Journal of
 Physical and
 Chemical
 Reference Data

Monograph No. 5

Atlas of Surface Structures: Volume 1A (1994)
 Based on the NIST Surface Structure Database (SSD)

P. R. Watson

Department of Chemistry
Oregon State University
Corvallis, Oregon 97331
M. A. Van Hove

Materials Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
K. Hermann

Abteilung Theorie
Fritz-Haber-Institut
Faradayweg 4-6
D-14195 Berlin, Germany

Major Contributors:
S. Crampin, G. Darling, P. Pinkava, A. Barbieri, J. Batteas,
A. Kaduwela, N. Materer, U. Starke, W. Weiss

Consultants:

G. A. Somorjai and J.
B. Pendry

$\overline{\text { AIP }}$

Published by the American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology

Copyright © 1994 by the U.S. Secretary of Commerce on behalf of the United States. This copyright will be assigned to the American Institute of Physics and the American Chemical Society, to whom all requests regarding reproduction should be addressed.

International Standard Book Number 1-56396-413-9

American Institute of Physics
500 Sunnyside Boulevard
Woodbury, New York 11797-2999

Printed in the United States of America

Foreword

The Journal of Physical and Chemical Reference Data is published jointly by the American Institute of Physics and the American Chemical Society for the National Institute of Standards and Technology (NIST). Its objective is to provide critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation. One of the principal sources of material for the journal is the NIST Standard Reference Data Program, a program promoting the compilation and critical evaluation of property data.

The regular issues of the Journal of Physical and Chemical Reference Data are published bimonthly and contain compilations and critical data reviews of moderate length. Longer works, volumes of collected tables, and other material unsuited to a periodical format have previously been published as Supplements to the Journal. Beginning in 1989 the generic title of these works has been changed to Monograph, which reflects their character as independent publications. This volume, "Atlas of Surface Structures: Volume 1A (1994)" by P.R. Watson, M.A. Van Hove, and K. Hermann is the first part of Monograph No. 5 of the Journal of Physical and Chemical Reference Data.

Jean W. Gallagher, Editor
Journal of Physical and Chemical Reference Data

Atlas of Surface Structures: Volume 1A (1994)
 Based on the NIST Surface Structure Database (SSD)

P.R. Watson
Department of Chemistry, Oregon State University, Corvallis, OR 97331
M.A. Van Hove
Materials Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

and

K. Hermann

Abteilung Theorie, Fritz-Haber-Institut, Faradayweg 4-6, D-14195 Berlin, Germany

Major Contributors:
S. Crampin, G. Darling, P. Pinkava, A. Barbieri, J. Batteas,
A. Kaduwela, N. Materer, U. Starke, W. Weiss

Consultants:

G. A. Somorjai and J. B. Pendry

These volumes contain listings of crystallographic information on almost 600 surface structures contained in the NIST Surface Structure Database (SSD). These are prefaced by explanatory text and are combined with high quality computer-generated views of the surface. The listings include full literature references, statements on experimental and theoretical methods used, bulk and surface unit cells, a complete list of atomic coordinates for overlayer, epilayer, interfacial and bulk atoms and selected bond lengths and angles.

Key words: electron diffraction; ion scattering; LEED; NEXAFS; photoelectron diffraction; SEXAFS; surface crystallography; surface structure; surface structure database; X-ray diffraction.

Contents

Volume 1A

1. Introduction 5
1.1. Background. 5
1.2. Purpose of This Atlas 5
1.3. How to use This Atlas 6
1.4. Information Content of This Atlas 6
1.4.1. General Information 7
1.4.2. Surface Type 7
1.4.3. Structure Type 9
1.4.4. Comments 9
1.4.5. Sample Preparation 9
1.4.6. Data Collection 9
1.4.7. Theory/Data Treatment 9
1.4.8. Structures Examined 9
1.4.9. Quality of Experiment-Theory Fit 9
1.4.10. 2D Unit Cells 10
1.4.11. Lattice Definitions. 10
1.4.12. 3D Coordinates 11
1.4.13. Bond Distances and Angles 13
1.5. Relation of this Atlas to Other Databases and Graphics Software 13
2. Catalog of Structures. 14
2.1. Alphanumerical Index of Structures 14
2.2. Main Table of Structures 19
3. Acknowledgments 879
4. Bibliography and Related Software 879
4.1. References 879
4.2. Software 879
5. Appendices 880
A. Entering New Structural Data into SSD 880
A.1. Submitting New Structures for Inclusion in SSD 880
A.2. Format of ASCII Files for SSD 880
A.3. Generic ASCII File 882
A.4. Sample ASCII Files 886
A.5. Utility Program SSDCHK. 894
B. List of Symbols and Abbreviations 895
C. Major Surface Structure Techniques 899
D. List of Covalent Radii 900
E. The 17 2D Space Groups 901
F. Examples of Superlattice Cells and Notations 903
G. Contacts 906
6. Index 907
Volume 1B
7. Introduction 5
8. Structural Figures 5
2.1. Categorized Index of Figures 5
2.2. Figures 11
9. Acknowledgments 343
10. Bibliography and Related Software 343
4.1. References 343
4.2. Software 343

1. Introduction

1.1. Background

Surface science has undergone explosive growth in the last decades. Of fundamental importance has been the knowledge of the atomic-scale geometrical surface structure. In close analogy with three-dimensional solids, the atomic-scale structure of surfaces is the basis for many surface-related properties of materials: electronic, chemical, magnetic, mechanical, biological, etc. Structural understanding is particularly critical for producing novel materials with new properties.

In the early 1980s, the need to gather all solved surface structures in a uniform database became obvious. A collaboration between groups in Berkeley in the USA and in Daresbury (and later at Imperial College) in the UK led to the publication in 1987 of the Surface Crystallographic Information Service (SCIS) Handbook and Software. It made available 256 surface structures in both printed and electronic forms.

The effort was subsequently reorganized as a collaboration between Berkeley, Corvallis (Oregon, USA) and Berlin (Germany). In Corvallis, P.R. Watson had independently started critical evaluations of surface structures, supported by NIST, while, in Berlin, K. Hermann was developing surface visualization software, in collaboration with M.A. Van Hove at Berkeley. By joining corresponding database software developed by Watson and visualization software written by Hermann to the data collection effort, now centralized in Berkeley, the Surface Structure Database (SSD) was created, with partial NIST support. It was published in 1993 in an electronic form for PCs and compatible computers. This atlas is a printed version of SSD and contains the same information (save for the correction of a few typographical errors).

The number of included structures has sharply risen from 256 for SCIS to 597 for SSD and this atlas, illustrating the vitality of surface crystallography in particular, and surface science in general. One can estimate the present rate of production of new structures to be one per week.
In a sense, this atlas succeeds the well-known (but now out-of-print) "Atlas of Models of Crystal Surfaces" by J.F. Nicholas, which described in considerable geometric detail clean, unrelaxed and unreconstructed surfaces obtained by ideal termination of the most common bulk lattices. When Nicholas' atlas was published, in 1965, no actual surface structures had been solved, while we can now encompass the very wide variety of real surface structures determined since then, whether relaxed or reconstructed, clean or covered with adsorbed atoms and molecules, and including adatom penetration or epitaxial growth. Nicholas' atlas used photographs of hand-made ball models of surfaces.

This new atlas illustrates the actual surface structures, with figures generated electronically from the experimentally-determined atomic coordinates. Standard numerical output of SSD was used, then postprocessed by the visualization tools PLOT3D and BALSAC (written by K. Hermann) and put into PostScript format for final printing.

1.2. Purpose of This Atlas

This atlas of surface structures is aimed at scientists and students in physics, chemistry and materials sciences who wish to know and compare the detailed atomic-scale structures of surfaces obtained from experiment.

This first edition attempts to cover all known surface structures since the inception of surface crystallography in the early 1970s through the end of 1991. It provides extensive structural information about surface structures determined from experiment. A unified format is used to allow convenient direct comparisons of related but different structures, or of results obtained with different techniques for the same structure. The criteria for inclusion of structures are:
a. publication in refereed journals or proceedings before 1992;
b. determination with proven techniques and analysis methods;
c. reasonable completeness of the structure determination;
d. complete description of the structure.

The source of the data is an extensive search of the refereed literature in the major journals and conference proceedings, including especially: Surface Science, Physical Review Letters, Physical Review B, Journal of Physics (London), Solid State Communications, and the Proceedings of the International Conferences on the Structure of Surfaces. A more complete list of included journals is provided in Appendix B.

By selecting only refereed publications, a first filtering of acceptable structures was performed. Where a structure determination was described in several publications, we have generally chosen the latest or most complete publication. A new analysis of a given structure by the same authors or group, using the same technique, generally implies exclusion of an earlier result from this atlas, except where the older analysis has historical value. Controversial structures have generally not been included, except again for historical value: solved structures are normally included only when a clear consensus appears. When serious doubts exist about any included structure, an editorial comment is added to that effect. This atlas therefore collects all atomic-scale surface structures known with a high degree of reliability.

A multitude of techniques has been developed since the early 1970s to determine surface structure from experiment, especially for crystalline surfaces. These techniques employ various probes: photons, electrons, ions, atoms, or combnations thereof. Thanks to the differing characteristics of each technique, independent studies of the same structure with different techniques provide a powerful check on the reliability of results. Many of the surface structures in this atlas have been verified in this manner, enhancing both the reliability of those particular structures and the reliability of the techniques used to determine other structures. Techniques that give only qualitative structural information are not included, such as vibrational spectroscopies, STM and FIM (unless coupled with theoretical simulations that give quantitative determinations).

Results obtained with a wide variety of surface structure determination techniques have been included in the data. The most prominent techniques and their basic principles are summarized in Appendix C):
To be accepted in this atlas, structures must have been determined with sufficient completeness. Atomic positions must be known with respect to the substrate lattice in three dimensions (e.g., interlayer spacing or bond length information alone is insufficient). However, hydrogen positions in molecules are generally unknown and omitted (they may nonetheless be included, using guessed coordinates, and are thus labeled). Also, the positions of impurities that stabilize certain metastable structures are usually unknown and therefore omitted. It is of course understood that, in all cases, the actual surface structure may be more complex and variable than the idealized and average structure determined from experiment.
Finally, structures included in this atlas must have been described completely and unambiguously in the corresponding publication (see also in this regard the last paragraph of this section).

The data in this atlas include commensurate structures (which case covers most solved structures), incommensurate structures (formed for instance with physisorption) and disordered structures of adsorbates and alloys, as well as solid/ solid interfaces.

The data in this atlas are available as an electronic database, called Surface Structure Database (SSD), which runs on PCs and compatible computers. SSD contains the same information as does this atlas, and provides the following main advantages:
a. targeted searches for particular structures or classes of structures;
b. interactive color graphics, including rotations, dissections, on-screen bond length and angle measurements, etc.;
c. option of color or gray-tone publication-quality printing of surface views on PostScript laser printers, with many user-selected presentation options.

The Surface Structure Database can be obtained from NIST directly at the following address:

> U.S. Department of Commerce
> National Institute of Standards and Technology Standard Reference Data Program
> Building 221, Room A320
> Gaithersburg, MD 20899
> (301) 975-2204

This atlas, in contrast with the electronic database, offers the advantage of quick off-the-shelf access to specific information, without need for a computer. Thanks to carefully selected views of surface structures, the illustrations in Volume 1B of this atlas provide a valuable source of visual information to complement the extensive tabular data shown in Volume 1A.

Unintentional omissions of structures and errors in our tabulations are possible. The authors of affected structures are
invited to submit their structures or corrections directly to one of the authors. Appendix A. 1 describes in detail the submission of surface structures for possible inclusion in future editions. The ultimate decision on inclusion rests with the database authors, so prior consultation is advisable.
New and updated structures may also be submitted by their authors for inclusion in future editions of SSD and this atlas. See Appendix A for details.
We take this opportunity to address a plea to authors of surface structures: It is our experience that many published structural results are not described in a clear, accessible manner. Often it is necessary to piece together the structure from disparate sentences in various parts of a paper. It is sometimes even difficult to find a clear statement of the type of structure favored by the authors. We strongly suggest that structures be summarized completely in the conclusions section of a paper for easy access by others, e.g., as a complete set of atomic coordinates.

1.3. How to use This Atlas

This atlas, relative to the electronic database (SSD), provides the most rapid access to specific information about individual surface structures, via the alphabetical listing given in Sec. 2.1. The structural tables themselves are ordered alphanumerically in Sec. 2.2. The accompanying illustrations are provided in Volume 1B, using a logical categorization scheme described in Sec. 2.1 of that volume. In this way the reader can directly compare the illustration with the accompanying numerical data.

Each individual structure is given about a page of tabular information in Sec. 2.2. The meaning of the particular data is generally self-explanatory, but in any case explained in great detail in Sec. 1.4. Most structures refer to a particular illustration in Volume 1B.
Abbreviations used in the data are listed in Appendix B.
Appendix E illustrates the 17 two-dimensional space groups, whose notations are used in the data to characterize the surface symmetries. Likewise, Appendix F shows general examples of many common superlattice cells and notations.

Authors of structures who wish to contribute new results to the database should read Appendix A for instructions.
Finally, information on how to contact the database authors is listed in Appendix G.

1.4. Information Content of This Atlas

Any given structure in the database is accompanied by several groups of information:

GENERAL INFORMATION: identifies the structure and the bibliographic reference that describes its determination;

SURFACE TYPE: identifies the nature of the surface, e.g. substrate material and crystallographic plane, adsorbate nature and coverage, surface pattern and symmetry;
STRUCTURE TYPE: describes the kind of structure in words, e.g. unreconstructed or reconstructed substrate, overlayer or underlayer adsorption, adsorption site, molecular orientation;

COMMENTS: gives other pertinent information;
SAMPLE PREPARATION: indicates the experimental procedures;

DATA COLLECTION: describes measurement methods and experimental data base used for the structural determination;

THEORY/DATA TREATMENT: indicates analysis methods of the experimental data;

STRUCTURES EXAMINED: lists those structures or models tested against experiment;

QUALITY OF EXPERIMENT-THEORY FIT: estimates the reliability of the structure determination;

2D UNIT CELLS: gives unit cell information for substrate and surface or interface, including commensurate lattices, incommensurate lattices and disordered cases;

3D COORDINATES: tabulates full atomic coordinates, and a layer-by-layer description of the structure type, whenever helpful;

BOND DISTANCES AND ANGLES: lists selected interatomic distances and angles.

The detailed information below should be used in conjunction with the sample data sheet which is on the next page.

1.4.1. General Information

[s1] "Common name".
This is a commonly used name for the structure, put in uniform notation, e.g., $\mathrm{Ni}(100)$-c(2×2)-CO. It may be nonunique, i.e. other names may exist for this structure (e.g., $\left.\mathrm{Ni}(100)-(\sqrt{ } 2 \times \sqrt{ } 2) \mathrm{R} 45^{\circ}-\mathrm{CO}\right)$, or other structures may have the same common name (e.g., an overlayer and an underlayer structure could have the same common name).

Note: different inequivalent structures may coexist on the same sample at the same time; such different structures are treated as independent structures in SSD, with separate structure classification numbers [s2].
[s2] "Classification number'.
Each structure determination in the database has a unique structure classification number for unambiguous identification.

The first parts of the classification number are atomic numbers that indicate all chemical elements present in the structure. Thus, the classification number 28.6.8.2b implies that this structure consists of $28=\mathrm{Ni}, 6=\mathrm{C}$ and $8=\mathrm{O}$; the last number, like 2 b , labels different studies of surfaces containing the same elements. The classification number is assigned by the database authors.
[s3] 'Date entered into SSD".
This item of information is used by the authors to update the SSD Database and is not shown here.
[s4] "Technique".
Gives the main experimental technique used to determine the surface structure. (If other techniques were also used, these should appear in the "Comments' items [s28-s32]). See Appendix B for explanations of the abbreviations used for techniques.
[s5] "Authors'".
Authors of the primary publication (if additional publications should be mentioned which describe the same analysis, they are included in the "Comments" items [s28-s32]).
[s6] 'Journal'.
Journal name of the primary publication. See Appendix B for abbreviations used for journal names.
[s7] "Volume".
Journal volume of the primary publication.
[s8] "Page".
Journal page of the primary publication.
[s9] 'Year'.
Journal year of the primary publication.

1.4.2. Surface Type

[s10] "Substrate".
Chemical formula of the substrate, e.g., $\mathrm{Ni}, \mathrm{GaAs}, \mathrm{TiO}_{2}$.
[s11] 'Bulk lattice".
Gives the 3D bulk substrate lattice: could be fcc, bcc, hcp, sc, diamond, zincblende, wurtzite, $\mathrm{NaCl}, \mathrm{CsCl}$, etc.
[s12] "Crystal face".
Gives the Miller (hkl) or Bravais-Miller (hkil) indices of the substrate surface. Commas are used to separate more complex indices, e.g., $(12,1,1),(1,0,-1,0)$, but are omitted otherwise, e.g., (110).
[s13-14] '2D bulk symm'" and '2D surf symm'.
Gives the 2D symmetry of the ideally terminated substrate and of one domain of the actual surface, respectively. This can be any of the 172 D space groups in the following list. (See the illustrations in Appendix E for definitions of these space groups). Only the short notation is used, e.g., p4m instead of p4mm.
p1
$\mathrm{p} 2(=\mathrm{p} 211)$
$\mathrm{pm}(=\mathrm{plml})$
pg (= plg1)
cm (= clm1)
$\mathrm{pmm}(=\mathrm{p} 2 \mathrm{~mm})$
pmg (= p 2 mg)
pgg (= p2gg)
$\mathrm{cmm}(=c 2 \mathrm{~mm})$
p4
p4m (=p4mm)
$\mathrm{p} 4 \mathrm{~g}(=\mathrm{p} 4 \mathrm{gm})$
p3
p3m1
p31m
p6
p6m (= p6mm)
none (for disordered surface structures).

COMMON NAME		Ni(100)-c(2x2)-CO [s1]			
CLASSIFICATION	N	28.6.8.11 [s		[s2]	
technique		LEED [s]		[54]	
AUTHORS		K. Heinz, E. Lang and K. Mueller			er [s5]
reference		Surf. Sc	, 87, 595	(1979)	[s6-9]
SURFACE TYPE					
Substrate	Ni	[s10]	Adsorbate:	: 0	[s15]
Crystal face:	100	[s12]	Coverage :	: $1 / 2 \mathrm{CO} / \mathrm{N}$	[s16]
Temperature :	100	K [s22]	Pattern	: c(2x2)	[s17]
Bulk lattice:	fce	[s11]	Matrix	: 1.000,	1.000)
20 bulk symm:	p4m	[s 13$]$		(-1.000,	$1.000)$
2 D surf symm:	p4m	[s14]			18-21]

SAMPLE PREPARATION (1 sample) [$t 11$
Treatment: CO exposure $1 E-5 \mathrm{~Pa} \times 50 \mathrm{sec}$ [t 2$]$
Crystallinity: LEED intensities match published data[t3
Anal. methods: [t4]
Contamination: AES: very little C on clean surface [t5]

data collection

Technique: LEED [s4,t6]
Dataset : $1-V$ spectra: $(1,1)(1,0)(1 / 2,1 / 2)$ beams at normal incidence (0,0) beam at $\Theta=4^{\circ}, \phi=0^{\circ}$; E range $30-400 \mathrm{eV}$ [$\mathrm{t} 7-8$]

STRUCTURE TYPE [s23-27]
Molecular on-top adsorption, C bonding to Ni

COMMENTS [s28-32]
Spectra were taken within 16 sec after termination of
] adsorption process

THEORY/DATA TREATMENT [t9-10]
Comparison with earlier dynamical LEED I-V spectra by Pendry

SIRUCTURES EXAMINED [t 11 -15]
Linearly bonded CO perpendicular to surface; variation of $C-0$ bond length: $0.9-1.2 \AA$ in steps of $0.05 A$; variation of Ni-C bond length: 1.7, 1.8, 1.9A; bulk interlayer spacings assumed in metal

QUALITY OF EXPERIMENT - THEORY FIT
RZJ=0.19 [t16]
2D UNIT CELLS (1 domain observed) [2d6]

Cell	Ax (\AA)	Ay (A)	BX (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	[2d1]	[2d2]	[2d3]	[2d4]	[2d5]		(1x1)	b: bulk lattice
	2.489	0.000	0.000	2.489	90.0	(1.000, 0.000)		
						(0.000, 1.000)		
	[2d9]	[2d10]	[2d11]	[2d12]	[2d131	[2d15-18]	$\begin{aligned} & {[2 \mathrm{~d} 14]} \\ & c(2 \times 2) \end{aligned}$	[2d8]
Surface 1	2.489	2.489	-2.489	2.489	90.0	$(1.000,1.000)$		s1: commens.
						(-1.000, 1.000)		superlattice

30 COORDINATES
01-C2: upright on-top molecule (C bonded to Ni3) [3d1-4]
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates [b1]
No. of distances/angles: 4 [b2]

Interatomic dist. $A-B$ (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
[b3]	[b4]	[b5]	[b6]	[b7]
1.150	01	C2	Ni3	180.0
1.800	C2	Ni 3		
2.489	Ni 3	Ni3 (1,0)		
2.489	Ni3	Ni4		

[s15] "Adsorbate".
Identifies the adsorbed species after adsorption, i.e. not the gas-phase species used in order to adsorb. Coadsorbed species are separated by semicolons, e.g., "C;O" stands for coadsorbed C and O atoms, while "CO" stands for adsorbed molecular CO.
[s16] "Coverage".
The coverage is measured as the number of adsorbate units per (1×1) substrate unit cell. The adsorbate units may be specified for clarity. Thus, " $1 / 2$ CO" means one half of a molecular adsorbate unit per (1×1) unit cell, i.e. one adsorbate unit for every two (1×1) cells. In the case of coadsorption, the coadsorbates should be specified separately. For example, " $1 / 2(\mathrm{Na}), 1 / 4(\mathrm{~S})$ " would mean that the structure contains a half monolayer of Na and a quarter monolayer of S (relative to the (1×1) unit cell). The substrate unit may be included for clarity, e.g., $0.250 / 1 \times 1$. This reminder is helpful for stepped surfaces, where the (1×1) cell includes the full step-to-step width of one terrace.

[s17] 'Pattern'".

Gives the Wood or Biberian ("rect') notation for the surface superlattice, including the simplest case of (1×1) if there is no superlattice. Examples of common superlattices and their notations are given in Appendix F. If several surface superlattices coexist in different layers in the same structure (as shown under "Surface 2D unit cells"), they are all listed (or explained in [s23-27] or [s28-32]).
For disordered lattices of type ndk (see definition of ndk below under [2d8]), we use an ordered lattice of available sites together with an occupation probability of these sites. For instance, a (1×1) lattice could be used for disorder on top of an unreconstructed clean substrate. This implies that one site per (1×1) lattice (in this example) will be occupied with a probability <1. (This probability is given by the site occupancy; see [3d12]).

[s18-21] 'Matrix notation".

Describes the same surface lattice or superlattice as [s17]. ([s18-21] is left blank if more than one superlattice is present).
[s22] "Temperature".
Experimental temperature in K or ${ }^{\circ} \mathrm{C}$ units (can be $R T$ for room temperature; $R T^{*}$ is used when the temperature is not specified by the authors, but probably is room temperature).

1.4.3. Structure Type

[s23-27] "Structure type".

Describes the characteristic features of the structure in words. This information could, for instance, state whether a surface is relaxed (and, if so, to what depth) or reconstructed (and, if so, in what fashion), whether the surface has an overlayer or buried underlayer, which adsorption sites are occupied, etc.

1.4.4. Comments

[s28-32] 'Comments'.
Any pertinent information that does not fit elsewhere.

1.4.5. Sample Preparation

[t1] "No. of samples".
Gives the number of samples used (to check the experimental reproducibility).
[2] "Treatment".
Describes the substrate preparation and/or the adsorption method.

[t3] "Crystallinity".

Any indication of the degree of crystalline perfection (e.g., sharp LEED spots).
[t4] "Analytical methods".
Lists any methods other than the primary structure determination technique used to evaluate the preparation, perfection, coverage, adsorbate state, etc.
[t5] "Contamination".
Any indication of the level of contamination by impurities (e.g., Auger estimates).

1.4.6. Data Collection

[t6] '"Technique".
Describes the main measurement technique, apparatus, etc.
[t7-8] '"Data set".
Gives the nature of the experimental database (e.g., I-V curves in LEED) and measure of its size (e.g., number of beams in LEED, cumulative energy range summed over all LEED beams, or momentum transfer range used in SEXAFS or ARPEFS).

1.4.7. Theory/Data Treatment

[t9-10] "Theory/data treatment".
Gives the method of the data treatment (averaging, smoothing, Fourier filtering, etc.) and the theoretical analysis (dynamical LEED, tensor LEED, quasidynamical LEED, Fourier transform, curved-wave, spherical-wave, multiple scattering cluster calculation, etc.).

1.4.8. Structures Examined

[t11-15] "Structures examined".
Lists the structures which have been tested in the analysis. This may specify which structures can be excluded based on this study.

1.4.9. Quality of Experiment-Theory Fit

[t16] "Quality of experiment-theory fit".
Gives a qualitative or, better, quantitative measure of the experiment-theory fit, such as R-factor values.

1.4.10. 2D Unit Cells

[2d1-5] 'Bulk substrate unit cell".
Defines the 2D unit cell of the (1×1) lattice of the ideally terminated bulk substrate by its lattice vectors (Ax,Ay) and (Bx, By), in 2D Cartesian coordinates, in Angstroms, and the angle (in degrees) spanned by those two vectors.
[2d6] "Number of observed domain or site orientations".
When a superlattice has lower symmetry [s14] than the 2D bulk symmetry [s13], then several domain orientations are allowed and normally observed (all rotational axes and mirror planes of the substrate generate allowed domain orientations). The number of unique domain orientations is counted up and entered here. For instance, a 2×1) overlayer in hollow sites on $\mathrm{fcc}(100)$ has two domain orientations, the second one corresponding to the notation (1×2); a totally asymmetrical adsorption site in this case would give rise to 8 domain orientations.
The entry "many" is used for incommensurate superlattices with many orientations, perhaps continuous orientations.

In the case of disordered layers, [2d6] indicates the number of differently oriented but otherwise equivalent sites (e.g., two different bridge site orientations can occur on fcc(100), since they are symmetrically equivalent but differently oriented).
[2d7-18] These items (described below) list the one or more surface lattices that occur in the structure. Only one domain orientation is shown for any lattice. A minimum of one lattice is shown. (It could be the (1×1) lattice for simple cases like an unreconstructed clean surface).
[2d7] (not shown) "Number of surface lattices".
This is the number of different surface lattices present in different layers of the structure, which are individually defined under "Cell".

In SSD, most structures show only one 2D unit cell entered under "Cell"': either the (1×1) unit cell if there is no superlattice, or a superlattice different from (1×1). Other entries under "Cell" are shown only when there is a second, third, etc. superlattice present in other layers. Thus, if an incommensurate layer lies on top of an overlayer with $c(2 \times 2)$ lattice, both the $c(2 \times 2)$ lattice and the incommensurate lattice would be shown under "Cell'. (Note: if other superlatices exist on different patches of the surface, they are considered as independent structures, not as different layers of the same structure.)
The types of allowed lattices are defined next under [2d8].
[2d8] "Type of 2D surface lattice".
This item defines the type of each surface lattice present. The type is labeled s1, s2, i1, etc., and named explicitly as "commens. superlattice", 'incommensurate lattice", etc., according to the definitions given below. The labels $\mathrm{s} 1, \mathrm{~s} 2, \mathrm{i} 1$, etc. are used with the 3D coordinates in item [3d11] to assign a particular lattice to each atom of the surface, see the "Cell type" column under the 3D Coordinates.
The following 5 different types of surface lattices are allowed (with $k=1,2,3$, or 4 , see below):

Note: the lattice types rdk and mk are not really randomly disordered in SSD. They use a periodic representation of a random lattice (see their exact definitions below).

If more than one superlattice of the same type exists in the same structure, these are distinguished by the suffix k, e.g., if both a $\mathrm{c}(2 \times 2)$ layer and a $p(2 \times 2)$ layer coexist on top of each other, both of which are of the same commensurate type, one would need to specify s 1 for $\mathrm{c}(2 \times 2)$ and s 2 for $\mathrm{p}(2 \times 2)$.

A maximum of 4 surface lattices is allowed for a given structure (under "Cell"). As an example, a structure could thus contain layers with cells labeled $\mathrm{s} 1, \mathrm{~s} 2$, nd 1 and i1, but no more.

1.4.11. Lattice Definitions

sk ($k=1,2,3$ or 4): "commensurate superlattice".
A commensurate superlattice matches periodically with the substrate lattice. This type of superlattice can be written in the matrix notation with integer coefficients (the Wood notation may involve non-integer numbers, like $\sqrt{3}$). It includes the case of the (1×1) ideal 2D bulk substrate lattice (this then duplicates the items [2d1-5]), and any commensurate Wood or Bibérian (rect) superlattices, such as: $(2 \times 1), \mathrm{c}(2 \times 2)$, $(2 \times 2),(\sqrt{ } 3 \times \sqrt{ } 3) R 30^{\circ},(2 \sqrt{ } 3 \times 3)$ rect. See Appendix F for illustrated examples of these and other commensurate lattices, with their notations.
ik ($k=1,2,3$ or 4): "incommensurate lattice".
An incommensurate superlattice in no way matches the substrate lattice, at least in one of the two surface dimensions. An incommensurate superlattice has a matrix notation with at least one irrational non-fractional number. (If a fractional coefficient appears, i.e. one which is the fraction of two integers, a larger unit cell should be chosen, so as to make all matrix coefficients integers). The corresponding Wood notation may also involve special numbers, typically irrational. Often many domain orientations coexist on the same sample for incommensurate lattices. Only one should be listed (and [2d6] should indicate the number of orientations present, e.g., "many" for continuous orientations).

It is assumed that an incommensurate layer has a well-defined unit cell that is not modulated (i.e. not "wavy") across the surface due to the variable local registry. For example, an incommensurate monolayer sheet of graphite on a substrate would be assumed to be perfectly planar and regular, unaffected by the substrate. A substrate-induced structural modulation, for instance a buckling, is in practice possible and expected, and cannot be described in SSD as an incommensurate lattice. It should be treated as a commensurate superlattice instead with a large unit cell.
ndk ($k=1,2,3$ or 4): "non-reconstructive lattice-gas disorder'.

This type corresponds to single-site adsorption without relaxations being induced in the substrate (but rigid translations of (1×1) layers are allowed).

Symmetry may allow several site orientations. For instance, 2 equivalent bridge sites mutually rotated by 90° coexist on a surface with 4 -fold rotational symmetry. In that case
one has two options within SSD: 1) Only one site orientation is listed, while the number of site orientations is given by [2d6], namely 2 in our example; 2) Both orientations are included separately, but labeled with different values of k (e.g., nd1 and nd2 in our example), while [2d6] now has the value 1 .

If several inequivalent sites or several inequivalent adsorbates are present simultaneously, a separate ndk-type lattice must be specified for each. Rigid clusters, like molecules, which are randomly positioned at lattice sites are denoted thus: the different atoms composing one such rigid cluster or molecule should be given the same value of k in $n d k$.

For example, assume that a CO molecule adsorbs randomly at bridge sites with two different orientations, or at two different sites (e.g., top and bridge). Then one would (with the 3D coordinates) assign nd1 to one C and nd1 to one O (for the first site), while assigning nd2 to a second C and nd2 to a second O (for the second site). Thereby, the first C and first O, labeled nd1, will be known to bond together and to randomize as a pair rather than being randomized separately. The second C and the second O will likewise be known to bond together and will be randomized separately from the first CO. If the same ndl were specified for all of these 4 atoms, they would incorrectly form a rigid 4 -atom cluster. If nd1, nd2, nd3 and nd 4 were assigned to these 4 atoms, they would be considered to adsorb totally independently of each other, thereby not forming rigid molecules.

A set of lattice vectors [2d9-13] should be specified that defines the lattice of sites which will be occupied with a probability given by the occupancy [3d12], which should be <1. Thus, specifying lattice vectors that correspond to a (1×1) lattice will allow random adsorption on one site in each (1×1) cell. This is the most common situation. Specifying lattice vectors corresponding to a $\mathrm{c}(2 \times 2)$ lattice will only allow random adsorption in every other unit cell, leaving one half of the unit cells systematically unoccupied. (In that case, an occupancy [3d12] of 0.5 will therefore yield a coverage of only 0.25 , since only one half of the sites will be occupied with a probability of 0.5 each).
rdk ($\mathrm{k}=1,2,3$ or 4): "reconstructive lattice-gas disorder'.
This corresponds to disordered on-site adsorption or vacancies or other defects, that include induced local substrate relaxations, such as lateral relaxations and layer bucklings.

This case is simulated by an ordered commensurate superlattice giving a comparable coverage and a supercell which contains enough atoms to adequately represent the local atomic arrangement. For the 3D coordinates, the same ordered lattice is assumed.

For example, for a 1/5-monolayer disordered overlayer, a (2×2) superlattice might be chosen with one adsorbate per (2×2) cell (this gives a $1 / 4$ coverage to approximate the actual $1 / 5$ coverage), which would include relaxations in the substrate atoms nearest to the adsorbate.
mk ($k=1,2,3$ or 4): 'randomly mixed layer'.
This corresponds to random alloys and other cases of random mixed occupation of lattice points.

This case is simulated as an ordered commensurate superlattice with a suitable periodic supercell (in close analogy with reconstructive lattice-gas disorder, case rdk).
(Note: case rdk is equivalent to case mk when mixing one kind of atoms with vacancies: then rdk is the preferred representation.)

[2d9-13] 'Surface unit cell vectors'".

These give the unit cell vectors and angles for the individual cells. (They are similar to those [2d1-5] for the bulk substrate). For disordered lattices of type ndk, see the definition of ndk.
[2d14, 2d15-18] "Wood notation" and "Matrix notation'.
These are the Wood and matrix notations for each surface lattice present. (Examples of common superlattices and their notations are given in Appendix F).

1.4.12. 3D Coordinates

[3d1-4] These notes are used to clarify in words the atomic relationships, e.g., to specify which atoms together form a particular molecule, which together form a buckled layer, which form an epilayer, which the periodic substrate, etc. It is also appropriate to include a note here if the coordinates are indirectly derived from interatomic distances and angles, as in SEXAFS, rather than being direct results from experiment.
[3d5] (not currently used).
[3d6] "Bulk substrate interlayer spacing'.
This bulk substrate spacing is used as a reference to determine the relative interlayer spacings shown in items [3d22, 3d23]. Typically, this spacing is the layer-to-layer repeat distance for simple substrates.

More generally, this spacing can be the bulk periodicity perpendicular to the surface, or anything else that is meaningful. (This spacing need not be equal to the Dz-component of the bulk substrate repeat vector given in the table as 'subr"').

Examples: for $\mathrm{fcc}(100)$ one would choose $\mathrm{a} / 2$ (if a is the bulk cube edge); for hcp(0001) one would choose $\mathrm{c} / 2$ (if c is the hep lattice constant perpendicular to the basal plane, such that c is twice the interlayer spacing in that direction, while in this hcp case "subr" would have c as z-component); for Si(111) one could choose the bilayer-to-bilayer repeat spacing, rather than the smaller interlayer spacings that exist between adjacent layers.
[3d7] 'No. of atoms".
Gives the number of tabulated atoms (not counting the always present tabular entries labeled "epir" and "subr").
[3d8-23] These items specify the individual atomic positions and identities in the coordinate table. Each line in the table specifies one atom, together with its associated layer obtained by the 2 -dimensional periodicity given by the "Cell type" [3d11]. We shall therefore use the terms 'atom'" and "layer" interchangeably in the following.

In the coordinate table, the first 2 lines contain not atoms, but 2 bulk repeat vectors [$3 \mathrm{~d} 14,3 \mathrm{~d} 17-18,3 \mathrm{~d} 20-21$] labeled "epir" and "subr" for the epilayer (if it exists) and the substrate, respectively. The components of "epir" are blank if the structure does not contain an epilayer. The vector 'subr"' is always defined, since SSD assumes that a substrate is present. These 2 vectors describe how the surface and interface region propagate into the bulk epilayer and substrate regions. The table contains corresponding atoms labeled "epil" and "subl". These constitute the units that repeat periodically away from the surface according to the vectors "epir" and "subr" to build the semi-infinite epilayer and substrate. (The "epir" and 'subr"' components are always given in Ångström units.)

In the table, each atom's position is referred to either a fixed origin at position $(0,0,0)$ (called " 0 " in the "Relative to" column [3d13]) or another atom's position (defined higher up in the table), whichever is more convenient. The choice can be made individually for each atom. We often choose to refer an atom's position to that of the preceding atom in the table. Dx and Dy are coordinates parallel to the surface; Dz is perpendicular to the surface, relative to the origin or that other atom.

Dx and Dy can be given either in Cartesian coordinates (in Ångström) or in fractional cell coordinates (i.e. as fractions of the 2 D cell vectors defined for the atom in question), whichever is more convenient. The choice can be made individually for each atom. When fractional cell coordinates are used, they refer to the "Cell type" [3d11] of the atom in question (not of the "Relative to" atom and not necessarily the (1×1) cell, for example). Dz must be given in Ångström.
[3d8] 'Region'".
Each atom belongs to a well-defined region, which can be any of the following 4 types:
a. "subl'": substrate. The atoms labeled thus repeat indefinitely into the substrate according to the repeat vector labeled 'subr''. When two or more atoms are labeled thus, they are assumed to form a group of layers that will be repeated together into the substrate. The relative coordinates specified for these atoms are thus substrate-bulk-like.
Therefore, for a substrate bulk with one atom per primitive 3D unit cell, only one layer labeled "subl" is needed, e.g., for fcc and bcc; for a substrate bulk with N atoms per 3D primitive unit cell, N layers labeled "subl" are needed: e.g., two for hcp, diamond, zincblende and wurtzite, and four for graphite.
b. 'intf"': interface. This typically represents surface-relaxed substrate atoms at the interface between bulk and vacuum. Atoms of this type can also form underlayers (in the case of compound formation), or be relaxed atoms at a substrate-epilayer interface.
c. 'ovrl'": overlayer. Such atoms are typically foreign adatoms or admolecules. (The distinction between interface and overlayer atoms may not always be clearcut, leaving a choice in labeling.) They may also be relaxed epilayer atoms at an interface.
d. 'epil"': epilayer. The atoms labeled thus repeat indefinitely into the epilayer, according to the repeat vector labeled "epil". When two or more atoms are labeled thus, they are assumed to form a group of layers that will be repeated together into the epilayer. The relative coordinates specified for these atoms are thus epilayer-bulk-like.

Caution: The z-components of both the vectors 'subr'" and "epir" point in the positive direction towards the substrate (not towards the epilayer).
[3d9] 'Chemical element".
Specifies the chemical element for one 2D-periodic layer. Coplanar layers of the same element or other elements are treated as separate entries in this table.

[3d10] "Atom number".

Counts the tabulated atoms sequentially from 1 up. This number serves as label for the "Relative to"' column [3d13]. The entries -2 and -1 labeling 'epir'' and 'subr'' are not used in [3d13].

[3d11] 'Cell type".

Assigns a 2D periodicity to each tabulated atom, by referring to [2d1-5] and [2d8], the type of 2D surface lattice defined with the 2D structure. Examples are b (for the bulk substrate (1×1) lattice), $s 1, \mathrm{~s} 2$, i 1 , nd1, etc.
[3d12] 'Site occupancy".
For ordered and incommensurate layers, this gives the coverage of a layer with respect to the substrate (1×1) cell. Thus, a (2×1) layer typically has a site occupancy of 0.5 , while (2×2) gives 0.25 . For a displacive reconstruction (which breaks the periodicity of a layer into a larger unit cell by displacements such as out-of-plane bucklings), this occupancy will be <1, e.g., 0.5 for each of the two atoms defining a $c(2 \times 2)$ buckled layer. (Note that the two atoms would be tabulated separately).

