€Of€the€channel€catfish€that€moved€downriver,€the€majority€crossed€4€to€9Ð X¨ Ðdams.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð267.à 4 àMartin,€R.,€A.€Miller€and€N.€Hahn€(1994).€€Protecting€Wisconsin€waters€from€exoticÐ xÈ! Ðinvaders.€Wisconsin€Department€of€Natural€Resources,€Madison,€Wisconsin€(USA).Ð @" Ðà 4 àÌÓ X¨ýÓOn€April€29,€1992,€Governor€Thompson€signed€the€budget€adjustment€bill€(ActÐ Ð $ Ð269)€into€law.€Section€9142€requires€the€Wisconsin€Department€of€Natural€Resources,€inÐ ˜!è% Ðconsultation€with€the€Aquatic€Nuisance€Control€Council,€to€prepare€a€report€to€theÐ `"°& ÐLegislature€on€zebra€mussels€by€June€30,€1994.€The€Governor€directed€WDNR€and€theÐ (#x' ÐCouncil€to€examine€additional€staffing€needs€for€zebra€mussel€activities€and€to€developÐ ð#@( Ðrecommendations€on€an€appropriate€funding€level€and€potential€non„general€purposeÐ ¸$ ) Ðrevenue€funding€sources€for€consideration€in€the€1995„97€budget€bill.€Specifically€theÐ €%Ð * Ðreport€was€to€identify€the€following€key€issues€related€to€zebra€mussels:€The€current€andÐ H&˜!+ Ðpotential€economic€and€environmental€impacts;€The€potential€control€strategies;€TheÐ '`", Ðgeographical€areas,€public€facilities€or€activities€which€need€technical€or€financialÐ Ø'(#- Ðassistance€to€reduce€the€environmental,€public€health€or€safety€risk€caused€by€this€species;Ð  (ð#. Ðand€The€adequacy€of€existing€state€resources€and€staffing€to€address€the€problems€posedÐ h)¸$/ Ðby€zebra€mussels.€This€report€was€compiled€to€meet€those€requirements.Ð 0*€%0 ÐÐ ø*H&1 Ðâ âÓ ¨ýXÓÐ À+'2 Ð268.à 4 àMatheney,€M.€I.€and€C.€F.€Rabeni€(1995).€€Patterns€of€movement€and€habitat€use€byÐ ° Ðnorthern€hog€suckers€in€an€Ozark€stream.€Transactions€of€the€American€Fisheries€Society.€Ð xÈ Ðò ò124ó ó:886„897.Ð @ Ðâ âà 4 àÌÓ X¨ýÓAlthough€the€northern€hog€sucker€òòHypentelium€nigricansóó€is€widely€distributedÐ Ð  Ðthroughout€the€Mississippi€and€Ohio€river€basins€and€is€both€ecologically€andÐ ˜è Ðrecreationally€important,€much€of€its€basic€ecology€is€not€known.€We€determinedÐ ` ° Ðmovement€and€habitat€use€for€25€fish€in€the€Current€River,€Missouri,€for€1€year€usingÐ ( x Ðradio€telemetry.€Seasonal€movements€were€recorded€two€or€three€times€each€week€duringÐ ð @ Ðdaylight€hours€from€January€to€November€1988.€Diel€movement€and€habitat€use€wereÐ ¸   Ðrecorded€once€each€hour€for€17€d€in€winter€and€12€d€in€summer.€Mean€daily€distanceÐ € Ð  Ðtraveled€was€greater€in€summer€(425€m)€than€in€winter€(276€m).€Home€range€was€greaterÐ H ˜  Ðin€winter€and€spring€(812€m)€than€in€summer€and€fall€(426€m).€Habitat€use€changedÐ `  Ðseasonally€from€slower,€deeper€water€and€smaller€substrates€during€winter€to€increasingÐ Ø(  Ðuse€of€faster,€shallower€water€and€larger€substrates€through€warmer„water€periods.€In€bothÐ  ð  Ðseasons,€fish€had€a€consistent€daily€pattern,€moving€more€during€the€day€than€at€night.Ð h¸  ÐDiel€patterns€of€use€were€distinct.€In€winter,€fish€used€pool€habitat€with€moderate€flowÐ 0€  Ðduring€the€day€and€riffle€or€edge€habitat€at€night.€In€summer,€fish€used€run€habitat€duringÐ øH  Ðthe€day€and€riffle€or€edge€habitat€at€night.€Patterns€of€habitat€use€indicated€fish€used€oneÐ À Ðarea€of€the€river€during€the€day€to€feed€and€another€at€night€to€rest.€Fish€remained€in€theirÐ ˆØ Ðhome€area€during€high„flow€events€but€used€flooded€riparian€areas€where€currentÐ P  Ðvelocities€were€lower.€Fish€moved€up„€or€downstream€short€distances€(mean€=€497€m,€NÐ h Ð=€7)€into€spawning€areas€during€late€February€and€early€March.€This€study€emphasizesÐ à0 Ðthe€importance€of€habitat€diversity€to€accommodate€this€species'€diel€and€seasonalÐ ¨ø Ðpreferences€and€the€necessity€of€a€connected€floodplain€for€the€fish€to€surviveÐ pÀ Ðcatastrophic€events.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ð269.à 4 àMcCutcheon,€C.€S.,€E.€F.€Prentice€and€D.€L.€Park€(1994).€€Passive€monitoring€ofÐ à Ðmigrating€adult€steelhead€with€PIT€tags.€North€American€Journal€of€FisheriesÐ X¨ ÐManagement.€€ò ò14ó ó:220„223.Ð  p Ðà 4 àÌÓ X¨ýÓIn€1985,€two€independent€passive€integrated€transponder€(PIT)€tag€monitoringÐ °  Ðsystems€were€installed€at€the€exit€area€of€weir€leading€into€a€fish€trap€on€the€north„shoreÐ xÈ! Ðfish€ladder€at€Bonneville€Dam,€Columbia€River.€One€hundred€PIT„tagged€adult€steelheadÐ @" ÐòòOncorhynchus€mykissóó€were€released€in€groups€of€10€into€an€enclosed€area€of€the€ladderÐ  X# Ðdownstream€from€the€detectors.€The€tagged€fish€were€detected€after€they€volitionallyÐ Ð $ Ðswam€through€the€weir€and€slid€through€the€detection€system€at€velocities€of€0.6€m/s€orÐ ˜!è% Ðgreater.€Overall€PIT€tag€reading€efficiency€was€98%€and€no€tag„reading€errors€wereÐ `"°& Ðrecorded.€Individual€tag€code,€date,€and€time€of€the€passage€of€each€tagged€fish€wereÐ (#x' Ðautomatically€recorded€into€a€computer€file€and€simultaneously€printed€onto€a€paperÐ ð#@( Ðcopy.€These€results€suggest€that€PIT€tag€monitors€of€this€design€could€be€deployed€atÐ ¸$ ) Ðselect€adult€passage€facilities€presently€operating€in€the€Columbia€River€Basin€toÐ €%Ð * Ðinterrogate€returning€PIT„tagged€adult€salmonids.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð270.à 4 àMcIninch,€S.€P.€and€C.€H.€Hocutt€(1987).€€Effects€of€turbidity€on€estuarine€fish€responseÐ  (ð#. Ðto€strobe€lights.€Journal€of€Applied€Ichthyology.€€ò ò3ó ó:97„105.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓThe€efficacy€of€a€strobe€light€and€a€combined€strobe€light/bubble€curtain€systemÐ ø*H&1 Ðwas€evaluated€under€turbid€water€conditions€as€a€fish€avoidance€scheme.€Three€estuarineÐ À+'2 Ðspecies€commonly€impinged€at€electric€generating€facilities€along€the€Atlantic€coast€ofÐ ˆ,Ø'3 Ðthe€United€States€were€tested:€Atlantic€menhaden€òòBrevoortia€tyrannusóó,€spot€òòLeiostomusÐ P- (4 Ðxanthurusóó,€and€white€perch€òòMorone€americanaóó.€The€strobe€light/bubble€curtainÐ ° Ðcombination€was€the€most€effective€system€studied€in€all€cases.€An€interestingÐ xÈ Ðphenomenon€was€that€fish€avoidance€to€strobe€light€systems€increased€with€turbidity€overÐ @ Ðthe€range€tested€(clear,€39„45€and€102„138€NTU).Ð X ÐÐ Ð  ÐÓ ¨ýXÓÐ ˜è Ð271.à 4 àMesiar,€D.€C.,€D.€M.€Eggers€and€D.€M.€Gaudet€(1991).€Development€of€techniques€forÐ ` ° Ðthe€application€of€hydroacoustics€to€counting€migratory€fish€in€large€rivers.€Pages€€223„Ð ( x Ð232€òòinóó€W.€A.€Karp,€ed.€Developments€in€Fisheries€Acoustics:€A€Symposium,€Seattle,Ð ð @ ÐWashington€(USA),€Rapports€et€Process„Verbaux€des€Reunions€Conseil€InternationalÐ ¸   Ðpour€l'Exploration€de€la€Mer.Ð € Ð  Ðà 4 àÌÓ X¨ýÓManagement€of€commercial€fisheries€for€Pacific€salmon€òòOncorhynchusóó€stocksÐ `  Ðreturning€to€many€of€Alaska's€(USA)€large€rivers€has€been€hindered€by€the€lack€of€timelyÐ Ø(  Ðinformation€on€stock€strength€and€migratory€timing.€These€rivers€share€characteristicsÐ  ð  Ð(e.g.,€extensive€multi„channel€river€mouths,€turbid€water,€debris,€large€physical€riverÐ h¸  Ðdimensions,€and€presence€of€several€fish€species€with€overlapping€spatial€and€temporalÐ 0€  Ðdistributions)€which€make€collection€of€such€information€difficult.€Sonar€was€identifiedÐ øH  Ðas€a€potential€solution€to€the€problem,€and€techniques€of€application€and€analysis€wereÐ À Ðdeveloped€in€the€Yukon€River€between€1982€and€1985.€Four€primary€components€of€theÐ ˆØ Ðapplication€are:€identifying€an€appropriate€site€for€equipment€installation;€identifying€andÐ P  Ðensonifying€all€areas€of€fish€passage;€expanding€fish€passage€rates€to€temporal€and€spatialÐ h Ðstrata;€and€apportioning€fish„passage€estimates€to€species.Ð à0 ÐÓ ¨ýXÓÐ ¨ø ÐÐ pÀ Ð272.à 4 àMiller,€A.€C.€(1988).€€Mussel€fauna€associated€with€wing€dams€in€Pool€7€of€theÐ 8ˆ ÐMississippi€River.€Journal€of€Freshwater€Ecology.€€ò ò4ó ó:299„302.Ð P Ðà 4 àÌÓ X¨ýÓTwenty„three€species€of€freshwater€mussels€(Mollusca:€Unionidae)€wereÐ à Ðcollected€by€divers€in€May,€1987,€at€32€sites€on€and€between€wing€dams€in€Pool€7€of€theÐ X¨ Ðupper€Mississippi€River.€Five€species€(òòAmblema€plicataóó,€òòObliquaria€reflexaóó,€òòObovariaÐ  p Ðolivariaóó,€òòLampsilis€ventricosaóó€and€òòQuadrula€pustulosaóó)€comprised€90%€of€the€fauna€andÐ è8 Ðwere€found€at€88€„€100%€of€the€sites.€Specimens€of€òòActinoaias€ligamentinaóó,€òòPlethobasusÐ °  Ðcyphyusóó,€and€òòStrophitus€undulatusóó,€last€reported€in€1930,€and€the€endangered€òòLampsilisÐ xÈ! Ðhigginsióó,€last€reported€in€1966,€were€collected€alive.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð273.à 4 àMiller,€A.€C.€and€B.€S.€Payne€(1991).€€Investigation€of€freshwater€mussels€(Unionidae)€atÐ ˜!è% Ðselected€sites€in€the€lower€Ohio€and€Cumberland€rivers,€September€1990.€U.S.€ArmyÐ `"°& ÐCorps€of€Engineers€Waterways€Experimental€Station,€Technical€Report€WES/TR/EL„91„Ð (#x' Ð9.Ð ð#@( Ðà 4 àÌÓ X¨ýÓA€survey€to€assess€community€characteristics,€density,€population€demography€ofÐ €%Ð * Ðdominant€species,€and€the€likelihood€of€finding€endangered€species€of€freshwater€musselsÐ H&˜!+ Ð(Unionidae)€was€conducted€in€the€lower€Ohio€River€(river€miles€(RM)€954.0„964.0),€theÐ '`", Ðlower€two€miles€of€the€Cumberland€River,€and€a€reach€of€the€Ohio€River€(RM€920.0„Ð Ø'(#- Ð920.5)€near€Smithland€Dam€in€September€1990.€Data€will€be€used€to€analyze€impacts€ofÐ  (ð#. Ðconstruction€and€operation€of€a€new€lock€and€dam€at€RM€964.4€on€the€Ohio€River€andÐ h)¸$/ Ðmodification€of€Smithland€Lock€and€Dam€near€the€confluence€of€the€Cumberland€River.Ð 0*€%0 ÐTwenty„three€species€of€unionids€were€collected€using€qualitative€methods€in€the€lowerÐ ø*H&1 ÐOhio€River;€the€fauna€was€dominated€by€òòFusconaia€ebenaóó€(40.9€percent),€òòQuadrulaÐ À+'2 Ðpustulosa€pustulosaóó€(10.76€percent),€òòQuadrula€quadrulaóó€(10.6€percent),€and€òòAmblemaÐ ˆ,Ø'3 Ðplicata€plicataóó€(9.0€percent).€Total€unionid€density€ranged€from€37.6€to€68.0Ð P- (4 Ðindividuals/sq€m,€and€òòCorbicula€flumineaóó€density€ranged€from€11.2€to€26.8€individuals/sqÐ ° Ðm.€Four€specimens€of€the€orange„footed€pimpleback€òòPlethobasus€cooperianusóó,€listed€asÐ xÈ Ðendangered€by€the€US€Fish€and€Wildlife€Service€(1987),€were€collected€(two€usingÐ @ Ðqualitative€methods;€two€using€quantitative€methods).Ð X ÐÐ Ð  ÐÓ ¨ýXÓÐ ˜è Ð274.à 4 àMiller,€A.€C.€and€B.€S.€Payne€(1991).€€Investigation€of€freshwater€mussels€(Unionidae)€inÐ ` ° Ðthe€Tennessee€River€below€Kentucky€lock€and€dam.€WES/TR/EL„91„8.Ð ( x Ðà 4 àÌÓ X¨ýÓA€survey€to€assess€community€characteristics,€density,€population€demography€ofÐ ¸   Ðdominant€species,€and€the€likelihood€of€finding€endangered€species€of€freshwater€musselsÐ € Ð  Ð(Unionidae)€was€conducted€in€the€lower€Tennessee€River.€Data€were€collected€to€analyzeÐ H ˜  Ðenvironmental€impact€of€construction€and€operation€of€a€second€lock€at€Kentucky€LockÐ `  Ðand€Dam,€RM€22.4.€Twenty„three€species€and€4,768€freshwater€mussels€were€obtained€inÐ Ø(  Ð287€qualitative€collections.€The€bivalve€fauna€was€dominated€by€two€thick„shelledÐ  ð  Ðspecies,€òòAmblema€plicataóó€(39.43€percent)€and€òòFusconaia€ebenaóó€(39.41€percent).€SixÐ h¸  Ðspecies€comprised€1€to€10%€of€the€collection,€and€15€species€made€up€less€than€1%€of€theÐ 0€  Ðcollection.€No€Federally€listed€endangered€species€were€found.€Species€diversity€wasÐ øH  Ðmoderate,€and€evenness€was€low€Unionid€density€at€six€sites€in€the€area€to€be€dredgedÐ À Ðranged€from€9.2€to€128.0€individuals€per€square€meter.€òòCorbicula€flumineaóó€density€rangedÐ ˆØ Ðfrom€6.0€to€26.4€individuals€per€square€meter,€which€was€considerably€less€than€valuesÐ P  Ðreported€in€this€river€reach€in€1969.€The€total€commercial€value€of€four€species€(òòA.Ð h Ðplicata,€Megalonaias€nervosa,€F.€ebenaóó,€and€òòQuadrula€quadrulaóó)€within€the€area€the€willÐ à0 Ðbe€dredged€was€estimated€at€$101,707.€Total€density€of€snails€ranged€from€8.0€to€86.8Ð ¨ø Ðindividuals€per€square€meter;€the€fauna€was€dominated€by€òòPleurocera€canaliculatumóó€,Ð pÀ Ðwith€lesser€numbers€of€òòLithasia€armigeraóó€and€òòL.€verrucosaóó€.€Impacts€due€to€constructionÐ 8ˆ Ðand€operation€of€the€second€lock€can€be€partially€offset€by€creating€submerged€habitatsÐ P Ðwith€dredged€materials€along€an€eroding€bank€downriver€of€the€lock€and€dam.Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð275.à 4 àMiller,€A.€C.€and€B.€S.€Payne€(1998).€€Effects€of€disturbances€on€large„river€musselÐ  p Ðassemblages.€Regulated€Rivers:€Research€and€Management.€€ò ò14ó ó:179„190.Ð è8 Ðà 4 àÌÓ X¨ýÓData€from€more€than€10€years€of€quantitative€sampling€from€stable€gravel€shoalsÐ xÈ! Ðin€large€rivers€of€the€central€US€were€used€to€test€the€effects€of€specific€disturbancesÐ @" Ð(passage€of€commercial€navigation€vessels,€the€flood€of€1993,€and€introduction€ofÐ  X# ÐòòCorbicula€flumineaóó)€on€native€freshwater€mussels€(Family:€Unionidae).€€Although€manyÐ Ð $ Ðlotic€species€of€Unionidae€have€been€eliminated€from€large€rivers€because€of€degradedÐ ˜!è% Ðwater€quality,€poor€land€use€practices,€and€large„scale€navigation€projects,€the€resultingÐ `"°& Ðfauna€appears€to€tolerate€many€disturbances.€€For€example,€high€density€populations€of€òòC.Ð (#x' Ðflumineaóó€had€no€effect€on€unionid€density€at€two€shoals€in€the€lower€Ohio€River.€€TheÐ ð#@( Ðrecord€flood€of€1993€in€the€Upper€Mississippi€River€had€no€measurable€effect€on€musselsÐ ¸$ ) Ðat€three€locations;€species€richness€(22„25),€density€(45.3„60.3),€and€percentage€ofÐ €%Ð * Ðjuveniles€(11„26%)€varied€among€years€but€showed€no€temporal€trend.€€In€a€barge€turningÐ H&˜!+ Ðbasin€that€was€dredged€in€1976,€density€of€recently€recruited€òòAmblena€plicata€plicataóó€wasÐ '`", Ðnot€significantly€different€from€density€at€a€reference€site€for€six€of€nine€study€yearsÐ Ø'(#- Ðindicating€that€recruitment€is€proceeding€at€a€similar€rate€regardless€of€current€trafficÐ  (ð#. Ðlevels.€€The€mussel€fauna€now€inhabiting€large€rivers,€dominated€by€thick„shelled€speciesÐ h)¸$/ Ðtolerant€of€reduced€water€velocity€and€increased€sedimentation,€appears€to€be€quiteÐ 0*€%0 Ðresilient€to€many€natural€and€man„induced€disturbances.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð276.à 4 àMiller,€R.€R.,€J.€D.€Williams€and€J.€E.€Williams€(1989).€€Extinctions€of€North€AmericanÐ ° Ðâ âfishes€during€the€past€century.€Fisheries.€€ò ò14ó ó:22„38.Ð xÈ Ðà 4 àÌÓ X¨ýÓExtinctions€of€3€genera,€27€species,€and€13€subspecies€of€fishes€from€NorthÐ X ÐAmerica€are€documented€during€the€past€100€years.€Extinctions€are€recorded€from€allÐ Ð  Ðareas€except€northern€Canada€and€Alaska.€Regions€suffering€the€greatest€loss€are€theÐ ˜è ÐGreat€Lakes,€Great€Basin,€Rio€Grande,€Valley€of€Mexico,€and€Parras€Valley€in€Mexico.Ð ` ° ÐMore€than€one€factor€contributed€to€the€decline€and€extinction€of€82%€of€the€fishes.Ð ( x ÐPhysical€habitat€alteration€was€the€most€frequently€cited€causal€factor€(73%).€DetrimentalÐ ð @ Ðeffects€of€introduced€species€also€were€cited€in€68%€of€the€extinctions.€Chemical€habitatÐ ¸   Ðalteration€(including€pollution)€and€hybridization€each€were€cited€in€38%€of€theÐ € Ð  Ðextinctions,€and€overharvesting€adversely€affected€15%€of€the€fishes.€This€unfortunateÐ H ˜  Ðand€unprecedented€rate€of€loss€of€the€fishery€resource€is€expected€to€increase€as€more€ofÐ `  Ðthe€native€fauna€of€North€America€becomes€endangered€or€threatened.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð277.à 4 àMillette,€A.€J.€(1987).€€Wilder€fish€ladder€with€a€hydroturbine€as€a€fish„attracting€waterÐ 0€  Ðsystem.€Pages€€551€òòinóó€€M.€J.€Dadswell,€R.€J.€Klauda,€C.€M.€Moffitt,€R.€L.€Saunders,€R.€A.Ð øH  ÐRulifson€and€J.€E.€Cooper,€eds.€Common€Strategies€of€Anadromous€and€CatadromousÐ À ÐFishes,€American€Fisheries€Society€Symposium€Serial,€Boston,€Massachusetts€(USA).Ð ˆØ Ðà 4 àÌÓ X¨ýÓFish€ladders€and€hydroelectric€power€generation€have€historically€competed€forÐ h Ðwater€from€available€streamflow.€For€a€fish€ladder€to€be€effective,€migrating€fish€must€beÐ à0 Ðattracted€to€the€fishway€entrance.€To€attract€fish,€a€large€volume€of€"attraction"€flow€isÐ ¨ø Ðadded€to€the€relatively€small€fishway€flow€just€inside€the€fishway€entrance,€and€theÐ pÀ Ðcombined€flow€discharges€to€the€tailrace€as€a€plume,€which€attracts€upstream„migrationÐ 8ˆ Ðfish€such€as€Atlantic€salmon€òòSalmo€salaróó€and€American€Shad€òòAlosa€sapidissimaóó€.€TheÐ P Ðcommon€methods€of€providing€attraction€flow€are€pumped€flow€lifted€to€the€fishway€fromÐ È Ðthe€tailrace€and€gravity€flow€dropping€from€the€forebay€pond.€Both€options€are€net€usersÐ à Ðof€power,€since€pumps€consume€electric€power€and€gravity€flow€uses€water€which€has€theÐ X¨ Ðpotential€to€generate€electricity.€At€Wilder€Dam,€a€17„m€head€had€to€be€dissipated.€TwoÐ  p Ðoptions€were€studied:€energy„dissipating€valves€and€chambers;€and€a€small€hydroturbine.Ð è8 ÐBoth€did€the€job;€however,€the€energy„dissipating€valve€is€an€energy€waster,€whereas€theÐ °  Ðhydroturbine€drives€a€3,200„kW€hydroelectric€generator,€producing€economic€benefitsÐ xÈ! Ðthat€offset€its€cost.€The€fishway€turbine„generator€has€the€additional€benefits€of€providingÐ @" Ðyear„round€low„flow€augmentation€at€peak€generating€efficiency€and€increased€base„loadÐ  X# Ðgeneration€during€high„flow€periods.Ð Ð $ ÐÐ ˜!è% ÐÓ ¨ýXÓÐ `"°& Ð278.à 4 àMims,€S.€D.€(1998).€€Paddlefish€in€Kentucky.€Aquaculture€Magazine.€€ò ò24ó ó:20„22.Ð (#x' Ðà 4 àÌÓ X¨ýÓPaddlefish,€spoonfish,€spoonbill€cat€and€òòPolydon€spathulaóó€are€among€severalÐ ¸$ ) Ðnames€given€to€this€unique€prehistoric€fish.€Paddlefish€are€the€largest€freshwater€fish€inÐ €%Ð * Ðthe€United€States€at€6€feet€in€length€and€weighing€over€200€pounds.€They€are€found€in€22Ð H&˜!+ Ðstates€that€have€large€streams,€rivers€and€impoundments€within€the€Mississippi€RiverÐ '`", Ðbasin€and€adjacent€Gulf€Coastal€drainages.€Unlike€most€fish,€a€paddlefish€is€a€filter€feederÐ Ø'(#- Ðable€to€remove€zooplankton€(minute€free„floating€animals)€from€the€water€as€their€mainÐ  (ð#. Ðfood€source.Ð h)¸$/ ÐÐ 0*€%0 ÐÓ ¨ýXÓÐ ø*H&1 Ð279.à 4 àMinshall,€G.€W.,€K.€W.€Cummins,€R.€C.€Petersen,€C.€E.€Cushing,€D.€A.€Bruns,€J.€R.Ð À+'2 ÐSedell€and€R.€L.€Vannote€(1985).€€Developments€in€stream€ecosystem€theory.€CanadianÐ ˆ,Ø'3 ÐJournal€of€Fisheries€and€Aquatic€Sciences.€€ò ò42ó ó:1045„1055.Ð P- (4 Ðà 4 àÌÓ X¨ýÓFour€significant€areas€of€thought,€(1)€the€holistic€approach,€(2)€the€linkageÐ xÈ Ðbetween€streams€and€their€terrestrial€setting,€(3)€material€cycling€in€open€systems,€and€(4)Ð @ Ðbiotic€interactions€and€integration€of€community€ecology€principles,€have€provided€aÐ X Ðbasis€for€the€further€development€of€stream€ecosystem€theory.€The€River€ContinuumÐ Ð  ÐConcept€(RCC)€represents€a€synthesis€of€these€ideas.€Suggestions€are€made€for€clarifying,Ð ˜è Ðexpanding,€and€refining€the€RCC€to€encompass€broader€spatial€and€temporal€scales.Ð ` ° ÐFactors€important€in€this€regard€include€climate€and€geology,€tributaries,€location„specificÐ ( x Ðlithology€and€geomorphology,€and€long„term€changes€imposed€by€man.€It€appears€thatÐ ð @ Ðmost€riverine€ecosystems€can€be€accommodated€within€this€expanded€conceptualÐ ¸   Ðframework€and€that€the€RCC€continues€to€represent€a€useful€paradigm€for€understandingÐ € Ð  Ðand€comparing€the€ecology€of€streams€and€rivers.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð280.à 4 àMitchell,€C.€P.€(1986).€€Effects€of€introduced€grass€carp€on€populations€of€two€species€ofÐ  ð  Ðsmall€native€fishes€in€a€small€lake.€New€Zealand€Journal€of€Marine€and€FreshwaterÐ h¸  ÐResearch.€€ò ò20ó ó:219„230.Ð 0€  Ðà 4 àÌÓ X¨ýÓStocking€òòCtenopharyngodon€idellaóó€(grass€carp)€for€aquatic€weed€control€into€aÐ À Ð1.92€ha€lake€(Parkinsons€Lake,€37€degree€19'S,€174€degree€41'E)€altered€the€size€andÐ ˆØ Ðabundance€of€two€species€of€small€native€fish,€òòRetropinna€retropinnaóó€(smelt)€andÐ P  ÐòòGobiomorphus€cotidianusóó€(bully).€The€response€of€the€two€species€differed.€òòR.€retropinnaóóÐ h Ðrecruitment€apparently€failed€during€the€"high€impact"€phase€of€òòC.€idellaóó€stocking€(44Ð à0 Ðfish€ha€super(„1)),€when€all€aquatic€weeds€were€removed.€Immature€fish€disappeared€andÐ ¨ø Ðsamples€comprised€100%€large€females.€òòG.€cotidianusóó€also€increased€in€size,€however,Ð pÀ Ðcondition€improved€and€the€sex€ratio€did€not€alter€markedly.€Following€reduction€in€òòC.Ð 8ˆ Ðidella€óóstocking€density,€some€return€of€population€meristics€toward€prestocking€valuesÐ P Ðoccurred.€Loss€of€the€weed€bed€habitat,€water€quality€deterioration,€and€increasedÐ È Ðpredation€were€considered€the€major€environmental€impact€factors€during€the€periodÐ à Ðwhen€these€changes€occurred.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð281.à 4 àMitchell,€C.€P.€(1989).€€Swimming€performances€of€some€native€freshwater€fishes.€NewÐ °  ÐZealand€Journal€of€Marine€and€Freshwater€Research.€€ò ò23ó ó:181„187.Ð xÈ! Ðà 4 àÌÓ X¨ýÓObservations€were€made€of€the€response€to€water€velocity€for€upstream€migratingÐ  X# Ðjuveniles€of€5€diadromous€native€fishes€(òòAnguilla€australisóó,€òòGalaxias€maculatusóó,€òòG.Ð Ð $ Ðfasciatusóó€,€òòRetropinna€retropinnaóó,€òòGobiomorphus€cotidianusóó).€Swimming€performanceÐ ˜!è% Ðwithin€a€hydraulic€flume€was€measured€and€observations€made€of€the€behaviouralÐ `"°& Ðadaptions€of€some€species€to€swim€through€high€water€velocities.€Timed€swimming€atÐ (#x' Ðknown€water€velocities€allowed€estimation€of€critical€velocities€for€fish€passage.€ForÐ ð#@( Ðjuvenile€fishes€(30„80€mm€total€length),€velocities€below€0.3€m/s€should€allowÐ ¸$ ) Ðunrestricted€passage€over€obstacles€less€than€15€m€in€length.€Water€velocities€below€0.25Ð €%Ð * Ðm/s€may€be€necessary€for€obstacles€over€15€m.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð282.à 4 àMitchell,€C.€P.,€P.€Dinamani€and€R.€W.€Hickman€(1980).€Culture€and€uses€of€grass€carpÐ  (ð#. Ðin€New€Zealand.€Pages€€75„76€òòinóó€€Aquaculture€Conference,€Wellington€(New€Zealand),Ð h)¸$/ ÐOccasional€Publications€of€Fisheries€Research,€Division€of€the€Ministry€of€AgricultureÐ 0*€%0 Ð(New€Zealand).Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓGrass€carp€òòCtenopharyngodon€idellaóó€were€firstly€imported€into€New€Zealand€inÐ ˆ,Ø'3 Ðthe€late€1960's€for€aquatic€weed€control.€However,€it€is€believed€that€further€possible€usesÐ P- (4 Ðmay€be€realised€as€the€potential€of€the€species€becomes€apparent.€Grass€carp€could€beÐ ° Ðcultured€as€a€food€fish,€having€the€advantages€of€being€palatable€rapid€growing,€cheap€toÐ xÈ Ðfeed€and€tolerant€to€handling€and€adverse€environment€conditions.€As€they€are€difficult€toÐ @ Ðspawn€in€warmer€climates,€a€demand€exists€for€fingerlings€throughout€the€tropics.€TheyÐ X Ðmay€also€be€used€in€New€Zealand€for€protein€reclamation€systems.€Grass€carp€may€haveÐ Ð  Ðpotential€roles€in€New€Zealand€for€environmental€protection,€food€production,€andÐ ˜è Ðpossibly€as€export€earners.Ð ` ° ÐÐ ( x ÐÓ ¨ýXÓÐ ð @ Ð283.à 4 àMitzner,€L.€(1978).€€Evaluation€of€biological€control€of€nuisance€aquatic€vegetation€byÐ ¸   Ðgrass€carp.€Transactions€of€the€American€Fisheries€Society.€€ò ò107ó ó:135„145.Ð € Ð  Ðà 4 àÌÓ X¨ýÓGrass€carp€òòCtenopharyngodon€idellaóó€introductions€at€Red€Haw€Lake,€IowaÐ `  Ðresulted€in€a€decrease€of€aquatic€macrophytes€from€2438€g/mÔÎÿ¦ö Ø( Ô„2Ô2Ø( ¦ö Ô€in€1973€to€211€g/mÔÎÿ¦ö Ø( Ô„2Ô2Ø( ¦ö Ô€inÐ Ø(  Ð1976,€with€species€of€òòPotamogetonóó,€òòElodeaóó,€òòCeratophyllumóó€and€òòNajasóó€all€controlledÐ  ð  Ðeffectively.€During€1974„1976€mean€nitrites,€nitrates,€biological€oxygen€demand,€andÐ h¸  Ðturbidity€showed€significant€decreases,€while€alkalinity€increased€significantly€from€aÐ 0€  Ðmean€of€115€mg/l€in€1974€to€132€mg/l€in€1976.€Mean€concentrations€of€organic€andÐ øH  Ðinorganic€phosphates€gradually€increased€during€the€investigation,€but€were€notÐ À Ðstatistically€different.€Average€primary€production€was€nearly€identical€in€1974„1975€atÐ ˆØ Ðabout€2€g€carbon/mÔÎÿnP Ô„2Ô2P nÔ€/day,€but€decreased€significantly€to€1.35€g€carbon/mmÔÎÿnP Ô„2Ô2P nÔ€/day€inÐ P  Ð1976.€Growth€of€stocked€grass€carp€was€rapidly€increasing€from€a€mean€weight€of€380€gÐ h Ðin€July,€1973€to€6847€g€by€October,€1976.€Body€condition€ranged€from€1.05„2.02€withÐ à0 Ðaverage€condition€over€1.37€in€October€and€1.25„1.30€in€January„February.€GreatestÐ ¨ø Ðpopulation€biomass€was€estimated€in€1975€at€61€kg/hectare.€Grass€carp€consumed€allÐ pÀ Ðmajor€plant€groups€at€the€lake€with€greatest€selection€for€Najas€and€Potamogeton€.Ð 8ˆ ÐMovement,€behaviour€and€activity€as€determined€by€ultrasonic€telemetry€showed€grassÐ P Ðcarp€inhabited€all€areas€of€the€lake,€but€overall€there€was€a€preference€for€shallow€areas€ofÐ È Ðthe€main€lake€with€lesser€selection€for€embayments.€Most€of€the€time€grass€carp€wereÐ à Ðsedentary€near€weed€beds€with€more€rapid€and€extended€movement€in€midwater.€NormalÐ X¨ Ðswimming€speed€in€midwater€was€0.12„0.35€m/s€with€maximum€speed€of€1.46€m/s.Ð  p ÐHoming€tendency€was€shown€in€2€of€9€tagged€fish.€There€was€similarity€in€nocturnal€andÐ è8 Ðdiurnal€activityÐ °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð284.à 4 àMitzner,€L.€(1994).€€Management€of€aquatic€vegetation€with€grass€carp€in€Iowa,€1973„Ð  X# Ð1993.€Lake€and€Reservoir€Management.€€ò ò9ó ó:99„100.Ð Ð $ Ðà 4 àÌÓ X¨ýÓDiploid€grass€carp€have€been€used€in€Iowa€to€control€aquatic€macrophytes€forÐ `"°& Ðover€two€decades.€Initial€introduction€occurred€at€Red€Haw€Lake€in€1973€as€part€of€aÐ (#x' Ðresearch€investigation€to€study€the€feasibility€of€macrophyte€control.€Routine€use€of€grassÐ ð#@( Ðcarp€as€a€fisheries€management€technique€in€state„owned€lakes€commenced€in€1975,€andÐ ¸$ ) Ðby€1979,€the€general€public€was€permitted€to€buy€and€stock€grass€carp€into€public€waters.Ð €%Ð * ÐOver€700€permits€were€issued€to€the€private€sector€the€first€year€the€permitting€systemÐ H&˜!+ Ðwent€into€effect.€Since€1973,€grass€carp€have€been€stocked€in€over€40€state„owned€lakes,Ð '`", Ðand€since€1979€approximately€2,000€private€waters€have€been€stocked.€Stocking€rate€wasÐ Ø'(#- Ðinitially€10€per€acre€(total€lake€surface),€but€more€recently€the€recommended€stocking€rateÐ  (ð#. Ðwas€reduced€to€5€or€less€per€lake€surface€acre.€Length€of€grass€carp€at€stocking€isÐ h)¸$/ Ðrecommended€at€>8€inches€in€waters€containing€largemouth€bass.€Partial€control€ofÐ 0*€%0 Ðvegetation€by€grass€carp€is€rarely€attained;€normally€there€is€an€all„or„none€response.€AtÐ ø*H&1 Ðlakes€with€100%€control€of€vegetation,€there€are€only€minor€changes€in€sport€fishÐ À+'2 Ðpopulations.€For€example,€fisheries€managers€reported€diminished€bluegill€recruitment€atÐ ˆ,Ø'3 Ðsome€lakes€with€100%€vegetation€control.€The€most€common€complaint€comes€from€bassÐ P- (4 Ðanglers€who€perceive€the€"weedline"€as€being€greatly€reduced.€Thus,€according€toÐ ° Ðanglers,€bass€are€not€nearly€as€vulnerable€to€hook€and€line€at€lakes€with€extensiveÐ xÈ Ðmacrophyte€control.€Overall,€sportfishing€has€not€been€adversely€impacted€by€grass€carpÐ @ Ðintroductions€and€in€most€cases€catch€has€increased€because€of€more€available€access€toÐ X Ðshore€anglers€fishing€for€bluegill€and€crappie.€Grass€carp€reproduction€has€not€beenÐ Ð  Ðdocumented€in€Iowa€waters;€however,€adults€have€been€caught€incidentally€(60€lbs€perÐ ˜è Ðpool)€in€commercial€fishing€gear€in€the€Mississippi€River€bordering€Iowa.Ð ` ° ÐÐ ( x ÐÓ ¨ýXÓÐ ð @ Ð285.à 4 àMoen,€C.€T.,€D.€L.€Scarnecchia€and€J.€S.€Ramsey€(1992).€€Paddlefish€movements€andÐ ¸   Ðhabitat€use€in€Pool€13€of€the€Upper€Mississippi€River€during€abnormally€low€river€stagesÐ € Ð  Ðand€discharges.€North€American€Journal€of€Fisheries€Management.€€ò ò12ó ó:744„751.Ð H ˜  Ðà 4 àÌÓ X¨ýÓThe€authors€determined€the€movements€and€habitat€use€by€adult€paddlefishÐ Ø(  ÐòòPolyodon€spathulaóó€during€unusually€low€water€levels€in€Pool€13€of€the€Upper€MississippiÐ  ð  ÐRiver.€Thirty„two€large€fish€(6.3„25.4„kg)€implanted€with€radio€transmitters€were€locatedÐ h¸  Ðan€aggregate€of€812€times€during€March„August€1988,€and€spring€1989.€No€relationÐ 0€  Ðcould€be€discovered€between€changes€in€river€stage€or€discharge€and€direction€ofÐ øH  Ðmovement.€No€tagged€paddlefish€moved€upstream€from€Pool€13,€but€during€1988€six€fishÐ À Ðmoved€downstream€into€Pool€14.€Rates€of€movement€were€not€significantly€differentÐ ˆØ Ðbetween€sexes,€but€the€linear€range€for€females€was€twice€that€of€males.€The€greatestÐ P  Ðlinear€distance€a€paddlefish€moved€was€92€km€downstream,€and€the€greatest€cumulativeÐ h Ðmovement„„entirely€within€Pool€13„„was€435€km;€both€records€were€set€by€females.Ð à0 ÐNearly€three„fourths€of€all€contacts€with€paddlefish€occurred€in€about€5%€of€availableÐ ¨ø Ðhabitat€in€Pool€13.€Paddlefish€were€located€most€frequently€at€the€head€of€Pool€13€in€theÐ pÀ Ðtailwaters€below€Lock€and€Dam€12.€Even€though€the€gates€of€Lock€and€Dam€12€wereÐ 8ˆ Ðfully€open€in€1989,€fish€did€not€move€upstream€into€Pool€12.€The€fish€also€commonlyÐ P Ðused€main„channel€borders€with€wing€dams€but€rarely€used€backwaters€or€side€channels.Ð È ÐWater€depth€and€velocity€in€areas€used€by€paddlefish€were€generally€within€the€optimaÐ à Ðsuggested€by€current€habitat€suitability€models,€but€water€temperatures€were€usuallyÐ X¨ Ðgreater€than€optimum.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð286.à 4 àMoffitt,€C.€M.,€B.€Kynard€and€S.€G.€Rideout€(1982).€€Fish€passage€facilities€andÐ xÈ! Ðanadromous€fish€restoration€in€the€Connecticut€River€basin.€Fisheries.€€ò ò7ó ó:2„11.Ð @" Ðà 4 àÌÓ X¨ýÓFish€passage€facilities€now€exist€at€three€dams€on€the€mainstem€of€theÐ Ð $ ÐConnecticut€River€and€at€two€dams€on€tributaries€in€the€State€of€Connecticut:€theÐ ˜!è% ÐFarmington€and€Salmon€Rivers.€Facilities€on€the€tributary€rivers€were€not€included€in€theÐ `"°& ÐFederal€Power€Commission€settlement€agreements.€Efforts€by€state€and€federal€agenciesÐ (#x' Ðto€mitigate€fish€losses€have€been€in€progress€since€the€mid„1800's€in€the€form€of€fishingÐ ð#@( Ðregulations,€stocking€programs,€and€construction€of€fish€passage€facilities.€The€purpose€ofÐ ¸$ ) Ðthis€paper€is€to€review€the€decline€of€anadromous€fish€following€the€construction€of€dams,Ð €%Ð * Ðand€the€subsequent€fish€restoration€efforts.€The€latter€focuses€primarily€on€the€resultsÐ H&˜!+ Ðachieved€after€the€construction€of€fish€passage€facilities.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð287.à 4 àMonk,€B.,€D.€Weaver,€C.€Thompson€and€F.€Ossiander€(1989).€€Effects€of€flow€and€weirÐ h)¸$/ Ðdesign€on€the€passage€behavior€of€American€shad€and€salmonids€in€an€experimental€fishÐ 0*€%0 Ðladder.€North€American€Journal€of€Fisheries€Management.€€ò ò9ó ó:60„67.Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓDuring€the€1960s,€as€more€dams€went€into€full€operation€on€the€Columbia€River,Ð ˆ,Ø'3 Ðit€was€discovered€that€the€passage€of€American€shad€òòAlosa€sapidissimaóó€was€restricted€orÐ P- (4 Ðcompletely€blocked€through€the€regulating€sections€of€some€of€the€fish€ladders.€To€studyÐ ° Ðthe€problem,€a€full„scale€laboratory€model€of€six€pools€of€the€regulating€section€of€theÐ xÈ Ðfish€ladders€at€John€Day€Dam€was€built.€American€shad,€chinook€salmonòò€OncorhynchusÐ @ Ðtshawytschaóó€,€sockeye€salmon€òòO.€nerkaóó€and€steelhead€òòO.€mykissóó€(formerly€òòSalmoÐ X Ðgairdnerióó)€were€counted€and€timed€through€various€weir€designs€at€different€heads.Ð Ð  ÐAmerican€shad€oriented€toward€surface€flows,€tending€to€reject€submerged€orifices€asÐ ˜è Ðshallow€as€2€m.€The€amount€of€time€spent€in€the€ladder€by€American€shad€depended€onÐ ` ° Ðthe€head€between€pools.€The€species€of€salmonids€tested€were€not€significantly€impededÐ ( x Ðby€any€of€the€weir€designs€or€head€differentials.Ð ð @ ÐÐ ¸   ÐÓ ¨ýXÓÐ € Ð  Ð288.à 4 àMoring,€J.€R.€(1993).€€Anadromous€stocks.€Pages€€553„580€òòinóó€€C.€C.€Kohler€and€W.€A.Ð H ˜  ÐHubert,€eds.€Inland€Fisheries€Management€in€North€America,€American€FisheriesÐ `  ÐSociety,€Bethesda,€Maryland€(USA).Ð Ø(  Ðà 4 àÌÓ X¨ýÓManagement€of€anadromous€species€can€be€highly€complex,€involving€the€inputÐ h¸  Ðof€many€agencies,€municipalities,€and€groups,€as€well€as€biological€and€political€concerns.Ð 0€  ÐFortunately,€fisheries€managers€have€numerous€tools€at€their€disposal.€Fish€culture€hasÐ øH  Ðbeen€an€important€component€of€management€plans€since€the€mid„1800s,€but€refinementsÐ À Ðin€diet,€disease€control,€growth,€and€survival€are€still€needed.€A€critical€concern€forÐ ˆØ Ðanadromous€species€is€fish€passage:€maximizing€survival€for€upstream€and€downstream„Ð P  Ðmigrating€fish.€Computerized€modelling€exercises€suggest€that€new€techniques€forÐ h Ðdiverting€downstream€fry,€smolts,€and€spent€adults€may€have€a€significant€effect€onÐ à0 Ðsurvival,€overall€run€numbers,€and€production.€Genetic€selection€and€improvements€inÐ ¨ø Ðstream€habitat€are€also€options€available€to€fisheries€managers€to€improve€survival€of€wildÐ pÀ Ðand€hatchery„produced€fish.€Further€management€options€include€some€of€the€moreÐ 8ˆ Ðinnovative€techniques,€such€as€delayed€release€programs€to€promote€localized€sportÐ P Ðfisheries.€Fisheries€managers€must€then€decide€how€resources€should€be€allocated.€AlongÐ È Ðwith€this€comes€questions€such€as€What€is€the€optimal€size€of€fish€and€time€at€release?Ð à ÐHow€can€the€public€become€involved€in€habitat€improvement€and€other€restoration€andÐ X¨ Ðenhancement€programs?€How€can€fisheries€be€improved€through€interagency€and€otherÐ  p Ðtypes€of€cooperative€management?€These€are€the€challenges€in€anadromous€fishÐ è8 Ðmanagement.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð289.à 4 àMorrow,€J.€V.,€Jr.,€J.€P.€Kirk,€K.€J.€Killgore€and€S.€G.€George€(1998).€€Age,€growth,€andÐ  X# Ðmortality€of€shovelnose€sturgeon€in€the€Lower€Mississippi€River.€North€American€JournalÐ Ð $ Ðof€Fisheries€Management.€€ò ò18ó ó:725„730.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓTwo€hundred€of€295€shovelnose€sturgeon€òòScaphirhynchus€platorynchusóó€capturedÐ (#x' Ðin€the€Mississippi€River€near€Rosedale€and€Vicksburg,€Mississippi,€were€aged€byÐ ð#@( Ðexamining€sectioned€pectoral€fin€rays.€€Ages€ranged€from€2€to€16€years,€and€the€annualÐ ¸$ ) Ðmortality€was€20%€for€ages€7€and€greater.€€The€weight€(W,€g),€to€fork€length€(FL,€mm)Ð €%Ð * Ðrelation€was€W€=€0.000001257€FLÔÎÿ&f!H&˜!Ô3.174Ô2H&˜!&f!Ô€(RÔÎÿ&f!H&˜!Ô2Ô2H&˜!&f!Ô€=€0.87).€€The€von€Bertalanffy€growthÐ H&˜!+ Ðequation€for€fork€length€was€FL€=€730(1€„€eÔÎÿÞ&."'`"Ô€„0.213(t+0.972)Ô2'`"Þ&."Ô;€the€equation€for€weight€wasÐ '`", ÐW€=€1,604(1€„€eÔÎÿ¦'ö"Ø'(#Ô€„0.148(t„1.841)Ô2Ø'(#¦'ö"Ô.€€Mortality€and€mean€length€at€age€were€less€than€hasÐ Ø'(#- Ðbeen€reported€for€Upper€Mississippi€River€populations€of€shovelnose€sturgeon.€Ð  (ð#. ÐKnowledge€of€causes€of€mortality€of€shovelnose€sturgeon€may€have€applications€inÐ h)¸$/ Ðmanagement€of€the€sympatric€pallid€sturgeon€òòScaphirhynchus€albusóó.Ð 0*€%0 ÐÐ ø*H&1 Ðâ âÓ ¨ýXÓÐ À+'2 Ð290.à 4 àMorrow,€J.€V.,€Jr.,€J.€P.€Kirk,€K.€J.€Killgore,€H.€Rogillio€and€C.€Knight€(1998).€€StatusÐ ° Ðand€recovery€potential€of€gulf€sturgeon€in€the€Pearl€River€System,€Louisiana„Mississippi.Ð xÈ ÐNorth€American€Journal€of€Fisheries€Management.€€ò ò18ó ó:798„808.Ð @ Ðâ âà 4 àÌÓ X¨ýÓFrom€1992€through€1996,€257€Gulf€sturgeon€òòAcipenser€oxyrinchusóó€desotoi€wereÐ Ð  Ðcaptured€in€the€Pearl€River€system€of€Louisiana€and€Mississippi,€but€adults€(>130€cm€forkÐ ˜è Ðlength)€constituted€less€than€2%€of€the€catch.€The€summer€population€size€in€1996,Ð ` ° Ðestimated€by€mark„recapture€methods,€was€292€individuals€that€were€age€2€or€older.Ð ( x ÐInstantaneous€total€mortality€rate€(Z),€estimated€with€a€catch€curve,€was€0.41,€for€anÐ ð @ Ðannual€mortality€rate€of€34%.€Modeling€the€population€with€Z€=€0.41€resulted€inÐ ¸   Ðdeclining€populations€under€two€different€recruitment€scenarios.€Mortality€rates€will€haveÐ € Ð  Ðto€be€reduced€to€Z€=€0.16„0.24€for€the€population€to€be€self„sustaining€by€2023,€the€targetÐ H ˜  Ðyear€in€the€Gulf€Sturgeon€Recovery€Plan.€Mean€fork€length€of€Gulf€sturgeon€in€the€PearlÐ `  ÐRiver€system€was€significantly€larger€in€1970€than€in€1985€and€1992„1996,€indicating€thatÐ Ø(  Ðthe€population€may€not€have€improved€since€1985.€An€increase€in€population€size€shouldÐ  ð  Ðbe€detectable€within€6€years€of€achieving€acceptable€levels€of€mortality.€Efforts€to€reduceÐ h¸  Ðmortality€should€focus€on€commercial€bycatch€and€improving€winter€habitat€in€the€LakeÐ 0€  ÐPontchartrain€estuary€and€summer€habitat€in€the€Pearl€River€system.€Weirs€in€the€PearlÐ øH  Ðand€Bogue€Chitto€rivers€need€further€study€to€determine€if€improved€fish€passage€wouldÐ À Ðimprove€recruitment€and€survival€of€Gulf€sturgeon.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð291.à 4 àMoser,€M.€L.,€A.€M.€Darazdi€and€H.€J.R.€(2000).