Fundamental Physical Constants — Adopted values

Quantity	Symbol	Value	Unit	Relative std. uncert. u_r
molar mass of ^{12}C molar mass constant ^a $M(^{12}\text{C})/12$ conventional value of Josephson	$M(^{12}\mathrm{C})$ M_u	$12 \times 10^{-3} \\ 1 \times 10^{-3}$	kg mol ⁻¹ kg mol ⁻¹	(exact) (exact)
constant ^b conventional value of von Klitzing	$K_{\mathrm{J-90}}$	483 597.9	${ m GHz}~{ m V}^{-1}$	(exact)
constant ^c	R_{K-90}	25 812.807	Ω	(exact)
standard atmosphere		101325	Pa	(exact)
standard acceleration of gravity	$g_{ m n}$	9.80665	${ m m~s^{-2}}$	(exact)

^a The relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m(^{12}C)/12 = M_u/N_A = 1$ u is the atomic mass constant, N_A is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is $m(X) = A_r(X)$ u and the molar mass of X is $M(X) = A_r(X)M_u$.

^b This is the value adopted internationally for realizing representations of the volt using the Josephson effect.

^c This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.