For disordered layers, the "Site occupancy" gives the probability of occupying each site of the lattice defined by [3d11], which refers back to the lattice vectors of [2d9-13]. Thus, specifying through [3d11] a set of (1×1) lattice vectors allows random adsorption on one site in each (1×1) cell. This is the most common situation. Specifying lattice vectors corresponding to a $\mathrm{c}(2 \times 2)$ lattice will only allow random adsorption in every other unit cell, leaving one half of the unit cells systematically unoccupied. (In that case, an occupancy of 0.5 will therefore yield a coverage of only 0.25 , since only one half of the sites will be occupied with a probability of 0.5 each).

For the lattice types rdk (reconstructive lattice-gas disorder) and mk (randomly mixed layer), described under [2d8], the "Site occupancy" is the experimentally determined or estimated coverage or fraction, rather than the value appropriate for the artificial periodic structure representing it in SSD. For instance, if a disordered overlayer of 0.2 coverage is modeled as a (2×2) overlayer of type rdk because it induces substrate relaxations, the site occupancy is given as 0.2 and not 0.25 .
[3d13] "Relative to".
Gives the origin of the vector [$3 \mathrm{~d} 14,3 \mathrm{~d} 17,3 \mathrm{~d} 20$] that points to this atom's position. The origin is given as the number [3 d 10] of a previously listed atom or as the origin of coordinates $0=(0,0,0)$. The entries -2 and -1 labeling 'epir'" and "subr"' should not be used in [3d13].
[3d14-15, 3d17-18] 'Parallel position coordinates'.
Dx [3d14] and Dy [3d17] are position coordinates parallel to the surface relative to a previously tabulated atom given by [3d13]. The Dx and Dy coordinates may be expressed in one of two ways: either in Cartesian coordinates (then A for Ångström is appended as [3d15] or [3d18]); or in fractional cell coordinates of the cell [3d11] defined for this atom's layer (then f is appended as [3d15] or [3d18]). A mix of absolute and fractional coordinates can be used for clarity: e.g., $D x=0.5 f$ and $D y=0.21 \mathrm{~A}$ may be used simultaneously for a given atom.
[3d20] 'Perpendicular position coordinate".
Dz is the perpendicular position coordinate relative to a previously tabulated atom (the same reference atom [3d13] as for Dx and Dy). Dz is always given in Cartesian coordinates (in Ångström). Dz>0 points down towards the substrate, while $\mathrm{Dz}<0$ points up away from substrate towards the overlying vacuum or epilayer. $\mathrm{Dz}=0$ corresponds to coplanar atoms.
[3d16, 3d19, 3d21] 'Error bars'".
These give the experimentally determined uncertainties on the coordinates Dx, Dy and Dz , in the same units (A or f) as the corresponding coordinates. Error bars are shown only for coordinates that were fit to experiment; a blank entry is used when the corresponding coordinate value was assumed rather than fit.

[3d22] "Relative interlayer spacing'".

Gives Dz/Bulk z ([3d20]/[3d6]) as a percent, i.e. the interlayer spacing divided by the bulk substrate spacing. This is most useful to exhibit near-surface interlayer spacing relaxations compared to the bulk substrate value Bulk z. Thus the last entry in this column [3d22] is typically 100% for simple structures (fcc and bcc), representing the unrelaxed bulk spacing. See [3d6] for more details on appropriate choices of Bulk z.
[3d23] 'Relative spacing error".
Gives the relative uncertainty [3d21]/[3d6] on the "Relative interlayer spacing" [3d22], i.e. the error bar as a percent relative to Bulk z. Thus, [3d22] $=94$ and [3d23] $=2$ would indicate an interlayer spacing relaxed to $94 \pm 2 \%$ of the bulk spacing.

1.4.13. Bond Distances and Angles

[b1] 'Note".
Gives any comments. This might mention whether the distances and angles are derived from the coordinates, rather than vice versa (the SEXAFS case).
[b2] 'No. of distances/angles".
Gives the number of lines containing distance and/or angle information. This information is, in general, only a selection of distances and angles, i.e. only important distances and angles are included, rather than a complete set from which the surface structure could be derived.
[b3] 'Interatomic distance A-B'.
Gives an interatomic distance (in Ångström) between the next two atoms (A and B) on the same line.
[b4-b6] "Atom A", "Atom B', "Atom C".
Gives atoms between which interatomic distances [b3] and bond angles [b7] are tabulated on the same line. The atom labels, such as Ol and Ni 3 , refer to the 3D coordinates table. (The labels are made up of items [3d9] and [3d10].)

The information between parentheses, as in $\mathrm{Ni} 3(1,0)$, indicates an atom that is shifted parallel to the surface to a neighboring 2D unit cell, relative to the atom tabulated with its 3D coordinates. Thus $\mathrm{Ni} 3(1,0)$ is atom Ni 3 shifted by $1 \times$ $(A x, A y)+0 \times(B x, B y)=(A x, A y)$, where $(A x, A y)$ and (Bx, By) are the unit cell vectors assigned to atom Ni 3 in the 3D coordinates table (i.e., the bulk 2D (1×1) cell, since " b " is specified for atom Ni 3 .)

[b7] "Bond angle A-B-C".

Gives the angle (in degrees) subtended by the apex atom B for the triplet of atoms A, B, C specified on the same line.

1.5. Relation of This Atlas to Other Databases and Graphics Software

In the following, it should be remembered that this atlas and SSD contain the same data, SSD being an electronic version of this atlas, with associated software to use the database and to visualize its data.

Relation to J.F. Nicholas' atlas (An Atlas of Models of Crystal Surfaces, Gordon and Breach, New York, 1965):

This atlas contains actual surface structures determined from experiment, while Nicholas' atlas is limited to ideal (clean, unrelaxed) terminations of simple bulk lattices.

Relation to SCIS handbook (Surface Crystallographic Information Service, A Handbook of Surface Structures; authors J.M. MacLaren, J.B. Pendry, P.J. Rous, D.K. Saldin, G.A. Somorjai, M.A. Van Hove and D.D. Vvedensky; see ch. 4):

This atlas contains a much revised, corrected and updated database compared to its forerunner SCIS, covering 597 rather than 256 structures.

Relation to SCIS software (Surface Crystallographic Information Service; author J.B. Pendry; distributed by D. Reidel; PC-based; see ch. 4):

SSD is a much expanded program providing many more options than the SCIS software. Because of the extensive enhancements of SSD, the database files of SCIS and SSD are incompatible.

Relation to SARCH software (Surface Architect, author M.A. Van Hove; bundled with LATUSE discussed below; PC-based; see ch. 4):

SARCH emphasizes the interactive construction of surface structures from the perspective of two-dimensional periodicity and disorder, and provides a wide variety of presentation modes, as well as analysis options. Further, SARCH allows one to analyze lattice diffraction patterns (kinematic LEED patterns) and can simulate surface topographic geometries for the interpretation of experimental STM data. A surface structure produced within SARCH (version 3.2 or higher) can be output to a SSD/ASCII file, which in turn can be inserted by the authors of SSD into the SSD database (the published SSD database files have a different non-ASCII Paradox format). You could thus use SARCH to produce a structure in a format that allows the authors of SSD to insert the structure into the SSD electronic database. SARCH reads and writes both SCIS and SSD/ASCII files, providing a bridge between SCIS and SSD.

Relation to LATUSE/PLOT3D software (Lattice Use and Plotting in 3D, bundled with SARCH discussed above; author K. Hermann; PC-based; see ch. 4):

LATUSE emphasizes the construction (within the program or through modification of an input file) and interactive display of periodic surface structures. It is especially convenient to choose and display any Miller-index terminations of bulk 3-dimensional lattices. LATUSE, like SARCH, provides a wide variety of presentation modes, as well as numerical and graphical analysis options. PLOT3D is similar in its menu handling to LATUSE, but is aimed at clusters of atoms, including non-periodic sections of surfaces. Transfers of structures between SARCH, LATUSE and PLOT3D are possible.

Relation to BALSAC (Build and Analyze Lattices, Surfaces, and Clusters; author K. Hermann; PC-based; see ch. 4):

The BALSAC program system ((C) Copyright K. Hermann 1992) combines all features of the two PC-based program systems LATUSE and PLOT3D; but it offers easier handling, more analysis features, and enhanced graphics capabilities. It is available for both PC's and Unix based workstations.

2. Catalog of Structures

2.1. Alphanumerical Index of Structures

The structures are listed alphanumerically by elements in the substrate and adsorbate (if any). Clean surfaces are listed first (in order of crystal face by increasing Miller indices) and then adsorbate structures, again ordered by crystal face. In addition the unique classification number assigned to a structure in the database is provided with the number of the appropriate figure in Volume 1B. A figure number of - indicates that no figure is provided.
2.1. Alphanumerical Index of Structures

Common name of structure	Class. no.	Figure	Page
$\mathrm{Ag}(100)-(1 \times 1)$	47.22	2	19
$\mathrm{Ag}(110)-(1 \times 1)$	47.15	4	20
$\mathrm{Ag}(110)-(1 \times 1)$	47.16	4	21
$\mathrm{Ag}(110)-(1 \times 1)$	47.17	4	22
$\mathrm{Ag}(110)-(1 \times 1)$	47.19	4	23
$\mathrm{Ag}(100)-\mathrm{C}_{2} \mathrm{H}_{4}$ disordered	47.6.1.2	74	24
$\mathrm{Ag}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	47.17 .1	28,29	25
$\mathrm{Ag}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	47.17.3a	28,29	26
$\mathrm{Ag}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	47.17 .4	28,29	27
$\mathrm{Ag}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	47.17 .8	28,29	28
$\mathrm{Ag}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	47.17 .9	28,29	29
$\mathrm{Ag}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Cl}$	47.17.5a	22,24	30
$\mathrm{Ag}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-2 \mathrm{Cl}$	47.17.5b	22,24	31
$\mathrm{Ag}(100)-(1 \times 1)-3 \mathrm{Co}$	47.27.1	83	32
$\mathrm{Ag}(110)$-(1×2) Cs -induced	47.55.2	5	33
$\mathrm{Ag}(111)-\mathrm{Cs} 0.15 \mathrm{ML}$ disordered	47.55.1a	22	34
$\mathrm{Ag}(111)-\mathrm{Cs} 0.3 \mathrm{ML}$ disordered	47.55 .1 b	22	35
$\mathrm{Ag}(100)-(1 \times 1)-\mathrm{Cu}$ multilayer	47.29 .3	83	36
$\mathrm{Ag}(100)-(1 \times 1)-2 \mathrm{Cu}$	47.29.2a	83	37
$\mathrm{Ag}(100)-(1 \times 1)-5 \mathrm{Fe}(\mathrm{bcc})$	47.26.0a	83	38
$\mathrm{Ag}(100)$-(1×1)-Fe multilayer	47.26.1	83	39
$\mathrm{Ag}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{I}$	47.53.1	22,24	40
$\mathrm{Ag}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ} \mathrm{I}$	47.53.4	22,24	41
$\mathrm{Ag}(110)-(2 \times 1)-\mathrm{O}$	47.8.4	35	42
$\mathrm{Ag}(100)-\mathrm{c}(2 \times 2)-\mathrm{Se}$	47.34.1	28,29	43
$\mathrm{Ag}(111)$-Xe incommensurate	47.54.1	82	4
$\mathrm{Ag}(111)-\mathrm{Xe}$ incommensurate	47.54.2	82	45
$\operatorname{AgBr}(100)-(1 \times 1)$	47.35.2a	149	46
$\operatorname{AgBr}(111)-(2 \times 1)$	47.35.2b	151	47
Al(100)-(1×1)	13.15a	2	49
Al(100)-(1×1)	13.16a	2	50
$\mathrm{Al}(100)-(1 \times 1)$	13.26	2	51
$\mathrm{Al}(110)-(1 \times 1)$	13.16 b	4	52
$\operatorname{Al}(110)-(1 \times 1)$	13.25	4	53
$\operatorname{Al}(110)-(1 \times 1)$	13.27	4	55
$\operatorname{Al}(111)-(1 \times 1)$	13.19	1	57
Al(111)-(1×1)	13.20a	1	58
$\mathrm{Al}(111)-(1 \times 1)$	13.21	1	59
$\operatorname{Al}(111)-(1 \times 1)$	13.21 a	1	60
$\mathrm{Al}(111)-(1 \times 1)$	13.41	1	61
Al(210)-(1×1)	13.36	9	62
Al(311)-(1×1)	13.30	8	64
$\mathrm{Al}(331)-(1 \times 1)$	13.31	10	66
$\mathrm{Al}(100)-\mathrm{c}(2 \times 2)-\mathrm{Na}$	13.11.1	28,29	68
$\mathrm{Al}(100)-\mathrm{c}(2 \times 2)-\mathrm{Na}$	13.11.2	28,29	70
$\mathrm{Al}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Na}$	13.11.3	27	72
$\mathrm{Al}(111)-\mathrm{O}$	13.8.8	22,23	73
$\mathrm{Al}(111)-(1 \times 1)-\mathrm{O}$	13.8.12	22,23	74
$\mathrm{Al}(111)-(1 \times 1)-\mathrm{O}$	13.8.15	22,23	75
$\mathrm{Al}(111)-(1 \times 1)-\mathrm{O}$	13.8.6a	22,23	76
$\mathrm{Al}(111)-(1 \times 1)-\mathrm{O}$	13.8.6b	26	77
$\operatorname{AlP}(110)-(1 \times 1)$	13.15.2	116	78
$\mathrm{Au}(100)-(1 \times 1)$	79.8 a	2	80
$\mathrm{Au}(100)$-hex incommensurate	79.80	3	81
$\mathrm{Au}(110)-(1 \times 2)$	79.25	5	82
$\mathrm{Au}(110)-(1 \times 2)$	79.32	5	84
$\mathrm{Au}(110)-(1 \times 2)$	79.34	5	86
$\mathrm{Au}(110)-(1 \times 2)$	79.66a	5	87
$\mathrm{Au}(110)-(1 \times 3)$	79.55 .2	7	89
$\mathrm{Au}(110)-\mathrm{c}(2 \times 2)-\mathrm{K}$	79.19 .3	41	91
$\mathrm{AuCu}_{3}(100)$ disordered	29.79 .5	135	93
$\mathrm{C}(0001)$-(1×1) graphite	6.4	157	95
$\mathrm{C}(111)-(1 \times 1)$ diamond	6.5	166	96
C(0001)-(2×2)-Cs	6.55 .3	163	97

2.1. Alphanumerical Index of Structures - Continued

Common name of structure	Class no.	Figure	Page	Common name of structure	Class no.	Figure	Page
$\mathrm{C}(0001)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Cs}$	6.55 .2	162	98	$\mathrm{Cu}(100)-(1 \times 1)-5 \mathrm{Fe}$	29.26.3e	83	188
$\mathrm{C}(111)-(1 \times 1)-\mathrm{H}$ (diamond)	6.1.1a	166	100	$\mathrm{Cu}(100)-(1 \times 1)-10 \mathrm{Fe}$	29.26.2b	83	189
$\mathbf{C}(0001)-1 \mathrm{~K}$ disordered underlayer	6.19.2a	164	101	$\mathrm{Cu}(110)-(1 \times 1)-\mathrm{Fe}$	29.26.11	85	191
$\mathrm{C}(0001)-2 \mathrm{~K}$ disordered underlayer	6.19.2b	165	103	$\mathrm{Cu}(111)-(1 \times 1)-1 \mathrm{Fe}$	29.26 .4	81	193
$\mathrm{CaO}(100)-(1 \times 1)$	20.8.1	149	105	$\mathrm{Cu}(100)-\mathrm{p}(2 \times 1)$-Fe multilayer	29.26.13	83	194
CdS $(11-20)-(1 \times 1)$	48.16.1	125	106	$\mathrm{Cu}(110)-(1 \times 1)-\mathrm{H} 2 \mathrm{~L}$	29.1.2a	4	196
$\mathrm{CdSe}(10-10)-(1 \times 1)$	48.34 .2	124	108	$\mathrm{Cu}(110)-(1 \times 1)-\mathrm{H} 10 \mathrm{~L}$	29.1.2b	4	197
$\mathrm{CdSe}(10-10)-(1 \times 1)$	48.34.4b	124	110	$\mathrm{Cu}(110)-(1 \times 1)-\mathrm{H} 50 \mathrm{~L}$	29.1.2c	4	198
$\mathrm{CdSe}(11-20)-(1 \times 1)$	48.34.4a	125	112	$\mathrm{Cu}(110)-(1 \times 1)-\mathrm{H} 200 \mathrm{~L}$	29.1.2d	4	199
$\mathrm{CdTe}(110)-(1 \times 1)$	48.52 .2	116	114	$\mathrm{Cu}(110)-\mathrm{HCO}_{2}$ disordered	29.6.1.8.3	79	200
$\mathrm{CdTe}(110)-(1 \times 1)$	48.52 .6	116	116	$\mathrm{Cu}(100)-\mathrm{HCO}_{2}$ disordered	29.6.1.8.8a	75	201
$\mathrm{Co}(0001)-(1 \times 1)$	27.5a	19	118	$\mathrm{Cu}(110)-\mathrm{HCO}_{2}$ disordered	29.6.1.8.8b	79	202
$\mathrm{Co}(10-10)-(1 \times 1)$	27.9a	20	119	$\mathrm{Cu}(100)-(2 \times 2)-\mathrm{I}$	29.53 .2 b	28,30	203
$\mathrm{Co}(10-10)-(1 \times 1)$	27.10	20	121	$\mathrm{Cu}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{I}$	29.53.2a	22,24	204
$\mathrm{Co}(11-20)-(1 \times 1)$	27.8	21	123	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}$	29.7.3	28,29	205
$\mathrm{Co}(100)-(1 \times 1)$	27.4	2	125	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}$	29.7.4	28,29	207
$\mathrm{Co}(111)-(1 \times 1)$	27.5b	1	126	$\mathrm{Cu}(100)-(1 \times 1)-1 \mathrm{Ni}$	29.28.2a	83	208
$\mathrm{Co}(10-10)-\mathrm{c}(2 \times 2)-\mathrm{K}$	27.19.1	60	127	$\mathrm{Cu}(100)-(1 \times 1)-2 \mathrm{Ni}$	29.28.4a	83	209
$\mathrm{Co}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	27.8.1	28,29	129	$\mathrm{Cu}(100)-(1 \times 1)-3 \mathrm{Ni}$	29.28 .2 b	83	210
$\mathrm{Co}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	27.16.1	28,29	130	$\mathrm{Cu}(100)-(1 \times 1)-4 \mathrm{Ni}$	29.28 .4 b	83	211
$\mathrm{CoO}(100)-(1 \times 1)$	27.8.3	149	131	$\mathrm{Cu}(111)-(1 \times 1)-\mathrm{Ni}$	29.28.1	81	212
$\mathrm{CoO}(111)-(1 \times 1)$	27.8.2	150	132	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	29.8.15	28,29	213
$\mathrm{CoSi}_{2}(111)-(1 \times 1)$	14.27 .1	145	133	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	29.8.2	28,29	214
$\mathrm{CoSi}_{2}(111)-(1 \times 1)$	14.27 .14	145	135	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	29.8 .7	28,29	215
$\mathrm{CoSi}_{2}(111)-(1 \times 1)$ Co-rich	14.27 .11 b	145	137	$\mathrm{Cu}(100)-(2 \sqrt{2} \times \sqrt{2}) \mathrm{R} 45^{\circ}-\mathrm{O}$	29.8.39	34	216
$\mathrm{CoSi}_{2}(111)-(1 \times 1)$ Si-rich	14.27.11a	146	139	$\mathrm{Cu}(110)-(1 \times 2)-\mathrm{O}$	29.8.17	39	218
$\mathrm{Cr}(100)-(1 \times 1)-\mathrm{N}$	24.7.1	48,49	141	$\mathrm{Cu}(110)-(1 \times 2)-\mathrm{O}$	29.8.18a	39	219
$\mathrm{Cr}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	24.16.1	48,50	143	$\mathrm{Cu}(110)-(2 \times 1)-\mathrm{O}$	29.8.30	39	220
$\mathrm{Cu}(100)-(1 \times 1)$	29.25a	2	145	$\mathrm{Cu}(110)-(2 \times 1)-\mathrm{O}$	29.8.31	39	222
$\mathrm{Cu}(100)-(1 \times 1)$	29.36a	2	146	$\mathrm{Cu}(110)-(2 \times 1)-\mathrm{O}$	29.8.51	39	224
$\mathrm{Cu}(100)-(1 \times 1)$	29.43	2	147	$\mathrm{Cu}(410)-(1 \times 1)-\mathrm{O}$	29.8.12a	42	226
$\mathrm{Cu}(100)-(1 \times 1)$	29.59	2	148	$\mathrm{Cu}(410)-(1 \times 1)-2 \mathrm{O}$	29.8.12b	43	228
$\mathrm{Cu}(110)-(1 \times 1)$	29.25b	4	149	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Pb}$	29.82.1a	28,29	230
$\mathrm{Cu}(110)-(1 \times 1)$	29.28	4	150	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Pb}$	29.82.2	28,29	231
$\mathrm{Cu}(110)-(1 \times 1)$	29.29	4	151	$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Pd}$	29.46.2	33	232
$\mathrm{Cu}(110)-(1 \times 1)$	29.37	4	152	$\mathrm{Cu}(100)-\mathrm{c}(5 \vee 2 \times \sqrt{ } 2) \mathrm{R} 45^{\circ}-3 \mathrm{~Pb}$	29.82.1b	31	233
$\mathrm{Cu}(110)-(1 \times 1)$	29.38	4	153	$\mathrm{Cu}(100)-\mathrm{c}(5 \sqrt{ } 2 \times \sqrt{ } 2) \mathrm{R} 45^{\circ}-3 \mathrm{~Pb}$	29.82 .3	31	235
$\mathrm{Cu}(110)-(1 \times 1)$	29.41a	4	154	$\mathrm{Cu}(100)-\mathrm{p}(2 \times 2)-\mathrm{S}$	29.16.0a	28,30	236
$\mathrm{Cu}(110)-(1 \times 1)$	29.48	4	155	$\mathrm{Cu}(100)-\mathrm{p}(2 \times 2)-\mathrm{S}$	29.16 .1	28,30	237
$\mathrm{Cu}(110)-(1 \times 2)$	29.52	5	156	$\mathrm{Cu}(100)-\mathrm{p}(2 \times 2)-\mathrm{S}$	29.16.10	28,30	238
$\mathrm{Cu}(110)-(1 \times 2)$ (Li induced)	29.3.1	5	157	$\mathrm{Cu}(100)-\mathrm{p}(2 \times 2)-\mathrm{S}$	29.16 .2	28,30	239
$\mathrm{Cu}(111)-(1 \times 1)$	29.31	1	158	$\mathrm{Cu}(100)-\mathrm{p}(2 \times 2)-\mathrm{S}$	29.16.3	28,30	240
$\mathrm{Cu}(311)-(1 \times 1)$	29.11	8	159	$\mathrm{Cu}(100)-(2 \times 2)-\mathrm{S}$	29.16.12	28,30	241
$\mathrm{Cu}(311)-(1 \times 1)$	29.46	8	160	$\mathrm{Cu}(100)-(2 \times 2)-\mathrm{S}$	29.16.13	28,30	243
$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Au}$	29.79 .2	33	161	$\mathrm{Cu}(100)-(2 \times 2)-\mathrm{S}$	29.16.14	28,30	244
$\mathrm{Cu}(100)-\mathrm{CH}_{3} \mathrm{O}$ disordered	29.6.1.8.10	76	162	$\mathrm{Cu}(100)-(2 \times 2)-\mathrm{Te}$	29.52.1	28,30	246
$\mathrm{Cu}(100)-\mathrm{C}_{2} \mathrm{H}_{2}$ disordered	29.6.1.2a	73	163	$\mathrm{Cu}(100)-(2 \times 2)-\mathrm{Te}$	29.52.2a	28,30	247
$\mathrm{Cu}(100)-\mathrm{C}_{2} \mathrm{H}_{4}$ disordered	29.6.1.2b	74	164	$\mathrm{Cu}(111)-16 \% \mathrm{Al}-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}$	29.13.2	133	248
$\mathrm{Cu}(100)-\mathrm{C}_{2} \mathrm{H}_{4}$ disordered	29.6.1.3	-	165	$\mathrm{Cu}_{0.85} \mathrm{Pd}_{0.15}(110)-(2 \times 1)$	29.46 .4	141	249
$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	29.6.8.0a	71	166	$\mathrm{Fe}(100)-(1 \times 1)$	26.4	12	251
$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	29.6.8.1	71	167	$\mathrm{Fe}(100)-(1 \times 1)$	26.18	12	252
$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	29.17 .12	28,29	168	$\mathrm{Fe}(100)-(1 \times 1)$	26.18a	12	253
$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	29.17 .13	28,29	169	$\mathrm{Fe}(100)-(1 \times 1)$ epitaxial on $\mathrm{Cu}(100)$	29.26 .7	83	254
$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	29.17 .5	28,29	171	$\mathrm{Fe}(100)-(1 \times 1)$ epitaxial on $\mathrm{Cu}(100)$	29.26 .8	83	255
$\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	29.17 .7	28,29	173	$\mathrm{Fe}(100)-(1 \times 1)$ epitaxial on $\mathrm{Ni}(100)$	28.26.2c	83	256
$\mathrm{Cu}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Cl}$	29.17 .8	22,24	174	$\mathrm{Fe}(110)-(1 \times 1)$	26.8	11	257
$\mathrm{Cu}(1: 1)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Cl}$	29.17 .9	22,24	175	$\mathrm{Fe}(111)-(1 \times 1)$	26.17	15	258
$\mathrm{Cu}(100)-(1 \times 1)-1 \mathrm{Co}$	29.27.2a	83	176	$\mathrm{Fe}(111)-(1 \times 1)$	26.9	15	260
$\mathrm{Cu}(100)-(1 \times 1)-8 \mathrm{Co}$	29.27.2b	83	177	$\mathrm{Fe}(210)-(1 \times 1)$	26.16	16	262
$\mathrm{Cu}(100)-(1 \times 1)-20 \mathrm{Co}$	29.27 .3	83	179	$\mathrm{Fe}(211)-(1 \times 1)$	26.14	17	264
$\mathrm{Cu}(111)-(1 \times 1)-1 \mathrm{Co}$	29.27.1	81	181	$\mathrm{Fe}(310)-(1 \times 1)$	26.13	18	266
$\mathrm{Cu}(111)-(2 \times 2)-\mathrm{Cs}$	29.55.1	22	182	$\mathrm{Fe}(100)-\mathrm{c}(2 \times 2)-\mathrm{C}+\mathrm{O}$ disordered	26.6.8.1	48,50	268
$\mathrm{Cu}(100)-(1 \times 1)-1 \mathrm{Fe}$	29.26.2a	83	183	$\mathrm{Fe}(100)-(1 \times 1)-3 \mathrm{Co}$	26.27.1	86	270
$\mathrm{Cu}(100)-(1 \times 1)-1 \mathrm{Fe}$	29.26.3a	83	184	$\mathrm{Fe}(100)-(1 \times 1)-\mathrm{Cu}$ multilayer	26.29 .1	86	271
$\mathrm{Cu}(100)-(1 \times 1)-2 \mathrm{Fe}$	29.26.3b	83	185	$\mathrm{Fe}(110)-(2 \times 1)-\mathrm{H}$	26.1.1a	44,45	272
$\mathrm{Cu}(100)-(1 \times 1)-3 \mathrm{Fe}$	29.26.3c	83	186	$\mathrm{Fe}(110)-(3 \times 1)-2 \mathrm{H}$	26.1.1b	46	274
$\mathrm{Cu}(100)-(1 \times 1)-4 \mathrm{Fe}$	29.26.3d	83	187	$\mathrm{Fe}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}$	26.7 .1	48,50	276

2.1. Alphanumerical Index of Structures - Continued
2.1. Alphanumerical Index of Structures - Continued

Common name of structure	Class no.	Figure	Page	Common name of structure	Class no.	Figure	Page
$\mathrm{Fe}(100)-(1 \times 1)-3 \mathrm{Ni}$	26.28.0a	86	278	$\mathrm{Mo}(100)-\mathrm{c}(2 \times 2)-\mathrm{C}$	42.6 .2	48,50	391
$\mathrm{Fe}(100)-(1 \times 1)-\mathrm{O}$	26.8.10	48,49	279	$\mathrm{Mo}(100)-(1 \times 1)-2 \mathrm{H}$ (D)	42.1.1	12	393
$\mathrm{Fe}(100)-(1 \times 1)-\mathrm{O}$	26.8.3	48,49	280	$\mathrm{Mo}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}$	42.7.1	48,50	394
$\mathrm{Fe}(100)-(1 \times 1)-\mathrm{O}$	26.8.7	48,49	282	$\mathrm{Mo}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	42.16.10	48,50	395
$\mathrm{Fe}(100)-(1 \times 1)-\mathrm{O}$	26.8.9	48,49	283	$\mathrm{Mo}(100)-(1 \times 1)-\mathrm{Si}$	42.14 .1	48,49	397
$\mathrm{Fe}(211)-(2 \times 1)-\mathrm{O}$	26.8 .8	54	285	$\mathrm{MoS}_{2}(0001)-(1 \times 1)$	42.16.4b	159	398
$\mathrm{Fe}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	26.16.1	48,50	287	$\mathrm{Na}(0001)-(1 \times 1)$	11.2	19	400
$\mathrm{Fe}(100)-\mathrm{c}(2 \times 2)$-S	26.16 .6	48,50	288	$\mathrm{Na}(110)-(1 \times 1)$	11.1	11	401
$\mathrm{Fe}(110)-\mathrm{p}(2 \times 2)-\mathrm{S}$	26.16 .4	47	289	$\mathrm{Na}(110)-(1 \times 1)$	11.1a	11	402
GaAs(110)-(1×1)	31.33 .26	116	291	$\mathrm{Na}_{2} \mathrm{O}(111)-(1 \times 1)$	11.8.1	152	403
GaAs(110)-(1×1)	31.33 .27	116	293	$\mathrm{Nb}(110)-(1 \times 1)$	41.2	11	405
$\operatorname{GaAs}(110)-(1 \times 1)$	31.33.29a	116	295	$\mathrm{NbSe}_{2}(0001)-(1 \times 1)$	42.16.4a	160	406
GaAs(110)-(1×1)	31.33 .68	116	297	$\mathrm{Ni}(100)-(1 \times 1)$	28.16a	2	408
$\mathrm{GaAs}(111)-(2 \times 2)$	31.33 .24	117	299	$\mathrm{Ni}(100)-(1 \times 1)$	28.29a	2	409
$\mathrm{GaAs}(311)-(1 \times 1)$ As termination	31.33 .53 b	121	301	$\mathrm{Ni}(100)-(1 \times 1)$	28.4 b	2	410
GaAs(311)-(1×1) Ga termination	31.33.53a	122	302	$\mathrm{Ni}(110)-(1 \times 1)$	28.11a	4	411
$\mathrm{GaAs}(110)-(1 \times 1)-1 \mathrm{Al}$ (low coverage)	31.33.13.4a	127	304	$\mathrm{Ni}(110)-(1 \times 1)$	28.15	4	412
$\mathrm{GaAs}(110)-(1 \times 1)-2 \mathrm{Al}$ (med coverage)	31.33.13.4b	127	306	Ni(110)-(1×1)	28.17	4	413
$\mathrm{GaAs}(110)-(1 \times 1)-3 \mathrm{Al}$ (high coverage)	31.33.13.4c	127	308	$\mathrm{Ni}(110)-(1 \times 1)$	28.18	4	415
$\mathrm{GaAs}(110)-(1 \times 1)-2 \mathrm{Bi}$	31.33.83.2	126	310	$\mathrm{Ni}(110)-(1 \times 1)$	28.22	4	416
$\mathrm{GaAs}(110)-(1 \times 1)-2 \mathrm{Sb}$	31.33.51.2	126	312	$\mathrm{Ni}(110)-(1 \times 1)$	28.23	4	417
$\mathrm{GaAs}(110)-(1 \times 1)-2 \mathrm{Sb}$	31.33.51.5	126	314	$\mathrm{Ni}(110)-(1 \times 1)$	28.25	4	418
$\mathrm{GaP}(110)-(1 \times 1)$	31.15.4	116	316	$\mathrm{Ni}(110)-(1 \times 1)$	28.26a	4	419
$\operatorname{GaP}(111)-(2 \times 2)$	31.15 .5	117	318	$\mathrm{Ni}(111)-(1 \times 1)$	28.1 lb	1	420
$\mathrm{GaSb}(110)-(1 \times 1)$	31.51 .2	116	320	$\mathrm{Ni}(111)-(1 \times 1)$	28.4 a	1	421
$\mathrm{GaSb}(110)-(1 \times 1)$	31.51 .3	116	322	$\mathrm{Ni}(311)-(1 \times 1)$	28.12	8	422
$\mathrm{GaSb}(110)-(1 \times 1)$	31.51.3a	116	324	$\mathrm{Ni}(311)-(1 \times 1)$	28.21	8	424
$\mathrm{GaSb}(111)-(2 \times 2)$	31.51 .4	117	326	$\mathrm{Ni}(100)-\mathrm{Ag}(111)$ multilayers	28.47.1	84	426
$\mathrm{Ge}(100)-(2 \times 1)$	32.1	94	328	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Bi}$	28.83.1	28,29	427
$\mathrm{Ge}(100)-(2 \times 1)$	32.5	94	330	$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{C}$	28.6.16	32	428
$\mathrm{Ge}(111)-\mathrm{c}(2 \times 8)$	32.21	92	332	$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{C}$	28.6.17	32	430
$\mathrm{Ge}(111)-(\sqrt{3} \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Bi}$	32.83.1	96,97	334	$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{C}$	28.6 .2	32	432
$\mathrm{Ge}(111)-(1 \times 1)-\mathrm{Cl}$	32.17.1	96,99	336	$\mathrm{Ni}(110)-(2 \times 1)-\mathrm{C}$	28.6.18	35	434
$\mathrm{Ge}(111)-(1 \times 1)-\mathrm{H}$	32.1.1	88	337	$\mathrm{Ni}(111)-(2 \times 2)-\mathrm{C}_{2} \mathrm{H}_{2}$	28.6.1.2	64	435
$\mathrm{Ge}(111)-(1 \times 1)-\mathrm{I}$	32.53 .2	96,99	339	$\mathrm{Ni}(100)-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$ disordered	28.6.16.1	77	437
$\mathrm{Ge}(111)-(1 \times 1)-\mathrm{PH}_{x}$	32.15.1.1	110	340	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	28.6.8.11	71	438
$\mathrm{Ge}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Pb}(1 / 3 \mathrm{ML})$	32.82.6a	96,97	342	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	28.6.8.12b	71	439
$\mathrm{Ge}(111)-(\sqrt{ } 3 \times \sqrt{3}) \mathrm{R} 30^{\circ}-4 \mathrm{~Pb}(4 / 3 \mathrm{ML})$	32.82 .6 b	115	344	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	28.6.8.4	71	441
$\mathrm{Ge}(100)-(2 \times 1)$-S	32.16.2	104,106	346	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	28.6.8.6	71	442
$\mathrm{Ge}(111)-(2 \times 2)-\mathrm{S}$	32.16.1	96,98	348	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	28.6.8.7	71	443
$\mathrm{HfC}(100)-(1 \times 1)$	72.6 .2	149	350	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{CO}$	28.6.8.8	71	444
$\operatorname{InAs}(110)-(1 \times 1)$	49.33 .1	116	352	$\mathrm{Ni}(110)-\mathrm{p}(2 \times 1)-2 \mathrm{CO}$	28.6.8.20	78	445
$\operatorname{InAs}(110)-(1 \times 1)$	49.33 .2	116	354	$\mathrm{Ni}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{CO}$	28.6.8.12a	61	447
$\operatorname{InP}(110)-(1 \times 1)$	49.15 .2	116	356	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$	28.17.1	28,29	449
$\operatorname{InP}(110)-(1 \times 1)$	49.15 .3	116	358	$\mathrm{Ni}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Cl}$	28.17 .2	22,24	450
$\operatorname{InSb}(110)-(1 \times 1)$	49.51 .1	116	360	$\mathrm{Ni}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Cl}$	28.17 .3	22,24	451
$\operatorname{InSb}(110)-(1 \times 1)$	49.51 .6	116	362	$\mathrm{Ni}(100)-(1 \times 1)-3 \mathrm{Co}$	28.27.1	83	452
$\operatorname{Ir}(100)-(1 \times 1)$	77.10	2	364	$\mathrm{Ni}(100)-(1 \times 1)-\mathrm{Cu}$	28.29 .3	83	453
$\operatorname{Ir}(100)-(1 \times 5)$	77.11	3	365	$\mathrm{Ni}(100)-(1 \times 1)-3 \mathrm{Cu}$	28.29.5a	83	454
$\operatorname{Ir}(100)-(1 \times 5)$	77.6	3	367	$\mathrm{Ni}(100)-(1 \times 1)-\mathrm{Cu}$ multilayer	28.29 .5	83	455
$\operatorname{Ir}(110)-(\mathrm{l} \times 1)$	77.3	4	369	$\mathrm{Ni}(100)-(1 \times 1)-1 \mathrm{Fe}$	28.26.2a	83	456
$\operatorname{Ir}(110)-(1 \times 2)$	77.16	5	370	$\mathrm{Ni}(100)-(1 \times 1)-2 \mathrm{Fe}$	28.26.2b	83	457
$\operatorname{Ir}(110)-(1 \times 3)$	77.26	7	372	$\mathrm{Ni}(100)-\mathrm{H}$ (D) disordered	28.1.17	28	458
$\operatorname{Ir}(111)-(1 \times 1)$	77.2	1	374	$\mathrm{Ni}(110)-(2 \times 1)-2 \mathrm{H}$	28.1.23	35,37	459
$\operatorname{lr}(110)-\mathrm{c}(2 \times 2)-\mathrm{O}$	77.8.1	35	375	$\mathrm{Ni}(111)-(2 \times 2)-2 \mathrm{H}$	28.1.6	22,25	461
$\operatorname{Ir}(111)-(2 \times 2)-\mathrm{O}$	77.8.2	22,25	377	$\mathrm{Ni}(111)-(2 \times 2)-2 \mathrm{H}(\mathrm{D})$	28.1.31	22,25	463
$\operatorname{Ir}(110)-(2 \times 2)-2 S$	77.16 .2	40	378	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Hg}$	28.80 .1	28	464
$\operatorname{Ir}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{S}$	77.16 .1	22,24	380	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{I}$	28.53.2	28,29	465
$\mathrm{MgO}(100)-(1 \times 1)$	12.8.4	149	381	$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{~N}$	28.7.2	32	466
$\mathrm{MgO}(100)-(1 \times 1)$	12.8.5	149	383	$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{~N}$	28.7.4	32	468
$\mathrm{MgO}(100)-(1 \times 1)$	12.8 .8	149	384	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}+\mathrm{O}$ disordered	28.7.8.1	28,29	470
$\mathrm{MgO}(100)-(1 \times 1)$	12.8 .9	149	385	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Na}$	28.11 .3	28,29	472
$\mathrm{Mn}(100)-(1 \times 1)$ epitaxial on $\operatorname{Pd}(100)$	46.25 .3	83	386	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Na}$	28.11.4	28,29	473
Mo(100)-(1×1)	42.4	12	387	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Na}+\mathrm{S}$	28.11.16.1a	28,29	474
$\mathrm{Mo}(100)-(1 \times 1)$ disordered	42.10	14	388	$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{Na}+2 \mathrm{~S}$	28.11.16.1b	28,30	476
$\mathbf{M o}(110)-(1 \times 1)$	42.7	11	389	$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{Na}+\mathrm{S}$	28.11.16.1c	28,30	478
Mo(111)-(1×1)	42.8	15	390	$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.21	28,29	480