€€Improving€passage€efficiency€of€adultÐ à0 ÐAmerican€shad€at€low„elevation€dams€with€navigation€locks.€North€American€Journal€ofÐ ¨ø ÐFisheries€Management.€€ò ò20ó ó:376„385.Ð pÀ Ðà 4 àÌÓ X¨ýÓUse€of€navigation€locks€represents€a€low„cost€alternative€to€the€construction€ofÐ P Ðfishways€or€lifts€at€low€elevation€(<5€m)€dams.€€We€used€sonic€tracking€to€assess€theÐ È Ðpassage€efficiency€of€adult€American€shad€òòAlosa€sapidissimaóó€in€1996„1998€through€theÐ à Ðnavigation€locks€at€Lock€and€Dam€1€on€the€Cape€Fear€River,€North€Carolina.€€We€alsoÐ X¨ Ðtested€the€passage€efficiency€at€a€steeppass€fishway€installed€in€1997.€€Eighty„six€taggedÐ  p ÐAmerican€shad€were€released€below€the€dam€over€the€3„year€study;€passage€efficiencyÐ è8 Ðranged€from€18%€in€1997€(a€year€of€high€discharge€during€the€tracking€period)€to€61%€inÐ °  Ð1998.€€During€low€flows,€we€were€able€to€improve€passage€efficiency€by€(1)€operating€theÐ xÈ! Ðlock€to€pass€fish€through€until€mid„June,€(2)€increasing€attraction€flows€emanating€fromÐ @" Ðthe€lock€entrance,€(3)€conducting€as€many€lockages€(i.e.,€use€of€locks€to€pass€fishÐ  X# Ðupstream)€as€possible€in€a€day,€and€(4)€closing€one€of€the€lower€lock€gates€to€better€retainÐ Ð $ Ðfish€in€the€lock€chamber€after€they€had€enterred.€€The€steeppass€fishway€was€not€asÐ ˜!è% Ðeffective€as€the€navigation€locks€for€passage€of€American€shad.€€Only€three€tagged€fishÐ `"°& Ð(8%)€used€the€fishway€in€1998,€probably€because€of€design€deficiencies€and€the€lack€ofÐ (#x' Ðattraction€flow€at€the€fishway€entrance.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð292.à 4 àMourad,€M.€H.€(1991).€€Influence€of€body€size€on€swimming€performance€of€carpÐ H&˜!+ Ð(Cyprinus€carpio).€Acta€Ichthyologica€et€Piscatoria.€€ò ò21ó ó:87„91.Ð '`", Ðà 4 àÌÓ X¨ýÓThe€influence€of€body€size€on€fish€swimming€performance€was€investigated.Ð  (ð#. ÐThere€was€a€positive€correlation€between€body€size€and€swimming€speed.€On€theÐ h)¸$/ Ðcontrary,€the€relations€between€body€size€and€time€of€fatigue,€fish€travel,€physical€effortÐ 0*€%0 Ðwere€reverse.€The€reasons€for€the€differences€and€the€assumptions€involved€are€discussed.Ð ø*H&1 Ð(DBO)Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð293.à 4 àMueller,€U.€K.,€E.€J.€Stamhuis€and€J.€J.€Videler€(2000).€€Hydrodynamics€of€unsteady€fishÐ ° Ðswimming€and€the€effects€of€body€size:€comparing€the€flow€fields€of€fish€larvae€andÐ xÈ Ðadults.€Journal€of€Experimental€Biology.€€ò ò203ó ó:193„206.Ð @ Ðà 4 àÌÓ X¨ýÓZebra€danios€(òòBrachydanio€rerioóó)€swim€in€a€burst„and„coast€mode.€MostÐ Ð  Ðswimming€bouts€consist€of€a€single€tail€flick€and€a€coasting€phase,€during€which€the€fishÐ ˜è Ðkeeps€its€body€straight.€When€visualising€the€flow€in€a€horizontal€section€through€theÐ ` ° Ðwake,€the€effects€of€the€flow€regime€become€apparent€in€the€structure€of€the€wake.€In€aÐ ( x Ðtwo„dimensional,€medio„frontal€view€of€the€flow,€larvae€and€adults€shed€two€vortices€atÐ ð @ Ðthe€tail€during€the€burst€phase.€These€vortices€resemble€a€cross€section€through€a€large„Ð ¸   Ðcore€vortex€ring:€two€vortex€cores€packed€close€together€with€the€central€flow€directedÐ € Ð  Ðaway€from€the€fish.€This€flow€pattern€can€be€observed€in€larvae€(body€lengthÐ H ˜  Ðapproximately€4€mm)€at€Reynolds€numbers€below€100€as€well€as€in€adult€fish€(bodyÐ `  Ðlength€approximately€35€mm)€at€Reynolds€numbers€above€1000.€Larval€vortices€differÐ Ø(  Ðfrom€those€of€adult€zebra€danios€mainly€in€their€relatively€wider€vortex€cores€(higher€ratioÐ  ð  Ðof€core€radius€to€ring€radius)€and€their€lower€vortex€circulation.€Both€effects€result€fromÐ h¸  Ðthe€increased€importance€of€viscosity€on€larval€flows.€During€the€coasting€phase,€larvalÐ 0€  Ðand€adult€flows€again€differ€because€of€the€changing€importance€of€viscosity.€The€highÐ øH  Ðviscosity€of€the€water€causes€large€vortical€flows€adjacent€to€the€larva's€body.€TheseÐ À Ðregions€of€high€vorticity€represent€the€huge€body€of€water€dragged€along€by€the€larva,€andÐ ˆØ Ðthey€cause€the€larva€to€stop€almost€immediately€after€thrust€generation€ceases.€No€suchÐ P  Ðareas€of€high€vorticity€are€visible€adjacent€to€adult€zebra€danios€performing€a€comparableÐ h Ðswimming€manoeuvre.€The€rapid€decrease€in€vortex€circulation€and€the€severe€reductionÐ à0 Ðin€the€coasting€distance€due€to€viscous€drag€contribute€to€the€high€cost€that€larvae€„€unlikeÐ ¨ø Ðadult€fish€„€face€when€using€a€burst„and„coast€swimming€style.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð294.à 4 àMukherjee,€A.€B.€(1987).€Preliminary€observations€on€the€efficacy€of€fish€locks€in€theÐ È ÐFarakka€Barrage.€Pages€€25€òòinóó€€Symposium€on€the€Impact€of€Current€Land€Use€PatternÐ à Ðand€Water€Resources€Development€on€Riverine€Fisheries,€Barrackpore€(India).Ð X¨ Ðà 4 àÌÓ X¨ýÓVarious€types€of€hydraulic€structures€and€headworks€such€as€dams,€barrages,Ð è8 Ðweirs,€etc.€constructed€on€many€of€rivers,€have€posed€a€threat€to€the€migration€of€riverineÐ °  Ðfishes.€This€resulted€in€considerable€fall€in€fish€productivity€in€the€river€system.€In€mostÐ xÈ! Ðof€the€hydraulic€structures,€although€different€types€of€facilities€(fish€ladders,€fishways,Ð @" Ðfish€locks)€have€been€provided€to€enable€the€fish€to€migrate€upstream€past€the€obstacles,€itÐ  X# Ðis€reported€that€majority€of€the€devices€are€hardly€usable€for€the€migrating€fish.€This€isÐ Ð $ Ðbecause€of€empirical€design€of€most€of€the€devices€where€due€consideration€has€not€beenÐ ˜!è% Ðgiven€to€the€performance€and€behaviour€of€the€fish€species€that€would€utilise€the€pass€forÐ `"°& Ðascending€upstream.€Some€preliminary€observations€made€on€the€utility€and€effectivenessÐ (#x' Ðof€the€fish€locks€provided€in€the€Farakka€Barrage€and€their€role€to€pass€fish€upstream€overÐ ð#@( Ðthe€barrage,€having€a€rather€wide€range€of€heads,€are€presented.Ð ¸$ ) ÐÐ €%Ð * ÐÓ ¨ýXÓÐ H&˜!+ Ð295.à 4 àMulvey,€M.,€H.€P.€Liu€and€K.€L.€Kandl€(1998).€€Application€of€molecular€genetic€markersÐ '`", Ðto€conservation€of€freshwater€bivalves.€Journal€of€Shellfish€Research.€€ò ò17ó ó:1395„1405.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓFreshwater€bivalves€(Unionacea)€are€among€the€most€endangered€faunal€elementsÐ h)¸$/ Ðin€North€America.€Molecular€genetic€studies€have€much€to€offer€conservation€effortsÐ 0*€%0 Ðdirected€to€this€declining€fauna.€Molecular€genetic€data€can€provide€information€neededÐ ø*H&1 Ðto€identify€evolutionarily€significant€units,€resolve€taxonomic€ambiguities,€describeÐ À+'2 Ðpopulation€structure,€evaluate€impacts€of€habitat€fragmentation€and€reduced€gene€flowÐ ˆ,Ø'3 Ðamong€populations,€reconstruct€phylogenetic€relationships,€clarify€fish€host„glochidiaÐ P- (4 Ðrelationships,€and€provide€evidence€in€legal€actions.€Molecular€genetic€techniques€andÐ ° Ðtheir€application€to€freshwater€bivalves€are€reviewed.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ð296.à 4 àMundie,€J.€H.€(1991).€Perspectives:€Overview€of€effects€of€Pacific€Coast€river€regulationÐ Ð  Ðon€salmonids€and€the€opportunities€for€mitigation.€Pages€€1„11€òòinóó€J.€Colt€and€R.€J.€White,Ð ˜è Ðeds.€Fisheries€Bioengineering€Symposium,€Bethesda,€Maryland€(USA),€AmericanÐ ` ° ÐFisheries€Society.Ð ( x Ðà 4 àÌÓ X¨ýÓCurrent€awareness€of€the€seriousness€of€losses€of€salmonid€fishes€associated€withÐ ¸   Ðhydroelectric€developments€and€with€water€abstraction€from€river€systems€has€stimulatedÐ € Ð  Ðrenewed€commitments€on€the€part€of€fishery€agencies€to€mitigation€of€damage,Ð H ˜  Ðrestoration€of€degraded€habitat,€protection€and€promotion€of€wild€stocks,€and€increasedÐ `  Ðartificial€production€of€salmonids.€To€achieve€these€aims€the€fish€system,€the€fluvialÐ Ø(  Ðsystem,€and€the€system€of€human€values€and€intentions€must€be€integrated;€in€additionÐ  ð  Ðtoday's€knowledge€must€be€equal€to€the€challenge.€Examination€of€the€present€status€ofÐ h¸  Ðsix€aspects€of€the€task€shows€that€(1)€facilitation€of€fish€passage€at€dams€is€a€very€highÐ 0€  Ðpriority€but€requires€greater€commitment,€(2)€hatchery€production€has€generatedÐ øH  Ðunreasonable€expectations€and€may€be€laying€the€basis€for€the€demise€of€wildÐ À Ðpopulations,€(3)€the€practice€of€stocking€fry€has€run€ahead€of€its€evaluation,€(4)Ð ˆØ Ðdetermination€of€instream€flow€requirements€is€bedeviled€by€spurious€quantification,€(5)Ð P  Ðdrawdown€requirements€of€impoundments€seem€incompatible€with€fishery€objectives,Ð h Ðand€(6)€stream€habitat€improvements€give€mixed€results€and€may€be€of€restrictedÐ à0 Ðapplication€in€terms€of€scale.€Yet€another€limitation€of€fisheries'€aspirations€lies€inÐ ¨ø Ðpolitical€support.€It€is€concluded€that€this€is€a€time€for€stock„taking,€improvement€ofÐ pÀ Ðcurrent€practices,€and€assessment€of€trends.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ð297.à 4 àMutsin'sh,€A.€N.€(1979).€€Current€velocities€and€the€behavior€of€young€fish.€Journal€ofÐ à ÐIchthyology.€€ò ò19ó ó:171„173.Ð X¨ Ðà 4 àÌÓ X¨ýÓThe€paper€is€a€brief€account€of€experiments€carried€out€to€study€the€behaviorÐ è8 Ð(swimming€speed,€swimming€duration,€orientation)€of€young€roach€and€rainbow€trout€inÐ °  Ðrelation€to€flow€velocities€in€the€zone€influenced€by€water€intake€structures.Ð xÈ! ÐÓ ¨ýXÓÐ @" Ð298.à 4 àNakamura,€S.€(1997).€Fishways€for€upstream€diadromous€migrants.€Pages€€34„38€òòinóó€Ð  X# ÐInternational€Symposium€on€Fish€Migration:€Physiology€and€Ecology€of€Fish€Migration,Ð Ð $ ÐHokkaido€(Japan),€Memoirs€of€the€Faculty€of€Fisheries,€Hokkaido€University.Ð ˜!è% ÐÐ `"°& Ðà 4 àÌÓ X¨ýÓThis€paper€presents€a€short€review€of€some€recent€advances€in€fishwayÐ ð#@( Ðtechnology€such€as€new€types€of€fishways€and€new€data€on€velocities€in€fishways€and€onÐ ¸$ ) Ðfish€swimming€ability.€It€also€includes€new€concepts€such€as€maintaining€a€fishway'sÐ €%Ð * Ðeffectiveness€in€high€water€stages€and€the€need€to€offer€equal€opportunity€for€successfulÐ H&˜!+ Ðmigration€to€all€diadromous€migrants.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ðòò299.óóà 4 àNational€Technical€Information€Service€(1991).€€Fishways:€design€and€operation€1970€„Ð h)¸$/ ÐFebruary€1986.€NTIS,€Bibliography€PB86„857299/GAR.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓAn€annotated€bibliography€from€the€open€literature€on€the€design€and€operationÐ À+'2 Ðof€fishways,€covering€the€period€1970€to€1986,€is€presented.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð300.à 4 àNemenyi,€P.€(1941).€€An€annotated€bibliography€of€fishways.€University€of€Iowa€StudiesÐ xÈ Ðin€Engineering€Bulletin24.Ð @ Ðà 4 àÌÓ X¨ýÓAn€effort€has€been€made€to€give€to€this€bibliography€a€fairly€comprehensiveÐ Ð  Ðscope€in€the€sense€that€it€includes€abstracts€and€titles€of€papers€covering€an€entire€groupÐ ˜è Ðof€interrelated€subjects;€and€to€make€it€as€far€as€possible€representative€of€all€significantÐ ` ° Ðtrends€of€recent€progress€in€these€fields€attained€mainly€in€western€and€northwesternÐ ( x ÐEurope,€as€well€as€in€this€country.Ð ð @ ÐÓ ¨ýXÓÐ ¸   ÐÐ € Ð  Ð301.à 4 àNeves,€R.€J.,€J.€R.€Weaver€and€A.€V.€Zale€(1985).€€An€evaluation€of€host€fish€suitabilityÐ H ˜  Ðfor€glochidia€of€òòVillosa€vanuxemióó€and€òòV.€nebulosaóó€(Pelecypoda:€Unionidae).€AmericanÐ `  ÐMidland€Naturalist.€€ò ò113ó ó:13„19.Ð Ø(  Ðà 4 àÌÓ X¨ýÓFish€species€congeneric€with€previously€identified€hosts,€as€well€as€exotic€fishesÐ h¸  Ð(òòXiphophorus€variatusóó€and€òòTilapia€aureaóó)€and€the€mosquitofish€òòGambusia€affinisóó,€wereÐ 0€  Ðexposed€to€glochidia€of€òòVillosa€vanuxemióó€or€òòV.€nebulosaóó€to€determine€whetherÐ øH  Ðphytogenetically€similar€fishes€can€serve€as€hosts.€Glochidia€of€òòV.€vanuxemiÐ À Ðóómetamorphosed€on€black€òòCottus€baileyióó,€mottled€òòC.€bairdióó€and€slimy€òòC.€cognatusóóÐ ˆØ Ðsculpins,€and€glochidia€of€òòV.€nebulosaóó€metamosphosed€on€spotted€òòMicropterusÐ P  Ðpunctulatusóó,€largemouth€òòM.€samoidesóó€and€Suwannee€òòM.€notiusóó€basses€and€theÐ h Ðmosquitofish.€Exotic€fishes€were€unsuitable€hosts.€A€review€of€previous€òòin€vivoóó€and€òòinÐ à0 Ðvitroóó€studies€suggests€that€chemical€components€of€the€blood€serum€in€fishes,€as€yetÐ ¨ø Ðunidentified,€dictate€host€suitability€to€specific€glochidia.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð302.à 4 àNeves,€R.€J.€and€J.€D.€Williams€(1994).€€Status€of€the€freshwater€mussel€fauna€in€theÐ È ÐUnited€States.€Journal€of€Shellfish€Research.€€ò ò13ó ó:345„346.Ð à Ðà 4 àÌÓ X¨ýÓA€comprehensive€review€of€the€conservation€status€of€the€297€species€andÐ  p Ðsubspecies€of€native€freshwater€mussels€in€the€U.S.€was€completed€to€assess€present€andÐ è8 Ðfuture€trends€for€the€fauna.€Distributional€data,€historic€and€recent€collection€records€ofÐ °  Ðbiologists,€and€literature€reviews€provided€sufficient€information€to€categorize€the€statusÐ xÈ! Ðof€each€species.€Twenty„one€taxa€(7%)€are€listed€as€endangered€but€presumed€extinct;€77Ð @" Ð(21%)€are€endangered€but€extant;€43€(14%)€are€threatened;€72€(24%)€are€of€specialÐ  X# Ðconcern,€14€(5%)€are€of€undetermined€status;€and€only€70€(24%)€are€considered€stable€atÐ Ð $ Ðthis€time.€The€primary€reasons€for€the€decline€of€freshwater€mussels€are€habitatÐ ˜!è% Ðdestruction€from€dams,€channel€modification,€siltation,€contaminants,€and€theÐ `"°& Ðintroduction€of€exotic€mollusks.€Construction€of€dams€within€the€Tennessee€River€systemÐ (#x' Ðby€the€Tennessee€Valley€Authority,€and€dams€and€navigation€projects€in€large€rivers€byÐ ð#@( Ðthe€U.S.€Army€Corps€of€Engineers€created€impoundments€and€tailwaters€that€wereÐ ¸$ ) Ðunsuitable€for€many€indigenous€species.€Nonpoint€source€pollution€from€agriculture€andÐ €%Ð * Ðurban€runoff,€and€point€source€discharges€have€contributed€pollutants€and€contaminantsÐ H&˜!+ Ðto€degrade€water€quality.€Competition€from€non„native€mollusks€such€as€the€Asian€clamÐ '`", Ð(òòCorbicula€flumineaóó)€has€seemingly€affected€some€mussel€populations€in€streams,€and€theÐ Ø'(#- Ðzebra€mussel€(òòDreissena€polymorphaóó)€appears€poised€to€decimate€commerciallyÐ  (ð#. Ðimportant€mussel€populations€occurring€in€large€rivers.€The€high€numbers€of€imperiledÐ h)¸$/ Ðfreshwater€mussels€in€the€U.S.,€which€harbors€the€most€diverse€mussel€faunal€globally,Ð 0*€%0 Ðindicate€an€impending€extinction€crisis€that€will€severely€reduce€an€important€componentÐ ø*H&1 Ðof€aquatic€biodiversity.€The€harvest€and€export€of€mussel€shells€for€the€cultured€pearlÐ À+'2 Ðindustry€in€Asia€will€be€affected€by€the€decline€in€mussel€populations€in€the€U.S.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð303.à 4 àNicola,€G.€G.,€B.€Elvira€and€A.€Almodovar€(1996).€€Dams€and€fish€passage€facilities€inÐ xÈ Ðthe€large€rivers€of€Spain:€effects€on€migratory€species.€Archiv€fuer€HydrobiologieÐ @ ÐSupplement.€€ò ò113ó ó:375„379.Ð X Ðà 4 àÌÓ X¨ýÓThe€construction€of€dams€in€Spain€has€steadily€increased€during€this€century,Ð ˜è Ðwith€a€peak€between€1960€and€1990.€Today,€there€are€more€than€1100€operating€largeÐ ` ° Ðdams.€The€presence€of€dams€without€fish€passes€in€large€rivers€appears€to€be€a€majorÐ ( x Ðcontributing€factor€in€the€decline€of€native€fish,€especially€of€migratory€species.€In€fact,Ð ð @ Ðall€anadromous€and€catadromous€fish€are€presently€threatened€and€included€in€theÐ ¸   ÐSpanish€Red€Data€Book.€Species€such€as€lamprey€òòPetromyzon€marinusóó,€sturgeonÐ € Ð  ÐòòAcipenser€sturioóó,€shads€òòAlosaóó€and€eel€òòAnguilla€anguillaóó€are€now€extinct€in€wide€areas€ofÐ H ˜  Ðcentral€Spain,€due€to€the€blockage€of€fish€movements€caused€by€dams€built€in€large€rivers.Ð `  ÐAs€part€of€an€ongoing€national€project€started€in€1993,€we€researched€the€existence€andÐ Ø(  Ðeffectiveness€of€fish€passage€facilities€at€Spanish€dams.€The€main€preliminary€finding€isÐ  ð  Ðthat€fishways€are€frequently€absent€in€large€dams,€while€fish€ladders€are€the€mostÐ h¸  Ðcommon€type€of€fish€pass€used€in€weirs.€Additional€mitigating€measures€to€reduce€theÐ 0€  Ðnegative€effect€of€dams€on€fish€populations€are€also€suggested.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð304.à 4 àNilsson,€C.€and€J.€E.€Brittain€(1996).€Remedial€strategies€in€regulated€rivers:€IntroductoryÐ P  Ðremarks.€Pages€€347„351€òòinóó€J.€E.€Brittain,€I.€Brinkman€and€C.€Nilsson,€eds.€RemedialÐ h ÐStrategies€in€Regulated€Rivers,€Lycksele€(Sweden),€Regulated€Rivers:€Research€&Ð à0 ÐManagement.Ð ¨ø Ðà 4 àÌÓ X¨ýÓThis€paper€summarizes€recent€examples€of€measures€to€remediate€the€ecology€ofÐ 8ˆ Ðregulated€and€fragmented€rivers€in€boreal€and€temperate€regions.€The€catchment€area€isÐ P Ðsuggested€as€the€most€appropriate€scale€and€framework€for€such€measures.€SuitableÐ È Ðmeasures€may€include€reinstatement€of€flooding€and€productivity€levels,€management€ofÐ à Ðnuisance€growth€of€aquatic€macrophytes,€rehabilitation€of€depauperate€riparian€zones,Ð X¨ Ðincreased€habitat€diversity,€stocking€of€fish€and€construction€of€bypass€channels€for€fishÐ  p Ðmigration.€Finally,€an€overall€approach€to€remedial€measures€is€proposed€in€which€theyÐ è8 Ðform€part€of€an€integrated€catchment€management€for€regulated€rivers.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð305.à 4 àNorth,€J.€A.,€R.€C.€Beamesderfer€and€T.€A.€Rien€(1993).€€Distribution€and€movements€ofÐ  X# Ðwhite€sturgeon€in€three€lower€Columbia€River€reservoirs.€Northwest€Science.€€ò ò67ó ó:105„Ð Ð $ Ð111.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓThe€authors€determined€the€distribution€and€movement€of€white€sturgeonÐ (#x' ÐòòAcipenser€transmontanusóó€in€Bonneville,€The€Dalles,€and€John€Day€reservoirs€on€theÐ ð#@( ÐColumbia€River€from€April€through€August,€1987„1991.€The€study€also€evaluated€effectsÐ ¸$ ) Ðof€hydroelectric€dams€on€white€sturgeon€populations.€Differences€in€catch€per€setline„dayÐ €%Ð * Ðindicated€that€white€sturgeon€densities€were€greatest€in€Bonneville€Reservoir€and€least€inÐ H&˜!+ ÐJohn€Day€Reservoir.€White€sturgeon€concentrated€in€tailraces€of€dams€and€densityÐ '`", Ðgenerally€declined€downstream€through€each€reservoir.€Distribution€within€each€reservoirÐ Ø'(#- Ðvaried€with€sampling€month€and€were€related,€in€part,€to€temperature.€Most€fish€wereÐ  (ð#. Ðcaught€at€depths€from€10€to€30€m.€Tagged€fish€were€often€recaptured€in€locations€otherÐ h)¸$/ Ðthan€those€where€originally€marked.€Some€fish€were€recaptured€as€far€as€152€km€fromÐ 0*€%0 Ðwhere€released.€Individual€fish€frequently€traveled€the€length€of€a€reservoir,€but€wereÐ ø*H&1 Ðseldom€recaptured€in€another€reservoir.€Dams€restrict€white€sturgeon€movements,€mayÐ À+'2 Ðlimit€populations€in€some€reservoirs,€and€concentrate€fish€immediately€downstream,Ð ˆ,Ø'3 Ðpotentially€increasing€their€vulnerability€to€exploitation.€To€optimize€these€fisheries,Ð P- (4 Ðresource€managers€must€recognize€differences€among€reservoirs€and€employ€regulatoryÐ ° Ðschemes€specific€to€each.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ð306.à 4 àNorthcote,€T.€G.€(1978).€€Migratory€strategies€and€production€in€freshwater€fishes.€Pages€Ð Ð  Ð326„359€òòinóó€€S.€D.€Gerking,€ed.€Ecology€of€Freshwater€Fish€Production,€BlackwellÐ ˜è ÐScience,€Oxford€(England).Ð ` ° Ðà 4 àÌÓ X¨ýÓThere€are€many€mechanisms€for€increasing€survival,€growth,€abundance€andÐ ð @ Ðhence€production€of€freshwater€fish€which€can€result€from€their€migratory€behaviour.€TheÐ ¸   Ðimportance€of€migrations€seems€assured€as€an€adaptive€feature€of€major€significance€inÐ € Ð  Ðproduction€of€freshwater€fish,€especially€in€environments€subject€to€sharp€temporalÐ H ˜  Ðfluctuations€or€to€marked€spatial€patches€in€habitat€fertility.€Studies€to€determine€moreÐ `  Ðprecisely€the€degree€to€which€these€phases€of€migration€regulate€production€are€badlyÐ Ø(  Ðneeded€together€with€the€extent€to€which€they€can€purposefully€be€used€to€better€exploitÐ  ð  Ðthe€phenomenon€in€production€of€species€useful€to€man.Ð h¸  ÐÐ 0€  ÐÓ ¨ýXÓÐ øH  Ð307.à 4 àNorthcote,€T.€G.€(1998).€€Migratory€behaviour€of€fish€and€its€significance€to€movementÐ À Ðthrough€riverine€fish€passage€facilities.€Pages€€3„18€òòinóó€€M.€Jungwirth,€S.€Schmultz€and€S.Ð ˆØ ÐWeiss,€eds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð P  Ðà 4 àÌÓ X¨ýÓMigration€„€movements€involving€regular€cyclic€alternation€between€differentÐ à0 Ðhabitats€used€for€spawning,€feeding,€or€survival€is€a€common€behavioural€phenomenon€inÐ ¨ø Ðthe€Old€and€New€World€as€well€as€antipodal€freshwater€fish€faunas.€Usually€it€involves,Ð pÀ Ðat€some€stage€in€the€life€cycle,€both€upstream€and€downstream€movements€to€reach€theÐ 8ˆ Ðappropriate€habitats.€Upstream€phases€of€migration€are€active€with€high€energy€demandsÐ P Ðand€are€directed€by€a€variety€of€cues,€whereas€downstream€phases€often€but€not€alwaysÐ È Ðoccur€by€passive€drift.€Cyclic€patterns€of€movement€in€such€migrations€are€generallyÐ à Ðlinked€to€seasonal€environmental€changes,€in€concert€with€the€hormonal€stage€of€theÐ X¨ Ðindividuals€involved,€but€they€may€be€overlaid€by€did€fluctuations.€These€features€ofÐ  p Ðmigration€are€discussed€in€detail,€with€specific€examples€of€the€migratory€capabilities€andÐ è8 Ðrequirements€of€various€species.€Also€discussed€is€the€relevance€of€life„history€stages€toÐ °  Ðproblems€of€fish€passage€over€dams,€weirs€and€other€man„made€obstructions€in€riverÐ xÈ! Ðchannels.€Of€nearly€200€European€fleshwater€fish€species,€67€are€now€considered€to€beÐ @" Ðthreatened€by€a€variety€of€human€activities€and€major€causes€have€been€identified€for€48Ð  X# Ðof€these.€Over€half€of€these€causes€are€associated€with€obstructions€to€migration€pathwaysÐ Ð $ Ðat€dams€and€weirs,€or€other€alterations€in€river€channel€features.€There€can€be€little€doubtÐ ˜!è% Ðthat€migratory€passageway€problems€are€threatening€a€high€proportion€of€EuropeanÐ `"°& Ðfleshwater€fishes.€Similar€conditions€are€shown€to€affect€many€North€and€SouthÐ (#x' ÐAmerican€species,€as€well€as€those€in€the€antipodes.€If€a€major€loss€of€freshwater€fishÐ ð#@( Ðbiodiversity€is€to€be€avoided,€more€information€must€be€gained€rapidly€on€the€migratoryÐ ¸$ ) Ðbehaviour€of€freshwater€fishes,€and€on€effective€means€to€facilitate€the€passage€of€youngÐ €%Ð * Ðand€adults€in€both€upstream€and€downstream€directions.€Furthermore,€attention€must€alsoÐ H&˜!+ Ðbe€given€to€ensuring€that€appropriate€habitat€conditions€for€spawning,€feeding€andÐ '`", Ðsurvival€are€available€at€either€end€of€the€migratory€passageways€used.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð308.à 4 àO'Connell,€M.€T.€and€R.€J.€Neves€(1999).€€Evidence€of€immunological€reponses€by€a€hostÐ 0*€%0 Ðfish€òòAmbloplites€rupestrisóó€and€two€non„host€fishes€òòCyprinus€carpioóó€and€òòCarassiusÐ ø*H&1 Ðauratusóó€to€glochidia€of€a€freshwater€mussel€òòVillosa€irisóó.€Journal€of€Freshwater€Ecology.€Ð À+'2 Ðò ò14ó ó:71„78.Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓImmunological€responses€of€fishes€to€glochidia€were€evaluated€using€glochidia€ofÐ ° Ðthe€rainbow€mussel€òòVillosa€irisóó€to€infest€a€host€species,€rock€bass€òòAmbloplites€rupestrisóó,Ð xÈ Ðand€two€nonhost€species,€common€carp€òòCyprinus€carpioóó€and€goldfish€òòCarassius€auratusóó.Ð @ ÐOuchterlony€double„diffusion€tests€showed€that€host€and€non„host€species€expressed€aÐ X Ðhumoral€defense€factor€specific€to€glochidial€antigens€after€induced€infestation€withÐ Ð  Ðglochidia.€Precipitin€bands€were€observed€in€tests€on€infested€fishes€but€not€in€tests€onÐ ˜è Ðuninfested€fishes.€Microagglutination€tests€showed€that€host€and€non„host€species€thatÐ ` ° Ðwere€uninfested,€infested,€or€reinfested€with€glochidia€all€expressed€some€agglutinationÐ ( x Ðresponse€to€glochidial€antigens.€Experimental€fishes€had€specific€humoral€defense€factorsÐ ð @ Ðthat€reacted€immunologically€to€glochidia€tissue.Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð309.à 4 àOdeh,€M.€and€C.€Orvis€(1998).€€Downstream€fish€passage€design€considerations€andÐ `  Ðdevelopments€at€hydroelectric€projects€in€the€north„east€USA.€Pages€€267„280€òòinóó€€M.Ð Ø(  ÐJungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,€FishingÐ  ð  ÐNews€Books,€Vienna€(Austria).Ð h¸  Ðà 4 àÌÓ X¨ýÓAs€water€wheels€at€mills€in€the€north„eastern€United€States€have€been€replacedÐ øH  Ðwith€more€modern€turbine€generators,€the€need€to€protect€downstream€migrating€fishesÐ À Ðhas€increased.€To€protect€and€guide€fish€from€entrainment,€devices€such€as€closely€spacedÐ ˆØ Ðbar€racks€(angled€or€straight),€louvres,€curtain€walls€and€netting€have€been€used.Ð P  ÐBreaches,€weirs,€notches,€chutes,€pipes,€multiple€entrances€and€plunge€pools€are€otherÐ h Ðfeatures€considered€in€the€design€development€of€downstream€fish€passage€facilities.Ð à0 ÐCritical€elements€of€the€design€process€include€flow€approach,€attraction€flow,Ð ¨ø Ðbehavioural€guidance€devices,€bypass€location,€conveyance€mechanism€and€plunge€poolÐ pÀ Ðconditions.€This€chapter€discusses€the€developments€in€design€criteria€for€downstreamÐ 8ˆ Ðfish€passage€facilities€at€hydroelectric€sites€in€the€north„east€part€of€the€USA.€TargetedÐ P Ðanadromous€species€include€Atlantic€salmon€òòSalmo€salaróó,€American€shad€òòAlosaÐ È Ðsapidissimaóó,€blueback€herring€òòAlosa€aestivalisóó,€and€alewife€òòAlosa€pseudoharengusóó.Ð à ÐBioengineering€perspectives€on€the€design€criteria,€type€of€fish€protection€used€andÐ X¨ Ðexamples€of€existing€facilities€are€offered.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð310.à 4 àOgden,€S.€E.€(1974).€€Fish€escalator.€Official€Gazette€of€the€United€States€Patent€Office.Ð xÈ! ÐJanuary€8,€1974.€Patent€Number€3,783,623.€ò ò918:€ó ó577„581.Ð @" Ðà 4 àÌÓ X¨ýÓA€fish€elevator€or€escalator€is€designed€to€provide€a€means€whereby€fish€may€beÐ Ð $ Ðpassed€through,€over€or€around€a€dam.€The€elevator€has€a€pair€of€parallel€tubularÐ ˜!è% Ðpassageways€having€one€set€of€identical€corresponding€transverse€dimensions€and€aÐ `"°& Ðsecond€set€of€different€corresponding€dimensions.€Endless€chains€are€arranged€in€parallelÐ (#x' Ðreaches€with€one€reach€extending€along€the€mid„point€of€the€adjacent€side€of€one€of€theÐ ð#@( Ðpassageways€and€the€other€reach€of€the€chain€extending€midway€along€the€adjacent€sideÐ ¸$ ) Ðof€the€other€passageway.€Corresponding€reaches€of€the€chains€have€partitions€securedÐ €%Ð * Ðbetween€them.€The€partitions€are€mounted€so€as€to€be€slightly€oscillatable€and€held€inÐ H&˜!+ Ðtight€sliding€engagement€with€the€associated€passageways.€The€elevator€works€somewhatÐ '`", Ðin€the€manner€of€an€undershot€waterwheel€with€means€provided€to€admit€fish€to€beÐ Ø'(#- Ðelevated€to€the€higher€level€or€lowered€to€the€lower€level€into€the€compartments€betweenÐ  (ð#. Ðadjacent€partitions.Ð h)¸$/ ÐÐ 0*€%0 ÐÓ ¨ýXÓÐ ø*H&1 Ð311.à 4 àOldani,€N.€O.€(1996).€€[Environmental€impact€assessment€of€the€Yacyreta€Dam€on€theÐ À+'2 Ðfish€community.€The€transference€system].€Doctoral€Dissertation.€Facultad€de€FormacionÐ ˆ,Ø'3 ÐDocente€en€Ciencias66€pp.Ð P- (4 Ðà 4 àÌÓ X¨ýÓThe€increasing€interest€and€need€for€taking€advantage€of€the€Parana€River€(SouthÐ xÈ ÐAmerica)€resources,€together€with€the€building€of€hydroelectric€dams,€produces€a€highÐ @ Ðimpact€on€the€fish€community€due€to€the€interruption€of€the€migratory€processes€and€toÐ X Ðthe€loss€of€reproductive€areas.€The€construction€of€the€Yacyreta€Dam€(Argentina„Ð Ð  ÐParaguay)€started€in€December,€1983,€level€with€km€1460€of€the€Parana€River,€in€one€ofÐ ˜è Ðthe€richest€regions€of€Argentina€as€regards€to€the€size€of€fish€populations,€the€number€ofÐ ` ° Ðspecies€and€the€specimens€length.€The€aims€of€the€present€thesis€are:€1)€to€establish€theÐ ( x Ðvariations€in€the€fish€community€structure€downstream€Yacyreta€Dam;€and€2)€to€establishÐ ð @ Ðthe€structure€of€fish€community€in€the€left€and€right€elevators.€To€propose€handling€rulesÐ ¸   Ðin€order€to€improve€the€fishway€efficiency.€Fieldworks€were€carried€out€monthly,€fromÐ € Ð  ÐOctober€3,€1994,€until€July€17,€1996,€and€consisted€in:€1)€acoustic€evaluation€of€fishÐ H ˜  Ðabundance€and€control€captures€downstream€the€dam;€and€2)€fish€elevatoris€census.€TheÐ `  Ðstudies€allowed€to€establish€that,€the€total€number€of€fish€tranferred€in€1995€reachedÐ Ø(  Ð1,766,924,€with€a€monthly€average€of€176,692€fish€(n=10).€The€total€biomass€transferredÐ  ð  Ðin€1995€reached€982€metric€tons€(mt),€with€a€monthly€average€of€98.6€mt.€The€rightÐ h¸  Ðelevator€was€the€most€efficient,€as€regards€to€the€number€and€weight€of€fish€transferred,Ð 0€  Ðdue€to€its€nearness€to€the€bank€and€because€the€right€turbines€were€not€in€operation.Ð øH  ÐDuring€the€whole€period€studied,€this€fish€elevator€transferred€29%€more€fish€and€42%Ð À Ðmore€biomass.€A€seasonal€variation€in€the€abundance€of€fish€was€noticed€in€the€elevators,Ð ˆØ Ðshowing€maxima€in€spring€and€summer€which€coincided€with€the€results€of€fishingÐ P  Ðcontrol.€òòPimelodus€clariasóó€was€the€most€abundant€species€in€the€fish€elevator,€reachingÐ h Ð76.6%€followed€by€òòPterodoras€granulosusóó€with€11.8%.€òòP.€clariasóó€was€the€only€speciesÐ à0 Ðhaving€almost€constant€presence€in€the€fish€elevator€during€the€whole€year;òòÐ ¨ø ÐMegalancistrus€gigasóó€was€also€present€but€to€a€lesser€degree.€The€species€considered€asÐ pÀ Ðmigratory€are€predominant€in€the€system€from€October€until€January,€and€they€are€theÐ 8ˆ Ðfollowing€ones:€òòPseudoplatystoma€coruscans,óó€òòP.fasciatumóó,€òòPaulicea€lutkenióó,Ð P ÐòòPseudopimelodus€zungaroóó,€òòOxydoras€knerióó,€òòPtedoras€granulosusóó,€òòRhinodoras€d'orbignyióó,Ð È ÐòòProchilodus€lineatusóó,€òòSalminus€maxillosusóó,€òòLeporinus€obtusidensóó€and€òòRaphiodonÐ à Ðvulpinusóó.€Fish€elevators€were€highly€selective€for€small€and€very€big€sizes,€favouring€theÐ X¨ Ðtransfer€of€fish€whose€length€vary€between€35€and€55€mm.€Fish€elevators€allowed€theÐ  p Ðpassing€of€5€cohorts€for€òòL.obtusidensóó,€òòO.knerióó,€òòP.clariasóó;€of€4€for€òòP.granulosusóó,Ð è8 ÐòòP.lineatusóó;€of€3€for€òòM.gigasóó,€òòR.d'orbingyióó,€òòS.maxillosusóó,€òòP.labrosusóó,€of€2€for€òòSorubimÐ °  Ðlimaóó€and€of€1€for€òòSchizodon€borellióó.€The€size€and€average€of€transferred€fish€increases€inÐ xÈ! Ðspring€and€summer,€associated€to€migratory€species.€The€average€annual€weight€(in€1995)Ð @" Ðreached€0.66€kg.€The€highest€specific€abundance€was€noticed€in€the€early€morning€hoursÐ  X# Ðand€in€the€late€afternoon€hours.€Considering€the€daily€cycles€of€system€use,€3€groups€ofÐ Ð $ Ðspecies€were€identified:€diurnal€species€(òòM.gigasóó,€òòL.obtusidensóó,€òòR.d'orbignyióó);€nocturnalÐ ˜!è% Ðspecies€(òòP.clariasóó,€òòP.coruscansóó,€òòP.granulosusóó)€and€diurnal„nocturnal€species€(òòS.borellióó,Ð `"°& ÐòòO.knerióó,€òòS.limaóó,òò€S.maxillosusóó,€òòP.lineatusóó).€The€highest€estimates€of€the€total€number€ofÐ (#x' Ðfish€obtained€by€means€of€acoustic€evaluations€in€the€area€under€consideration€took€placeÐ ð#@( Ðbetween€March€and€April.€As€an€average,€they€represent€1,014€and€1,207€f/ha€with€107Ð ¸$ ) Ðand€214€FPEU€(Fish€Per€Effort€Unit)€values.€The€highest€abundance€of€fish€and€speciesÐ €%Ð * Ðtakes€place€between€October€and€November€(in€spring),€while€the€lowest,€in€both€cases,Ð H&˜!+ Ðhappens€mainly€in€autumn.€In€the€periods€of€highest€abundance,€the€total€number€of€fishÐ '`", Ðwould€reach€2,000,000.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð312.à 4 àOlson,€D.€E.,€D.€H.€Schupp,€V.€Macins€and€R.€L.€Kendall€(1978).€€An€hypothesis€ofÐ 0*€%0 Ðhoming€behavior€of€walleyes€as€related€to€observed€patterns€of€passive€and€activeÐ ø*H&1 Ðmovement.€Pages€€52„57€òòinóó€€R.€Kendall€and€J.€Stewart,€eds.€Selected€Coolwater€Fishes€ofÐ À+'2 ÐNorth€America,€American€Fisheries€Society€Special€Publication,€€St.€Paul,€MinnesotaÐ ˆ,Ø'3 Ð(USA).Ð P- (4 Ðà 4 àÌÓ X¨ýÓAn€hypothesis€that€walleye,€òòStizostedion€vitreumóó,€homing€is€an€adult„learnedÐ xÈ Ðbehavior€rather€than€a€natal„imprinted€response€is€presented.€Marked€adult€walleyes€tendÐ @ Ðto€home€to€spawning€areas.€Individual€walleyes€tend€to€return€to€the€same€open„waterÐ X Ðfeeding€areas€in€successive€years.€Movement€of€immature€walleyes€often€differs€from€thatÐ Ð  Ðof€adults€in€the€same€waters.€Intensity€of€walleye€homing€varies€in€separate€waters€andÐ ˜è Ðappears€to€be€influenced€by€physical€characteristics€of€the€environment€and€strengthenedÐ ` ° Ðby€repeated€migrations.€River€and€wind€currents€commonly€move€walleye€eggs€and€fryÐ ( x Ðgreat€distances€from€the€site€of€egg€deposition€before€fry€are€sufficiently€developed€toÐ ð @ Ðcommence€feeding.€This€makes€natal€conditioning€to€spawning€areas€unlikely.Ð ¸   ÐÓ ¨ýXÓÐ € Ð  ÐÐ H ˜  Ð313.à 4 àOrsborn,€J.€F.€(1987).€€Fishways€„„€historical€assessment€of€design€practices.€Pages€€122„Ð `  Ð130€òòinóó€€M.€J.€Dadswell,€R.€J.€Klauda,€C.€M.€Moffitt,€R.€L.€Saunders,€R.€A.€Rulifson€and€J.Ð Ø(  ÐE.€Cooper,€eds.€Common€Strategies€of€Anadromous€and€Catadromous€Fishes,€AmericanÐ  ð  ÐFisheries€Society€Symposium€Serial,€Boston,€Massachusetts€(USA).Ð h¸  Ðà 4 àÌÓ X¨ýÓFishway€design€has€evolved€in€a€conservative€fashion.€Initial€costs€or€practicalityÐ øH  Ðhave€limited€the€development€of€some€innovative€structures.€Conservative€design€stemsÐ À Ðfrom€(1)€a€lack€of€hard€data€on€fish€swimming€and€leaping€capabilities,€(2)€a€lack€ofÐ ˆØ Ðintegration€of€fluid€mechanics€with€fish€capabilities,€and€(3)€designs€based€on€fishÐ P  Ðresponses€rather€than€on€stimuli.€This€paper€summarizes€the€state€of€the€art€in€fishwayÐ h Ðdesign€and€the€development€of€several€more€efficient€fishway€designs.€The€efficienciesÐ à0 Ðare€derived€from€a€combination€of€more€expeditious€fish€passage,€maximization€of€theÐ ¨ø Ðinstream€flow€operating€range,€and€less€costly€construction.€When€competing€orÐ pÀ Ðconflicting€water€uses€are€present,€such€as€in€the€development€of€small€hydropower,€theÐ 8ˆ Ðminimization€of€water€use€in€the€fishway€can€become€a€fourth€consideration.Ð P ÐÐ È ÐÓ ¨ýXÓÐ à Ð314.à 4 àOrsborn,€J.€F.€and€P.€D.€Powers€(1986).€€Fishways:€An€assessment€of€their€developmentÐ X¨ Ðand€design.€Part€3€of€4.€Final€project€report.€U.S.€Department€of€Energy,€Final€projectÐ  p Ðreport€DOE/BP„300.Ð è8 Ðà 4 àÌÓ X¨ýÓThe€historical€developments€of€certain€design€features,€criteria€and€researchÐ xÈ! Ðactivities€are€traced.€Current€design€practices€are€summarized€based€on€the€results€of€anÐ @" Ðinternational€survey€and€interviews€with€agency€personnel€and€consultants.€The€fluidÐ  X# Ðmechanics€and€hydraulics€of€fishway€systems€are€discussed.€Fishways€(or€fishpasses)€canÐ Ð $ Ðbe€classified€in€two€ways:€(1)€on€the€basis€of€the€method€of€water€control€(chutes,€stepsÐ ˜!è% Ð(ladders),€or€slots);€and€(2)€on€the€basis€of€the€degree€and€type€of€water€control.€ThisÐ `"°& Ðdegree€of€control€ranges€from€a€natural€waterfall€to€a€totally€artificial€environment€at€aÐ (#x' Ðhatchery.€Systematic€procedures€for€analyzing€fishways€based€on€their€configuration,Ð ð#@( Ðspecies,€and€hydraulics€are€presented.€Discussions€of€fish€capabilities,€energyÐ ¸$ ) Ðexpenditure,€attraction€flow,€stress€and€other€factors€are€included.Ð €%Ð * ÐÐ H&˜!+ ÐÓ ¨ýXÓÐ '`", Ð315.à 4 àParasiewicz,€P.,€J.€Eberstaller,€S.€Weiss€and€S.€Schmutz€(1998).€€Conceptual€guidelinesÐ Ø'(#- Ðfor€nature„like€bypass€channels.€Pages€€348„362€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.Ð  (ð#. ÐWeiss,€eds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓA€wide€range€of€technologies€exist,€and€are€being€further€developed,€to€pass€fishÐ ø*H&1 Ðboth€upstream€and€downstream€around€various€obstacles€primarily€involving€hydropowerÐ À+'2 Ðor€irrigation€projects.€Most€of€these€technologies€are€highly€engineered€and€follow€designÐ ˆ,Ø'3 Ðcriteria€that€have€been€developed€with€the€aid€of€both€hydraulic€modelling€and€empiricalÐ P- (4 Ðdata.€Concurrent€with€these€developments€is€an€increasing€interest€in€more€nature„likeÐ ° Ðbypass€designs,€especially€at€small„scale€or€low„head€river€barriers.€This€interest€is€notÐ xÈ Ðaccompanied€by€specific€or€even€general€design€criteria,€and€thus€there€may€be€someÐ @ Ðhesitance€to€apply€such€designs€more€broadly.€This€chapter€presents€conceptualÐ X Ðguidelines€for€both€defining€and€planning€nature„like€bypass€channels,€primarily€based€onÐ Ð  Ðexperiences€gained€in€Austria€but€also€considering€their€potential€application€elsewhere.Ð ˜è ÐA€basic€planning€strategy€is€presented€based€on€river€size€and€general€channelÐ ` ° Ðmorphology€in€consideration€of€the€fish€assemblage€present,€the€goal€being€to€mimicÐ ( x Ðnatural€systems€in€which€the€species€of€interest€are€found,€rather€than€engineeringÐ ð @ Ðchannels€that€accommodate€set€hydraulic€criteria.€Emphasis€is€placed€on€the€site„specificÐ ¸   Ðnature€of€such€constructions,€their€inherent€heterogeneity,€and€necessity€for€post„Ð € Ð  Ðconstruction€monitoring€and€adaptation.