2.1. Alphanumerical Index of Structures - Continued
2.1. Alphanumerical Index of Structures - Continued

Common name of structure	Class no.	Figure	Page	Common name of structure	Class no.	Figure	Page
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.30a	28,29	482	$\mathrm{NiSi}_{2}(111)-(1 \times 1)$	14.28 .1	145	571
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)$-O	28.8.32a	28,29	483	$\mathrm{NiSi}_{2}(111)-(1 \times 1)$	14.28 .13	145	573
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.35	28	485	$\mathrm{Pb}(100)-(1 \times 1)$	82.13	2	575
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.36	28,29	486	$\mathrm{Pb}(110)-(1 \times 1)$	82.1	4	576
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.37	28,29	488	$\mathrm{Pb}(110)-(1 \times 1)$	82.12	4	577
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.42	28,29	490	$\mathrm{Pb}(110)$-(1×1)	82.7	4	579
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.48	28,29	492	$\mathrm{Pb}(111)-(1 \times 1)$	82.16	1	580
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.59	28,29	494	$\mathrm{Pb}(311)-(1 \times 1)$	82.18	8	581
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.61	28,29	495	$\operatorname{Pd}(100)-(1 \times 1)$	46.2	2	583
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.7	28,29	496	$\mathrm{Pd}(100)-(1 \times 1)$	46.8	2	584
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}$	28.8.71	28,29	498	$\mathrm{Pd}(110)$-(1×1)	46.4a	4	585
$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{O}$	28.8 .30 b	28,30	500	$\mathrm{Pd}(110)-(1 \times 1)$	46.5b	4	586
$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{O}$	28.8.32b	28,30	501	$\operatorname{Pd}(110)-(1 \times 2)$	46.4b	5	587
$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{O}$	28.8.5	28,30	503	$\operatorname{Pd}(110)-(1 \times 2)$	46.6	5	588
$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{O}$	28.8.72	28,30	504	$\operatorname{Pd}(111)-(1 \times 1)$	46.3	1	590
$\mathrm{Ni}(100)$-O disordered	28.8.82	28	506	$\operatorname{Pd}(111)-(1 \times 1)$	46.5a	1	591
$\mathrm{Ni}(110)$-(2×1)-0	28.8 .53	39	508	$\operatorname{Pd}(111)-(1 \times 1)-\mathrm{Au}$	46.79.1	81	592
$\mathrm{Ni}(110)-(2 \times 1)-\mathrm{O}$	28.8.58	-	510	$\mathrm{Pd}(111)-(3 \times 3)-\mathrm{C}_{6} \mathrm{H}_{6}+2 \mathrm{CO}$	46.6.1.8.2	70	593
$\mathrm{Ni}(110)$-(2×1)-O	28.8.70	39	511	$\mathrm{Pd}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{CO}$	46.6.8.2	61	595
$\mathrm{Ni}(111)-\mathrm{p}(2 \times 2)-\mathrm{O}$	28.8.75a	22,25	513	$\operatorname{Pd}(100)-(2 \sqrt{ } 2 \times \sqrt{ } 2) \mathrm{R} 45^{\circ}-2 \mathrm{CO}$	46.6.8.0a	71,72	597
$\mathrm{Ni}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{O}$	28.8.27	22,24	514	$\mathrm{Pd}(100)-(1 \times 1)-\mathrm{Cu}$ multilayer	46.29 .1	83	598
$\mathrm{Ni}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{O}$	28.8.85	22,24	515	$\operatorname{Pd}(100)-(1 \times 1) \cdot \mathrm{H}(\mathrm{D})$	46.1.13a	28	599
$\mathrm{Ni}(100) \mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.10a	28,29	516	$\mathrm{Pd}(100)-\mathrm{c}(2 \times 2)-\mathrm{H}(\mathrm{D})$	46.1 .13 b	28,29	600
$\mathrm{Ni}(100) \mathrm{c}(2 \times 2)$-S	28.16 .13	28,29	517	$\operatorname{Pd}(110)-(1 \times 2)-\mathrm{H}$	46.1.11a	-	601
$\mathrm{Ni}(100) \mathrm{c}(2 \times 2)$-S	28.16 .15	28,29	518	$\operatorname{Pd}(110)-(2 \times 1)-2 \mathrm{H}$	46.1.12	37	603
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.16	28,29	519	$\mathrm{Pd}(100)-(1 \times 1)-12 \mathrm{Fe}$	46.26.2a	83	605
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)$-S	28.16 .18	28,29	520	$\mathrm{Pd}(100)-(1 \times 1)-53 \mathrm{Fe}$	46.26.2b	83	606
$\mathrm{Ni}(100) \mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.19	28,29	521	$\mathrm{Pd}(100)-(1 \times 1)-200 \mathrm{Fe}$	46.26.2c	83	607
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.22	28,29	522	$\mathrm{Pd}(100)-\mathrm{c}(2 \times 2)-\mathrm{Mn} / \mathrm{Pd}_{3} \mathrm{Mn}(100)$	46.25.5b	134	608
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.23a	28,29	523	$\operatorname{Pd}(100)-\mathrm{c}(2 \times 2)-\mathrm{Mn}$ mixed top layer	46.25.5a	33	610
$\mathrm{Ni}(100)$-c(2×2)-S	28.16.28	28,29	524	$\mathrm{Pd}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	46.16 .1	28,29	612
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)$-S	28.16.35	28,29	525	$\operatorname{Pd}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{S}$	46.16 .2	22,24	613
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.4c	28,29	526	$\operatorname{Pt}(100)-(1 \times 1)$	78.16	2	614
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16 .9	28,29	527	$\mathrm{Pt}(100)-(1 \times 1)$	78.16a	2	615
$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{S}$	28.16.36a	28,30	528	$\mathrm{Pt}(100)$-(1×1)	78.6	2	616
$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{S}$	28.16.4a	28,30	530	$\mathrm{Pt}(110)-(1 \times 2)$	78.19	5	617
$\mathrm{Ni}(100)$-S disordered	28.16.36b	28	531	$\mathrm{Pt}(110)-(1 \times 2)$	78.32	5	618
$\mathrm{Ni}(110)-\mathrm{c}(2 \times 2) \cdot \mathrm{S}$	28.16.17	35,36	533	$\mathrm{Pt}(110)-(1 \times 2)$	78.33a	5	620
$\mathrm{Ni}(110)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.20	35,36	535	$\mathrm{Pt}(110)-(1 \times 2)$	78.34	5	622
$\mathrm{Ni}(110)-\mathrm{c}(2 \times 2)$-S	28.16.23b	35,36	537	$\mathrm{Pt}(110)-(1 \times 2)$	78.41	5	624
$\mathrm{Ni}(110)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.25	35,36	538	$\mathrm{Pt}(110)-(1 \times 2)$	78.47	5	626
$\mathrm{Ni}(110)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16.26	35,36	539	$\operatorname{Pt}(110)-(1 \times 2)$	78.49	5	628
$\mathrm{Ni}(110)-\mathrm{c}(2 \times 2)-\mathrm{S}$	28.16 .7	35,36	540	$\operatorname{Pt}(110)-(1 \times 3)$	78.33b	7	629
$\mathrm{Ni}(110)-\mathrm{p}(2 \times 2)-\mathrm{S}$	28.16.4d	35	541	$\operatorname{Pt}(110)-(1 \times 3)$	78.48	6	631
$\mathrm{Ni}(111)-(2 \times 2)-\mathrm{S}$	28.16.23c	22,25	542	$\operatorname{Pt}(111)-(1 \times 1)$	78.12	1	633
$\mathrm{Ni}(111)-(2 \times 2)-\mathrm{S}$	28.16.4b	22,25	543	$\operatorname{Pt}(111)-(1 \times 1)$	78.15	1	634
$\mathrm{Ni}(111)-\mathrm{p}(2 \times 2)-\mathrm{S}$	28.16 .33	22,25	544	$\mathrm{Pt}(111)-(1 \times 1)$	78.20a	1	635
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Se}$	28.34.0a	28,29	545	$\operatorname{Pt}(111)-(1 \times 1)$	78.8	1	636
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Se}$	28.34 .1	28,29	546	$\operatorname{Pt}(210)-(1 \times 1)$	78.43	9	637
$\mathrm{Ni}(100)$-p(2×2)-Se	28.34.0b	28,30	548	$\mathrm{Pt}(111)-(1 \times 1)-\mathrm{H}$ (D)	78.1.7	22,23	639
$\mathrm{Ni}(110)-\mathrm{c}(2 \times 2)-\mathrm{Se}$	28.34.0c	35,36	549	$\mathrm{Pt}(111)-(2 \times 2)-\mathrm{C}_{2} \mathrm{H}_{3}$	78.6.1.5	65	640
$\mathrm{Ni}(111)$-p(2×2)-Se	28.34.0d	22,25	550	$\mathrm{Pt}(111)-\mathrm{C}_{6} \mathrm{H}_{6}$ disordered	78.6.1.18	67	642
$\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Te}$	28.52.1	28,29	551	$\mathrm{Pt}(111)-(2 \sqrt{3} \times 4) \mathrm{rect}-2 \mathrm{C}_{6} \mathrm{H}_{6}+4 \mathrm{CO}$	78.6.1.8.1	68	644
$\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{Te}$	28.52.1a	28,30	552	$\mathrm{Pt}(111)+\mathrm{CO} 1 / 3 \mathrm{ML}$ disordered	78.6.8.7	61	646
$\mathrm{Ni}_{3} \mathrm{Al}(100)-(1 \times 1)$	28.13 .5	134	553	$\mathrm{Pt}(111)-\mathrm{c}(4 \times 2)-2 \mathrm{CO}$	78.6.8.4	61,62	648
$\mathrm{Ni}_{3} \mathrm{Al}(110)-(1 \times 1)$	28.13 .13	137	555	$\mathrm{Pt}(100)$-(1×1)-Cu multilayer	78.29 .2	83	649
$\mathrm{Ni}_{3} \mathrm{Al}(111) \cdot(1 \times 1)$	28.13 .12	128	557	$\mathrm{Pt}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{S}$	78.16 .1	22,24	650
$\mathrm{NiAl}(100)-(1 \times 1)$	28.13 .15 c	143	559	$\mathrm{Pt}(111)$-(2×2)-Sn	78.50.1a	27	651
$\mathrm{NiAl}(110)-(1 \times 1)$	28.13 .11	142	560	$\operatorname{Pt}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Sn}$	78.50 .1 b	27	652
$\mathrm{NiAl}(110)-(1 \times 1)$	28.13.15b	142	561	$\mathrm{Pt}_{0.8} \mathrm{Fe}_{0.2}(110)-(1 \times 2)$	78.26 .2	140	653
$\mathrm{NiAl}(110)-(1 \times 1)$	28.13.19	142	563	$\mathrm{Pt}_{0.8} \mathrm{Fe}_{0.2}(111)-(1 \times 1)$	78.26 .1	132	655
$\mathrm{NiAl}(110)-(1 \times 1)$	28.13 .4	142	564	$\mathrm{Pt}_{0.1} \mathrm{Ni}_{0.9}(100)-(1 \times 1)$	78.28 .8	136	657
$\mathrm{NiAl}(111)-(1 \times 1)$ Al-terminated	28.13 .14 b	144	565	$\mathrm{Pt}_{0.1} \mathrm{Ni}_{0.9}(110)-(1 \times 1)$	78.28 .7	138	659
$\mathrm{NiAl}(111)-(1 \times 1) \mathrm{Ni}$-terminated	28.13.14a	144	566	$\mathrm{Pt}_{0.1} \mathrm{Ni}_{0.0}(111)-(1 \times 1)$	78.28.2	129	661
$\mathrm{NiO}(100)-(1 \times 1)$	28.8.20	149	567	$\mathrm{Pt}_{0.5} \mathrm{Ni}_{0.5}(110)-(1 \times 1)$	78.28 .3	139	663
$\mathrm{NiSi}_{2}(100)-(1 \times 1)$	14.28 .6	148	568	$\mathrm{Pt}_{0.5} \mathrm{Ni}_{0.5}(111)-(1 \times 1)$	78.28 .1 b	130	665
$\mathrm{NiSi}_{2}(100)-(1 \times 1)$	14.28 .9	147	570	$\mathrm{Pt}_{0.5} \mathrm{Ni}_{0.5}(111)-(1 \times 1)$	78.28.9	130	667

2.1. Alphanumerical Index of Structures - Continued

Common name of structure	Class no.	Figure	Page	Common name of structure	Class no.	Figure	Page
$\mathrm{Pt}_{0.78} \mathrm{Ni}_{0.22}(111)-(1 \times 1)$	78.28.1a	131	669	$\mathrm{Si}(111)-(\sqrt{3} \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Ga}$	14.31 .4	96,97	776
$\operatorname{Re}(10-10)-(1 \times 1)$	75.2	20	671	Si(111)-(7×7)-I	14.53 .2	96,99	778
$\operatorname{Rh}(100)-(1 \times 1)$	45.7b	2	673	$\mathrm{Si}(100)-(2 \times 1)-2 \mathrm{~K}$	14.19 .9	108	779
$\mathrm{Rh}(110)-(1 \times 1)$	45.7c	4	674	$\mathrm{Si}(100)-(2 \times 1)-\mathrm{Na}$	14.11.4	107	781
$\mathrm{Rh}(110)-(1 \times 1)$	45.9a	4	675	$\mathrm{Si}(111)-(1 \times 1)-\mathrm{NiSi}_{2}(111)$ interface	14.28.12a	114	783
$\mathrm{Rh}(100)-(1 \times 1)$	45.9b	2	676	$\mathrm{Si}(111)-(1 \times 1)-\mathrm{NiSi}_{2}(111)$ interface	14.28.12b	113	785
$\mathrm{Rh}(111)-(1 \times 1)$	45.7a	1	677	$\mathrm{Si}(111)-(1 \times 1)-\mathrm{NiSi}_{2}(111)$ interface	14.28.2	114	787
$\mathrm{Rh}(111)-(1 \times 1)$	45.8	1	678	$\mathrm{Si}(111)-(1 \times 1)-\mathrm{NiSi}_{2}(111)$ interface	14.28.8	114	789
$\mathrm{Rh}(311)-(1 \times 1)$	45.11	8	679	$\mathrm{Si}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Pb}$	14.82.I	96	790
$\mathrm{Rh}(111)-(2 \times 2)-\mathrm{C}_{2} \mathrm{H}_{3}$	45.6.1.11	65	680	$\mathrm{Si}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Pb}$ (a phase)	14.82 .2	96,97	791
$\mathrm{Rh}(111)-(2 \times 2)-\mathrm{C}_{2} \mathrm{H}_{3}$	45.6.1.3	65	682	$\mathrm{Si}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Sn}$	14.50 .2	96,97	793
$\mathrm{Rh}(111)-\mathrm{c}(4 \times 2)-\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CO}$	45.6.1.8.4a	66	684	$\mathrm{Si}(100)-(2 \times 1)-2 \mathrm{Sb}$	14.51 .7	109	795
$\mathrm{Rh}(111)-\mathrm{c}(4 \times 2)-\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{NO}$	45.6.7.8.1.1	66	686	$\mathrm{Si}(111)-(7 \times 7)-\mathrm{Te}$	14.52.1	96	796
$\mathrm{Rh}(111)-(3 \times 3)-\mathrm{C}_{6} \mathrm{H}_{6}+2 \mathrm{CO}$	45.6.1.8.3	70	688	$\mathrm{SiC}(100)-\mathrm{c}(2 \times 2)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right.$ exposed)	14.6.7a	118	798
$\mathrm{Rh}(111)$-c $(2 \mathrm{~V} 3 \times 4) \mathrm{rect}-\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CO}$	45.6.1.8.2	69	690	$\mathrm{SiC}(100)-\mathrm{c}(2 \times 2)$ (Si sublimation)	14.6.7b	119	800
$\mathrm{Rh}(111)-(2 \times 2)-3 \mathrm{CO}$	45.6.8.4	63	692	$\mathrm{SiC}(100)-\mathrm{p}(2 \times 1)$	14.6.8	120	802
$\mathrm{Rh}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{CO}$	45.6.8.1	61	694	$\mathrm{SrTiO}_{3}(100)-(1 \times 1) \mathrm{O}-\mathrm{Ti}-\mathrm{O}$ terminated)	38.22.8.1b	154	804
$\mathrm{Rh}(100)-\mathrm{c}(4 \times 2)$ - Cs	45.55 .1	28,30	695	$\mathrm{SrTiO}_{3}(100)-(1 \times 1) \mathrm{Sr}-\mathrm{O}$ terminated)	38.22.8.1a	155	806
Rh(110)-(1×1)-2H	45.1 .10	37	696	$\mathrm{Ta}(100)-(1 \times 1)$	73.1	12	808
$\mathbf{R h}(110)-(1 \times 1)-2 \mathrm{H}$	45.1.4	37	698	$\mathrm{Ta}(100)-(1 \times 1)$	73.4	12	809
$\mathrm{Rh}(110)-(1 \times 2)-\mathrm{H}$	45.1 .8	38	700	$\mathrm{Ta}(100)-(1 \times 3)-\mathrm{O}$	73.8 .1	53	810
$\mathrm{Rh}(110)-(1 \times 2)-3 \mathrm{H}$	45.1 .6	-	702	$\mathrm{TaC}(100)-(1 \times 1)$	73.6 .2	149	812
$\mathrm{Rh}(110)-(1 \times 3)-\mathrm{H}$	45.1.5	38	704	$\mathrm{TaC}(100)-(1 \times 1)$	73.6 .4	149	814
$\mathrm{Rh}(111)-(2 \times 2)-3 \mathrm{NO}$	45.7.8.1	63	706	$\mathrm{Tb}(0001)-(1 \times 1)$	65.1	19	816
$\mathrm{Rh}(100)-(2 \times 2)-\mathrm{O}$	45.8 .2	28,30	708	$\mathrm{Te}(10-10)-(1 \times 1)$	52.1	158	817
$\mathrm{Rh}(111)-(2 \times 2)-\mathrm{O}$	45.8.1	22,25	709	$\mathrm{Ti}(0001)-(1 \times 1)$	22.1	19	819
$\mathrm{Rh}(100)-(2 \times 2)-\mathrm{S}$	45.16 .1	28,30	710	$\mathrm{Ti}(10-10)-(1 \times 1)$	22.3	20	821
$\mathrm{Rh}(110)-\mathrm{c}(2 \times 2)-\mathrm{S}$	45.16 .2	35,36	711	$\mathrm{Ti}(0001)-(1 \times 1)-2 \mathrm{Cd}$	22.48.3a	87	823
$\mathrm{Rh}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}-S$	45.16 .3	22,24	712	$\mathrm{Ti}(0001)-(1 \times 1)-4 \mathrm{Cd}$	22.48 .3 b	87	824
$\mathrm{Ru}(0001)-(1 \times 1)$	44.1	19	713	$\mathrm{Ti}(0001)-(1 \times 1)-\mathrm{Cd}$	22.48 .2	87	825
$\mathrm{Ru}(0001)-(1 \times 1)-\mathrm{H}$	44.1.1	55,56	714	Ti(0001)-($1 \times 1)-\mathrm{N}$	22.7 .2	58	827
$\mathrm{Ru}(0001)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{CO}$	44.6.8.1	80	715	$\mathrm{TiC}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{O}$	22.6.8.3	156	829
$\mathrm{Ru}(0001)-\mathrm{CO}$ disordered	44.6.8.2	80	717	$\mathrm{TiO}_{2}(100)-(3 \times 1)$	22.8.1	153	831
$\mathrm{Ru}(0001)-(1 \times 1)-1 \mathrm{Fe}$	44.26.1a	87	718	$\mathrm{TiSe}_{2}(0001)-(1 \times 1)$	22.34.2	161	833
$\mathrm{Ru}(0001)-\mathrm{p}(2 \times 1)-\mathrm{O}$	44.8.1	55,57	719	$\mathrm{V}(100)-(1 \times 1)$	23.4	12	835
$\mathrm{Ru}(0001)-\mathrm{p}(2 \times 2)-\mathrm{O}$	44.8.2	55,57	721	$\mathrm{V}(110)-(1 \times 1)$	23.2	11	837
$\mathrm{Sc}(0001)-(1 \times 1)$	21.2	19	723	$\mathrm{VN}_{0} .89(100)-(1 \times 1)$	23.7.1	149	838
Si(100)-(2×1)	14.170	94	725	W(100)-(1×1)	74.1 .21 a	12	840
Si(100)-(2×1)	14.182a	94	727	$W(100)-(1 \times 1)$	74.21	12	841
Si(100)-(2×1)	14.75	94	729	$W(100)-(1 \times 1)$	74.2a	12	842
Si(100)-(2×1)	14.85	94	731	W(100)-(1×1) disordered	74.47	14	843
Si(100)-c(4×2)	14.182 b	95	733	$\mathrm{W}(110)-(1 \times 1)$	74.2 b	11	844
Si(111)-(2×1)	14.120	89	735	W (110)-(1×1)	74.45	11	845
Si(111)-(2×1)	14.25	-	737	$\mathrm{W}(100)-\mathrm{c}(2 \times 2)$	74.14	13	846
Si(111)-(2×1)	14.89	89	739	W (100)-c(2×2)	74.53	13	847
Si(111)-(2×1)	14.96	89	741	$W(100)-\mathrm{c}(2 \times 2)$	74.59	13	848
Si(111) laser annealed	14.108	88	743	W(211)-(1×1)	74.55	17	850
Si(111)-(1×1) laser-annealed	14.99	88	745	W(310)-(1×1)	74.63	18	851
Si(111)-(7×7)	14.132	91	746	W (100)-(1×1)-2H	74.1 .10	48,50	852
Si(111)-($\sqrt{3} \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Al}$	14.152	90	750	$\mathrm{W}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}$	74.7 .2	48,50	854
$\mathrm{Si}(111)-(\sqrt{ } 3 \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Al}$	14.13 .12	96,97	752	W(100)-O disordered	74.8 .8	51	856
$\mathrm{Si}(111)$-(1×1)-As	14.33.10	102	754	$\mathrm{W}(100)$-p(2×1-disordered 0	74.8.12	52	858
Si(111)-(1×1)-As	14.33 .7	102	755	$\mathrm{W}(110)-(2 \times 1)-\mathrm{O}$	74.8.1	44,45	859
Si(111)-(1×1)-As	14.33 .8	102	756	$\mathrm{Zn}(0001)-(1 \times 1)$	30.1	19	860
Si(111)-($\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{B}$	14.5.6	101	757	$\mathrm{ZnO}(0001)-(1 \times 1)$	30.8.2	123	861
$\mathrm{Si}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Bi}$	14.83.2	103	759	$\mathrm{ZnO}(10-10)-(1 \times 1)$	30.8.2a	124	862
$\mathrm{Si}(111)-(\sqrt{ } 3 \times \sqrt{ } 3) \mathrm{R} 30^{\circ}-\mathrm{Bi}(1 / 3 \mathrm{ML})$	14.83.3a	96,97	761	$\mathrm{ZnO}(11-20)-(1 \times 1)$	30.8.2b	125	864
$\mathrm{Si}(111)-(\sqrt{ } 3 \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Bi}(1 \mathrm{ML})$	14.83.3b	100	763	$\mathrm{ZnS}(110)-(1 \times 1)$	30.16 .2	116	866
$\mathrm{Si}(111)-\mathrm{Br} 0.25 \mathrm{ML}$	14.35.2	96,99	765	$\mathrm{ZnSe}(110)-(1 \times 1)$	30.34.2a	116	868
$\mathrm{Si}(111)-\mathrm{Br} 0.67 \mathrm{ML}$	14.35.1	96,99	766	$\mathrm{ZnSe}(110)-(1 \times 1)$	30.34.2b	116	870
$\mathrm{Si}(111)-(1 \times 1)-\mathrm{Cl}$	14.17 .4 b	96,99	767	$\mathrm{ZnTe}(110)-(1 \times 1)$	30.52 .2	116	872
$\mathrm{Si}(111)-(7 \times 7)-\mathrm{Cl}$	14.17.4a	96,99	768	$\operatorname{Zr}(0001)-(1 \times 1)$	40.1	19	874
$\mathrm{Si}(100)$ - Co 0.4 ML	14.27.16	104,105	769	$\mathrm{Zr}(0001)-(1 \times 1)-\mathrm{C}$	40.6.1	58	875
Si(111)-(1×1)-CoSi $2_{2}(111)$ interface	14.27 .2	111	770	$\mathrm{Zr}(0001)-(1 \times 1)-\mathrm{N}$	40.7.1	58	877
$\mathrm{Si}(111)-(1 \times 1)-\mathrm{CoSi}_{2}(111)$ interface	14.27 .3	111	772	$\mathrm{Zr}(0001)-(2 \times 2)-\mathrm{O}$	40.8.1	59	878
$\underline{\mathrm{Si}(111)-(1 \times 1)-\mathrm{CoSi}_{2}(111) \text { interface }}$	14.27.8	112	774				

2.2. Main Table of Structures

COMMON NAME	$: \operatorname{Ag}(100)-(1 \times 1)$
CLASSIFICATION	$: 47.22$
TECHNIQUE	$:$ LEED
AUTHORS	: H. Li, J. Quinn, Y.S. Li, D. Tian, F. Jona and P.M. Marcus
REFERENCE	: Phys. Rev., B43, 7305 (1991)

CLASSIFICATION : 47.22
AUTHORS : H. Li, J. Quinn, Y.S. Li, D. Tian, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B43, 7305 (1991)

SURFACE TYPE
Substrate: Ag
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate:
STRUCTURE TYPE
No multilayer relaxation
Coverage :
Pattern : (1x1)
Matrix : ($1.000,0.000)$
($0.000,1.000$)

SAMPLE PREPARATION (1 sample)
COMMENTS
Treatment : ion bombardment followed by annealing
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination:

DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (CHANGE program)
Technique: LEED normal incidence 3 beams at 10° off-normal

STRUCTURES EXAMINED
Variation of 1st and 2nd interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
PRE $=0.39$
$2 D$ UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay ($\AA)$	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.889	0.000	0.000	2.889	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=2.043 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.889	Ag1	Ag2		
2.889	Ag2	Ag3		

TECHNIQUE : HEIS
AUTHORS : Y. Kuk and L.C. Feldman
REFERENCE : Phys. Rev., B30, 5811 (1984)

SURFACE TYPE

Substrate: Ag	Adsorbate:
Crystal face: 110	Coverage :
Temperature: RT*	Pattern : (1x1)
Bulk lattice: fcc	Matrix : $1.000,0.000)$
2D bulk symm: pmm	
2D	

STRUCTURE TYPE
Bulk termination with multilayer relaxation

SAMPLE PREPARATION (1 sample)
Treatment : electropolishing, etching, sputtering and annealing
Crystallinity:
Anal. methods:
Contamination: monitored by AES and ion scattering
DATA COLLECTION
Technique: HEIS
Dataset : angular and energy scans in the <101> and <100> directions

COMMENTS

R-factor defined as:
$R=100^{*} \sqrt{ }\left(\Sigma((\text { Ycalc-Yexpt }) / Y \operatorname{expt})^{2}\right) / n$, where n is the number of data points, Yexpt the experimental energy of the surface peak, and Ycalc the theoretical energy

THEORY/DATA TREATMENT

High energy ion scattering with computer simulations; $\Theta 0=149$ K (surf), 215K (bulk)

STRUCTURES EXAMINED
Top two layer spacings varied from -10% to $+10 \%$ from bulk; ΘD varied: $105 \mathrm{~K}, 149 \mathrm{~K}, 215 \mathrm{~K}$

QUALITY OF EXPERIMENT-THEORY FIT

$\mathrm{R}=0.45$ (see comments)
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (${ }_{\text {A }}$)	Bx (${ }^{\text {a }}$)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.880	0.000	0.000	4.090	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$		
Surface 1	2.880	0.000	0.000	4.090	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	s1: commens. superlattice

3D COORDINATES

Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $4 \quad$ Bulk $z=1.440 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.880	Ag1	Ag1(1,0)	Ag2	59.5
2.833	Ag1	Ag2	Ag3	59.0
2.916	Ag2	Ag3	Ag4	60.9

COMMON NAME	$: \operatorname{Ag}(110)-(1 \times 1)$
CLASSIFICATION	47.16
TECHNIQUE	$:$ LEED
AUTHORS	$: J . R$. Noonan and H.L. Davis
REFERENCE	$:$ Vacuum, 32,107 (1982)

REFERENCE : Vacuum, 32, 107 (1982)

SURFACE TYPE

Substrate: Ag
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm

```
Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
    (0.000, 1.000)
```

STRUCTURE TYPE
Bulk termination with 6.6% top spacing contraction

COMMENTS

Averaging of symmetrically related beams and careful variations of non-structural parameters enables an accuracy of $0.02 \AA$ to be achieved

THEORY/DATA TREATMENT

Dynamical LEED (angular momentum basis): $00=190 \mathrm{~K}$

DATA COLLECTION
Technique: LEED
Dataset : I-V curves: 7 symm.-averaged beams (01) (10) (02) (11) (12) (21)

SAMPLE PREPARATION (1 sample)
Treatment : spark erosion, lapping, electropolish, sputter and anneal
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

STRUCTURES EXAMINED
Top layer spacing varied; various atomic potentials tried, as well as several smooth
variations of Voi, with Vor constant
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.098$
20 UNIT CELLS (1 domain observed)

Cell	Ax ($\mathrm{A}^{\text {) }}$	Ay (A)	Bx ($\mathrm{A}^{\text {) }}$	By ($\mathrm{A}^{\text {) }}$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	cell type
Bulk	2.890	0.000	0.000	4.087	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
Surface 1	2.890	0.000	0.000	4.087	90.0	$(1.000, ~$ $(1.000$, (1.000) $0.000)$		
						(0.000, 1.000)		superlattice

30 COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$\mathrm{DX} \pm \boldsymbol{\mathrm { X }}$	DY $\pm \in Y$	Dz $\pm \boldsymbol{E} \mathbf{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr int f intf subl	Ag Ag Ag	-2 -1 1 2 3	b $\begin{aligned} & \text { b } \\ & b \\ & b\end{aligned}$	1.00 1.00 1.00	0 1 2	$\begin{array}{rr} & f \\ -1.445 & A \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \end{array}$	$\begin{array}{rr} & f \\ -2.044 & A \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \end{array}$	$\begin{array}{ll} \hline & \AA \\ 1.445 & \AA \\ 0.000 & \AA \\ 1.349 \pm .022 & \AA \\ 1.445 & \AA \end{array}$	$\begin{gathered} 0.0 \\ 93.4 \pm 1.5 \\ 100.0 \end{gathered}$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.890	Ag1	Ag1 (1,0)	Ag2	59.5
2.843	Ag1	Ag2	Ag3	58.3
2.890	Ag2	Ag3		

SURFACE TYPE

Substrate: Ag	Adsorbate:
Crystal face: 110	Coverage :
Temperature: RT	Pattern : (1×1)
Bulk lattice: fcc	Matrix : (1.000, 0.000)
2D bulk symm: pmm	

Coverage :
Pattern : (1x1)
($0.000,1.000$)

STRUCTURE TYPE
Relaxations in top two interlayer spacings

COMMENTS
SAMPLE PREPARATION (1 sample)
Treatment : cycles of sputter/anneal with a base pressure of $5 \mathrm{E}-9 \mathrm{~Pa}$
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination: no impurities detected by AES and RBS

DATA COLLECTION

Technique: MEIS; 50.6 and 97.5 keV proton beams
Dataset : blocking curves measured in ($1,-1,1$), $(1,-1,0)$, and ($0,0,1$) scattering planes

THEORY/DATA TREATMENT
Monte Carlo analysis in the shadowing and blocking
geometry; $\Theta 0=215 \mathrm{~K}$, enhanced 65% and 12% in layers 1,2

STRUCTURES EXAMINED
Top two interlayer spacings varied

2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	Ay (\AA)	$B \times$ (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.090	0.000	0.000	2.892	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	4.090	0.000	0.000	2.892	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=1.446 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \pm \boldsymbol{\mathrm { X }}$	DY $\pm \epsilon \boldsymbol{y}$	$D Z \pm \in \mathbb{Z}$	$D z / B Z(\%) \pm E z / B z$
epir		-2				f	f	A	
subr		-1				2.045 A	1.446 A	1.446	
intf	Ag	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Ag	2	b	1.00	1	0.500 f	0.500 f	$1.309 \pm .030 \AA$	90.5 ± 2.1
intf	Ag	3	b	1.00	2	-0.500 f	-0.500 f	$1.533 \pm .040 \AA$	106.0 ± 2.8
subl	Ag	4	b	1.00	3	0.500 f	0.500 f	1.446 A	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.892	Ag1	Ag1 (0, 1)		
2.826	Ag1	Ag2	Ag3	59.1
2.826	Ag1	Ag2	Ag4	117.6
2.937	Ag2	Ag3	Ag4	61.5

CLASSIFICATION : 47.19
TECHNIQUE : LEED
AUTHORS : M. Lindroos, C.J. Barnes, M. Valden and D.A. King
REFERENCE : Surf. Sci.. 218, 269 (1989)

SURFACE TYPE

Substrate : Ag
Crystal face: 110
remperature : 100 K
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: pmm

SAMPLE PREPARATION (1 sample)

Treatment : Ar ${ }^{+}$sputtering with 900 K annealing Crystallinity: surface within 1° of the [110] plane Anal. methods:
Contamination: no contamination by AES

DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 8 symmetrically inequivalent beams; E range $50-250 \mathrm{eV}$

STRUCTURE TYPE

Multilayer relaxations of ($-7,+1,-2,0 \%$) to the fourth layer, with bulk termination
Coverage
Pattern : (1x1)
Matrix $:(1.000,0.000)$
($0.000,1.000$)

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (Van Hove/Tong): 9 ph shs (Moruzzi et al); Vor=-15 eV(then fit), Voi=-3.5eV; $\Theta D(b u(k)=215 K$, (surf) $=150 \mathrm{~K}$

STRUCTURES EXAMINED
Variation of top 4 interlayer spacings; 7 R-factors used
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.153$

2D UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	Ay (A)	BX (A)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.878	0.000	0.000	4.070	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.878	0.000	0.000	4.070	90.0	($1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z $=1.445 \quad \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$\mathrm{Dx} \pm \boldsymbol{\pm} \mathbf{X}$	Dy $\pm \boldsymbol{\pm}$	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				1.439 A	2.035 A	1.439 A	
intf	Ag	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Ag	2	b	1.00	1	0.500 f	$0.500 \quad f$	$1.338 \pm .029 \AA$	93.0 ± 2.0
intf	Ag	3	b	1.00	2	-0.500 f	-0.500 f	$1.453 \pm .029 \AA$	101.0 ± 2.0
intf	Ag	4	b	1.00	3	0.500 f	0.500 f	$1.410 \pm .029 \AA$	98.0 ± 2.0
subl	Ag	5	b	1.00	4	-0.500 f	-0.500 f	$1.439 \pm .029 \mathrm{~A}$	100.0 ± 2.0

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.878	Ag1	Ag1 (1,0)		
2.829	Ag1	Ag2		
2.791	Ag1	Ag3		
2.885	Ag2	Ag3		
2.863	Ag2	Ag4		

COMMON NAME : Ag(100)-C2H4 disordered
CLASSIFICATION : 47.6.1.2
TECHNIQUE : NEXAFS
AUTHORS : J. C. Tang, J. F. Shen and Y. B. Chen
REFERENCE : Surf. Sci., 244, L125 (1991)

SURFACE TYPE

Substrate: Ag

Crystal face: 100
Temperature : RT* Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none
SAMPLE PREPARATION (sample)
Treatment:
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION

COMMENTS

Coverage assumed to be 0.1 ML for tabulation

THEORY/DATA TREATMENT

Multiple-scattering cluster method of NEXAFS

STRUCTURES EXAMINED
Aligned-hollow, diagonal-hollow, aligned-top, diagonal-top aligned-bridge and perpendicular-bridge sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (2 domains observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	
Bulk	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	disordered	

3D COORDINATES
C1-C2: ethylene over 4-fold hollow site with C-C bond parallel to the [001] or [010] direction
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.400	$C 1$	C,		
1.960	$C 1$	Ag3		
1.960	$C 2$	Ag3		

CLASSIFICATION : 47.17.1
techniaue : LEED
AUTHORS : E. Zanazzi, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev., B14, 432 (1976)

SURFACE TYPE

Substrate: Ag
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
$\begin{aligned} & \text { Adsorbate: } \mathrm{Cl} \\ & \text { Coverage : } 0.5 \mathrm{cl} / \mathrm{Ag} \\ & \text { Pattern }: c(2 \times 2) \\ & \text { Matrix }:(1.000,1.000) \\ &(-1.000,1.000)\end{aligned}$

STRUCTURE TYPE
Atomic adsorption in hollow sites

COMMENTS

Cf. R-factor analysis of same data: class. no. 47.17.3a

THEORY/DATA TREATMENT

Dynamical LEED (layer KKR): 58 beams, 8 phase shifts
Vor=-10 eV; ms ampl $=0.024 \AA^{2}(\mathrm{Cl}), 0.012<(\mathrm{Ag})<0.048$

STRUCTURES EXAMINED
Bridge and hollow sites; mixed buckled Cl -Ag overlayer; variable overlayer-Ag spacing in both cases; relaxations of top Ag-Ag spacing of 10%

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.889	2.889	-2.889	2.889	90.0	$(1.000,1.000)$	(1.000)	c(2x2)

3D COORDINATES
cl1: overlayer in hollow sites; $0.1 A$ error bars assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk $2=2.043 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.671	Cl1	Ag2	Ag2(1,0)	122.8
2.671	$C l 1$	Ag2	Ag3	85.1
2.889	Ag2	Ag3		

COMMON NAME : Ag(100)-c(2x2)-Cl
CLASSIFICATION : 47.17.3a
TECHNIQUE : LEED
AUTHORS : E. Zanazzi and F. Jona
REFERENCE : Surf. Sci., 62, 61 (1977)

SURFACE TYPE
Substrate : Ag
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION (1 sample)
Treatment: exposure to 100 mtorr C 2 H 4 Cl 2 at 423 K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 4 beams at $\theta=0^{\circ}, 9$ beams at $\theta=10^{\circ}, \phi=29.5^{\circ} 7$ beams at $\theta=20^{\circ}, \phi=29.5^{\circ}$

STRUCTURE TYPE
Atomic adsorption in hollow sites

COMMENTS
Cf. visual analysis of same data: class. no. 47.17 .1

THEORY/DATA TREATMENT

Dynamical LEED (layer KKR): 58 beams, 8 phase shifts; rms vibr=0.155A

STRUCTURES EXAMINED
Hollow, bridge and top sites; mixed buckled Cl-Ag overlayer; variable overlayer-Ag spacing in both cases; relaxations of top $\mathrm{Ag}-\mathrm{Ag}$ spacing

QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.14$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.889	2.889	-2.889	2.889	90.0	$(0.000,1.000)$	$(1.000,1.000)$	c(2x2)

30 COORDINATES

Cl1: overlayer in hollow sites; $0.1 \AA$ error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 3
Bulk z $=2.043 \quad \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C ~\left({ }^{\circ}\right)$
2.639	$\mathrm{Cl1}$	Ag2	Ag2(1,0)	123.2
2.639	$\mathrm{Cl1}$	Ag2	Ag3	84.3
2.889	Ag2	Ag3		

COMMON NAME : Ag(100)-c(2×2)-Cl
CLASSIFICATION : 47.17.4
TECHNIQUE : atom diffraction
AUTHORS : M.J. Cardillo, G.E. Becker, D.R. Hamann, J.A. Serri,L.
Whitman and L.F. Mattheiss
REFERENCE : Phys. Rev., 828, 494 (1983)

SURFACE TYPE

Substrate: Ag
Crystal face: 100
Temperature : 250 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

```
SAMPLE PREPARATION ( 1 sample)
Treatment : Cl2 exposure at 300 K at 3.0E-7 torr
        for 270L
```


SAMPLE PREPARATION (1 sample)

```
Treatment : Cl2 exposure at 300 K at \(3.0 \mathrm{E}-7\) torr for 270L
```

Crystallinity:
Anal. methods:
Contamination: monitored by AES, LEED, and He diffr.

DATA COLLECTION

Technique: atom diffraction
Dataset : plots of reduced scattered He beam intensity as function of polar scattering angle for $\phi=0$ and 45° azimuths
Dataset :

STRUCTURE TYPE
Atomic adsorption in hollow sites
Coverage : $0.5 \mathrm{Cl} / \mathrm{Ag}$
Pattern : c(2x2)
Matrix : ($1.000,1.000$) (-1.000, 1.000)

STRUCTURES EXAMINED

1. simple Cl overlayer on hollow sites ($1 \AA$ corrugation); 2. mixed Cl/Ag coplanar layer (<0.1A corrugation); positions of the rainbow maxima in specular scans indicate corrugation of about $1 \AA$

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax ($\mathrm{A}^{\text {) }}$	Ay ($\mathrm{A}_{\text {) }}$	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	2.889	90.0	(1.000, 0.000)	(1)1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.889	2.889	-2.889	2.889	90.0	$\begin{array}{ll} (1.000, & 1.000) \\ (-1.000, & 1.000) \end{array}$	$c(2 \times 2)$	s1: commens. superlattice

30 COORDINATES
Cl1: overlayer in hollow sites; $0.2 \AA$ error bar assumed for tabulation
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C ($)$
2.831	Cl1	Ag2	Ag2(1,0)	120.7
2.831	Cl1	Ag2	Ag3	88.8
2.889	Ag2	Ag3		

SURFACE TYPE

Substrate : Ag
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment: exposure to chlorine from an electrotytic source
Crystallinity: checked by LEED
Anal. methods:
Contamination: monitored by AES
DATA COLLECTION
Technique: SEXAFS
Dataset : SEXAFS spectra: $2800<E<3200 \mathrm{eV}$ (Cl edge); photons at normal incidence only

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites on unrelaxed substrate
Coverage : $0.5 \mathrm{cl} / \mathrm{Ag}$
Pattern : $c(2 \times 2)$
Matrix $:(1.000,1.000)$
(-1.000, 1.000)

COMMENTS

THEORY/DATA TREATMENT
Fourier transform: correction for phase shifts optimized by fitting to EXAFS spectra for AgCl

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	
Bulk	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1×1)	Cell type
Surface 1	2.889	2.889	-2.889	2.889	90.0	$(1.000,1.000)$	bulk lattice	

3D COORDINATES
CL1: overlayer in 4-fold hollow sites
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk z $=2.043 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.690	$C l 1$	Ag2	Cl1 (1,0)	98.8
2.690	$\mathrm{Cl1}$	Ag2	Ag3	85.6

COMMON NAME $\mathrm{Ag}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$
CLASSIFICATION 47.17 .9

TECHNIQUE SIMS
AUTHORS
Che-Chen Chang and N. Winograd
REFERENCE : Surf. Sci., 230, 27 (1990)

SURFACE TYPE
Substrate : Ag
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : sputtering and annealing; exposure to 5L Cl2 at RT
Crystallinity: perfect LEED pattern
Anal. methods: SIMS, LEED
Contamination:
DATA COLLECTION
Technique: SIMS
Dataset : scans in the [001] and [011] directions scans with varying incident angles

```
Adsorbate: Cl
Coverage : 0.5 ML
Pattern : c(2x2)
Matrix : ( 1.000, 1.000)
                                (-1.000, 1.000)
```


STRUCTURE TYPE

Atomic adsorption in 4 -fold hollow site

COMMENTS

THEORY/DATA TREATMENT
Shadow-cone-enhanced desorption channeling-blocking

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (${ }_{\text {a }}$)	Bx ($\mathrm{A}^{\text {) }}$	By ($\mathrm{A}^{\text {) }}$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	2.889	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface	2.889	2.889	-2.889	2.889	90.0	$\left(\begin{array}{ll} (1.000, & 1.000) \\ (-1.000, & 1.000) \end{array}\right.$	$c(2 \times 2)$	s1: commens. superlattice

3D COORDINATES

C11: atomic overlayer in the 4 -fold hollow site
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 2
Bulk $z=2.043 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	Dx \pm ¢ ${ }^{\text {x }}$	Dy \pm ¢ \quad ¢	$D z \pm \epsilon z$	$\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{z} / \mathrm{Bz}$
epir subr ovrl subl	$\begin{gathered} \mathrm{Cl} \\ \mathrm{Ag} \end{gathered}$	-2 -1 1 2	s1	.50 1.00	0	$\begin{array}{ll} \\ 1.445 & \text { f } \\ 0.000 & A \\ 1.445 & A\end{array}$	 1.445 f 0.000 \AA 1.445 \AA	 2.043 A 0.000 A $1.608 \pm .040$ \AA	$\begin{gathered} 0.0 \\ 78.7 \pm 2.0 \end{gathered}$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.600	Cl		Ag 2	

COMMON NAME
CLASSIFICATION : 47.17.5a
TECHNIQUE : SEXAFS
AUTHORS : G.M. Lamble, R.S. Brooks, S. Ferrer, D.A. King and D. Norman
REFERENCE : Phys. Rev., B34, 2975 (1986)

SURFACE TYPE

Substrate : Ag
Crystal face: 111
Temperature : 100 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION (1 sample)
Treatment : dosed at room temperature with Cl from electrolytic source
Crystallinity:
Anal. methods:
Contamination: checked by AES and LEED
DATA COLLECTION
Technique: SEXAFS
Dataset : spectra measured above Cl K edge at around 2820 eV ; photon beam at normal incidence

STRUCTURE TYPE

Atomic adsorption in fcc hollow sites on unrelaxed substrate

COMMENTS

THEORY/DATA TREATMENT
EXAFS: phase shifts for Ag and Cl calculated from muffin-tin potential; SEXAFS: full multishell calculation

STRUCTURES EXAMINED
Fcc hollow site: Cl -Ag spacing varied

2D UNIT CELLS (1 domain observed)

Cl1: overlayer in fec hollow sites
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.699	$\mathrm{Cl1}$	Ag2	Ag3	177.1
2.893	Ag2	Ag2(1,0)		

COMMON NAME : $\operatorname{Ag}(111)-(\sqrt{3} x \sqrt{3}) R 30^{\circ}-2 C l$
ILLUSTRATION: 22,24
CLASSIFICATION: 47.17.5b
TECHNIQUE : SEXAFS
AUTHORS : G.M. Lamble, R.S. Brooks, S. Ferrer, D.A. King and D. Norman
REFERENCE : Phys. Rev., B34, 2975 (1986)

SURFACE TYPE

Substrate: Ag
Crystal face: 111
Temperature : 100 K
Bulk lattice: fcc
20 bulk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION (1 sample)
Treatment : dosed at room temperature with Cl from electrolytic source
Crystallinity:
Anal. methods:
Contamination: checked by AES and LEED

DATA COLLECTION

Technique: SEXAFS
Dataset : spectra measured above Cl K edge at around 2820 eV ; photon beam at normal incidence

STRUCTURE TYPE
Atomic adsorption in fcc hollow sites on unrelaxed substrate with 2 Cl per unit cell forming honeycomb lattice

COMMENTS

THEORY/DATA TREATMENT

EXAFS: phase shifts for Ag and Cl calculated from muffin-tin potential; SEXAFS: full multishell calculation

STRUCTURES EXAMINED
Fcc hollow sites (2 per cell): Cl-Ag spacing varied

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A)	BX (${ }^{\text {a }}$)	By (A)	α (${ }^{\circ}$)	Matrix	Pattern	Cell type
Bulk	2.893	0.000	1.446	2.505	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	4.339	2.505	-4.339	2.505	120.0	$\begin{array}{cc} (1.000, & 1.000) \\ (-2.000, & 1.000) \end{array}$	$(\sqrt{3} \times \sqrt{3}) R 30^{\circ}$	s1: commens. superlattice

3D COORDINATES

Cl1-cl2: honeycomb overlayer in fcc hollow sites
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk $z=2.360 \AA$

bOND DISTANCES AND angles

No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.699	$\mathrm{Cl1}$	$\mathrm{Ag3}$	$\mathrm{Cl2(0,-1)}$	64.8
$\mathrm{Ag3}(1,0)$ 2.893 2.891	$\mathrm{Ag3}$	$\mathrm{Ag3}$	$\mathrm{Ag4}$	

COMMON NAME : Ag(100)-(1×1)-3Co
CLASSIFICATION : 47.27.1
TECHNIQUE : ARXPS
AUTHORS : Hong Li and B.P. Tonner
REFERENCE : Phys. Rev., B40, 10241 (1989)

SURFACE TYPE

Substrate: Ag
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment: resistive heating of a 99.99-purity Fe wire
Crystallinity:
Anal. methods: LEED; XPS; AES; quartz microbalance for Contamination: $<2 \%$ of C and 0

DATA COLLECTION

Technique: ARXPS
Dataset : Co $2 p$ polar intensity scans at two azimuths

Adsorbate: Co
Coverage : $3 \mathrm{Co} /(1 \times 1)$
Pattern : (1x1)
Matrix : ($1.000,0.000$) ($0.000,1.000$)

STRUCTURE TYPE

Co grows in the bet structure, with its [110] parallel to the [100] of the fcc Ag(100) lattice; May have high
long-range disorder; but we here show ordered layers

COMMENTS

ARXPS was used in the fingerprint mode to identify the overlayer crystallography: no attempt was made to optimize structural parameters

IHEORY/DATA TREATMENT

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.892	0.000	0.000	2.892	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.892	0.000	0.000	2.892	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES

Co1-Co3: 3 bct layers of Fe

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.636	$\operatorname{Co1}$	$\operatorname{Co2}$	$\operatorname{Co3}$	101.8
2.892	$\operatorname{Co1}$	$\operatorname{Co1}(1,0)$	$\operatorname{Co1}(1,1)$	90.0
2.892	$\operatorname{Co3}$	Ag1	Ag1(1,1)	45.0

COMMON NAME : Ag(110)-(1x2) Cs-induced
ILLUSTRATION: 5
CLASSIFICATION : 47.55.2
TECHNIQUE : LEED
AUTHORS : C.J. Barnes, M. Lindroos, D.J. Holmes and D.A. King
REFERENCE : Surf. Sci., 219, 143 (1989)

SURFACE TYPE
Substrate: Ag
Crystal face: 110
Temperature : 100 K
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: prim
SAMPLE PREPARATION (1 sample)
Treatment: Ar+ sputtering, anneal 800 K
Crystallinity: crystal <10 from (110) plane
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : E range $50-250 \mathrm{eV}$

Adsorbate: Cs

Coverage : $0.16 \mathrm{Cs} / 1 \times 1$
Pattern : (1x2)
Matrix $:(1.000,0.000)$
($0.000,2.000$)

STRUCTURE TYPE

Mesured (1×2) reconstructive phase transition due to 0.16ML Cs adsorption; no Cs positions optimum (1x1) to (1x2) from 0.16ML Cs, anneal 550-600K

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 9 phase shifts from Moruzzi et al potential; Voi=-3.5 eV

STRUCTURES EXAMINED
Tested paired row and buckled models: pairing $0-0.6 \AA$ in $0.1 \AA$ steps;
buckling $0-1.6 \AA$ in $0.1 \AA$ steps
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.29$
2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay ($\hat{\text {) }}$	BX (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	4.086	90.0	($1.000,0.000$)	(1x1)	$b: ~ b u l k ~ l a t t i c e ~$
						(0.000, 1.000)		
Surface 1	2.889	0.000	0.000	8.172	90.0	$(1.000,0.000)$	(1x2)	s1: commens.
						(0.000, 2.000)		superlattice

3D COORDINATES

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z = $1.445 \AA$

Reg ion	Chem el.	At. no.	Cell type	site occ.	Ret. to	$D \mathbf{X} \pm \boldsymbol{x}$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon Z / B z$
epir		-2				f	f	\AA	
subr		-1				1.445 A	2.043 A	1.445 A	
intf	Ag	1	s 1	. 50	0	0.000 f	0.000 f	0.000 A	0.0
intf	Ag	2	s 1	. 50	1	0.500 f	$0.262 \pm .012 \mathrm{f}$	$1.280 \pm .100 \AA$	88.6 ± 6.9
intf	Ag	3	s 1	. 50	2	0.000 f	$-0.524 \pm .012 \mathrm{f}$	0.000 A	0.0
intf	Ag	4	s1	. 50	3	-0.500 f	$-0.238 \pm .012 \mathrm{f}$	$1.460 \pm .100 \AA$	101.1 ± 6.9
intf	Ag	5	s 1	. 50	4	0.000 f	0.500 f	$0.100 \pm .100 ~ A$	6.9 ± 6.9
subl	Ag	6	b	1.00	5	-0.500 f	-0.500 f	$1.360 \pm .100 \AA$	94.1 ± 6.9

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.889	Ag1	Ag1(1,0)		
2.884	Ag1	Ag2		
2.840	Ag1	Ag5		
2.828	Ag2	Ag4		
3.019	Ag2	Ag5		

AUTHORS : G.M. Lamble, R.S. Brooks, D.A. King and D. Norman

REFERENCE : Phys. Rev. Lett., 61, 1112 (1988)

SURFACE TYPE

Substrate:
Crystal face: 111
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: none
SAMPLE PREPARATION (1 sample)
Treatment : Cs evaporation at RT; coverage from AES and saturation
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED
DATA COLLECTION
Technique: SEXAFS
Dataset : SEXAFS total electron yield spectra for Cs L3 edge

> Adsorbate: Cs Coverage : $0.15 \mathrm{Cs} / \mathrm{Ag}$ Pattern $:$ disordered Matrix $:(1.000,0.000)$

STRUCTURE TYPE
Atomic adsorption in 3 -fold hollow site (fcc assumed here)

COMMENTS

Ay -Cs bond length coverage dependent (cf 0.3 ML structure)

THEORY/DATA TREATMENT

Comparison of Fourier filtered data and multishell curved wave calc; ph shs fit to EXAFS ph shs from CsBr and AgCl

QUALITY OF EXPERIMENT-THEORY FIT

Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.887	0.000	1.443	2.500	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.330	2.500	-4.330	2.500	120.0	$(0.000,1.000)$	$(1.000,0.000)$	disordered

3D COORDINATES
Cs1: disordered overlayer in 3-fold hollow sites (here fcc hollow assumed)
Dx/Dy in \mathcal{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
3.199	Cs1	Ag2	Cs1(1,0)	82.1 3.199 2.887

COMMON NAME	: Ag(111)-Cs 0.3ML disordered	
CLASSIFICATION	: 47.55 .1 b	
TECHNIQUE	: SEXAFS	
AUTHORS	G.M. Lamble, R.S. Brooks, D.A. King and D. Norman	
REFERENCE	: Phys. Rev. Lett., $61,112(1988)$	

SURFACE TYPE
Substrate: Ag
Crystal face: 111
Temperature : 120 K
Bulk lattice: fcc
20 bulk symm: p3m1
2D surf symm: none
SAMPLE PREPARATION (1 sample)
Treatment : Cs evaporation at RT; coverage from AES and saturation
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED
DATA COLLECTION

```
Adsorbate: Cs
Coverage : 0.3 Cs/Ag
Pattern : disordered
Matrix : ( 1.000, 0.000)
    (0.000, 1.000)
```


STRUCTURE TYPE

Atomic adsorption in 3 -fold hollow site (fcc assumed here)

COMMENTS
Ag-Cs bond length coverage dependent (cf 0.15ML structure)

THEORY/DATA TREATMENT
Comparison of fourier filtered data and multishell curved wave calc; ph shs fit to EXAFS ph shs from CsBr and AgCl

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	AY (A)	$B \times$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.887	0.000	1.443	2.500	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	4.330	2.500	-4.330	2.500	120.0	(1.000, 0.000)	disordered	nd1: non-recon.
						(0.000, 1.000)		lattice-gas dis

COORDINATES
Cs1: disordered overlayer in 3-fold hollow sites (here foc hollow assumed)
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=2.360 \AA$

BOND DISTANCES AND ANGLES

No. of distances/angles: 2

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.500	Cs1	Ag2		
2.887	Ag2	Ag2(1,0)		

COMMON NAME
Ag(100)-(1x1)-Cu multilayer
ILLUSTRATION: 83
CLASSIFICATION : 47.29.3
TECHNIQUE : SEXAFS
AUTHORS : D.T. Jiang, E.D. Crozier and B. Heinrich
REFERENCE : Phys. Rev., B44, 6401 (1991)

SURFACE TYPE

Substrate : Ag
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2 b bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (3 sample)
Treatment : Cu film grown in MBE chamber Crystallinity:
Anal. methods: NEXAFS (XANES); coverage from AES
Contamination:
DATA COLLECTION
Technique: SEXAFS; glancing angle EXAFS at SSRL
Dataset : XAFS fluorescence spectra near incident critical angle of 6.8 mrad

Adsorbate: Cu
Coverage : $8 \mathrm{Cu} / \mathrm{Ag}$
Pattern : (1x1)
Matrix : $\left(\begin{array}{ll}1.000, & 0.000) \\ 0.000, & 1.000\end{array}\right)$

STRUCTURE TYPE
About 8 epitaxial (1x1) monolayers, forming strained fec Cu

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.880	0.000	0.000	2.880	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.880	0.000	0.000	2.880	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
							s1: cormens. superlattice	

3D COORDINATES
coordinates are derived from bond distances
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{D} \quad \pm \epsilon \mathrm{X}$	Dy $\pm \epsilon y$	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr intf intf intf subl	Cu Cu Cu Cu	-2 -1 1 2 3 4	b b b b	1.00 1.00 1.00 1.00	0 1 2 3	$\begin{array}{rr} & f \\ -1.440 & \AA \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \\ 0.500 & f \end{array}$	f -1.440 A 0.000 f 0.500 f -0.500 f 0.500 f	\AA 1.550 A 0.000 A $1.550 \pm .020$ \AA $1.550 \pm .020$ \AA $1.550 \pm .020$ A	0.0 100.0 ± 1.3 100.0 ± 1.3 100.0 ± 1.3

No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.880	Cu 1	$\mathrm{Cu}(1,0)$	Cu	
2.559	Cu 1	CuZ	$\mathrm{Cu3}$	55.8
2.559	$\mathrm{Cu2}$	Cu 3	Cu 4	74.6

COMMON NAME	$: A g(100)-(1 \times 1)-2 C u$
CLASSIFICATION	$: 47.29 .2 a$
TECHNIQUE	$:$ LEED
AUTHORS	H. Li, D. Tian, J. Quinn, Y.S. Li, F. Jona and P.M. Marcus
REFERENCE	$:$ Phys. Rev., B43, 6342 (1991)

CLASSIFICATION : 47.29.2a

REFERENCE : Phys. Rev., B43, 6342 (1991)

SURFACE TYPE
Substrate: Ag
Adsorbate: Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
Pattern : (1x1)
Matrix $:(1.000,0.000)$
$(1.000,0.000)$
$(0.000,1.000)$

```
Coverage : 2.0 Cu/Ag bec Cu
```


STRUCTURE TYPE

2 to 3 epitaxial (1x1) monolayers, forming metastable

SAMPLE PREPARATION (1 sample)
Treatment: Cu evaporated from Cu single crystal Crystallinity: broad LEED beams, increased background
Anal. methods: ARPES; coverage from AES
Contamination: monitored by AES

DATA COLLECTION
Technique: LEED; video LEED
Dataset : IV spectra for 3 beams at normal incidence: (10), (11), (20); $50<E<280 \mathrm{eV}$

COMMENTS

Limited amount of long-range order found: tabulated structure refers to ordered part only; coverages measured in layer-equivalents (i.e. giving equivalent AES signal as layer-by-layer growth); 2-layer model tabulated here; 3-layer model gives slightly worse R-factors

THEORY/DATA TREATMENI
Dynamical LEED (CHANGE code): Moruzzi et al pots, 8 ph shs; Vor=-10 eV, Voi=-4eV; rms vibs $0.156 \AA$

STRUCTURES EXAMINED
Fcc continuation; 1 to 4 monolayers and semi-infinite Cu with lateral Ag(100) lattice constant tried; spacings varied: 'bulk' $\mathrm{Cu}, \mathrm{Cu}-\mathrm{Ag}$

QUALITY OF EXPERIMENT-THEORY FIT
RVHT $=0.45$, RPE $=0.72, R Z J=0.25$
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	$A y(A)$	$B x(\AA)$	$B y(A)$	$\alpha\left(^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1×1)	$(0.000,1.000)$

$3 D$ COORDINATES

Cui-Cu2: 2 (1x1) epitaxial monolayers, continuing flattened Ag fcc lattice with bcc-like strain

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond ang(e A-B-C (
2.889	Cu1	Cu1(1,0)	Cu2	54.8
2.505	Cu1	Cu2	Ag3	72.0
2.546	Cu2	Ag3	Ag4	81.7

COMMON NAME	$:$ Ag(100)-(1×1)-5Fe (bcc)
CLASSIFICATION	$: 47.26 .0 a$
TECHNIQUE	: ARXPS
AUTHORS	: Hong Li and B.P. Tonner
REFERENCE	: Phys. Rev., B40, 10241 (1989)

SURFACE TYPE

Temperature : RT
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : resistive heating of a 99.997-purity Fe wire
Crystallinity:
Anal. methods: LEED; XPS; AES; quartz microbalance for Contamination: $<2 \%$ of C and O

DATA COLLECTION

Technique: ARXPS

Dataset : Fe 2p3/2 polar intensity scans at two azimuths

```
Adsorbate: Fe
Coverage : 5 Fe/(1x1)
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
    ( 0.000, 1.000)
```


STRUCTURE TYPE

Fe grows in the bce structure, with its [110] parallel to the [100] of the fcc Ag(100) lattice; 2 and 3.5 MLs show layer-by-layer growth and sharp (1xi) LEED patterns; at 5 ML , long-range order is lost, but the local bec order is preserved

COMMENTS

ARXPS was used in the fingerprint mode to identify the overlayer crystallography: no attempt was made to optimize structural parameters

THEORY/DATA TREATMENT

CASSIFICATION : 47.26.0a
TECHNIQU
REFERENCE : Phys. Rev., B40, 10241 (1989)

STRUCTURES EXAMINED
No structure optimization

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	AY (A)	$B X(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.892	0.000	0.000	2.892	90.0	(1.000, 0.000)	(1×1) (1×1)	b: bulk lattice s1: commens. superlattice
						(0.000, 1.000)		
Surface 1	2.892	0.000	0.000	2.892	90.0	$(1.000,0.000)$		
						(0.000, 1.000)		

3D COORDINATES
Fe1-fe5: 5 bcc layers of Fe

Dx/Dy in $\AA_{\text {, }}$ or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.505	Fe 1	Fe 2	Fe 3	90.0
2.892	Fe 1	$\mathrm{Fe} 1(1,0)$	$\mathrm{Fe} 1(1,1)$	90.0
2.892	$\mathrm{Fe5}$	Agi	Ag1(1,1)	45.0

COMMON NAME	$:$ Ag(100)-(1x1)-Fe muttilayer	
CLASSIFICATION	$: 47.26 .1$	
TECHNIQUE	LEED	
AUTHORS	H. Li, Y.S. Li, J. Quinn, D. Tian, J. Sokolov, F. Jona and	
	P.M. Marcus	
REFERENCE	: Phys. Rev., B42, 9195 (1990)	

STRUCTURE TYPE

About 25 epitaxial (1×1) monolayers, forming bct fe (slightly distorted from bcc)

SAMPLE PREPARATION (1 sample)
Treatment
Crystallinity:
Anal. methods: coverage from AES
Contamination: monitored by AES
DATA COLLECTION

```
Coverage : 25 Fe/Ag
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
( 0.000, 1.000)
```

Technique: LEED; video LEED
Dataset : IV spectra at normal incidence:
(10),(11),(20),(21); $60<E<360 \mathrm{eV}$

COMMENTS

BCC Fe structure cannot be excluded; it would imply a 0.8% different lateral lattice constant from $\operatorname{Ag}(100)$, a difference which LEED could not detect

THEORY/DATA TREATMENT
Dynamical LEED

STRUCTURES EXAMINED
Semi-infinite $\mathrm{Fe}(100)$ with lateral $\mathrm{Ag}(100)$ lattice constant;
spacings varied: 'bulk' Fe, top two Fe-Fe
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.16$
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	AY (A^{\prime})	$B x$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	0.000	2.889	90.0	(1.000, 0.000)	(1x1)	$b: ~ b u l k ~ l a t t i c e ~$
						(0.000, 1.000)		
Surface 1	2.889	0.000	0.000	2.889	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

30 COORDINATES
$1.42 \AA$ bulk spacing was fit, keeping lateral Ag distance
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors
No. of atoms: $4 \quad$ Bulk z = $1.420 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.889	Fe1	Fel(1,0)	Fe2	54.8
2.505	Fe1	Fe 2	Fe3	70.7
2.505	Fe 2	Fe3	Fe4	70.2

COMMON NAME
CLASSIFICATION 47.53.

TECHNIQUE LEED
AUTHORS : F. Forstmann, W. Berndt and P. Buttner
REFERENCE : Phys. Rev. Lett.: 30, 17 (1973)

SURFACE TYPE

Substrate : Ag	Adsorbate: 1
Crystal face: 111	Coverage : $1 / 3 \mathrm{I} / \mathrm{Ag}$
Temperature : RT*	Pattern : $(\sqrt{3} \times \sqrt{3}) R 30^{\circ}$
Bulk lattice: fcc	Matrix $:(1.000,1.000)$
2D bulk sym: p3m1	
2D surf symm: p31m	

2D surf symm: p31m
SAMPLE PREPARATION (1 sample)
Treatment: 20E-6 L exposure from 12 gas at RT
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; spot photometer and Faraday cup Dataset : at least 3 independent beams at $\theta=8^{\circ}$ in [-211] azimuth; E range $10-140 \mathrm{eV}$

STRUCTURE TYPE

Atomic adsorption in 3 -fold fec hollow sites on unrelaxed substrate

COMMENTS

For iodine, atomic, ionic and averaged phase shifts were tried: atomic fit best

THEORY/DATA TREATMENT

Dynamical LEED (RFS): pots have HF Coulomb and SWW exchange; Vor=-11 eV (fit), Voi=-4eV; empirical Debye-Waller factor

STRUCTURES EXAMINED
Unrelaxed bulk; top, fcc-and hcp-hollow sites; variable I-Ag spacing
QUALITY OF EXPERIMENT - THEORY FIT
Visual: moderate
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.889	0.000	1.445	2.502	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.334	2.502	0.000	5.005	60.0	$(0.000,1.000)$	$(1.000,1.000)$	$(\sqrt{3 x} 33) R 30^{\circ}$

3D COORDINATES
I1: overlayer in fec hollow sites
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=2.359 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.801	$I 1$	Ag2	Ag2(1,0)	121.1
2.801	11	Ag2	Ag3	180.0
2.889	Ag2	Ag2(1,0)		

COMMON NAME : $\mathrm{Ag}(111)-(\sqrt{3} x \sqrt{3}) R 30^{\circ}-I$
CLASSIFICATION : 47.53.4
TECHNIQUE : LEED
AUTHORS : M. Maglietta, E. Zanazzi, U. Bardi, D. Sondericker and F. Jona
REFERENCE : Surf. Sci., 123, 141 (1982)

SURFACE TYPE

Substrate $: ~ A g$	Adsorbate: 1
Crystal face: 111	Coverage : $0.331 / \mathrm{Ag}$
Temperature: RT	Pattern : $(\sqrt{3} \times \sqrt{3}) R 30^{\circ}$
Bulk lattice: fcc	Matrix $:(1.000,1.000)$
2D bulk symm: p3mi	
2D surf symm: p31m	

SAMPLE PREPARATION (1 sample)

Treatment : exposure at $373-423 \mathrm{~K}$ to 1 vapor at 1E-2 torr, then annealed
Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 3 beams at $\Theta=0, \phi=141.5^{\circ}, 6$ beams at $0=10, \phi=141.5^{\circ}, 5$ beams at $\Theta=30, \phi=-38.5^{\circ}, 40<E<160 \mathrm{eV}$

STRUCTURE TYPE

Atomic adsorption mostly (55-75\%) in fec hollows, but also in hcp hollows (only fcc structure is tabulated here)

COMMENTS

Mixed fcc and hep hollows is in disagreement with earlier work of Forstmann et al, Phys. Rev. Lett. 30, 17 (1973), which favored fcc hollows

THEORY/DATA TREATMENT

Dynamical LEED (CHANGE): 8 phase shifts; 93 beams; Vor=-11 eV (best fit), Voi=-4eV, rms vibr ampl=0.16\&

STRUCTURES EXAMINED

1) 3-fold fcc-hol Low sites: I-Ag spacing 2.15-2.35Å; 2) mixed Ag/l wurtzite type layer;
substitutional model: $1 / 3$ top layer Ag sites occupied by I; domains of I in fcc and hcp sites: concentration of fcc domains varied from 55 to 100\%

QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.22$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.887	0.000	1.443	2.500	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.330	2.500	-4.330	2.500	120.0	$(1.000,1.000)$	$(\sqrt{3} \times \sqrt{3})$ R30	

3D COORDINATES

11: overlayer in fec hollows (coexisting with I in hep hollows, not tabulated here)
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk $2=2.360 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.832	11	Ag2	Ag2(1,0)	120.6
2.832	$I 1$	Ag2	Ag3	180.0
2.889	Ag2	Ag3		

COMMON NAME : Ag(110)-(2xi)-0
CLASSIFICATION : 47.8.4
TECHNIQUE : SEXAFS

AUTHORS : A. Puschmann and J. Haase
REFERENCE : Surf. Sci., 144, 559 (1984)

SURFACE TYPE
Substrate: Ag
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm
SAMPLE PREPARATION (1 sample)
Treatment : oxygen exposure at RT and pressures <1.0E-9 torr
Crystallinity:
Anal. methods:
Contamination: 2000L gave sharp (2x1) LEED pattern

DATA COLLECTION

Technique: SEXAFS; oxygen K-edge SEXAFS
Dataset : SEXAFS spectra (500-800 eV photons) for E-vector parallel to [110], and for E parallel to [100]

Adsorbate: 0
Coverage : $0.50 / \mathrm{Ag}$
Pattern : (2×1)
Matrix : (2.000, 0.000)
($0.000,1.000$)

STRUCTURE TYPE

Atomic adsorption in long-bridge sites (short-bridge sites w.r.t. 2nd Ag layer)

COMMENTS

Use made of the effective coordination number of the central atom by the scatterers, determined from SEXAFS amplitude; bulk coordination for substrate was assumed

THEORY/DATA TREATMENT

Fourier transform, using polar and azimuthal dependence of signal

STRUCTURES EXAMINED
Long-bridge site, 2 -fold and 3 -fold hollow sites, short-bridge site with 0 above or below top Ag plane

2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	AY (A)	Bx (A)	By (A)	α (${ }^{\circ}$	Matrix	Pattern	Cell type
Bulk	2.890	0.000	0.000	4.090	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	5.780	0.000	0.000	4.090	90.0	$(2.000,0.000)$	(2x1)	s1: commens.
						(0.000, 1.000)		superlattice

30 COORDINATES
01: overlayer in long-bridge site, bonding to 2 Ag atoms in 1st Ag layer, and to 2 Ag atoms in $2 n d$ Ag layer; $0.1 \AA$ error bar assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \quad \pm \epsilon \mathrm{X}$	Dy $\pm \epsilon \boldsymbol{y}$	$\mathrm{Dz} \pm \boldsymbol{\epsilon} \mathbf{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr ovrl intf subl	0 Ag Ag	-2 -1 1 2 3	$s 1$ b b	$\begin{array}{r} .50 \\ 1.00 \\ 1.00 \end{array}$	0 1 2	$\begin{array}{ll} & \\ 1.445 & f \\ 0.000 & A \\ 0.000 & f \\ 0.500 & f\end{array}$	$\begin{array}{rr} & f \\ -2.045 & A \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \end{array}$	$\begin{array}{ll} & A \\ 1.445 & A \\ 0.000 & A \\ 0.200 \pm .100 & \AA \\ 1.445 & \\ \AA \end{array}$	$\begin{array}{cc} 0.0 & \\ 13.8 \pm 6.9 \\ 100.0 & \end{array}$

BOND DISTANCES AND ANGLES

No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.055	01			
Ag2 2.190 2.891	01	Ag2	Ag	$01(0,1)$

COMMON NAME	$:$ Ag(100)- $\mathrm{c}(2 \times 2)$-Se
CLASSIFICATION	$: 47.34 .1$
TECHNIQUE	$:$ LEED
AUTHORS	A. Ignatiev, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE	$:$ Surf. Sci., 40, 439 (1973)

AUTHORS : A. Ignatiev, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Surf. Sci., 40, 439 (1973)

SURFACE TYPE

Substrate: Ag	Adsorbate: Se
Crystal face: 100	Coverage : $0.5 \mathrm{Se} / \mathrm{Ag}$
Temperature: RT	Pattern :c(2x2)
Bulk lattice: fcc	Matrix : $1.000,1.000)$
2D bulk symm: P4m	
2D surf symm: 04 m	

STRUCTURE TYPE
Atomic adsorption in hollow sites
Coverage : $0.5 \mathrm{Se} / \mathrm{Ag}$
Pattern : c(2x2)
Matrix : $\begin{array}{r}(1.000,1.000) \\ (-1.000,1.000)\end{array}$

SAMPLE PREPARATION (1 sample)
Treatment : Se source was a pre-evacuated pyrex vial
Crystallinity:
Anal. methods:
Contamination: monitored by LEED

DATA COLLECTION
Technique: LEED
Dataset : I-V curves: $(0,0),(1,0)$, and ($0.5,0.5$) beams at $\Theta=5^{\circ}, \phi=0$ and 90°

COMMENTS

Good agreement obtained between theory and experiment with the integral order spectra for 4 -fold hollow site; agreement was not good for any of the models tested for the fractional order beams; work was reported to be in progress for testing a mixed Se-Ag layer model

THEORY/DATA TREATMENT
Dynamical LEED (layer KKR): 8 phase shifts, 56 beams $\Theta 0=150 \mathrm{~K}(\mathrm{Se}), 215 \mathrm{~K}(\mathrm{Ag})$

STRUCTURES EXAMINED
Hollow, top and bridge sites; Se-Ag spacing varied between 1.1 and $2.6 \AA$
QUALITY OF EXPERIMENT - THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A X(A)$	Ay (A)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.892	0.000	0.000	2.892	90.0	$(1.000,0.000)$	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.892	2.892	-2.892	2.892	90.0	$\begin{array}{cc} (1.000, & 1.000) \\ (-1.000, & 1.000) \end{array}$	$c(2 \times 2)$	si: commens. superlattice

30 COORDINATES

Se1: overlayer in hollow sites
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.798	Se1	Ag2	Ag2(1,0)	121.1
2.798	Se1	Ag2	Ag3	88.1
2.892	Ag2	Ag3		

COMMON NAME	$:$ Ag(111)-Xe incommensurate	ILLUSTRATION: 82
CLASSIFICATION	$: 47.54 .1$	
TECHNIQUE	LEED	
AUTHORS	P.I. Cohen, J. Unguris and M.B. Webb	
REFERENCE	: Surf. Sci., $58,429(1976)$	

SURFACE TYPE
Substrate: Ag
Crystal face: 111
Temperature : 25 K Bulk lattice: fcc 2D bulk symm: p3m1 2D surf symm: none

SAMPLE PREPARATION (1 sample)
Treatment : Xe admitted at 25 K until sharp diffraction ring appeared
Crystallinity:
Anal. methods:
Contamination: diffuse scattering: <0.002ML impurities
DATA COLLECTION
Technique: LEED
Dataset : I-k curves: (00) beam at 10 polar angles, E range $40-380 \mathrm{eV}$

STRUCTURE TYPE
Atomic physisorption in dense incommensurate hexagonal monolayer with variable overlayer lattice orientation; Xe 20 lattice constant 4.44 ± 0.01 A; monolayer assumed planar

COMMENTS

THEORY/DATA TREATMENT

Kinematic LEED (constant momentum transfer averaging and Fourier transform): ms vibr. ampl. $=0.004575$ A 2

STRUCTURES EXAMINED
Variation of $\mathrm{Xe}-\mathrm{Ag}$ spacing, assuming no buckling

2D UNIT CELLS (0 domain observed)

Cell	$A x(\AA)$	Ay (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.880	0.000	-1.440	2.494	120.0	(1.000, 0.000)	(1×1)	b : bulk lattice
						(0.000, 1.000)		
Surface 1	4.440	0.000	-2.220	3.845	120.0	$(1.542,0.000)$	incommensurate	i1: incorm.
						(0.000, 1.542)		superlattice

3D COORDINATES
Xe1: incommensurate overlayer; $0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=2.350 \AA$

COMMON NAME : Ag(111)-Xe incommensurate
ILLUSTRATION: 82
CLASSIFICATION : 47.54.2
TECHNIQUE : LEED
AUTHORS : N. Stoner, M.A. Van Hove, S.Y. Tong and M.B. Webb
REFERENCE : Phys. Rev. Lett., 40, 243 (1978)

SURFACE TYPE
Substrate : Ag
Crystal face: 111
Temperature : 25 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: none

SAMPLE PREPARATION (1 sample)

Treatment: Xe admitted at 25 K until sharp diffraction ring appeared
Crystallinity:
Anal. methods:
Contamination: diffuse scattering: <0.002ML impurities
DATA COLLECTION
Technique: LEED
Dataset : I-V curves

STRUCTURE TYPE

Atomic physisorption in dense incommensurate hexagonal monolayer with variable overlayer lattice orientation; Xe 2D lattice constant 4.44 ± 0.01 A; monolayer assumed planar

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED: RFS for substrate, special perturbation method for substrate-adsorbate region

STRUCTURES EXAMINED
Xe-Ag spacing varied

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (0 domain observed)

Xe1: incommensurate overlayer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \quad \pm \boldsymbol{x}$	Dy $\pm \boldsymbol{\pm}$	$D z \pm \epsilon 2$	$D z / B z(\%) \pm \in z / B z$
epir subr ovrl intf subl	$\begin{aligned} & \mathrm{Xe} \\ & \mathrm{Ag} \\ & \mathrm{Ag} \end{aligned}$	-2 -1 1 2 3	i 1 b b	$\begin{array}{r} .42 \\ 1.00 \\ 1.00 \end{array}$	0 1 2	f 1.440 \AA 0.000 f 0.000 f 0.667 f	$\begin{array}{ll} & f \\ 0.831 & f \\ 0.000 & f \\ 0.000 & f \\ 0.333 & f \end{array}$	$\begin{array}{ll} & A \\ 2.360 & A \\ 0.000 & A \\ 3.550 \pm .100 & A \\ 2.360 & A \end{array}$	$\begin{array}{cc} 0.0 \\ 150.4 \pm & \\ 100.0 \end{array}$

```
COMMON NAME : AgBr(100)-(1x1)
CLASSIFICATION : 47.35.2a
TECHNIQUE : SEXAFS
AUTHORS : P. Tangyunyong, T.N. Rhodin, Y.T. Tan and K.J. Lushington
REFERENCE : Surf. Sci., 255, 259 (1991)
```

SURFACE TYPE

Substrate : AgBr	Adsorbate:
Crystal face: 100	Coverage :
Temperature: 30 K	Pattern : (1x1)
Bulk lattice: NaCl	Matrix : $1.000,0.000)$
20 bulk symm: 04 m	

STRUCTURE TYPE

Unreconstructed bulk-like termination without
layer relaxation

COMMENTS

THEORY/DATA TREATMENT

Fourier filtering and multishell curve-fitting

DATA COLLECTION

Technique: SEXAFS
Dataset : SEXAFS data taken at Ag and Br adsorption
condition

edges at x-ray total external reflection

sheet crystals grown with a
gradient-growth technique
Crystallinity:
Anal. methods:
Contamination:
Treatment : gradient-growth technique

2D surf symm: p4m

SAMPLE PREPARATION (1 sample)

STRUCTURES EXAMINED
No contractions in the first- and second nearest-neighbor distances were observed for both Br and Ag

20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.083	0.000	0.000	4.083	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.083	0.000	0.000	4.083	90.0	$(1.000,1.000)$	(1×1)	(1.000) s1: commens. superlattice

3D COORDINATES
Ag1-Br2: non-buckled top layer; Ag3-Br4: periodically repeating bulk layers;
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=2.887 \AA$

$\begin{aligned} & \text { Reg } \\ & \text { ion } \end{aligned}$	Chem el.	At. no.	Cell type	Site occ.	Rel. to	Dx $\pm \in \mathbf{X}$	Dy $\pm \epsilon y$	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				2.042 A	2.042 A	2.887 \&	
intf	Ag	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Br	2	b	1.00	1	0.500 f	0.500 f	0.000 A	0.0
subl	Ag	3	b	1.00	2	0.000 f	0.000 f	$2.887 \pm .010 \AA$	$100.0 \pm .3$
subl	Br	4	b	1.00	3	0.500 f	0.500 f	$0.000 \pm .010 \AA$	$0.0 \pm .3$

BOND DISTANCES AND ANGLES

No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.887	$\mathrm{Ag1}$	Br 2	$\mathrm{Ag} 1(1,1)$	180.0
2.887	$\mathrm{Ag1}$	Br 4	$\mathrm{Ag3}$	90.0
2.887	$\mathrm{Br2}$	$\mathrm{Ag3}$	$\mathrm{Br} 4(1,1)$	90.0
2.887	Ag 3	$\mathrm{Br} 4(1,1)$	$\mathrm{Ag} 1(1,1)$	90.0

COMMON NAME	: $\operatorname{AgBr}(111)-(2 \times 1)$		
CLASSIFICATION	: 47.35.2b		
technique	SEXAFS		
AUTHORS	: P. Tangyunyong, T.N. Rhodin, Y.t. Tan		
REFERENCE		, 255, 259	(1991)
SURFACE TYPE			
Substrate :	AgBr	Adsorbate	
Crystal face:	111	Coverage	
Temperature :	30 K	Pattern	(2×1)
Bulk lattice:	NaCl	Matrix	(2.000, 0.000)
2D bulk symm:	p3m1		(0.000, 1.000)

ILLUSTRATION: 151
CLASSIFICATION: 47.35 .2 b
TECHNIQUE
AUTHORS : P. Tangyunyong, T.N. Rhodin, Y.T. Tan and K.J. Lushington
REFERENCE : Surf. Sci., 255, 259 (1991)

SURFACE TYPE
rystal face: 111
Bulk lattice: NaCl
2D bulk symm: p3m1
2D surf symm: pm

```
Adsorbate:
Coverage :
Pattern : (2x1)
    ( 0.000, 1.000)
```


STRUCTURE TYPE

Ag-terminated surface with (2×1) reconstruction:
every second row of Ag ions is missing in the top
layer; first three interlayer spacings are contracted

SAMPLE PREPARATION (1 sample)

Treatment : sheet crystals grown with a gradient-growth technique
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION

Technique: SEXAFS
Dataset : SEXAFS data taken at Ag and Br adsorption edges at x-ray total external reflection condition

COMMENTS

THEORY/DATA TREATMENT

Fourier filtering and multishell curve-fitting methods

STRUCTURES EXAMINED

Measured contractions in the nearest-neighbor $\mathrm{Ag}-\mathrm{Br}$ and next-nearest-neighbor $\mathrm{Ag}-\mathrm{Ag}$ and $\mathrm{Br}-\mathrm{Br}$ distances were compared with those of two surface reconstructions predicted by theoretical calculation: alternate row model with Ag in the top layer agrees best with the data

2D UNIT CELLS (3 domains observed)

Cell	Ax (${ }_{\text {a }}$)	Ay ($\mathrm{A}^{\text {) }}$	Bx (${ }_{\text {A }}$)	By ($\mathrm{A}^{\text {) }}$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.083	0.000	2.042	3.536	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	8.166	0.000	2.042	3.536	60.0	$\begin{array}{ll} (2.000, & 0.000) \\ (0.000, & 1.000) \end{array}$	(2x1)	s1: commens.