€The€role€that€nature„like€bypasses€can€play€inÐ H ˜  Ðproviding€critically€needed€flowing€water€habitat€in€heavily€engineered€rivers€is€alsoÐ `  Ðarticulated.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð316.à 4 àPasch,€R.€W.€(1986).€€Assessment€of€fish€passage€technology€applicable€to€John€SevierÐ 0€  ÐDetention€Dam.€Tennessee€Valley€Authority,€Division€of€Air€and€Water€Resources,Ð øH  ÐReport€TVA/ONRED/WRF„87/5.Ð À Ðà 4 àÌÓ X¨ýÓThis€report€provides€an€assessment€of€existing€technologies€and€developments€inÐ P  Ðfish€passage€technology€applicable€to€moving€sauger€and€paddlefish€upstream€andÐ h Ðdownstream€of€the€John€Sevier€Detention€Dam.Ð à0 ÐÐ ¨ø ÐÓ ¨ýXÓÐ pÀ Ð317.à 4 àPasch,€R.€W.,€P.€A.€Hackney€and€J.€A.€Holbrook,€II€(1980).€€Ecology€of€paddlefish€in€OldÐ 8ˆ ÐHickory€Reservoir,€Tennessee,€with€emphasis€on€first„year€life€history.€Transactions€ofÐ P Ðthe€American€Fisheries€Society.€€ò ò109ó ó:157„167.Ð È Ðà 4 àÌÓ X¨ýÓPaddlefish,€òòPolyodon€spathulaóó€,€moved€to€the€upper€reaches€of€Old€HickoryÐ X¨ ÐReservoir€(a€mainstem€reservoir€on€the€Cumberland€River€in€north„central€Tennessee)Ð  p Ðduring€the€March„May€spawning€period€and€concentrated€in€the€tailwaters€of€CordellÐ è8 ÐHull€Dam€(Cumberland€River)€and€Center€Hill€Dam€(Caney€Fork€River).€Paddlefish€eggsÐ °  Ðwere€collected€5.6€km€downstream€from€Cordell€Hull€Dam€beginning€13€April,€andÐ xÈ! Ðlarvae€were€found€beginning€21€April€1977.€No€paddlefish€eggs€or€larvae€were€collectedÐ @" Ðin€the€Caney€Fork€River,€presumably€because€the€low€temperature€(11„11.5€C)€of€theÐ  X# ÐCenter€Hill€Dam€discharge€prevented€spawning€there.€No€paddlefish€greater€than€18€mmÐ Ð $ Ðtotal€length€were€taken€by€larvae€sampling€gear,€and€gill€nets€were€ineffective€inÐ ˜!è% Ðcapturing€young€of€year€and€yearlings.€Paddlefish€from€50€mm€to€400€mm€total€length,Ð `"°& Ðhowever,€were€impinged€on€the€intake€screens€at€the€Gallatin€Steam€Electric€Plant€on€OldÐ (#x' ÐHickory€Reservoir€in€large€numbers€(approximately€9000€from€August€1975€to€MayÐ ð#@( Ð1976).€Comparisons€of€lengths€on€capture€dates€with€similar€data€reported€in€the€literatureÐ ¸$ ) Ðdemonstrated€that€the€impinged€paddlefish€were€young€of€year€which€attainedÐ €%Ð * Ðapproximately€300€mm€total€length€by€age€I.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð318.à 4 àPaukert,€C.€P.€and€W.€L.€Fisher€(2000).€€Abiotic€factors€affecting€summer€distributionÐ  (ð#. Ðand€movement€of€male€paddlefish,€òòPolyodon€spathulaóó,€in€a€prairie€reservoir.Ð h)¸$/ ÐSouthwestern€Naturalist.€€ò ò45ó ó:133„140.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓSix€male€paddlefish,€òòPolyodon€spathulaóó,€were€implanted€with€ultrasonicÐ À+'2 Ðtemperature„sensing€transmitters€and€tracked€during€June€through€August€1997€toÐ ˆ,Ø'3 Ðquantify€effects€of€physicochemical€conditions€on€their€distribution€and€movement€inÐ P- (4 ÐKeystone€Reservoir,€Oklahoma.€Paddlefish€moved€about€twice€as€much€during€night€thanÐ ° Ðday.€Movement€rate€of€paddlefish€was€related€to€reservoir€water€level,€inflow,€andÐ xÈ Ðdischarge€from€the€reservoir€at€night;€however,€none€of€these€variables€was€significantÐ @ Ðduring€the€day.€Location€in€the€reservoir€(distance€from€the€dam)€was€negatively€relatedÐ X Ðto€water€level€and€positively€related€to€inflow€during€day€and€night€periods.€Location€inÐ Ð  Ðthe€reservoir€was€negatively€related€to€discharge€during€the€day.€Paddlefish€avoided€theÐ ˜è Ðhighest€available€water€temperatures,€but€did€not€always€avoid€low€dissolved€oxygenÐ ` ° Ðconcentrations.€Paddlefish€avoided€the€Cimarron€River€arm€of€the€reservoir€in€summer,Ð ( x Ðpossibly€because€of€high€salinity.€Our€study€demonstrates€that€distribution€of€paddlefishÐ ð @ Ðduring€summer€and€movement€in€Keystone€Reservoir€was€influenced€by€physicochemicalÐ ¸   Ðand€hydrologic€conditions€in€the€system.€However,€biotic€factors€(e.g.,€food€availability)Ð € Ð  Ðnot€measured€in€this€study€may€have€been€influenced€by€abiotic€conditions€in€theÐ H ˜  Ðreservoir.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð319.à 4 àPaukert,€C.€P.€and€W.€L.€Fisher€(2001).€€Spring€movements€of€paddlefish€in€a€prairieÐ h¸  Ðreservoir€system.€Journal€of€Freshwater€Ecology.€€ò ò16ó ó:113„124.Ð 0€  Ðà 4 àÌÓ X¨ýÓPaddlefish€(Polyodon€spathula)€movements€and€habitat€use€were€monitored€in€theÐ À ÐKeystone€Reservoir€System,€Oklahoma€during€1996„1998€to€determine€reproductiveÐ ˆØ Ðactivity€patterns.€Paddlefish€spring€spawning€migrations€were€more€dependent€on€waterÐ P  Ðflows€than€water€temperature€or€photoperiod.€Paddlefish€moved€up€the€Cimarron€RiverÐ h Ðand€Arkansas€River€in€1997€and€1998€when€spring€flows€increased.€However,€they€didÐ à0 Ðnot€migrate€up€the€rivers€in€1996,€a€year€with€extremely€low€flows.€Suitable€spawningÐ ¨ø Ðsubstrata€were€found€in€the€Salt€Fork€River,€a€major€tributary€of€the€Arkansas€River,€andÐ pÀ Ðthe€tailwaters€of€Kaw€Dam€on€the€Arkansas€River.€Paddlefish€were€located€over€suitableÐ 8ˆ Ðspawning€substrata€in€the€Salt€Fork€River;€however,€no€larvae€were€collected.€AlthoughÐ P Ðpaddlefish€migrate€up€the€Cimarron€River€in€spring,€minimal€spawning€habitat€may€limitÐ È Ðsuccessful€spawning€in€that€river.€In€1998,€paddlefish€moved€into€the€Salt€Fork€RiverÐ à Ðrather€than€the€Kaw€Dam€tailwaters,€presumably€because€there€was€limited€flow€fromÐ X¨ ÐKaw€Dam€that€spring.€Paddlefish€in€the€Keystone€Reservoir€system€appear€to€haveÐ  p Ðadapted€to€the€high€spring€water€temperatures€and€fluctuating€flows€enabling€successfulÐ è8 Ðreproduction.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð320.à 4 àPavlov,€D.€S.,€A.€S.€Barekyan,€M.€A.€Skorobogatov€and€L.€G.€Shtaf€(1983).€€HydraulicÐ  X# Ðcharacteristics€of€the€current€that€produces€routes€for€fish€movement.€Doklady€BiologicalÐ Ð $ ÐSciences.€€ò ò270ó ó:230„233.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓA€model€hydrosystem€with€a€fish€passing€structure€arranged€along€the€axis€of€theÐ (#x' Ðspillway€front€was€set€up€in€a€hydraulic€tank€of€6.5€m€length€and€1.2€m€width.€€VariousÐ ð#@( Ðhydraulic€regimes€were€created€in€the€lower€water€race€of€the€model€with€the€help€of€theÐ ¸$ ) Ðgates€of€the€model€itself.€€The€current€depth€in€the€lower€water€race€of€the€hydrosystemÐ €%Ð * Ðcomprised€0.08€m.€€Current€hydraulic€characteristics€seen€to€be€involved€in€theÐ H&˜!+ Ðproduction€of€routes€of€fish€movement€in€a€current€included€the€longitudinal€velocityÐ '`", Ðcomponent,€the€turbulence€intensity,€and€the€transverse€gradient.€€The€data€obtained€wasÐ Ø'(#- Ðused€to€develop€a€method€for€predicting€the€entrance€of€fish€into€the€fish„passingÐ  (ð#. Ðstructures.Ð h)¸$/ ÐÓ ¨ýXÓÐ 0*€%0 ÐÐ ø*H&1 Ð321.à 4 àPavlov,€D.€S.,€A.€M.€Pakhorukov,€G.€N.€Kuragina,€V.€K.€Nezdoliy,€N.€P.€Nekrasova,€D.Ð À+'2 ÐA.€Brodskiy€and€A.€L.€Ersler€(1977).€€Some€features€of€the€downstream€migrations€ofÐ ˆ,Ø'3 Ðjuvenile€fishes€in€the€Volga€and€Kuban€Rivers.€Journal€of€Ichthyology.€€ò ò17ó ó:363„374.Ð P- (4 Ðà 4 àÌÓ X¨ýÓThe€pattern€of€downstream€migration€of€juveniles€of€various€fish€species€in€theÐ xÈ ÐVolga€and€Kuban€rivers€was€studied.€With€the€exception€of€clupeids€6„10€mm€long,€aÐ @ Ðdaily€migratory€rhythm€was€found€in€all€the€fish€species€investigated.€The€migration€isÐ X Ðassociated€with€the€loss€of€visual€orientation€by€the€fish€and€is€observed€only€during€theÐ Ð  Ðhours€of€darkness.€The€downstream€migration€continues€round€the€clock€in€the€KubanÐ ˜è ÐRiver€owing€to€the€low€transparency€of€the€water.€A€dynamic€pattern€has€been€establishedÐ ` ° Ðin€the€vertical€distribution€of€downstream€migrating€cyprinid,€clupeid€and€gobiidÐ ( x Ðjuveniles€throughout€the€24€hours.€Some€features€of€the€horizontal€distribution€ofÐ ð @ Ðjuveniles€are€noted.€The€distribution€of€juvenile€fishes€in€the€river€is€regarded€as€an€activeÐ ¸   Ðprocess€controlled€by€definite€behavioral€reactions.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð322.à 4 àPavlov,€D.€S.,€M.€A.€Skorobogatov€and€L.€G.€Shtaf€(1982).€€Effect€of€turbulence€onÐ Ø(  Ðcurrent€velocity€critical€for€fish.€Doklady€Biological€Sciences.€€ò ò267ó ó:1019„1021.Ð  ð  Ðà 4 àÌÓ X¨ýÓResults€of€experiments€with€21„29€mm€long€roach€òòRutilus€rutilusóó€demonstratedÐ 0€  Ðthat€the€rate€of€turbulence€had€a€pronounced€effect€on€current€velocity€critical€for€singleÐ øH  Ðfish€as€well€as€for€groups€of€5€fish.€Increasing€the€turbulence€by€40%€decreased€theÐ À Ðcritical€velocity€by€40„50%.€Experiments€with€longer€(31„39€mm)€fish€showed€that€theÐ ˆØ Ðcritical€current€velocity€was€higher€for€groups€of€fish€than€for€single€individuals.Ð P  ÐÓ ¨ýXÓÐ h ÐÐ à0 Ð323.à 4 àPavlov,€D.€S.,€M.€A.€Skorobogatov€and€L.€G.€Shtaf€(1982).€€Influence€of€degree€of€streamÐ ¨ø Ðturbulence€on€the€magnitude€of€the€critical€current€velocity€for€fish.€Doklady€BiologicalÐ pÀ ÐSciences.€€ò ò267ó ó:560„562.Ð 8ˆ Ðà 4 àÌÓ X¨ýÓOne€of€the€most€important€characteristics€of€a€stream€is€the€degree€of€itsÐ È Ðturbulence.€€In€fish€motion€the€critical€current€velocity€equals€the€minimum€currentÐ à Ðvelocity€that€exhausts€a€fish.€€In€order€to€increase€the€range€of€change€in€the€turbulenceÐ X¨ Ðintensity€in€the€stream,€a€system€of€races€was€created€above€the€upper€net€with€the€help€ofÐ  p Ða€submerged€hydraulic€spring,€acting€as€a€generator€of€elevated€turbulence.€€Young€roachÐ è8 Ðwere€used€in€the€study.€€A€stream€with€a€higher€degree€of€turbulence€possesses€a€greaterÐ °  Ðkinetic€energy€for€fish.€€Therefore,€the€energy€expenditures€of€fish€will€be€higher€in€suchÐ xÈ! Ðcurrents,€leading€to€a€decline€in€the€critical€current€velocity.€€The€findings€should€be€takenÐ @" Ðinto€account€in€the€control€of€fish€behavior.€€An€increase€in€the€degree€of€turbulence€inÐ  X# Ðactive€fishing€equipment,€such€as€a€trawler,€will€promote€the€most€rapid€exhaustion€of€theÐ Ð $ Ðfish€and€an€increase€in€the€catch.€€At€the€same€time€an€increased€stream€turbulence€in€theÐ ˜!è% Ðfish€tanks€of€fish„passing€structures€is€undesirable€as€it€will€result€in€the€loss€of€fish€to€theÐ `"°& Ðcurrent.Ð (#x' ÐÐ ð#@( ÐÓ ¨ýXÓÐ ¸$ ) Ð324.à 4 àPayne,€B.€S.€and€A.€C.€Miller€(1992).€€Mussel€surveys€at€potential€mooring€sites€for€bargeÐ €%Ð * Ðtows€near€Upper€Mississippi€River€Locks€and€Dams€9€and€10.€U.S.€Army€Corps€ofÐ H&˜!+ ÐEngineers,€Miscellaneous€Papers€of€the€U.S.€Army€Corps€of€Engineers€WaterwaysÐ '`", ÐExperimental€Station€WES/MP/EL„92„11.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓIn€September€1990,€a€survey€was€conducted€of€10€potential€mooring€sites€forÐ h)¸$/ Ðbarges€along€the€edge€of€the€navigation€channel€just€above€below€Locks€and€Dams€9€andÐ 0*€%0 Ð10.€In€general,€conditions€were€too€erosional€just€below€and€too€depositional€just€aboveÐ ø*H&1 Ðthe€locks€and€dams€to€support€substantial€populations€of€mussels.€The€only€substantialÐ À+'2 Ðcommunity€found€was€at€a€site€designated€as€A3,€at€river€mile€649.2€to€649.5€above€LockÐ ˆ,Ø'3 Ðand€Dam€9.€Nineteen€species€of€unionids€were€represented€among€629€individualsÐ P- (4 Ðcollected€at€this€location.€A€low„density€assemblage€(2€to€11€individuals/mÔÎÿ~Îÿ°Ô2Ô2°~ÎÿÔ)€occurred€atÐ ° Ðthe€upper€and€lower€ends€of€Site€A3.€The€endangered€species€òòLampsilis€higginsiióóÐ xÈ Ðcomprised€approximately€0.3€percent€of€the€mussel€community€at€Site€A3.€The€estimatedÐ @ Ðdensity€of€òòL.€higginsiióó€equaled€0.02€individual/mÔÎÿÖ&XÔ2Ô2XÖ&Ô.€This€density€value€was€slightly€lessÐ X Ðthan€the€range€of€densities€(0.04€to€0.23€individual/mÔÎÿžîÐ Ô2Ô2Ð žîÔ)€that€have€been€estimated€for€theÐ Ð  Ðleast€dense€populations€of€species€that€have€persisted€in€several€other€large„river€musselÐ ˜è Ðbeds.€Thus,€the€density€of€the€òòL.€higginsiióó€population€at€Site€A3€may€be€slightly€less€thanÐ ` ° Ðthe€minimum€required€for€a€reproductively€viable€population.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð325.à 4 àPayne,€B.€S.€and€A.€C.€Miller€(1998).€€Evaluation€of€freshwater€mussels€in€the€LowerÐ € Ð  ÐOhio€River€in€relation€to€the€Olmstead€Locks€and€Dam€Project:€1995,€1996,€and€1997Ð H ˜  ÐStudies.€U.S.€Army€Corps€of€Engineers,€Miscellaneous€Papers€of€the€U.S.€Army€Corps€ofÐ `  ÐEngineers€Waterways€Experimental€Station€WES„TR„EL„98„12.Ð Ø(  Ðà 4 àÌÓ X¨ýÓSurveys€were€conducted€in€1995,€1996,€and€1997€to€assess€communityÐ h¸  Ðcharacteristics,€population€demography€of€dominant€species,€status€of€endangeredÐ 0€  Ðspecies,€and€characteristics€of€nonindigenous€populations€of€freshwater€bivalves€in€theÐ øH  ÐLower€Ohio€River.€Data€will€be€used€to€analyze€impacts€of€construction€and€operation€ofÐ À Ða€new€lock€and€dam€at€River€Mile€(RM)€964.4.€The€greatest€focus€has€been€on€a€musselÐ ˆØ Ðbed€just€downstream€of€the€project.€Density€categories€of€<20,€20€to€50,€and€>50Ð P  Ðindividuals€per€square€meter€are€reasonable€for€delineating€low„,€moderate„,€and€high„Ð h Ðdensity€assemblages€within€this€bed.€Density€>200€individuals€per€square€meter€isÐ à0 Ðoccasionally€measured,€but€always€describes€a€location€heavily€dominated€by€recentÐ ¨ø Ðrecruits.€The€native€mussel€community€of€the€Lower€Ohio€River€is€dominated€byÐ pÀ ÐòòFusconaia€ebenaóó.€Dominance€of€this€species€was€high€at€RM€967€(near€Olmsted,€IL),Ð 8ˆ Ðtypically€exceeding€80€percent€of€the€community.€At€RM€957€(near€Post€Creek,€IL),€òòF.Ð P Ðebenaóó€is€much€less€dominant€(33€percent).€Species€richness€is€similar€at€both€locations.Ð È ÐThe€òòF.€ebenaóó€population€in€the€Lower€Ohio€River€is€heavily€dominated€by€a€single„yearÐ à Ðclass€(probably€1990)€of€recent€recruits.€Prior€to€the€exceptional€recruitment€in€1990,€thisÐ X¨ Ðpopulation€was€dominated€by€a€very€abundant€1981€cohort.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð326.à 4 àPeake,€S.,€F.€W.€H.€Beamish,€R.€S.€McKinley,€D.€A.€Scruton€and€C.€Katopodis€(1997).€Ð xÈ! ÐRelating€swimming€performance€of€lake€sturgeon,€òòAcipenser€fulvescensóó,€to€fishwayÐ @" Ðdesign.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò54ó ó:1361„1366.Ð  X# Ðà 4 àÌÓ X¨ýÓFishways€have€traditionally€been€designed€to€provide€safe€passage€for€jumpingÐ ˜!è% Ðfish€and€only€recently€have€nonjumping€species€been€considered.€Concern€overÐ `"°& Ðdwindling€populations€of€lake€sturgeon,€òòAcipenser€fulvescensóó,€has€focused€attention€ofÐ (#x' Ðfishway€designs€that€accommodate€its€swimming€abilities.€The€objective€of€this€studyÐ ð#@( Ðwas€to€derive€a€model€that€relates€endurance€of€lake€sturgeon€to€length€and€flowÐ ¸$ ) Ðcharacteristics€of€fishways.€Endurance€at€sustained€and€prolonged€swimming€speedsÐ €%Ð * Ðincreased€with€water€temperature€but€was€independent€of€temperature€at€higher€burstÐ H&˜!+ Ðspeeds.€Endurance€increased€with€total€length€at€all€swimming€velocities.€SwimmingÐ '`", Ðperformance€of€lake€sturgeon,€relative€to€body€length,€is€inferior€to€that€of€mostÐ Ø'(#- Ðsalmonids,€particularly€at€burst€speeds.€Fishway€designers€need€to€consider€swimmingÐ  (ð#. Ðability,€space€requirements,€and€behavior€of€lake€sturgeon€to€ensure€that€they€can€ascendÐ h)¸$/ Ðpotential€migratory€obstacles€safely.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð327.à 4 àPeake,€S.,€F.€W.€S.€Beamish,€R.€S.€McKinley,€C.€Katopodis€and€D.€A.€Scruton€(1995).€Ð ˆ,Ø'3 ÐSwimming€performance€of€lake€sturgeon€òòAcipenser€fulvescensóó.€Canada€Department€ofÐ P- (4 ÐFisheries€and€Oceans,€Canadian€Technical€Report€of€Fisheries€and€Aquatic€Sciences€No.Ð ° Ð2063.Ð xÈ Ðà 4 àÌÓ X¨ýÓFishways€have€traditionally€been€designed€to€provide€safe€passage€for€jumpingÐ X Ðfish€and€only€recently€have€non„jumping€species€been€considered.€Concern€overÐ Ð  Ðdwindling€populations€of€lake€sturgeon€òòAcipenser€fulvesensóó€has€focused€attention€onÐ ˜è Ðfishway€designs€that€accommodate€its€swimming€abilities.€The€objective€of€this€studyÐ ` ° Ðwas€to€derive€models€that€describe€swimming€endurance€and€critical€speed€for€lakeÐ ( x Ðsturgeon.€Critical€speed€increased€with€temperature€and€with€total€length.€Endurance€atÐ ð @ Ðsustained€and€prolonged€swimming€speeds€increased€with€temperature€but€wasÐ ¸   Ðindependent€of€temperature€at€higher€burst€speeds.€Endurance€increased€with€total€lengthÐ € Ð  Ðat€all€speeds.€Swimming€performance€of€lake€sturgeon,€relative€to€body€length,€is€inferiorÐ H ˜  Ðto€that€of€salmonids.€Fishway€designers€need€to€consider€swimming€ability,€spaceÐ `  Ðrequirements€and€behavior€of€lake€sturgeon€to€ensure€them€safe€passage€of€migratoryÐ Ø(  Ðobstructions.Ð  ð  ÐÐ h¸  ÐÓ ¨ýXÓÐ 0€  Ð328.à 4 àPeake,€S.,€R.€S.€McKinley€and€D.€A.€Scruton€(2000).€€Swimming€performance€of€walleyeÐ øH  Ð(òòStizostedion€vitreumóó).€Canadian€Journal€of€Zoology.€€ò ò78ó ó:1686„1690.Ð À Ðà 4 àÌÓ X¨ýÓSwimming€performance€of€walleye€(òòStizostedion€vitreumóó)€from€a€wild€populationÐ P  Ðwas€measured€relative€to€fork€length€(0.18„0.67€m)€and€water€temperature€(5.8„20.5€ÔÎÿæ6hÔoÔ2hæ6ÔC),Ð h Ðto€provide€models€for€setting€water€velocities€in€fishways€and€culverts.€UcritÔ2bà0Ô60ÔÎÿà0bÔ€(theÐ à0 Ðhighest€speed€maintainable€for€60€min)€values€ranged€from€0.30€to€0.73€m/s€andÐ ¨ø Ðincreased€significantly€with€length€and€temperature.€UcritÔ2¢òpÀÔ10ÔÎÿpÀ¢òÔ€(the€highest€speedÐ pÀ Ðmaintainable€for€10€min)€values€ranged€from€0.43€to€1.14€m/s€and€also€increasedÐ 8ˆ Ðsignificantly€with€fish€length€and€water€temperature.€When€startled,€walleye€were€able€toÐ P Ðattain€higher€speeds€(1.60„2.60€m/s)€during€short€(temperature„independent)€bursts€ofÐ È Ðswimming€activity.€The€relatively€low€UcritÔ2ÂàÔ60ÔÎÿàÂÔ€values€suggest€that€walleye€possess€aÐ à Ðnarrow€scope€for€aerobic€activity€compared€with€other€species,€which€may€account€forÐ X¨ Ðtheir€poor€performance€in€fishways.€However,€the€small€differences€between€UcritÔ2R¢ pÔ60ÔÎÿ pR¢Ô€andÐ  p ÐUcritÔ2jè8Ô10€ÔÎÿè8jÔvalues€and€the€large€differences€between€UcritÔ2jè8Ô10ÔÎÿè8jÔand€fast„start€performanceÐ è8 Ðsuggest€that€low€passage€efficiency€may€be€caused€by€a€behavioural€disinclination€toÐ °  Ðswitch€from€low€to€high€intensity€activity.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð329.à 4 àPearson,€W.€D.€and€K.€L.A.€(1984).€€Distribution€and€status€of€Ohio€River€fishes.€OakÐ Ð $ ÐRidge€National€Laboratory,€Final€Subcontract€Report€ORNL/Sub/79„7831/1.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓThis€substantial€report€presents€information€on€the€distribution€and€status€of€OhioÐ (#x' ÐRiver€fishes.€€Data€is€provided€on€species€composition,€diversity,€biomass,€relativeÐ ð#@( Ðabundance,€density,€and€changes€in€community€composition€associated€with€theÐ ¸$ ) Ðnavigation€system€on€the€Ohio€River.€€Of€particular€interest€is€data€pertaining€to€lockÐ €%Ð * Ðrotenoning€that€may€provide€some€inference€into€lock€use€by€migrating€fishes.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð330.à 4 àPearson,€W.€D.€and€B.€J.€Pearson€(1989).€€Fishes€of€the€Ohio€River.€Ohio€Journal€ofÐ  (ð#. ÐScience.€€ò ò89ó ó:181„187.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓTo€date,€159€species€of€fishes€(14€of€them€introduced€by€humans)€have€beenÐ ø*H&1 Ðreported€from€the€Ohio€River.€Three€native€fishes€(òòAcipenser€fulvescensóó,€òòAlosa€alabamaeóó,Ð À+'2 Ðand€òòAmmocrypta€asprellaóó)€have€apparently€been€eliminated€from€the€river.€The€OhioÐ ˆ,Ø'3 ÐRiver€fish€community€was€severely€affected€by€the€siltation€of€clean€gravel€substrates,Ð P- (4 Ðand€the€inundation€of€those€substrates€by€the€canalization€of€the€river€before€1927.€In€theÐ ° Ðpast€20„30€years,€populations€of€many€species€have€increased,€particularly€in€the€upperÐ xÈ Ðthird€of€the€river.€Some€pollution„intolerant€species€which€had€disappeared€from€theÐ @ Ðupper€reaches€of€the€river€between€1900€and€1950€have€been€returning€since€1970€(e.g.Ð X ÐòòPolyodon€spathulaóó,€òòHiodon€tergisusóó,€and€òòCarpiodes€veliferóó).€A€few€pollution„tolerantÐ Ð  Ðspecies€have€declined€in€abundance€since€1970€(e.g.€bullheads€and€òòIctalurus€catusóó).€TheÐ ˜è Ðmost€abundant€fishes€in€the€lock€chamber€samples€of€1957„87€were€òòNotropisÐ ` ° Ðatherinoidesóó,€òòDorosoma€cepedianumóó,€òòAplodinotus€grunniensóó,€òòNotropis€volucellusóó,€andÐ ( x ÐòòIctalurus€punctatusóó.€The€ongoing€recovery€of€the€Ohio€River€fish€community€shouldÐ ð @ Ðencourage€us€to€take€additional€steps€to€protect€the€river€from€catastrophic€spills€of€toxicÐ ¸   Ðmaterials€and€to€reintroduce€eliminated€native€fishes.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð331.à 4 àPegg,€M.€A.,€P.€W.€Bettoli€and€J.€B.€Layzer€(1997).€€Movement€of€saugers€in€the€lowerÐ Ø(  ÐTennessee€River€determined€by€radio€telemetry,€and€implications€for€management.€NorthÐ  ð  ÐAmerican€Journal€of€Fisheries€Management.€€ò ò17ó ó:763„768.Ð h¸  Ðà 4 àÌÓ X¨ýÓSince€1979,€abundances€of€sauger€òòStizostedion€canadenseóó€have€declined€in€theÐ øH  ÐTennessee€River€system.€Reasons€for€this€decline€may€include€overharvest,€loss€ofÐ À Ðspawning€habitat,€and€low€recruitment€due€to€extreme€flows.€The€purpose€of€this€studyÐ ˆØ Ðwas€to€investigate€the€movements€of€saugers€following€winter€concentration€belowÐ P  ÐPickwick€Dam,€Tennessee.€Thirty„seven€saugers€were€implanted€with€radio€transmittersÐ h Ðdirectly€below€Pickwick€Dam€and€were€tracked€between€December€1992€and€June€1993.Ð à0 ÐFour€saugers€moved€upstream€through€the€locks€at€Pickwick€Dam;€the€remaining€fishÐ ¨ø Ðstayed€within€the€first€30€km€of€the€tailwater€throughout€the€spawning€season.€ThreeÐ pÀ Ðareas€below€Pickwick€Dam€were€identified€as€possible€March€prespawn€staging€sites.Ð 8ˆ ÐAfter€April€1,€saugers€in€the€tailwater€area€began€a€rapid€downstream€migration€to€theÐ P Ðmain€basin€of€Kentucky€Lake.€Some€fish€moved€downstream€more€than€200€km€in€lessÐ È Ðthan€10€d€in€this€semiclosed€system.€Movements€encompassed€four€states€(Kentucky,Ð à ÐTennessee,€Mississippi,€and€Alabama)€along€the€Tennessee€River€system,€underscoringÐ X¨ Ðthe€need€for€interjurisdictional€management.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð332.à 4 àPellett,€T.€D.,€G.€J.€Van€Dyck€and€J.€V.€Adams€(1998).€€Seasonal€migration€and€homingÐ xÈ! Ðof€channel€catfish€in€the€Lower€Wisconsin€River,€Wisconsin.€North€American€Journal€ofÐ @" ÐFisheries€Management.€€ò ò18ó ó:85„95.Ð  X# Ðà 4 àÌÓ X¨ýÓA€multiyear€tag€and€recapture€study€was€conducted€to€determine€whether€channelÐ ˜!è% Ðcatfish€òòIctalurus€punctatusóó€were€migratory€and€if€they€had€strong€homing€tendencies.Ð `"°& ÐOver€10,000€channel€catfish€were€tagged€from€the€lower€Wisconsin€River€and€adjacentÐ (#x' Ðwaters€of€the€Upper€Mississippi€River€during€the€3„year€sampling€period.€Data€onÐ ð#@( Ðmovements€were€obtained€from€study€recaptures€and€through€tag€returns€and€harvestÐ ¸$ ) Ðinformation€provided€by€sport€anglers€and€commercial€fishers.€Channel€catfish€occupiedÐ €%Ð * Ðrelatively€small€home€ranges€during€summer,€migrated€downstream€to€the€upperÐ H&˜!+ ÐMississippi€River€in€autumn,€then€migrated€back€up€the€Wisconsin€River€in€spring€toÐ '`", Ðspawn€and€to€occupy€the€same€summer€home€sites€they€had€used€in€previous€summers.Ð Ø'(#- ÐFish€size€was€a€factor€in€the€degree€of€fidelity€to€summer€home€sites,€with€larger€fishÐ  (ð#. Ðshowing€greater€fidelity.Ð h)¸$/ ÐÐ 0*€%0 ÐÓ ¨ýXÓÐ ø*H&1 Ð333.à 4 àPenczak,€T.,€R.€Mahon€and€E.€K.€Balon€(1984).€€The€effect€of€an€impoundment€on€theÐ À+'2 Ðupstream€and€downstream€fish€taxocenes€(Speed€River,€Ontario,€Canada).€Archiv€furÐ ˆ,Ø'3 ÐHydrobiologie.€€ò ò99ó ó:200„207.Ð P- (4 Ðà 4 àÌÓ X¨ýÓAfter€damming€of€the€Speed€River€substantial€qualitative€and€quantitativeÐ xÈ Ðchanges€were€observed€in€the€fish€taxocenes€at€two€localities,€one€upstream€and€the€otherÐ @ Ðdownstream.€Upstream€the€species€composition€changed€only€slightly,€but€the€totalÐ X Ðpopulations€biomass€increased€growth€rates.€Downstream€new€species€were€found€andÐ Ð  Ðfour€previously€dominant€species€were€absent,€probably€as€a€result€of€the€coldÐ ˜è Ðhypolimnial€water€released€from€the€reservoir.€Disturbances€or€declines€in€reproductionÐ ` ° Ðof€several€species€were€observed.€In€spite€of€this€the€production€increased€3.2€times.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð334.à 4 àPenczak,€T.€and€R.€H.€K.€Mann€(1993).€A€preliminary€evaluation€of€the€effect€of€humanÐ € Ð  Ðactivity€on€the€fish€populations€of€the€Pilica€River,€central€Poland.€Pages€€101„115€òòinóó€R.€J.Ð H ˜  ÐWootton,€ed.€International€Symposium€on€the€Ecology€of€Fluvial€Fishes:€EnvironmentalÐ `  ÐVariation€of€Riverine€Fishes:€Management€Implications,€Lodz€(Poland),€Polish€ArchivesÐ Ø(  Ðof€Hydrobiology.Ð  ð  Ðà 4 àÌÓ X¨ýÓThe€impact€of€human€activity€in€the€Pilica€River€drainage€basin€(9245€kmÔÎÿþN 0€ Ô2Ô20€ þN Ô)€wasÐ 0€  Ðassessed€by€an€electrofishing€survey€of€140€sites€of€the€main€river€and€tributaries.€TheÐ øH  Ðsites,€which€included€all€stream€orders€from€I„VI,€were€divided€into€three€categories:Ð À Ðnatural,€modified€and€€moderately€polluted.€In€lower€order€streams,€river€channelÐ ˆØ Ðmodifications€had€a€negative€influence€on€fish€species€diversity€and€the€populationÐ P  Ðdensity€and€the€standing€crop€of€lithophilous€species.€In€modified,€higher€order€streamsÐ h Ðthese€indices€of€fish€population€dynamics€increased€probably€because€of€an€increase€inÐ à0 Ðfish€refuges€along€the€banks,€where€the€latter€were€reinforced€with€large€stones€and€treeÐ ¨ø Ðbranches.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð335.à 4 àPeter,€A.€(1998).€€Interruption€of€the€river€continuum€by€barriers€and€the€consequencesÐ È Ðfor€migratory€fish.€Pages€€99„112€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€FishÐ à ÐMigration€and€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð X¨ Ðà 4 àÌÓ X¨ýÓThe€following€contribution€summarises€the€results€of€several€small€studies,€andÐ è8 Ðuses€a€short€literature€review€to€emphasise€the€importance€of€barrier„free€streams€inÐ °  Ðmaintaining€populations€of€both€salmonid€and€non„salmonid€fish€species.€The€effect€of€aÐ xÈ! Ðhigh€(6.5€m)€and€a€very€low€obstacle€(40€cm)€on€the€fish€fauna€in€two€Swiss€rivers€wasÐ @" Ðdocumented.€A€considerable€loss€of€fish€species€was€observed€in€stream€reaches€aboveÐ  X# Ðthe€barriers.€Surveys€of€small€artificial€barriers€in€several€Swiss€river€systemsÐ Ð $ Ðdemonstrate€the€density€of€these€potential€migration€obstacles.€Movements€of€brown€troutÐ ˜!è% ÐòòSalmo€truttaóó€and€rainbow€trout€òòOnchorhynchus€mykissóó€were€shown€over€diel,€seasonalÐ `"°& Ðand€an€annual€time€scale€using€radio„telemetry.€Non„salmonid€fish€species,€typicallyÐ (#x' Ðthought€of€as€resident,€also€undergo€extensive€movements€and€therefore€depend€onÐ ð#@( Ðbarrier„free€streams€to€maintain€their€distribution.€Like€salmonids,€cyprinids€and€small„Ð ¸$ ) Ðsized€fish€species€depend€on€an€intact€river€corridor€that€allows€migration,€habitat€shiftsÐ €%Ð * Ðand€survival€of€the€population.€In€order€to€maintain€and€restore€biodiversity,€there€is€anÐ H&˜!+ Ðurgent€need€to€restore€the€longitudinal€integrity€of€running€waters.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð336.à 4 àPethebridge,€R.,€A.€Lugg€and€J.€Harris€(1998).€€Obstructions€to€fish€passage€in€NewÐ h)¸$/ ÐSouth€Wales€south€coast€streams.€NSW€Fisheries,€Cronulla,€N.S.W.€(Australia).Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓAll€Australian€freshwater€fish€have€a€need€to€move€between€habitat€areas€inÐ À+'2 Ðstreams€and€most€freshwater€species€of€southeastern€Australia€are€known€to€migrate€atÐ ˆ,Ø'3 Ðsome€stage€of€their€life€cycle.€In€the€southern€coastal€areas€of€New€South€Wales,€a€surveyÐ P- (4 Ðwas€undertaken€to€identify€and€document€fish€passage€obstructions.€The€254€obstructionsÐ ° Ðdocumented€included€high€dams,€farm€dams,€fixed€crest€weirs,€rock€weirs,€culverts,Ð xÈ Ðcauseways,€bridges€and€tidal€floodgates,€with€causeways€and€culverts€being€the€mostÐ @ Ðcommon€structures€to€obstruct€fish€passages.€A€fishway€priority€scheme€was€developed€toÐ X Ðprovide€a€quantitative,€objective€basis€to€rank€the€priority€of€a€fish€passage€restorationÐ Ð  Ðproject€for€any€obstruction,€either€by€building€a€fishway€or€removing€the€obstruction.€TheÐ ˜è Ðevaluative€criteria€used€include€the€size€of€the€river€system,€location€of€the€obstruction,Ð ` ° Ðpresence€of€threatened€species€and€the€severity€of€the€obstruction.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð337.à 4 àPetrere,€M.,€Jr.€(1985).€€[Migration€of€freshwater€fishes€in€Latin€America:€SomeÐ € Ð  Ðcomments].€FAO,€Rome€(Italy).Ð H ˜  Ðà 4 àÌÓ X¨ýÓNumerous€fish€species€of€the€inland€waters€of€Latin€America€carry€out€migrationsÐ Ø(  Ðfor€feeding€purposes,€reproduction€or€as€a€means€of€escape€from€adverse€environmentalÐ  ð  Ðconditions.€These€migrations€are€studied€by€tagging€or€direct€observation.€Information€isÐ h¸  Ðpresented€showing€that€the€types€of€migrations€observed€differ.€The€importance€ofÐ 0€  Ðcontinuing€investigations€on€fish€migration€is€stressed,€considering€its€relevance€inÐ øH  Ðfishery€management,€and€environmental€impact€effects.Ð À ÐÐ ˆØ ÐÓ ¨ýXÓÐ P  Ð338.à 4 àPetrere,€M.,€Jr.€(1989).€€River€fisheries€in€Brazil:€A€review.€Regulated€Rivers:€ResearchÐ h Ðand€Management.€€ò ò4ó ó:1„16.Ð à0 Ðà 4 àÌÓ X¨ýÓRiverine€fisheries€in€Brazil€are€reviewed.€There€is€a€broad€description€of€theÐ pÀ Ðenvironment€and€the€fish,€and€arguments€for€the€high€diversity€of€fish€fauna€diversity€areÐ 8ˆ Ðexamined.€The€country€is€divided€into€five€large€river€basins€and€the€fisheries€areÐ P Ðdescribed€in€relation€to€the€main€fish€species€caught,€the€main€gear€employed,€and€theÐ È Ðfishing€strategies.€Exotic€species€introduction€is€discussed€along€with€strategies€for€fishÐ à Ðstock€management.€Effects€of€dams€on€resident€fish€stocks€and€consequences€for€theÐ X¨ Ðsmall€scale€fisheries€are€discussed€and€compared€with€the€effects€of€pollution.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð339.à 4 àPetts,€G.€E.€(1989).€€Perspectives€for€ecological€management€of€regulated€rivers.€Pages€Ð xÈ! Ð3„24€òòinóó€€J.€A.€Gore€and€G.€E.€Petts,€eds.€Alternatives€in€Regulated€River€Management,Ð @" ÐCRC€Press,€Inc.,€Boca€Raton,€Florida€(USA).Ð  X# Ðà 4 àÌÓ X¨ýÓSince€about€3000€B.C.,€efforts€have€been€made€to€regulate€rivers€for€the€benefitÐ ˜!è% Ðof€agriculture.€Now€many€other€purposes€are€cited,€including€flood€control,€industrialÐ `"°& Ðuses,€navigation,€fisheries,€and€recreation€and€leisure.€The€ecological€impact€of€riverÐ (#x' Ðregulation€schemes€is€considered,€including€a€conceptual€framework€for€the€evaluation€ofÐ ð#@( Ðthat€impact,€tools€available€for€mitigation€of€effects€and€even€enhancement€of€riverÐ ¸$ ) Ðecosystems,€and€problems€of€implementing€policies€for€the€ecological€management€ofÐ €%Ð * Ðregulated€rivers.€Regulation€of€the€Zambezi€River€is€emphasized€as€an€example.Ð H&˜!+ ÐAssessment€of€the€environmental€impact€of€river€regulation€requires€consideration€ofÐ '`", Ðspatial€dimensions€(global€and€catchment€scales)€and€the€temporal€dimension.€ThreeÐ Ø'(#- Ðapproaches€to€potentially€harmful€river€regulation€schemes€have€been€recognized:€(1)Ð  (ð#. Ðpreserving€a€portion€of€wild€river;€(2)€secondary€regulation,€in€which€additional€structuralÐ h)¸$/ Ðmeasures€and€special€operation€rules€are€employed;€or€(3)€compensation€schemes€(e.g.,Ð 0*€%0 Ðfish€ponds€to€compensate€for€lost€fish).€Of€these,€secondary€regulation€should€beÐ ø*H&1 Ðconsidered€first.€Measures€available€include€flow€modifications,€water€quality€control,Ð À+'2 Ðchannel€design€and€maintenance,€fish€passage,€biological€alternatives€(e.g.,€stocking),€andÐ ˆ,Ø'3 Ðcontrols€on€human€activities.€It€has€been€argued€that€in€developing€nations€the€pressuresÐ P- (4 Ðfor€agricultural€development€should€take€precedence€over€concerns€about€environmentalÐ ° Ðimpacts€from€river€regulation.€This€view€does€not€recognize€that€sustainable€developmentÐ xÈ Ðrequires€environmentally€sound€management.€As€illustrated€by€the€approach€taken€inÐ @ ÐZambia€,€development€activities€and€environmental€management€can€be€integrated.Ð X ÐÐ Ð  ÐÓ ¨ýXÓÐ ˜è Ð340.à 4 àPigg,€J.,€R.€Gibbs€and€H.€Weeks€(1991).€€Recent€increases€in€number€of€skipjack€herring,Ð ` ° ÐòòAlosa€chrysochlorisóó€(Rafinesque),€in€the€Arkansas€River,€Oklahoma.€Proceedings€of€theÐ ( x ÐOklahoma€Academy€of€Science.€€ò ò71ó ó:49„50.Ð ð @ Ðà 4 àÌÓ X¨ýÓThe€skipjack€herring€òòAlosa€chrysochlorisóó€is€a€highly€migratory€freshwater€speciesÐ € Ð  Ðcommon€to€the€Mississippi€River€and€its€larger€tributaries€north€to€Minnesota€and€SouthÐ H ˜  ÐDakota.€In€1946€small€numbers€of€young€skipjacks€were€collected€from€five€sites€on€theÐ `  ÐIllinois€River€between€Flint€Creek€and€the€mouth€of€the€Illinois€River€near€Gore.€TheÐ Ø(  Ðskipjack€herring€also€has€been€collected€in€the€tailwaters€of€the€Red€River€below€LakeÐ  ð  ÐTexoma.€The€species€was€not€found€in€the€pre„impoundment€surveys€conducted€by€theÐ h¸  ÐOklahoma€Department€of€Wildlife€Conservation€(ODWC)€of€the€Arkansas€and€CimarronÐ 0€  Ðrivers€in€the€area€of€the€proposed€Lake€Keystone€in€1961.€Annual€fish€collections€byÐ øH  ÐODWC€using€gill€netting,€electrofishing,€and€seining€have€produced€the€followingÐ À Ðnumbers€of€skipjack€from€mainstream€reservoirs€of€the€Arkansas€River:€from€Robert€S.Ð ˆØ ÐKerr€Lake,€1€in€1979,€28€in€1980,€none€in€1981,€9€in€1982,€12€in€1983,€31€in€1984,€3€inÐ P  Ð1985€,€8€in€1986,€45€in€1988,€and€18€in€1990.€From€Webbers€Falls€Lake€,€ODWCÐ h Ðobtained€15€in€1981,€2€in€1982,€7€in€1983,€1€in€1985,€and€27€in€1988,€and€from€W.€D.Ð à0 ÐMayo€Lake,€29€in€1987€and€7€in€1988.€The€skipjack€herring€appears€to€be€more€abundantÐ ¨ø Ðtoday€then€before€impoundment€of€the€Arkansas€River€in€the€1970s.€The€upstreamÐ pÀ Ðdistribution€is€now€limited€to€the€Arkansas€River€below€the€Keystone€Dam.€The€lakes€ofÐ 8ˆ Ðthe€Arkansas€navigational€system€have€provided€a€desirable€habitat€and€may€account€forÐ P Ðthe€recent€increases€in€the€skipjack.€(Brunone„PTT)Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð341.à 4 àPitlo,€J.,€Jr.€(1989).€€Walleye€spawning€habitat€in€Pool€13€of€the€Upper€Mississippi€River.Ð  p ÐNorth€American€Journal€of€Fisheries€Management.€€ò ò9ó ó:303„308.Ð è8 Ðà 4 àÌÓ X¨ýÓContinued€development€in€the€Upper€Mississippi€River€may€pose€a€threat€toÐ xÈ! Ðcritical€fish€habitats.€The€purpose€of€this€study€was€to€identify€spawning€habitat€forÐ @" Ðwalleyes€òòStizostedion€vitreumóó€so€those€areas€could€be€afforded€protection€from€futureÐ  X# Ðalterations.€Radiotelemetry,€egg€collections,€and€the€presence€of€sexually€mature€fishÐ Ð $ Ðwere€used€to€identify€walleye€spawning€sites€in€Pool€13€of€the€upper€Mississippi€River.Ð ˜!è% ÐOver€2,000€walleye€eggs€were€collected€in€drift€nets€at€two€sites€from€1983€through€1986.Ð `"°& ÐSubstrates€at€spawning€sites€comprised€sand,€gravel,€and€cobble€and€included€aÐ (#x' Ðfreshwater€mussel€bed€at€one€location.€Water€depths€at€spawning€sites€ranged€from€0.6€toÐ ð#@( Ð6.1€m,€and€the€current€velocity€ranged€from€42.7€to€115.8€cm/s€during€1986.€MostÐ ¸$ ) Ðwalleye€eggs€were€collected€in€April€within€2€weeks€of€peak€discharges€when€waterÐ €%Ð * Ðtemperatures€were€8.3„12.2€degree€C.€Both€spawning€sites€were€adjacent€to€theÐ H&˜!+ Ðnavigation€channel.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ðòò342.óóà 4 àPitlo,€J.,€A.€VanVooren€and€J.€Rasmussen€(1995).€€Distribution€and€relative€abundance€ofÐ h)¸$/ ÐUpper€Mississippi€River€fishes.€Upper€Mississippi€River€Conservation€Committee€FishÐ 0*€%0 ÐTechnical€Section,€Rock€Island,€Illinois€(USA).Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓA€total€of€156€species€of€fish€have€been€collected€and€identified€from€the€UpperÐ ˆ,Ø'3 ÐMississippi€River€since€record€keeping€began€late€in€the€19th€century.€€Records€ofÐ P- (4 Ðoccurrence€appearing€in€this€document€have€been€obtained€from€a€variety€of€sources,Ð ° Ðincluding€personal€notations€by€field€biologists,€annual€reports€from€various€agencies,Ð xÈ Ðpublished€reports€in€the€scientific€literature€on€the€distribution€of€fishes€in€variousÐ @ Ðregions,€and€the€more€recent€habitat€and€community€fish€sampling€initiated€by€the€LongÐ X ÐTerm€Resource€Monitoring€Program€(LTRMP).€€This€document€is€meant€to€provide€aÐ Ð  Ðconsolidated€listing€of€species€that€presently€occur,€have€occurred,€or€have€been€collectedÐ ˜è Ðin€the€UMR.€€Rankings€were€assigned€concerning€distribution€and€relative€abundance€ofÐ ` ° Ðthose€species€throughout€the€river.€€This€is€the€most€up„to„date€listing€presently€availableÐ ( x Ðfor€the€UMR€and€appends€earlier€works€by€Nord€(1976),€Rasmussen€(1979),€and€VanÐ ð @ ÐVooren€(1983).Ð ¸   ÐÐ € Ð  ÐÓ ¨ýXÓÐ H ˜  Ð343.à 4 àPoff,€N.€L.,€J.€D.€Allan,€M.€B.€Bain,€J.