3D COORDINATES
Ag1: rows in top layer with every other row missing; Br 2 : second hexagonal close packed layer; Ag3-Br4: periodically repeating bulk pair of layers

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

No. of distances/angles: 7

Interatomic dist. $A-B(A)$	Atom A	Atom 8	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.867	Ag1	Br2(0,-1)	Ag3	89.4
2.867	Br2	Ag1 $(1,1)$	Br2(1,0)	90.8
2.877	Br2	Ag3	Br2(0,-1)	90.4
2.878	Ag3	Br2(0,-1)	Ag1	89.4

$\operatorname{AgBr}(111)-(2 \times 1)$
47.35.2b

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.877	Ag3	Br4	$\operatorname{Ag} 3(0,-1)$	90.4
2.887	Ag5	Br4(1,1)	$\operatorname{Ag3}(1,1)$	180.0
2.887	Ag5	Br6	Ag1 (1,0)	60.0

COMMON NAME	: $A l(100)-(1 \times 1)$
CLASSIFICATION	$: 13.15 a$
TECHNIQUE	: LEED
AUTHORS	: M.A. Van Hove, S.Y. Tong and N. Stoner
REFERENCE	: Surf. Sci., 54, 259 (1976)

ILLUSTRATION: 2
CLASSIFICATION : 13.15a
AUTHORS : M.A. Van Hove, S.Y. Tong and N. Stoner
REFERENCE : Surf. Sci., 54, 259 (1976)

SURFACE TYPE
Substrate: Al Crystal face: 100
Temperature : 110 K
Bulk lattice: fcc
2D bulk symm: p4m
20 surf symm: p4m

```
Adsorbate:
Coverage :
Pattern : (1\times1)
Matrix : ( 1.000, 0.000)
( 0.000, 1.000)
Coverage :
Matrix : ( \(1.000,0.000)\)
( 0.000, 1.000)
```

STRUCTURE TYPE
Unrelaxed bulk termination

SAMPLE PREPARATION (1 sample)
Treatment : mech. polishing, then electropolishing and $X e$ sputtering
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination: AES: <0.5\% ML O

DATA COLLECTION
Technique: LEED; spot photometer Dataset :

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (RFS): Snow self consistent potential; Vor $=-7.5 \mathrm{eV}$, Voi=-4. 1 eV ; $00=356 \mathrm{~K}$

STRUCTURES EXAMINED
Top spacing varied from 1.725 to $2.225 \AA$ in $0.1 \AA$ steps
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	0.000	2.860	90.0	$(1.000,0.000)$	(1x1)	
Surface 1	2.860	0.000	0.000	2.860	90.0	$(0.000,1.000)$	b: bulk lattice	
					$(1.000,0.000)$	(1x1)		

3D COORDINATES

Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $2 \quad$ Bulk $2=2.025 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \pm \mathrm{Ex}$	Dy $\pm \epsilon y$	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm E z / B z$
epir subr int ${ }^{f}$ subl	Al	-2 -1 1 2	b	1.00 1.00	0	$\begin{array}{ll} & \\ 1.430 & f \\ 0.000 & A \\ 0.500 & f\end{array}$	$\begin{array}{ll} & \\ 1.430 & A \\ 0.000 & f \\ 0.500 & f\end{array}$	$\begin{array}{ll} & A \\ 2.025 & A \\ 0.000 \\ 2.025 \pm .100 & A\end{array}$	0.0 100.0 ± 4.9

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	Al1	Al1(1,0)		
2.862	$A l 1$	Al2		

COMMON NAME	$:$ Al(100)-(1x1)
CLASSIFICATION	$: 13.16 a$
TECHIQUE	$:$ LEED
AUTHIRS	$:$ Groupe d'Etude des Surfaces (Grenoble)
REFERENCE	$:$ Surf. Sci., 62,567 (1977)

SURFACE TYPE

Substrate : Al
Crystal face: 100
Temperature : 293 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : crystal spark cut and given several hours Ar+ bombardment
Crystallinity: sharp LEED spots
Anal. methods:
Contamination: AES
DATA COLLECTION
Technique: LEED
Dataset : IV curves for (00) beam for a range of angles and primary beam energies of 10 to 190 eV

Adsorbate:

Coverage :
Pattern : (1x1)
Matrix $:\left(\begin{array}{l}1.000,0.000) \\ (0.000,1.000)\end{array}\right.$

STRUCTURE TYPE
Unrelaxed bulk termination

COMMENTS
Voi was found to be energy dependent, decreasing from Voi=-3.4 eV at 10 eV to Voi $=-5 \mathrm{eV}$ at 120 eV primary beam energy; best fit for Vor=-12 $\pm 2 \mathrm{eV}$

THEORY/DATA TREATMENT

Dyn. LEED (intralayer m / s treated exactly, interlayer m / s assumes 00 beam dominates forward scattering): $00=380 \mathrm{~K}$

STRUCTURES EXAMINED

Only truncated bulk

QUALITY OF EXPERIMENT-THEORY FIT

Visual
20 UNIT CELLS (1 domain observed)

Cell	$A x(\hat{A})$	AY (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	0.000	2.860	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.860	0.000	0.000	2.860	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $2 \quad$ Bulk $z=2.022 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	$A l 1$	Al1(1,0)		
2.860	$A l 1$			

COMMON NAME	$:$ Al $(100)-(1 \times 1)$	ILLUSTRATION: 2
CLASSIFICATION	$: 13.26$	
TECHNIQUE	$:$ MEED	
AUTHORS	N. Masud, R. Baudoing, D. Aberdam and C. Gaubert	
REFERENCE	: Surf. Sci., $133,580(1983)$	

SURFACE TYPE
Substrate : Al
STRUCTURE TYPE
Crystal face: 100
Temperature : 77 K
Bulk lattice: fcc
2D bulk symm: p4m
20 surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment:
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: MEED
Dataset : rot. diagram at $980 \mathrm{eV} ; \phi$ range $0-45^{\circ} ; \Theta$ range $40-82^{\circ}$

Adsorbate:
Coverage :
Pattern : (1x1)
Bulk termination with possible slight top contraction

Matrix : ($1.000,0.000)$
($0.000,1.000$)

COMMENTS

Vor small because exchange potential is small at high energies
R-factor: mean square deviation of the peak energies in theory and experiment, averaged over 50 spectra

THEORY/DATA TREATMENT
MEED (chain method with full mult. scattering in the layers, RFS between layers); 17 phase shifts; Vor=-5 eV, Voi=-3 eV

STRUCTURES EXAMINED

Top spacing relaxations of $+10 \%+5 \% 0 \%-5 \%-10 \%$, interpolated to best fit of -1.5%
QUALITY OF EXPERIMENT-THEORY FIT
See comments
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	0.000	2.860	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.860	0.000	0.000	2.860	90.0	$(1.000,1.000)$	(1×1)	(1) s1: commens. superlattice

3D COORDINATES
$0.1 \AA$ error bar assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk $z=2.022 \AA$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $A-B(A)$	Atom A	A Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	$A l 1$	$A l 1(1,0)$	$A l 2$	60.2
2.881	$A l 1$	$A(2$	$A l 1(1,0)$	59.5
2.881	$A l 1$	$A l 2$	$A l 2(1,0)$	119.8
2.860	$A l 2$	$A l 3$	$A l 2(0,-1)$	60.0

COMMON NAME : Al(110)-(1x1)
ILLUSTRATION: 4
CLASSIFICATION: 13.16b
TECHNIQUE : LEED
AUTHORS : Groupe d'Etude des Surfaces (Grenoble)
REFERENCE : Surf. Sci., 62, 567 (1977)

SURFACE TYPE

Substrate: Al
Adsorbate:
Coverage :
Pattern : (ix1)
Matrix $:(1.000,0.000)$
(0.000, 1.000)
Temperature : 293 K
Bulk lattice: fcc
2D bulk symm: pmm

20 surf symm: pmm
SAMPLE PREPARATION (1 sample)
Treatment : crystal spark cut and given several hours $\mathrm{Ar}+$ bombardment
Crystallinity: sharp LEED spots
Anal. methods:
Contamination: AES
DATA COLLECTION
Technique: LEED
Dataset : $1-V$ curves for (00) beam for a range of angles; E-range $10-190 \mathrm{eV}$

STRUCTURES EXAMINED
Contraction of outermost layer only by $0-15 \%$
QUALITY OF EXPERIMENT-THEORY FIT
Visual

STRUCTURE TYPE
Relaxed bulk termination
Relaxed bulk termination

COMMENTS

Standard LEED parameters,but Voi fit: Voi found E-dependent, decreasing from -3.4 eV at 10 eV to $\mathrm{Voi}=-5 \mathrm{eV}$ at 120 eV ; best fit Vor $=-12 \pm 2 \mathrm{eV}$;
random surface steps in theory markedly improve fit

THEORY/DATA TREATMENT

Dyn. LEED (intralayer m / s treated exactly, interlayer m / s assumes 00 beam dominates forward scattering): $\Theta 0=380 \mathrm{~K}$

20 UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	Ay (A)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	0.000	4.044	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1x1)	b: bulk lattice
Surface 1	2.860	0.000	0.000	4.044	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	s1: commens. superlattice

3D COORDINATES
$0.1 \AA$ error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	Al1	Al $1(1,0)$	Al2	59.3
2.797	Al1	Al2	Al1 (1,0)	61.5
2.797	Al1	Al2	Al3	57.7
2.730	Al1	Al3	Al2	60.0
2.860	Al2	Al3(1,1)	Al2 1,0)	60.0

COMMON NAME	$:$ Al $(110)-(1 \times 1)$
CLASSIFICATION	$: 13.25$
TECHNIQUE	: LEED
AUTHORS	: J.N. Andersen, H.B. Nielsen, L. Petersen and D.L. Adams
REFERENCE	:

REFERENCE : J. Phys., C17, 173 (1984)

SURFACE TYPE

Substrate: A
Crystal face: 110
Adsorbate:
STRUCTURE TYPE
Coverage : Bulk latice: foc Bulk lattice: fcc 20 bulk symm: prm 2D surf symm: pmm

SAMPLE PREPARATION (1 sample)

Treatment : cycles of long Ar+ bombardment and annealing
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination: AES: <0.02 monolayer Cu and O

```
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for
    (01),(10),(11),(02),(12),(20),(03),(2,1)
    and (13) beams for 40-350 eV at normal inc
```

Coverage :
Pattern :
Matrix : $\left(\begin{array}{ll}1.000, & 0.000) \\ 0.000, & 1.000)\end{array}\right.$

THEORY/DATA TREATMENT

 $\Theta 0=625 \pm 125 \mathrm{~K}$ (all fit)ILLUSTRATION: 4

Bulk termination with multilayer relaxation

Dynamical LEED: Vor $=-9.3 \pm 0.8 \mathrm{eV}$, Voi=-3.9 $\pm 0.6 \mathrm{eV}$,

STRUCTURES EXAMINED
Various spacings between first 4 layers
QUALITY OF EXPERIMENT-THEORY FIT
Weighted R2=0.042
2D UNIT CELLS (1 domain observed)

3D COORDINATES
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $5 \quad$ Bulk $2=1.425 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 18

Interatomic dist. $A-B(\AA)$	Atom A	A Atom B	A Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.850	$A l 1$	$A l 1(1,0)$	$A l 2$	59.3
2.890	$A l 2$	$A l 3(1,1)$	$A(2(1,0)$	59.1
2.890	$A l 2$	$A(3(1,1)$	$A l 3(0,1)$	60.5
2.890	$A l 2$	$A l 3(1,1)$	$A l 4(1,0)$	90.4
2.890	$A l 2$	$A l 3(1,0)$	$A l 4$	60.9
2.903	$A l 2$	$A l 4$	$A l 3$	60.4

Al(110)-(1x1)
13.25

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.803	Al3	Al1	Al2	62.2
2.842	Al3	Al4	Al2	60.4
2.842	Al3	Al4	Al3 (1, 0)	60.2
2.842	Al3	Al4	$A(4,1,0)$	120.1
2.794	Al 1	Al2	Al1 11,0$)$	61.3
2.794	Al1	Al2	Al2 $(1,0)$	120.7
2.794	All	Al2	Al3(1,0)	89.4
2.794	Al!	Al2	Al3	59.1
2.794	Al1	Al2	Al4	117.8
2.803	Al1	Al3	Al2	58.8
2.803	Al1	$A \mid 3$	Al4	119.6
2.890	Al2	$A \backslash 3(1,1)$	Al1 (1, 1)	58.8

COMMON NAME	$: A L(110)-(1 \times 1)$	
CLASSIFICATION	13.27	
TECHNIQUE	$:$ LEED	
AUTHORS	ILLUSTRATION: 4	
REFERENCE	J.R. Noonan and H.L. Davis	
	Phys. Rev., B29, 4349 (1984)	

SURFACE TYPE

Substrate $:$ Al	Adsorbate:
Crystal face: 110	Coverage :
Temperature : 300 K	Pattern $:(1 \times 1)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
20 bulk symm: pmm	

SAMPLE PREPARATION (1 sample)
Treatment: electro-polishing, sputtering and annealing
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES: clean

DATA COLLECTION

Technique: LEED
Dataset : symmetrical LEED beams averaged; 8 beams for $50<E<100 \mathrm{eV}$ at normal incidence

STRUCTURE TYPE
Bulk termination with multilayer relaxation

COMMENTS
Two R-factors used, giving quantitatively similar results: RZJ and R2

THEORY/DATA TREATMENT

Dynamical LEED (RFS): Moruzzi-Janak-Williams potential; Vor=-10.4ev, Voi=4.7ev; $\Theta D=470 \mathrm{~K}$ (fit)

STRUCTURES EXAMINED
First varied top 2 interlayer spacings to minimise RZJ, then optimized 3rd, then 4 th spacings; non-structural parameters varied at the first stage only for RZJ: $d 12=-8.9 \%, d 23=5.9 \%$;
for R2: $d 12=-8.1 \%, d 23=5.2 \%$
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.032$
2D UNIT CELLS (1 domain observed)

Cell	$A x$ (A)	Ay (A)	$B x$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	0.000	4.040	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.860	0.000	0.000	4.040	90.0	(1.000, 0.000)	(1x1)	
						(0.000, 1.000)		superlattice

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z $=1.430 \AA$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 8

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	Al1	Al1(1,0)	Al2	59.3
2.800	All	Al2	Al $1(1,0)$	61.4
2.800	Al1	Al2	Al3	59.3
2.800	All 1	Al2	Al4	117.9
2.899	Al2	Al3(1,1)	Al2(1,0)	59.1

Al(110)-(1x1)
13.27

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.899	Al2	Al3(1,1)	Al3(0,1)	60.5
2.899	Al2	Al3 $(1,1)$	Al4	62.0
2.899	Al2	Al3 $(1,1)$	Al5 (1, 1)	121.4

```
COMMON NAME : Al(111)-(1x1) ILLUSTRATION: 1
CLASSIFICATION : 13.19
TEChNIQuE : LEED
AUTHORS : F. Jona, D. Sondericker and P.M. Marcus
REFERENCE : J. Phys., C13, L155 (1980)
```

SURFACE TYPE
Substrate: Al Crystal face: 111 Temperature : RT* Bulk lattice: fcc 2D bulk symm: p3m1 2D surf symm: p3m1

```
Adsorbate:
Coverage :
Pattern : (1x1)
Mattern :(1x1)
Matrix:( }1.000,0.000
```

SAMPLE PREPARATION (sample)
Treatment : see Jepsen et al, Phys Rev B6 3684 (1972) \& 881786 (1973)

Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 12 beams at different
STRUCTURE TYPE
Bulk termination with expanded top spacing

Dynamical LEED (program CHANGE): 8 ph sh, 31 beams; angles of incidence; cumul. E range 2128 eV

COMMENTS

STRUCTURES EXAMINED
1st - 2nd layer spacing varied in range $2.038-2.638 \AA$ in steps of $0.1 \AA$ using a bulk spacing of $2.338 \AA$
for subsequent layer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RZJ $=0.21$

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.863	0.000	-1.432	2.479	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.863	0.000	-1.432	2.479	120.0	$(1.000,0.000)$	(1×1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 2

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.863	Al1	Al1(1,1)	Al2	60.5 2.906

```
COMMON NAME : Al(1111)-(1x1)
TECHNIQUE : LEED
AUTHORS : V. Martinez, F. Soria, M.C. Munoz and J.L. Sacedon
REFERENCE : Surf. Sci., 128, 424 (1983)
```

SURFACE TYPE
Substrate: Al
Adsorbate:
Coverage :
Pattern : (1x1)
Matrix $:(1.000,0.000)$

$$
(0.000,1.000)
$$

Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1

STRUCTURE TYPE

Bulk termination with expanded top interlayer spacing

2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment: clean Al(111) grown in situ on mica substrate at 773 K
Crystallinity:
Anal. methods:
Contamination: AES: <0.01 monolayer of C and 0
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for (10), (01) beams at $\theta=0^{\circ}$; (00) beam at $\theta=5, \phi=18^{\circ}$

STRUCTURES EXAMINED
-10% to $+10 \%$ relaxation of top interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.23$

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	BX (A)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.864	0.000	-1.432	2.480	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.864	0.000	-1.432	2.480	120.0	(1.000, 0.000)	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
$D x / D y$ in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.864	Al1	Al1 (1, 1)	Al2	60.7
2.923	All	Al2	Al 1 (1, 1)	58.7

| TECHNIQUE | : LEED |
| :--- | :--- | :--- |
| AUTHORS | : H.B. Nielsen and D.L. Adams |
| REFERENCE | : J. Phys., C15, $615(1982)$ |

SURFACE TYPE
STRUCTURE TYPE
Substrate: Al
Adsorbate:
Bulk termination with expanded top spacing
Crystal face: 111
Coverage :
Temperature : 90 K
Pattern : (1x1)
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : Ar+ bombardment at RT, with brief anneals to 700 K
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination: AES: clean

DATA COLLECTION
Technique: LEED
Dataset : $1-V$ curves for 5 non-equivalent normal incidence beams; $45<\mathrm{E}<360 \mathrm{eV}$

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 10 ph sh, 3 pots: Moruzzi et al, Snow, Herman-Skillman; Vor=-11.6 eV, Voi=-5.1eV; $00=490 \mathrm{~K}$ (all fit)

STRUCTURES EXAMINED
1 st - 2nd layer spacing varied in range 2.1-2.6 in steps of $0.05 \AA$ using a bulk spacing of $2.3288 \AA$
for subsequent layer spacings
QUALITY OF EXPERIMENT-THEORY FIT
Weighted $\mathrm{R} 2=0.063$
20 UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (A)	$\mathrm{BX}(\AA)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.852	0.000	-1.426	2.470	120.0	(1.000, 0.000$)$	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.852	0.000	-1.426	2.470	120.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	Dx $\pm \boldsymbol{\pm} \mathrm{X}$	Dy $\pm \in y$	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr intf subl	Al	-2 -1 1 2	b	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{ll} & \\ 1.426 & f \\ 0.000 & A \\ 0.333 & f \\ \end{array}$	$\begin{array}{rr} & f \\ -0.823 & \AA \\ 0.000 & f \\ 0.667 & f \end{array}$	$\left.\begin{array}{llll} & & & \AA \\ 2.329 & & & \AA \\ 0.000 & & & \AA \\ 2.350 \pm & .012 & \AA \end{array} \right\rvert\,$	0.0 $100.9 \pm .5$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.852	Al1	Al1(1,1)	Al2	Al1(1,1)
2.870	Al1	Al2	Al1	59.2

```
COMMON NAME : Al(111)-(1x1)
CLASSIFICATION : 13.21a
TECHNIQUE : LEED
AUTHORS : J. Neve, J. Rundgren and P. Westrin
REFERENCE : J. Phys., C15, 4391 (1982)
ILLUSTRATION: 1
: Al(111)-(1x1)
AUTHORS : J. Neve, J. Rundgren and P. Westrin
: J. Phys., C15. 4391 (1982)
```

SURFACE TYPE

Substrate: Al

Crystal face: 111
Temperature : 293 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1

SAMPLE PREPARATION (1 sample)
Treatment
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : LEED data of Martinsson et al, Surf. Sci. 89, 102 (1979)

STRUCTURE TYPE
Bulk termination
Adsorbate
Coverage :
Pattern : (1×1)
Matrix : (1.000, 0.000)
($0.000,1.000$)

STRUCTURES EXAMINED

Truncated bulk structure only
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	AY (A)	$B x$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	-1.430	2.477	120.0	(1.000, 0.000)	(1×1) (1x1)	b: bulk lattice s1: cormens. superlattice
						(0.000, 1.000)		
Surface 1	2.860	0.000	-1.430	2.477	120.0	$(1.000,0.000)$		
						$(0.000,1.000)$		

3D COORDINATES

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	Al1	$A(1,1,1)$	Al2 (1,1)	120.0
2.864	All	Al2	Al1(1,1)	59.9

CLASSIFICATION : 13.41
TECHNIQUE : LEED
AUTHORS : J.R. Noonan and H.L. Davis
REFERENCE : J. Vac. Sci. Technol., A8, 2671 (1990)

SURFACE TYPE
Substrate : Al
Crystal face: 111
Temperature : 160 K
Bulk lattice: fcc
2D bulk symm: p3m1
20 surf symm: p3m1
SAMPLE PREPARATION (2 sample)
Treatment: sputtering and annealing at $525^{\circ} \mathrm{C}$
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination:

DATA COLLECTION
Technique: LEED; video LEED
Dataset : IV spectra for 7 non-equivalent beams, E range $50-380 \mathrm{eV}$

STRUCTURE TYPE
Multilayer relaxation: expansion of the 1st and 2nd
interlayer spacing

COMMENTS

Also done at RT with the same result

THEORY/DATA TREATMENT
Dynamical LEED: RFS

QUALITY OF EXPERIMENT-THEORY FIT

$R 2=0.0191$
20 UNIT CELLS (1 domain observed)

Cell	$A x(A)$	Ay (\AA)	$B x$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.864	0.000	1.432	2.480	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.864	0.000	1.432	2.480	60.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1x1)	s1: commens. superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.864	$A l 1$	Al2		

TECHNIQUE	: LEED
AUTHORS	: D.L. Adams, V. Jensen, X.F. Sun and J.H. Vollesen
REFERENCE	: Phys. Rev., B38, $7913(1988)$

REFERENCE : Phys. Rev., B38, 7913 (1988)
SURFACE TYPE
Substrate: Al
Crystal face: 210
Temperature : 135 K
Bulk lattice: fcc
2 D bulk symm: cm

20 surf symm: cm

STRUCTURE TYPE

Bulk termination with multilayer relaxations perpendicular
to surface (by $-16,-1,+9,-4$ and -1%) and parallel to surface (by $0,-3,+2,-2$ and -1%) along symmetry plane

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 12 phase shifts from Moruzzi et al potential; Vor $=-7.9 \mathrm{eV}$, Voi $=-4.0 \mathrm{eV}$; $00=600 \mathrm{~K}$

STRUCTURES EXAMINED

Variation of first 5 interlayer spacings and first 5 layer registries, giving 451 different structures
QUALITY OF EXPERIMENT-THEORY FIT
R2=0.1041
$2 D$ UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (A)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.037	0.000	2.018	4.513	65.9	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.037	0.000	2.018	4.513	65.9	$(1.000,1.000)$	(1×1)	s1: commens.
superlattice								

3D COORDINATES

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 7
Bulk z $=.903 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.812	Al1	Al2	Al3(0, 1)	58.1
2.812	Al1	Al2	Al4($-1,0$)	58.2
2.812	Al1	Al2	Al5	116.6
2.818	Al2	Al3	Al4	61.7
2.818	Al2	Al3	Al5	60.5

Al(210)-(1×1)
13.36

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.847	$\mathrm{Al3}$	$\mathrm{Al4}$	$\mathrm{~A}(5(1,0)$	61.2

TECHNIQUE	: LEED
AUTHORS	: J.R. Noonan, H.L. Davis, W. Erley
REFERENCE	: Surf. Sci., 152/153, 142 (1985)

SURFACE TYPE
Substrate. Al

Crystal face: 311

Temperature : 298 K
Bulk lattice: fcc
2D bulk symm: cm
2D surf symm: cm

> Adsorbate: Coverage : Pattern : (1×1) Matrix $:(1.000,0.000)$

STRUCTURE TYPE
Bulk termination with multilayer relaxation;

THEORY/DATA TREATMENT

Dynamical LEED (Reverse Scattering Perturbation): Moruzzi-Janak-Williams potential; Voi=4.75 eV; $\Theta D=550 \mathrm{~K}$
no detectable lateral relaxation

COMMENTS

Technique: LEED; Faraday cup
Dataset : 34 LEED beams (21 symmetry-inequivalent); energy range $50-300 \mathrm{ev}$; normal incidence within 0.5°

SAMPLE PREPARATION (1 sample)
Treatment : electropolish in H2SO4/H3PO4; Ar+ sputter; 500C anneal
Crystallinity:
Anal. methods:
Contamination: AES: $<0.05 \% \mathrm{ML}$ Si

DATA COLLECTION

STRUCTURES EXAMINED

Relaxation of top two interlayer spacings and lateral displacement of top layer
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.07, R 2=0.083$
2 D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (${ }_{\text {A }}$)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	-1.432	4.749	106.8	(1.000, 0.000)	$\begin{aligned} & (1 \times 1) \\ & (1 \times 1) \end{aligned}$	b: bulk lattice s1: commens. superlattice
						(0.000, 1.000)		
Surface 1	2.860	0.000	-1.432	4.749	106.8	(1.000, 0.000)		
						(0.000, 1.000)		

3D COORDINATES
$0.05 \AA$ error bars assumed for tabulation of lateral relaxation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=1.227 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 14

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	Al1	$A \backslash 1(1,0)$	Al2	59.3
2.916	Al2	Al3	Al $1(0,1)$	88.4
2.916	Al2	Al3	Al3(1,0)	60.6
2.830	Al3	Al1 (1, 1)	Al3(1,0)	60.7
2.912	Al3	Al2 0,1$)$	Al3 $(0,1)$	116.7
2.916	Al3	Al2	$A(3) 1,0)$	58.8

Al(311)-(1x1)
13.30

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.860	Al1	Al1(1,0)	Al3(0,-1)	59.6
2.798	Al1	Al2	Al1 $(1,0)$	61.5
2.798	Al1	Al2	Al3	119.7
2.799	Al1	Al2 (-1,0)	Al1 $(0,1)$	124.5
2.799	Al1	Al2 $(-1,0)$	Al3	119.7
2.804	Al2	Al1 $(1,1)$	Al3	62.3
2.799	Al2	Al1 $(1,0)$	Al3 $(0,-1)$	62.3
2.914	Al2	Al3 $(1,0)$	Al2 1,0$)$	58.8

COMMON NAME	$:$ Al $(331)-(1 \times 1)$
CLASSIFICATION	$: 13.31$
TECHNIQUE	$:$ LEED
AUTHORS	D.L. Adams and C.S. Sorensen
REFERENCE	: Surf. Sci., 166, 495 (1986)

TECHNIQUE

REFERENCE : Surf. Sci., 166, 495 (1986)

SURFACE TYPE

Substrate : Al	Adsorbate:
Crystal face: 331	Coverage :
Temperature: 115 K	Pattern : (1x1)
Bulk lattice: fcc	Matrix : $1.000,0.000)$
2D bulk symm: cm	
2D	

STRUCTURE TYPE

Bulk termination with multilayer relaxations perpendicular to surface (in 4 layers) and parallel to surface (in top
layer) along symmetry plane

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 10 phase shifts (Moruzzi et al pot); Vor $=-10.3 \pm 1.6 \mathrm{eV}, \mathrm{Voi}=-4.4 \pm 1.4 \mathrm{eV} ; \Theta D=500 \pm 150 \mathrm{~K}$

STRUCTURES EXAMINED
Variation of first 6 interlayer spacings and first 5 layer registries (and of non-structural parameters)
QUALITY OF EXPERIMENT-THEORY FIT
$R 2=0.065$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	AY (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.853	0.000	1.427	6.219	77.1	$\begin{aligned} & (1.000, \\ & (0.000) \\ & 0.000, \\ & 1.000) \end{aligned}$	(1×1)	b: bulk lattice
Surface 1	2.853	0.000	1.427	6.219	77.1	$\left.\begin{array}{l} (1.000, \\ (0.000, \\ 0.000 \end{array}\right)$	(1x1)	s1: commens. superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 7
Bulk z $=.926 \AA$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 8

Interatomic dist. $A-B$ (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.768	Al1	Al2	$A(2)-1,0)$	59.0
2.768	Al1	Al2	$A(3)(-1,0)$	118.8
2.768	Al1	Al2	A(4) $-1,0)$	59.0
2.768	Al1	Al2 (-1,0)	Al1(-1,0)	62.1
2.799	Al1	Al3(0,-1)	Al4(-1,0)	58.8

Al(331)-(1x1)
13.31

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.841	$A l 2$	$A l 3$	$A(4(-1,1)$	120.2
2.841	$A l 2$	$A l 3$	$A(5$	60.1
2.887	$A l 3$	$A l 4(0,1)$		

COMMON NAME : Al(100)-c(2x2)-Na
ILLUSTRATION: 28,29
CLASSIFICATION : 13.11.1
TECHNI QUE LEED
AUTHORS : B.A. Hutchins, T.N. Rhodin and J.E. Demuth
REFERENCE : Surf. Sci., 54, 419 (1976)

SURFACE TYPE
Substrate: Al
Crystal face: 100
Temperature : <RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: Na
Coverage : $0.25 \mathrm{Na} / \mathrm{Al}$
Pattern : $c(2 \times 2)$
Matrix : ($1.000,1.000)$
(-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in hollow site

SAMPLE PREPARATION (sample)
COMMENTS
Treatment : electropolished; Na vapor source, B.P.
1E-10 torr;
Crystallinity: Xe ion bombardment; anneal temp. 850K
Anal. methods:
Contamination: LEED/Auger: $<5 \% 0$ contamination
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for (00) beam at $\Theta=4.4,7,12^{\circ}$ and for $(-1,0)$ and $(-1,-1)$ beams at $\Theta=0^{\circ}$

THEORY/DATA TREATMENT

Dynamical LEED: 8 ph sh (Snow pot for Al, metallic pot for $\mathrm{Na}), \mathrm{Voi}=5.5 \mathrm{eV}(\mathrm{Al}), 3 \mathrm{eV}(\mathrm{Na}), \Theta 0=339 \mathrm{~K}(\mathrm{blk}) 150 \mathrm{~K}(\mathrm{Na}) 170 \mathrm{~K}(\mathrm{Al})$

STRUCTURES EXAMINED
Substrate undistorted variation of adsorbate site (top, bridge, hollow)
and height (1.4-3.4A)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	AY (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.864	0.000	0.000	2.864	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.864	2.864	-2.864	2.864	90.0	(1.000, 1.000)	$c(2 \times 2)$	s1: commens.
						(-1.000, 1.000)		superlattice

30 COORDINATES
Na1: overlayer in 4 -fold hollow sites
DX/Dy in \mathcal{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 7

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.882	Na1	Al2	Na1(1,0)	89.3
2.882	Na1	$\mathrm{Al2}$	$\mathrm{Al2(1,0)}$	119.8
2.882	Na 1	$\mathrm{Al2}$	$\mathrm{Al3(1,0)}$	120.2
2.882	$\mathrm{Na1}$	$\mathrm{Al2}$	$\mathrm{Al3}$	90.3
2.864	$\mathrm{Al2}$	$\mathrm{Al2(1,0)}$	$\mathrm{Na} 1(1,0)$	60.2

$\mathrm{Al}(100)-\mathrm{C}(2 \times 2)-\mathrm{Na}$
13.11 .1

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.864	$\mathrm{Al2}$	$\mathrm{Al2(1,0)}$	$\mathrm{Al3(2,0)}$	120.0
2.860	$\mathrm{Al2}$	$\mathrm{~A}(3(1,1)$	$\mathrm{Al2(1,0)}$	60.1

COMMON NAME : Al(100)-C(2×2)-Na
CLASSIFICATION : 13.11 .2
TECHNIQUE : LEED
AUTHORS : M.A. Van Hove, S.Y. Tong and N. Stoner
REFERENCE : Surf. Sci., 54, 259 (1976)

SURFACE TYPE

Substrate: Al
Adsorbate: Na
STRUCTURE TYPE
Crystal face: 100
Temperature : 110 K
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m

Coverage : $0.5(\mathrm{Na} / \mathrm{Al})$
Pattern : $c(2 \times 2)$
Matrix : $(1.000,1.000)$

SAMPLE PREPARATION (sample)
Treatment : see B.M. Hutchins, T.N. Rhodin and J.E. Demuth, Surf. Sci.
Crystallinity: 45, 419 (1976)
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves: (-10), (-1-1), (0.5,0.5) beams at $\Theta=0, \phi=0 ; 00$ beam at $\Theta=12, \phi=0)$; cumulative E range: 530 eV

STRUCTURES EXAMINED
Top site, bridge site, hollow site; Na-Al layer spacing varied from 1.7 to $2.9 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS (1 domain observed)

Cell	$A x$ (\AA)	Ay (A)	$B \times(A)$	By (${ }^{\text {a }}$)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	0.000	2.860	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.860	2.860	-2.860	2.860	90.0	$(1.000,1.000)$	$c(2 \times 2)$	s1: commens.
						(-1.000, 1.000)		superlattice

3D COORDINATES
Na1: overlayer in 4 -fold hollow site
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.901	Na 1	$\mathrm{Al2}$	$\mathrm{Na}(1,0)$	88.4
2.901	Na 1	$\mathrm{Al2}$	$\mathrm{Al2(1,0)}$	119.5
2.901	Na 1	$\mathrm{Al2}$	$\mathrm{Al3(1,0)}$	120.5
2.901	Na 1	$\mathrm{Al2}$	$\mathrm{Al3}$	90.8
2.860	$\mathrm{Al2}$	$\mathrm{Al2(1,0)}$	$\mathrm{Na} 1(1,0)$	60.5

Al(100)-c(2x2)-Na
13.11 .2

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.860	$A L 2$	$A l 2(1,0)$	$A(3(2,0)$	120.0
2.862	$A(2$	$A 13(1,1)$	$A(2(1,0)$	60.0

COMMON NAME : Al(111)-($\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{Na}$
ILLUSTRATION: 27
CLASSIFICATION: 13.11.3
TECHNIQUE : SEXAFS
AUTHORS : A. Schmalz, S. Aminpirooz, L. Becker, J.Haase,
J.Neugebauer, M. Scheffler, D.R. Batchelor, D.L. Adams and E

REFERENCE : Phys. Rev. Lett., 67, 2163 (1991)

SURFACE TYPE

Substrate : Al
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION (1 sample)
Treatment : ion bombardment and annealing; Na from SAES getter sources
Crystallinity:
Anal. methods: LEED, AES, X-ray adsorption
Contamination: $0<0.005 \mathrm{ML}$
DATA COLLECTION
Technique: SEXAFS
Dataset : X-ray adsorption from 0-8A-1 two polarizations

STRUCTURE TYPE
Na in a sixfold substitutional site 1.67 A above Al surface
Adsorbate: Na
Coverage : 0.16-0.33 ML
Pattern : ($\sqrt{3} \times \sqrt{3}$) R 30°
Matrix : ($1.000,1.000$)
(-1.000, 2.000)

COMMENTS

Measured at 0.16 ML with the same structural result total energy calculations also done

THEORY/DATA TREATMENT

Fourier-transform method (Excurve program)

STRUCTURES EXAMINED

Threefold hollow site, sixfold substitutional site
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	Ay (A)	BX (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.864	0.000	1.432	2.480	60.0	(1.000, 0.000)	(1x1)	b : bulk lattice
						(0.000, 1.000)		
Surface 1	4.295	2.480	0.000	4.960	60.0	(1.000, 1.000$)$	$(\sqrt{3} \times \sqrt{3}) 830^{\circ}$	s1: commens.
						(-1.000, 2.000)		superlattice

3D COORDINATES

Na1: in a 6 -fold substitutional site $\mathrm{Na} 1-\mathrm{Al} 2$ bond determined within $\pm 0.03 \mathrm{~A}$
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=2.338 \AA$

No. of distances/angles: 1

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.315	Na1	Al2		

COMMON NAME	$:$ Al(111)-0	
CLASSIFICATION	$: 13.8 .8$	
TECHNIQUE	$:$ SEXAFS	
AUTHORS	$:$ R.Z. Bachrach, G.V. Hansson and R.S. Bauer	
REFERENCE	$:$ Surf. Sci., 109, L560 (1981)	

SURFACE TYPE

Substrate : Al	Adsorbate: 0
Crystal face: 111	Coverage : 125
Temperature : RT*	Pattern : unspecified
Bulk lattice: fcc	Matrix : (1.000, 0.000)
2 D bulk symm: p3m1	(0.000, 1.000)

2 D bulk symm: p3m1
2D surf symm: none
SAMPLE PREPARATION (1 sample)
Treatment : see Flodstrom et al, Phys. Rev. Lett. 40, 907 (1978)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: SEXAFS
Dataset : oxygen K -edge EXAFS for $400-1000 \mathrm{eV}$ above threshold; angle of incidence of p-polarised light was 85°

STRUCTURE TYPE

Atomic 0 in 3 -fold hollow sites (which undetermined); ordering undetermined, here tabulated as (1x1); unrelaxed bulk

COMMENTS

Authors find pressure dependent oxidation state: mol. oxygen chemisorbs for p 2E-7 torr, and atomic oxygen chemisorbs for $\mathrm{p}>1 \mathrm{E}-6$ tor

THEORY/DATA TREATMENT

Standard EXAFS Fourier transform

STRUCTURES EXAMINED
Those consistent with the derived 0-Al bond length and the assumption of a 3 -fold hollow site
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	Bx (\AA)	By ($\mathrm{A}^{\text {) }}$	α (${ }^{\circ}$)	Matrix	Pattern	Cell type
Bulk	2.860	0.000	-1.430	2.477	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.860	0.000	-1.430	2.477	120.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	unspecified	s1: commens. superlattice

3D COORDINATES

01: overlayer in one or the other 3-fold hollow site, here tabulated as fcc site; coverage assumed 1; coordinates are derived from $0-\mathrm{Al}$ bond length; error bar on $0-\mathrm{Al}$ bond length is $0.05 \AA$

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk z = 2.340 A

BOND DISTANCES AND ANGLES

No. of distances/angles: 5

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.920	01	Al2	01(1,0)	96.3
1.920	01	Al2	Al2 11,0$)$	138.1
1.920	01	Al2	Al3 $(1,0)$	155.9
1.920	01	Al2	Al3	99.7
2.860	Al2	Al2 (1, 1)	Al3 $(1,0)$	60.1

COMMON NAME : Al(111)-(1x1)-0
ILLUSTRATION: 22,23
CLASSIFICATION : 13.8.12
TECHNIQUE : LEED
AUTHORS : J. Neve, J. Rundgren and P. Westrin
REFERENCE : J. Phys., C15, 4391 (1982)

SURFACE TYPE
Substrate : A
Crystal face: 111
Temperature : 100 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : LEED data of Martinsson et al, Surf. Sci. 89, 102 (1979)

Adsorbate: 0
Coverage : 1.0 0/Al
Pattern : (1x1)
Matrix : (1.000, 0.000)
($0.000,1.000$)

STRUCTURE TYPE

Atomic oxygen in fcc hollow sites:
0 -Al spacing temperature dependent:
0.7 and $1.3 \AA$ at 100 K and 293K

COMMENTS

Conclusions based on visual comparison of (10) and (01) beams only;
different oxygen muffin-tin spheres used for calculations for 0.7 and $1.3 \$$ spacings

THEORY/DATA TREATMENT

Dynamical LEED: DCV method to generate pots with E-dep. excited state pot, based on Moruzzi-Janak-Williams pot

STRUCTURES EXAMINED
O-Al spacings of 0.7 and $1.3 \AA$ at 100 K and $293 \mathrm{~K} ; 0$ over hollow sites

2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	-1.430	2.477	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.860	0.000	-1.430	2.477	120.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
01: overlayer in fec hollows
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.794	01	Al2	01(1,1)	105.8
1.794	01	Al2	Al2(1,1)	142.9
1.794	01	Al2	Al2 $(-1,0)$	37.1
1.794	01	Al2	$A 13(1,0)$	148.2
1.794	01	Al2	Al3	93.1
1.794	Al2	01(1,1)	Al2(1, 1)	105.8
2.860	Al2	Al2(1,1)	01(1,1)	37.1

CLASSIFICATION : 13.8.15
TECHNIQUE : LEED
AUTHORS : V. Martinez, F. Soria, M.C. Munoz and J.L. Sacedon
REFERENCE : Surf. Sci., 128, 424 (1983)

SURFACE TYPE

Substrate: Al
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: $p 3 \mathrm{ml}$

```
Adsorbate: 0
Coverage : 1.0 0/Al
Pattern : (1x1)
Matrix :(1.000,0.000)
```


STRUCTURE TYPE

Atomic overlayer in fcc 3-fold hollow sites; unrelaxed bulk termination

COMMENTS
Measurements and calculations done for 30 exposures; fit is weighted average, giving: $70 \% 0$ in fcc sites, $10 \% 0$ in tetrahedral underlayer sites, 20\% clean Al(111)

THEORY/DATA TREATMENT
Dynamical LEED (CAVLEED package)
terahedral underlayer sites, 20\% clean Al(111)

DATA COLLECTION
Technique: LEED
Dataset : $I-V$ data: (01) beam at $\Theta=0$;
$(10),(-10),(00)$ and $(0-1)$ at $\theta=5, \phi=18^{\circ}$;
(00) and (-10) at $0=12, \phi=18^{\circ} ; E<=180 \mathrm{eV}$

SAMPLE PREPARATION (1 sample)
Treatment : clean Al(111) grown on mica, then exposed to 02
Crystallinity:
Anal. methods:
Contamination: AES and LEED monitoring of coverage
DATA COLLECTION

STRUCTURES EXAMINED
Substrate-adsorbate layer spacings between 0.6 and $0.9 \AA$ (see comments)
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.18$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay ($\AA)$	Bx ($\AA)$	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.864	0.000	-1.432	2.480	120.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.864	0.000	-1.432	2.480	120.0	$(0.000,1.000)$	(1×1)	
s1: commens.								
superlattice								

3D COORDINATES
01: overlayer in fec hollow sites
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4 Bulk z = 2.338 A

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.796	01	Al2	$01(0,1)$	105.8
1.796	01	Al2	Al2(0,1)	142.9
1.796	01	Al2	Al3(0,1)	148.2
1.796	01	Al2	Al3	93.0

COMMON NAME : Al(111)-(1x1)-0
CLASSIFICATION : 13.8.6a
TECHNIQUE : SEXAFS
AUTHORS : D. Norman, S. Brennan, R. Jaeger and J. Stohr
REFERENCE : Surf. Sci., 105, L297 (1981)

SURFACE TYPE

Substrate: Al
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment: exposure to 50L 02
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: SEXAFS; SEXAFS at SSRL
Dataset : SEXAFS signal of 0 K -edge up to 900 eV above edge

Adsorbate: 0
Coverage : 50L 02
Pattern : (1×1)
Matrix : ($1.000,0.000)$
($0.000,1.000$)

STRUCTURE TYPE

Atomic oxygen overlayer in 3 -fold hollow sites
(which undetermined)

COMMENTS

Bulk lattice constant of $2.86 \AA$ was assumed;
however, the measured $0-0$ separation of $2.90 \pm 0.05 \AA$
is consistent with this assumption

THEORY/DATA TREATMENT

Fourier transform; phase shifts constructed from analysis of bulk Al203 where the bond length is known

STRUCTURES EXAMINED
Those consistent with the inferred SEXAFS $0-A 1$ bond length of $1.75 \pm 0.03 \AA$, giving an interlayer spacing of $0.6 \pm 0.1 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
visual
$2 D$ UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	AY (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	-1.430	2.477	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.860	0.000	-1.430	2.477	120.0	(1.000, 0.000)	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
coordinates are derived from $0-\mathrm{Al}$ bond length; error bar on $0-\mathrm{Al}$ bond length is $0.03 \AA$ 0 coverage assumed 1
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $4 \quad$ Bulk $2=2.340 \AA$

BOND DISTANCES AND ANGLES

No. of distances/angles: 5

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.757	01	Al2	$01(0,1)$	109.0
1.757	01	Al2	Al2(1,1)	144.5
1.757	01	Al2	Al3 (0,1)	145.2
1.757	01	Al2	Al3	90.5
2.860	Al2	Al2(1,1)	$A(3)(0,1)$	60.1

COMMON NAME : Al(111)-(1x1)-0
ILLUSTRATION: 26
CLASSIFICATION : 13.8 .6 b
TECHNIQUE : SEXAFS
AUTHORS : D. Norman, S. Brennan, R. Jaeger and J. Stohr
REFERENCE : Surf. Sci., 105, L297 (1981)

SURFACE TYPE
Substrate: Al
Crystal face: 111
Temperature : RT*
Bulk lattice: fcc
2 D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment: exposure to 50 L of 02 , then heating to 473 K for 10 mins
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION

Technique: SEXAFS; SEXAFS at SSRL
Dataset : SEXAFS signal for oxygen K-edge up to 900 eV above edge

STRUCTURE TYPE

Atomic oxygen in tetrahedral sites below top Al layer, forming oxide-like surface;
Al possibly unrelaxed

COMMENTS

bulk lattice constant of $2.86 \AA$ was assumed; 0 placed below top Al on the evidence that: 1. sharp (1x1) LEED pattern observed up to 1000 L of 02; 2. the site can be simultaneously occupied by oxidè-like and chemisorbed 0

THEORY/DATA TREATMENT

Fourier transform; phase shifts constructed from analysis of bulk Al203 where the bond length is known

STRUCTURES EXAMINED
Those consistent with the inferred SEXAFS $0-A l$ bond length of $1.75 \pm 0.03 \AA$, giving an interlayer spacing of $0.6 \pm 0.1 \AA$

QUALITY OF EXPERIMENT-THEORY FIT

Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left(^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.860	0.000	-1.430	2.477	120.0	$(1.000,0.000)$	(1x1)	
Surface 1	2.860	0.000	-1.430	2.477	120.0	$(1.000,0.000)$	(1x1)	bulk lattice

3D COORDINATES
coordinates are derived from $0-\mathrm{Al}$ bond length; error bar on $0-\mathrm{Al}$ bond length is 0.03 A ; 0 coverage assumed 1
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z $=2.340$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{D} \quad \pm \mathrm{x}$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				0.000	-1.651 A	2.340 A	
intf	Al	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	0	2	b	1.00	1	0.667 f	0.333 f	$0.600 \pm .100$ A	25.6 ± 4.3
intf	Al	3	b	1.00	2	0.000 f	0.000 f	$1.740 \pm .100$ A	74.4 ± 4.3
int f	Al	4	b	1.00	3	-0.333 f	0.333 f	2.340 A	100.0
subl	Al	5	b	1.00	4	-0.333 f	-0.667 f	2.340 A	100.0

BOND DISTANCES AND ANGLES

No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.860	Al1	Al1(1,1)	O2	35.5
2.860	Al1	Al1(1,1)	Al3	60.1
1.757	Al1	O2	Al1(1,0)	109.0
1.757	Al1	02	Al3	110.0

AUTHORS : C.B. Duke, A. Paton, A. Kahn and C.R. Bonapace
REFERENCE : Phys. Rev., B28, 852 (1983)

SURFACE TYPE

2D surf symm: pm

Pattern : (1x1)
Matrix : ($1.000,0.000)$
(0.000, 1.000)

STRUCTURE TYPE
Tilted topmost two AlP bilayers

SAMPLE PREPARATION (sample)
Treatment : GaP Ar+ bombarded to remove Ga, then Al deposition, anneal
Crystallinity:
Anal. methods:
Contaminátion: only high-E Ga AES peaks, so Ga deep
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 14 beams up to 210 eV ; data taken at Al coverages of 16 and 75ML: average compared to theory

COMMENTS
LEED data taken below 90 ($=590 \mathrm{~K}$), so lattice vibrations not important;
calculated spectra checked for sensitivity to inelastic mfp;

THEORY/DATA TREATMENT

Dynamical LEED: 6 layer slab; 6 phase shifts (Hara exchange) Vor $=-15.5$ to $-13.2 \mathrm{eV}(E=30 \mathrm{eV}-240 \mathrm{eV})$; $m f p=10 \AA$; $\Theta D=590 \mathrm{~K}$

STRUCTURES EXAMINED

1. unreconstructed surface; 2. bond length conserving reconstructions with vertical relaxations of 1 st 2 layers with relative displacements along (100) direction;
2. as in 2. without bond conservation

QUALITY OF EXPERIMENT-THEORY FIT

RZJ=0.19
$2 D$ UNIT CELLS (1 domain observed)

Cell	AX (A)	Ay (\AA)	$B x(\AA)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.850	0.000	0.000	5.450	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.850	0.000	0.000	5.450	90.0	(1.000, 0.000)	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

P1-Al2: top tilted layer; Al3-P4: next layer, slightly tilted in opposite sense; Al5-P6: bulk planar bilayer; $0.1 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z = $1.925 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$0 \times \pm \epsilon x$	DY $\pm \epsilon \boldsymbol{y}$	$D z \pm \boldsymbol{Z}$		$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f		\AA	
subr		-1				1.925 A	2.725	1.925	A	
intf	P	1	b	1.00	0	0.000 f	0.000 f	0.000	\AA	0.0
intf	Al	2	b	1.00	1	$0.500 \pm .026 \mathrm{f}$	$0.168 \pm .018 \mathrm{f}$	$0.630 \pm .100$	\AA	32.7 ± 5.2
intf	Al	3	b	1.00	2	$-0.500 \pm .026 f$	$0.543 \pm .018 \mathrm{f}$	$1.327 \pm .100$	\AA	68.9 ± 5.2
intf	P	4	b	1.00	3	$0.500 \pm .026 \mathrm{f}$	$-0.250 \pm .018 \mathrm{f}$	$0.070 \pm .100$	\AA	3.6 ± 5.2
subl	Al	5	b	1.00	4	$0.000 \pm .026 \mathrm{f}$	$-0.250 \pm .018 \mathrm{f}$	$1.892 \pm .100$	\AA	98.3 ± 5.2
subl	P	6	b	1.00	5	-0.500 f	0.750 f	0.000	\AA	0.0

AlP(110)-(1x1)
13.15 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 9

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.223	P1	Al2	P1 11,0$)$	120.0
2.223	P1	Al2	P4	119.8
2.512	P1	Al3 $(0,-1)$	P4(0, -1)	112.7
2.223	Al2	P1	Al2(-1,0)	120.0
2.122	Al2	P4	Al3	114.5
2.359	Al3	P4	Al2	114.5
2.359	Al3	P4	$A 13(1,0)$	109.4
2.122	P4	Al2	P1	119.8
2.359	P4	Al3	P4 (-1, 0)	109.4

SAMPLE PREPARATION (1 sample)
Treatment : Ar+ sputtering followed by annealing above 250 K
Crystallinity:
Anal. methods:
Contamination: AES used to determine surface impurities
DATA COLLECTION
Technique: LEED
Dataset : IV curves at normal incidence for many beams; energy range 200-600 eV

COMMENTS
Contraction of first layer uncertain due to shortcomings of theory

STRUCTURES EXAMINED

Variation of topmost interlayer spacing

QUALITY OF EXPERIMENT - THEORY FIT

$R Z J=0.147$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.880	0.000	0.000	2.880	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	b: bulk lattice
Surface 1	2.880	0.000	0.000	2.880	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1x1)	s1: commens. superlattice

3D COORDINATES
$0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	DX $\pm \in \mathbf{X}$	Dy $\pm \in y$	Dz $\pm \boldsymbol{E Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr intf intf subl	Au Au Au	-2 -1 1 2 3	b b b	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	0 1 2	$\begin{array}{rr} & f \\ 1.440 & A \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f\end{array}$	$\begin{array}{rr} & f \\ 1.440 & A \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \end{array}$	$\begin{array}{ll} \hline & A \\ 2.040 & A \\ 0.000 & A \\ 2.040 \pm .100 & A \\ 2.040 & \\ A \end{array}$	$\begin{gathered} 0.0 \\ 100.0 \pm 4.9 \\ 100.0 \end{gathered}$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.880	Au1	Au1 (1,0)		

COMMON NAME : Au(100)-hex incommensurate
ILLUSTRATION: 3
CLASSIFI
TECHNIQUE
AUTHORS
79.80

AUTHORS : M.M. Ocko, D. Gibbs, K.G. Huang, D.M. Zehner and S.G.J. Mochrie
REFERENCE : Phys. Rev., B44, 6429 (1991)

SURFACE TYPE

Substrate : Au	Adsorbate:
Crystal face: 100	Coverage :
Temperature : 1100 k	Pattern : incommensurate
Bulk lattice: fcc	Matrix $:(.958,0.000)$
20 bulk symm: p4m	
20	

20 surf symm: none

SAMPLE PREPARATION (1 sample)
Treatment : see Gibbs et al, Phys. Rev. B42, 7330 (1990)

Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: XRD; synchrotron radiation (CHESS, NSLS)
Dataset : rocking curves in vertical scattering geometry with lambda= 1.59, 1.45 and 1.39\&

STRUCTURE TYPE

Incommensurate hexagonal top layer, with 20% expanded spacing to 2nd layer (due to variable registries); top 4 layers are found corrugated by $0.28,0.14,0.06,0.02 \AA$ (= twice maximum excursion): this corrugation is not included in tabulation below, which assumes planar layers

COMMENTS

At $\mathrm{T}<970 \mathrm{~K}$, hexagonal top layer rotates 0.81° from alignment with substrate, without measurable change in lateral lattice constant, layer spacings or corrugations (but fit vibration amplitudes are reduced);
at $\mathrm{T}>1170 \mathrm{~K}$, top layer disorders

THEORY/DATA TREATMENT

Spacings, layer density and rms vibr ampl fit to specular data; corrugations fit to superlattice reflections
(

STRUCTURES EXAMINED
Variation of top 5 layer spacings and top layer density for non-corrugated layers; variation of corrugations in top 5 layers assuming commensurate model with 6 top-layer atoms per coincidence unit cell

QUALITY OF EXPERIMENT-THEORY FIT
Chi**2=0.005 (without corrugations)
2D UNIT CELLS (2 domains observed)

Cell	Ax (\AA)	Ay (${ }^{\text {a }}$)	$B X$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.885	0.000	0.000	2.885	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	b: bulk lattice
Surface 1	2.762	0.000	1.381	2.392	60.0	$\begin{array}{rrr} (.958, & 0.000) \\ (& .479, & .829) \end{array}$	incommensurate	i1: incomm. superlattice

3D COORDINATES

Au1: incommensurate top layer (actually corrugated); Au2-Au3: (1x1) layers (actually slightly corrugated)
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $4 \quad$ Bulk $z=2.040 \quad \AA$

AUTHORS : W. Moritz and D. Wolf
REFERENCE : Surf. Sci., 163, L655 (1985)

SURFACE TYPE
Substrate: Au Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm

Adsorbate:
Coverage :
Pattern : (1x2)
Matrix : $(1.000,0.000)$
(0.000, 2.000)

STRUCTURE TYPE
Missing-row reconstruction with multilayer relaxation, 2nd row pairing and 3rd row buckling

SAMPLE PREPARATION (1 sample)

Treatment : see W. Moritz and D. Wolf, Surf. Sci. 88, 129 (1979)
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
THEORY/DATA TREATMENT
Technique: LEED
Dataset : $\mathfrak{I}-V$ curves at normal incidence for 18 beams, $E<=200 \mathrm{eV}$

Dynamical LEED (matrix inversion, combined-space method): 9 phase shifts; $\Theta 0=170 \mathrm{~K}$

STRUCTURES EXAMINED
Missing-row model with variable relaxations of top three interlayer spacings, row-pairing in second layer and buckling in third layer

QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.35$, $R Z J=0.25$
2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	$A y(A)$	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.880	0.000	0.000	4.080	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.880	0.000	0.000	8.160	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×2)

30 COORDINATES
Au1: remaining row; Auz-Au3: paired 2nd layer;
Au4-Au5: buckled 3rd layer; $0.05 \AA$ error bars assumed for tabulation
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

$\operatorname{Au}(110)-(1 \times 2)$
79.25

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.880	Au1	Au1(1,0)		
2.804	Au1	Au2	Au4	117.7
2.740	Au1	Au5	Au6	118.4
2.786	Au2	Au4	Au6	61.5
3.011	Au2	Au5		

COMMON NAME	$:$ Au(110)-(1×2)
CLASSIFICATION	$: 79.32$
TECHNIQUE	$:$ MEIS
AUTHORS	M. Copel and T. Gustafsson
REFERENCE	$:$ Phys. Rev. Lett., 57,723 (1986

SURFACE TYPE

Substrate: Au	Adsorbate:
Crystal face: 110	Coverage :
Temperature: RT	Pattern : (1x2)
Bulk lattice: fcc	Matrix : $1.000,0.000)$
2D bulk symm: pmm	
2D	

STRUCTURE TYPE
Missing-row reconstruction with multilayer relaxation, including 3rd-layer buckling

COMMENTS

THEORY/DATA TREATMENT

Qualitative analysis to support missing-row model; Monte Carlo simulations for coords; $\AA=170$ K(bulk), 130K(surf)

STRUCTURES EXAMINED

Top two interlayer spacings varied; 3rd-layer buckling and 2nd-layer row-pairing considered: row-pairing ruled out

QUALITY OF EXPERIMENT-THEORY FIT
 Visual

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.885	0.000	0.000	4.080	90.0	$(1.000,0.000)$	(1x1)	b: bulk lattice
Surface 1	2.885	0.000	0.000	8.160	90.0	$(1.000,0.000)$	(1x2)	s1: commens.
superlattice								

3D COORDINATES

Au1: remaining row; Pt2-Pt3: bulk-like 2nd layer;
Pt4-Pt5: buckled 3rd layer; 0.05A/0.1\& perp/lateral error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.885	Au1	Au1 (1,0)		
2.763	Au1	Au2	Au3 (1, -1)	121.5
2.763	Au1	Auz	Au4	118.1

Au(110)-(1×2)
79.32

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.781	Au1	Au5	Au6	118.2
2.864	Au2	Au4	Au5(0,1)	119.3
2.864	Au2	Au4	Au6	61.0

COMMON NAME : Au(110)-(1×2)
CLASSIFICATION : 79.34
TECHNIQUE : LEIS
AUTHORS : J. Moeller, K.J. Snowdon and W. Heiland
REFERENCE : Surf. Sci., 178, 475 (1986)

SURFACE TYPE

Substrate: Au	Adsorbate:	
Crystal face: 110	Coverage :	
Temperature : RT	Pattern	(1x2)
Bulk lattice: fcc	Matrix	($1.000,0.000$)
2D bulk symm: pmm		(0.000, 2.000)

SAMPLE PREPARATION (1 sample)
Treatment : polishing, sputter etching, and annealing
Crystallinity:
Anal. methods: LEED pattern
Contamination: clean by ISS standards
DATA COLLECTION
Technique: LEIS
Dataset : large angle (165°), low energy (2000 eV) $\mathrm{Ne}+/ \mathrm{Ne} 0$ backscattering along [1, -1,2] azimuth

STRUCTURE TYPE
Missing-row reconstruction with relaxation of top layer spacing

COMMENTS

THEORY/DATA TREATMENT

Calculation of low-energy ion scattering critical angles using Moliere screening function or universal ZBL potential

STRUCTURES EXAMINED
Top interlayer spacing varied
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	Ay (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.885	0.000	0.000	4.080 8.160	$\begin{aligned} & 90.0 \\ & 90.0 \end{aligned}$	(1.000, 0.000$)$	(1×1) (1×2)	b: bulk lattice
		0.000	0.000			(0.000, 1.000)		
Surface 1	2.885					($1.000,0.000)$		s1: commens.
						(0.000, 2.000)		superlattice

3D COORDINATES

Au1: remaining row

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \pm \boldsymbol{\mathrm { X }}$	DY $\pm \in Y$	Dz $\pm \boldsymbol{E} \mathbf{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr ovrl intf intf subl	Au Au Au Au	-2 -1 1 2 3 4	s 1 b b b	.50 1.00 1.00 1.00	0 1 2 3	$\begin{array}{rr} & f \\ 1.443 & \& \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \\ 0.500 & f \end{array}$	$\begin{array}{rr} & f \\ 2.040 & \AA \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \\ 0.500 & f \end{array}$	A 1.440 A 0.000 A $1.240 \pm .070$ A 1.440 A 1.440 A	$\begin{array}{r} 0.0 \\ 86.1 \pm 4.9 \\ 100.0 \\ 100.0 \end{array}$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.885	Au1	Au1(1,0)		
2.789	Au1	Au2	Au3	56.4
2.680	Au1	Au3	Au4	120.0
2.884	Au2	Au3	Au4	59.9
2.884	Au3	Au4		

COMMON NAME : Au(110)-(1×2) ILLUSTRATION: 5

CLASSIFICATION	$: 79.66 a$
TECHNIQUE	$:$ XRD
AUTHORS	E. VLieg, I.K. Robinson and K. Kern
REFERENCE	: Surf. Sci., 233,248 (1990)

SURFACE TYPE

Substrate : Au	Adsorbate:
Crystal face: 110	Coverage :
Temperature: RT	Pattern $:(1 \times 2)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: pmm	
2D	

2D bulk symm: pmm 2D surf symm: pmm

STRUCTURE TYPE
Missing-row reconstruction, with multilayer relaxations down to 4th layer

COMMENTS

Rms vibration amplitudes of topmost layers are found enhanced by a factor of nearly 2 over bulk values

THEORY/DATA TREATMENT

fitting of parameters by chi**2 minimization, including $\Theta 0$ for layers 1, 2 and 4

STRUCTURES EXAMINED
Missing-row model with perpendicular relaxations of atoms in layer 1, pairing of layers 2 and 4
QUALITY OF EXPERIMENT-THEORY FIT
Chi**2=2.6
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A)	Bx (A)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.885	0.000	0.000	4.080	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.885	0.000	0.000	8.160	90.0	$(1.000,0.000)$	(1×2)	s1: commens.
						(0.000, 2.000)		superlattice

3D COORDINATES

Au1: ridge atoms; Au2-Au3: paired 2nd layer;
Au4-Au5: planar 3rd layer; Au6-Au7: paired 4th layer
$0 x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.885	Au1	Au1(1,0)	Au2(1,0)	121.3
2.777	Au1	Au2	Au2(1,0)	121.3
2.777	Au1	Au2	Au4	117.9

Au(110)-(1x2)
79.66a

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.850	Au2	Al4 4	Au4 (1, 0)	59.6
2.850	Au2	Au4	Aub (-1,0)	91.4
2.850	Au2	Au4	Au7 (0,-1)	119.2
2.850	Au2	Au4	AU8	120.4

AUTHORS : P. Haberle, P. Fenter and T. Gustafsson

REFERENCE : Phys. Rev., B39, 5810 (1989)

SURFACE TYPE

Substrate $:$ Au	Adsorbate:
Crystal face: 110	Coverage :
Temperature : RT*	Pattern : (1x3)
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: pmm	

STRUCTURE TYPE

Missing-row reconstruction (facetting into 2nd layer), with
relaxations down to 3rd layer; this rconstruction is
stabilized by 0.05ML of Cs impurities

COMMENTS
0.03ML of Cs produces a poorly ordered (1x5) structure

THEORY/DATA TREATMENT

Monte Carlo simulations with R-factor analysis

Technique: MEIS; 65 and 150 keV protons
Dataset : polar angular yield distributions in several different azimuths

STRUCTURES EXAMINED
Models with varying numbers and depths of missing rows; in preferred (facetted) model, variations of 1st, 2nd and 3rd interlayer spacings and 2nd layer pairing

20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay ($\mathrm{A}^{\text {) }}$	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.885	0.000	0.000	4.080	90.0	(1.000, 0.000)	$\begin{aligned} & (1 \times 1) \\ & (1 \times 3) \end{aligned}$	b: bulk lattice s1: conmens. superlattice
						(0.000, 1.000)		
Surface 1	2.885	0.000	0.000	12.240	90.0	(1.000, 0.000)		
						(0.000, 3.000)		

3D COORDINATES
Au1: ridge atom; Au2-Au3: coplanar 2nd layer atoms;
Au4-Au5-Au6: buckled 3rd layer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 12

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.885	Au1	Au1 $(1,0)$	Au2	57.4
2.850	Au2	Au5	Au7($-1,1$)	175.3
2.798	Au2	Au6	Au7	57.6

Bond Distances and Angles - Continued

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.713	Au2	Au7	Aus	60.6
2.680	Au1	Au2	Au1(1,0)	65.1
2.680	Au1	Au2	Au5	117.0
2.680	Au1	Au2	Au6	54.4
2.680	Au1	Au2	Au7	116.2
2.508	Au1	Au6	Au2	60.4
2.508	Au1	Au6	Au7	118.0
2.850	Au2	Au5	Au5 (1,0)	59.6
2.850	Au2	Au5	Au7	56.3

COMMON NAME : Au(110)-c(2x2)-K
ILLUSTRATION: 41
CLASSIFICATION : 79.19.3
technique : MEIS
AUTHORS : P. Haberle and T. Gustafsson
REFERENCE : Phys. Rev., B40, 8218 (1989)

SURFACE TYPE
Substrate: Au
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: prmm
2D surf symm: cmm
SAMPLE PREPARATION (1 sample)
Treatment : K deposited from resistively heated source
Crystallinity: good quality LEED pattern
Anal. methods: AES, TDS; ion scattering gave K
Contamination:

DATA COLLECTION
Technique: MEIS; 50-65keV protons
Dataset : polar angular yield distributions in several different azimuths

STRUCTURE TYPE
Mixed Au/K top layer, inducing spacing relaxations and buckling in deeper Au layers
Coverage : $0.5 \mathrm{~K} / 1 \times 1$
Pattern : $c(2 \times 2)$
Matrix: $\begin{aligned}(1.000,-1.000) \\ (1.000,1.000)\end{aligned}$

COMMENTS

THEORY/DATA TREATMENT

Monte Carlo simulations with R-factor analysis

STRUCTURES EXAMINED
Pure overlayer model and mixed top-layer model; in latter model, variation of K height, of first 2 Au-Au spacings and of 3rd Au-layer buckling

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	$B x$ (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.885	0.000	0.000	4.080	90.0	(1.000, 0.000)	(1) ${ }^{1}$	$b:$ bulk lattice
Surface 1	2.885	-4.080	2.885	4.080		(0.000, 1.000)		
					109.5	(1.000,-1.000)	$c(2 \times 2)$	s1: commens.
						(1.000, 1.000)		superlattice

3D COORDINATES
K1-Au2: mixed non-planar top layer; Au3-Au4: planar 2nd Au layer;
Au5-Au6: buckled 3rd Au layer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $8 \quad$ Bulk $2=1.443 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 11

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
4.997	K1	K1(1,0)		
2.796	Au2	Au3	Au5	118.3
2.796	Au2	Au3	Au6	56.7

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
3.070	K1	Au2 11,0$)$	K1(1,1)	140.0
3.070	K1	Au2 $(1,0)$	K1(1,0)	85.1
3.070	K1	Au2 $(1,0)$	Au3 $(1,0)$	70.7
3.070	K1	Au2 $(1,0)$	Au4	70.7
4.213	K1	Au2	Au3	53.5
3.399	K1	Au3	Au4	64.9
3.399	K1	Au3	Au5	70.7
2.796	Au2	Au3	Au4	58.9

COMMON NAME : AuCu3(100) disordered

CLASSIFICATION : 29.79 .5

| TECHNIQUE | : XPD |
| :--- | :--- | :--- |
| AUTHORS | A. Stuck, J. Osterwalder, L. Schlapbach and H.C. Poon |
| REFERENCE | : Surf. Sci., $251 / 252,670$ (1991) |

SURFACE TYPE

Substrate: AuCu3	Adsorbate:
Crystal face: 100	Coverage :
Temperature: 823 K	Pattern : disordered
Bulk lattice: AuCu3	Matrix : (1.000, 0.000)
2D bulk symm: none	

SAMPLE PREPARATION (1 sample)
Treatment : 800 eV Ar sputtering and annealing up to 920 K
Crystallinity: sharp LEED spots at RT
Anal. methods: XPS and LEED
Contamination: 0 and C were $<15 \%$ of a monolayer
DATA COLLECTION
Technique: XPD; modified VG ESCALAB Mark II
Dataset : Au 4 f and $\mathrm{Cu} 3 p$ polar scans at 45° above surface

STRUCTURE TYPE

Disordered alloy; 50\% each of Au and Cu in top layer; 100% Cu in 2nd layer; $35 \% \mathrm{Au}$ and $65 \% \mathrm{Cu}$ in 3rd layer; deeper layers contain 25% Au and $75 \% \mathrm{Cu}$, reflecting the concentration of disordered bulk AuCu3

COMMENTS

For this tabulation, an ordered fcc lattice is assumed, with lattice constant of $3.7442 \AA$

IHEORY/DATA TREATMENT
Layer-type multiple-scattering calculations

STRUCTURES EXAMINED
A second structure was tested with $25 \% \mathrm{Au}$ and $75 \% \mathrm{Cu}$ in each layer to mimic complete disorder
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (\AA)	$B \times(\AA)$	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.648	0.000	0.000	2.648	90.0	$\begin{aligned} & (1.000, \\ & (0.000, \\ & (1.000) \end{aligned}$	(1×1)	b: bulk lattice
Surface 1	5.295	0.000	0.000	5.295	90.0	$\begin{aligned} & (2.000,0.000) \\ & (0.000,2.000) \end{aligned}$	disordered	m1: randomly mixed layer

3D COORDINATES
Au1-Cu4: top random mixed layer, $\mathrm{Au} / \mathrm{Cu}=50 / 50$; Cu5-Cu8: 2nd layer, 100\% Cu;
Au9-Cu12: 3 rd random mixed layer, $A u / C u=35 / 65$; Au13-Cu16: bulk random mixed layer, Au/Cu=25/75
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

AuCu3(100) disordered
29.79 .5

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.648	Au1	Cu3	Au2	90.0
3.547	Au1	Au2	$\mathrm{Cu5}$	45.0

COMMON NAME : C(0001)-(1×1) graphite
ILLUSTRATION: 157
CLASSIFICATION : 6.4
technique : LEED
AUTHORS : N.J. Wu and A. Ignatiev
REFERENCE : Phys. Rev., B25, 2983 (1982)

SURFACE TYPE
Substrate: C
Crystal face: 0001
Temperature : 300 K
Bulk lattice: graphite
2D bulk symm: p3m1
2D surf symm: p3m1

```
Adsorbate:
Coverage
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
                            ( 0.000, 1.000)
```

STRUCTURE TYPE
Bulk termination with top spacing contraction

COMMENTS

3-fold symmetric LEED pattern indicates absence of steps

IHEORY/DATA TREATMENT

Dynamical LEED with RSP and RFS; 5 phase shifts; 22 symmetry reduced beams; Vor=-8.2 eV (fit); $\oplus 0=973 \mathrm{~K}$

STRUCTURES EXAMINED

Various 1st layer spacings for two stacking sequences: 1. ABABA... 2. AABAB...
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.19$
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.461	0.000	-1.231	2.131	120.0	$(1.000,0.000)$	(1x1)	
Surface 1	2.461	0.000	-1.231	2.131	120.0	$(0.000,1.000)$	bulk lattice	

3D COORDINATES
C1,C2: topmost biatomic sheet; C3,C4: 1st biatomic sheet of bulk repeat unit;
C5,C6: 2nd biatomic sheet of bulk repeat unit; $0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $6 \quad$ Bulk $z=3.354 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.421	$C 1$	$C 2$	$C 1(1,1)$	120.0

COMMON NAME $: C(111)-(1 \times 1)$ diamond	
CLASSIFICATION $: 6.5$	
TECHNIQUE	LEED
AUTHORS	: W.S. Yang, J. Sokolov, F. Jona and P.M. Marcus
REFERENCE	: Solid State Commun., 41,191 (1982)

```
TECHNIQUE : LEED
AUTHORS : W.S. Yang, J. Sokolov, F. Jona and P.M. Marcus
REFERENCE : Solid State Commun., 41, 191 (1982)
```

SURFACE TYPE
STRUCTURE TYPE
Ideal bulk termination, within error bars; (probably H-terminated)

Crystal face: 11
Temperature : RT*
Bulk lattice: diamond
2 D bulk symm: p3m1
2D surf symm: p3m1

Adsorbate:

Pattern : (1x1)
Matrix $:(1.000,0.000)$

SAMPLE PREPARATION (2 sample)
Treatment : sample 1 natural; sample 2 boron doped; both acetone cleaned
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination:
OATA COLLECTION
Technique: LEED
Dataset : 5 LEED I-V curves at off normal incidence E range 60-220 eV

COMMENTS

Sample 1 was insulating diamond (Lurie et al, Surf. Sci. 65, 453 (1977));
sample 2 was semiconducting diamond (Himpsel et al, J. Vac. Sci. Technol. 171085 (1980))

THEORY/DATA TREATMENT

Dynamical LEED: 8 phase shifts; 61 beams; rms vibr. $0.05 \AA_{i}$ Vor $=-10 \mathrm{eV}$, Voi=-3eV

STRUCTURES EXAMINED
Varied first interplanar spacing from bulk value of $0.515 \AA$ by contractions of 0.1 and $0.2 \AA$, and relaxation of $0.02 \AA$

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	AY (A)	Bx (\AA)	By (${ }^{\text {a }}$)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.524	0.000	-1.262	2.186	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.524	0.000	-1.262	2.186	120.0	(1.000, 0.000)	(1×1)	s1: commens.
						(0.000, 1.000)		superlattice

C1, C2: top bilayer; C3, C4: bulk bilayer;
$0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.546	$C 1$	$C 2$	$C 1(1,1)$	109.5
1.546	$C 1$	$C 2$	$C 3$	109.5
1.546	$C 2$	$C 1(1,1)$	$C 2(1,1)$	109.5
1.546	$C 2$	$C 3$	$C 4$	109.5

```
COMMON NAME : C(0001)-(2x2)-Cs
CLASSIFICATION : 6.55.3
TECHNIQUE : LEED
AUTHORS : Z.P. Hu, Jia Li, N.J. Wu and A. Ignatiev
REFERENCE : Phys. Rev., B39, 13201 (1989)
```


SURFACE TYPE

Substrate : C
Adsorbate: Cs
Crystal face: 0001
Temperature : RT*
Bulk lattice: graphite
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : graphite cleaved
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 4 beams ($55<E<200 \mathrm{eV}$) at normal incidence; cumulative E range 450 eV

STRUCTURE TYPE
Atomic Cs adsorbed in six-fold coord. hollow sites on unrelaxed bulk-like substrate

COMMENTS

Low step-density area chosen by monitoring 3-fold symmetry of LEED IV curves; R-factor used is average of ROS,R1,R2, RPE,RZJ

THEORY/DATA TREATMENT
Dynamical LEED (RSP, RFS); 5 phase shifts, $\Theta D(C s)=40 \mathrm{~K}$