€R.€Karr,€K.€L.€Prestegaard,€B.€D.€Richter,€R.€E.Ð `  ÐSparks€and€J.€C.€Stromberg€(1997).€€The€natural€flow€regime.€A€paradigm€for€riverÐ Ø(  Ðconservation€and€restoration.€Bioscience.€€ò ò47ó ó:769„784.Ð  ð  Ðà 4 àÌÓ X¨ýÓThe€ecological€integrity€of€river€ecosystems€depends€on€their€natural€dynamicÐ 0€  Ðcharacter.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð344.à 4 àPollard,€D.€A.,€B.€A.€Ingram,€J.€H.€Harris€and€L.€F.€Reynolds€(1990).€€Threatened€fishesÐ P  Ðin€Australia„„An€overview.€Journal€of€Fish€Biology.€€ò ò37ó ó:67„78.Ð h Ðà 4 àÌÓ X¨ýÓConsidering€the€size€of€the€continent,€the€Australian€freshwater€fish€fauna€is€aÐ ¨ø Ðrelatively€depauperate€one,€comprising€only€about€192€species€(belonging€to€34€families)Ð pÀ Ðwhich€spend€significant€portions€of€their€life€cycles€in€freshwater€habitats.€Of€theseÐ 8ˆ Ðfreshwater€species,€the€latest€(1989)€analysis€indicates€that€six€can€be€classified€asÐ P Ðendangered,€five€as€vulnerable,€four€as€potentially€threatened,€two€as€indeterminate,€32€asÐ È Ðrestricted,€and€16+€as€of€unknown€status,€totalling€65+€species.€Thus€approximately€34%Ð à Ðof€the€entire€Australian€freshwater€fish€fauna€falls€within€the€above€six€conservationÐ X¨ Ðstatus€categories.€Conservation€problems€of€these€fishes,€and€particularly€man„madeÐ  p Ðchanges€to€their€habitats,€are€discussed,€and€some€possible€management€solutionsÐ è8 Ðoutlined.€Brief€mention€is€also€made€of€several€marine€species€which€may€also€fall€intoÐ °  Ðone€or€more€of€the€above€conservation€categories,€although€not€enough€information€is€yetÐ xÈ! Ðavailable€to€classify€them€accurately.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð345.à 4 àPower,€G.€(1989).€€One€rung€at€a€time.€Atlantic€Salmon€Journal.€€ò ò38ó ó:30„32.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓThe€author€describes€the€four€basic€categories€of€fishways;€the€pool€and€step€(orÐ (#x' Ðweir),€the€Denil,€the€vertical€slot€and€the€fish€elevator.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð346.à 4 àPower,€M.€E.,€W.€E.€Dietrich€and€J.€C.€Finlay€(1996).€€Dams€and€downstream€aquaticÐ H&˜!+ Ðbiodiversity:€Potential€food€web€consequences€of€hydrologic€and€geomorphic€change.Ð '`", ÐEnvironmental€Management.€€ò ò20ó ó:887„895.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓResponses€of€rivers€and€river€ecosystems€to€dams€are€complex€and€varied,€asÐ h)¸$/ Ðthey€depend€on€local€sediment€supplies,€geomorphic€constraints,€climate,€dam€structureÐ 0*€%0 Ðand€operation,€and€key€attributes€of€the€biota.€Therefore,€"one„size„fits„all"€prescriptionsÐ ø*H&1 Ðcannot€substitute€for€local€knowledge€in€developing€prescriptions€for€dam€structure€andÐ À+'2 Ðoperation€to€protect€local€biodiversity.€One€general€principle€is€self„evident:€thatÐ ˆ,Ø'3 Ðbiodiversity€is€best€protected€in€rivers€where€physical€regimes€are€the€most€natural.€AÐ P- (4 Ðsufficiently€natural€regime€of€flow€variation€is€particularly€crucial€for€river€biota€and€foodÐ ° Ðwebs.€We€review€our€research€and€that€of€others€to€illustrate€the€ecological€importance€ofÐ xÈ Ðalternating€periods€of€low€and€high€flow,€of€periodic€bed€scour,€and€of€floodplainÐ @ Ðinundation€and€dewatering.€These€fluctuations€regulate€both€the€life€cycles€of€river€biotaÐ X Ðand€species€interactions€in€the€food€webs€that€sustain€them.€Even€if€the€focus€ofÐ Ð  Ðbiodiversity€conservation€efforts€is€on€a€target€species€rather€than€whole€ecosystems,€aÐ ˜è Ðfood€web€perspective€is€necessary,€because€populations€of€any€species€depend€criticallyÐ ` ° Ðon€how€their€resources,€prey,€and€potential€predators€also€respond€to€environmentalÐ ( x Ðchange.€In€regulated€rivers,€managers€must€determine€how€the€frequency,€magnitude,€andÐ ð @ Ðtiming€of€hydrologic€events€interact€to€constrain€or€support€species€and€food€webs.Ð ¸   ÐSimple€ecological€modeling,€tailored€to€local€systems,€may€provide€a€framework€andÐ € Ð  Ðsome€insight€into€explaining€ecosystem€response€to€dams€and€should€give€direction€toÐ H ˜  Ðmitigation€efforts.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð347.à 4 àPowers,€P.€D.€and€J.€F.€Orsborn€(1986).€€Analysis€of€barriers€to€upstream€fish€migration.Ð h¸  ÐAn€investigation€of€the€physical€and€biological€conditions€affecting€fish€passage€successÐ 0€  Ðat€culverts€and€waterfalls.€U.S.€Department€of€Energy,€Final€Report€Part€4€DOE/BP„297.Ð øH  Ðà 4 àÌÓ X¨ýÓThis€paper€presents€a€detailed€analysis€of€waterfalls€and€culverts€as€physicalÐ ˆØ Ðbarriers€to€upstream€migration€by€salmon€and€trout.€Analysis€techniques€are€based€onÐ P  Ðcombining€barrier€geometry€and€stream€hydrology€to€define€the€existing€hydraulicÐ h Ðconditions€within€the€barrier.€These€conditions€then€can€be€compared€to€known€fishÐ à0 Ðcapabilities€to€determine€fish€passage€success.€A€systematic€classification€system€isÐ ¨ø Ðdeveloped€which€defines€the€geometric€and€hydraulic€parameters€for€a€given€streamÐ pÀ Ðdischarge.€This€classification€system€is€organized€in€a€format€can€be€used€to€catalogÐ 8ˆ Ðbarriers€in€fisheries€enhancement€programs.€The€analysis€compares€hydraulic€conditionsÐ P Ðand€fish€capabilities€in€detail,€as€the€fish€enters€the€barrier,€attempts€passage€and€existsÐ È Ðthe€barrier.Ð à ÐÓ ¨ýXÓÐ X¨ ÐÐ  p Ð348.à 4 àPrignon,€C.,€J.€C.€Micha€and€A.€Gillet€(1998).€€Biological€and€environmentalÐ è8 Ðcharacteristics€of€fish€passage€at€the€Tailfer€Dam€on€the€Meuse€River,€Belgium.€Pages€Ð °  Ð69„84€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€Fish€Migration€and€Fish€Bypasses,Ð xÈ! ÐFishing€News€Books,€Vienna€(Austria).Ð @" Ðà 4 àÌÓ X¨ýÓFrom€1989€to€1994,€we€continuously€monitored€upstream€fish€passage€using€aÐ Ð $ Ðtrap€at€the€Tailfer€Dam€on€the€Meuse€River€in€Belgium.€A€total€of€157€897€individuals€ofÐ ˜!è% Ð23€species€(bleak€òòAlburnus€alburnusóó€not€included)€were€captured€in€the€fish€ladder.€TheÐ `"°& Ðdominant€species€captured,€in€order€of€abundance,€were€bleak€(not€counted),€roachÐ (#x' ÐòòRutilus€rutilusóó€(87.7%),€silver€bream€òòAbramis€bjoerknaóó€(4.3%)€and€European€chubÐ ð#@( ÐòòLeuciscus€cephalusóó€(2.0%).€Non„rheophilic€species€accounted€for€around€93.4%€of€theÐ ¸$ ) Ðtotal.€Most€seasonal€movements€of€cyprinid€fishes€are€observed€in€spring€and€areÐ €%Ð * Ðreproductive€migrations.€Roach,€Eurasian€dace€òòLeuciscus€leuciscusóó,€silver€bream,€naseÐ H&˜!+ ÐòòChondrostoma€nasusóó,€and€European€chub€of€indeterminate€sex€begin€migrating€in€mid„Ð '`", ÐMarch€and€continue€as€long€as€the€water€temperature€is€between€10€and€15€degree€C.Ð Ø'(#- ÐMovements€of€mature€European€chub,€bream€òòAbramis€bramaóó,€and€barbel€òòBarbus€barbusóóÐ  (ð#. Ðbegin€in€mid„May,€when€water€temperature€reaches€13„15€degree€C.€Salmonids€migrateÐ h)¸$/ Ðin€May„June€and€autumn.€While€seasonal€periodicity€of€migration€is€clearly€associatedÐ 0*€%0 Ðwith€water€temperature,€circadian€variations€are€dependent€on€luminosity.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð349.à 4 àPurkett,€C.€A.€(1961).€€Reproduction€and€early€development€of€the€paddlefish.Ð ° Ðâ âTransactions€of€the€American€Fisheries€Society.€€ò ò90ó ó:125„129.Ð xÈ Ðà 4 àÌÓ X¨ýÓPaddlefish,€òòPolyodon€spathulaóó€(Walbaum),€were€observed€spawning€over€gravelÐ X Ðbars€in€the€Osage€River,€Missouri.€€Eggs€and€prolarvae€were€collected.€€Eggs€wereÐ Ð  Ðhatched€and€young€paddlefish€were€reared.€€The€external€features€of€the€egg€andÐ ˜è Ðprolarvae,€hatching,€and€early€behavior€of€the€larvae€are€described.€€The€effect€ofÐ ` ° Ðimpoundment€of€rivers€on€the€paddlefish€population€is€discussed.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð350.à 4 àQuiros,€R.€(1988).€€[Structures€to€aid€non„salmon€fish€species€during€migrations:€LatinÐ € Ð  ÐAmerica].€FAO,€Technical€Report€92„5„302683„9.Ð H ˜  Ðà 4 àÌÓ X¨ýÓThe€document€reviews€existing€information€in€Latin€America€regardingÐ Ø(  Ðstructures€built€to€aid€fish€during€local€movements€and€migrations€to€overcome€variousÐ  ð  Ðobstacles€caused€by€dams€and€their€construction.€An€examination€is€also€made€of€currentÐ h¸  Ðlegislation€regarding€the€obligation€of€building€fish€passages€in€the€dams€and€aquacultureÐ 0€  Ðpossibilities.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð351.à 4 àRaibley,€P.€T.,€D.€Blodgett€and€R.€E.€Sparks€(1995).€€Evidence€of€grass€carpÐ P  ÐòòCtenopharyngodon€idellaóó€reproduction€in€the€Illinois€and€Upper€Mississippi€Rivers.Ð h ÐJournal€of€Freshwater€Ecology.€€ò ò10ó ó:65„74.Ð à0 Ðà 4 àÌÓ X¨ýÓGrass€carp€òòCtenopharyngodon€idellaóó€is€an€exotic€species€which€was€importedÐ pÀ Ðinto€the€United€States€in€1963€to€control€aquatic€vegetation.€Individuals€escaped€fromÐ 8ˆ Ðponds€and€subsequently€spread€into€streams€in€the€Mississippi€River€basin.€The€authorsÐ P Ðhave€been€collecting€grass€carp€in€the€Illinois€River€since€1990,€and€some€of€theirÐ È Ðassociates€have€also€collected€grass€carp€in€other€portions€of€the€upper€Mississippi€RiverÐ à Ðsystem.€The€presence€of€juveniles€and€adults€in€the€collections€makes€it€appear€that€grassÐ X¨ Ðcarp€are€reproducing€in€the€Illinois€River,€and€their€larvae€are€finding€suitable€nurseryÐ  p Ðareas€in€backwaters.€Naturalized,€reproducing€grass€carp€populations€probably€exist€as€farÐ è8 Ðnorth€as€209€km€into€the€Illinois€River.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð352.à 4 àRaistakka,€J.€E.€(1973).€€Conduit€structure€for€migrating€fish.€Official€Gazette€of€theÐ  X# ÐUnited€States€Patent€Office.€November€20,€1973.€Patent€Number€3,772,891.€ò ò916:€ó ó857„Ð Ð $ Ð858.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓMigrating€fish€may€circumvent€a€dam€by€use€of€a€conduit€enabling€their€passageÐ (#x' Ðupstream€and€downstream.€The€conduit€terminates€in€segments€projecting€in€a€submergedÐ ð#@( Ðmanner€outward€into€the€river;€the€segments€are€flexible€to€a€degree€to€permit€verticalÐ ¸$ ) Ðpositioning€of€the€conduit€ends€for€optimum€fish€ingress€and€egress.€It€is€closed€from€theÐ €%Ð * Ðatmosphere€to€prevent€the€addition€of€nitrogen€to€the€water€passing€through€the€conduit.Ð H&˜!+ ÐA€constant€gradient€and€constant€flow€facilitate€fish€passage.€Spaced€along€the€conduitÐ '`", Ðare€series€of€flow€disrupting€projections€which€cause€the€water€to€form€areas€of€eddyingÐ Ø'(#- Ðwater€currents€providing€resting€areas€for€the€fish.€Fish€attracting€substances€are€fed€intoÐ  (ð#. Ðthe€conduit€water€to€help€overcome€the€natural€tendency€of€fish€to€shy€away€from€theÐ h)¸$/ Ðentry€of€the€conduit.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð353.à 4 àRajaratnam,€N.€and€C.€Katopodis€(1984).€€Hydraulics€of€Denil€fishways.€Journal€ofÐ ˆ,Ø'3 ÐHydraulic€Engineering.€€ò ò110ó ó:1219„1233.Ð P- (4 Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€an€experimental€study€on€the€hydraulics€ofÐ xÈ Ðsimple€Denil€fishways.€For€the€standard€Denil,€the€characteristic€velocity€profile€thatÐ @ Ðexists€in€the€fully€developed€flow€region€is€found.€A€rating,€curve€is€developed€for€theÐ X Ðstandard€Denil,€which€would€be€very€useful€in€the€design€of€Denils€over€a€range€of€slopesÐ Ð  Ðand€discharges.€A€number€of€other€interesting€and€practical€features€of€the€Denil€fishwaysÐ ˜è Ðare€found.€Some€results€are€also€obtained€for€some€"nonstandard"€Denil€designs.Ð ` ° ÐÐ ( x ÐÓ ¨ýXÓÐ ð @ Ð354.à 4 àRajaratnam,€N.€and€C.€Katopodis€(1990).€€Hydraulics€of€culvert€fishways€3:€Weir€baffleÐ ¸   Ðculvert€fishways.€Canadian€Journal€of€Civil€Engineering.€€ò ò17ó ó:558„568.Ð € Ð  Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€a€laboratory€study€of€culvert€fishways€withÐ `  Ðweir„type€baffles.€Baffles€with€heights€equal€to€0.15€and€0.1€times€the€diameter€(D)€of€theÐ Ø(  Ðculvert€were€studied€with€longitudinal€spacings€of€0.6D€and€1.2D.€Equations€have€beenÐ  ð  Ðdeveloped€to€describe€the€relation€between€the€discharge,€slope,€diameter,€and€the€depthÐ h¸  Ðof€flow.€It€has€been€possible€to€predict€the€barrier€velocity€that€would€exist€at€the€baffles.Ð 0€  ÐThe€performance€of€the€weir€baffles€has€been€found€to€be€as€good€as€that€of€the€slotted„Ð øH  Ðweir€baffles.Ð À ÐÐ ˆØ ÐÓ ¨ýXÓÐ P  Ð355.à 4 àRajaratnam,€N.€and€C.€Katopodis€(1991).€€Hydraulics€of€steeppass€fishways.€CanadianÐ h ÐJournal€of€Civil€Engineering.€€ò ò18ó ó:1024„1032.Ð à0 Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€an€experimental€study€on€the€hydraulics€ofÐ pÀ Ðsteeppass€fishways.€Using€theoretical€considerations€and€experimental€observations,€anÐ 8ˆ Ðexpression€has€been€developed€that€relates€the€flow€rate,€slope€of€the€fishway,€and€depthÐ P Ðof€flow.€It€was€also€found€that€the€characteristic€(similarity)€velocity€profile€found€earlier,Ð È Ðfor€smaller€values€of€depth€to€width€ratio,€y€sub(0)/b,€with€the€maximum€velocity€near€theÐ à Ðbottom,€changes€to€a€rather€symmetrical€profile€with€the€maximum€velocity€occurringÐ X¨ Ðsomewhere€near€the€mid„depth€for€larger€values€of€y€sub(0)/b.€A€correlation€has€also€beenÐ  p Ðfound€for€the€maximum€velocity.€This€paper€also€includes€some€observations€on€the€M„Ð è8 Ðtype€backwater€curves€that€would€appear€in€the€fishway€when€the€tailwater€depths€exceedÐ °  Ðuniform€flow€depths.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð356.à 4 àRajaratnam,€N.,€C.€Katopodis€and€M.€A.€Fairbairn€(1990).€€Hydraulics€of€culvertÐ Ð $ Ðfishways€5:€Alberta€fish€weirs€and€baffles.€Canadian€Journal€of€Civil€Engineering.€Ð ˜!è% Ðò ò17ó ó:1015„1021.Ð `"°& Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€a€laboratory€study€of€the€hydraulic€performanceÐ ð#@( Ðof€fish€weirs€and€fish€baffles€used€by€Alberta€Transportation€for€improving€the€fish„Ð ¸$ ) Ðpassing€capacity€of€culverts.€It€was€found€that€if€the€longitudinal€spacing€of€the€weirs€isÐ €%Ð * Ðlimited€to€0.6€and€1.2€times€the€diameter€of€the€culvert,€their€performance€is€comparableÐ H&˜!+ Ðto€that€of€the€corresponding€weir€and€slotted„weir€baffle€systems,€with€regard€to€the€depthÐ '`", Ðof€pool€between€the€baffles€as€well€as€the€barrier€velocity.€On€the€other€hand,€the€fishÐ Ø'(#- Ðbaffles€did€not€perform€as€well€as€the€fish€weirs€under€the€conditions€tested.Ð  (ð#. ÐÐ h)¸$/ ÐÓ ¨ýXÓÐ 0*€%0 Ð357.à 4 àRajaratnam,€N.,€C.€Katopodis€and€L.€Flint„Petersen€(1987).€€Hydraulics€of€two„levelÐ ø*H&1 ÐDenil€fishway.€Journal€of€Hydraulic€Engineering.€€ò ò113ó ó:670„676.Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓThe€design€of€the€simple€Denil,€along€with€some€minor€variations,€has€beenÐ ° Ðâ âstudied€by€the€first€two€writers€for€use€in€inland€waterways€in€western€Canada.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ð358.à 4 àRajaratnam,€N.,€C.€Katopodis€and€S.€Lodewyk€(1988).€€Hydraulics€of€offset€baffle€culvertÐ Ð  Ðfishways.€Canadian€Journal€of€Civil€Engineering.€€ò ò15ó ó:1043„1051.Ð ˜è Ðà 4 àÌÓ X¨ýÓThe€results€of€an€experimental€study€are€presented€for€the€hydraulics€of€culvertsÐ ( x Ðwith€offset€baffles€to€pass€fish.€Using€analytical€considerations€and€experimentalÐ ð @ Ðobservations,€a€flow€equation€has€been€developed€between€the€discharge,€diameter,€depth,Ð ¸   Ðand€slope€for€a€culvert€fishway€with€the€standard€offset€baffle€system.€The€velocity€fieldÐ € Ð  Ðat€the€slot€has€also€been€evaluated.€Some€further€experiments€were€performed€to€assessÐ H ˜  Ðthe€effect€of€baffle€spacing€and€height€on€the€hydraulics€of€the€culvert€fishway.€Based€onÐ `  Ðpreliminary€experimental€observations€and€theoretical€considerations,€a€functionalÐ Ø(  Ðrelation€has€been€developed€between€the€dimensionless€discharge€(Q)€and€the€relativeÐ  ð  Ðdepth€(yo/D)€for€culvert€fishways€with€the€offset€baffle€system.€This€relation€has€beenÐ h¸  Ðevaluated€using€experimental€results€on€two€smooth€pipes€and€one€rough€pipe.€TheseÐ 0€  Ðrelations€are€of€the€form€(Q€=€C(yo/D)€to€the€n€power),€where€the€average€dimensionlessÐ øH  Ðcoefficient€(C)€and€the€exponent€(n)€have€been€experimentally€found€to€be€equal€to€12.0Ð À Ðand€2.6,€respectively.€The€velocity€profiles€at€the€slot€offset€system€are€similar€and€followÐ ˆØ Ða€power€law€with€U€and€the€height€of€the€baffles€as€the€scales.€The€velocity€scale€(U)€inÐ P  Ðterms€of€the€square€root€of€(gDSo)€has€been€found€to€be€equal€to€12.8(yo/D).€The€effectÐ h Ðof€doubling€the€height€and€keeping€the€same€spacing€of€the€baffles€increases€the€flowÐ à0 Ðresistance€appreciably.€Keeping€the€standard€height€but€reducing€the€spacing€to€one„halfÐ ¨ø Ðof€the€standard€spacing€also€improves€upon€the€performance€of€the€standard€baffleÐ pÀ Ðsystem.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ð359.à 4 àRajaratnam,€N.,€C.€Katopodis€and€A.€Mainali€(1988).€€Plunging€and€streaming€flows€inÐ à Ðpool€and€weir€fishways.€Journal€of€Hydraulic€Engineering.€€ò ò114ó ó:939„944.Ð X¨ Ðà 4 àÌÓ X¨ýÓA€pool„and„weir€fishway€consists€of€a€number€of€pools€formed€by€a€series€ofÐ è8 Ðweirs.€It€is€known€that€the€flow€over€the€weirs€can€be€either€in€the€plunging€or€streamingÐ °  Ðmode.€When€the€flow€is€in€the€plunging€mode,€the€water€level€in€the€pool€immediatelyÐ xÈ! Ðbelow€the€weir€is€generally€below€the€crest€of€the€weir.€In€the€streaming€flow€mode,€aÐ @" Ðsurface€stream€appears€to€flow€over€the€crest€of€the€weirs,€skimming€over€the€waterÐ  X# Ðsurface€in€the€pools€in€between.€For€pool„weir€fishways€in€the€plunging€flow€regime,€aÐ Ð $ Ðsimple€weir€analysis€has€been€found€to€be€adequate€with€the€dimensionless€discharge€QÐ ˜!è% Ðsub€+€=€0.61.€For€the€surface€streaming€state,€the€dimensionless€discharge€Q€sub€wasÐ `"°& Ðfound€to€be€equal€to€1.5€x€the€square€root€of€(L/d),€where€L€is€the€length€of€the€pool€and€dÐ (#x' Ðis€the€depth€of€the€surface€stream.€A€criterion€has€been€established€to€predict€theÐ ð#@( Ðtransition€from€plunging€to€surface€streaming€state.Ð ¸$ ) ÐÐ €%Ð * ÐÓ ¨ýXÓÐ H&˜!+ Ð360.à 4 àRajaratnam,€N.,€C.€Katopodis€and€A.€Mainali€(1989).€€Pool„orifice€and€pool„orifice„weirÐ '`", Ðfishways.€Canadian€Journal€of€Civil€Engineering.€€ò ò16ó ó:774„777.Ð Ø'(#- Ðà 4 àÌÓ X¨ýÓThis€technical€note€presents€a€method€of€analyzing€the€flow€in€pool„orificeÐ h)¸$/ Ðfishways€by€dividing€it€into€vertical€slot€and€submerged€orifice€flow€regimes.€For€a€pool„Ð 0*€%0 Ðorifice„weir€fishway,€with€flow€through€the€orifice€as€well€as€over€the€weir,€a€method€hasÐ ø*H&1 Ðbeen€suggested€for€predicting€the€total€flow€rate€in€the€fishway.€ExperimentalÐ À+'2 Ðobservations€are€presented€in€support€of€these€methods.Ð ˆ,Ø'3 ÐÐ P- (4 ÐÓ ¨ýXÓÐ ° Ð361.à 4 àRajaratnam,€N.,€C.€Katopodis€and€N.€McQuitty€(1989).€€Hydraulics€of€culvert€fishways.Ð xÈ Ð2:€Slotted„weir€culvert€fishways.€Canadian€Journal€of€Civil€Engineering.€€ò ò16ó ó:375„383.Ð @ Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€an€experimental€study€on€the€hydraulics€ofÐ Ð  Ðculvert€fishways€with€a€slotted„weir€baffle€system.€Six€designs€with€two€baffle€heightsÐ ˜è Ðand€three€spacings€were€tested.€A€flow€equation€has€been€developed€to€predict€the€flowÐ ` ° Ðdepth€for€any€given€discharge,€diameter,€and€slope.€The€barrier€velocity€that€would€existÐ ( x Ðat€the€slot€in€the€baffles€has€also€been€predicted€in€a€general€manner.€This€relativelyÐ ð @ Ðsimple€slotted„weir€baffle€system€has€been€found€to€match€the€performance€of€the€moreÐ ¸   Ðcomplicated€but€frequently€used€offset€baffle€system€of€similar€dimensions.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð362.à 4 àRajaratnam,€N.,€C.€Katopodis€and€N.€McQuitty€(1990).€€Hydraulics€of€culvert€fishways€2:Ð Ø(  ÐSlotted„weir€culvert€fishways:€Reply.€Canadian€Journal€of€Civil€Engineering.€€ò ò17ó ó:671„Ð  ð  Ð672.Ð h¸  Ðà 4 àÌÓ X¨ýÓWe€appreciate€Hansen's€interest€in€our€paper€and€thank€him€for€his€comments€andÐ øH  Ðfor€subjecting€some€of€our€data€to€a€rigorous€statistical€analysis.€Hansen's€analysis€hasÐ À Ðsuccessfully€reproduced€our€equations€for€designs€1€and€5.€We€would€like€to€point€outÐ ˆØ Ðthat€for€turbulent€free€surface€flows€over€roughness€elements€of€the€type€encountered€inÐ P  Ðculvert€fishways€(discussed€in€the€paper),€the€depth€measurements€are€necessarilyÐ h Ðapproximate€and€subjecting€these€approximate€depths€to€a€very€refined€analysis€isÐ à0 Ðperhaps€not€warranted.€We€established€the€flow€parameters€Q€sub(*)€and€y€sub(0)/D€notÐ ¨ø Ðfrom€purely€data€correlation€but€from€sound€fluid€mechanics.€Having€established€aÐ pÀ Ðfunctional€relationship€between€these€(compound)€parameters,€we€wanted€to€evaluate€thisÐ 8ˆ Ðfunction€for€the€different€designs.€The€simple€power€law€relations€were€developedÐ P Ðprimarily€by€plotting€the€data€on€double„log€sheets€and€fitting€a€line€by€judgement,€givingÐ È Ðmore€weight€to€regions€of€more€importance.€Hence€we€see€no€problem€with€invertingÐ à Ðthese€equations.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð363.à 4 àRajaratnam,€N.,€C.€Katopodis€and€R.€Paccagnan€(1992).€€Field€studies€of€fishways€inÐ °  ÐAlberta.€Canadian€Journal€of€Civil€Engineering.€€ò ò19ó ó:627„638.Ð xÈ! Ðà 4 àÌÓ X¨ýÓField€studies€were€performed€on€one€pool„weir,€four€Denil,€and€four€vertical€slotÐ  X# Ðfishways€in€Alberta,€Canada,€over€a€period€of€several€years.€Velocity€measurements€wereÐ Ð $ Ðmade€with€a€10„mm€impeller€minicurrent€meter,€and€velocity€profiles€were€calculated.Ð ˜!è% ÐThe€velocity€profiles€obtained€in€the€field€studies€have€confirmed€the€measurements€madeÐ `"°& Ðin€the€laboratory€on€scale€models€and€have€enhanced€the€general€picture,€particularly€forÐ (#x' Ðthe€vertical€slot€fishways.€A€routine€inspection€and€maintenance€program€would€beÐ ð#@( Ðhelpful€in€ensuring€that€the€fishways€in€Alberta€operate€at€maximum€efficiency.€TheÐ ¸$ ) Ðdesign€of€the€fish€entrance€is€very€important€in€determining€the€success€of€a€fishway.Ð €%Ð * ÐWhere€the€flow€at€the€water€outlet€is€not€strong€enough,€the€use€of€auxiliary€attractionÐ H&˜!+ Ðwater€should€be€considered.€The€standard€Denil€fishway€provides€a€strong€flow€at€theÐ '`", Ðwater€outlet€and€therefore€effectively€supplies€attraction€water.€One€exception€to€this€is€aÐ Ø'(#- Ðhigh€tailwater€condition,€where€the€velocity€of€flow€can€be€significantly€reduced.€AllÐ  (ð#. Ðfishways€should€be€equipped€with€trash€racks€at€the€water€inlet€to€prevent€fishwayÐ h)¸$/ Ðblockage€by€debris.€The€field€measurements€on€standard€Denil€fishways€in€Alberta€wereÐ 0*€%0 Ðfound€to€agree€reasonably€well€with€the€laboratory€results.€The€field€measurements€onÐ ø*H&1 Ðvertical€slot€fishways,€in€addition€to€supporting€laboratory€measurements,€have€alsoÐ À+'2 Ðprovided€more€information€on€the€circulation€in€the€pools€and€should€be€useful€inÐ ˆ,Ø'3 Ðbuilding€a€better€understanding€of€the€hydraulics€of€the€vertical€slot€fishway.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð364.à 4 àRajaratnam,€N.,€C.€Katopodis€and€S.€Solanki€(1992).€€New€designs€for€vertical€slotÐ xÈ Ðfishways.€Canadian€Journal€of€Civil€Engineering.€€ò ò19ó ó:402„414.Ð @ Ðà 4 àÌÓ X¨ýÓAn€experiment€was€performed€to€study€18€designs€of€vertical€slot€fishways.Ð Ð  ÐSeven€designs€previously€studied€in€1986€were€further€examined€(designs€1„7)€and€11Ð ˜è Ðmore€designs€(numbered€8„18)€were€tested.€The€vertical€slope€fishway€models€wereÐ ` ° Ðinstalled€in€a€plexiglass€flume€having€nine€pools,€at€a€scale€of€1:8.€Slopes€of€0.05,€0.10,Ð ( x Ðand€0.15€were€used,€and€the€flow€rate€was€measured€by€means€of€a€magnetic€flow€meterÐ ð @ Ðinstalled€in€the€supply€line.€Designs€8„13€were€tested€mainly€to€determine€how€sensitiveÐ ¸   Ðthe€standard€length€of€ten€times€the€width€of€the€slot€and€the€standard€width€of€eight€timesÐ € Ð  Ðthe€width€of€the€slot€are€for€satisfactory€performance€of€the€vertical€slot€fishway.€DesignsÐ H ˜  Ð14„18€were€simplified€versions€of€the€standard€design€(design€1).€For€all€18€designs,€theÐ `  Ðdimensionless€discharge€was€found€to€vary€linearly€with€the€relative€depth€of€flow,€withÐ Ø(  Ðthe€straight€line€passing€approximately€through€the€origin€on€most€of€the€designs.€TheÐ  ð  Ðresults€showed€that€a€width€of€eight€times€the€width€of€the€slot€and€a€length€of€ten€timesÐ h¸  Ðthe€width€of€the€slot€for€the€pools€are€satisfactory,€and€minor€variations€can€be€made€toÐ 0€  Ðthese€dimensions€without€affecting€their€satisfactory€performance.€The€performanceÐ øH  Ðrating€curves€were€essentially€the€same€for€one€group€including€designs€3,€5,€6,€and€7€andÐ À Ðfor€another€group€including€designs€1,2,€14,€16,€17,€and€18.€Design€6€in€the€first€groupÐ ˆØ Ðand€designs€16€and€18€in€the€second€group€are€recommended€for€practical€use€because€ofÐ P  Ðtheir€ease€of€construction.Ð h ÐÐ à0 ÐÓ ¨ýXÓÐ ¨ø Ð365.à 4 àRajaratnam,€N.,€C.€Katopodis,€S.€Wu€and€M.€A.€Sabur€(1997).€€Hydraulics€of€restingÐ pÀ Ðpools€for€Denil€fishways.€Journal€of€Hydraulic€Engineering.€€ò ò123ó ó:632„638.Ð 8ˆ Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€an€exploratory€laboratory€study€on€theÐ È Ðhydraulics€of€fish€resting€pools€that€are€built€between€two€Denil€fishways,€making€a€fullÐ à Ðturn€or€arranged€in€a€folded„back€pattern.€These€experiments€show€that€the€flow€from€theÐ X¨ ÐDenil€entering€the€pool€diffuses€as€a€surface€jet,€with€an€increased€growth€rate,€possiblyÐ  p Ðbecause€of€the€circulation€and€turbulence€in€the€pool.€This€diffusing€jet€impinges€on€theÐ è8 Ðbackwall€and€dives€into€the€pool.€The€flow€formation€in€the€vicinity€of€the€outflowingÐ °  ÐDenil€appears€to€occur€in€a€relatively€small€region.€The€energy€dissipation€in€the€pool€isÐ xÈ! Ðsignificant.€To€provide€some€resting€areas€for€fish€ascending€the€multiple€Denils,€it€isÐ @" Ðnecessary€to€provide€some€depth€below€the€common€invert€of€the€two€Denils.€SomeÐ  X# Ðsuggestions€have€been€made€for€determining€the€size€of€these€resting€pools.Ð Ð $ ÐÐ ˜!è% ÐÓ ¨ýXÓÐ `"°& Ð366.à 4 àRajaratnam,€N.,€G.€van€der€Vinne€and€C.€Katopodis€(1986).€€Hydraulics€of€vertical€slotÐ (#x' Ðfishways.€Journal€of€Hydraulic€Engineering.€€ò ò112ó ó:909„927.Ð ð#@( Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€an€experimental€study€on€the€hydraulics€ofÐ €%Ð * Ðvertical€slot€fishways.€Seven€designs,€including€some€conventional€designs,€were€tested.Ð H&˜!+ ÐA€conceptual€uniform€flow€state€has€been€defined€for€which€a€linear€relation€has€beenÐ '`", Ðfound€between€the€dimensionless€flow€rate€and€relative€flow€depth.€Non„uniform€flow€ofÐ Ø'(#- Ðthe€M1€and€M2€types€has€been€analyzed€using€the€Bakhmeteff„Chow€method.€SomeÐ  (ð#. Ðobservations€have€also€been€made€on€the€velocity€profiles€at€the€slot€and€circulationÐ h)¸$/ Ðpatterns€in€the€pools.Ð 0*€%0 ÐÐ ø*H&1 Ðâ âÓ ¨ýXÓÐ À+'2 Ð367.à 4 àRansom,€B.€H.,€S.€V.€Johnston€and€T.€W.€Steig€(1998).€€Review€on€monitoring€adultÐ ° Ðsalmonid€òòOncorhynchus€and€Salmo€spp.óó€escapement€using€fixed„location€split„beamÐ xÈ Ðhydroacoustics.€Fisheries€Research€(Amsterdam).€€ò ò35ó ó:33„42.Ð @ Ðâ âà 4 àÌÓ X¨ýÓSince€1992,€split„beam€hydroacoustic€techniques€have€been€used€to€monitor€adultÐ Ð  Ðsalmonid€escapement€(òòOncorhynchus€and€Salmo€spp.óó)€in€14€rivers€in€North€America€andÐ ˜è ÐEurope.€Monitoring€in€rivers€is€one€of€the€more€challenging€applications€for€fisheriesÐ ` ° Ðacoustics.€Rivers€typically€have€a€high€reverberation€level,€uneven€bottom€bathymetry,Ð ( x Ðand€nonlaminar€hydraulics,€requiring€sophisticated€equipment€and€careful€deployment,Ð ð @ Ðcalibration,€and€testing.€The€major€issues€that€were€addressed€in€order€to€obtain€estimatesÐ ¸   Ðof€adult€salmon€escapement€included€hydroacoustic€equipment€and€techniques,€siteÐ € Ð  Ðselection,€transducer€deployment,€and€fish€behavior.€Fixed„location€hydroacousticÐ H ˜  Ðtechniques€were€employed,€utilizing€narrow„beam€transducers€aimed€horizontally,Ð `  Ðmonitoring€migrating€fish€in€side„aspect.€Fish€were€tracked€in€three€dimensions€as€theyÐ Ø(  Ðpassed€through€the€acoustic€beam.€A€bottom€substrate€of€low€acoustic€reflectivity€enabledÐ  ð  Ðthe€acoustic€beam€to€be€aimed€close€to€the€bottom.€Sites€were€selected€where€fish€wereÐ h¸  Ðactively€migrating,€not€holding€or€milling.€In€most€cases,€migrating€salmonids€wereÐ 0€  Ðstrongly€shore„€and€bottom„oriented,€where€water€velocities€were€slowest.€DielÐ øH  Ðdistributions€of€fish€passage€were€weighted€toward€nighttime.€Other€results€included€fishÐ À Ðsize€and€velocity.€Potential€improvements€in€riverine€monitoring€capabilities€includeÐ ˆØ Ðquadrature€demodulation€and€FM€Slide/Chirp€signals.Ð P  ÐÐ h ÐÓ ¨ýXÓÐ à0 Ð368.à 4 àRansom,€B.€H.€and€T.€W.€Steig€(1994).€Using€hydroacoustics€to€monitor€fish€atÐ ¨ø Ðhydropower€dams.€Pages€€163„169€òòinóó€€International€Symposium€of€the€North€AmericanÐ pÀ ÐLake€Management€Society,€Seattle,€WA€(USA),€Lake€and€Reservoir€Management.Ð 8ˆ Ðà 4 àÌÓ X¨ýÓIn€the€USA€hundreds€of€existing€hydropower€sites€have€federal€operating€licensesÐ È Ðthat€expire€by€the€year€2000,€and€many€licenses€are€being€considered€for€new€sites.€TheÐ à Ðmortality€to€fish€passing€through€hydropower€dams€has€been€variously€estimated€at€2„Ð X¨ Ð30%.€Many€of€the€power€producers€applying€for€licenses€in€the€USA€and€elsewhere€haveÐ  p Ðbeen€required€to€evaluate€the€impact€their€facilities€have€on€fish.€Entrainment€studies€areÐ è8 Ðpotentially€expensive,€labor€intensive,€and€can€effect€project€operations.€Estimates€of€fishÐ °  Ðentrainment€may€be€required€24€hour/day€for€up€to€12€months,€with€periodic€evaluationsÐ xÈ! Ðof€fish€survivability€through€turbine€units.€Underwater€acoustics€(sonar)€provides€oneÐ @" Ðmethod€of€obtaining€these€data€that€has€been€accepted€by€many€government€fisheriesÐ  X# Ðagencies€(Federal€Energy€Regulatory€Commission€1987).€Fixed„location€hydroacousticÐ Ð $ Ðtechniques€have€proved€effective€at€documenting€and€quantify€the€abundance€andÐ ˜!è% Ðbehavior€of€fish€passing€through€hydropower€dams,€and€in€reservoirs.€In€the€last€15€years,Ð `"°& Ðhundreds€of€hydroacoustic€evaluations€of€entrainment€at€hydropower€dams€have€beenÐ (#x' Ðconducted€in€the€USA.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð369.à 4 àRansom,€B.€H.,€T.€W.€Steig€and€P.€A.€Nealson€(1996).€€Comparison€of€hydroacoustic€andÐ H&˜!+ Ðnet€catch€estimates€of€Pacific€salmon€smolt€òòOncorhynchus€spp.óó€passage€at€hydropowerÐ '`", Ðdams€in€the€Columbia€River€Basin,€USA.€Pages€€477„481€òòinóó€€E.€J.€Simmonds€and€D.€N.Ð Ø'(#- ÐMaclennan,€eds.€Fisheries€and€Plankton€Acoustics.€Proceedings€of€an€ICES€InternationalÐ  (ð#. ÐSymposium€held€in€Aberdeen,€Scotland,€12„16€June€1995,€Academic€Press,€LondonÐ h)¸$/ Ð(UK).Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓIn€the€last€16€years,€fisheries€agencies€and€power€producers€in€the€ColumbiaÐ À+'2 ÐRiver€Basin€(Washington,€USA)€have€increasingly€relied€on€hydroacoustic€assessmentsÐ ˆ,Ø'3 Ðof€downstream€migrating,€anadromous€Pacific€salmon€smolts€òòOncorhynchus€spp.óó€whenÐ P- (4 Ðevaluating€bypass€system€designs€at€hydroelectric€dams.€Accompanying€this€reliance€hasÐ ° Ðbeen€an€interest€in€comparing€hydroacoustic€estimates€of€smolt€passage€with€net€catchÐ xÈ Ðestimates€of€fish€passage,€single„beam€hydroacoustic€techniques€were€used.€TheÐ @ Ðcorrelation€between€hydroacoustic€and€net€catch€estimates€of€smolt€passage€into€theÐ X Ðsluiceway€at€Ice€Harbor€Dam€was€statistically€significant.€Rocky€Reach€DamÐ Ð  Ðhydroacoustic€and€fyke€net€catch€vertical€distributions€were€very€similar.€At€LowerÐ ˜è ÐGranite€Dam,€the€correlation€between€net€catch€estimates€and€hydroacoustic€estimates€ofÐ ` ° Ðsmolt€passage€was€statistically€significant.€At€Wanapum€Dam€in€1994,€there€wasÐ ( x Ðsignificant€correlation€between€net€catch€and€hydroacoustic€estimates€of€smolt€passage,Ð ð @ Ðand€there€was€no€statistically€significant€difference€between€the€paired€estimates.€FromÐ ¸   Ð1991€to€1994,€there€was€a€significant€correlation€between€mean€hydroacoustic€and€netÐ € Ð  Ðcatch€estimates€of€in„turbine€diversion€screen€fish€guidance€efficiency,€with€no€significantÐ H ˜  Ðdifference€between€the€paired€estimates.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð370.à 4 àRasmussen,€J.€L.€(1979).€€A€compendium€of€fishery€information€on€the€Upper€MississippiÐ h¸  ÐRiver.€Upper€Mississippi€River€Conservation€Commission,€Rock€Island,€Illinois€(USA).Ð 0€  Ðà 4 àÌÓ X¨ýÓThe€distribution,€life€histories€and€harvests€of€important€sport€and€commercialÐ À Ðspecies€(including€mussels)€of€the€Upper€Mississippi€River€from€Minnesota€to€Missouri.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð371.à 4 àRasmussen,€J.€L.€and€J.€H.€Wlosinski€(1988).€€Operating€plan€of€the€Long€Term€ResourceÐ à0 ÐMonitoring€Program€for€the€Upper€Mississippi€River€System.€USGS€EnvironmentalÐ ¨ø ÐManagement€Technical€Center,€Report€EMTC„88/01.Ð pÀ Ðà 4 àÌÓ X¨ýÓThe€Long€Term€Resource€Monitoring€Program€(LTRMP)€of€the€UpperÐ P ÐMississippi€River€System€(UMRS)€was€authorized€under€the€Water€ResourcesÐ È ÐDevelopment€Act€of€1986€(Public€Law€99„662).€The€UMRS€is€composed€of€theÐ à Ðnavigable€reaches€of€the€Upper€Mississippi,€Illinois,€Kaskaskia,€Black,€St.€Croix€andÐ X¨ ÐMinnesota€rivers.€Program€objectives€are:€to€analyze€significant€resource€problems€suchÐ  p Ðas€sedimentation,€water€level€management,€and€navigation€impacts;€to€monitor€selectedÐ è8 Ðhabitats€and€species;€and€to€develop€data€management€systems€and€techniques€which€willÐ °  Ðassist€resource€personnel€to€better€manage€the€rivers'€ecosystems.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð372.à 4 àReed,€B.€C.,€W.€E.€Kelso€and€D.€A.€Rutherford€(1992).€€Growth,€fecundity,€and€mortalityÐ Ð $ Ðof€paddlefish€in€Louisiana.€Transactions€of€the€American€Fisheries€Society.€€ò ò121ó ó:378„Ð ˜!è% Ð384.Ð `"°& Ðà 4 àÌÓ X¨ýÓGrowth,€mortality,€fecundity,€egg€diameter,€and€age€at€maturity€were€determinedÐ ð#@( Ðfrom€samples€of€270€paddlefish€òòPolyodon€spathulaóó€collected€from€the€Atchafalaya€RiverÐ ¸$ ) Ðbasin€and€Lake€Pontchartrain,€Louisiana,€during€a€commercial€harvest€moratorium€fromÐ €%Ð * Ð1987€to€1989.€Early€growth€of€paddlefish€determined€from€back„calculation€of€annularÐ H&˜!+ Ðmeasurements€on€dentary€cross€sections€was€high€relative€to€paddlefish€populations€in€theÐ '`", ÐUpper€Mississippi€River€drainage;€lengths€of€age„1€fish€ranged€from€411€to€455€mm€inÐ Ø'(#- Ðeye„fork€length.€Natural€mortality€of€Louisiana€paddlefish€was€high€(26„48%),€and€dataÐ  (ð#. Ðsuggested€a€reduction€in€age€at€maturity€(100%€females€mature€at€age€10),€lowerÐ h)¸$/ Ðfecundity€(average€fecundity,€9,500€eggs/kg€body€weight),€and€larger€eggs€(averageÐ 0*€%0 Ðdiameter,€2.67€mm)€relative€to€other€paddlefish€populations.€Changes€in€reproductive€lifeÐ ø*H&1 Ðhistory€characteristics€may€reflect€rapid€growth€and€high€natural€mortality€rates.€As€theÐ À+'2 Ðâ âpostmoratorium€commercial€fishery€for€Louisiana€paddlefish€develops,€conservativeÐ ˆ,Ø'3 Ðharvest€regulations€should€be€promulgated€until€the€effects€of€harvest€on€paddlefish€stockÐ ° Ðdynamics€can€be€determined.Ð xÈ Ðâ âÐ @ ÐÓ ¨ýXÓÐ X Ð373.à 4 àRegier,€H.€A.,€R.€L.€Welcomme,€R.€J.€Steedman€and€H.€F.€Henderson€(1989).Ð Ð  ÐRehabilitation€of€degraded€river€ecosystems.€Pages€€86„97€òòinóó€€International€Large€RiverÐ ˜è ÐSymposium,€Honey€Harbour,€Ont.€(Canada),€Canadian€Special€Publications€of€FisheriesÐ ` ° Ðand€Aquatic€Sciences.Ð ( x Ðà 4 àÌÓ X¨ýÓEcodevelopment€of€pristine€rivers€and€sustainable€redevelopment€of€degradedÐ ¸   Ðrivers€is€intended€to€result€in€more€harmonious€and€productive€human/nature€ecosystems.Ð € Ð  ÐConventional€environmental€and€resource€sciences€in€their€present€states€are€poorlyÐ H ˜  Ðsuited€for€this€challenge.€A€more€appropriate€scientific€approach€to€river€rehabilitationÐ `  Ðmay€emerge€from€a€synthesis€of€recent€work€on€historical€ecology,€ecosystemÐ Ø(  Ðdevelopment€and€empirical€generalizations€from€comparative€studies€of€river€ecosystems.Ð  ð  ÐHere€we€take€an€ecosystem€approach€with€a€focus€on€self„organizing€ecosystemÐ h¸  Ðproperties€that€lead€to€the€production€of€highly€valued€products€and€features.Ð 0€  ÐÐ øH  ÐÓ ¨ýXÓÐ À Ð374.à 4 àRichmond,€A.€M.€and€B.€Kynard€(1995).€€Ontogenetic€behavior€of€shortnose€sturgeon,òòÐ ˆØ ÐAcipenser€brevirostrumóó.€Copeia.€172„182.Ð P  Ðà 4 àÌÓ X¨ýÓOntogenetic€behavioral€changes€of€young€shortnose€sturgeon€òòAcipenserÐ à0 Ðbrevirostrumóó€of€Connecticut€River€stock€are€described€for€three€morphological€stagesÐ ¨ø Ð(embryo„larva„juvenile).€Hatchlings€(<1„day€embryos)€were€positively€rheotactic,Ð pÀ Ðphotonegative,€benthic,€and€vigorously€sought€cover.€If€denied€cover,€they€exhibitedÐ 8ˆ Ðvertical€swim„up€and€drift€behavior€until€cover€was€found.€Older€1„8€day€embryosÐ P Ðexhibited€the€same€behaviors€as€hatchlings;€except€when€denied€cover,€they€searchedÐ È Ðalong€the€bottom€until€cover€was€found.€The€photonegative€and€cover€seeking€behaviorsÐ à Ðare€adaptations€that€enable€embryos€to€complete€development€while€concealed€underÐ X¨ Ðstructure€at€a€spawning€site.€Larvae€9„16€days€old€left€cover€and€were€positivelyÐ  p Ðrheotactic€and€photopositive.€An€estimated€75%€of€9„14€day€larvae€left€bottom€cover€andÐ è8 Ðswam€in€the€water€column,€suggesting€that€larvae,€not€embryos,€initiate€the€downstreamÐ °  Ðmigration€from€a€spawning€site.€Larvae€were€most€active€at€night€and€preferred€deepÐ xÈ! Ðwater€and€silt€substrate.€Most€43„66€day€juveniles€were€benthic€swimmers€and,€likeÐ @" Ðlarvae,€positively€rheotactic,€photopositive,€and€nocturnally€active.€Behavior€of€embryosÐ  X# Ðand€larvae€suggests€shortnose€sturgeon€should€be€classified€in€the€lithophil€reproductiveÐ Ð $ Ðguild,€not€the€litho„pelagophil€guild.Ð ˜!è% ÐÐ `"°& ÐÓ ¨ýXÓÐ (#x' Ð375.à 4 àRoe,€K.€J.,€A.€M.€Simons€and€P.€Hartfield€(1997).€€Identification€of€a€fish€host€of€theÐ ð#@( Ðinflated€heelsplitter€òòPotamilus€inflatusóó€(Bivalvia:€Unionidae)€with€a€description€of€itsÐ ¸$ ) Ðglochidium.€American€Midland€Naturalist.€€ò ò138ó ó:48„54.Ð €%Ð * Ðà 4 àÌÓ X¨ýÓA€survey€of€the€fishes€of€the€Black€Warrior€River€was€undertaken€to€determineÐ '`", Ðfish€host(s)€of€the€federally€threatened€inflated€heelsplitter,€òòPotamilus€inflatusóó.€SevenÐ Ø'(#- Ðhundred„twenty€individual€fishes€representing€30€species€were€examined;€musselÐ  (ð#. Ðglochidia€were€found€on€10€individual€fishes€representing€nine€species.€òòPotamilusÐ h)¸$/ Ðinflatusóó€glochidia€were€only€found€infesting€one€freshwater€drum€òòAplodinotus€grunniensóó,Ð 0*€%0 Ðwhich€is€concordant€with€previous€findings€for€the€genus€òòPotamilusóó.€The€morphology€ofÐ ø*H&1 ÐòòP.€inflatusóó€glochidia€is€described€and€compared€to€òòP.€purpuratusóó.Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð376.à 4 àRomano,€M.€A.,€D.€B.€Markillie€and€R.€V.€Anderson€(1991).€Electrophoretic€analysis€ofÐ ° Ðthe€host„parasite€relationship€between€flathead€catfish€òòPylodictus€olivarisóó€and€theÐ xÈ Ðmapleleaf€mussel€òòQuadrula€quadrulaóó.€Pages€€66€òòinóó€K.€Johnson,€ed.€Proceedings€of€theÐ @ ÐMississippi€River€Research€Consortium,€La€Crosse,€Wisconsin€(USA),€Mississippi€RiverÐ X ÐResearch€Consortium.Ð Ð  Ðà 4 àÌÓ X¨ýÓThe€only€reported€fish€host€for€the€glochidial€stage€of€the€mapleleaf€mussel€is€theÐ ` ° Ðflathead€catfish;€therefore,€patterns€of€genetic€structure€within€these€two€species€shouldÐ ( x Ðbe€correlated.€€To€test€this€hypothesis,€sample€sites€of€similar€mussel€density€and€diversityÐ ð @ Ðwere€chosen€from€Pools€15,€16,€18,€19,€26€of€the€Mississippi€River,€and€one€site€from€theÐ ¸   ÐIllinois€River.€€Electrophoretic€analysis€indicated€gene€flow€among€the€mapleleafÐ € Ð  Ðpopulations€tended€to€be€higher€within€pools€and€lower€between€pools€separated€by€lockÐ H ˜  Ðand€dam€systems.€€Catfish€populations€exhibited€relatively€low€levels€of€geneticÐ `  Ðvariability,€particularly€in€Pool€19,€where€episodes€of€pollutant€stress€may€have€been€aÐ Ø(  Ðfactor.€€òòP.€olivarisóó€appears€to€have€a€direct€effect€on€the€genetic€structure€of€òòQ.€quadrulaóó.€Ð  ð  ÐAnalyses€of€systematic€relationships€among€populations€of€both€species€showed€someÐ h¸  Ðparallelism€of€population€structure€between€the€two€species.€€A€previous€study€onÐ 0€  ÐòòAmblena€plicataóó€did€not€produce€a€similarity€in€that€species€population€structure€with€òòP.Ð øH  Ðolivarisóó.€€Therefore,€the€data€suggest€that€the€flathead€catfish€is€the€predominant€host€fishÐ À Ðwith€mapleleaf€mussel's€glochidia.Ð ˆØ ÐÓ ¨ýXÓÐ P  ÐÐ h Ð377.à 4 àRyckman,€J.€R.€(1986).€€Effectiveness€of€fish€ladders€in€the€Grand€River.€MichiganÐ à0 ÐDepartment€of€Natural€Resources,€Fisheries€Research€Report€1937.Ð ¨ø Ðà 4 àÌÓ X¨ýÓFish€ladders€were€built€on€the€Grand€River€to€allow€anadromous€salmonids€toÐ 8ˆ Ðmigrate€from€Lake€Michigan€to€the€Lansing€area.€€The€study€was€started€in€the€fall€ofÐ P Ð1982€to€evaluate€the€fishing€pressure€and€catch€of€anadromous€fish.€€Visual€counts€wereÐ È Ðmade€at€each€fish€ladder€in€spring€and€fall€on€a€random€around„the„clock€basis€to€measureÐ à Ðthe€number€of€salmonids€moving€upstream.€€Spring€floods€appeared€to€aid€steelheadÐ X¨ Ðmigration€but€hindered€fishing.€€Returns€of€stocked€salmonids€to€the€Grand€River€fisheryÐ  p Ðwere€roughly€estimated€by€comparing€average€number€stocked€to€average€numberÐ è8 Ðharvested.€Returns€were€about€2.8%€for€coho,€3.4%€for€chinook,€and€2.2%€for€steelhead.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð378.à 4 àSaila,€S.€B.,€T.€T.€Polgar,€D.€J.€Sheehy€and€J.€M.€Flowers€(1972).€€Correlations€betweenÐ  X# Ðalewife€activity€and€environmental€variables€at€a€fishway.€Transactions€of€the€AmericanÐ Ð $ ÐFisheries€Society.€€ò ò101ó ó:583„594.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓAn€automatic€recording€system€for€fish€counting€and€for€the€monitoring€of€waterÐ (#x' Ðtemperature,€dissolved€OÔ2"$rð#@Ô2ÔÎÿð#@"$rÔ,€pH,€and€solar€radiation€was€employed€on€a€newly€constructedÐ ð#@( Ðfishway€on€the€Annaquatucket€River,€North€Kingstown,€Rhode€Island.€Records€ofÐ ¸$ ) Ðfishway€utilization€by€the€alewife,€òòAlosa€pseudoharengusóó€and€of€the€environmentalÐ €%Ð * Ðvariables€were€critically€examined€by€time€series€autocorrelation€and€cross„correlationÐ H&˜!+ Ðtechniques.€It€was€demonstrated€that€migratory€activity€was€hormonic€with€a€diurnalÐ '`", Ðperiodicity€and€was€closely€associated€with€incident€solar€radiation.€Suggestions€for€anÐ Ø'(#- Ðimproved€monitoring€system€and€further€analysis€were€made.Ð  (ð#. ÐÐ h)¸$/ ÐÓ ¨ýXÓÐ 0*€%0 Ð379.à 4 àSandell,€G.,€L.€Pettersson€and€I.€Abrahamsson€(1994).€€[Fishways€„„€a€literature€survey].Ð ø*H&1 ÐInformationen€Soetvattenslab,€Drottningholm€(Sweden).Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓThe€construction€of€fishways€ensures€free€passage€around€natural€or€man„madeÐ ° Ðâ âbarriers.€Construction€and€maintenance€of€fish€passes€represents€one€of€the€mostÐ xÈ Ðimportant€ways€of€preserving€wild€fish€populations.€The€survey€contains€183€referencesÐ @ Ðand€deals€with€all€the€basic€types€of€fishways€described€in€the€literature.€The€informationÐ X Ðhas€been€selected€in€the€light€of€its€potential€relevance€in€the€Nordic€countries.€EightÐ Ð  Ðbasic€types€of€fishways€may€be€identified€and€are€descibed€in€the€document:€weirÐ ˜è Ðfishways,€Denil€fishways,€vertical€slot€fishways,€fish€locks€and€elevators,€culvertÐ ` ° Ðfishways,€channels,€fishways€for€juveniles€migrating€upstream,€bypasses.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð380.à 4 àSanguine,€W.€L.€(1985).€€Channel€modification€for€fish€passage€on€Umatilla€River.€FinalÐ € Ð  Ðreport.€U.S.€Department€of€Energy,€Report€DOE/BP/15807„T1.Ð H ˜  Ðà 4 àÌÓ X¨ýÓThis€report€describes€the€construction€of€modifications€to€the€bed€of€the€UmatillaÐ Ø(  ÐRiver€and€to€the€Threemile€Dam€fish€ladder€to€improve€fish€passage€during€periods€ofÐ  ð  Ðlow€flow.€The€report€also€provides€a€preliminary€assessment€of€the€effectiveness€of€theÐ h¸  Ðmodified€channel€in€improving€fish€passage.Ð 0€  ÐÐ øH  ÐÓ ¨ýXÓÐ À Ð381.à 4 àSchmutz,€S.,€C.€Giefing€and€C.€Wiesner€(1998).€€The€efficiency€of€a€nature„like€bypassÐ ˆØ Ðchannel€for€pike„perch€òòStizostedion€luciopercaóó€in€the€Marchfeldkanalsystem.Ð P  ÐHydrobiologia.€€ò ò371„372ó ó:355„360.Ð h Ðà 4 àÌÓ X¨ýÓThis€radio€telemetry€study€is€part€of€a€large€interdisciplinary€research€program€onÐ ¨ø Ðthe€colonisation€and€development€of€the€Marchfeldkanal(MFK)„system,€a€man€madeÐ pÀ Ðchannel.€The€immigration€of€fishes€into€the€MFK€is€dependent€on€the€effectiveness€ofÐ 8ˆ Ðfish€bypass€channels€at€several€weirs.€To€investigate€the€efficiency€of€the€lower€mostÐ P Ðfishway€we€estimated€the€population€densities€along€the€MFK„system€and€below€theÐ È Ðweirs€using€electrofishing.€In€addition,€the€movements€of€15€radio„tagged€pike„perch€atÐ à Ðthe€fishway€were€observed.€Although€more€than€57€000€fishes€of€35€species€passed€theÐ X¨ Ðbypass€channel,€pike„perch€òòStizostedion€luciopercaóó€were€under„represented€in€theÐ  p Ðfishway€traps€compared€to€their€occurrence€in€the€channel.€The€average€daily€movementÐ è8 Ðof€radio„tagged€pike„perch€was€108€m€(range€6„333€m)€and€the€maximum€observed€dailyÐ °  Ðmovement€was€1050€m.€The€entrance€to€the€bypass€channel€(280€m€below€the€weir,€andÐ xÈ! Ð100€m€above€the€release€site)€was€approached€a€number€of€times€by€6€tagged€fish,€thoughÐ @" Ðnone€of€them€entered€the€bypass€channel€during€the€period€of€tracking.€We€conclude€thatÐ  X# Ðalthough€pike„perch€migrate€actively€they€do€not€utilise€the€bypass€channel€as€much€asÐ Ð $ Ðmost€fish€species€of€the€MFK.€Therefore€the€weir€still€represents€a€bottleneck€for€theÐ ˜!è% Ðimmigration€of€pike„perch€into€the€MFK.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð382.à 4 àSchwalme,€K.,€W.€C.€Mackay€and€D.€Lindner€(1985).€€Suitability€of€vertical€slot€andÐ ¸$ ) ÐDenil€fishways€for€passing€north„temperate,€nonsalmonid€fish.€Canadian€Journal€ofÐ €%Ð * ÐFisheries€and€Aquatic€Sciences.€€ò ò42ó ó:1815„1822.Ð H&˜!+ Ðà 4 àÌÓ X¨ýÓA€vertical€slot€fishway€and€two€Denil€fishways€(of€10€and€20%€slope)€built€into€aÐ Ø'(#- Ðweir€on€the€Lesser€Slave€River€(55ÔÎÿn(¾# (ð#ÔoÔ2 (ð#n(¾#Ô€18ÔÎÿn(¾# (ð#Ô'Ô2 (ð#n(¾#ÔN,€115ÔÎÿn(¾# (ð#ÔoÔ2 (ð#n(¾#Ô€45ÔÎÿn(¾# (ð#Ô'Ô2 (ð#n(¾#ÔW)€were€studied€from€May€12€to€JuneÐ  (ð#. Ð25,€1984,€to€determine€how€effectively€these€designs€pass€north„temperate,€nonsalmonidÐ h)¸$/ Ðfishes.€Thousands€of€spottail€shiner€òòNotropis€hudsoniusóó,€substantial€numbers€(>€100)€ofÐ 0*€%0 Ðnorthern€pike€òòEsox€luciusóó,€longnose€sucker€òòCatostomus€catostomusóó,€white€suckerÐ ø*H&1 ÐòòCatostomus€commersonióó,€immature€yellow€perch€òòPerca€flavescensóó,€and€lesser€numbers€ofÐ À+'2 Ðburbot€òòLota€lotaóó,€adult€yellow€perch,€lake€whitefish€òòCoregonus€clupeaformisóó,€and€trout„Ð ˆ,Ø'3 Ðperch€òòPercopsis€omiscomaycusóó€ascended€the€fishways.€Walleye€òòStizostedion€vitreumóó€andÐ P- (4 Ðgoldeye€òòHiodon€alosoidesóó,€although€probably€moving€extensively€through€the€river,€didÐ ° Ðnot€use€the€fishways.Ð xÈ ÐÐ @ ÐÓ ¨ýXÓÐ X Ðòò383.óóà 4 àScott,€W.€B.€and€E.€J.€Crossman€(1973).€€Freshwater€fishes€of€Canada.€Fisheries€ResearchÐ Ð  ÐBoard€of€Canada,€Ottawa,€Ontario€(Canada).Ð ˜è Ðà 4 àÌÓ X¨ýÓThis€book€is€a€classical€monograph€on€the€freshwater€fishes€of€Canada.€€ItÐ ( x Ðcontains€a€key€to€family€taxonomy€and€species„by„species€accounts€that€contain€extensiveÐ ð @ Ðinformation€on€description,€colour,€systematics,€distribution€(with€maps),€biology,€andÐ ¸   Ðrelation€to€man.€€Each€species„specific€section€contains€abundant€information€with€citedÐ € Ð  Ðreferences€throughout€so€that€readers€can€go€to€the€original€sources€used€to€compile€theÐ H ˜  Ðspecies„specific€accounts.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð384.à 4 àSeeb,€J.€E.,€L.€W.€Seeb,€D.€W.€Oates€and€F.€M.€Utter€(1987).€€Genetic€variation€andÐ h¸  Ðpostglacial€dispersal€of€populations€of€northern€pike€òòEsox€luciusóó€in€North€America.Ð 0€  ÐCanadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò44ó ó:556„561.Ð øH  Ðà 4 àÌÓ X¨ýÓThe€authors€studied€the€genetic€relationships€and€postglacial€dispersal€of€northernÐ ˆØ Ðpike€òòEsox€luciusóó€populations€in€North€America€using€allozyme€data.€Allelic€products€ofÐ P  Ðup€to€65€protein€coding€loci€were€examined€in€eight€populations:€five€from€drainages€inÐ h Ðwestern€Canada;€two€from€the€Missouri€River€drainage,€and€one€from€the€upperÐ à0 ÐMississippi€River€drainage.€Only€two€polymorphic€loci€were€identified,€Est„1€and€Ck„1,Ð ¨ø Ðand€the€average€observed€heterozygosity€was€only€0.001.€All€of€the€populations€from€theÐ pÀ Ðdrainages€in€western€Canada€and€the€Missouri€River€were€genetically€identical.€TheÐ 8ˆ ÐMississippi€River€population€was€unique,€expressing€Ck„1(140),€an€allele€nearly€absent€inÐ P Ðall€other€populations,€at€a€frequency€of€0.99.Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð385.à 4 àSenanan,€W.€and€A.€R.€Kapuscinski€(2000).€€Genetic€relationships€among€populations€ofÐ  p Ðnorthern€pike€òòEsox€luciusóó.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò57ó ó:391„Ð è8 Ð404.Ð °  Ðà 4 àÌÓ X¨ýÓGenetic€variation€was€assessed,€using€microsatellite€markers,€in€14€populations€ofÐ @" Ðnorthern€pike€òòEsox€luciusóó€in€the€North€Central€United€States€and€in€six€populations€fromÐ  X# ÐQuebec,€Alaska,€Siberia,€and€Finland.€Eight€of€13€loci€examined€were€polymorphic€in€atÐ Ð $ Ðleast€one€population€with€an€average€heterozygosity€at€all€loci€and€across€all€populationsÐ ˜!è% Ðof€0.14.€The€R€sub(st)€and€F€sub(st)€values€indicated€differentiation€among€populationsÐ `"°& Ð(R€sub(st)€=€0.61,€F€sub(st)).€Although€microsatellite€variation€found€in€northern€pike€wasÐ (#x' Ðmuch€lower€than€that€found€in€sympatric€and€other€fish€species,€the€allozymes€andÐ ð#@( Ðmitochondrial€DNA.€UPGMA„clustering€phenograms€were€generated€based€on€fiveÐ ¸$ ) Ðgenetic€distance€measures€with€2000€bootstrap€replicates€per€measure.€All€measuresÐ €%Ð * Ðyielded€highly€repeatable€population€structure€between€continents€(supporting€values€=Ð H&˜!+ Ð92.4„100%)€and€within€Finland€(42.3„98%).€Four€measures€differentiated€the€AlaskanÐ '`", Ðpopulation€and€Young€Lake€(Great€Lakes€drainage)€from€other€North€AmericanÐ Ø'(#- Ðpopulations€(56.6„87.7%).€Relationships€among€other€North€Central€United€StatesÐ  (ð#. Ðpopulations€were€unclear,€as€indicated€by€low€supporting€values.€Results€support€theÐ h)¸$/ Ðhypotheses€of€one€refugium€in€the€North€Central€United€States€and€more€than€oneÐ 0*€%0 Ðrefugium€in€Europe€during€the€last€glaciation.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð386.à 4 àShtaf,€L.€G.,€D.€S.€Pavlov,€M.€A.€Skorobogatov€and€A.€Barekyan€(1983).€€The€influenceÐ ° Ðâ âof€flow€turbulence€on€fish€behavior.€Journal€of€Ichthyology.€€ò ò23ó ó:129„140.Ð xÈ Ðà 4 àÌÓ X¨ýÓThe€influence€of€degrees€of€flow€turbulence€on€the€behavior€of€the€roach,€òòRutilusÐ X Ðrutilusóó€,€and€the€minnow,€òòPhoxinus€phoxinusóó€are€presented.€Data€are€given€on€the€mannerÐ Ð  Ðof€selection€by€fish€of€zones€with€a€heightened€degree€of€turbulence,€on€places€ofÐ ˜è Ðconcentration,€swimming€capacity,€compactness€of€schools€of€fish€in€currents€withÐ ` ° Ðvarying€turbulence€characteristics,€and€degree€of€orientation€of€fish€at€speeds€close€toÐ ( x Ðthreshold,€depending€on€the€flow€movement€regime.Ð ð @ ÐÐ ¸   ÐÓ ¨ýXÓÐ € Ð  Ð387.à 4 àSimonson,€T.€D.€and€W.€A.€Swenson€(1990).€€Critical€stream€velocities€for€young„of„yearÐ H ˜  Ðsmallmouth€bass€in€relation€to€habitat€use.€Transactions€of€the€American€FisheriesÐ `  ÐSociety.€€ò ò119ó ó:902„909.Ð Ø(  Ðà 4 àÌÓ X¨ýÓThe€authors€defined€relationships€between€current€velocity€and€displacement€ofÐ h¸  Ðyoung€smallmouth€bass€òòMicropterus€dolomieuióó€from€nests,€and€between€velocity€and€theÐ 0€  Ðdistribution,€swimming,€respiration,€feeding,€and€growth€of€larger€young.€Young€that€hadÐ øH  Ðrecently€risen€from€the€nest€gravel€(7„9€mm€standard€length,€SL)€were€displaced€fromÐ À Ðfield€nest€sites€and€from€laboratory€flumes€at€low€velocities€(8€mm/s).€Nests€in€areas€ofÐ ˆØ Ðhigher€velocities€(15€mm/s)€failed€to€produce€young.€Comparison€of€respiration€andÐ P  Ðforaging€rates€of€young€fish€(16„71€mm€SL)€in€laboratory€flumes€suggested€that€the€ratioÐ h Ðof€feeding€reward€to€energy€expenditure€reached€a€maximum€at€current€velocitiesÐ à0 Ðbetween€80€and€130€mm/s.€This€velocity€range€produced€maximum€growth€in€the€flumesÐ ¨ø Ðand€was€also€the€range€most€frequented€by€young€(43„116€mm€SL)€in€the€MississippiÐ pÀ ÐRiver.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ð388.à 4 àSkalski,€J.€R.,€A.€Hoffmann,€B.€H.€Ransom€and€T.€W.€Steig€(1993).€€Fixed„locationÐ à Ðhydroacoustic€monitoring€designs€for€estimating€fish€passage€using€stratified€random€andÐ X¨ Ðsystematic€sampling.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò50ó ó:1208„Ð  p Ð1221.Ð è8 Ðà 4 àÌÓ X¨ýÓFive€alternative€finite€sampling€designs€are€compared€using€15€d€of€24„hÐ xÈ! Ðcontinuous€hydroacoustic€data€to€identify€the€most€favorable€approach€to€fixed„locationÐ @" Ðhydroacoustic€monitoring€of€salmonid€outmigrants.€Four€alternative€approaches€areÐ  X# Ðcompared€among€themselves€and€with€stratified€random€sampling€(STRS).€StratifyingÐ Ð $ Ðsystematic€sampling€(STSYS)€on€a€daily€basis€is€found€to€reduce€sampling€error€inÐ ˜!è% Ðmultiday€monitoring€studies.€Although€sampling€precision€was€predictable€with€varyingÐ `"°& Ðlevels€of€effort€in€STRS,€neither€magnitude€nor€direction€of€change€in€precision€wasÐ (#x' Ðpredictable€when€effort€was€varied€in€systematic€sampling€(SYS).€Modifying€systematicÐ ð#@( Ðsampling€to€include€replicated€(e.g.,€nested)€sampling€(RSYS)€is€shown€to€provideÐ ¸$ ) Ðunbiased€point€and€variance€estimates€as€does€STRS.€Numerous€short€sampling€intervalsÐ €%Ð * Ð(e.g.,€12€samples€of€1„min€duration€per€hour)€must€be€monitored€hourly€using€RSYS€toÐ H&˜!+ Ðprovide€efficient,€unbiased€point€and€interval€estimates.€For€equal€levels€of€effort,€STRSÐ '`", Ðoutperformed€all€variations€of€SYS€examined.Ð Ø'(#- ÐÐ  (ð#. ÐÓ ¨ýXÓÐ h)¸$/ Ð389.à 4 àSkorobogatov,€M.€A.,€D.€S.€Pavlov,€A.€Barekyan€and€L.€G.€Shtaf€(1983).€€Selecting€sitesÐ 0*€%0 Ðof€projected€fish€passes.€Doklady€Biological€Sciences.€€ò ò272ó ó:508„510.Ð ø*H&1 Ðà 4 àÌÓ X¨ýÓOne€of€the€most€important€problems€arising€in€the€planning€of€areas€for€fish€toÐ ˆ,Ø'3 Ðpass€through€a€dam€is€choosing€the€sites€of€the€passes€in€the€system€at€the€hydroelectricÐ P- (4 Ðcenter.€A€procedure€for€this€choice€is€presented€based€on€a€comparison€of€the€probableÐ ° Ðworking€efficiency€of€a€fish€pass€at€each€possible€location€site.€Hydraulic„biologicalÐ xÈ Ðstudies€carried€out€a€few€years€ago€make€it€possible€to€ascertain€the€factors€influencingÐ @ Ðthe€formation€of€the€paths€of€motion€of€fish,€as€well€as€the€reactions€of€fish€to€variousÐ X Ðflow€characteristics.€The€behavioral€features€of€each€school€of€fish€are€taken€into€accountÐ Ð  Ðby€finding€the€deviations€of€the€transverse€and€longitudinal€fish€velocities€from€theÐ ˜è Ðaverage€values.€In€order€to€determine€the€efficiency€of€a€fish€pass€for€a€known€flowÐ ` ° Ðstructure€in€the€tailwater€of€a€hydroelectric€system,€all€possible€paths€of€fish€motion€fromÐ ( x Ðthe€initial€point€to€the€entry€of€the€fish€collecting€chute€are€calculated.€As€an€example€,Ð ð @ Ðthe€efficiency€was€calculated€for€one€operating€regime€of€a€model€hydroelectric€centerÐ ¸   Ðwith€a€fish€pass€located€in€the€middle€of€the€spillway,€for€passage€through€the€system€ofÐ € Ð  Ðschools€of€roach€with€an€average€length€of€25.4€mm.€This€approach€provides€an€objectiveÐ H ˜  Ðevaluation€of€the€likelihood€that€fish€will€enter€a€fish€pass€and€indicates€the€optimumÐ `  Ðlocation€of€the€pass€in€the€hydroelectric€system,€as€well€as€the€optimum€operating€regime.Ð Ø(  ÐIn€order€to€apply€this€approach€to€specific€planning€operations,€it€is€advisable€to€carry€outÐ  ð  Ðstudies€in€two€possible€directions:€to€seek€small€experimental€fish€with€behavior€similarÐ h¸  Ðto€that€of€spawning€migrants€and€to€study€the€reactions€of€fish€likely€to€pass€throughÐ 0€  Ðhydroeletric€centers.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð390.à 4 àSlatick,€E.€and€L.€R.€Basham€(1985).€€The€effect€of€Denil€fishway€length€on€passage€ofÐ P  Ðsome€nonsalmonid€fishes.€Marine€Fisheries€Review.€€ò ò47ó ó:83„85.Ð h Ðà 4 àÌÓ X¨ýÓThis€paper€documents€the€success€of€passage€of€some€non„salmonid€fishesÐ ¨ø Ðthrough€Denil„type€steep„pass€fishways€of€varying€length€and€slope.€Length€ranged€fromÐ pÀ Ð7.9€m€(26€feet)€to€20.1€m€(66€feet),€and€slope€ranged€between€23.3€and€28.7€percent.Ð 8ˆ ÐAmerican€shad,€òòAlosa€sapidissimaóó;€common€carp,€òòCyprinus€carpioóó;€chiselmouth,Ð P ÐòòAcrocheilus€alutaceusóó;€northern€squawfish,€òòPtychocheilus€oregonensisóó;€Pacific€lamprey,Ð È ÐòòLampetra€tridentataóó;€and€suckers,€òòCatostomus€spóó.,€were€observed€at€Bonneville€andÐ à ÐMcNary€dams€on€the€Columbia€River€and€Little€Goose€Dam€on€the€Snake€River€fromÐ X¨ Ð1971€to€1979.€Observations€indicate€that€Denil€ladders€of€selected€length€could€be€used,Ð  p Ðif€desired,€to€pass€salmonid€fishes€over€small€barriers€while€denying€upstream€access€toÐ è8 Ðcertain€unwanted€nonsalmonids.Ð °  ÐÐ xÈ! ÐÓ ¨ýXÓÐ @" Ð391.à 4 àSmiley,€P.€C.,€Jr.€and€G.€R.€Parsons€(1997).€€Effects€of€photoperiod€and€temperature€onÐ  X# Ðswimming€performance€of€white€crappie.€Transactions€of€the€American€Fisheries€Society.€Ð Ð $ Ðò ò126ó ó:495„499.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓPhotoperiod€and€temperature€are€two€environmental€factors€that€have€significantÐ (#x' Ðeffects€on€fish€physiology€and€behavior€but€few€studies€have€investigated€the€effect€ofÐ ð#@( Ðphotoperiod€on€swimming€performance.€We€studied€the€effects€of€five€photoperiods,Ð ¸$ ) Ðdesignated€24L:0D€(24€h€light:0€h€dark),€16L:8D,€12L:12D,€8L:16D,€0L:24D,€and€threeÐ €%Ð * Ðtemperatures€(5,€15,€and€25€ÔÎÿ&f!H&˜!ÔoÔ2H&˜!&f!ÔC)€on€the€swimming€performance€of€white€crappie€òòPomoxisÐ H&˜!+ Ðannularisóó€(5„11€cm€in€standard€length)€in€a€swim€tunnel€with€propeller„driven€flow.€Two„Ð '`", Ðfactor€analysis€of€variance€(alpha€=€0.05)€indicated€that€both€photoperiod€and€temperatureÐ Ø'(#- Ðsignificantly€affected€fish€swimming€performance€but€the€interaction€of€photoperiod€andÐ  (ð#. Ðtemperature€did€not.€At€all€temperatures,€the€8L:16D€photoperiod€resulted€in€the€highestÐ h)¸$/ Ðmean€swimming€speeds.€In€addition,€the€temperature€effect€was€consistent€at€allÐ 0*€%0 Ðphotoperiods.€The€mean€swimming€speed€at€5€ÔÎÿÆ*&ø*H&ÔoÔ2ø*H&Æ*&ÔC€was€significantly€slower€than€at€15€ÔÎÿÆ*&ø*H&ÔoÔ2ø*H&Æ*&ÔCÐ ø*H&1 Ðor€25€ÔÎÿŽ+Þ&À+'ÔoÔ2À+'Ž+Þ&ÔC;€however€there€was€no€significant€difference€between€swimming€speeds€at€15Ð À+'2 Ðâ âÔÎÿV,¦'ˆ,Ø'ÔoÔ2ˆ,Ø'V,¦'ÔC€and€25€ÔÎÿV,¦'ˆ,Ø'ÔoÔ2ˆ,Ø'V,¦'ÔC.€Our€documentation€of€a€photoperiod€effect€on€fish€provide€furtherÐ ˆ,Ø'3 Ðconfirmation€of€the€importance€of€this€environmental€variable€on€swimmingÐ ° Ðperformance.Ð xÈ Ðâ âÓ ¨ýXÓÐ @ ÐÐ X Ð392.à 4 àSmith,€D.€G.€(1985).€€Recent€range€expansion€of€the€freshwater€mussel€òòAnodontaÐ Ð  Ðimplicataóó€and€its€relationship€to€clupeid€fish€restoration€in€the€Connecticut€River€system.Ð ˜è ÐFreshwater€Invertebrate€Biology.€€ò ò4ó ó:105„108.Ð ` ° Ðà 4 àÌÓ X¨ýÓThe€range€of€òòAnodonta€implicataóó€in€the€Connecticut€River€prior€to€1970€wasÐ ð @ Ðknown€not€to€extend€upstream€from€Hartford,€Connecticut.€Since€1970€òòA.€implicataóó€hasÐ ¸   Ðincreased€its€range€upstream€in€the€Connecticut€River€to€Bellows€Falls,€Vermont.€ThisÐ € Ð  Ðrapid€range€expansion€appears€to€be€correlated€with€chronological€episodes€of€clupeidÐ H ˜  Ðfish€restoration€above€successive€dams€in€the€Connecticut€River.€òòAnodonta€implicataóó,Ð `  Ðtherefore,€can€be€used€as€an€indicator€of€success€of€clupeid€fish€restoration.Ð Ø(  ÐÓ ¨ýXÓÐ  ð  ÐÐ h¸  Ð393.à 4 àSoloman,€R.€C.,€D.€R.€Parsons,€D.€A.€Wright,€B.€K.€Colbert€and€C.€Ferris€(1975).€Ð 0€  ÐEnvironmental€inventory€and€assessment€of€Navigation€Pools€24,€25,€and€26,€UpperÐ øH  ÐMississippi€and€Lower€Illinois€Rivers.€Army€Engineer€Waterways€Experiment€Station,Ð À ÐTechnical€Report€Y„75„1.Ð ˆØ Ðà 4 àÌÓ X¨ýÓThe€River€and€Harbor€Act€of€3€July€1930€authorized€the€construction€andÐ h Ðmaintenance€of€a€9„ft„deep€by€300„ft„wide€channel€for€commercial€navigation€of€theÐ à0 ÐUpper€Mississippi€and€Lower€Illinois€Rivers.€Construction€of€locks€and€damsÐ ¨ø Ðsupplemented€by€dredging€and€bank€stabilization€was€required€to€maintain€the€9„ft€depth,Ð pÀ Ðparticularly€during€periods€of€low€flow.€An€investigation€was€performed€by€ColoradoÐ 8ˆ ÐState€University€to€evaluate€the€river€reaches€before€and€after€man„made€changes€andÐ P Ðoverall€changes€in€geomorphology.€Additionally,€trends€of€future€geomorphic€changesÐ È Ðthat€could€result€from€existing€and€potential€future€developements€were€addressed€withÐ à Ðthe€aid€of€a€mathematical€simulation€model.€Vegetation€and€vegetative€successionalÐ X¨ Ðpatterns€of€the€floodplain€were€characterized€by€the€Missouri€Botanical€Gardens.Ð  p ÐVegetation€maps€were€produced€delineating€vegetational€communities€adjacent€to€theÐ è8 Ðrivers€and€on€islands.€An€inventory€of€the€animals€and€their€habitats€was€conducted€byÐ °  ÐSouthern€Illinois€University.€Seven€habitats€were€distinguished€in€the€unprotectedÐ xÈ! Ðfloodplain.€Based€on€literature,€49€species€of€mammals,€286€species€of€birds,€and€81Ð @" Ðspecies€and€subspecies€of€amphibians€and€reptiles€were€expected€to€occur€in€the€studyÐ  X# Ðarea.€Members€of€the€Waterways€Experiment€Sttion€study€team€collected€water€andÐ Ð $ Ðsediment€samples€for€chemical€and€physical€analysis€and€biological€samples€from€fourÐ ˜!è% Ðhabitat€types.€The€data€were€subjected€to€various€statistical€analyses€to€determine€if€thereÐ `"°& Ðwere€differences€between€habitats€and€sampling€dates.€Fish€samples€were€collected€fromÐ (#x' Ðthe€Illinois€River€by€the€Illinois€Natural€History€Survey€and€results€were€compared€withÐ ð#@( Ðliterature€to€determine€temporal€and€spatial€changes€in€distribution.€The€overall€impactsÐ ¸$ ) Ðof€operation€and€maintainance€of€the€9„ft€channel€were€discussed€relative€to€the€effects€onÐ €%Ð * Ðthe€biological,€chemical,€and€physical€system€in€the€study€area.€Recommendations€wereÐ H&˜!+ Ðmade€for€further€studies€that€are€needed€to€define€impact€more€adequately.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð394.à 4 àSouthall,€P.€D.€(1982).€Paddlefish€movement€and€habitat€use€in€the€Upper€MississippiÐ h)¸$/ ÐRiver.€Pages€€35€òòinóó€J.€G.€Weiner,€R.€V.€Anderson€and€D.€R.€McConville,€eds.Ð 0*€%0 ÐContaminants€in€the€Upper€Mississippi€River:€Proceedings€of€the€15th€Annual€Meeting€ofÐ ø*H&1 Ðthe€Mississippi€River€Research€Consortium,€La€Crosse,€Wisconsin€(USA),€MississippiÐ À+'2 ÐRiver€Research€Consortium.Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓThe€paddlefish€is€an€important€sport€and€commercial€fish€species€in€the€UpperÐ ° ÐMississippi€River.€€Paddlefish€movement€and€habitat€use€were€investigated€by€radio„Ð xÈ Ðtelemetry.€€Fish€were€surgically€implanted€with€49€MHz€radio€transmitters€and€released€atÐ @ Ðcapture€site€in€Pool€13.€€Radio„tagged€fish€measured€68€to€96€cm,€eye€to€fork€length,€andÐ X Ðweighed€4€to€18€kg.€€Seven€paddlefish€were€monitored€during€the€summer€of€1980,€andÐ Ð  Ð10€fish€were€tracked€through€the€spring€and€into€the€summer€of€1981.€€Tracking€wasÐ ˜è Ðconducted€primarily€by€boat,€with€a€single€search€by€aircraft€for€lost€fish€1981.€€PhysicalÐ ` ° Ðcharacteristics€of€the€habitat€measured€at€telemetry€location€sites€were:€water€depth,Ð ( x Ðcurrent€velocity,€water€temperature,€bottom€contour,€and€proximity€to€navigationÐ ð @ Ðimprovement€structures.€€Paddlefish€exhibited€great€mobility,€especially€during€the€springÐ ¸   Ðmonths.€€Individual€linear€range€varied€from€12.5€to€104.6€km€during€the€study€period.€Ð € Ð  ÐInterpool€movement€through€navigation€dams€was€observed.€€Group€movement€upstreamÐ H ˜  Ðthrough€Lock€and€Dam€12€occurred€when€dam€gates€were€raised€during€a€high€waterÐ `  Ðperiod€in€the€spring,€1981.€€Movement€downstream€through€Lock€and€Dam€12€wasÐ Ø(  Ðaccomplished€when€dam€gates€were€partially€closed.€€Movement€from€and€subsequentÐ  ð  Ðreturn€to€specific€areas€suggested€recognition€of€particular€habitats.€€Main€channel€borderÐ h¸  Ðand€tailwater€habitats€were€utilized€most€frequently,€although€telemetry€locations€wereÐ 0€  Ðalso€made€in€backwater,€main€channel,€and€side€channel€habitats.€€Association€with€wingÐ øH  Ðdams€was€observed.Ð À ÐÓ ¨ýXÓÐ ˆØ ÐÐ P  Ð395.à 4 àSouthall,€P.€D.€and€W.€A.€Hubert€(1984).€€Habitat€use€by€adult€paddlefish€in€the€UpperÐ h ÐMississippi€River.€Transactions€of€the€American€Fisheries€Society.€€ò ò13ó ó:123„131.Ð à0 Ðà 4 àÌÓ X¨ýÓInformation€on€paddlefish€habitat€associations€in€the€Upper€Mississippi€River€isÐ pÀ Ðuseful€because€of€continuing€adverse€effects€on€habitat€by€navigation,€siltation,€andÐ 8ˆ Ðindustrial€siting,€as€well€as€potential€hydroelectric€power€development.€SeventeenÐ P Ðpaddlefish€were€tracked€in€two€pools€(12€and€13)€of€the€Upper€Mississippi€River€duringÐ È Ðthe€summer€of€1980€and€spring€and€summer€of€1981.€Interpool€movement€occurredÐ à Ðduring€spring€high€water€periods€when€dam€gates€were€lifted€to€create€a€free„flowingÐ X¨ Ðriver.€Habitat€use€varied€by€season.€Selection€was€greatest€for€tailwater€and€channelÐ  p Ðhabitats,€although€strong€association€with€one€backwater€slough€was€evident.€Even€whenÐ è8 Ðbackwaters€are€not€directly€utilized,€invertebrate€drift€from€these€areas€may€be€important.Ð °  ÐPaddlefish€often€congregated€near€man„made€structures€that€created€eddies€and€reducedÐ xÈ! Ðcurrent€velocities.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð396.à 4 àSparks,€R.€E.€(1995).€€Need€for€ecosystem€management€of€large€rivers€and€theirÐ ˜!è% Ðfloodplains.€BioScience.€€ò ò45ó ó:168„182.Ð `"°& Ðà 4 àÌÓ X¨ýÓThe€author€outlines€what€ecosystem€management€is€as€well€as€what€it€is€not.€€TheÐ ð#@( Ðimportance€of€large€river€floodplain€ecosystems€in€providing€diverse€and€rich€habitats€forÐ ¸$ ) Ðaquatic€and€terrestrial€species€is€discussed.€€Anthropogenic€impacts€on€large€floodplainÐ €%Ð * Ðrivers€are€reported€to€be€extensive€and€to€have€profound€consequences€in€systemÐ H&˜!+ Ðfunction.€€Most€salient€are€issues€of€connectivity.€€The€goals€of€ecosystem€managementÐ '`", Ðare€defined€to€be€the€maintenance€or€recovery€of€biological€integrity€of€the€ecosystem.€Ð Ø'(#- ÐBiological€integrity€is€argued€to€comprise€not€just€the€full€range€of€species€present€priorÐ  (ð#. Ðto€anthropogenic€impacts,€but€more€importantly,€all€of€the€variability€and€processes€thatÐ h)¸$/ Ðcomprise€the€system.€€To€define€a€reference€point€from€which€to€manage€from,€the€authorÐ 0*€%0 Ðsuggests€that€the€predisturbed€ecosystem€should€be€the€appropriate€benchmark.€Ð ø*H&1 ÐRestoration€of€the€floodplain,€the€annual€flood€pulse,€and€the€long„term€variability€in€theÐ À+'2 Ðsystem€are€forwarded€as€management€policies€to€restore€large€river€floodplainÐ ˆ,Ø'3 Ðecosystems.Ð P- (4 ÐÓ ¨ýXÓÐ ° ÐÐ xÈ Ð397.à 4 àStamhuis,€E.€J.€and€J.€J.€Videler€(1995).€€Quantitative€flow€analysis€around€aquaticÐ @ Ðanimals€using€laser€sheet€particle€image€velocimetry.€Journal€of€Experimental€Biology.€Ð X Ðò ò198ó ó:283„294.Ð Ð  Ðà 4 àÌÓ X¨ýÓTwo€alternative€particle€image€velocimetry€(PIV)€methods€have€been€developed,Ð ` ° Ðapplying€laser€light€sheet€illumination€of€particle„seeded€flows€around€marine€organisms.Ð ( x ÐSuccessive€video€images,€recorded€perpendicular€to€a€light€sheet€parallel€to€the€mainÐ ð @ Ðstream,€were€digitized€and€processed€to€map€the€flow€velocity€in€two„dimensional€planes.Ð ¸   ÐIn€particle€tracking€velocimetry€(PTV),€displacements€of€single€particles€in€twoÐ € Ð  Ðsubsequent€images€were€determined€semi„automatically,€resulting€in€flow€diagramsÐ H ˜  Ðconsisting€of€non„uniformly€distributed€velocity€vectors.€Application€of€grid„cellÐ `  Ðaveraging€resulted€in€flow€field€diagrams€with€uniform€vector€distribution.€In€sub„imageÐ Ø(  Ðcorrelation€PIV€(SCPIV),€repetitive€convolution€filtering€of€small€sub„areas€of€twoÐ  ð  Ðsubsequent€images€resulted€in€automatic€determination€of€cross„correlation€peaks,Ð h¸  Ðyielding€flow€field€diagrams€with€regularly€spaced€velocity€vectors.€In€both€PTV€andÐ 0€  ÐSCPIV,€missing€values,€caused€by€incomplete€particle€displacement€information€in€someÐ øH  Ðareas€of€the€images€or€due€to€rejection€of€some€erroneous€vectors€by€the€vector€validationÐ À Ðprocedure,€were€interpolated€using€a€two„dimensional€spline€interpolation€technique.€TheÐ ˆØ Ðresultant€vector€flow€fields€were€used€to€study€the€spatial€distribution€of€velocity,€spatialÐ P  Ðacceleration,€vorticity,€strain€and€shear.€These€flow€fields€could€also€be€used€to€test€forÐ h Ðflow€in€the€third€dimension€by€studying€the€divergence,€and€to€detect€the€presence€andÐ à0 Ðlocation€of€vortices.€The€results€offer€detailed€quantitative€descriptions€of€the€flowÐ ¨ø Ðmorphology€and€can€be€used€to€assess€dissipated€energy.€The€versatile€character€of€theÐ pÀ Ðtechnique€makes€it€applicable€to€a€wide€range€of€fluid€mechanical€subjects€withinÐ 8ˆ Ðbiological€research.€So€far€it€has€been€successfully€applied€to€map€the€flow€aroundÐ P Ðswimming€copepods,€fish€larvae€and€juvenile€fish€and€the€ventilation€current€of€a€tube„Ð È Ðliving€shrimp.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð398.à 4 àStanford,€J.€A.,€F.€R.€Hauer€and€J.€V.€Ward€(1988).€Serial€discontinuity€in€a€large€riverÐ è8 Ðsystem.€Pages€€1114„1118€òòinóó€V.€Sladecek,€ed.€Congress€in€New€Zealand,€Hamilton€(NewÐ °  ÐZealand),€International€Association€of€Theoretical€and€Applied€Limnology.Ð xÈ! Ðà 4 àÌÓ X¨ýÓIn€this€paper,€abiotic€and€biotic€discontinuities€were€studied€which€exist€seriallyÐ  X# Ðwithin€the€Flathead€River€system€(Canada€and€USA).€These€discontinuities€occur€as€aÐ Ð $ Ðresult€of€natural€(lakes€and€springs)€and€anthropogenic€(epilimnial€and€hypolimnialÐ ˜!è% Ðrelease€dams)€stream€regulation.Ð `"°& ÐÓ ¨ýXÓÐ (#x' ÐÐ ð#@( Ð399.à 4 àSteiner,€H.€A.€(1991).€€Investigations€at€the€fish€ladder€from€the€River€Drau€into€theÐ ¸$ ) ÐKellerberg€Loop.€Osterreichs€Fischerei.€€ò ò44ó ó:87„100.Ð €%Ð * Ðà 4 àÌÓ X¨ýÓThe€measurings€showed,€that€the€installation€of€a€fish€ladder€for€the€preservationÐ '`", Ðof€the€flowing€water€continuum€for€the€old€branch€of€the€River€Drau€is€absolutelyÐ Ø'(#- Ðfeasible,€taking€the€ecological€conditions€and€the€fishery€biological€outline€conditionsÐ  (ð#. Ðinto€consideration.€Beside€variable€outlets€on€account€of€the€natural€catchment€area,€theÐ h)¸$/ Ðfish€ladder€at€the€Kellerberg€Loop€took€the€performance€of€the€fish,€disposition€of€the€fishÐ 0*€%0 Ðpath€and€sufficient€decoy€current€into€consideration.€The€fish€ladder€was€well€acceptedÐ ø*H&1 Ðand€serves€as€permanent€living€space€for€at€least€10€different€species€of€fish.€The€fishÐ À+'2 Ðladder€also€serves€a€good€purpose€with€regard€to€ascents€during€the€spawning€time.Ð ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ї400.à 4 àSteingraeber,€M.€T.,€A.€L.€Runstrom€and€P.€A.€Thiel€(1997).€Round€Goby€(òòNeogobiusÐ ° Ðmelanostromusóó)€distribution€in€the€Illinois€waterway€system€of€metropolitan€Chicago.Ð xÈ ÐPages€€45€òòinóó€M.€Olekszyn€and€M.€Steingraeber,€eds.€Proceedings€of€the€Mississippi€RiverÐ @ ÐResearch€Consortium,€La€Crosse,€Wisconsin€(USA),€Mississippi€River€ResearchÐ X ÐConsortium.Ð Ð  Ðà 4 àÌÓ X¨ýÓThere€is€concern€that€the€range€of€the€round€goby€òòNeogobius€melanostromusóó,€aÐ ` ° Ðnonindigenous€fish€recently€introduced€to€the€Great€Lakes€drainage€basin€from€Eurasia,Ð ( x Ðmay€expand€to€other€drainage€basins€with€adverse€ecological€consequences.€The€IllinoisÐ ð @ ÐWaterway€System€(IWS)€connects€the€Great€Lakes€and€Mississippi€River€basins€andÐ ¸   Ðfacilitated€the€spread€of€another€exotic€nuisance€species,€the€zebra€mussel€òòDreissenaÐ € Ð  Ðpolymorphaóó,€to€other€environmentally€sensitive€drainages€of€interior€North€AmericaÐ H ˜  Ðearlier€this€decade.€We€surveyed€the€distribution€of€round€goby€in€a€portion€of€the€IWSÐ `  Ðnear€metropolitan€Chicago€in€autumn€1996€with€traps,€seines,€trawls,€set€lines,€and€byÐ Ø(  Ðangling.€A€total€of€61€round€goby€were€captured€in€the€Little€Calumet€River€in€southÐ  ð  ÐChicago€at€locations€upstream€of€river€mile€321.4€(12€miles€inland€from€Lake€Michigan).Ð h¸  ÐNo€round€goby€were€captured€at€sites€in€connecting€channels€downstream€(i.e.,€furtherÐ 0€  Ðinland)€of€this€point€as€far€away€as€Joliet€(river€mile€283).€Bottom€trawling,€particularlyÐ øH  Ðover€rocky€substrates,€was€the€most€successful€means€of€capturing€round€goby€andÐ À Ðaccounted€for€87%€of€the€total€catch.€Goby€captured€by€trawling€were€significantlyÐ ˆØ Ðsmaller€than€those€captured€by€other€gears€and€significantly€smaller€goby€were€capturedÐ P  Ðat€the€sampling€site€furthest€upstream.€The€length€frequency€distribution€of€the€roundÐ h Ðgoby€we€captured€suggested€the€presence€of€fish€from€the€three€most€recent€year€classesÐ à0 Ð(1994„1996).€The€rocky€substrate€preferred€by€round€goby€may€be€less€common€in€aÐ ¨ø Ðshort€reach€of€the€Little€Calumet€River€downstream€of€river€mile€321.€Despite€thisÐ pÀ Ðpotential€habitat€deficiency,€population€growth€and€human€interventions€are€soon€likelyÐ 8ˆ Ðto€expand€the€range€of€the€round€goby€in€the€IWS.Ð P ÐÐ È ÐÓ ¨ýXÓÐ à Ð401.à 4 àStier,€D.€J.€and€B.€Kynard€(1986).€€Use€of€radio€telemetry€to€determine€the€mortality€ofÐ X¨ ÐAtlantic€salmon€smolts€passed€through€a€17„MW€Kaplan€turbine€at€a€low„headÐ  p Ðhydroelectric€dam.