STRUCTURES EXAMINED
Cs in 1) hollow and 2) top sites with variation of Cs-C spacing and 1st C-C layer spacing; 3) (Cs hol(ow)A/BAB (/=disordered Cs); 4)(Cs)A/AB; 5) /A/AB; 6)/A/BA

QUALITY OF EXPERIMENT-THEORY FIT
R (5ave) $=0.23$ for 1)
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	$B x(\AA)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.460	0.000	-1.230	2.130	120.0	$(1.000,0.000)$	(1x1)	b: bulk lattice
Surface 1	4.920	0.000	-2.460	4.261	120.0	$(0.000,1.000)$	$(2.000,0.000)$	(2x2)

3D COORDINATES
Csi: overlayer in 6-fold coord. hollows; C2-C5: substrate repeat unit, with 2 biatomic sheets;
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $5 \quad$ Bulk $2=3.350 \AA$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 2

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.140	$C s 1$	$C 2$	$C 2(1,1)$	120.0

AUTHORS : Z.P. Hu, Jia Li, N.J. Hu and A. Ignatiev
REFERENCE : Surf. Sci., 218, 283 (1989)

SURFACE TYPE

Substrate : C	Adsorbate: Cs
Crystal face: 0001	Coverage : $1 / 3 \mathrm{Cs} / 1 \times 1$
Temperature: RT*	Pattern : $(\sqrt{3} \times \sqrt{3})$ R30
Bulk lattice: graphite	Matrix $:(2.000,1.000)$
2D bulk symm: p3m1	

STRUCTURE TYPE
Atomic Cs adsorbed in six-fold coord. hollow sites;
top graphite layer shifted to a (Cs)AABAB stacking, with
expanded interlayer spacing between 2 top A layers

COMMENTS
 Low step-density area chosen by monitoring 3-fold symmetry of LEED IV curves; R-factor used is average of ROS,R1,R2, RPE,RZJ; the only fractional beam is given double weight; d2(C-C first layer spacing) for (Cs)A/AB varied from 3.256.25A; best-fit $d 2=3.85 \AA$ means no Cs intercalation
 THEORY/DATA TREATMENT
 Dynamical LEED (RSP, RFS): 5 phase shifts

DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 2 int. beams ($55<\mathrm{E}<200 \mathrm{eV}$)
and 1 fract. beam ($35<E<95 \mathrm{eV}$) at normal incidence

SAMPLE PREPARATION (1 sample)
Treatment : graphite cleaved
Crystallinity:
Anal. methods:
Contamination:

STRUCTURES EXAMINED
Cs in 1) hollow and 2) top sites with variable height; 3) (Cs)A/BAB (/=disordered Cs); 4) (Cs)A/AB; 5) /A(Cs)AB; 6) (Cs)A(Cs)AB with relaxation of Cs-C spacing and 1st C-C layer spacing allowed; disordered Cs not modeled, but inferred from large $C-C$ spacing, if present (see comment)

QUALITY OF EXPERIMENT-THEORY FIT
R(5ave) $=0.18$ for 4)
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.460	0.000	-1.230	2.130	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.690	2.130	-3.690	2.130	120.0	(2.000, 1.000)	$(\sqrt{3} \times \sqrt{3}) 830^{\circ}$	s1: commens.
						(-1.000, 1.000)		superlattice

3D COORDINATES
Cs1: overlayer in 6-fold coord. hollows; C2-C3: shifted graphite sheet;
C4-C7: substrate repeat unit, with 2 biatomic sheets; $0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \pm \in \mathrm{X}$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \epsilon \mathcal{L}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				0.000 A	0.000 A	6.700 A	
intf	Cs	1	s1	. 33	0	0.000 f	0.000 f	$0.000 \pm .100 \AA$	0.0 ± 3.0
intf	C	2	b	1.00	1	-0.333 f	-0.667 f	$2.650 \pm .100 \AA$	78.1 ± 3.0
intf	C	3	b	1.00	2	0.667 f	0.333 f	0.000 A	0.0
subl	C	4	b	1.00	1	-0.333 f	-0.667 f	$6.500 \pm .100 \AA$	194.0 ± 3.0
subl	C	5	b	1.00	4	0.667 f	0.333 f	0.000 A	0.0
subl	C	6	b	1.00	5	-0.333 f	0.333 f	$3.350 \pm .100 \AA$	100.0 ± 3.0
subl	C	7	b	1.00	6	0.333 f	-0.333 f	0.000 \&	0.0

C(0001)-($\sqrt{3} \times \sqrt{3})$ R30 0°-Cs
6.55 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.010	Cs 1	C 2		
3.850	C 2			

```
C(111)-(1\times1)-H (diamond)
CLASSIFICATION : 6.1.1a
TECHNIQUE : MEIS
AUTHORS : T.E. Derry, L. Smit and J.F. van der veen
REFERENCE : Surf. Sci., 167, 502 (1986)
```


SURFACE TYPE

Substrate : C	Adsorbate: H
Crystal face: 111	Coverage :
Temperature: RT*	Pattern : (1x1)
Bulk lattice: diamond	Matrix : (1.000, 0.000)
2D bulk symm: p3m1	

STRUCTURE TYPE
Unreconstructed bulk diamond termination between bilayers, probably stabilized by H, with minor $C-C$ spacing contraction in top bilayer (H positions not determined, but probably terminate dangling bonds)

COMMENTS

Surface atoms have vibration amplitudes enhanced by a factor from 1.4 to 2 relative to bulk

THEORY/DATA TREATMENT

Medium-energy ion scattering: blocking and shadowing interpretation by Monte Carlo simulation of ion trajectories

STRUCTURES EXAMINED
Various 1st layer spacings in conjunction with different enhancements of surface and subsurface vibrations (H ignored)

QUALITY OF EXPERIMENT-THEORY FIT
Determined by mean-square deviations
2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (${ }_{\text {A }}$)	BX (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.524	0.000	-1.262	2.186	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.524	0.000	-1.262	2.186	120.0	$(1.000,0.000)$	(1×1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

C1-C2: top bilayer, with slightly contracted spacing; c3-C4: periodically repeating bulk bilayer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
1.544	C1	C2	$C 1(1,0)$	109.7
1.544	C1	C2	$C 3$	109.3
1.546	$C 2$	$C 3$	$C 4$	109.5

COMMON NAME : C(0001)-1K disordered underlayer
CLASSIFICATION : 6.19.2a
TECHNIQUE : LEED
AUTHORS : N.J. WU and A. Ignatiev
REFERENCE : Phys. Rev., 828, 7288 (1983)

SURFACE TYPE

Crystal face: 0001
Temperature : RT*
Bulk lattice: graphite
20 bulk symm: p3m?
2D surf symm: none

SAMPLE PREPARATION (1 sample)

Treatment : natural platelets cleaved in N2 stream; K evaporated
Crystallinity: monitored by LEED
Anal. methods: AES
Contamination: AES: 0.06 monolayer 0
DATA COLLECTION
Technique: LEED
Dataset : normal incidence LEED $1-V$ data $80<E<280 \mathrm{eV}$ for 2 beams, taken at 3 different stages of intercalation

STRUCTURE TYPE
 Atomic K intercalated between first two graphite sheets;
 K assumed in 6 -fold hollows of 1 st and 2 nd C layers; graphite has AABA.. stacking;
 much expanded spacing between first two graphite sheets;
 K assumed disordered with 0.25ML coverage

COMMENTS

With increasing K exposure, K induces shear shift of the graphite layers to A/A/A/A (/= disordered K) stacking, with AA spacing increased to $5.35 \AA$ from bulk value of $3.35 \AA$; K assumed random;
6-fold LEED pattern symmetry shows presence of steps
THEORY/DATA TREATMENT
Dynamical LEED (RSP, RFS): 5 phase shifts; K treated as incoherent scatterer

STRUCTURES EXAMINED

1. K adsorbed onto $C(0001)$ in (1×1) pattern; 2. K assumed between first two carbon layers, with ABAB..
stacking sequence of C and dilated first layer spacing; 3. as in 2. but substrate in AABA.. stacking sequence;
top C-C spacing varied $3.35-5.65 \AA ; K$ ignored for 2., 3.
QUALITY OF EXPERIMENT - THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x$ (A)	AY (A)	BX (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.460	0.000	-1.230	2.130	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.460	0.000	-1.230	2.130	120.0	(1.000, 0.000)	disordered	nd1: non-recon.
						(0.000, 1.000)		lattice-gas dis

3D COORDINATES
C1, C2: top graphite sheet; K3: disord. intercalate, coverage unknown (assumed 0.25);
C4-C7: substrate repeat unit, with 2 biatomic sheets; $0.1 \AA$ error bar assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 7
Bulk z $=3.350 \mathrm{~A}$

Reg ion	Chem el.	At. no.	$\begin{aligned} & \text { Cell } \\ & \text { type } \end{aligned}$	site occ.	Rel. to	$D \mathrm{C} \quad \pm \epsilon \mathrm{X}$	Dy \pm Ey	$D Z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				0.000 A	0.000 A	6.700 A	
intf	C	1	b	1.00	0	0.000 f	0.000 f	0.000 \&	0.0
intf	C	2	b	1.00	1	0.667 f	0.333 f	0.000 \&	0.0
intf	K	3	nd1	. 25	2	-0.333 f	0.333 f	$2.675 \pm .100 \AA$	79.9 ± 3.0
subl	C	4	b	1.00	3	-0.333 f	-0.667 f	$2.675 \pm .100 \AA$	79.9 ± 3.0
subl	c	5	b	1.00	4	0.667 f	0.333 f	0.000 A	0.0
subl	C	6	b	1.00	5	-0.333 f	0.333 f	3.350 A	100.0
subl	C	7	b	1.00	6	0.333 f	-0.333 f	$0.000 \quad \AA$	0.0

C(0001)-1K disordered underlayer
6.19.2a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.420	$C 1$	$C 2$	$K 3$	76.4
3.029	$C 1$	$K 3$	$C 2$	27.1
3.029	$C 1$	$K 3$	$K 3(0,1)$	114.0
3.229	$C 1$	$K 3$	$C 4(0,1)$	152.9
3.029	$C 1$	$K 3$	124.1	
3.029	$C 1$	$K 3$	132.1	

COMMON NAME : C(0001)-2K disordered under layers
ILLUSTRATION: 165
CLASSIFICATION: $6.19 .2 b$
TECHNIQUE : LEED
AUTHORS : N.J. Wu and A. Ignatiev
REFERENCE : Phys. Rev., B28, 7288 (1983)

SURFACE TYPE
Substrate : C
Crystal face: 0001
Temperature : RT*
Bulk lattice: graphite
2D bulk symm: p3m1
2D surf symm: none
SAMPLE PREPARATION (1 sample)
Treatment : natural platelets cleaved in N2 stream; K evaporated
Crystallinity: monitored by LEED
Anal. methods: AES
Contamination: AES: 0.06 monolayer 0

DATA COLLECTION

Technique: LEED

Dataset : normal incidence LEED I-V data $80<E<280 \mathrm{eV}$ for 2 beams, taken at 3 different stages of intercalation

Adsorbate: K
Coverage :
Pattern : disordered
Matrix : ($1.000,0.000$)
($0.000,1.000$)

STRUCTURE TYPE
Atomic K intercalated between first 3 graphite sheets;
K assumed in 6-fold hollows of C layers;
graphite has AAABA.. stacking;
much expanded spacing between first 3 graphite sheets;
K assumed disordered

COMMENTS

With increasing K exposure, K induces shear shift of the graphite layers to A/A/A/A (/= disordered K) stacking, with AA spacing increased to $5.35 \AA$ from bulk value of $3.35 \AA_{\text {; }}$ K assumed random;
6-fold LEED pattern symmetry shows presence of steps

THEORY/DATA TREATMENT

Dynamical LEED (RSP, RFS); 5 phase shifts; K treated as incoherent scatterer

STRUCTURES EXAMINED

1. K adsorbed onto $C(0001)$ in (1×1) pattern; 2. K assumed between first three carbon layers, with ABAB. . stacking of C sheets and dilated first 2 layer spacings; 3. as in 2. but substrate in AAABA.. stacking sequence; top $C-C$ spacings varied $3.35-5.65 \AA$; K ignored for 2., 3.

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.460	0.000	-1.230	2.130	120.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.460	0.000	-1.230	2.130	120.0	$(0.000,1.000)$	$(1.000,0.000)$	disordered

3D COORDINATES

C1, C2 and C3,C4: first and second graphite sheets; K3,K6: disord. intercalates (coverage assumed 2×0.25);
C7-C10: substrate repeat unit, with 2 biatomic sheets; $0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 10 Bulk z = $3.350 \AA$

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{DX} \pm \epsilon \mathrm{X}$	DY \pm Ey	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				0.000 A	0.000 A	6.700 A	
intf	C	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	C	2	b	1.00	1	0.667 f	0.333 f	0.000 \&	0.0
intf	K	3	nd1	. 25	2	-0.333 f	0.333 f	$2.675 \pm .100 \AA$	79.9 ± 3.0
intf	C	4	b	1.00	3	-0.333 f	-0.667 f	$2.675 \pm .100 \AA$	79.9 ± 3.0
intf	C	5	b	1.00	4	0.667 f	0.333 f	0.000 \&	0.0
intf	K	6	nd2	. 25	5	-0.333 f	0.333 f	$2.675 \pm .100 \AA$	79.9 ± 3.0
subl	C	7	b	1.00	6	-0.333 f	-0.667 f	$2.675 \pm .100 \AA$	79.9 ± 3.0
subt	C	8	b	1.00	7	0.667 f	0.333 f	0.000 A	0.0
subl	C	9	b	1.00	8	-0.333 f	0.333 f	3.350 A	100.0
subl	c	10	b	1.00	9	0.333 f	-0.333 f	0.000 A	0.0

C(0001)-2K disordered underlayers $6.19 .2 b$

Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.420	c1	c2	K3	76.4
3.029	c1	K3	c2	27.1
3.029	C1	K3	K3(0,1)	114.0
3.029	C1	K3	C4(0,1)	152.9
3.029	c1	K3	C4	124.1
3.029	c1	K3	C5	132.1

COMMON NAME	$:$ CaO(100)-(1x1)
CLASSIFICATION	$: 20.8 .1$
TECHNIQUE	$:$ LEED
AUTHORS	$:$ M. Prutton, J.A. Ramsey, J.A. Walker and M.R. Welton Cook
REFERENCE	$:$ J. Phys., C12, 5271 (1979)

Ralker and M.R. Welton Cook
REFERENCE : J. Phys., C12, 5271 (1979)

SURFACE TYPE

Substrate : CaO	Adsorbate:
Crystal face: 100	Coverage :
Temperature : 300 K	Pattern : (1x1)
Bulk lattice: NaCl	Matrix : $1.000,0.000)$
2D bulk symm: p4m	
2D surf	

2D surf symm: p4m

STRUCTURE TYPE

Unreconstructed CaO termination with contraction of top interlayer spacing and no buckling in mixed top layer

SAMPLE PREPARATION (2 sample)
COMMENTS
Treatment : CaO crystal cleaved at room temperature at 2E-10 torr
Crystallinity:
Anal. methods:
Contamination: clean as-cleaved sample by EELS and AES
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 39 beams at incident angles $\Theta=0,5,10$, and 20°, and $\phi=0$ to 45°; $120<E<400 \mathrm{eV}$

STRUCTURES EXAMINED
$\pm 5 \%$ relaxations of first interlayer spacing with no cation/anion buckling; bucklings of 2% or 6% did not improve agreement with experiment

QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.156$
20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.403	0.000	0.000	3.403	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.403	0.000	0.000	3.403	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)

3D COORDINATES
Ca1-02: top mixed layer; Ca5-06: repeating bulk mixed layer;
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C ($)$
3.403	$\mathrm{Ca1}$	$\mathrm{Ca1(1,0)}$	Ca4	59.8
2.376	Ca 1	03		

SURFACE TYPE

Substrate: $:$ CdS	Adsorbate:
Crystal face: $11-20$	Coverage :
Temperature: 50 K	Pattern : (1x1)
Bulk lattice: wurtzite	Matrix $:(1.000,0.000)$
2D bulk symm: p1	
2D surf sym: 1	

SIRUCTURE TYPE
 Top-layer atoms have relaxations both parallel and perpendicular to the surface, with a bond-lengthconserving rotation of the surface $\mathrm{Cd}-\mathrm{s}-\mathrm{Cd}$ and S-Cd-S triplets by 30°, followed by a $0.1 \AA$ contraction of the first layer toward the bulk

SAMPLE PREPARATION (1 sample)
Treatment : cleavage in ultra high vacuum
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; computer based aquisition system Dataset : I-V curves for 15 beams, energy range 35-250 eV

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED: 6 phase shifts, Vor=-10 eV; mfp=10\&

STRUCTURES EXAMINED
Varied were: a. tilt of plane defined by the S-Cd-S triplet; b. spacing between the Cd-subplanes in the first and second layers and buckling in second layer

QUALITY OF EXPERIMENT-THEORY FIT
RX=0.21, RI=0.083
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay ($\AA)$	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	6.749	0.000	0.000	7.162	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	6.749	0.000	0.000	7.162	90.0	$(1.000,0.000)$	(1×1)	s1: commens.
superlattice								

3D COORDINATES
S1-s2-Cd3-Cd4: buckled top layer with S outermost; S5-S6-Cd7-Cd8: planar periodically repeating bulk layer; $0.1 \AA$ error bar assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk $2=2.067$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \pm \in \mathrm{X}$	DY \pm EY	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				0.000 A	3.581	2.067 A	
intf	S	1	b	1.00	0	0.000 f	0.000 f	0.000 \&	0.0
intf	S	2	b	1.00	1	0.500 f	0.405 f	0.000 A	0.0
intf	Cd	3	b	1.00	2	-0.286 f	-0.117 f	$0.650 \pm .100 \AA$	31.4 ± 4.8
intf	Cd	4	b	1.00	3	0.500 f	-0.216 f	0.000 A	0.0
subl	S	5	b	1.00	1	0.000 f	0.500 f	$2.150 \pm .100 \AA$	104.0 ± 4.8
subl	S	6	b	1.00	5	0.500 f	0.333 f	0.000 \&	0.0
subl	Cd	7	b	1.00	6	-0.345 f	0.000 f	0.000 A	0.0
subl	Cd	8	b	1.00	7	0.500 f	-0.333 f	$0.000 \quad \AA$	0.0

$\operatorname{CdS}(11-20)-(1 \times 1)$
48.16.1
bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles:
10

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.595	s1	cd3	s2	135.6
2.595	cd3	S1	Cd6(0,-1)	86.3
2.595	s1	cd3	S5	107.7
2.102	S1	Cd4(-1,0)	s2(-1,0)	126.5
2.673	S1	$\operatorname{Cd6}(0,-1)$	cd3	46.0
2.205	S2	Cd3	S1	135.6
2.205	S2	Cd3	S5	115.9
2.863	s2	Cd4	Si $(1,0)$	126.5
2.863	s2	Cd4	S7(0, 1)	112.6
2.487	S2	Cd8	Cd3	35.9

CLASSIFICATION : 48.34.2
TECHNIQUE : LEED
AUTHORS : Y.R. Wang, C.B. Duke, A. Paton, K. Stiles and A. Kahn
REFERENCE : Phys. Rev., B36, 9406 (1987)

SURFACE TYPE

Substrate: CdSe	Adsorbate:
Crystal face: $10-10$	Coverage :
Temperature: 125 K	Pattern : (1x1)
Bulk lattice: wurtzite	Matrix : $1.000,0.000)$
2D bulk symm: pm	

Adsorbate:
Coverage
(1x1
(0.000, 1.000)

STRUCTURE TYPE
Relaxed bulk termination: top Cd-Se layer buckled (Se outward, Cd inward)

SAMPLE PREPARATION (1 sample)
Treatment: cleaved in situ
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
DATA TREATMENT
Dynamical LEED with R-factor minimisation

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.300	0.000	0.000	7.020	90.0	$(1.000,0.000)$	(1x1)	b: bulk lattice
Surface 1	4.300	0.000	0.000	7.020	90.0	$(1.000,0.000)$	(1×1)	s1: commens.
superlattice								

3D COORDINATES
Se1-Cd2: buckled top bilayer, Se outward; Cd5-Se6 and Cd7-Se8: 2 bulk bilayers, together forming repeating bulk set of layers

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{D} \quad \pm \epsilon \mathrm{X}$	DY $\pm \in Y$	Dz $\pm \boldsymbol{E z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				-2.150 A	0.000 \&	3.725 A	
intf	Se	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cd	2	b	1.00	1	0.000 f	$0.345 \pm .028 \mathrm{f}$	$1.030 \pm .200$ A	27.7 ± 5.4
intf	Cd	3	b	1.00	2	0.500 f	$0.584 \pm .028 \mathrm{f}$	$0.410 \pm .200 \AA$	11.0 ± 5.4
intf	Se	4	b	1.00	3	0.000 f	-0.429 $\pm .028 \mathrm{f}$	$0.000 \pm .100 \AA$	0.0 ± 2.7
subl	Cd	5	b	1.00	4	0.000 f	-0.125 f	2.483 A	66.7
subl	Se	6	b	1.00	5	0.000 f	-0.375 f	0.000 A	0.0
subl	Cd	7	b	1.00	6	-0.500 f	0.875 f	1.242 A	33.3
subl	Se	8	b	1.00	7	0.000 f	-0.375 f	$0.000{ }_{\text {, }}$	0.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 11

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.632	Se1	Cd2	Se4	118.4
2.633	Cd5	Se6	Se8	90.0
2.633	Se6	$\operatorname{cd7}(0,-1)$	Se8	70.5
2.632	Se1	Cd2	Cd5	111.6
2.635	Se1	Cd3 $(0,-1)$	Se4 $(0,-1)$	100.9
2.635	Se1	$\operatorname{Cd} 3(0,-1)$	Se6	119.9
2.444	Cd 2	Se4	Cd5	90.6
3.012	Cd3	Se4	Cd5	109.5

CdSe(10-10)-(1×1)
48.34.2

Bond Distances and Angles - Continued

Interatomic dist. $A-B$ (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.533	Cd3	Se6(0,1)	cd7	113.4
2.634	Se4	cas	Se6	109.5
2.633	cd5	Se6	Cd7(0,-1)	109.5

COMMON NAME	$:$ CdSe $(10-10)-(1 \times 1)$
CLASSIFICATION	$: 48.34 .4 b$
TECHNIQUE	$:$ LEPD
AUTHORS	: C.B. Duke, D.E. Lessor, T.N. Horsky, G. Brandes, K.F.
	Canter, P.H. Lippel, A.P. Mills, A. Paton and Y.R. Wang
REFERENCE	$: ~ J . ~ V a c, ~ S c i . ~ T e c h n o l, ~ A 7, ~ 2031 ~(1989) ~$

SURFACE TYPE

Substrate: CdSe

Crystal face: 10-10
Temperature : 300 K
Bulk lattice: wurtzite
2D bulk symm: pm
2D surf symm: pm

Adsorbate:

Coverage :
Pattern : (1x1)
Matrix $:(1.000,0.000)$
($0.000,1.000$)

STRUCTURE TYPE

Top layer buckled with se outermost, second layer shows small buckling with Cd outermost; also relaxations parallel to surface of the atoms in the top two layers

SAMPLE PREPARATION (1 sample)
Treatment : cleavage in ultra high vacuum
Crystallinity:
Anal. methods: LEED
Contamination:
DATA COLLECTION
Technique: LEPD
Dataset : I-V curves for 14 beams, energy range 20-160 eV
AUTHORS : C.B. Duke, D.E. Lessor, T.N. Horsky, G. Brandes, K.F.
Canter, P.H. Lippel, A.P. Mills, A. Paton and Y.R. Wang
J. Vac. Sci. Technol., A7, 2031 (1989)

STRUCTURES EXAMINED

Varied were: a. tilt of plane defined by the Se-Cd-Se triplet; b. spacing between the cd-subplanes in the first and second layers and buckling in second layer

QUALITY OF EXPERIMENT-THEORY FIT
$\mathrm{RX}=0.08, \mathrm{RI}=0.06$
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.300	0.000	0.000	7.020	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.300	0.000	0.000	7.020	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES

Se1-Cd2: buckled top layer, Se outward; Cd3-Se4: buckled second layer, cd outward;
Cd5-Se6-Cd7-Se8: 2 planar bulk layers repeated periodically; $0.1 \AA$ error bars assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z $=3.720 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D X \pm \epsilon X$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				-2.150 A	0.000 A	$3.720 \quad \AA$	
intf	Se	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cd	2	b	1.00	1	0.000 f	$0.638 \pm .014 \mathrm{f}$	$0.680 \pm .100 \AA$	18.3 ± 2.7
intf	Cd	3	b	1.00	2	0.500 f	$-0.564 \pm .014 \mathrm{f}$	$0.650 \pm .100 \AA$	17.5 ± 2.7
intf	Se	4	b	1.00	3	0.000 f	$0.426 \pm .014 \mathrm{f}$	$0.050 \pm .100 \AA$	1.3 ± 2.7
subl	Cd	5	b	1.00	4	0.000 f	0.155 f	2.480 A	66.7
subl	Se	6	b	1.00	5	0.000 f	-0.655 f	0.000 \&	0.0
subl	Cd	7	b	1.00	6	-0.500 f	0.155 f	1.240 A	33.3
subl	Se	8	b	1.00	7	0.000 f	0.345 f	$0.000 \quad \AA$	0.0

Bond distances and angles are derived from coordinates
No. of distances/angles: 8

Interatomic dist. $A-B$ (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.630	Se1	Cd2 $(0,-1)$	Se4(0,-1)	117.0
2.581	Se1	Cd3	Se1(1,0)	112.8
2.581	Se1	cd3	Se4	102.1
2.630	cd2	Se1 (0,1)	$\operatorname{cd} 3(0,1)$	93.5
2.460	cd2	Se4	cd2 $(1,0)$	121.8
2.581	cd3	$\operatorname{Se} 1(1,0)$	$\operatorname{cd2}(1,-1)$	93.5
2.991	ca3	Se4	cd2 11.0$)$	112.9
2.460	Se4	Cd2 $(1,0)$	Se1(1,1)	117.0

COMMON NAME	$:$ CdSe $(11-20)-(1 \mathrm{x} 1)$
CLASSIFICATION	$: 48.34 .4 \mathrm{a}$
TECHNIQUE	$:$ LEPD
AUTHORS	C.B. Duke, D.E. Lessor, T.N. Horsky, G. Brandes, K.F.
	Canter, P.H. Lippel, A.P. Mills, A. Paton and Y.R. Wang

TECHNIQUE : LEPD

REFERENCE : J. Vac. Sci. Technol., A7, 2031 (1989)

SURFACE TYPE

Substrate : CdSe	Adsorbate:
Crystal face: $11-20$	Coverage :
Temperature : 105 K	Pattern : (1×1)
Bulk lattice: wurtzite	Matrix : $(1.000,0.000$
2D bulk symm: p1	
2D surf symm: p1	

2D surf symm: p1

STRUCTURE TYPE

Top-layer atoms have relaxations with a bond-lengthconserving rotation of the surface $\mathrm{Cd}-\mathrm{Se}-\mathrm{Cd}$ and Se-Cd-Se triplets by 27°, followed by a contraction of the first layer toward the bulk; 2nd layer also has a small buckling, with Cd outermost

SAMPLE PREPARATION (1 sample)
Treatment: cleavage in ultra high vacuum
Crystallinity:
Anal. methods: LEED
Contamination:

DATA COLLECTION
THEORY/DATA TREATMENT
Technique: LEPD
Dataset : I-V curves for 14 beams, energy range 20-160 eV

COMMENTS

STRUCTURES EXAMINED
Varied were: a. tilt of plane defined by the Se-Cd-Se triplet; b. spacing between the Cd-subplanes in the first and second layers and buckling in second layer

QUALITY OF EXPERIMENT-THEORY FIT
$\mathrm{RX}=0.12, \mathrm{RI}=0.04$
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	7.020	0.000	0.000	7.448	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	7.020	0.000	0.000	7.448	90.0	$(1.000,0.000)$	(1×1)	(1.00) s1: commens. superlattice

$3 D$ COORDINATES
Se1-Se2-Cd3-Cd4: buckled top layer with Se outermost; Se5-Se6-Cd7-Cd8: buckled second layer;
Se9-Se10-Cd11-Cd12: planar periodically repeated bulk layer; 0.1\& error bar assumed for tabulation
Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

CdSe(11-20)-(1x1)
48.34.4a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10

Interatomic dist. $A-B(A)$	Atom A	Atem B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.933	Sel	cd3	Se2	126.8
2.745	Cd4	Se2	cd 3	93.8
2.933	Se1	cd3	Cd4	87.6
2.635	Se1	$\mathrm{Cd4}(-1,0)$	$\operatorname{se2}(-1,0)$	118.3
2.872	Se1	Cd7(0,-1)	Se5 (0,-1)	102.0
2.221	Se2	cd3	Se5	126.8
2.745	Se 2	Cd 4	cd3	37.5
2.688	Se 2	cd8	Cd4	48.5
2.221	Cd3	Se2	Cd4	93.8
2.497	cd3	Se5	cd7	104.6

CLASSIFICATION : 48.52.2
TECHNIQUE : LEED
AUTHORS : C.B. Duke, A. Paton, W.K. Ford, A. Kahn and G. Scott
REFERENCE : J. Vac. Sci. Technol., 20, 778 (1982)

SURFACE TYPE

Substrate $: ~ C d T e$	Adsorbate:	
Crystal face: 110	Coverage :	
Temperature: 110 K	Pattern : (1×1)	
Bulk lattice: zincblende	Matrix $:(1.000,0.000)$	
2D bulk symm: pm		$(0.000,1.000)$

2D bulk symm: pm

20 surf symm: pm
SAMPLE PREPARATION (3 sample)
Treatment : 3 separate in situ cleaves:

Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 12 beams at normal incidence

STRUCTURE TYPE
Relaxed bulk termination with 30.5° tilt in top layer

Coverage :

Pattern : (1×1)
Matrix: $=\left(\begin{array}{l}1.000,0.000) \\ (0.000,1.000)\end{array}\right.$

STRUCTURES EXAMINED

1. unreconstructed surface; 2. bond relaxations perpendicular to surface;
2. bond rotation top-layer reconstruction, 2nd layer shears

QUALITY OF EXPERIMENT-THEORY FIT
 $R X=0.2$

20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.582	0.000	0.000	6.480	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	4.582	0.000	0.000	6.480	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
Te1-Cd2, Cd3-Te4: 2 bilayers with tilted Cd-Te chains; Cd7-Te8: periodically repeating bulk bilayer; $0.1 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8 Bulk z = $2.291 \quad \AA$

CdTe(110)-(1x1)
48.52 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
10

Interatomic dist. $A-B$ (A	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.807	Te1	Cd 2	Te1(1,0)	109.4
2.797	Cd3	Te6(0,1)	Cd7 ${ }^{\text {c }}$	109.3
2.807	Te1	Cd2	Te4	124.9
2.680	Tel	cd3 $(0,-1)$	Te4(0, -1)	108.8
2.680	Tel	$\operatorname{cd3}(0,-1)$	Te6	117.3
2.828	cd2	Te4	cd3	114.5
2.828	Cd2	Te4	Cd5	90.3
2.812	Cd 3	Te4	cd3 $(1,0)$	109.1
2.812	Cd3	Te4	Cd5	113.7
2.797	Cd3	Te6(0,1)	Cd5 $(0,1)$	109.5

SURFACE TYPE

Substrate : CdTe
Crystal face: 110
Temperature : RT
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ($1.000,0.000$)
($0.000,1.000$)

SAMPLE PREPARATION (1 sample)
Treatment : cleaved in situ
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

DATA COLLECTION

Technique: LEED
Dataset : IV spectra: 12 inequivalent beams at $\Theta=0^{\circ}$. 6 at 40° and 5 at 25°; off normal data for incidence in the mirror plane

STRUCTURE TYPE
Relaxed bulk termination with 30° tilt in top layer

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED: 10 phase shifts; 120 beams; Voi=-4 eV; Vor=-5.6 eV (fit); $00=250 \mathrm{~K}$ (surface), 600 K (bulk), both fit

STRUCTURES EXAMINED
Top layer buckling, relaxation, anion and cation lateral shifts and second bilayer buckling and relaxation were optimized using an unconstrained optimisation algorithm

QUALITY OF EXPERIMENT-THEORY FIT

RPE $=0.64$
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	BX (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.582	0.000	0.000	6.480	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	4.582	0.000	0.000	6.480	90.0	($1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

30 COORDINATES

Te1-Cd2, Cd3-Te4: 2 bilayers with tilted Cd-Te chains; Cd5-Te6: bulk bilayer;
Te7-Cd8: periodically repeating bulk bilayer; $0.1 \AA$ lateral error bars assumed for tabulation
$D X / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z $=2.291 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D X \pm \epsilon X$	DY $\pm \in \boldsymbol{y}$		$D Z \pm \epsilon Z$		$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f		f		\AA	
subr		-1				-2.291 A	3.240	\AA	2.291	\AA	
intf	Te	1	b	1.00	0	0.000 f	0.000	f	0.000	\AA	0.0
intf	Cd	2	b	1.00	1	0.500 f	$0.216 \pm .015$	f	$0.820 \pm .100$	A	35.8 ± 4.4
intf	Cd	3	b	1.00	2	-0.500 f	$0.560 \pm .015$	f	$1.610 \pm .150$	\AA	70.3 ± 6.5
intf	Te	4	b	1.00	3	0.500 f	-0.250	f	$0.080 \pm .060$	\AA	3.5 ± 2.6
intf	Cd	5	b	1.00	4	0.000 f	-0.250	f	$2.240 \pm .080$	\AA	97.8 ± 3.5
intf	Te	6	b	1.00	5	-0.500 f	-0.250	f	0.000	\AA	0.0
subl	Te	7	b	1.00	6	0.500 f	0.500	f	2.291	\AA	100.0
subl	Cd	8	b	1.00	7	-0.500 f	0.250	f	0.000	\AA	0.0

CdTe(110)-(1×1)
48.52 .6

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 11

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.807	Te1	Cd2	Te1(1,0)	109.4
2.806	Cd5	Te6	Cd8(0,-1)	109.5
2.806	Cd5	Te7	cd8	109.5
2.807	Te1	Cd2	Te4	124.7
2.831	Te1	Cd3 $(0,-1)$	Te4(0,-1)	108.7
2.831	Te1	Cd3 $(0,-1)$	Te6	114.2
2.625	Cd2	Te4	cd5	94.2
2.807	cd3	Te4	Cd5	111.2
2.830	Cd3	Te6(0,1)	Cd8	109.8
2.764	Te4	Cd5	Te6	109.8
2.764	Te4	cd5	Te7	108.9

AUTHORS : B.W. Lee, R. Alsenz, A. Ignatiev and M.A. Van Hove
REFERENCE : Phys. Rev., B17, 1510 (1978)

SURFACE TYPE

Substrate: Co
Crystal face: 0001
Temperature : 300 K
Bulk lattice: hcp
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : annealing below 623 K to avoid martensitic transformation
Crystallinity:
Anal. methods:
Contamination: C (main contaminant): in AES noise

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: ($\theta=0, \phi=0$): 10 and 01 beams, $\left(\Theta=6^{\circ}, \phi=0\right): 00,10,01,-10,-11,-21$ beams

STRUCTURE TYPE
Bulk hcp termination
bate:
Coverage :
Pattern : (1×1)
Matrix: $\begin{aligned}(1.000,0.000) \\ (0.000,1.000)\end{aligned}$

COMMENTS
Bulk has (martensitic) phase transformation from hep to fec at 450 C

THEORY/DATA TREATMENT

Dynamical LEED (RFS): Moruzzi-Janak-Williams potential, 8 phase shifts; Vor=-16.0 eV, Voi=-5.0eV; $\Theta 0=315 \mathrm{~K}$

STRUCTURES EXAMINED

Hcp/fcc terminations on hcp/fcc bulk with top layer spacing varied from 1.85 to $2.15 \AA$ in steps of $0.05 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.520	0.000	1.260	2.182	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.520	0.000	1.260	2.182	60.0	$(1.000,0.000)$	(1×1)	

30 COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.520	$\operatorname{Co1}$	$\operatorname{Co1}(1,0)$	$\operatorname{Co2(1,0)}$	120.1
2.520	$\operatorname{Co1}$	$\operatorname{Co1(1,0)}$	$\operatorname{Co2}$	59.9
2.514	$\operatorname{Co1}$	$\operatorname{Co2}$	$\operatorname{Co2}(1,0)$	120.1
2.514	$\operatorname{Co1}$	$\operatorname{Co2}$	$\operatorname{Co3}(1,0)$	146.4
2.514	$\operatorname{Co1}$	$\operatorname{Co3}$	109.3	

COMMON NAME : Co(10-10)-(1×1)
ILLUSTRATION: 20
CLASSIFICATION : 27.9a
TECHNIQUE
LEED
AUTHORS : M. Lindroos, C.J. Barnes, P. Hu and D.A. King
REFERENCE : Chem. Phys. Lett., 173, 92 (1990)

SURFACE TYPE

Substrate: Co	Adsorbate:
Crystal face: $10-10$	Coverage :
Temperature: RT*	Pattern : (1x1)
Bulk lattice: hcp	Matrix : $1.000,0.000)$
2D bulk symm: pmm	

Adsorbate:
Coverage :
Pattern : (1x1)
(0.000, 1.000)
: pmom

STRUCTURE TYPE

Relaxed bulk with lower-corrugation termination (of two possible terminations for a (10-10) hep surface) and multilayer relaxations

SAMPLE PREPARATION (1 sample)
Treatment : cycles of sputtering/annealing, and oxidation/reduction
Crystallinity: sharp low-background LEED
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; Auto-LEED system
Dataset : IV curves for 8 inequivalent beams, $50<E<250 \mathrm{eV}$, normal incidence

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling, composite layers):
$E-i n d e p$. Vor, Voi (fit); $\Theta D=385 \mathrm{~K}$

STRUCTURES EXAMINED
Two different bulk terminations, fit of top 3 interlayer distances for preferred termination
QUALITY OF EXPERIMENT-THEORY FIT
Several R-factors used
2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.512	0.000	0.000	4.077	90.0	(1.000, 0.000)	(1xi)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.512	0.000	0.000	4.077	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
Co1-Co4: have relaxed interlayer spacings; Co7-C08: periodically repeating set of bulk layers
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{XX} \pm \boldsymbol{\mathrm { X }}$	Dy $\pm \in y$	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				0.000 A	2.039 A	$2.175 \quad \AA$	
intf	Co	1	b	1.00	0	0.000 f	0.500 f	0.000 A	0.0
intf	Co	2	b	1.00	1	0.500 f	-0.500 f	$0.678 \pm .015$ A	46.8 ± 1.0
intf	Co	3	b	1.00	2	-0.500 f	0.000 f	$1.465 \pm .029 \AA$	101.0 ± 2.0
intf	Co	4	b	1.00	3	0.500 f	0.500 f	$0.725 \pm .015$ A	50.0 ± 1.0
intf	Co	5	b	1.00	4	-0.500 f	0.000 f	1.450 A	100.0
intf	Co	6	b	1.00	5	0.500 f	-0.500 f	0.725 A	50.0
subl	Co	7	b	1.00	6	-0.500 f	0.000 f	1.450 A	100.0
subl	Co	8	b	1.00	7	0.500 f	0.500 f	0.725 \&	50.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond ang(e $A-B-C\left({ }^{\circ}\right)$
2.512	$\operatorname{Co1}$	$\operatorname{Co1(1,0)}$	$\operatorname{Co2(1,0)}$	120.3
2.489	$\operatorname{Co1}$	$\operatorname{Co2}$	$\operatorname{Co3}$	83.0
2.957	$\operatorname{Co1}$	$\operatorname{Co3}$	$\operatorname{Co4}$	69.4