€Transactions€of€the€American€Fisheries€Society.€€ò ò115ó ó:771„775.Ð è8 Ðà 4 àÌÓ X¨ýÓMortality€among€108€radio„tagged€2„year„old€smolts€of€Atlantic€salmon€òòSalmoÐ xÈ! Ðsalaróó€passed€through€a€17„MW€Kaplan€turbine€was€estimated€at€Holyoke€Dam€on€theÐ @" ÐConnecticut€River.€The€survival€of€test€and€control€fish€in€1981€was€determined€byÐ  X# Ðcomparing€their€rate€of€downstream€movement€with€that€of€28€prekilled€fish.€The€survivalÐ Ð $ Ðof€test€fish€in€1982€was€determined€as€in€1981€by€using€nine€prekilled€fish.€At€full€powerÐ ˜!è% Ðgeneration,€the€mean€percent€turbine„induced€mortality€at€2€h€(95%€confidence€interval€inÐ `"°& Ðparentheses)€was€11.8€(3.8„18.0)€in€1981€ad€13.7€(1.9„22.5)€in€1982.Ð (#x' ÐÐ ð#@( ÐÓ ¨ýXÓÐ ¸$ ) Ð402.à 4 àStuart,€I.€G.€and€M.€Mallen„Cooper€(1999).€€An€assessment€of€the€effectiveness€of€aÐ €%Ð * Ðvertical„slot€fishway€for€non„salmonid€fish€at€a€tidal€barrier€on€a€large€tropical/subtropicalÐ H&˜!+ Ðriver.€Regulated€Rivers:€Research€and€Management.€€ò ò15ó ó:575„590.Ð '`", Ðà 4 àÌÓ X¨ýÓFishways€for€salmon€in€temperate€rivers€have€often€been€successful,€butÐ  (ð#. Ðsalmonid„type€fishways€for€non„salmonid€species€in€tropical€and€subtropical€rivers€haveÐ h)¸$/ Ðfrequently€failed.€This€study€assessed€the€effectiveness€of€modifying€a€salmonid„typeÐ 0*€%0 Ðpool„and„weir€fishway€into€a€vertical„slot€design€on€a€tidal€barrage€on€the€subtropicalÐ ø*H&1 ÐFitzroy€River,€in€Queensland,€north„eastern€Australia.€In€38€paired€samples€of€the€top€andÐ À+'2 Ðbottom€of€the€fishway,€over€16€months,€29€fish€species€and€over€23€000€fish€wereÐ ˆ,Ø'3 Ðcollected€at€a€maximum€rate€of€3400€per€day.€This€study€shows€much€greater€potential€forÐ P- (4 Ðsuccess€with€a€vertical„slot€fishway€as€relatively€few€fish€negotiated€the€original€pool„Ð ° Ðand„weir€design.€Common€species€using€the€vertical„slot€fishway€included€blue„catfishÐ xÈ Ð(òòArius€graeffeióó€[Ariidae]),€bony€herring€(òòNematalosa€erebióó€[Clupeidae]),€striped€mulletÐ @ Ð(òòMugil€cephalusóó€[Mugilidae]),€barramundi€(òòLates€calcariferóó€[Centropomidae]),€and€long„Ð X Ðfinned€eels€(òòAnguilla€reinhardtiióó€[Anguillidae]).€Freshwater€shrimp€(òòMacrobrachiumÐ Ð  Ðaustralienseóó€[Palaemonidae]),€juvenile€crabs€(òòVaruna€litterataóó€[Grapsidae])€and€long„Ð ˜è Ðfinned€elvers€did€not€ascend€the€full€length€of€the€fishway€and€specific€fishways€for€theseÐ ` ° Ðspecies€are€recommended.€Fish€between€25€and€640€mm€in€length€ascended€the€fishway,Ð ( x Ðalthough€the€passage€of€smaller€size€classes€of€immature€fish€was€restricted€and€this€mayÐ ð @ Ðbe€important€for€the€sustainability€of€these€migratory€populations.€The€barramundi€(200„Ð ¸   Ð640€mm)€which€ascended€the€fishway€were€all€immature€fish.€However,€during€a€periodÐ € Ð  Ðof€low€river€flows€enlarging€the€width€of€the€vertical„slot€from€0.15€to€0.45€m€onlyÐ H ˜  Ðencouraged€a€small€number€of€larger€fish€(890€mm€maximum€length)€to€enter.€The€strongÐ `  Ðdiel€movement€patterns€of€many€species€will€need€to€be€considered€in€future€fishwayÐ Ø(  Ðdesign.€Blue„catfish€could€ascend€the€fishway€in€2€h,€but€many€fish€remained€in€theÐ  ð  Ðfishway€and€this€behaviour€may€cause€crowding€and€a€reduction€in€fishway€capacity.Ð h¸  ÐFurther€work€is€needed€to€assess€the€proportion€of€fish€finding€the€fishway€entrance.Ð 0€  ÐHowever,€the€findings€suggest€that€vertical„slot€fishways€with€lower€water€velocities€andÐ øH  Ðturbulence€than€salmonid€fishways€have€great€potential€to€pass€the€diverse€migratory€fishÐ À Ðfauna€of€subtropical€and€tropical€rivers.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð403.à 4 àSylvester,€J.€R.€and€J.€D.€Broughton€(1983).€€Distribution€and€relative€abundance€of€fishÐ à0 Ðin€Pool€7€of€the€Upper€Mississippi€River.€North€American€Journal€of€FisheriesÐ ¨ø ÐManagement.€€ò ò3ó ó:67„71.Ð pÀ Ðà 4 àÌÓ X¨ýÓThe€distribution€and€relative€abundance€of€fish€species€in€Pool€7€of€the€UpperÐ P ÐMississippi€River€near€Dresbach€and€Dakota,€Minnesota€were€compared€in€three€habitatÐ È Ðtypes€on€the€basis€of€catches€in€hoop€nets€and€gill€nets.€Habitat€types€included€the€mainÐ à Ðchannel,€side€channels,€and€backwater€areas.€A€total€of€36€species€was€collected.€Twenty„Ð X¨ Ðfour€species€and€14%€of€the€total€number€of€individual€fish€caught€were€collected€in€theÐ  p Ðmain€channel.€Thirty€species€and€33%€of€the€total€number€caught€were€captured€in€theÐ è8 Ðside€channel,€and€28€species€and€53%€of€the€total€number€caught€were€collected€in€theÐ °  Ðbackwater€areas.€The€species€caught€most€frequently€were€not€limited€to€a€particularÐ xÈ! Ðhabitat,€but€were€perhpas€relatively€more€accessible€to€gill€nets€and€hoop€nets€inÐ @" Ðbackwater€habitats.€The€low€relative€abundance€of€species€and€individual€fish€in€the€mainÐ  X# Ðchannel€suggested€a€lower€habitat€diversity€there€than€in€the€side€channel€and€backwaterÐ Ð $ Ðareas.Ð ˜!è% ÐÐ `"°& ÐÓ ¨ýXÓÐ (#x' Ð404.à 4 àTaylor,€E.€W.,€S.€Egginton,€S.€E.€Taylor€and€P.€J.€Butler€(1997).€€Factors€which€may€limitÐ ð#@( Ðswimming€performance€at€different€temperatures.€Cambridge€University€Press,Ð ¸$ ) ÐCambridge€(Uk).Ð €%Ð * Ðà 4 àÌÓ X¨ýÓAs€thermal€diffusion€is€an€order€of€magnitude€more€rapid€than€molecularÐ '`", Ðdiffusion,€it€is€clear€that€the€same€design€features€that€make€the€gills€of€fish€well€suitedÐ Ø'(#- Ðfor€respiratory€gas€exchange€from€water€(large€surface€area,€active€convection€of€waterÐ  (ð#. Ðand€blood€at€appropriate€ventilation/perfusion€ratios€across€a€functional€counter„current)Ð h)¸$/ Ðalso€provide€for€very€effective€branchial€heat€exchange.€This€is€reinforced€by€theÐ 0*€%0 Ðrelatively€high€heat€capacity€of€water€which€is€more€than€3000€times€that€of€air,€so€thatÐ ø*H&1 Ðfor€most€fishes,€and€indeed€all€other€water„breathing€ectotherms,€body€temperatureÐ À+'2 Ðequilibrates€rapidly€to€any€change€in€environmental€temperature.€Consequently,€in€theÐ ˆ,Ø'3 Ðabsence€of€specific€anatomical€specialization€to€maintain€thermal€gradients,€temperatureÐ P- (4 Ðthroughout€the€body€of€fishes€is€in€equilibrium€with€the€environment€to€within€a€fractionÐ ° Ðof€a€degree.€Thus,€large€changes€in€body€temperature€may€be€experienced:€diurnally,€byÐ xÈ Ðcoastal€fish€subjected€to€tidal€variations;€or€by€vertically€migrating€pelagic€species,Ð @ Ðparticularly€if€they€cross€a€thermocline;€or€seasonally€by€eurythermal€temperate€zone€fish.Ð X ÐOver€evolutionary€time,€speciation€of€tropical€and€polar€fishes€has€resulted€in€speciesÐ Ð  Ðwith€widely€different€thermal€ranges€within€the€accepted€biological€temperature€rangeÐ ˜è Ð(between€the€freezing€point€of€water€and€the€temperature€for€protein€denaturation),€whichÐ ` ° Ðdo€not€overlap.Ð ( x ÐÐ ð @ ÐÓ ¨ýXÓÐ ¸   Ð405.à 4 àTaylor,€R.€E.€and€B.€Kynard€(1985).€€Mortality€of€juvenile€American€shad€and€bluebackÐ € Ð  Ðherring€passed€through€a€low„head€Kaplan€hydroelectric€turbine.€Transactions€of€theÐ H ˜  ÐAmerican€Fisheries€Society.€€ò ò114ó ó:430„435.Ð `  Ðà 4 àÌÓ X¨ýÓImmediate€mortality€of€juvenile€alosids,€American€shad€òòAlosa€sapidissiamóó€andÐ  ð  Ðblueback€herring€òòA.€aestivalisóó€,€passed€through€the€17„MW€Kaplan€turbine€at€HolyokeÐ h¸  ÐDam€on€the€Connecticut€River€was€estimated€with€mark„capture€methods.€Turbine„Ð 0€  Ðinduced€mortality€was€62%€at€16.5„MW€generation,€82%€at€12€MW,€and€82%€at€5.5Ð øH  ÐMW.€The€significantly€lower€mortality€of€fish€at€full€power€output€is€thought€to€beÐ À Ðrelated€to€greater€turbine€efficiency.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð406.à 4 àTheler,€J.€L.€(1987).€€Prehistoric€freshwater€mussel€assemblages€of€the€Mississippi€RiverÐ à0 Ðin€southwestern€Wisconsin.€Nautilus.€€ò ò101ó ó:143„150.Ð ¨ø Ðà 4 àÌÓ X¨ýÓArchaeological€excavations€at€aboriginal€sites€adjacent€to€the€Upper€MississippiÐ 8ˆ ÐRiver€(UMR)€in€southwestern€Wisconsin€produced€a€series€of€freshwater€mussel€(naiad)Ð P Ðassemblages.€These€subfossil€mussel€valves€are€the€remains€of€mollusks€harvested€as€aÐ È Ðfood€source€by€prehistoric€peoples€between€circa€A.D.€1€and€A.D.€1000.€The€aboriginalÐ à Ðassemblages€provide€an€approximation€of€the€regions'€main€stem€UMR€naiadÐ X¨ Ðcommunities€during€the€latter€part€of€the€prehistoric€era.€A€quantitative€comparison€of€theÐ  p Ðsubfossil€collection€with€modern€mussel€survey€data€documents€dramatic€changes€in€theÐ è8 Ðspecies€composition€of€molluscan€communities€following€habitat€degradation€of€theÐ °  ÐUMR€associated€with€EuroAmerican€settlement.Ð xÈ! ÐÐ @" ÐÓ ¨ýXÓÐ  X# Ð407.à 4 àTraebing,€K.,€D.€Hering,€T.€Kilian€and€E.€Korte€(1997).€€Water€management€and€the€riverÐ Ð $ Ðcontinuum.€Wasser€und€Boden.€€ò ò49ó ó:46„50.Ð ˜!è% Ðà 4 àÌÓ X¨ýÓMigration€along€streams€or€rivers€is€often€interrupted€by€hydraulic€structuresÐ (#x' Ðwhich€form€barriers.€In€stream€restoration€projects,€high€priority€is€usually€attached€toÐ ð#@( Ðestablishing€migration€facilities€for€aquatic€organisms.€However,€aquatic€migration€mayÐ ¸$ ) Ðalso€be€limited€under€natural€conditions.€The€example€of€beaver€dams€is€considered.Ð €%Ð * ÐWhen€determining€restoration€goals€it€is€necessary€to€take€into€account€morphological,Ð H&˜!+ Ðhydrological€and€biological€conditions€for€the€river€continuum.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð408.à 4 àTravade,€F.,€M.€Larinier,€S.€Boyer„Bernard€and€J.€Dartiguelongue€(1998).€€PerformanceÐ h)¸$/ Ðof€four€fish€pass€installations€recently€built€on€two€rivers€in€south„west€France.€Pages€Ð 0*€%0 Ð146„170€òòinóó€€M.€Jungwirth,€S.€Schmutz€and€S.€Weiss,€eds.€Fish€Migration€and€FishÐ ø*H&1 ÐBypasses,€Fishing€News€Books,€Vienna€(Austria).Ð À+'2 Ðâ âà 4 àÐ ˆ,Ø'3 ÐÓ X¨ýÓDuring€the€1970s,€a€number€of€projects€were€initiated€in€France€directed€towardsÐ ° Ðâ âthe€conservation€and€rehabilitation€of€migratory€fish€stocks.€Stemming€from€these€efforts,Ð xÈ Ðfour€relatively€large€fish€passes€were€built€between€1984€and€1989€on€the€Garonne€andÐ @ ÐDordogne€rivers€in€south„west€France.€Two€are€pool„type€fish€passes€(one€with€a€doubleÐ X Ðvertical€slot€at€Bergerac€on€the€Dordogne€River,€and€the€other€with€a€single€vertical€slot€atÐ Ð  ÐLe€Bazacle€on€the€Garonne€River);€the€other€two€are€fish€elevators€(Golfech€on€theÐ ˜è ÐGaronne€River€and€Tuilieres€on€the€Dordogne€River).€This€chapter€describes€theÐ ` ° Ðcharacteristics€and€operating€constraints€of€each€installation.€Since€construction,Ð ( x Ðoperations€have€been€monitored€on€a€more€or€less€(dependent€on€site)€constant€basisÐ ð @ Ðusing€a€semi„automated€video€counting€device€which€provides€precise€data€on€theÐ ¸   Ðquantity€and€timing€of€fish€passage.€The€four€installations€have€enabled€passage€of€someÐ € Ð  Ð30€fish€species,€including€migratory€diadromous€populations€of€Atlantic€salmon€òòSalmoÐ H ˜  Ðsalaróó,€sea„run€brown€trout€òòSalmo€truttaóó,€allice€shad€òòAlosa€alosaóó,€European€eel€òòAnguillaÐ `  Ðanguillaóó,€sea€lamprey€òòPetromyzon€marinusóó,€and€a€number€of€so„called€'sedentary'€speciesÐ Ø(  Ðsuch€as€roach€òòRutilus€rutilusóó,€bream€òòAbramis€bramaóó,€and€barbelòò€Barbus€barbusóó€for€whichÐ  ð  Ðvery€clear€migration€rhythms€have€been€nonetheless€observed.€Passage€of€allice€shad,Ð h¸  Ðwhich€has€often€been€difficult€to€achieve€over€traditional€fish€passes,€has€been€foundÐ 0€  Ðsatisfactory€in€both€the€pool€and€elevator€installations,€with€annual€passage€of€several€tensÐ øH  Ðof€thousands€of€individuals€(80€000€to€86€000€shad€at€the€Tuilieres€and€Golfech€fishÐ À Ðelevators€in€1995).€The€relative€effectiveness€of€each€type€of€pass€is€discussed€in€relationÐ ˆØ Ðto€the€various€migratory€species.€Finally,€the€main€results€concerning€the€seasonal€andÐ P  Ðdaily€migratory€rhythms€of€various€diadromous€and€resident€species€are€presented.Ð h ÐÐ à0 ÐÓ ¨ýXÓÐ ¨ø Ð409.à 4 àTrivellato,€D.€and€M.€Larinier€(1987).€[The€use€of€hydraulic€models€to€study€fishÐ pÀ Ðfacilities€on€large€rivers].€Pages€€149„157€òòinóó€M.€Thibault€and€R.€Billard,€eds.€RestorationÐ 8ˆ Ðof€salmon€rivers,€Bergerac€(France),€Collections€de€la€Hydrobiogica€et€Aquaculture.Ð P Ðà 4 àÌÓ X¨ýÓFish€facilities€at€the€Belleville€weir€on€the€Loire€River,€the€Bergerac€dam€on€theÐ à ÐDordogne€River,€and€the€Golfech€powerhouse€on€the€Garonne€River€were€optimized€byÐ X¨ Ðthe€use€of€hydraulic€model€studies€at€the€"Institut€de€Mecanique€des€Fluides"€at€Toulouse.Ð  p ÐIn€the€first€two€fishways,€flow€conditions,€i.e.€flow€velocity,€drop€between€pools€and€rateÐ è8 Ðof€energy€dissipation€per€unit€of€volume,€were€studied€in€relation€to€tailwater€andÐ °  Ðheadwater€fluctuations.€The€main€purpose€of€these€studies€was€to€optimize€the€position€ofÐ xÈ! Ðentrances€and€determine€the€discharge€needed€to€provide€adequate€attraction€at€theseÐ @" Ðsites.€The€modeling€resulted€in€design€changes€that€should€improve€fish€passage.Ð  X# ÐÐ Ð $ ÐÓ ¨ýXÓÐ ˜!è% Ð410.à 4 àTruebe,€J.€and€M.€Drooker€(1980).€€Modular€innovations€in€upstream€fish€passage.€U.S.Ð `"°& ÐDepartment€of€Energy,€Report€DOE/ID/12207„T2.Ð (#x' Ðà 4 àÌÓ X¨ýÓThis€project€examined€design€alternatives€for€the€construction,€equipping€andÐ ¸$ ) Ðoperation€of€upstream€fish€passage€facilities€suitable€for€installation€at€small€hydropowerÐ €%Ð * Ðsites€being€developed€or€re„developed.€These€alternatives€were€examined€for€technicalÐ H&˜!+ Ðfeasibility€and€economic€viability€with€the€object€of€providing€alternative€means€ofÐ '`", Ðmeeting€the€biological€requirements€of€an€upstream€fish€passage€in€a€more€cost„effectiveÐ Ø'(#- Ðmanner€than€strictly€traditional€methods.€An€overview€is€presented€of€the€fish€passageÐ  (ð#. Ðdesign€process€in€a€project€formation€flowchart€and€design€data€checklist.€The€designÐ h)¸$/ Ðfeatures,€materials€and€equipment€specifically€considered€in€this€study€are€described€withÐ 0*€%0 Ðinformation€on€the€characteristics,€advantages,€and€applicability€of€each€item.Ð ø*H&1 ÐÐ À+'2 Ðâ âÓ ¨ýXÓÐ ˆ,Ø'3 Ð411.à 4 àTrump,€C.€L.€and€W.€C.€Leggett€(1986).€€Optimum€swimming€speeds€in€fish:€the€problemÐ ° Ðâ âof€currents.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€€ò ò37ó ó:1086„1092.Ð xÈ Ðà 4 àÌÓ X¨ýÓA€model€is€presented€describing€the€energetic€consequences€of€variousÐ X Ðbehavioral€responses€to€currents.€To€minimize€the€energy€cost€of€migration,€whenÐ Ð  Ðconfronted€with€currents,€fish€must€optimize€both€the€mean€swimming€speed€and€theÐ ˜è Ðdegree€to€which€swimming€speed€is€altered€in€response€to€changes€in€current€velocity.Ð ` ° ÐThe€optimum€swimming€speed€in€a€current€is€UÔ2Z ª( xÔoÔÎÿ( xZ ªÔ€+€1/b€where€UÔ2Z ª( xÔoÔÎÿ( xZ ªÔ€=€mean€current€speedÐ ( x Ðand€b€is€a€constant€in€the€equation€E(t)€=€a€eÔÎÿ¾ ð @Ô„bW(t)Ô2ð @¾ Ô€describing€the€relationship€betweenÐ ð @ Ðspecific€energy€expenditure€per€unit€time€(E(t)€and€swimming€speed€W(t).€In€a€variableÐ ¸   Ðcurrent,€such€as€might€occur€in€estuaries€and€coastal€areas,€energy€expenditure€isÐ € Ð  Ðminimized€when€these€variations€are€ignored€and€a€constant€speed€through€the€water€isÐ H ˜  Ðmaintained.€This€is€true€even€in€conditions€where€occasional€retrograde€motion€over€theÐ `  Ðbotton€may€occur.€The€added€energy€costs€of€swimming€at€mean€speeds€or€of€varyingÐ Ø(  Ðswimming€speeds€in€response€to€changes€in€current€velocity€are€rigorously€defined.Ð  ð  ÐPredictions€of€the€model€are€in€general€agreement€with€empirical€data€on€fish€swimmingÐ h¸  Ðbehavior.Ð 0€  ÐÐ øH  ÐÓ ¨ýXÓÐ À Ð412.à 4 àTsuyuki,€H.€and€S.€N.€Williscroft€(1977).€€Swimming€stamina€differences€betweenÐ ˆØ Ðgenotypically€distinct€forms€of€rainbow€òòSalmo€gairdnerióó€and€steel„head€trout.€Journal€ofÐ P  Ðthe€Fisheries€Research€Board€of€Canada.€€ò ò34ó ó:996„1003.Ð h Ðà 4 àÌÓ X¨ýÓRainbow€trout€òòSalmo€gairdnerióó€homozygous€for€liver€lactate€dehydrogenaseÐ ¨ø Ðalleles€òòldhóóHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ>ŽpÀÔA€Ô2pÀ>ŽÔand€òòldhóóHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ>ŽpÀÔB€Ô2pÀ>ŽÔwere€artificially€propagated€and€their€swimming€staminaÐ pÀ Ðcompared.€€The€time€required€to€fatique€50%€of€the€HÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿV8ˆÔAÔ28ˆVÔHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿV8ˆÔAÔ28ˆVÔ€phenotypes€in€fixed€waterÐ 8ˆ Ðvelocity€tests€was€2.3€times€greater€on€the€average€than€that€of€HÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿÎPÔBÔ2PÎÔHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿÎPÔBÔ2PÎÔ€phenotypes.€Ð P ÐLikewise,€LDH€phenotypes€HÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ–æÈÔAÔ2È–æÔHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ–æÈÔAÔ2È–æÔ€,€HÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ–æÈÔAÔ2È–æÔHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ–æÈÔBÔ2È–æÔ€,€and€€HÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ–æÈÔBÔ2È–æÔHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ–æÈÔBÔ2È–æÔof€steelhead€troutÐ È Ðfrom€the€Thompson€River€were€artificially€propagated€and€their€swimming€staminaÐ à Ðcompared.€€In€contrast€to€the€rainbow€trout,€significant€differences€in€stamina€among€theÐ X¨ Ðthree€phenotypes€of€steelhead€were€not€evident€in€the€stocks€from€this€river€not€betweenÐ  p Ðphenotypes€HÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ¶è8ÔAÔ2è8¶ÔHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ¶è8ÔAÔ2è8¶Ô€and€HÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ¶è8ÔAÔ2è8¶ÔHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ¶è8ÔAÔ2è8¶Ô€from€another€stream,€the€Vedder€River,€which€has€aÐ è8 Ðvery€low€frequency€of€the€òòldhóóHÔ€&³Ø%%&™yÔaÔ€&™y%%&³ØÔÔÎÿ~ΰÔAÔ2°~ÎÔ€allele.€€The€stamina€of€young€steelhead€from€theÐ °  ÐThompson€River€was,€however,€3.8€times€greater€than€that€of€those€from€the€VedderÐ xÈ! ÐRiver.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð413.à 4 àTucker,€J.€K.€(1998).€€Union€mussels€associated€with€the€construction€of€the€Melvin€PriceÐ ˜!è% ÐLock€and€Dam€on€the€Upper€Mississippi€River.€Journal€of€Freshwater€Ecology.€€ò ò13ó ó:249„Ð `"°& Ð252.Ð (#x' Ðà 4 àÌÓ X¨ýÓEighteen€species€of€native€unionid€mussels€(Unionidae)€were€recovered€fromÐ ¸$ ) Ðsediments€dredged€from€behind€a€coffer€dam€built€during€the€construction€of€the€MelvinÐ €%Ð * ÐPrice€Lock€and€Dam€on€the€Upper€Mississippi€River.€For€three€species€(òòAmblema€plicataóó,Ð H&˜!+ ÐòòAnodonta€grandisóó,€and€òòObliquaria€reflexaóó),€shells€in€the€dredged€material€wereÐ '`", Ðsignificantly€smaller€than€those€of€the€same€species€collected€at€about€the€same€time€fromÐ Ø'(#- Ðother€sites€in€Pool€26€of€the€Illinois€and€Mississippi€rivers.€The€concentration€of€juvenileÐ  (ð#. Ðspecimens€in€the€dredged€material€is€thought€to€represent€a€òòde€novoóó€developmentÐ h)¸$/ Ðassociated€with€silt€accumulation€behind€the€coffer€dam.Ð 0*€%0 ÐÐ ø*H&1 Ðâ âÓ ¨ýXÓÐ À+'2 Ð414.à 4 àTucker,€J.€K.,€F.€A.€Cronin,€R.€A.€Hrabik,€M.€D.€Petersen€and€D.€P.€Herzog€(1996).€€TheÐ ° Ðbighead€carp€òòHypophthalmichthys€nobilisóó€in€the€Mississippi€River.€Journal€of€FreshwaterÐ xÈ ÐEcology.€€ò ò11ó ó:241„243.Ð @ Ðâ âà 4 àÌÓ X¨ýÓThe€authors€report€collections€of€the€bighead€carp,€òòHypophthalmichthys€nobilisóó€inÐ Ð  Ðthe€Mississippi€River€in€Missouri€and€Illinois€between€1991€and€1994.€In€all,€48Ð ˜è Ðspecimens€were€collected€ranging€from€18€to€790€mm€total€length.€Young„of„the„yearÐ ` ° Ðfish€were€caught€in€1992€and€1994,€which€suggested€that€the€species€is€able€to€reproduceÐ ( x Ðin€the€Mississippi€River€and€may€become€established.€Because€òòH.€nobilisóó€is€a€low„levelÐ ð @ Ðfilter€feeder,€its€presence€may€affect€other€filter€feeding€fishes€such€as€the€paddlefishÐ ¸   ÐòòPolyodon€spathulaóó,€bigmouth€buffalo€òòIctiobus€cyprinellusóó,€and€gizzard€shad€òòDorosomaÐ € Ð  Ðcepedianumóó.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð415.à 4 àTucker,€J.€K.,€F.€A.€Cronin,€R.€A.€Hrabik,€M.€D.€Petersen€and€D.€P.€Herzog€(1997).€Ð  ð  ÐBighead€carp€òòHypophthalmichthys€nobilisóó€in€the€Mississippi€River.€Unites€StatesÐ h¸  ÐGeological€Survey€Long€Term€Resource€Monitoring€Program,€Report€LTRMP97„R014.Ð 0€  Ðà 4 àÌÓ X¨ýÓThe€authors€report€collections€of€the€bighead€carp,€òòHypophthalmichthys€nobilisóóÐ À Ð(Richardson,€1845),€in€the€Mississippi€River€in€Missouri€and€Illinois€between€1991€andÐ ˆØ Ð1994.€In€all,€the€authors€collected€48€specimens€ranging€from€18€to€790€mm€total€length.Ð P  ÐYoung„of„the„year€fish€were€caught€in€1992€and€1994,€which€suggests€that€the€species€isÐ h Ðable€to€reproduce€in€the€Mississippi€River€and€may€become€established.€Because€òòH.Ð à0 Ðnobilisóó€is€a€low€level€filter€feeder,€its€presence€may€affect€other€filter€feeding€fishes€suchÐ ¨ø Ðas€the€paddlefish€òòPolyodon€spathulaóó,€bigmouth€buffalo€òòIctiobus€cyrinellusóó,€and€gizzardÐ pÀ Ðshad€òòDorosoma€cepedianumóó.€Further€research€is€needed€to€confirm€that€the€species€isÐ 8ˆ Ðestablished€and€what€its€biological€impact€will€be.Ð P ÐÐ È ÐÓ ¨ýXÓÐ à Ð416.à 4 àTyus,€H.€M.€(1990).€€Effects€of€altered€stream€flows€on€fishery€resources.€Fisheries.€Ð X¨ Ðò ò15ó ó:18„20.Ð  p Ðà 4 àÌÓ X¨ýÓAlteration€of€the€quantity€and€timing€of€river€or€stream€flow€can€significantlyÐ °  Ðaffect€fisheries€resources.€The€American€Fisheries€Society€(AFS)€is€alarmed€at€the€loss€ofÐ xÈ! Ðnatural€streams€in€North€America,€and€greatly€concerned€with€management€of€fisheries€inÐ @" Ðstreams€that€have€been€altered.€The€AFS€believes€that€public€trust€rights€need€moreÐ  X# Ðrecognition€and€stronger€consideration€in€the€management€of€stream€resources.€ThisÐ Ð $ Ðpolicy€statement€revises€the€1981€version€by€J.C.€Peters€entitled€"Effects€of€River€andÐ ˜!è% ÐStreamflow€Alteration€on€Fishery€Resources".Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð417.à 4 àUnderhill,€J.€C.€(1989).€€Distribution€of€Minnesota€fishes€and€Late€Pleistocene€glaciation.Ð ¸$ ) ÐJournal€of€the€Minnesota€Academy€of€Science.€€ò ò55ó ó:32„37.Ð €%Ð * Ðà 4 àÌÓ X¨ýÓThe€fishes€of€Minnesota€have€been€the€focus€of€research€for€almost€a€century.€AtÐ '`", Ðpresent€the€ichthyofauna€totals€153€species€belonging€to€19€families,€including€13€speciesÐ Ø'(#- Ðwhich€have€been€introduced.€Because€Minnesota€was€covered€by€glacial€ice€until€at€leastÐ  (ð#. Ðlate€Wisconsinan€time,€species€that€migrated€into€the€state€from€the€periglacial€regionÐ h)¸$/ Ðcould€have€been€derived€from€three€refugia:€unglaciated€Alaska,€the€Atlantic€refugium,Ð 0*€%0 Ðand€the€lower€Mississippi€River€refugium.€The€routes€followed€in€their€dispersal€wereÐ ø*H&1 Ðdependent€upon€the€drainage€connections€that€existed€during€late€Pleistocene€and€earlyÐ À+'2 ÐHolocene€time.€Fish€migration€paths€were€largely€determined€by€the€formation€of€largeÐ ˆ,Ø'3 Ðglacial€lakes€such€as€Lake€Agassiz,€Lake€Koochiching,€Lake€Duluth,€and€LakeÐ P- (4 ÐOntonagon.€Advances€and€retreats€of€various€glacial€lobes€controlled€the€size€andÐ ° Ðdrainage€directions€of€the€glacial€lakes,€allowing€migration€of€fishes€from€differentÐ xÈ Ðrefugia€at€different€times.€The€geologic€evidence€for€Holocene€drainage€is€moreÐ @ Ðconjectural,€and€the€present€distribution€of€species€can€be€used€to€infer€changes€inÐ X Ðdrainage€during€this€period€of€time.Ð Ð  ÐÐ ˜è ÐÓ ¨ýXÓÐ ` ° Ð418.à 4 àVallazza,€J.,€B.€Knights,€M.€Dewey,€S.€Zigler,€R.€Kennedy,€P.€Rust€and€D.€Betz€(1998).Ð ( x ÐSeasonal€habitat€use€and€movements€of€lake€sturgeon€in€the€Upper€Mississippi€River.Ð ð @ ÐPages€€47€òòinóó€M.€Knutson,€ed.€Proceedings€of€the€Mississippi€River€Research€Consortium,Ð ¸   ÐLa€Crosse,€Wisconsin€(USA),€Mississippi€River€Research€Consortium.Ð € Ð  Ðà 4 àÌÓ X¨ýÓIn€the€early€1900's,€lake€sturgeon€òòAcipenser€fulvescensóó€populations€precipitouslyÐ `  Ðdeclined€in€the€Upper€Mississippi€River€resulting€in€a€96%€decline€in€harvest.€€DespiteÐ Ø(  Ðharvest€restrictions,€lake€sturgeon€are€still€considered€uncommon€or€rare€in€the€UpperÐ  ð  ÐMississippi€River€and€are€listed€as€endangered€or€a€species€of€concern€by€four€of€fiveÐ h¸  Ðstates€bordering€the€Upper€Mississippi€River.€€Recovery€of€lake€sturgeon€populations€inÐ 0€  Ðthe€Upper€Mississippi€River€may€be€hindered€due€to€system€modifications,€including€theÐ øH  Ðconstruction€of€low„head€dams€in€the€1930's€to€accommodate€commercial€navigation.€Ð À ÐMoreover,€recent€proposals€to€further€modify€the€Upper€Mississippi€River€toÐ ˆØ Ðaccommodate€increased€commercial€navigation€has€raised€concern€for€remaining€lakeÐ P  Ðsturgeon€populations.€€We€are€conducting€a€biotelemetry€study€to€identify€and€describeÐ h Ðinportant€seasonal€habitats€of€lake€sturgeon€in€the€Upper€Mississippi€River€and€toÐ à0 Ðdetermine€the€effects€of€commercial€navigation€on€lake€sturgeon€movements€and€habitatÐ ¨ø Ðuse.€€We€tagged€23€lake€sturgeon€in€the€Upper€Mississippi€River€with€radio€andÐ pÀ Ðultrasonic€transmitters€during€summer€and€fall,€1997.€€Twelve€fish€were€tagged€in€theÐ 8ˆ ÐEast€Channel€in€Navigation€Pool€10€near€Prairie€du€Chien,€WI€and€11€fish€were€tagged€inÐ P ÐPolander€Lake,€an€off„channel€area€in€Navigation€Pool€5A€near€Winona,€MN.€€WeÐ È Ðattempted€to€obtain€weekly€locations€and€habitat€use€data€on€all€fish,€recording€a€total€ofÐ à Ð376€locations.€€Many€lake€sturgeon€have€moved€considerable€distances€in€1997.€€Five€fishÐ X¨ Ðtagged€in€Pool€10€moved€up€the€Wisconsin€River€about€120€km€to€Prairie€du€Sac,€fiveÐ  p Ðfish€remained€in€Pool€10,€and€one€fish€moved€40€km€upstream€into€Pool€9.€€One€taggedÐ è8 Ðlake€sturgeon€was€harvested€in€the€Wisconsin€River€by€an€angler€in€early€September.€€SixÐ °  Ðfish€tagged€in€Pool€5A€remained€in€that€pool€and€five€fish€moved€up€to€62€km€toÐ xÈ! Ðdownstream€pools.€€Preliminary€analyses€of€data€indicated€that€habitat€use€by€lakeÐ @" Ðsturgeon€was€similar€between€summer€and€fall.€€For€fish€tagged€in€Pool€10,€97%€of€theÐ  X# Ðlocations€in€the€Mississippi€River€occurred€in€channel€habitats,€and€3€percent€in€off„Ð Ð $ Ðchannel€habitats.€€In€contrast,€57%€of€the€locations€of€fish€tagged€in€Pool€5A€occurred€inÐ ˜!è% Ðoff„channel€habitats.€€Mean€depth€and€current€velocity€at€fish€locations€in€the€UpperÐ `"°& ÐMississippi€River€were€5.0€m€and€22€cm/s,€respectively.€€About€60%€of€fish€locationsÐ (#x' Ðoccurred€over€sand,€and€25%€occurred€over€silt.€€We€plan€to€continue€tracking€theseÐ ð#@( Ðtagged€lake€sturgeon€until€November€1998.Ð ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * ÐÐ H&˜!+ Ð419.à 4 àVallazza,€J.€M.,€J.€W.€Deller,€W.€E.€Lynch€and€D.€L.€Johnson€(1994).€€Seasonal€behavior,Ð '`", Ðmovements,€and€habitat€preferences€of€hybrid€striped€bass€and€sauger€in€the€Ohio€River.Ð Ø'(#- ÐOhio€Department€of€Natural€Resources,€Final€Report€Federal€Aid€in€Sport€FishÐ  (ð#. ÐRestoration€Project€F„69„P.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓHybrid€striped€bass€òòMorone€saxatilis€x€M.€chrysopsóó€and€sauger€òòStizostedionÐ ø*H&1 Ðcanadenseóó€are€important€components€of€the€Ohio€River€sport€fishery.€€Little€is€knownÐ À+'2 Ðabout€the€behavior€of€either€taxa€in€large€river€systems.€€Hence,€to€increase€anglerÐ ˆ,Ø'3 Ðawareness€of€harvest€opportunities€and€to€identify€critical€habitats,€radio€telemetry€wasÐ P- (4 Ðused€to€collect€data€on€the€seasonal€movements€and€habitat€preferences€of€hybrid€stripedÐ ° Ðbass€and€sauger€in€the€Ohio€River.€€Adult€hybrid€striped€bass€(N=59)€and€adult€saugerÐ xÈ Ð(N=42)€were€surgically€implanted€with€radio€transmitters.€€No€interpool€movements€wereÐ @ Ðobserved€for€either€taxa.€€Median€monthly€movement€rates€were€0€„€498€mhÔÎÿÖ&XÔ„1Ô2XÖ&Ô€with€fish„Ð X Ðday€medians€up€to€1,567€mhÔÎÿžîÐ Ô„1Ô2Ð žîÔ€for€hybrid€striped€bass.€€Sauger€moved€considerably€less;Ð Ð  Ðmonthly€medians€were€15„40€mhÔÎÿf¶˜èÔ„1Ô2˜èf¶Ô€with€fish„day€medians€up€to€90€mhÔÎÿf¶˜èÔ„1Ô2˜èf¶Ô.€€MonthlyÐ ˜è Ðdepth„at„location€ranged€3.1€„€5.8€m€and€2.1€„€5.3€m€for€hybrid€striped€bass€and€sauger,Ð ` ° Ðrespectively.€€Hybrid€striped€bass€were€located€over€deeper€water€in€winter,€whereas€post„Ð ( x Ðspawn€sauger€were€over€deeper€water€in€May€and€June.€€Both€taxa€made€extensive€use€ofÐ ð @ Ðhabitats€associated€with€dams.€€Hybrid€striped€bass€usually€were€located€in€the€tailwatersÐ ¸   Ðspring€and€summer,€whereas€sauger€increased€their€use€of€dam€habitats€in€fall€andÐ € Ð  Ðremained€there€during€winter.€€Neither€taxa€used€tailwaters€during€high€flows;€hybridÐ H ˜  Ðstriped€bass€moved€downstream€and€sauger€moved€behind€the€lock€wall.€€Island€habitatsÐ `  Ðwere€rarely€used€by€either€taxa.€€Hybrid€striped€bass€and€sauger€both€used€confluenceÐ Ø(  Ðhabitat€during€winter,€especially€during€high€flow.€€Sauger€were€more€often€associatedÐ  ð  Ðwith€drop„offs€than€hybrid€striped€bass,€which€exhibited€little€preference€for€bottomÐ h¸  Ðcontour€type.€€Sauger€often€used€woody€structure€along€shore€during€high€flows;€hybridÐ 0€  Ðstriped€bass€did€not.€€Hybrid€striped€bass€were€more€likely€to€move€out€into€the€mainÐ øH  Ðchannel€during€high€flow.€€Habitats€associated€with€dams€seasonally€provide€some€of€theÐ À Ðbest€angling€opportunities€for€both€taxa.€€However,€during€winter€for€hybrid€striped€bassÐ ˆØ Ðand€summer€for€sauger,€angling€opportunities€also€exist€in€a€variety€of€downstreamÐ P  Ðhabitats.€€The€lack€of€interpool€exchange,€particularly€for€hybrid€striped€bass,€suggestsÐ h Ðthe€potential€for€pool„by„pool€management€for€these€two€taxa.€€Future€research€needsÐ à0 Ðinclude€timing€of€pool€fidelity€development€by€juvenile€hybrid€striped€bass,€detailingÐ ¨ø Ðspecific€spawning€requirements€of€sauger€in€the€Ohio€River,€and€describing€habitatÐ pÀ Ðoverlap€by€congeneric€òòMoroneóó€and€òòStizostedionóó€fishes.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ð420.à 4 àVannote,€R.€L.,€G.€W.€Minshall,€K.€W.€Cummins,€J.€R.€Sedell€and€C.€E.€Cushing€(1980).€Ð à ÐThe€river€continuum€concept.€Canadian€Journal€of€Fisheries€and€Aquatic€Sciences.€Ð X¨ Ðò ò37ó ó:130„137.Ð  p Ðà 4 àÌÓ X¨ýÓFrom€headwaters€to€mouth,€the€physical€variables€within€a€river€system€present€aÐ °  Ðcontinuous€gradient€of€physical€conditions.€€This€gradient€should€elicit€a€series€ofÐ xÈ! Ðresponses€within€the€constituent€populations€resulting€in€a€continuum€of€bioticÐ @" Ðadjustments€and€consistent€patterns€of€loading,€transport,€utilization,€and€storage€ofÐ  X# Ðorganic€matter€along€the€length€of€a€river.€€Based€on€the€energy€equilibrium€theory€ofÐ Ð $ Ðfluvial€geomorphologists,€we€hypothesize€that€the€structural€and€functional€characteristicsÐ ˜!è% Ðof€stream€communities€are€adapted€to€conform€to€the€most€probable€position€of€meanÐ `"°& Ðstate€of€the€physical€system.€€We€reason€that€producer€and€consumer€communitiesÐ (#x' Ðcharacteristic€of€a€given€river€reach€become€established€in€harmony€with€the€dynamicÐ ð#@( Ðphysical€conditions€of€the€channel.€€In€natural€stream€systems,€biological€communitiesÐ ¸$ ) Ðcan€be€characterized€as€forming€a€temporal€continuum€of€synchronized€speciesÐ €%Ð * Ðreplacements.€€This€continuous€replacement€functions€to€distribute€the€utilization€ofÐ H&˜!+ Ðenergy€inputs€over€time.€€Thus,€the€biological€system€moves€towards€a€balance€between€aÐ '`", Ðtendency€for€efficient€use€of€energy€inputs€through€resource€partitioning€(food,€substrate,Ð Ø'(#- Ðetc.)€and€an€opposing€tendency€for€a€uniform€rate€of€energy€processing€through€the€year.€Ð  (ð#. ÐWe€theorize€that€biological€communities€developed€in€natural€streams€assume€processingÐ h)¸$/ Ðstrategies€involving€minimum€loss€of€energy.€€Downstream€communities€are€fashioned€toÐ 0*€%0 Ðcapitalize€on€upstream€processing€inefficiencies.€€Both€the€upstream€inefficiencyÐ ø*H&1 Ð(leakage)€and€the€downstream€adjustments€seem€predictable.€€We€propose€that€this€RiverÐ À+'2 Ðâ âContinuum€Concept€provides€a€framework€for€integrating€predictible€and€observableÐ ˆ,Ø'3 Ðbiological€features€of€lotic€systems.€€Implications€of€the€concept€in€the€areas€of€structure,Ð ° Ðfunction,€and€stability€of€riverine€ecosystems€are€discussed.Ð xÈ Ðâ âÐ @ ÐÓ ¨ýXÓÐ X Ð421.à 4 àVaughn,€C.€C.€and€C.€M.€Taylor€(1999).€€Impoundments€and€the€decline€of€freshwaterÐ Ð  Ðmussels:€A€case€study€of€an€extinction€gradient.€Conservation€Biology.€€ò ò13ó ó:912„920.Ð ˜è Ðà 4 àÌÓ X¨ýÓOne€major€factor€leading€to€the€imperilment€of€freshwater€mussels€(Bivalvia,Ð ( x ÐUnionidae)€has€been€the€large„scale€impoundment€of€rivers.€We€examined€theÐ ð @ Ðdistribution€and€abundance€of€mussels€at€37€sites€along€a€240„km€length€of€the€LittleÐ ¸   ÐRiver€in€southeastern€Oklahoma,€U.S.A.,€which€is€affected€by€both€mainstem€andÐ € Ð  Ðtributary€reservoirs.€We€observed€a€mussel€extinction€gradient€downstream€fromÐ H ˜  Ðimpoundments€in€this€river:€with€increasing€distance€from€the€mainstem€reservoir€thereÐ `  Ðwas€a€gradual,€linear€increase€in€mussel€species€richness€and€abundance.€Mussel€speciesÐ Ø(  Ðdistributions€were€significantly€nested,€with€only€sites€furthest€from€the€impoundmentÐ  ð  Ðcontaining€relatively€rare€species.€Below€the€confluence€with€the€inflow€from€the€secondÐ h¸  Ðreservoir€these€same€trends€were€apparent€but€much€weaker,€and€overall€musselÐ 0€  Ðabundance€was€greatly€reduced.€Our€results€suggest€that€considerable€stream€lengths€areÐ øH  Ðnecessary€to€overcome€the€effects€of€impoundment€on€mussel€populations,€and€suchÐ À Ðinformation€should€be€considered€in€conservation€and€management€plans.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð422.à 4 àVehanen,€T.,€P.€Hyvaerinen€and€A.€Maeki„Petaeys€(1998).€€Downstream€fish€migrationÐ à0 Ðfrom€two€regulated€lakes€monitored€by€hydroacoustics.€Fisheries€Management€andÐ ¨ø ÐEcology.€€ò ò5ó ó:107„121.Ð pÀ Ðà 4 àÌÓ X¨ýÓThe€migration€of€fish€from€two€large€northern€Finnish€lakes€to€their€outflowingÐ P Ðrivers€was€studied€by€echosounding€and€exploratory€fishing.€Both€lakes€are€regulated€forÐ È Ðhydroelectric€purposes.€In€both€rivers,€two€sonar€stations€with€stationary€up„€and€down„Ð à Ðlooking€transducers€were€used€to€collect€data€for€one€year.€The€fish€migration€rate€in€theÐ X¨ ÐRiver€Oulujoki€was€greater€than€in€the€River€Paatsjoki.€In€the€River€Oulujoki,€the€fishÐ  p Ðmigrated€mainly€downstream€and€in€the€River€Paatsjoki€both€down„€and€upstream.€In€theÐ è8 ÐRiver€Paatsjoki,€larger€fish€showed€active€migration€in€the€spring€and€autumn,€whereas€inÐ °  Ðthe€River€Oulujoki€the€increase€in€the€migration€occurred€simultaneously€in€all€sizeÐ xÈ! Ðgroups.€The€different€species€composition€and€the€different€nature€of€the€lakes,€togetherÐ @" Ðwith€the€different€regulation€practices,€were€considered€to€be€responsible€for€the€varyingÐ  X# Ðmigration€patterns.€It€was€concluded€that€no€barriers€to€fish€migration€should€be€built€onÐ Ð $ Ðthese€rivers.Ð ˜!è% ÐÐ `"°& ÐÓ ¨ýXÓÐ (#x' Ð423.à 4 àVideler,€J.€(1993).€€Fish€swimming.€Chapman€&€Hall,€London€(United€Kingdom).Ð ð#@( Ðà 4 àÌÓ X¨ýÓThe€fascinating€subject€of€fish€swimming€is€thoroughly€covered€in€this€readableÐ €%Ð * Ðand€well€illustrated€book.€Included€are€details€of€morphology,€hydrodynamics,Ð H&˜!+ Ðphysiology€and€evolution.Ð '`", ÐÓ ¨ýXÓÐ Ø'(#- ÐÐ  (ð#. Ð424.à 4 àVideler,€J.€J.,€U.€K.€Mueller€and€E.€J.€Stamhuis€(1999).€€Aquatic€vertebrate€locomotion:Ð h)¸$/ Ðwakes€from€body€waves.€Journal€of€Experimental€Biology.€€ò ò202ó ó:3423„3430.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓVertebrates€swimming€with€undulations€of€the€body€and€tail€have€inflectionÐ À+'2 Ðpoints€where€the€curvature€of€the€body€changes€from€concave€to€convex€or€vice€versa.Ð ˆ,Ø'3 ÐThese€inflection€points€travel€down€the€body€at€the€speed€of€the€running€wave€of€bending.Ð P- (4 ÐIn€movements€with€increasing€amplitudes,€the€body€rotates€around€the€inflection€points,Ð ° Ðinducing€semicircular€flows€in€the€adjacent€water€on€both€sides€of€the€body€that€togetherÐ xÈ Ðform€proto„vortices.€Like€the€inflection€points,€the€proto„vortices€travel€towards€the€endÐ @ Ðof€the€tail.€In€the€experiments€described€here,€the€phase€relationship€between€the€tailbeatÐ X Ðcycle€and€the€inflection€point€cycle€can€be€used€as€a€first€approximation€of€the€phaseÐ Ð  Ðbetween€the€proto„vortex€and€the€tailbeat€cycle.€Proto„vortices€are€shed€at€the€tail€as€bodyÐ ˜è Ðvortices€at€roughly€the€same€time€as€the€inflection€points€reach€the€tail€tip.€Thus,€theÐ ` ° Ðphase€between€proto„vortex€shedding€and€tailbeat€cycle€determines€the€interactionÐ ( x Ðbetween€body€and€tail€vortices,€which€are€shed€when€the€tail€changes€direction.€The€shapeÐ ð @ Ðof€the€body€wave€is€under€the€control€of€the€fish€and€determines€the€position€of€vortexÐ ¸   Ðshedding€relative€to€the€mean€path€of€motion.€This,€in€turn,€determines€whether€and€howÐ € Ð  Ðthe€body€vortex€interacts€with€the€tail€vortex.€The€shape€of€the€wake€and€the€contributionÐ H ˜  Ðof€the€body€to€thrust€depend€on€this€interaction€between€body€vortex€and€tail€vortex.€SoÐ `  Ðfar,€we€have€been€able€to€describe€two€types€of€wake.€One€has€two€vortices€per€tailbeatÐ Ø(  Ðwhere€each€vortex€consists€of€a€tail€vortex€enhanced€by€a€body€vortex.€A€second,€moreÐ  ð  Ðvariable,€type€of€wake€has€four€vortices€per€tailbeat:€two€tail€vortices€and€two€bodyÐ h¸  Ðvortices€shed€from€the€tail€tip€while€it€is€moving€from€one€extreme€position€to€the€next.Ð 0€  ÐThe€function€of€the€second€type€is€still€enigmatic.Ð øH  ÐÐ À ÐÓ ¨ýXÓÐ ˆØ Ð425.à 4 àVideler,€J.€J.€and€B.€A.€Nolet€(1990).€€Costs€of€swimming€measured€at€optimum€speed:Ð P  ÐScale€effects,€differences€between€swimming€styles,€taxonomic€groups€and€submergedÐ h Ðand€surface€swimming.€Comparative€Biochemistry€and€Physiology,€A.€€ò ò97Aó ó:91„99.Ð à0 Ðà 4 àÌÓ X¨ýÓData€on€swimming€energy€expenditure€of€30€submerged€and€nine€surfaceÐ pÀ Ðswimmers,€covering€different€swimming€styles€and€taxonomic€groups,€are€selected€fromÐ 8ˆ Ðthe€literature.€The€costs€of€transport€at€the€optimum€speed€are€compared€and€related€toÐ P Ðbody€mass€and€Re€numbers.€Fish€and€turtles€use€relatively€less€and€most€surfaceÐ È Ðswimmers€slightly€more€energy€than€the€other€submerged€swimmers;€man€and€mink€areÐ à Ðpoorly€adapted€to€swimming.€The€metabolic€rate€in€W€at€optimum€is€approximately€equalÐ X¨ Ðto€the€body€mass€in€kg€for€fish€and€turtles€and€three€times€the€mass€figure€for€the€otherÐ  p Ðsubmerged€swimmers.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð426.à 4 àVideler,€J.€J.€and€D.€Weihs€(1982).€€Energetic€advantages€of€burst„and„coast€swimming€ofÐ @" Ðfish€at€high€speeds.€Journal€of€Experimental€Biology.€€ò ò97ó ó:169„178.Ð  X# Ðà 4 àÌÓ X¨ýÓA€theoretical€model€describes€how€an€intermittent€swimming€style€can€beÐ ˜!è% Ðenergetically€advantageous€over€continuous€swimming€at€high€average€velocities.Ð `"°& ÐKinematic€data€are€collected€from€high„speed€cine€pictures€of€free€swimming€cod€andÐ (#x' Ðsaithe€at€high€velocities€in€a€burst„and„coast€style.€These€data€suggest€that€fish€make€useÐ ð#@( Ðof€the€advantages€shown€by€choosing€initial€and€final€burst€velocities€close€to€predictedÐ ¸$ ) Ðoptimal€values.€The€limiting€role€of€rapid€glycogen€depletion€in€fast€white€anaerobicÐ €%Ð * Ðmuscle€fibres€is€discussed.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð427.à 4 àVon€Oettingen,€S.€and€D.€Mignogno€(1997).€€National€strategy€for€the€conservation€ofÐ  (ð#. Ðnative€freshwater€mussels.€Journal€of€Shellfish€Research.€€ò ò16ó ó:327.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓThe€continental€United€States€contains€the€world's€greatest€diversity€of€freshwaterÐ ø*H&1 Ðpearly€mussels,€nearly€300€species.€This€faunal€group€has€been€characterized€as€6€percentÐ À+'2 Ðextinct,€19€percent€threatened€or€endangered,€and€23€percent€as€potentially€warrantingÐ ˆ,Ø'3 Ðfederal€protection.€No€other€widespread€group€of€animals€in€North€America€approachesÐ P- (4 Ðthis€level€of€faunal€collapse.€At€an€April€1995€meeting€of€representatives€from€severalÐ ° Ðfederal€and€state€natural€resources€agencies€and€the€commercial€mussel€industry,€theÐ xÈ Ðmagnitude€and€the€immediacy€of€threats,€nationwide,€to€our€native€freshwater€musselÐ @ Ðfauna€was€recognized.€The€group€agreed€that€a€coordinated€effort€of€national€scope€wasÐ X Ðneeded€to€prevent€further€mussel€extinctions€and€population€losses.€To€address€theseÐ Ð  Ðneeds,€the€group€decided€to:€1)€draft€a€national€strategy€for€the€conservation€of€nativeÐ ˜è Ðfreshwater€mussels;€and€2)€establish€a€national€ad€hoc€committee€with€broad€basedÐ ` ° Ðrepresentation€from€state,€tribal€and€federal€agencies,€the€mussel€industry,€privateÐ ( x Ðconservation€groups,€and€the€academic€community€to€help€implement€musselÐ ð @ Ðconservation€at€the€national€level.€A€draft€national€strategy€was€presented€in€OctoberÐ ¸   Ð1995€at€a€national€mussel€symposium€in€St.€Louis,€Missouri.€I€will€discuss€the€strategyÐ € Ð  Ðand€the€results€of€the€first€ad€hoc€committee€meeting€scheduled€for€February€1997.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð428.à 4 àWaidbacher,€H.€G.€and€G.€Haidvogl€(1998).€€Fish€migration€and€fish€passage€facilities€inÐ  ð  Ðthe€Danube:€past€and€present.€Pages€€85„98€òòinóó€€M.€Jungwirth,€S.€Schmultz€and€S.€Weiss,Ð h¸  Ðeds.€Fish€Migration€and€Fish€Bypasses,€Fishing€News€Books,€Vienna€(Austria).Ð 0€  Ðà 4 àÌÓ X¨ýÓThe€Danube€River€flows€2850€km€from€its€source€in€Germany€to€the€Black€SeaÐ À Ðand€historically€contained€no€barriers€to€fish€migration.€Three€species€of€diadromousÐ ˆØ Ðsturgeon€(òòHuso€husoóó,€òòAcipenser€gueldenstaedtiióó,€òòAcipenser€stellatusóó)€historicallyÐ P  Ðmigrated€from€the€Black€Sea€to€the€upper€reaches€of€the€Danube€in€Austria€and€GermanyÐ h Ðto€spawn.€However,€beginning€in€the€Middle€Ages,€fishing€weirs€were€used€to€harvestÐ à0 Ðsturgeon,€sometimes€blocking€the€entire€river€channel.€Populations€of€upriver€sturgeonÐ ¨ø Ðwere€thus€decimated€long€before€permanent€barriers€to€migration€were€constructed.€SinceÐ pÀ Ðthe€early€1970s,€a€hydropower€facility€at€the€Iron€Gate€in€Romania€(river€km€931)€hasÐ 8ˆ Ðlimited€sturgeon€to€the€lower€river.€Diadromous€shad€species€(Pontic€shad€òòAlosa€ponticaóóÐ P Ðand€Caspian€shad€òòAlosa€caspia€sppóó.)€also€underwent€historic€migrations€up€into€HungaryÐ È Ðbut€were€most€abundant€below€the€Iron€Gate€and€thus€still€exist€in€some€abundance.€TheÐ à Ðmiddle€and€upper€reaches€of€the€main€Danube€channel€were€free€of€permanent€migrationÐ X¨ Ðbarriers€until€1927€when€the€Kachlet€power€plant€was€constructed;€a€fish€ladder€thereÐ  p Ðdemonstrated€substantial€movements€of€nase€òòChondrostoma€nasusóó€and€barbel€òòBarbusÐ è8 Ðbarbus€óóas€well€as€other€species.€This€fishway,€however,€was€the€last€built€in€the€mainÐ °  Ðchannel€for€over€60€years,€although€within€this€time€29€power€plants€were€constructedÐ xÈ! Ðbetween€Ulm,€Germany€and€Vienna,€Austria.€Recently,€two€bypass€systems€have€beenÐ @" Ðbuilt€on€the€main€channel€of€the€Danube€(Freudenau€in€Austria€and€Vohburg€inÐ  X# ÐGermany).€The€conservation€of€the€rich€Danubian€ichthyofauna€will€largely€depend€onÐ Ð $ Ðefforts€to€open€up€both€the€longitudinal€and€lateral€connectivity€of€this€alluvial€riverÐ ˜!è% Ðsystem.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð429.à 4 àWaldman,€J.€R.€(1995).€€Sturgeons€and€paddlefishes:€A€convergence€of€biology,€politics,Ð ¸$ ) Ðand€greed.€Fisheries.€€ò ò20ó ó:20„21.Ð €%Ð * Ðà 4 àÌÓ X¨ýÓThe€International€Conference€on€Sturgeon€Biodiversity€and€Conservation,€heldÐ '`", ÐJuly€1994€in€New€York€City€at€the€American€Museum€of€Natural€History,€broughtÐ Ø'(#- Ðtogether€almost€200€of€the€world's€experts€on€these€fishes.€This€two„day€immersion€in€theÐ  (ð#. Ðstatus€of€Acipenseriformes€left€participants€feeling€cautiously€hopeful€about€the€future€ofÐ h)¸$/ ÐNorth€American€sturgeons€and€paddlefish€but€also€deeply€pessimistic€about€the€prospectsÐ 0*€%0 Ðfor€most€of€the€Eurasian€species.€In€the€United€States,€interest€appears€high€in€conservingÐ ø*H&1 Ðsturgeons€and€paddlefish,€and€each€species€is€receiving€federal€protection€or€intensifiedÐ À+'2 Ðstate€management.€Most€worrisome€is€the€status€of€the€extremely€rare€Alabama€sturgeonÐ ˆ,Ø'3 ÐòòScaphirhynchus€suttkusióó,€which€only€occurs€in€the€Mobile€River€system.€Also€of€concernÐ P- (4 Ðis€the€scarce€pallid€sturgeon,€which€shows€strong€morphological€indication€ofÐ ° Ðintrogression€with€the€shovelnose€sturgeon€òòScaphirhynchus€platorynchusóó,€possibly€due€toÐ xÈ Ðhabitat€modifications€in€their€native€Mississippi€River€system.€The€situation€in€EuropeÐ @ Ðand€Asia€is€far€more€grim.€European€sea€sturgeon€òòAcipenser€sturioóó€once€ranged€widelyÐ X Ðalong€coastal€Europe€and€Scandinavia;€today,€only€marginal€populations€exist€in€theÐ Ð  ÐGironde€River,€France,€and€possibly€the€Black€Sea.€Beluga€òòHuso€husoóó,€which€occurred€inÐ ˜è Ðmany€of€the€major€rivers€and€seas€of€eastern€Europe€and€Russia,€now€has€limited€naturalÐ ` ° Ðreproduction.€Only€a€few€adults€of€the€Chinese€paddlefish€òòPsephurus€gladiusóó€have€beenÐ ( x Ðseen€annually€in€the€Yangtze€River€in€recent€years.€Dabry's€sturgeon€òòAcipenserÐ ð @ Ðdabryanusóó,€also€limited€to€the€Yangtze€River;€the€Adriatic€sturgeon€òòAcipenser€naccariióó;Ð ¸   Ðand€the€Amu„Dar€shovelnose€sturgeon€òòPsuedoscaphirhynchus€kaufmannióó€of€the€Amu„Ð € Ð  ÐDarya€River€are€all€in€sharp€decline€or€near€extinction.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð430.à 4 àWaller,€D.€L.€and€L.€E.€Holland„Bartels€(1988).€€Fish€hosts€for€glochidia€of€theÐ  ð  Ðendangered€freshwater€mussel€òòLampsilis€higginsióó€Lea€(Bivalvia:€Unionidae).Ð h¸  ÐMalacological€Review.€€ò ò21ó ó:119„122.Ð 0€  Ðà 4 àÌÓ X¨ýÓLaboratory€tests€of€nine€species€of€fish€as€hosts€for€glochidia€of€òòLampsilisÐ À Ðhigginsióó€Lea€indicated€that€four€species€were€fully€suitable:€largemouth€bass€òòMicropterusÐ ˆØ Ðsalmoidesóó€Lacepede,€smallmouth€bass€òòM.€dolomieuióó€Lacepede,€walleye€òòStizostedionÐ P  Ðvitreum€vitreumóó€Mitchill,€and€yellow€perch€òòPerca€flavescensóó€Mitchill.€€Juvenile€òòL.Ð h Ðhigginsióó€also€developed€on€green€sunfish€òòLepomis€cyanellusóó€Rafinesque€but€some€fishÐ à0 Ðsloughed€their€infections€prematurely.Ð ¨ø ÐÐ pÀ ÐÓ ¨ýXÓÐ 8ˆ Ð431.à 4 àWaller,€D.€R.€(1988).€€Studies€on€òòLampsilisóó€mussels€of€the€Upper€Mississippi€River.Ð P ÐPh.D.€Dissertation.€Iowa€State€University210€pp.Ð È Ðà 4 àÌÓ X¨ýÓThe€glochidial€stage€of€the€endangered€freshwater€mussel,€òòLampsilis€higginsióó,Ð X¨ Ðand€several€related€species€was€studied€to€provide€information€on€their€early€life€histories.Ð  p ÐThe€glochidia€of€òòL.€higginsióó€and€the€three€species,òò€L.€radiata€siliquoideaóó,€òòL.€ventricosaóó,Ð è8 Ðand€òòLigumia€rectaóó,€were€compared€using€morphometrics€and€scanning€electronÐ °  Ðmicroscopy€(SEM).€The€glochidia€of€òòL.€higginsióó€were€morphometrically€similar€to€thoseÐ xÈ! Ðof€the€related€species;€however,€they€could€be€distinguished€using€SEM€by€the€position€ofÐ @" Ðthe€hinge€ligament€and€the€dorsal€ridge€width.€Fifteen€species€of€fishes€were€tested€forÐ  X# Ðtheir€suitability€as€hosts€for€the€glochidia€of€òòL.€higginsióó.€The€following€were€found€toÐ Ð $ Ðproduce€at€least€one€juvenile€mussel:€northern€pike€òòEsox€luciusóó,€brook€stickleback€òòCuleaÐ ˜!è% Ðinconstansóó,€bluegill€òòLepomis€macrochirusóó,€green€sunfish€òòL.€cyanellusóó,€largemouth€bassÐ `"°& ÐòòMicropterus€salmoidesóó,€smallmouth€bass€òòM.€dolomieuióó,€yellow€perch€òòPerca€flavescensóó,Ð (#x' Ðand€walleye€òòSitzostedion€vitreum€vitreumóó.€A€test€of€host€quality€using€three€members€ofÐ ð#@( Ðthe€Family€Centrarchidae€ranked€smallmouth€bass€highest€with€a€transformation€ofÐ ¸$ ) Ð7.68%,€followed€by€green€sunfish€(2.43%)€and€bluegill€(0.00038%).€Two€propagationÐ €%Ð * Ðmethods€for€juvenile€Lampsilis€mussels€were€tested.€òòIn€vitroóó€culture€averaged€1.28Ð H&˜!+ Ðjuveniles/plate,€with€a€transformation€of€1.05%.€Transformation€averaged€15„24Ð '`", Ðjuveniles/fish€on€infected€host€fish.€The€pathogenesis€associated€with€òòL.€radiataÐ Ø'(#- Ðsiliquoideaóó€on€a€suitable€(walleye)€and€an€unsuitable€host€(common€carp)€was€comparedÐ  (ð#. Ðusing€light€and€transmission€electron€microscopy.€Encapsulation€of€glochidia€on€walleyeÐ h)¸$/ Ðgills€was€completed€by€4„6€hr€at€21€ÔÎÿþ)N%0*€%ÔoÔ20*€%þ)N%ÔC.€At€24„48€hr,€the€capsule€was€thin€and€compact.Ð 0*€%0 ÐFibrous€tissue€appeared€in€the€capsule€at€48€hr€and€increased€in€quantity€to€the€end€of€theÐ ø*H&1 Ðinfection.€Excystment€occurred€by€thinning€of€the€capsule€aided€by€movement€of€theÐ À+'2 Ðjuvenile.€Most€of€the€glochidia€attached€to€the€common€carp€gills€did€not€encapsulate.Ð ˆ,Ø'3 ÐPartial€capsular€growth€was€evident€in€some,€but€the€portions€of€the€capsule€distal€to€theÐ P- (4 Ðbite€consisted€of€necrotic€cells€and€debris.€A€few€complete€capsules€were€found€at€12„48Ð ° Ðhr;€however,€all€glochidia€were€sloughed€by€60€hr.€There€was€no€evidence€ofÐ xÈ Ðleucocytosis;€however,€the€number€of€heterophil€type€cells€was€greater€in€the€capsularÐ @ Ðtissue€of€the€common€carp€than€in€walleye.Ð X ÐÐ Ð  ÐÓ ¨ýXÓÐ ˜è Ð432.à 4 àWard,€J.€V.€(1989).€€The€four„dimensional€nature€of€lotic€ecosystems.€Journal€of€theÐ ` ° ÐNorth€American€Benthological€Society.€€ò ò8ó ó:2„8.Ð ( x Ðà 4 àÌÓ X¨ýÓThe€dynamic€and€hierarchical€nature€of€lotic€ecosystems€may€be€conceptualizedÐ ¸   Ðin€a€four„dimensional€framework.€Upstream„downstream€interactions€constitute€theÐ € Ð  Ðlongitudinal€dimension.€The€lateral€dimension€includes€interactions€between€the€channelÐ H ˜  Ðand€riparian/floodplain€systems.€Significant€interactions€also€occur€between€the€channelÐ `  Ðand€contiguous€groundwater,€the€vertical€dimension.€The€fourth€dimension,€time,Ð Ø(  Ðprovides€the€temporal€scale.€Lotic€ecosystems€have€developed€in€response€to€dynamicÐ  ð  Ðpatterns€and€processes€occurring€along€these€four€dimensions.€An€holistic€approach€thatÐ h¸  Ðemploys€a€spatio„temporal€framework,€and€that€perceives€disturbances€as€forcesÐ 0€  Ðdisrupting€major€interactive€pathways,€should€lead€to€a€more€complete€understanding€ofÐ øH  Ðthe€dynamic€and€hierarchical€structure€of€natural€and€altered€lotic€ecosystems.Ð À ÐÐ ˆØ ÐÓ ¨ýXÓÐ P  Ð433.à 4 àWard,€J.€V.€and€J.€A.€Stanford€(1995).€€The€serial€discontinuity€concept:€Extending€theÐ h Ðmodel€to€floodplain€rivers.€Regulated€Rivers:€Research€and€Management.€€ò ò10ó ó:159„168.Ð à0 Ðà 4 àÌÓ X¨ýÓThe€serial€discontinuity€concept€(SDC)€was€developed€as€a€theoretical€constructÐ pÀ Ðthat€views€impoundments€as€major€disruptions€of€longitudinal€resource€gradients€alongÐ 8ˆ Ðriver€courses.€According€to€the€SDC,€dams€result€in€upstream„downstream€shifts€in€bioticÐ P Ðand€abiotic€patterns€and€processes;€the€direction€and€extent€of€the€displacement€dependÐ È Ðon€the€variable€of€interest€and€are€a€function€of€dam€position€along€the€river€continuum.Ð à ÐAs€originally€formulated,€the€SDC€did€not€consider€interactions€between€the€river€and€itsÐ X¨ Ðfloodplain.€The€new€perspective€presented€herein€is€an€initial€attempt€to€encompass€theÐ  p Ðdynamics€of€alluvial€flood€plain€rivers€into€the€model€using€a€three€reachÐ è8 Ðcharacterization:€constrained€headwater€reach,€braided€reach€and€meandering€reach.€TheÐ °  Ðconstrained€headwater€reach€has€conditions€similar€to€those€described€in€the€originalÐ xÈ! ÐSDC,€but€the€braided€and€meandering€reaches€provide€a€perspective€that€was€notÐ @" Ðaddressed€in€the€model.€Lateral€interactions€between€the€channel€and€the€flood€are€criticalÐ  X# Ðto€a€holistic€understanding€of€natural€river€ecosystems€and€the€alterations€induced€byÐ Ð $ Ðregulation.€The€fringing€floodplain,€with€its€diverse€water€bodies€and€alluvial€forestÐ ˜!è% Ðmosaic,€is€considered€an€integral€part€of€the€river€system.Ð `"°& ÐÐ (#x' ÐÓ ¨ýXÓÐ ð#@( Ð434.à 4 àWardle,€C.€S.,€J.€J.€Videler€and€J.€D.€Altringham€(1995).€€Tuning€in€to€fish€swimmingÐ ¸$ ) Ðwaves:€Body€form,€swimming€mode€and€muscle€function.€Journal€of€ExperimentalÐ €%Ð * ÐBiology.€€ò ò198ó ó:1629„1636.Ð H&˜!+ Ðà 4 àÌÓ X¨ýÓMost€fish€species€swim€with€lateral€body€undulations€running€from€head€to€tail.Ð Ø'(#- ÐThese€waves€run€more€slowly€than€the€waves€of€muscle€activation€causing€them,Ð  (ð#. Ðreflecting€the€effect€of€the€interaction€between€the€fish's€body€and€the€reactive€forces€fromÐ h)¸$/ Ðthe€water.€The€coupling€between€both€waves€depends€on€the€lateral€body€shape€and€onÐ 0*€%0 Ðthe€mechanical€properties€of€the€tail.€During€steady€swimming,€the€length€of€eachÐ ø*H&1 Ðmyotomal€muscle€fibre€varies€cyclically.€The€phase€relationship€between€the€strainÐ À+'2 Ð(muscle€length€change)€cycle€and€the€active€period€(when€force€is€generated)€determinesÐ ˆ,Ø'3 Ðthe€work€output€of€the€muscle.€The€muscle€power€is€converted€to€thrust€either€directly€byÐ P- (4 Ðthe€bending€body€or€almost€exclusively€by€the€tail,€depending€upon€the€body€shape€of€theÐ ° Ðspecies€and€the€swimming€kinematics.€We€have€compared€the€kinematics€and€muscleÐ xÈ Ðactivity€patterns€from€seven€species€of€fish€with€different€body€forms€and€swimmingÐ @ Ðmodes€and€propose€a€model€which€yields€a€consistent€pattern,€with€at€least€threeÐ X Ðextremes.€Subtle€tuning€of€the€phase€relationship€between€muscle€strain€and€activationÐ Ð  Ðcycles€can€lead€to€major€changes€in€the€way€muscles€function€in€different€swimmingÐ ˜è Ðmodes.Ð ` ° ÐÓ ¨ýXÓÐ ( x ÐÐ ð @ Ð435.à 4 àWarren,€M.€L.€and€M.€B.€Brooks€(1994).€€Status€of€freshwater€fishes€of€the€United€States.Ð ¸   ÐFisheries.€€ò ò19ó ó:6„18.Ð € Ð  Ðà 4 àÌÓ X¨ýÓConservation€biologists€have€begun€a€concerted€effort€to€educate€the€public,Ð `  Ðresource€administrators,€and€politicains€about€the€decline€of€temperate€ecosystems,Ð Ø(  Ðincluding€their€fishes.€€The€United€States€harbors€the€most€diverse€temperate€fish€fauna€inÐ  ð  Ðthe€world€with€about€790€species€represented,€about€90%€of€which€are€nongame€fishes.€Ð h¸  ÐFrom€a€state„by„state€perspective,€diversity€of€fishes€in€the€United€States€is€concentratedÐ 0€  Ðin€the€South,€primarily€in€Alabama,€Kentucky,€Georgia,€Mississippi,€Tennessee,€andÐ øH  ÐVirginia,€each€of€which€supports€at€least€200€native€fish€species.€€Endemicity€of€fishes€isÐ À Ðhigh€in€both€the€South€and€West;€in€the€latter€region,€up€to€70%€of€the€fishes€in€someÐ ˆØ Ðdrainages€(e.g.,€Colorado€River)€are€endemic.€€Imperilment€apparently€is€not€confined€toÐ P  Ðparticular€taxonomic€groups.€€Of€the€five€most€diverse€fish€families€in€the€United€States,Ð h Ðtotal€imperilment€ranges€from€7%€in€the€Centrarchidae€to€50%€in€nonanadromousÐ à0 Ðsalmonids€and€indicates€widespread€and€pervasive€degradation€of€aquatic€habitats.€Ð ¨ø ÐImperilment€is€most€accute€in€areas€of€high€diversity€and€/€or€endemicity€(i.e.,€theÐ pÀ Ðsouthern€and€western€states).€€States€with€20€or€more€imperiled€fishes€include€Alabama,Ð 8ˆ ÐArizona,€California,€Georgia,€Nevada,€New€Mexico,€North€Carolina,€Oregon,€Virginia,Ð P ÐTennessee,€and€Texas.€€Backlogs€in€listing€species€as€federally€threatened€or€endangeredÐ È Ðare€most€egregious€(10€or€more€backlogged€taxa)€in€Alabama,€Georgia,€Nevada,€andÐ à ÐTennessee.Ð X¨ ÐÐ  p ÐÓ ¨ýXÓÐ è8 Ð436.à 4 àWatters,€G.€T.€(1992).€€Unionids,€fishes,€and€the€species„area€curve.€Journal€ofÐ °  ÐBiogeography.€€ò ò19ó ó:481„490.Ð xÈ! Ðà 4 àÌÓ X¨ýÓThe€number€of€fish€species€in€thirty„seven€systems€of€the€Ohio€River€may€beÐ  X# Ðpredicted€by€the€area€of€the€drainage€basin.€On€a€large€river€system€scale,€the€number€ofÐ Ð $ Ðunionid€species€is€directly€related€to€the€number€of€fish€species€present€and,€to€a€lesserÐ ˜!è% Ðextent,€the€drainage€area.€In€small€systems,€such€as€headwater€tributaries,€the€number€ofÐ `"°& Ðunionid€species€is€related€to€the€drainage€basin€area.€Unionid€diversity€in€systemsÐ (#x' Ðintermediate€in€size€may€be€related€to€both.€This€may€be€the€result€of€transient€fishes€inÐ ð#@( Ðsmall€streams€depositing€glochidia.€The€overall€distribution€and€diversity€of€unionidsÐ ¸$ ) Ðwithin€the€study€area€is€dependent€upon€the€distribution€and€diversity€of€their€fish€hosts.Ð €%Ð * ÐÐ H&˜!+ ÐÓ ¨ýXÓÐ '`", Ð437.à 4 àWatters,€G.€T.€(1994).€€An€annotated€bibliography€of€the€reproduction€and€propogation€ofÐ Ø'(#- Ðthe€Unionidea€(primarily€of€North€America).€Ohio€Biological€Survey,€MiscellaneousÐ  (ð#. ÐContribution€1.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓCitations€for€the€published€literature€on€unionoidean€reproduction€andÐ ø*H&1 Ðpropogation€are€presented€in€chronological€order,€beginning€with€1695€and€continuingÐ À+'2 Ðthrough€December€1993.€€Each€citation€is€briefly€annotated,€and€cross„indexed€accordingÐ ˆ,Ø'3 Ðto€its€relevance€to€freshwater€mussel€culture,€transplantation,€ecology,€development,Ð P- (4 Ðparasites,€and€host€relationships.€€Recorded€hosts€for€unionoideans€are€cross€indexed€byÐ ° Ðmussel€species€and€fish€species.€€Appendix€A€gives€literature€records€of€suspected€orÐ xÈ Ðproven€hosts€for€unionoideans.€€Appendix€B€lists€unionoidean€parasites€for€each€host,€asÐ @ Ðwell€as€unspecified€glochidia€found€on€hosts.€€The€chronological€bibliography€of€theÐ X Ðmain€text€is€ordered€alphabetically€by€author€in€Appendix€C,€and€categorized€by€topic.€Ð Ð  ÐTopics€emphasized€include€culturing€and€transplanting€unionoideans,€identifyingÐ ˜è Ðunionoidean€hosts€and€parasites,€unionoidean€development,€and€unionoidean€ecology.Ð ` ° ÐÐ ( x ÐÓ ¨ýXÓÐ ð @ Ð438.à 4 àWatters,€G.€T.€(1996).€€Small€dams€as€barriers€to€freshwater€mussels€(Bivalvia,Ð ¸   ÐUnionoida)€and€their€hosts.€Biological€Conservation.€€ò ò75ó ó:79„85.Ð € Ð  Ðà 4 àÌÓ X¨ýÓThe€distributions€of€two€unionoids€(fragile€papershell€òòLeptodea€fragilisóó€and€pinkÐ `  Ðheelsplitter€òòPotamilus€alatusóó)€were€examined€in€five€North€American€Midwest€riverÐ Ø(  Ðsystems€in€relation€to€the€location€of€dams€on€the€rivers.€These€dams€were€non„Ð  ð  Ðnavigational€(without€locks),€lacked€fish€ladders,€and€varied€in€height€from€1€to€17.7€m.Ð h¸  ÐBoth€species€were€restricted€in€their€distribution€to€the€river€downstream€of€the€dams.Ð 0€  ÐThis€suggests€that€the€host€fish(es)€of€these€species€was€unable€to€move€upstream€of€theseÐ øH  Ðobstacles.€Both€unionoids€are€believed€to€parasitize€the€freshwater€drum€òòAplodinotusÐ À Ðgrunniensóó.€Several€endangered€unionoid€species€also€may€use€this€fish,€or€other€dam„Ð ˆØ Ðlimited€fishes,€as€hosts.€Dams,€even€lowhead€structures,€may€contribute€to€the€overallÐ P  Ðdepletion€of€unionoids€by€artificially€restricting€their€distributions€and€isolatingÐ h Ðpopulations€from€each€other.€Management€practices€for€endangered€fishes€and€musselsÐ à0 Ðmust€take€into€account€these€physical€obstacles.Ð ¨ø ÐÐ pÀ ÐÓ ¨ýXÓÐ 8ˆ Ð439.à 4 àWatters,€G.€T.€and€S.€H.€O'Dee€(1999).€€Glochidia€of€the€freshwater€mussel€òòLampsilisóóÐ P Ðoverwintering€on€fish€hosts.€Journal€of€Molluscan€Studies.€€ò ò65ó ó:453„459.Ð È Ðà 4 àÌÓ X¨ýÓLargemouth€bass€were€infected€with€glochidia€of€the€freshwater€mussel€òòLampsilisÐ X¨ Ðcardiumóó.€Three€fishes€each€were€held€at€4.5,€10,€and€15.5€ÔÎÿî> pÔoÔ2 pî>ÔC;€five€fish€were€held€at€21Ð  p ÐÔÎÿ¶è8ÔoÔ2è8¶ÔC.€By€64€days,€metamorphosed€juveniles€were€found€in€the€15.5€and€21€ÔÎÿ¶è8ÔoÔ2è8¶ÔC€trials€but€notÐ è8 Ðin€the€5.5€and€10€ÔÎÿ~ΰÔoÔ2°~ÎÔC€trials,€indicating€that€the€lower€threshold€temperature€forÐ °  Ðmetamorphosis€was€between€10€and€15.5€ÔÎÿF–xÈÔoÔ2xÈF–ÔC€for€the€duration.€In€a€second€experiment,Ð xÈ! Ðlargemouth€bass€were€infected€with€glochidia€of€òòL.€cardiumóó€and€held€at€10€ÔÎÿ^@ÔoÔ2@^ÔC.€A€sampleÐ @" Ðof€fishes€was€removed€monthly€and€brought€to€21€ÔÎÿÖ& XÔoÔ2 XÖ&ÔC.€Numbers€of€glochidia€thatÐ  X# Ðmetamorphosed€after€being€warmed€were€compared€to€the€number€that€metamorphosedÐ Ð $ Ðwithout€warming.€The€percentage€that€metamorphosed€after€warming€decreased€linearlyÐ ˜!è% Ðwith€time.€At€one€month,€100%€of€the€glochidia€metamorphosed€after€warming.€ThisÐ `"°& Ðdecreased€to€80%€by€two€months,€to€30%€by€four€months€and€3%€by€six€months.Ð (#x' ÐAlthough€this€post„warming€percentage€decreased€with€time,€the€total€percentage€ofÐ ð#@( Ðmetamorphosed€juveniles€(at€all€temperatures)€was€not€correlated€with€time.€ControlsÐ ¸$ ) Ðkept€at€21€ÔÎÿN%ž €%Ð ÔoÔ2€%Ð N%ž ÔC€required€three€weeks€to€reach€peak€metamorphosis,€but€test€subjectsÐ €%Ð * Ðsubjected€to€10€ÔÎÿ&f!H&˜!ÔoÔ2H&˜!&f!ÔC€required€less€than€nine€days€to€metamorphose€once€warmed.€ManyÐ H&˜!+ Ðoverwintering€glochidia€therefore€complete€a€portion€of€their€development€on€the€host€atÐ '`", Ðwinter€temperatures,€but€stop€short€of€excystment.€Some€glochidia€metamorphosedÐ Ø'(#- Ðwithout€being€warmed,€but€this€phenomenon€is€not€understood.€This€study€confirms€thatÐ  (ð#. Ðglochidia€may€overwinter€on€hosts,€with€some€glochidia€persisting€for€more€than€sixÐ h)¸$/ Ðmonths€before€metamorphosing€when€warmer€conditions€return.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð440.à 4 àWebb,€P.€W.€(1983).€€Speed,€acceleration€and€manoeuvrability€of€two€teleost€fishes.Ð ˆ,Ø'3 ÐJournal€of€Experimental€Biology.€€ò ò102ó ó:115„122.Ð P- (4 Ðà 4 àÌÓ X¨ýÓSpeed,€acceleration€rate€and€turning€radius€were€measured€for€rainbow€troutÐ xÈ Ð(òòSalmo€gairdnerióó;€length€25€multiplied€by€7€cm)€and€smallmouth€bass€(òòMicropterusÐ @ Ðdolomieuóó€;€length€23€multiplied€by€6€cm)€attacking€live€minnows.€The€observationsÐ X Ðsampled€a€range€of€values€for€each€kinematic€variable€up€to€the€limits€of€maximumÐ Ð  Ðperformance.€Minimum€turning€radius€was€independent€of€speed€and€acceleration€rate.Ð ˜è ÐExpressed€as€a€ratio€of€total€length,€L,€minimum€radii€were€0€multiplied€by€18€plus€orÐ ` ° Ðminus€0€multiplied€by€2€L€for€trout€and€0€multiplied€by€11€plus€or€minus€0€multiplied€byÐ ( x Ð02€L€for€bass€(ÔÎÿ¾ ð @Ô€„Ô2ð @¾ ÔX)€plus€or€minus€2€S.E.).€Differences€in€minimum€turning€radius,€R,Ð ð @ Ðbetween€trout€and€bass€were€attributed€to€differences€in€the€volume€of€the€body€andÐ ¸   Ðentrained€water,€V,€and€projected€lateral€surface€area€of€the€body€and€median€fins,€A.€ForÐ € Ð  Ðsubcarangiform€swimmers,€the€dimensionless€minimum€specific€turning€radius€R/L€=Ð H ˜  Ð2V/AL.Ð `  ÐÓ ¨ýXÓÐ Ø(  ÐÐ  ð  Ð441.à 4 àWebb,€P.€W.€(1986).€€Kinematics€of€lake€sturgeon,€òòAcipenser€fulvescensóó,€at€cruisingÐ h¸  Ðspeeds.€Cannadian€Journal€of€Zoology.€€ò ò64ó ó:2137„2141.Ð 0€  Ðà 4 àÌÓ X¨ýÓLake€sturgeon€òòAcipenser€fulvescensóó,€15.7€cm€in€total€length,€have€a€2„min€criticalÐ À Ðswimming€speed€of€38.6€plus€or€minus€4.2€cm€multiplied€by€sÔÎÿV¦ˆØÔ„1Ô2ˆØV¦Ô€(2.45€body€lengthsÐ ˆØ Ðmultiplied€by€sÔÎÿnP Ô„1Ô2P nÔ)€at€15€ÔÎÿnP ÔoÔ2P nÔC.€Tail€beat€frequency€(f,€Hz),€amplitude€(a,€cm),€andÐ P  Ðpropulsive€wavelength€(€lambda€,€cm)€increased€linearly€with€swimming€speed€(U,€cmÐ h Ðmultiplied€by€sÔÎÿ®þà0Ô„1Ô2à0®þÔ),€according€to€the€following€equations:€f€=€1.67€+€0.07U,€a€=€3.2€+Ð à0 Ð0.020U,€and€lambda€=€11.0€+€0.039U.€Tail€depth€and€the€cosine€of€the€angle€of€the€tailÐ ¨ø Ðwith€the€axis€of€motion€were€independent€of€swimming€speed€with€mean€values€of€1.98Ð pÀ Ðplus€or€minus€0.08€cm€and€0.7€plus€or€minus€0.08,€respectively.€Swimming€kinematicsÐ 8ˆ Ðwere€generally€similar€to€those€of€teleosts€and€anuran€implying€that€body€and€caudal€finÐ P Ðpropulsive€movements€are€conservative€among€actinopterygians€and€tetrapods.Ð È ÐÐ à ÐÓ ¨ýXÓÐ X¨ Ð442.à 4 àWebb,€P.€W.€(1993).€€Swimming.€Pages€€47„74€òòinóó€€D.€H.€Evans,€ed.€The€Physiology€ofÐ  p ÐFishes,€CRC€Press,€Boca€Raton,€Florida€(USA).Ð è8 Ðà 4 àÌÓ X¨ýÓBy€definition,€fish€swim,€but€"swimming"€is€a€loose€term€for€a€wide€and€complexÐ xÈ! Ðset€of€adaptive€movements€whereby€fish€perform€the€numerous€activities€necessary€toÐ @" Ðsurvive€in€diverse€habitats.€As€a€result,€physiological€studies€pertinent€to€swimming€areÐ  X# Ðlegion,€necessitating€discussion€of€only€a€few€selected€topics€in€this€chapter,€whichÐ Ð $ Ðfocuses€on€the€nature€and€properties€of€the€propulsion€system.€This€is€comprised€of€aÐ ˜!è% Ðpropulsor€that€transfers€momentum€from€the€fish€to€the€water,€thereby€generating€thrust,Ð `"°& Ðand€the€muscles€that€drive€those€propulsors.€Neural€control€systems€are€not€discussed.Ð (#x' ÐSwimming€energetics€are€discussed€because€driving€the€propulsors€is€a€major€expenseÐ ð#@( Ðaffecting€design€criteria€for€many€other€physiological€systems€as€well€as€the€impact€ofÐ ¸$ ) Ðfish€on€their€ecological€resource€base.€In€addition,€the€amount€of€energy€available€forÐ €%Ð * Ðswimming€is€often€constrained€by€environmental€factors.€Scale€effects€are€omitted.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð443.à 4 àWebb,€P.€W.€and€V.€De€Buffrenil€(1990).€€Locomotion€in€the€biology€of€large€aquaticÐ  (ð#. Ðvertebrates.€Transactions€of€the€American€Fisheries€Society.€€ò ò119ó ó:629„641.Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓAs€aquatic€vertebrates€increase€in€size,€hydrofoils,€which€use€lift€to€generateÐ ø*H&1 Ðthrust,€are€increasingly€used€as€propulsors.€One€factor€affecting€the€magnitude€of€the€liftÐ À+'2 Ðforce€is€the€area€of€the€propulsor.€Resistance€to€cruising€and€sprints€is€mainly€due€to€drag,Ð ˆ,Ø'3 Ðbut€inertia€is€important€during€maneuvers€when€animals€accelerate€or€turn.€The€inertia€ofÐ P- (4 Ðthe€body€and€entrained€water,€which€is€proportional€to€body€volume,€resists€acceleration.Ð ° ÐBecause€a€thrust€that€is€proportional€to€surface€area€is€used€to€maneuver€a€resistance€thatÐ xÈ Ðis€proportional€to€volume,€acceleration€performance€and€maneuverability€are€expected€toÐ @ Ðdecline€with€increasing€size.€This€trend€is€ameliorated€to€some€extent€by€the€highÐ X Ðswimming€speeds€attainable€by€warm„bodied€vertebrates€and€the€reduced€resistance€toÐ Ð  Ðacceleration€characteristic€of€the€skeletons€of€dolphins€and€ichthyosaurs.€Maneuvers€areÐ ˜è Ðessential€for€capture€of€elusive€prey€and€avoidance€of€predators.€As€they€increase€in€size,Ð ` ° Ðaquatic€vertebrates€use€various€means€to€ensure€that€their€prey€are€less€maneuverable€thanÐ ( x Ðthey.Ð ð @ ÐÐ ¸   ÐÓ ¨ýXÓÐ € Ð  Ð444.à 4 àWebb,€P.€W.,€D.€H.€Hardy€and€V.€L.€Mehl€(1992).€€The€effect€of€armored€skin€on€theÐ H ˜  Ðswimming€of€longnose€gar,€òòLepisosteus€osseusóó.€Canadian€Journal€of€Zoology.€€ò ò70ó ó:1173„Ð `  Ð1179.Ð Ø(  Ðà 4 àÌÓ X¨ýÓFast„starts€and€steady€swimming€were€compared€for€two€piscivorous€fishes,€theÐ h¸  Ðlongnose€gar€òòLepisosteus€osseusóó,€which€has€an€integument€armored€with€ganoid€scales,Ð 0€  Ðand€the€unarmored€tiger€musky€òòEsox€spóó..€The€body€was€similarly€flexed€by€both€speciesÐ øH  Ðduring€fast„starts€and€steady€swimming.€Therefore,€the€heavy€integument€of€the€gar€didÐ À Ðnot€affect€flexibility€during€swimming.€Distance€traveled€in€a€given€elapsed€time€duringÐ ˆØ Ðfast„starts€was€lower€for€the€gar,€which€averaged€65%€of€the€work€done€by€the€musky.€OnÐ P  Ðthe€basis€of€differences€in€muscle€mass,€gars€would€be€expected€to€perform€72%€of€theÐ h Ðwork€of€muskies€during€a€fast„start.€The€heavier€integument€of€the€gar€was€estimated€toÐ à0 Ðcontribute€about€90%€to€the€reduced€fast„start€performance.€In€steady€swimming,Ð ¨ø Ðmechanical€power€requirements€at€a€given€speed€were€similar€for€both€gar€and€musky.Ð pÀ ÐTherefore,€steady€swimming€costs€do€not€appear€to€be€affected€by€armor.€The€criticalÐ 8ˆ Ðswimming€speed€of€gars€was€1.9€body€lengths/s€compared€with€3.4€body€lengths/s€forÐ P Ðmuskies,€but€the€difference€could€not€be€attributed€to€differences€in€armoring.€The€slipÐ È Ðspeed€at€which€gars€first€began€to€swim€was€1.21€body€lengths/s€compared€with€0.75Ð à Ðbody€lengths/s€for€muskies.€Higher€station„holding€performance€is€probably€notÐ X¨ Ðimportant€to€modern€gars€and€esocids,€but€may€have€been€advantageous€during€the€earlyÐ  p Ðradiation€of€fishes.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð445.à 4 àWebb,€P.€W.,€G.€D.€LaLiberte€and€A.€J.€Schrank€(1996).€€Does€body€and€fin€form€affectÐ @" Ðthe€maneuverability€of€fish€traversing€vertical€and€horizontal€slits.€EnvironmentalÐ  X# ÐBiology€of€Fishes.€€ò ò46ó ó:7„14.Ð Ð $ Ðà 4 àÌÓ X¨ýÓThe€purpose€of€this€study€was€to€determine€if€body€and€fin€form€affected€theÐ `"°& Ðmaneuverability€of€teleostean€fishes€as€measured€buy€their€ability€to€negotiate€simpleÐ (#x' Ðobstacles.€Obstacles€were€vertical€and€horizontal€rectangular€slits€of€different€widths,€forÐ ð#@( Ðwhich€width€was€defined€as€the€minimum€dimension€of€a€slit€irrespective€of€slitÐ ¸$ ) Ðorientation.€Performance€was€measured€as€the€smallest€slit€width€traversed.€Three€speciesÐ €%Ð * Ðwith€different€body€and€fin€patterns€were€induced€to€swim€through€slits.€Species€testedÐ H&˜!+ Ðwere:€goldfish€Carassius€auratus€with€a€fusiform€body,€anterio„ventral€pectoral€fins€andÐ '`", Ðposterio„ventral€pelvic€fins;€silver€dollars€Metynnis€hypsauchen€with€the€same€finÐ Ø'(#- Ðconfigurations€but€a€gibbose€body;€angelfish€Pterophyllum€scalare€with€a€gibbose€bodyÐ  (ð#. Ðand€anterio„lateral€pectoral€fins.€Minimum€slit€widths€negotiated€were€normalized€withÐ h)¸$/ Ðthe€length€of€various€body€dimensions:€total€length,€maximum€width,€span€at€the€pectoralÐ 0*€%0 Ðfins,€and€volume€super(1/3)€(numerically€equal€to€mass€super(1€/3)).€Goldfish€had€theÐ ø*H&1 Ðpoorest€performance,€requiring€the€largest€slit€widths€relative€to€these€body€dimensions.Ð À+'2 ÐNo€consistent€patterns€in€performance€were€found€for€silver€dollars€vs.€angelfish.€ThereÐ ˆ,Ø'3 Ðwere€no€differences€among€species€in€the€ratio€of€minimum€vertical€slit€width€negotiatedÐ P- (4 Ðto€that€for€horizontal€slits,€indicating€fish€were€equally€able€to€control€posture€whileÐ ° Ðswimming€on€their€sides.€There€were€also€no€consistent€patterns€in€the€times€taken€toÐ xÈ Ðtransit€slits.€Although€the€deep„bodied€fish€were€able€to€maneuver€through€smaller€slits,Ð @ Ðthe€most€striking€result€is€the€similarity€of€minimum€slit€widths€traversed€in€spite€of€theÐ X Ðlarge€variation€in€body€form.€Body€form€and€fin€plan€may€be€more€important€forÐ Ð  Ðmaneuvering€and€posture€control€during€sub„maximum€routine€activities.Ð ˜è ÐÐ ` ° ÐÓ ¨ýXÓÐ ( x Ð446.à 4 àWeihs,€D.€(1987).€Hydromechanics€of€fish€migration€in€variable€environments.€Pages€Ð ð @ Ð254„261€òòinóó€M.€J.€Dadswell,€R.€J.€Klauda,€C.€M.€Moffitt,€R.€L.€Saunders,€R.€A.€RulifsonÐ ¸   Ðand€J.€E.€Cooper,€eds.€€International€Symposium€on€Common€Strategies€of€AnadromousÐ € Ð  Ðand€Catadromous€Fishes,€Boston,€Massachusetts€(USA),€American€Fisheries€SocietyÐ H ˜  ÐSymposium€Serial.Ð `  Ðà 4 àÌÓ X¨ýÓMigrations€of€fish€species€are€often€very€long€(in€both€time€and€space)€and€costlyÐ  ð  Ðin€terms€of€energy.€Thus,€efficient€use€of€available€energy€is€of€great€importance€andÐ h¸  Ðvarious€adaptations€of€morphology€and€behavior€have€resulted.€These€are€especiallyÐ 0€  Ðsignificant€for€diadromous€species,€which€encounter€large€variations€in€buoyancy,Ð øH  Ðsalinity,€temperature,€and€flow€conditions€during€their€life€cycles,€which€include€large„Ð À Ðscale€migrations.€A€mathematical€approach€to€fish€migratory€adaptations€is€utilized€toÐ ˆØ Ðanalyze€observed€behavioral€patterns€and€to€predict€effects€of€changing€environmentalÐ P  Ðpressures.€The€study€is€based€on€the€hydrodynamical€and€mechanical€principles€of€fishÐ h Ðlocomotion,€feeding,€and€predator„prey€interactions.€Existing€work€is€reviewed€with€theÐ à0 Ðgoal€of€identifying€areas€of€future€observational€and€theoretical€research€applicable€to€theÐ ¨ø Ðunderstanding€of€the€behavioral€strategies€of€these€species,€many€of€which€areÐ pÀ Ðcommercially€important.Ð 8ˆ ÐÐ P ÐÓ ¨ýXÓÐ È Ð447.à 4 àWeiss,€J.€L.€and€J.€B.€Layzer€(1995).€€Infestations€of€glochidia€on€fishes€in€the€BarrenÐ à ÐRiver,€Kentucky.€American€Malacological€Bulletin.€€ò ò11ó ó:153„159.Ð X¨ Ðà 4 àÌÓ X¨ýÓWe€collected€fish€monthly€from€the€Barren€River,€Kentucky,€to€assess€glochidialÐ è8 Ðinfestations.€Glochidia€were€encysted€on€4.1%€of€the€2,510€fish€of€43€species€examined.Ð °  ÐTwenty„five€fish€species€in€11€families€were€infested;€14€of€these€species€are€not€knownÐ xÈ! Ðto€be€hosts€of€any€of€the€27€mussel€species€(Unionidae)€occurring€in€the€Barren€River.Ð @" ÐAmblemine€glochidia€occurred€on€19€species€of€fish.€Eight€species€of€fish€were€infestedÐ  X# Ðwith€anodontine€glochidia,€while€lampsiline€glochidia€occurred€on€only€five€species.Ð Ð $ ÐDifferences€in€the€degree€of€host€specificity€were€striking€among€the€Ambleminae.Ð ˜!è% ÐGlochidia€of€òòAmblema€plicataóó€(Say,€1817)€occurred€on€12€species€of€fish,€whereas€thoseÐ `"°& Ðof€òòQuadrula€pustulosaóó€(I.€Lea,€1831)€were€found€only€on€channel€catfish€[òòIctalurusÐ (#x' Ðpunctatusóó€(Rafinesque,€1818)].€Overlap€in€host€fishes€occurred€between€the€AmbleminaeÐ ð#@( Ðand€the€other€subfamilies,€but€not€between€the€Anodontinae€and€Lampsilinae.€PotentialÐ ¸$ ) Ðnew€hosts€are€identified€for€òòLasmigona€complanataóó€(Barnes,€1823),€òòLasmigona€costataóóÐ €%Ð * Ð(Rafinesque,€1820),€òòMegalonaias€nervosaóó€(Rafinesque,€1820),€òòA.€plicataóó,€andÐ H&˜!+ ÐòòPleurobema€sppóó.Ð '`", ÐÐ Ø'(#- ÐÓ ¨ýXÓÐ  (ð#. Ð448.à 4 àWelcomme,€R.€L.€(1979).€€Fisheries€ecology€of€floodplain€rivers.€Longman,€LondonÐ h)¸$/ Ð(United€Kingdom).Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓThis€book€assembles€information€on€the€general€ecology€of€those€rivers€thatÐ À+'2 Ðundergo€seasonal€flooding,€and€applies€it€to€the€special€case€of€fisheries.€The€authorÐ ˆ,Ø'3 Ðshows€how€the€various€activities€occurring€in€river€basins€can€influence€the€fishÐ P- (4 Ðcommunities€inhabiting€them.€The€book€is€divided€into€six€parts,€the€first€of€which€is€aÐ ° Ðgeneral€introduction€outlining€previous€work€done€in€the€field.€This€is€followed€by€aÐ xÈ Ðsubstantial€section€on€the€environment,€dealing€with€the€physical€and€chemicalÐ @ Ðcomposition€of€rivers€and€their€floodplains.€It€also€summarises€data€on€the€livingÐ X Ðelements€of€the€system€other€than€fish.€A€section€on€fish€discusses€the€adaptations€theyÐ Ð  Ðshow€for€life€in€a€fluctuating€environment,€and€examines€the€effects€of€seasonalÐ ˜è Ðalternations€of€flood€and€dry€phases€on€feeding,€growth,€reproduction,€mortality€and€theÐ ` ° Ðgeneral€dynamics€of€the€community.€The€fishery€is€treated€in€a€fourth€section,€whichÐ ( x Ðconsiders€the€specialisation€of€fishermen€and€their€gear€to€the€river€environment.€It€alsoÐ ð @ Ðreviews€the€state€of€exploitation€of€some€of€the€main€rivers€of€the€world,€and€examinesÐ ¸   Ðhow€catch€is€related€to€such€variables€as€water€regime€and€fisherman€density.€The€fifthÐ € Ð  Ðsection€explores€the€relationships€of€the€fish€community€to€other€activities€in€the€riverÐ H ˜  Ðbasin.€The€concluding€chapter€discusses€the€stages€through€which€fish€communities€andÐ `  Ðfisheries€pass€as€the€environment€is€altered€by€basin€development.Ð Ø(  ÐÐ  ð  ÐÓ ¨ýXÓÐ h¸  Ð449.à 4 àWelcomme,€R.€L.€(1985).€€River€fisheries.€FAO,€Fisheries€Technical€Paper€92„5„102299„Ð 0€  Ð2.Ð øH  Ðà 4 àÌÓ X¨ýÓA€summary€is€presented€of€the€present€state€of€knowledge€of€the€fish€andÐ ˆØ Ðfisheries€of€river€systems,€emphasizing€the€role€of€a€river€as€a€food€producer.€TheÐ P  Ðfollowing€topics€are€discussed:€1)€morphology€of€river€systems:€2)€physical€and€chemicalÐ h Ðprocesses;€3)€primary€production€in€rivers;€4)€secondary€production€in€rivers;€5)€river€fishÐ à0 Ðand€the€riverine€system;€6)€production€biology€of€river€fish;€7)€the€fishery;€and€8)Ð ¨ø Ðmanagement€of€the€river€fishery.Ð pÀ ÐÐ 8ˆ ÐÓ ¨ýXÓÐ P Ð450.à 4 àWelcomme,€R.€L.€(1992).€A€history€of€international€introductions€of€inland€aquaticÐ È Ðspecies.€Pages€€3„14€òòinóó€C.€Sindermann,€B.€Steinmetz€and€W.€Hershberger,€eds.Ð à ÐIntroductions€and€Transfers€of€Aquatic€Species,€Halifax,€Nova€Scotia€(Canada),€ICESÐ X¨ ÐMarine€Science€Symposia.Ð  p Ðà 4 àÌÓ X¨ýÓA€register€of€1,673,000€records€of€introductions€of€291€species€into€148€countriesÐ °  Ðhas€been€analysed€for€trends€and€motives€for€introductions.€Some€introductions€occurredÐ xÈ! Ðin€historical€times,€but€the€rate€of€movement€of€species€between€countries€has€acceleratedÐ @" Ðsince€1900.€The€majority€of€introductions€have€been€carried€out€in€support€of€aquaculture,Ð  X# Ðalthough€sport€and€improvement€of€wild€fish€stocks€have€also€been€significant€motives.€AÐ Ð $ Ðlarge€number€of€introductions€have€occurred€through€accidental€escape€or€transmissionÐ ˜!è% Ðbetween€countries.€Most€introductions€have€proved€benign€in€that€they€have€had€noÐ `"°& Ðdetectable€influence€on€native€fish€communities€or€have€contributed€significantly€toÐ (#x' Ðaquaculture€or€capture€fishery€yield.€A€small€proportion€of€introductions€have€provedÐ ð#@( Ðecologically€undesirable,€and€these€have€arisen€mainly€either€from€species€capable€ofÐ ¸$ ) Ðproducing€stunted€populations€or€from€predatory€species€which€have€damaged€indigenousÐ €%Ð * Ðspecies.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð451.à 4 àWelcomme,€R.€L.€(1992).€€[River€fisheries].€FAO€Fisheries€Technical€Report,€RomeÐ  (ð#. Ð(Italy).Ð h)¸$/ Ðà 4 àÌÓ X¨ýÓA€review€is€presented€on€the€current€state€of€knowledge€on€the€fish€and€fisheriesÐ ø*H&1 Ðof€river€systems.€The€following€8€chapters€are€included:€morphology€of€river€system;Ð À+'2 Ðâ âphysical€and€chemical€processes;€primary€production€in€rivers;€secondary€production€inÐ ˆ,Ø'3 Ðrivers;€freshwater€fish€and€the€river€system;€productive€biology€in€freshwater€fish;€theÐ ° Ðfishery€industry;€and€management€of€river€fisheries.Ð xÈ Ðâ âÐ @ ÐÓ ¨ýXÓÐ X Ð452.à 4 àWhite,€D.€K.€and€B.€J.€Pennino€(1980).€€Connecticut€River€fishways:€model€studies.Ð Ð  ÐJournal€of€the€Hydraulics€Division,€American€Society€of€Civil€Engineers.€€ò ò106ó ó:1219„Ð ˜è Ð1233.Ð ` ° Ðà 4 àÌÓ X¨ýÓThe€fishways€at€the€Vernon€and€Turners€Falls€Dams€were€optimized€by€use€ofÐ ð @ Ðhydraulic€model€studies.€€In€both€cases,€slotted€weirs€were€modified€so€that€a€better€headÐ ¸   Ðloss€distribution€was€obtained.€€In€addition,€the€diffusers€were€modified€to€produceÐ € Ð  Ðacceptable€exit€face€velocity€distributions.€€At€Turners€Falls,€the€fish€entrance€wasÐ H ˜  Ðmodified€to€produce€velocity€conditions€known€to€be€acceptable€to€the€two€migratingÐ `  Ðspecies€of€fish,€Atlantic€salmon€and€shad.€€At€Vernon€Dam,€flow€conditions€wereÐ Ø(  Ðoptimized€at€the€fish€exit€and€attraction€water€intake.€€Modeling€of€these€fishways€hasÐ  ð  Ðresulted€in€design€changes€that€should€improve€fish€passage€and€minimize€waterÐ h¸  Ðconsumption.Ð 0€  ÐÐ øH  ÐÓ ¨ýXÓÐ À Ð453.à 4 àWhite,€M.€M.€and€S.€Schell€(1995).€An€evaluation€of€the€genetic€integrity€of€Ohio€RiverÐ ˆØ Ðwalleye€and€sauger€stocks.€Pages€€52„60€òòinóó€H.€L.€Schramm,€Jr.€and€R.€G.€Piper,€eds.Ð P  ÐInternational€Symposium€and€Workshop€on€Uses€and€Effects€of€Cultured€Fishes€inÐ h ÐAquatic€Ecosystems,€Albuquerque,€New€Mexico€(USA),€American€Fisheries€Society.Ð à0 Ðà 4 àÌÓ X¨ýÓAn€electrophoretic€survey€of€populations€of€walleye€òòStizostedion€vitreumóó€andÐ pÀ Ðsauger€òòS.€canadenseóó€from€the€Ohio€River€was€conducted€to€determine€the€patterns€ofÐ 8ˆ Ðgenetic€variation,€population€structuring,€and€the€degree€of€hybridization€between€theseÐ P Ðtwo€species€and€their€stocked€FÔ2úJÈÔ1ÔÎÿÈúJÔ€hybrid,€the€saugeye€(female€walleye€x€male€sauger).Ð È ÐThirty„six€presumptive€structural€loci€were€surveyed€from€the€eye,€liver,€and€muscleÐ à Ðtissue€of€500€sauger€from€nine€locations€and€222€walleyes€from€seven€locations.€LevelsÐ X¨ Ðof€variation€in€sauger€were€low€and€suggested€limited€population€differentiation€along€theÐ  p Ðriver.€Levels€of€variation€among€walleye€populations€suggested€a€significant€degree€ofÐ è8 Ðpopulation€differentiation;€however,€no€clear€pattern€of€differentiation€was€observed.Ð °  ÐTwo€polymorphisms,€not€previously€observed€in€walleye€populations,€are€shared€withÐ xÈ! Ðsauger,€suggesting€past€hybridization€events€or€geographically€unique€alleles.Ð @" ÐRecombinant€genotypes€were€detected€in€samples€from€three€Ohio€River€pools,Ð  X# Ðconfirming€that€hybrid€reproduction€has€occurred.€These€three€pools€are€consecutivelyÐ Ð $ Ðaffected€by€one€major€river€and€four€smaller€watersheds€that€have€received€large€numbersÐ ˜!è% Ðof€stocked€saugeyes.€If€maintaining€the€genetic€integrity€of€the€parental€species€is€aÐ `"°& Ðconcern,€our€data€strongly€suggest€that€saugeye€should€not€be€stocked€where€self„Ð (#x' Ðsustaining€parental€populations€occur.Ð ð#@( ÐÐ ¸$ ) ÐÓ ¨ýXÓÐ €%Ð * Ð454.à 4 àWhitfield,€R.€E.€and€D.€P.€Kolenosky€(1978).€€Prototype€eel€ladder€in€the€St.€LawrenceÐ H&˜!+ ÐRiver.€Progressive€Fish€Culturist.€€ò ò40ó ó:152„154.Ð '`", Ðà 4 àÌÓ X¨ýÓA€fishway€to€accommodate€the€American€eel€òòAnguilla€rostrataóó€has€beenÐ  (ð#. Ðconstructed€at€the€Moses„Saunders€Hydro„Electric€Power€Dam€in€the€St.€Lawrence€RiverÐ h)¸$/ Ðat€Cornwall,€Ontario,€Canada.€The€fishway€is€29.3€m€high€and€156.4€m€long,€rising€at€aÐ 0*€%0 Ð12€slope€from€tailwater€level€below€the€dam€to€headwater€level.€More€than€3€million€eelsÐ ø*H&1 Ðhave€been€passed€over€the€dam€during€4€years€of€operation.Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð455.à 4 àWilcox,€D.€B.€(1986).€Fish€passage€through€dams€on€the€Upper€Mississippi€River.€Pages€Ð ° Ð12€òòinóó€C.€E.€Korschgen€and€K.€L.€Curtis,€eds.€18th€Annual€meeting€of€the€MississippiÐ xÈ ÐRiver€Research€Consortium,€La€Crosse,€Wisconsin€(USA),€Mississippi€River€ResearchÐ @ ÐConsortium,€Inc.Ð X Ðà 4 àÌÓ X¨ýÓAdult€fish€of€nine€species€are€known€to€undergo€movements€through€dams€on€theÐ ˜è ÐUpper€Mississippi€River€(UMR).€€Design€characteristics€of€UMR€navigation€dams€allowÐ ` ° Ðboth€upstream€and€downstream€fish€passage.€€Upstream€fish€passage€is€dependent€uponÐ ( x Ðhydraulic€conditions€at€the€dam,€fish€behavior,€and€swimming€performance.€€PhysicalÐ ð @ Ðhydraulic€modeling€of€current€patterns€through€UMR€dam€gates€and€analysis€ofÐ ¸   Ðswimming€performance€of€several€UMR€fish€species€indicate€that€opportunity€forÐ € Ð  Ðupstream€fish€passage€occurs€at€lock€and€dam€8€during€most€water€years.€€Operation€ofÐ H ˜  Ðhydropower€units€at€UMR€dams€may€decrease€opportunity€for€upstream€fish€passage.Ð `  ÐÐ Ø(  ÐÓ ¨ýXÓÐ  ð  Ð456.à 4 àWilcox,€D.€B.€and€K.€W.€Willis€(1993).€€Identification€of€constraints€on€river€regulation.Ð h¸  ÐLock€and€Dam€9€near€Lynxville,€Wisconsin,€Upper€Mississippi€River€9„foot€channelÐ 0€  Ðproject.€U.S.€Army€Corps€of€Engineers,€St.€Paul€District,€Special€Report€EMTC93S012.Ð øH  Ðà 4 àÌÓ X¨ýÓThe€timing,€amplitude,€frequency,€and€duration€of€water€level€fluctuations€andÐ ˆØ Ðchanges€in€current€velocity€greatly€affect€river€life.€On€regulated€rivers€such€as€theÐ P  ÐMississippi,€water€level€and€velocity€fluctuations€are€caused€by€natural€hydrologic€eventsÐ h Ðthat€change€river€discharge€and€by€operation€of€water€control€structures.€The€UpperÐ à0 ÐMississippi€River€System€(UMRS)€includes€the€Mississippi€River€upstream€of€the€mouthÐ ¨ø Ðof€the€Ohio€River€at€Cairo,€Illinois,€to€Minneapolis,€Minnesota;€the€Illinois€River;€andÐ pÀ Ðnavigable€portions€of€the€Kaskaskia,€Black,€St.€Croix,€and€Minnesota€Rivers.€RiverÐ 8ˆ Ðregulation€greatly€influences€habitat€conditions€in€the€river.€Changes€to€the€presentÐ P Ðsystem€of€river€regulation€could€improve€habitat€conditions€and€ecological€productivityÐ È Ðof€the€UMRS.€Any€modifications€to€the€existing€regulation€plans€must€be€compatibleÐ à Ðwith€constraints€on€operation.€The€purpose€of€the€report€is€to€identify€the€constraints€onÐ X¨ Ðregulation€of€Lock€and€Dam€9€in€the€Upper€Mississippi€River€9„foot€channel€navigationÐ  p Ðsystem.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð457.à 4 àWilliams,€J.€D.,€M.€L.€Warren,€Jr.,€K.€S.€Cummings,€J.€L.€Harris€and€R.€J.€Neves€(1993).€Ð @" ÐConservation€status€of€freshwater€mussels€of€the€United€States€and€Canada.€Fisheries.€Ð  X# Ðò ò18ó ó:6„22.Ð Ð $ Ðà 4 àÌÓ X¨ýÓThe€American€Fisheries€Society€(AFS)€herein€provides€a€list€of€all€nativeÐ `"°& Ðfreshwater€mussels€(families€Margaritiferidae€and€Unionidae)€in€the€United€States€andÐ (#x' ÐCanada.€This€report€also€provides€state€and€provincial€distributions;€a€comprehensiveÐ ð#@( Ðreview€of€the€conservation€status€of€all€taxa;€and€references€on€biology,€conservation,€andÐ ¸$ ) Ðdistribution€of€freshwater€mussels.€The€list€includes€297€native€freshwater€mussels,€ofÐ €%Ð * Ðwhich€213€taxa€(71.7%)€are€considered€endangered,€threatened,€or€of€special€concern.Ð H&˜!+ ÐTwenty„one€taxa€(7.1%)€are€listed€as€endangered€but€possibly€extinct,€77€(20.6%)€asÐ '`", Ðendangered€but€extant,€43€(14.5%)€as€threatened,€72€(24.2%)€as€of€special€concern,€14Ð Ø'(#- Ð(4.7%)€as€undetermined,€and€only€70€(23.6%)€as€currently€stable.€The€primary€reasons€forÐ  (ð#. Ðthe€decline€of€freshwater€mussels€are€habitat€destruction€from€dams,€channelÐ h)¸$/ Ðmodification,€siltation,€and€the€introduction€of€nonindigenous€mollusks.€The€highÐ 0*€%0 Ðnumbers€of€imperiled€freshwater€mussels€in€the€United€States€and€Canada,€which€harborÐ ø*H&1 Ðthe€most€diverse€fauna€in€the€world,€portend€a€trajectory€toward€an€extinction€crisis€that,Ð À+'2 Ðif€unchecked,€will€severely€impoverish€one€of€our€richest€components€of€aquaticÐ ˆ,Ø'3 Ðbiodiversity.Ð P- (4 Ð‡Ó ¨ýXÓÐ ° Ð458.à 4 àWilliams,€J.€E.€and€R.€R.€Miller€(1990).€€Conservation€status€of€the€North€American€fishÐ xÈ Ðfauna€in€freshwater.€Journal€of€Fish€Biology.€€ò ò37ó ó:79„85.Ð @ Ðà 4 àÌÓ X¨ýÓThe€status€of€the€North€American€fish€fauna€includes€292€species€of€fishes€in€theÐ Ð  Ðcategories€of€endangered,€vulnerable,€rare,€indeterminate,€and€extinct.€This€constitutesÐ ˜è Ð28%€of€the€known€fauna.€The€status€of€fishes€and€their€habitats€continues€to€decline,Ð ` ° Ðespecially€in€the€arid€regions€of€western€U.S.A.€and€northern€Mexico.€The€EndangeredÐ ( x ÐSpecies€Act€is€the€most€powerful€tool€currently€available€to€protect€rare€fishes.€WhileÐ ð @ Ðmany€fishes€probably€have€been€saved€from€extinction€by€this€act,€surprisingly€few€haveÐ ¸   Ðimproved€enough€to€be€removed€from€under€its€protection.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð459.à 4 àWillson,€M.€F.,€S.€M.€Gende€and€B.€H.€Marston€(1998).€€Fishes€and€the€forest.Ð Ø(  ÐBioscience.€€ò ò48ó ó:455„462.Ð  ð  Ðà 4 àÌÓ X¨ýÓIn€this€article,€we€argue€that€anadromous€and€inshore„spawning€marine€fishÐ 0€  Ðprovide€a€rich,€seasonal€food€resource€that€directly€affects€the€biology€of€both€aquatic€andÐ øH  Ðterrestrial€consumers€and€indirectly€affects€the€entire€food€web€that€knits€the€water€andÐ À Ðland€together.€In€addition,€we€suggest€that€the€presence€of€a€seasonally€abundant€foodÐ ˆØ Ðresource€has€helped€to€shape€the€evolution€of€aquatic€and€terrestrial€consumers€and€thatÐ P  Ðpredators€have€probably€exerted€reciprocal€evolutionary€pressures€on€their€prey,Ð h Ðpotentially€influencing€the€life€history€and€morphology€of€these€fishes.€Finally,€weÐ à0 Ðsuggest€that€anadromous€and€inshore„spawning€fishes€constitute€such€an€important€preyÐ ¨ø Ðbase€for€terrestrial€wildlife€that€conventional€ecological€and€management€dogmas€need€toÐ pÀ Ðbe€revised.€Interactions€between€anadromous€fishes€and€wildlife€have€been€recognized€asÐ 8ˆ Ðhaving€some€general€ecological€importance,€but€only€recently€have€the€ramifications€ofÐ P Ðthese€interactions€and€their€potential€magnitude€begun€to€be€explored.€Because€many€ofÐ È Ðthe€nuts€and€bolts€of€the€ecological€links€still€need€to€be€described€and€quantified,€weÐ à Ðconcentrate€on€sketching€an€outline€of€the€interactions,€documenting€the€effects€whereÐ X¨ Ðpossible€but€also€noting€effects€that€seem€probable,€subject€to€future€research.Ð  p ÐÐ è8 ÐÓ ¨ýXÓÐ °  Ð460.à 4 àWinemiller,€K.€O.€and€K.€A.€Rose€(1992).€€Patterns€of€life„history€diversification€in€NorthÐ xÈ! ÐAmerican€fishes:€Implications€for€population€regulation.€Canadian€Journal€of€FisheriesÐ @" Ðand€Aquatic€Sciences.€€ò ò49ó ó:2196„2218.Ð  X# Ðà 4 àÌÓ X¨ýÓInterspecific€patterns€of€fish€life€histories€were€evaluated€in€relation€to€severalÐ ˜!è% Ðtheoretical€models€of€life„history€evolution.€Data€were€gathered€for€216€North€AmericanÐ `"°& Ðfish€species€(57€families)€to€explore€relationships€among€variables€and€to€ordinateÐ (#x' Ðspecies.€Multivariate€tests,€performed€on€freshwater,€marine,€and€combined€data€matrices,Ð ð#@( Ðrepeatedly€identified€a€gradient€associating€later„maturing€fishes€with€higher€fecundity,Ð ¸$ ) Ðsmall€eggs,€and€few€bouts€of€reproduction€during€a€short€spawning€season€and€theÐ €%Ð * Ðopposite€suite€of€traits€with€small€fishes.€A€second€strong€gradient€indicated€positiveÐ H&˜!+ Ðassociations€between€parental€care,€egg€size,€and€extended€breeding€seasons.€PhylogenyÐ '`", Ðaffected€each€variable,€and€some€higher€taxonomic€groupings€were€associated€withÐ Ø'(#- Ðparticular€life„history€strategies.Ð  (ð#. ÐÐ h)¸$/ ÐÓ ¨ýXÓÐ 0*€%0 Ð461.à 4 àWinston,€M.€R.,€C.€M.€Taylor€and€J.€Pigg€(1991).€€Upstream€extirpation€of€four€minnowÐ ø*H&1 Ðspecies€due€to€damming€of€a€prairie€stream.€Transactions€of€the€American€FisheriesÐ À+'2 ÐSociety.€€ò ò120ó ó:98„105.Ð ˆ,Ø'3 Ðà 4 àÐ P- (4 ÐÓ X¨ýÓA€spatially€intensive€survey€in€1989€of€52€sites€in€the€Red€River€drainage€inÐ ° Ðsouthwest€Oklahoma€and€surveys€in€all€years€from€1978€to€1987€on€four€sites€in€theÐ xÈ Ðdrainage€provided€evidence€that€construction€of€Altus€Dam€on€the€North€Fork€of€the€RedÐ @ ÐRiver€caused€changes€in€fish€community€structure€in€the€river€above€the€dam.€Twenty„Ð X Ðfive€species€were€collected€in€the€North€Fork€above€Altus€Dam,€compared€to€33€in€theÐ Ð  ÐSalt€Fork€and€34€in€the€North€Fork€below€the€dam.€The€speckled€chub€òòMacrhybopsisóóÐ ˜è Ð(formerly€òòHybopsisóó)€òòaestivalisóó€and€the€chub€shiner€òòNotropis€potterióó€were€absent€in€theÐ ` ° ÐNorth€Fork€above€Altus€Dam€but€fairly€common€in€similar€streams€elsewhere€in€the€area.Ð ( x ÐThe€plains€minnow€òòHybognathus€placitusóó€and€the€Red€River€shiner€òòNotropis€bairdióó€wereÐ ð @ Ðamong€the€most€common€fish€species€found€in€southwest€Oklahoma,€but€were€notÐ ¸   Ðcollected€above€Altus€Dam€in€the€1989€survey€and€were€collected€only€intermittently€andÐ € Ð  Ðin€small€numbers€in€the€long„term€survey.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð462.à 4 àWirgin,€II,€J.€E.€Stabile€and€J.€R.€Waldman€(1997).€€Molecular€analysis€in€theÐ  ð  Ðconservation€of€sturgeons€and€paddlefish.€Environmental€Biology€of€Fishes.€€ò ò48ó ó:385„398.Ð h¸  Ðà 4 àÌÓ X¨ýÓSturgeon€and€paddlefish€populations€worldwide€have€declined€because€ofÐ øH  Ðanthropogenic€influences.€The€structure€and€magnitude€of€genetic€diversity€of€naturalÐ À Ðpopulations€serves€to€buffer€these€fishes€against€environmental€variation€and€should€beÐ ˆØ Ðmaintained.€Modern€molecular€biological€techniques€provide€the€ability€to€sensitivelyÐ P  Ðcharacterize€and€quantify€the€extent€of€genetic€variation€in€natural€populations.€WeÐ h Ðprovide€a€summary€of€those€problems€in€sturgeon€population€biology€that€are€amenableÐ à0 Ðto€investigation€with€DNA€approaches,€and€their€applications€to€date.€These€haveÐ ¨ø Ðincluded€genetic€identification€and€discrimination€of€taxa,€identification€of€hybrids,€stockÐ pÀ Ðidentification,€mixed„stock€analysis,€and€estimation€of€gene€flow€and€homing€fidelity.€ToÐ 8ˆ Ðdate,€almost€all€studies€have€been€restricted€to€North€America€fauna.€Improvements€toÐ P Ðthese€technologies,€including€nondestructive€sampling,€should€permit€more€widespreadÐ È Ðapplication€of€molecular€approaches€to€problems€of€acipenserform€conservation.€WeÐ à Ðsuggest€that€the€use€of€more€sensitive€molecular€tools€such€as€analyses€of€hypervariableÐ X¨ Ðrepetitive€and€non„coding€single€copy€nuclear€DNA€may€assist€management€even€in€thoseÐ  p Ðtaxa€which€exhibit€overall€low€levels€of€genetic€diversity.Ð è8 ÐÐ °  ÐÓ ¨ýXÓÐ xÈ! Ð463.à 4 àWitherell,€D.€B.€and€B.€Kynard€(1990).€€Vertical€distribution€of€adult€American€shad€inÐ @" Ðthe€Connecticut€River.€Transactions€of€the€American€Fisheries€Society.€€ò ò119ó ó:151„155.Ð  X# Ðà 4 àÌÓ X¨ýÓAdult€American€shad€òòAlosa€sapidissimaóó€were€sampled€with€vertical€gill€netsÐ ˜!è% Ðduring€the€1986€and€1987€spawning€and€postspawning€migrations€in€the€ConnecticutÐ `"°& ÐRiver.€Most€(83%)€were€caught€in€the€lower€half€of€the€water€column,€but€not€on€the€riverÐ (#x' Ðbottom.€The€vertical€distributions€of€gravid€and€spent€fish€were€similar€for€both€malesÐ ð#@( Ðand€females.€American€shad€showed€no€diel,€seasonal,€or€yearly€changes€in€depthÐ ¸$ ) Ðdistributions.€Larger€gravid€fish€swam€deeper€in€the€water€column€than€did€smaller€gravidÐ €%Ð * Ðfish.Ð H&˜!+ ÐÐ '`", ÐÓ ¨ýXÓÐ Ø'(#- Ð464.à 4 àWlosinski,€J.€H.€and€L.€Hill€(1995).€€Analysis€of€water€level€management€on€the€UpperÐ  (ð#. ÐMississippi€River€(1980„1990).€Regulated€Rivers:€Research€and€Management.€€ò ò11ó ó:239„Ð h)¸$/ Ð248.Ð 0*€%0 Ðà 4 àÌÓ X¨ýÓManagement€at€27€low„head€dams€affects€water€surface€elevations€for€a€1050€kmÐ À+'2 Ðstretch€of€the€Upper€Mississippi€River€(UMR)€between€St€Louis,€Missouri€andÐ ˆ,Ø'3 ÐMinneapolis,€Minnesota.€A€systemic€overview€is€given€of€current€operating€plans€at€damsÐ P- (4 Ðon€the€UMR€and€historical€data€are€analysed€to€determine€how€well€the€operating€plansÐ ° Ðare€being€met.€Water€level€elevations€at€all€27€dams€are€regulated€as€a€function€ofÐ xÈ Ðdischarge,€although€plans€are€specific€for€each€dam.€The€management€objective€is€toÐ @ Ðmaintain€a€target€water€level€at€specific€locations€(control€point)€in€each€impoundmentÐ X Ðover€specific€ranges€of€discharge.€The€target€water€level€and€control€point€may€change€asÐ Ð  Ðdischarge€changes€in€each€impoundment.€In€some€of€the€impoundments€water€regulationÐ ˜è Ðcauses€drawdowns€below€the€elevation€for€which€the€dams€were€planned,€and€at€otherÐ ` ° Ðdams€no€drawdown€occurs.€During€the€navigation€seasons€of€1980€to€1990,€water€levelsÐ ( x Ðwere€within€their€target€window€for€an€average€of€72.5%€of€the€time€for€25€damsÐ ð @ Ðanalysed.€Difficulties€in€meeting€targets€are€caused€by€winds,€local€rainfall€events,€iceÐ ¸   Ðdams€and€rapidly€fluctuating€discharges€from€tributaries€with€upstream€reservoirs€usedÐ € Ð  Ðfor€peaking€hydropower.Ð H ˜  ÐÐ `  ÐÓ ¨ýXÓÐ Ø(  Ð465.à 4 àWoody,€C.€A.€and€L.€E.€Holland„Bartels€(1993).€€Reproductive€characteristics€of€aÐ  ð  Ðpopulation€of€the€washboard€mussel€òòMegalonaias€nervosaóó€(Rafinesque€1820)€in€theÐ h¸  ÐUpper€Mississippi€River.€Journal€of€Freshwater€Ecology.€€ò ò8ó ó:57„66.Ð 0€  Ðà 4 àÌÓ X¨ýÓWe€examined€monthly€and€age„specific€gametogenic€development€of€theÐ À Ðwashboard€mussel,€òòMegalonaias€nervosaóó,€from€April€1986€to€March€1987€in€navigationÐ ˆØ ÐPool€10€of€the€Upper€Mississippi€River.€€We€found€òòM.€nervosaóó€to€be€a€late€tachyticticÐ P  Ðbreeder.€€Female€marsupia€contained€eggs€or€glochidia€primarily€from€August€(17€ÔÎÿæ6hÔoÔ2hæ6ÔC)Ð h Ðthrough€October€(9€ÔÎÿ®þà0ÔoÔ2à0®þÔC).€€Males€were€mature€from€July€through€October.€€Most€femalesÐ à0 Ðreleased€their€glochidia€in€October.€€Only€one€female€was€gravid€in€November€(3€ÔÎÿvƨøÔoÔ2¨øvÆÔC).€Ð ¨ø ÐMost€mussels€were€mature€at€8€years€of€age€and€then€had€an€estimated€average€size€ofÐ pÀ Ð68mm€(shell€height).€€Only€8%€of€the€individuals€<=€4€years€of€age€showed€any€degree€ofÐ 8ˆ Ðreproductive€development,€while€>€90%€of€age€5€and€older€individuals€had€recognizableÐ P Ðreproductive€material€present.€€In€host€specificity€studies,€we€verified€three€species€of€fishÐ È Ðas€hosts€for€the€glochidia€stage.€€Green€sunfish€òòLepomis€cyanellusóó,€black€bullheadÐ à ÐòòIctalurus€melasóó,€and€channel€catfish€òòIctalurus€punctatusóó€produced€juveniles€after€26„28Ð X¨ Ðdays€at€17€ÔÎÿî> pÔoÔ2 pî>ÔC.€€White€suckers€òòCatostomus€commersonióó€and€yellow€perch€òòPercaÐ  p Ðflavescensóó€retained€glochidia€from€23€up€to€26€days,€but€no€juveniles€were€produced.€Ð è8 ÐGlochidia€remained€attached€to€common€carp€Cyprinus€carpio€and€fathead€minnowsÐ °  ÐPimephales€promelas€<=€3€days.€€Channel€catfish€were€retested€at€12€ÔÎÿF–xÈÔoÔ2xÈF–ÔC€and€producedÐ xÈ! Ðjuveniles€after€56€days.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð466.à 4 àWu,€S.€and€N.€Rajaratnam€(1995).€€Effect€of€baffles€on€submerged€flows.€Journal€ofÐ ˜!è% ÐHydraulic€Engineering.€€ò ò121ó ó:644„652.Ð `"°& Ðà 4 àÌÓ X¨ýÓThis€paper€introduces€the€concept€of€a€submerged€hydraulic€jump€being€used€forÐ ð#@( Ðenergy€dissipation.€A€baffle€wall€is€used€to€produce€a€stable€deflected€surface€jet,€therebyÐ ¸$ ) Ðdeflecting€the€high„velocity€supercritical€stream€away€from€the€bed€to€the€surface.€BasedÐ €%Ð * Ðon€a€series€of€experiments,€a€diagram€was€developed€that€predicts€the€conditions€underÐ H&˜!+ Ðwhich€such€a€surface€jet€would€be€produced.€A€second€series€of€experiments€wereÐ '`", Ðperformed€to€study€the€characteristics€of€the€deflected€jet,€as€it€travels€upward€first€as€aÐ Ø'(#- Ðcurved€turbulent€jet€to€eventually€become€a€turbulent€surface€jet.€The€decay€of€theÐ  (ð#. Ðmaximum€velocity€in€the€deflected€as€well€as€the€surface€jet€was€studied€and€comparedÐ h)¸$/ Ðwith€that€of€a€plane€turbulent€wall€jet€that€is€a€model€for€deeply€submerged€jumps.Ð 0*€%0 ÐÐ ø*H&1 ÐÓ ¨ýXÓÐ À+'2 Ð467.à 4 àWu,€S.,€N.€Rajaratnam€and€C.€Katopodis€(1999).€€Structure€of€flow€in€vertical€slotÐ ˆ,Ø'3 Ðfishway.€Journal€of€Hydraulic€Engineering.€€ò ò125ó ó:351„360.Ð P- (4 Ðà 4 àÌÓ X¨ýÓThis€paper€presents€the€results€of€an€experimental€study€on€the€structure€of€flowÐ xÈ Ðin€a€vertical€slot€fishway€of€an€effective€and€simple€design.€The€flow€at€the€slot€could€beÐ @ Ðtreated€as€a€plane€jet,€but€there€are€a€number€of€differences€from€the€plane€jet.€It€wasÐ X Ðfound€that€for€a€slope€of€5%,€the€main€flow€travels€from€one€slot€to€the€next€through€theÐ Ð  Ðpool€as€a€2D€curved€jet€with€two€recirculation€regions€„€one€on€each€side.€For€slopes€of€10Ð ˜è Ðand€20%,€the€main€flow€is€3D.€Water€flows€toward€the€side€wall€between€the€long€bafflesÐ ` ° Ðnear€the€bed€and€piles€up€along€the€sidewall;€part€of€the€flow€rises€to€the€surface€and€thenÐ ( x Ðtravels€to€the€outlet.€The€decay€of€longitudinal€velocity€in€the€pool€is€much€larger€thanÐ ð @ Ðthat€of€the€plane€jet.€The€volume€averaged€velocity€head€of€the€water€in€the€pool€wasÐ ¸   Ðfound€to€be€similar€to€12%€of€Delta€h,€the€head€drop€per€pool.€The€volume€of€theÐ € Ð  Ðrecirculation€region€between€the€short€baffles€was€similar€to€28%€of€the€volume€of€theÐ H ˜  Ðpool€for€all€three€slopes€and€all€discharges€whereas€the€corresponding€volume€of€theÐ `  Ðhorizontal€eddy€just€downstream€of€the€long€baffles€for€the€two€larger€slopes€was€similarÐ Ø(  Ðto€10%.€The€relative€volume€of€the€two€recirculation€regions€was€similar€to€73%€for€theÐ  ð  Ð5%€slope€and€similar€to€38%€for€the€10€and€20%€slopes.Ð h¸  ÐÐ 0€  ÐÓ ¨ýXÓÐ øH  Ð468.à 4 àYlinaerae,€T.€(1991).€€Measuring€the€velocity€of€water€at€fish€ladders.€Vesitalous.€€ò ò32ó ó:31„Ð À Ð34.Ð ˆØ Ðà 4 àÌÓ X¨ýÓA€more€versatile€apparatus€than€the€propeller€current€meter€has€been€tested€forÐ h Ðmeasuring€water€velocity€in€the€course€of€research€into€the€swimming€behaviour€ofÐ à0 Ðmigratory€fish.€A€multidimensional€rather€than€a€unidimensional€device€was€needed€forÐ ¨ø Ðcontinuous€recordings.€The€new€apparatus€is€a€two„channel€electromagnetic€Marsh„Ð pÀ ÐMcBirney€M511€water€velocity€meter.€The€recorded€analog€signal€is€processed€with€aÐ 8ˆ Ðpersonal€computer€and€Data€Translation's€DT€2801„A€data€acquisition€board.€TheÐ P Ðsoftware€is€Asystant+,€which€is€a€menu„run€scientific€program€for€data€acquisition,Ð È Ðanalysis€and€graphics.Ð à ÐÐ X¨ ÐÓ ¨ýXÓÐ  p Ð469.à 4 àZerrath,€H.€(1996).€€Burst„swimming€performance€of€native€small€and€young€fish€speciesÐ è8 Ðin€slope„models€„„€dates€for€valueing€fishways.€Fischokologie.€27„48.Ð °  Ðà 4 àÌÓ X¨ýÓIn€a€variant€of€a€slope€model€with€an€inclination€of€1:20€which€had€inserted€linesÐ @" Ðof€stakes€the€swimming€behaviour€of€the€following€fish€species€(all€between€3,3€and€10,5Ð  X# Ðcm€in€length)€was€investigated:€three„spined„stickleback€(òòGasterosteus€aculeatusóó),€pearchÐ Ð $ Ð(òòPerca€fluviatilisóó),€carp€(òòCyprinus€carpioóó),€roach€(òòRutilus€rutilusóó),€chub€(òòLeuciscusÐ ˜!è% Ðcephalusóó)€and€gudgeon€(òòGobio€gobioóó).€The€swimming€behaviour€of€tree„spined„Ð `"°& Ðstickleback€and€chub€was€additionally€investigated€in€two€more€variants€with€otherÐ (#x' Ðhydraulic€conditions.€By€putting€high€numbers€into€the€testing€arrangement€it€wasÐ ð#@( Ðsucceded,€expect€with€the€pearch,€to€cause€the€burst€swimming€of€the€test€animals€and€toÐ ¸$ ) Ðanalyse€it€by€videotape€records.€The€average€burst€speed€is€for€all€investigated€speciesÐ €%Ð * Ðnear€15€BL/s,€the€average€burst€time€is€about€5€seconds.€Maximum€values€of€more€thanÐ H&˜!+ Ð30€BL/s€were€noticed€for€nearly€all€species.€The€swimming€achievement€of€sticklebacksÐ '`", Ðwas€almost€equal€in€each€of€the€three€investigated€variants.€Chubs€showed€a€swimmingÐ Ø'(#- Ðachievement€adapted€to€the€hydraulic€conditions,€depending€on€their€body€length.€TheÐ  (ð#. Ðaspects€for€water€constructing€and€fishways€are€discussed:€For€the€critical€area€ofÐ h)¸$/ Ðfishways€streaming€velocities€of€80€cm/s€should€not€be€gone€beyond,€and€should€beÐ 0*€%0 Ðrestricted€to€distances€under€50€cm.€In€other€areas€the€critical€streaming€velocity€of€localÐ ø*H&1 Ðsmall€fish€species€of€40€cm/s€should€not€gone€beyond.Ð À+'2 ÐÐ ˆ,Ø'3 ÐÓ ¨ýXÓÐ P- (4 Ð470.à 4 àZhao,€X.€and€Z.€Han€(1980).€€Experiments€on€the€current€overcoming€ability€of€someÐ ° Ðfreshwater€fishes.€Journal€of€the€Fishes€of€€China.€€ò ò4ó ó:31„37.Ð xÈ Ðà 4 àÌÓ X¨ýÓThe€ability€of€fish€to€overcome€currents€should€be€the€first€consideration€inÐ X Ðdesigning€the€inlet€of€a€fishway€according€to€the€authors.€A€series€of€experiments€wereÐ Ð  Ðconducted€in€the€flume€of€a€hydraulic€laboratory.€Various€kinds€of€fishes€were€selectedÐ ˜è Ðfor€the€experiments,€such€as€common€carp€òòCyprinus€carpioóó;€Crucian€carp€òòCarassiusÐ ` ° Ðauratusóó;€silver€carp€òòHypophthalmichthys€molitrixóó;€grass€carp€òòCtenopharyngodon€idellusóó;Ð ( x Ðmullet€òòLiza€soiuyóó;€whitefish€òòErythroculter€erythropterusóó;€snake€head€òòOphiocephalusÐ ð @ Ðargusóó;€catfish€òòParasilurus€asotusóó;€blunt„headed€bream€òòMegalobrama€amblycephalaóó,€etc.Ð ¸   ÐAt€a€water€temperature€of€10„27ÔÎÿN ž€ ÐÔoÔ2€ ÐN žÔC,€and€a€water€depth€of€25„50€cm,€the€starting€velocityÐ € Ð  Ðof€the€various€kinds€of€fishes€is€about€0.2€m/sec.€The€optimum€velocity€ranges€from€aÐ H ˜  Ðlower€limit€of€0.3„0.4€m/sec€to€an€upper€limit€of€0.5„0.8€m/sec.€The€limiting€velocity€forÐ `  Ðthe€different€kinds€of€fish€varies€greatly.€The€upper€limit€of€optimum€velocity€is€generallyÐ Ø(  Ðconsidered€as€the€preferable€velocity€for€a€fishway€inlet.€The€value€is€about€15„30%€lessÐ  ð  Ðthan€the€limiting€velocity.€The€experiments€denote€that€the€current€overcoming€ability€ofÐ h¸  Ðfish€is€mainly€related€to€their€body€shape,€body€length€and€the€variation€of€the€waterÐ 0€  Ðtemperature.€By€analyzing€the€results€of€the€experiments€and€date€from€some€existingÐ øH  Ðfishways,€it€was€seen€that€the€current€overcoming€ability€of€a€fish€is€closely€related€to€itsÐ À Ðbody€length.€An€empirical€formula€is€proposed€for€estimation€purposes.Ð ˆØ ÐÐ P  ÐÓ ¨ýXÓÐ h Ð471.à 4 àZholdasova,€I.€(1997).€€Sturgeons€and€the€Aral€Sea€ecological€catastrophe.€EnvironmentalÐ à0 ÐBiology€of€Fishes.€€ò ò48ó ó:373„380.Ð ¨ø Ðà 4 àÌÓ X¨ýÓA€short€description€of€the€catastrophic€changes€in€the€ecology€of€the€Aral€SeaÐ 8ˆ Ðbasin€during€the€three€last€decades€is€presented.€These€changes€have€influenced€the€statusÐ P Ðof€two€acipenserid€endemics€to€the€area,€the€large€Amu„Dar€shovelnose,òòÐ È ÐPseudoscaphirhynchus€kaufmannióó,€and€the€ship€sturgeon,€òòAcipenser€nudiventrisóó.€TheÐ à Ðmain€biological€characteristics€of€both€species€in€the€new€environmental€conditions€areÐ X¨ Ðgiven.€Previous€unsuccessful€attempts€to€introduce€other€acipenserid€species€into€the€areaÐ  p Ðare€also€described.€International€cooperation€is€needed€for€saving€the€last€survivingÐ è8 Ðspecies€representing€the€genus€òòPseudoscaphirhynchusóó.€The€only€two€other€species€of€theÐ °  Ðsame€genus,€òòP.€fedtschenkoióó,€and€òòP.€hermannióó,€have€already€become€victims€of€the€AralÐ xÈ! ÐSea€catastrophe€and€are€apparently€extinct.Ð @" ÐÐ  X# ÐÓ ¨ýXÓÐ Ð $ Ð472.à 4 àZigler,€S.,€M.€Dewey,€B.€Knights,€M.€Steingraeber€and€A.€Runstron€(1996).€Habitat€useÐ ˜!è% Ðand€movement€of€paddlefish€in€the€Upper€Mississippi€River.€Pages€€24€òòinóó€J.€T.Ð `"°& ÐDukerschein,€ed.€Proceedings€of€the€Mississippi€River€Research€Consortium,€La€Crosse,Ð (#x' ÐWisconsin€(USA),€Mississippi€River€Research€Consortium.Ð ð#@( Ðà 4 àÌÓ X¨ýÓRestoration€of€depleted€paddlefishòò€Polyodon€spathula€óópopulations€is€a€goal€ofÐ €%Ð * Ðseveral€state€and€federal€natural€resource€agencies.€€Knowledge€of€movements€isÐ H&˜!+ Ðimportant€for€defining€the€spatial€scales€for€effectively€managing€paddlefish€stocks€andÐ '`", Ðfor€evaluating€the€effects€of€habitat€alterations,€such€as€dams,€on€paddlefish.€€In€1994€andÐ Ø'(#- Ð1995,€we€evaluated€movement€and€habitat€use€of€paddlefish€with€radiotelemetry€in€PoolsÐ  (ð#. Ð5A€and€8€of€the€Upper€Mississippi€River,€and€in€the€Wisconsin€and€Chippewa€Rivers.€Ð h)¸$/ ÐPaddlefish€were€tagged€in€the€lower€Black€River€(Pool€8,€upper€Mississippi€River),€inÐ 0*€%0 ÐPool€5A€of€the€upper€Mississippi€River,€near€Caryville€in€the€Chippewa€River,€and€in€theÐ ø*H&1 ÐWisconsin€River€below€Prairie€du€Sac€dam.€€Many€remained€at€these€locationsÐ À+'2 Ðthroughout€the€year.€€In€spring,€1995€about€half€of€the€radiotagged€paddlefish€movedÐ ˆ,Ø'3 Ðdownstream€up€to€90€km€in€the€Wisconsin€and€Chippewa€Rivers,€presumably€forÐ P- (4 Ðspawning€activities.€€Paddlefish€in€Pool€8€remained€in€the€upper€portion€of€the€poolÐ ° Ðthroughout€spring.€€Paddlefish€that€moved€downstream€during€spring€returned€in€earlyÐ xÈ Ðsummer.€€Diel€studies€conducted€in€Pool€8€during€spring€1995€indicated€greaterÐ @ Ðmovement€at€night€(mean€=€525€m/h)€as€compared€to€day€(mean€=€212€m/h),€but€use€ofÐ X Ðhabitat€types€did€not€differ€among€day,€night,€or€crepuscular€periods.€€While€mostÐ Ð  Ðpaddlefish€did€not€move€great€distances€during€summer,€a€few€fish€moved€between€150Ð ˜è Ðand€250€km€from€tributaries€into€the€upper€Mississippi€River.€€In€the€lower€portion€of€theÐ ` ° Ðtributaries€rivers,€which€do€not€contain€dams,€paddlefish€moved€large€distances€upstreamÐ ( x Ðand€downstream.€€In€the€upper€Mississippi€River,€dams€appear€to€be€effective€barriers€toÐ ð @ Ðupstream€paddlefish€movement.€€Research€studies€are€continuing€to€monitor€seasonalÐ ¸   Ðpatterns€of€habitat€use€and€movement.Ð € Ð  ÐÐ H ˜  ÐÓ ¨ýXÓÐ `  Ð473.à 4 àZigler,€S.€J.,€M.€R.€Dewey€and€B.€C.€Knights€(1999).€€Diel€movement€and€habitat€use€byÐ Ø(  Ðpaddlefish€in€Navigation€Pool€8€of€the€Upper€Mississippi€River.€North€American€JournalÐ  ð  Ðof€Fisheries€Management.€€ò ò19ó ó:180„187.Ð h¸  Ðà 4 àÌÓ X¨ýÓWe€studied€diel€movement€and€habitat€use€by€paddlefish€òòPolyodon€spathulaóóÐ øH  Ðimplanted€with€radio€transmitters€in€Navigation€Pool€8€of€the€Upper€Mississippi€River.Ð À ÐWe€radio„tracked€five€paddlefish€during€three€randomly€chosen€24„h€periods€each€monthÐ ˆØ Ðin€May,€August,€and€October€1995.€Paddlefish€were€located€by€boat€one€to€three€timesÐ P  Ðevery€3€h€during€each€24„h€period.€At€each€location,€geographic€coordinates€wereÐ h Ðdetermined€with€a€global€positioning€system€receiver€using€the€Precise€PositioningÐ à0 ÐService,€and€depth€was€measured€with€a€depth€sounder.€Location€coordinates€wereÐ ¨ø Ðplotted€with€ARC/INFO€software€on€a€Geographic€Information€System€land„waterÐ pÀ Ðcoverage.€Movement€distances€were€calculated€as€the€linear€distance€between€sequentialÐ 8ˆ Ðlocations.€Radio„tagged€paddlefish€usually€remained€in€a€secondary€channel€that€had€lowÐ P Ðcurrent€velocity€during€all€seasons,€whereas€main€channel,€main€channel€border,Ð È Ðtailwater,€and€backwater€habitats€were€seldom€used.€Paddlefish€strongly€selected€areasÐ à Ðthat€were€deep;€about€62%€of€paddlefish€locations€were€in€areas€with€more€than€6€m€ofÐ X¨ Ðdepth,€although€this€habitat€constituted€only€14.5%€of€the€total€study€area.€However,Ð  p Ðpaddlefish€used€significantly€shallower€areas€during€the€night€than€during€the€day.Ð è8 ÐPaddlefish€moved€significantly€larger€distances€at€night€than€during€the€day€in€spring€andÐ °  Ðfall,€but€differences€in€movement€among€diel€periods€during€summer€were€not€significant.Ð xÈ! ÐOur€research€suggests€that€radiotelemetry€studies€that€need€to€determine€depth€use€orÐ @" Ðmovement€of€paddlefish€during€small€time€scales€may€need€to€incorporate€a€dielÐ  X# Ðcomponent.€However,€study€objectives€to€determine€use€of€general€habitat€types€by€radio„Ð Ð $ Ðmarked€paddlefish€can€be€adequately€met€by€tracking€during€the€day.Ð ˜!è% ÐÐ `"°& ÐÓ ¨ýXÓÐ (#x' Ð474.à 4 àZimpfer,€S.€P.,€C.€F.€Bryan€and€C.€H.€Pennington€(1987).€€Factors€associated€with€theÐ ð#@( Ðdynamics€of€grass€carp€larvae€in€the€Lower€Mississippi€River€Valley.€Pages€€102„108€òòinóó€Ð ¸$ ) ÐR.€D.€Hoyt,€ed.€Proceedings€of€the€10th€Annual€Larval€Fish€Conference,€AmericanÐ €%Ð * ÐFisheries€Society€Symposium€Serial,€Miami,€Florida€(USA).Ð H&˜!+ Ðà 4 àÌÓ X¨ýÓLarvae€of€grass€carp€òòCtenopharyngodon€idellaóó€were€captured€in€4€major€rivers€ofÐ Ø'(#- Ðthe€lower€Mississippi€River€valley.€Catches€were€greatest€in€the€lower€Red€River;€peaksÐ  (ð#. Ðwere€associated€with€increasing€river€stage,€current€speeds€of€1.2„2.2€m/s,€waterÐ h)¸$/ Ðtemperatures€of€23.5„28.2€ÔÎÿþ)N%0*€%ÔoÔ20*€%þ)N%ÔC,€pH€values€of€7.2„7.7,€dissolved€oxygen€concentrations€ofÐ 0*€%0 Ð4.0„7.6€mg/L,€and€secci€disc€readings€of€1„9€cm.€Catches€were€least€near€navigation€locksÐ ø*H&1 Ðand€dams€on€the€Ouachita€River,€where€flows€were€0.6€cm/s€or€less€when€waterÐ À+'2 Ðtemperatures€were€optimum.€Intermediate€catches€of€larvae€were€taken€from€theÐ ˆ,Ø'3 ÐAtchafalaya€River€and€the€Mississippi€River€Diversion€Channel.€Major€spawning€areas€inÐ P- (4 Ðthe€Mississippi€and€Red€rivers€were€located€in€or€near€Arkansas,€where€grass€carp€wereÐ ° Ðfirst€released.€The€occurrences€of€juveniles€and€adults€in€commercial€catches€from€theÐ xÈ ÐBlack,€Mississippi,€and€Red€rivers,€and€of€newly€hatched€larvae€in€the€backwaters€of€theÐ @ ÐAtchafalaya€River€basin,€suggest€that€grass€carp€are€successfully€recruited€to€fish€stocksÐ X Ðof€the€lower€Mississippi€Valley.Ð Ð  ÐÓ XÓÔ€X¾x X%&™yÔÔ€XuX XX¾xÔÓ XÓÓE+Ü Ü4Œ ä <”ìDœôL¤ü!444ŠXü!EÓ