Co(10-10)-(1×1)
27.9a

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.957	$\operatorname{Co1}$	$\operatorname{Co3}$	$\operatorname{Co4}(0,-1)$	140.5
2.957	$\operatorname{Co1}$	$\operatorname{Co3}$	$\operatorname{Co4}(-1,0)$	69.4
1.929	$\operatorname{Co2}$	$\operatorname{Co3}$	$\operatorname{Co4}$	83.9
2.992	$\mathrm{Co2}$	$\operatorname{Co4}$	$\operatorname{Co5}$	123.6

COMMON NAME	$: \operatorname{Co}(10-10)-(1 \times 1)$
CLASSIFICATION	$: 27.10$
TECHNIQU	$:$ LEED
AUTHORS	$:$ H. Over, G. Kleinle, G. Ertl, W. Moritz, K.H. Ernst, H
	Wohlgemuth, K. Christmann and E. Schwarz
REFERENCE	$:$ Surf. Sci., 254, L469 (1991)

SURFACE TYPE

Substrate: Co	Adsorbate:	
Crystal face: 10-10	Coverage :	
Temperature : RT*	Pattern	(1x1)
Bulk lattice: hcp	Matrix	(1.000, 0.000)
2D bulk symm: pmm		(0.000, 1.000)

STRUCTURE TYPE
Relaxed bulk with lower-corrugation termination (of two possible terminations for a (10-10) hcp surface)

COMMENTS
Care was taken not to go beyond 680 K in the annealing so as not to cross hep to fec transition at 700 K

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling, composite layers): automatic search for fit; E-dep. Vor, Voi (fit); $\Theta 0=450 \mathrm{~K}$

STRUCTURES EXAMINED
Two different bulk terminations, fit of 7 interlayer distances
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.310$, $\mathrm{RDE}=0.240$
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.507	0.000	0.000	4.070	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.507	0.000	0.000	4.070	90.0	$\left(\begin{array}{l}1.000, \\ (0.000,\end{array}\right.$	(191)	s1: commens. superlattice

3D COORDINATES

Co1-Co7 have relaxed interlayer spacings; Co8-Co9 periodically repeating set of bulk layers;
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 9
Bulk z $=1.436 \AA$

$\operatorname{Co}(10-10)-(1 \times 1)$
27.10

Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.507	Col	Co1 (1,0)	Co2(1,1)	120.5
2.507	Col	Co1(1,0)	Co2(0,1)	59.5
2.507	Co1	Co1(1,0)	$\operatorname{Co3}(1,1)$	90.0
2.470	Col	Co2(0,1)	Co1(1,1)	150.7
2.470	Col	Co2 $(0,1)$	$\operatorname{Co1}(1,0)$	61.0
2.470	Col	Co2(0,1)	$\cot (0,1)$	110.9

COMMON NAME	: Co(11-20)-(1x1)			
CLASSIFICATION	27			
TECHNIQUE	LEED			
AUTHORS	M. Welz, W. Moritz and D. Wolf			
REFERENCE	Surf. Sci., 125, 473 (1983)			
SURFACE TYPE				
Substrate:	Co	Adsorbate		
Crystal face:	11-20	Coverage		
Temperature :		Pattern	(1x1)	
Bulk lattice:	hcp	Matrix	(1.000,	0.000)
2D bulk symm:	pmg		(0.000,	1.000)

SAMPLE PREPARATION (1 sample)
Treatment : spark erosion, chemical polishing, >100
Crystallinity: sharter/anneals LEED pattern with low background
Anal. methods: c, s removed by sputtering and heating
Contamination: c,
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 6 beams at normal
incidence up to 240 eV

STRUCTURE TYPE

Bulk termination with top spacing contraction, but no registry shift

COMMENTS

RZJ minimizes at top spacing of $1.16 \AA$ with Vor $=-15.5 \mathrm{eV}$; RPE minimizes at top spacing of $1.13 \AA$ with Vor= -16 eV ; sample temperature was maintained at all times below the hcp-fcc transition temperature;
hence large number of ion bombardment/anneal cycles

THEORY/DATA TREATMENT

Dynamical LEED: Co potential from band structure calcs, 8 phase shifts, up to 102 symm. beams; Voi=-5 eV; $00=385 \mathrm{~K}$

STRUCTURES EXAMINED
Top layer spacing varied from $1.25 \AA$ (bulk value) to $1.07 \AA$ in steps of $0.03 \AA$; lateral shift of top layer atoms along (1-10) direction varied from -0.05 to $0.10 \AA$ in steps of $0.05 \AA$

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.22, RZJ=0.09
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	4.070	0.000	0.000	4.340	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.070	0.000	0.000	4.340	90.0	$(1.000,0.000)$	(1×1)	s1: commens. superlattice

3D COORDINATES
Co1-Co2, Co3-Co4, CO5-Co6: coplanar bilayers; 0.1A lateral error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D X \pm E X$	Dy $\pm \in y$	$D \mathbf{Z} \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				0.000 A	0.000 A	2.500 A	
intf	Co	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Co	2	b	1.00	1	0.500 f	0.333 f	0.000 A	0.0
subl	Co	3	b	1.00	2	-0.500 f	$0.167 \pm .023 \mathrm{f}$	$1.140 \pm .040$ A	91.2 ± 3.2
subl	Co	4	b	1.00	3	0.500 f	0.333 f	0.000 A	0.0
subl	Co	5	b	1.00	4	-0.500 f	-0.833 f	1.250 A	100.0
subl	Co	6	b	1.00	5	0.500 f	0.333 f	0.000 A	0.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.497	$C o 1$	$C o 2$	$\operatorname{Co1}(1,0)$	109.2
2.497	$\operatorname{Co1}$	$\operatorname{Co2}$	$\operatorname{Co3}$	59.5
2.497	$\operatorname{Co1}$	$\operatorname{Co2}$	$\operatorname{Co4}$	120.9
2.451	$\operatorname{Co1}$	$\operatorname{Co3}$	$\operatorname{Co1}(0,1)$	124.6

Co(11-20)-(1x1)
27.8

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.451	Co1	Co3	Co2	61.4
2.451	Co1	Co3	Co4	120.9
2.442	co2	Co3	Co4	59.5

COMMON NAME	$: \operatorname{Co}(100)-(1 \times 1)$
CLASSIFICATION	$: 27.4$
TECHNIQUE	: LEED
AUTHORS	$:$ M. Maglietta, E. Zanazzi, F. Jona, D.W. Jepsen and P.M.
	Marcus
REFERENCE	: Appl. Phys., 15,409 (1978)

SURFACE TYPE

Substrate : Co	Adsorbate:	
Crystal face: 100	Coverage	
Temperature : 300 K	Pattern	(1x1)
Bulk lattice: fce	Matrix	(1.000, 0.000)
20 bulk symm: p4m		(0.000, 1.000)

bulk symm: p4m
2D surf symm: p4m

SAMPLE PREPARATION (1 sample)

Treatment : Ar+ bombardments and anneals, rapid cooling to RT
Crystallinity:
Anal. methods:
Contamination: AES: 0.1 ML C, 0 at noise level
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 12 beams at 3 angles of incidence, $30<E<150 \mathrm{eV}$

STRUCTURE TYPE
Bulk termination with top spacing contraction

COMMENTS

Large surface contraction may be due to incipient formation of C superstructure, though no direct experimental evidence for this; relatively poor agreement between theory and experiment for largest incident angles probably due to surface roughness

THEORY/DATA TREATMENT
Dynamical LEED: 49 beams, 8 phase shifts; Co pot from band struct calcs; Vor=-16.5 eV, Voi=-3.5eV; rms ampl $0.123 \AA$

STRUCTURES EXAMINED
Truncated bulk structure with variations in the first interlayer spacing from 1.69 to $1.85 \AA$.

QUALITY OF EXPERIMENT-THEORY FIT

RZJ=0.19
2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	Ay (A)	$B x$ (A)	By (\AA)	$\alpha\left({ }^{\circ}\right.$)	Matrix	Pattern	Cell type
Bulk	2.503	0.000	0.000	2.503	90.0	(1.000, 0.000$)$	(1×1)	b: bulk lattice
						$(0.000,1.000)$		
Surface 1	2.503	0.000	0.000	2.503	90.0	$(1.000,0.000)$	(1x1)	s1: commens.

3D COORDINATES
$0.05 \AA$ error bar assumed for tabulation
$D x / D y$ in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk $2=1.770 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.503	$C o 1$	$C o 1(1,0)$	$\operatorname{Co2}$	59.3
2.454	$C o 1$	$C o 2$	$C o 3$	88.9
2.503	$C o 2$	$C o 3$		

COMMON NAME : Co(111)-(1x1)
ILLUSTRATION: 1
CLASSIFICATION : 27.5b
TECHNIQUE : LEED
AUTHORS : B.W. Lee, R. Alsenz, A. Ignatiev and M.A. Van Hove
REFERENCE : Phys. Rev., B17, 1510 (1978)

SURFACE TYPE
Substrate
Crystal face: 111
Temperature : 730 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : heating hcp(0001) through 450c to fcc(111)
Crystallinity:
Anal. methods:
Contamination: C (main contaminant): in AES noise
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: $\left(\Theta=6, \phi=0^{\circ}\right): 00,10,01,-10$,

STRUCTURE TYPE
Bulk fcc termination

COMMENTS
Bulk has (martensitic) phase transformation from hep to fcc at 450C

THEORY/DATA TREATMENT
Dynamical LEED (RFS): Moruzzi-Janak-Williams potential;
8 phase shifts; Vor $=-16.0 \mathrm{eV}$, Voi=-5.0eV

STRUCTURES EXAMINED
Hcp/fcc terminations on hcp/fcc bulk with the top layer spacing varied from 1.95 to $2.15 \AA$ in steps of $0.1 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.510	0.000	1.255	2.174	60.0	(1.000, 0.000)	(1×1)	b : bulk lattice
						(0.000, 1.000)		
Surface 1	2.510	0.000	1.255	2.174	60.0	$(1.000$, $(0.000$,	(1x1)	s1: commens. superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=2.050 \AA$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $\left.A-B-C()^{\circ}\right)$
2.510	$\operatorname{Co1}$	$\operatorname{co1}(1,0)$		

```
COMMON NAME : Co(10-10)-c(2\times2)-K
technique : LEED
AUTHORS : C.J. Barnes, P. Hu, M. Lindroos and D.A. King
REFERENCE : Surf. Sci., 251, 561 (1991)
```


SURFACE TYPE

Substrate $:$ Co	Adsorbate: K
Crystal face: $10-10$	Coverage $: 0.5 \mathrm{~K} / 1 \times 1$
Temperature : RT	Pattern $: c(2 \times 2)$
Bulk lattice: hcp	Matrix $:(1.000,1.000)$
20 bulk symm: pmm	

$\begin{array}{ll}\text { Substrate : } \\ \text { Crystal face: } & \text { Co } \\ \text { 10-10 }\end{array}$
Temperature : RT
20 bulk symm: pmm
2D surf symm: cm
SAMPLE PREPARATION (1 sample)
Treatment : crystal cleaned by cycles of sputtering and annealing
Crystallinity:
Anal. methods:
Contamination: checked by AES and XPS

DATA COLLECTION

Technique: LEED; Auto-LEED system
Dataset : IV curves for 8 inequivalent beams, $50<E<200 \mathrm{eV}$, normal incidence

STRUCTURE TYPE

Atomic adsorption at 4 -fold hollow of bulk terminated
structure of lower corrugation (see 27.10). Care taken not

COMMENTS

To go beyond 650 K in annealing not to cross hcp to fec transition at 700 K ; deep minima in R -factors for $d(K-C o)=2.44$ and $1.8 A$, the first being slightly lower

THEORY/DATA TREATMENT

Dynamical LEED: Moruzzi phase shifts for Co and K; $\omega 0=385 \mathrm{~K}(\mathrm{Co}), 200 \mathrm{~K}(\mathrm{~K}) ; \mathrm{Voi}=-4 \mathrm{eV}$

STRUCTURES EXAMINED
For the two different bulk terminations: K in hollow, top, long bridge and short bridge sites; variation of K -Co and $\mathrm{Co1-Co2}$ spacing

QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.310$, RDE $=0.240$
$2 D$ UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.507	0.000	0.000	4.070	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice s1: commens. superlattice

3D COORDINATES
K1: atomic overlayer in 4-fold-coordinated hollow sites; co3-co4: periodically repeating set of bulk layers; error bar set to $0.1 \AA$ for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.416	K1	Co2		88.8
2.459	Co2	Co4 (1,0)	$\cos (1,1)$	60.3
3.416	K1	Co2	$\cos (1,0)$	111.5

Co(10-10)-c(2x2)-K
27.19 .1

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
3.120	K1	Co3	Co2	74.1
3.120	K1	Co3	Co3 $(1,0)$	90.0
2.507	Co2	Co2 $(1,0)$	K1(1,0)	68.5
2.507	Co2	Co2(1,0)	Co2 $(2,0)$	180.0
2.485	Co 2	$\operatorname{Co3}(1,1)$	K1(1,0)	74.1
2.485	Co 2	$\operatorname{Co3}(1,1)$	Co2(1,0)	60.6
2.459	Co2	$\cos (1,0)$	$\operatorname{Co2}(1,0)$	61.3

COMMON NAME : $\mathrm{Co}(100)-\mathrm{c}(2 \times 2)-0$
ILLUSTRATION: 28,29
CLASSIFICATION : 27.8.
TECHNIQUE : LEED
AUTHORS : M. Maglietta, E. Zanazzi, U. Bardi and F. Jona
REFERENCE : Surf. Sci., 77, 101 (1978)

SURFACE TYPE
Substrate : Co
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment: exposed to 02 gas at 1.0E-9 torr for 20 mins at 300 K
Crystallinity: diffuse LEED spots observed
Anal. methods:
Contamination: monitored by AES
DATA COLLECTION
Technique: LEED
Dataset : 13 LEED I-V spectra: 3 at normal incidence, 10 at 2 off- normal angles; $40<E<140 \mathrm{eV}$

STRUCTURE TYPE

Atomic adsorption in 4 -fold hollow sites
Adsorbate: 0
Coverage : 0.5 0/Co
Pattern : c(2x2)
Matrix $:(1.000,1.000)$

COMMENTS
Insensitivity of the R-factor to the substrate interlayer spacings attributed to imperfect conditions on substrate; rms vibr ampls: $0.123 \AA$

THEORY/DATA TREATMENT

Dynamical LEED (KKR): 8 ph shs; 58 beams; self consistent Co pot; 0 : overlap of atomic charges; Vor=-16 eV, Voi=-3eV

STRUCTURES EXAMINED

Truncated bulk varying $0-$ Co spacing d: top sites $\quad 1.846<d<2.136 \AA$
bridge sites $\quad 1.217<d<1.402 \AA 4$-fold hollows $0.770<d<1.068 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
RZJ $=0.21$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.503	0.000	0.000	2.503	90.0	$\begin{aligned} & (1.000, \\ & (0.000, \\ & (0.000) \end{aligned}$	(1×1)	b: bulk lattice
Surface 1	2.503	2.503	-2.503	2.503	90.0	$\begin{array}{ll} (1.000, & 1.000) \\ (-1.000, & 1.000) \end{array}$	c (2×2)	s1: commens. superlattice

3D COORDINATES

01: overlayer in 4 -fold hollow sites $0.1 \AA$ error bar assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk $z=1.770 \&$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.942	01	$\operatorname{Co2}$	$01(1,0)$	131.4
1.942	01	$\operatorname{Co2}$	$\operatorname{Co2(1,0)}$	130.1
1.942	01	$\operatorname{Co2}$	$\operatorname{Co3}$	69.3
2.570	01	$\operatorname{Co3}$	$\operatorname{Co2}$	45.0
2.503	$\operatorname{Co2}$	$\operatorname{Co2(1,0)}$	$01(1,0)$	49.9

SURFACE TYPE
Substrate: C

Adsorbate: S

Coverage : 0.5 S/Co
Pattern : $c(2 \times 2)$
Matrix $:(1.000,1.000)$
$(-1.000,1.000)$
tal face: 100
Temperature : 300 K
Bulk lattice: fcc
20 bulk symm: p4m

STRUCTURE TYPE
Atomic adscrption in 4-fold hollow sites

2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : see Maglietta et al, Surf. Sci. 71, 495 (1978)

Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for ($0.5,0.5$), (10) and (11) beams at normal incidence, $E<=140 \mathrm{eV}$

THEORY/DATA TREATMENT

Visual comparison with calculated I-Vs for Ni(100)-c(2x2)-S, since spectra are very similar for clean $N i$ and Co surfaces

STRUCTURES EXAMINED
Only the 4 -fold hollow sites were compatible with data; calc'd I-Vs taken from Demuth et al, Surf. Sci. 45 , 249 (1974)

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	AY (\AA)	BX (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.503	0.000	0.000	2.503	90.0	(1.000, 0.000)	(1x1) $c(2 \times 2)$	b: bulk lattice s1: commens. superlattice
						(0.000, 1.000)		
Surface 1	2.503	2.503	-2.503	2.503	90.0	(1.000, 1.000)		
						(-1.000, 1.000)		

3D COORDINATES
S1: overlayer in 4 -fold hollow sites; $0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk $z=1.770 \quad \AA$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-8 (A)	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.196	S1	Co 2	S1(1,0)	107.4
2.196	S1	Co2	$\operatorname{Co2}(1,0)$	124.7
2.196	S1	$\mathrm{Co2}$	Co3	81.3
2.503	Co 2	Co2(1,0)	S1(1,0)	55.3

CLASSIFICATION : 27.8.3
TECHNIQUE : LEED
AUTHORS : R.C. Felton, M. Prutton, S.P. Tear and M.R. Welton-Cook
REFERENCE : Surf. Sci., 88, 474 (1979)

SURFACE TYPE
Substrate: COO
Adsorbate:
Coverage :
Pattern : (1×1)
Crystal face: 100
Temperature : 300 K
Bulk lattice: NaCl
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : COO crystal cleaved in situ at RT and at 8.0E-10 torr
Crystallinity:
Anal. methods:
Contamination: AES and QMS to test for ESD
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra at normal incidence for the (11), (20) and (12) beams; $170<E<400 \mathrm{eV}$.

STRUCTURE TYPE
Non-buckled bulk termination in non-polar mixed CoO layer

COMMENTS

Low R-factor value due to data smoothing and consequent reduction in noise level

THEORY/DATA TREATMENT

Dynamical LEED: pots from Clementi charge density for Co++ and $0--$; Vor=-12 eV (optimized), Voi=-5eV (optimized)

STRUCTURES EXAMINED
First interlayer spacing relaxations of $0 \%,+3 \%,+6 \%$
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.101$
20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.016	0.000	0.000	3.016	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.016	0.000	0.000	3.016	90.0	$(0.000,1.000)$	(1×1)	s1: commens. superlattice

3D COORDINATES
Co1-02: mixed non-polar non-buckled top layer; co3-04: periodically repeating bulk layer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No, of atoms: 4
4

BOND DISTANCES AND ANGLES
Bond distances are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
	Col Co1 Co1	$\begin{aligned} & \operatorname{Co1}(1,0) \\ & 02 \\ & \operatorname{Co3} \end{aligned}$		

TECHNIQUE : LEED
AUTHORS : A. lgnatiev, B.W. Lee and M.A. Van Hove

REFERENCE : Proc 7th IVC and 3rd ICSS (Vienna), こ, 2435 (1977)

SURFACE TYPE

Substrate: CoO	Adsorbate:
Crystal face: 111	Coverage :
Temperature: 300 K	Pattern : (1x1)
Bulk lattice: NaCl	Matrix : $1.000,0.000)$
2D bulk symm: p3m1	
$(0.000,1.000)$	

2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment: 1000 L of 02 at 773 K on $\mathrm{Co}(0001)$ and long anneal
Crystallinity:
Anal. methods:
Contamination: cleaned by ion bombardment and annealed
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 5 beams at $\theta=0^{\circ}, 5$ beams at $\Theta=6^{\circ}$

STRUCTURE TYPE
Bulk-like COO termination with 0 atom at polar surface

COMMENTS

Lattice is expanded in 3D by 3.65\% from bulk COO values; this fits pattern and IVs better than bulk lattice or 2D expanded lattice with contracted substrate layer spacings

THEORY/DATA TREATMENT

Dynamical LEED (RFS): Moruzzi-Janak-Williams pot for Co, 0 pot not given (Co+, 0- pots also tested); Vor $=-15 \mathrm{eV}, \mathrm{Voi}=-5 \mathrm{eV}$

STRUCTURES EXAMINED
Fcc bulk with fcc/hcp termination in either 0 or C; top layer spacing varied from 1.014 to $1.214 \AA$ in steps of 0.05A

QUALITY OF EXPERIMENT-THEORY FIT

Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x$ (A)	Ay (A)	$B \times(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.120	0.000	1.560	2.702	60.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.120	0.000	1.560	2.702	60.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

01-Co2: contracted top layer pair; 03-Co4: periodically repeating bulk layer pair; $0.1 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $A-B(A)$	Atom A	Atom 8	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.090	01	$C o 2$	$01(1,0)$	96.6
2.090	01	$\operatorname{Co2}$	03	175.2
2.090	01	$\operatorname{Co2}$	$03(-1,0)$	86.6
2.206	$C o 2$	03	$\operatorname{Co2(1,0)}$	90.0

COMMON NAME	: CoSi2(111)-(1x1)
CLASSIFICATION	: 14.27 .1
TECHNIQUE	: LEED
AUTHORS	S.C. Wu, Z.Q. Wang, Y.S. Li, F. Jona and P.M. Marcus
REFERENCE	: Phys. Rev., B33, $2900(1986)$

CLASSIFICATION: 14.27.1
TECHNIQUE : LEED
REFERENCE : Phys. Rev., B33, 2900 (1986)

SURFACE TYPE
Substrate : CoSi2 Adsorbate:
Crystal face: 111 Coverage
Temperature : RT
Bulk lattice: fluorite
2D bulk symm: p3mi
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment: Co vaporized onto Si(111)-(7x7), then annealed at $\approx 973 \mathrm{~K}$
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION

Technique: LEED
Dataset : I-V curves for 11 or 12 beams, corresponding to 5 or 6 non degenerate beams at each angle of incidence; $30<E<250$

STRUCTURE TYPE

Unreconstructed termination of bulk fluorite structure
between trilayers; top two interlayer spacings contracted

COMMENTS

2-4 ML annealed at $\approx 873 \mathrm{~K}$ form (1×1) phase called presilicide (PRS); >8 ML annealed at 973 K form (2×2) or (2×1) phase, which converts to 1×1 after anneals at 1073 K and is called post-silicide (POS) phase: PRS and POS structures unknown; siCosi termination is inferred from paper

THEORY/DATA TREATMENT

Dynamical LEED analysis

STRUCTURES EXAMINED
Semi-infinite CoSi2(111) with relaxation of two topmost interlayer spacings

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.838	0.000	-1.919	3.324	120.0	$(1.000,0.000)$	(1×1)	b: bulk (attice
Surface 1	3.838	0.000	-1.919	3.324	120.0	$(1.000,0.000)$	(1×1)	$(0.000,1.000)$

30 COORDINATES
Si1-Co2-si3: relaxed topmost trilayer; si4-Co5-Si6: periodically repeating bulk trilayer;
$0.1 \AA$ error bars assumed for tabulation
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk $z=3.092 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. $\mathrm{A}-\mathrm{B}(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.300	Si 1	$\mathrm{Co2}$	$\mathrm{Si3}$	68.1
2.300	$\mathrm{Si1}$	$\mathrm{Co2}$	Si 4	105.6
2.334	$\mathrm{Co2}$	$\mathrm{Si3}$	$\mathrm{Si4}$	53.2

Cosi2(111)-(1x1)
14.27 .1

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.702	$\mathrm{si3}$	$\mathrm{Si4}$	$\mathrm{Co5}$	54.1
2.347	$\mathrm{Si4}$	$\operatorname{co5}$	$\mathrm{Si6}$	70.3

COMMON NAME	: CoSi2(111)-(1x1)
CLASSIFICATION	: 14.27 .14
TECHNIQUE	: XPD
AUTHORS	: H.C. Poon, G. Grenet, S. Holmberg, Y. Jugnet and Tran Minh
	Duc
REFERENCE	: Phys. Rev., B41, 12735 (1990)

SURFACE TYPE
Substrate: Cosi2
Crystal face: 111
Temperature : RT*
Bulk lattice: fluorite
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment: sample cleaned by cycles of Ar sputtering and 800C annealing
Crystallinity: checked by LEED
Anal. methods:
Contamination: no impurities by XPS

DATA COLLECTION

Technique: XPD; X -ray source $\mathrm{Al} \mathrm{K} \mathrm{\alpha}$ at 1486.6 eV
Dataset : Co LVV and Si 2s azimuthal signal at various polar angles

STRUCTURE TYPE
Unreconstructed termination of bulk fluorite structure

STRUCTURES EXAMINED
With additional Si bilayer bonded to Co, 4) same as 3) but bilayer rotated 180°, 5) same as 1) but with additional si bilayer bonded to $\mathrm{si}, 6$) same as 5) but rotated bilayer, 7) same as 2) but additional si bilayer bonded to Co, 8) same as 7) but rotated bilayer. 1) is the accepted structure

20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A)	$B x(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.838	0.000	-1.919	3.324	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.838	0.000	-1.919	3.324	120.0	(1.000, 0.000)	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Si1-Co2-Si3: topmost trilayer; si4-Co5-si6: periodically repeating bulk trilayer;
no error bar quoted because no relax. was allowed
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.347	Si1	Co2	Si1(1,1)	109.7
2.347	Si1	$\mathrm{Co2}$	Si3	70.3
2.702	Si1	Si3	Si1(1,1)	90.5

Bond Distances and Angles - Continued

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.702	Si1	Si3	Co2 1 (1,0)	125.9
2.702	Si1	Si3	Co2 $0,-1)$	54.9
2.347	CO 2	Si1(1,1)	Co2 $(1,1)$	109.7
2.347	Co2	Si1(1,1)	si3(1,1)	125.9
2.347	Co2	Sil (1,1)	Si3(0,1)	54.9

| TECHNIQUE | : MEIS |
| :--- | :--- | :--- |
| AUTHORS | : J. Vrijmoeth, A.G. Schins and J.F. van der Veen |
| REFERENCE | : Phys. Rev., B40, 3121 (1989) |

SURFACE TYPE

2D surf symm: p3m1

STRUCTURE TYPE

Unreconstructed termination of bulk fluorite structure
between trilayers; top two interlayer spacings contracted;
this is model found by Wu et al, PR B33, 2900 (1986)
(SSD 14.27.1)

COMMENTS

Thin epitaxial layer (16-30A) grown on Si(111); see SSD 14.17.14 and compare with CoSi2 single crystal;
both Co-rich and Si-rich surfaces prepared and analyzed: si-rich see 14.27.11a

THEORY/DATA TREATMENT

High resolution RBS compared with Monte Carlo simulations with Moliere potential; vib amps as for NiSi2

Technique: MEIS; 99.8keV protons collimated to 1°
Dataset : incidence along [22-1] direction in
silicide;blocking patterns of Co backscatt. taken for exit angles $20-80^{\circ}$

SAMPLE PREPARATION (1 sample)
Treatment : sequential deposition of Co and Si at RT and annealing
Crystallinity:
Anal. methods:
Contamination: AES, ion scattering: substrate pure

DATA COLLECTION

STRUCTURES EXAMINED

1) model found by Hu et al, PRB33,2900(1986), not optimized; 2) and 3) models proposed by Pirri et al, PR B33, 4108 (1986)

2 D UNIT CELLS (1 domain observed)

Cell	$A x$ (A)	Ay (A)	$B \times(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.838	0.000	-1.919	3.324	120.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.838	0.000	-1.919	3.324	120.0	$(1.000,0.000)$	(1×1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
Sil-Co2-si3 form relaxed topmost trilayer; si4-Co5-Si6 form periodically repeating bulk trilayer; $0.1 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $6 \quad$ Bulk $z=3.092$ A

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.300	Si 1	Co 2	$\mathrm{Si3}$	68.1
2.300	Si 1	$\mathrm{Co2}$	$\mathrm{Si4}$	105.6
2.334	$\mathrm{Co2}$	$\mathrm{Si3}$	$\mathrm{Si4}$	53.2
2.702	$\mathrm{Si3}$	$\mathrm{Si4}$	$\mathrm{Co5}$	54.1

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.347	Si4	Co5	Si6	70.3

COMMON NAME : CoSi2(111)-(1x1) si-rich
CLASSIFICATION : 14.27.11a
TECHNIQUE : MEIS
AUTHORS : J. Vrijmoeth, A.G. Schins and J.F. van der Veen
REFERENCE : Phys. Rev., B40, 3121 (1989)

SURFACE TYPE

Substrate : CoSi2	Adsorbate:	
Crystal face: 111	Coverage :	
Temperature : RT*	Pattern	(1x1)
Bulk lattice: fluorite	Matrix	(1.000, 0.000)
2D bulk symm: p3m1		(0.000, 1.000)

2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : sequential deposition of Co and Si at RT and annealing
Crystallinity:
Anal. methods:
Contamination: AES, ion scattering: substrate pure
DATA COLLECTION
Technique: MEIS; 99.8 keV protons collimated to 1°
Dataset : incidence along [22-1] direction in silicide;blocking patterns of Co backscatt. taken for exit angles $20-80^{\circ}$

STRUCTURE TYPE
Si terminated bulk with additional si bilayer on top

COMMENTS

Thin epitaxial layer (16-30\&) grown on Si(111); see SSD 14.17.14 and compare difference with Cosi2 single crystal; both Co-rich and si-rich surfaces prepared and analyzed: Co-rich see 14.27.11b

THEORY/DATA TREATMENT

High resolution RBS compared with Monte Carlo simulations with Moliere potential; vib amps as for NiSi2

STRUCTURES EXAMINED

1)bulk si term. with additional si bilayer bonded to Co, 2)bulk si term. with additional si bilayer bonded to Si , 3) bulk co term. with additional si bilayer bonded to co, 4) same as 2) but bilayer rotated by 180°. 1) chosen, visual fit improved by relax. vertical position of top 3 Si atoms

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	$\mathrm{Bx}(\mathrm{A})$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.838	0.000	-1.919	3.324	120.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.838	0.000	-1.919	3.324	120.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1x1)	s1: commens. superlattice

3D COORDINATES
Si1-Si2: extra top bilayer; si3-Co4-si5: topmost trilayer, si3-Co4 spacing contracted; si6-Co7-Si8: periodically repeating bulk trilayer

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8 Bulk z=3.092 A

Reg ion	Chem el.	At. no.	Cell type	site occ.	$\begin{aligned} & \text { Rel. } \\ & \text { to } \end{aligned}$	$D X \pm E X$	Dy $\pm \epsilon y$	$D Z \pm E Z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				-1.919 A	-1.108 A	3.092 A	
intf	Si	1	s1	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Si	2	s1	1.00	1	0.333 f	0.667 f	$0.848 \pm .056 \AA$	27.4 ± 1.8
intf	Si	3	s1	1.00	0	0.000 f	0.000 f	$2.519 \pm .070$ A	81.5 ± 2.3
intf	Co	4	s1	1.00	3	0.333 f	0.667 f	$0.723 \pm .050$ A	23.4 ± 1.6
intf	Si	5	s1	1.00	4	0.333 f	-0.333 f	0.773 A	25.0
subl	Si	6	b	1.00	5	-0.333 f	0.333 f	1.546 \&	50.0
subl	Co	7	b	1.00	6	0.333 f	-0.333 f	0.773 A	25.0
subl	Si	8	b	1.00	7	-0.667 f	-0.333 f	0.773 \&	25.0

Bond distances and angles are derived from coordinates

$$
\text { No. of distances/angles: } 8
$$

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.373	Si1	Si2	Si1(1,1)	108.0
2.373	Si1	Si2	Si3(1,1)	126.0
2.373	Sil	Si2	Si3	58.0
2.519	Si1	Si3	Si2	53.0
2.775	Si2	Si3(1,1)	Si1(1,1)	53.0
2.394	Co4	Si2	Si3	53.0
2.331	Co4	Si3(1,1)	Si1(1,1)	108.1
2.347	Co4	Si5 (0, 1)	Si3(1,1)	54.9

COMMON NAME	$: \operatorname{Cr}(100)-(1 \times 1)-N$
CLASSIFICATION	$: 24.7 .1$
TECHNIQUE	$:$ LEED
AUTHORS	Y. Joly, Y. Gauthier and R. Baudoing
REFERENCE	$:$ Phys. Rev., B40, 10119 (1989)

REFERENCE : Phys. Rev., B40, 10119 (1989)

SURFACE TYPE
Substrate: Cr
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)

```
Adsorbate: N
Coverage : 1.0 N/Cr
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
    ( 0.000, 1.000)
```


STRUCTURE TYPE

Atomic adsorption in 4 -fold hollow sites, with large expansion of top $\mathrm{Cr}-\mathrm{Cr}$ spacing by 25%

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer dblg; composite layers): $<=9$ ph shs (superpos pots); E-dep Vor; $\Theta D=485 \mathrm{~K}(\mathrm{Cr}), 600 \mathrm{~K}(\mathrm{~N})$

STRUCTURES EXAMINED
N in hollow and bridge sites, also as underlayer; N in top and intermediate hollow-bridge sites; in hollow overlayer: $\mathrm{N}-\mathrm{Cr}$ and top $2 \mathrm{Cr}-\mathrm{Cr}$ interlayer spacings varied

QUALITY OF EXPERIMENT-THEORY FIT
D1,2,2y,4,4y=11.65,4.13,2.46,7.58,4.39\%
2D UNIT CELLS (1 domain observed)

Cell	$A x$ (A)	Ay (\AA)	$\mathrm{Bx}(\AA)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.875	0.000	0.000	2.875	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.875	0.000	0.000	2.875	90.0	($1.000,0.000)$	(1×1)	s1: commens. superlattice
						(0.000, 1.000)		

3D COORDINATES

01 forms overlayer in 4 -fold hollows with shorter 0 -Fe bond length to 2 nd Fe layer than 1 st
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z $=1.438 \quad \AA$

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.045	N1	Cr 2		
2.045	N1	Cr 2	$\mathrm{~N}(1,0)$	89.3
2.045	N1	Cr 2	$\mathrm{Cr} 2(1,0)$	134.7
2.015	N1	Cr 3	Cr 3	47.6

$\mathrm{Cr}(100)-(1 \times 1)-\mathrm{N}$
24.7 .1

Bond Distances and Angles - Continued

Interatomic dist. $\mathrm{A}-\mathrm{B}(\mathrm{A})$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.875	Cr 2	$\mathrm{Cr} 2(1,0)$	$\mathrm{Cr} 3(1,0)$	58.0
2.711	Cr 2	Cr 3	Cr 4	76.0

COMMON NAME : Cr(100)-c(2x2)-S
CLASSIFICATION : 24.16.1
TECHNIQUE : ARPEFS
AUTHORS : L.J. Terminello, X.S. Zhang, Z.Q. Huang, S. Kim, A.E.Schach von Wittenau, K.T. Leung and D.A. Shirley
REFERENCE : Phys. Rev., B38, 3879 (1988)

SURFACE TYPE

Substrate	Cr	Adsorbate:	S
Crystal face	100	Coverage :	$0.5 \mathrm{~s} / \mathrm{Cr}$
Temperature	RT*	Pattern	c(2x2)
Bulk lattice	bcc	Matrix	(1.000,
20 bulk symm	p4m		(-1.000

SAMPLE PREPARATION (3 sample)
Treatment : few days of sputter-anneal cycles, then exposure to H2S
Crystallinity: sharp LEED pattern with no background
Anal. methods:
Contamination: AES: no contaminants
DATA COLLECTION
Technique: ARPEFS; $2525-3025 \mathrm{eV}$ soft x -ray beam (1eV re
Dataset : ARPEFS spectra for two emission angles:
[100], [110]; kinetic E range 50-550 eV

STRUCTURE TYPE

Atomic adsorption in hollow sites with top $\mathrm{Cr}-\mathrm{Cr}$ spacing relaxation (no detectable layer buckling)

COMMENTS

THEORY/DATA TREATMENT

Fourier transform; MSSW calcs: Moruzzi et al Cr pot; HF S pot; Θ D $=470 \mathrm{~K}$ (bulk Fe), 332 K (surf Fe), $423 \mathrm{~K}(\mathrm{~S})$

STRUCTURES EXAMINED

Top, bridge and hollow site: FT and MSSW favor hollow; variation of S-Fe spacing, 1st and 3rd Fe layer buckling, top $4 \mathrm{Fe}-\mathrm{Fe}$ interlayer spacings, optimized by R-factor fitting (also fitting of emission directions and photon polarization angles)

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.880	0.000	0.000	2.880	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.880	2.880	-2.880	2.880	90.0	(1.000, 1.000$)$	c 2×2)	s1: commens.
						(-1.000, 1.000)		superlattice

3D COORDINATES
S1: hollow-site overlayer
Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $\mathrm{A}-\mathrm{B}(\mathrm{A})$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.349	S 1	Cr 2	$\mathrm{Si(1,0)}$	120.2
2.349	S 1	Cr 2	$\mathrm{Cr} 2(1,0)$	127.8
2.349	S 1	Cr 2	Cr 3	62.6

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.421	Cr 2	Cr 3	Cr 4	68.6

COMMON NAME : Cu(100)-(1x1)
ILLUSTRATION: 2
CLASSIFICATION : 29.25a
TECHNIQUE : LEED
AUTHORS : H.L. Davis and J.R. Noonan
REFERENCE : Surf. Sci., 126, 245 (1983)

SURFACE TYPE

Substrate : Cu	Adsorbate:
Crystal face: 100	Coverage :
Temperature: RT	Pattern : (1x1)
Bulk lattice: fcc	Matrix : $1.000,0.000)$
2D bulk symm: p4m	

2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (sample)
Treatment : see Davis and Noonan, J. Vac. Sci. Technol. 20. 842 (1982)
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : four inequivalent I-V spectra, equivalent beam averaging

STRUCTURES EXAMINED
Variation of top three interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.039, ~ R 2=0.058, ~ R 5=0.145$

STRUCTURE TYPE
Bulk termination with multilayer relaxation

THEORY/DATA TREATMENT
Dynamical LEED: $\Theta 0=340 \mathrm{~K}$

Cell	AX (A)	AY (A)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						$(0.000,1.000)$		
Surface 1	2.553	0.000	0.000	2.553	90.0	$\begin{array}{ll} (1.000, & 0.000) \\ (0.000, & 1.000) \end{array}$	(1×1)	s1: commens. superlattice

3D COORDINATES
$0.05 \AA$ error bars assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	site occ.	$\begin{aligned} & \text { Rel. } \\ & \text { to } \end{aligned}$	$D \mathrm{X} \pm \boldsymbol{\mathrm { X }}$	Dy \pm Ey	$D Z \pm E Z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				-1.277 A	-1.277 \&	1.805 A	
intf	Cu	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.785 \pm .050 \AA$	98.9 ± 2.8
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.836 \pm .050 \AA$	101.7 ± 2.8
intf	Cu	4	b	1.00	3	0.500 f	0.500 f	$1.832 \pm .050$ A	101.5 ± 2.8
subl	Cu	5	b	1.00	4	-0.500 f	-0.500 f	1.805 A	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\left.A-B-C()^{\circ}\right)$
2.553	Cu1	Cu1 (1,0)		
2.539	Cu1	Cu2		
2.575	Cu2	Cu3		

COMMON NAME	$:$ Cu(100) $-(1 \times 1)$
CLASSIFICATION	$: 29.36 a$
TECHNIQUE	$:$ LEED
AUTHORS	: M.A. Abu-Joudeh, B.M. Davies and P.A. Montano
REFERENCE	: Surf. Sci., 171, 331 (1986)

REFERENCE : Surf. Sci., 171, 331 (1986)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment: Ar+ bombardment and anneals at 673 K for 10min; 0 treatments
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED
DATA COLLECTION
Technique: LEED
Dataset : IV curves for 3 non-equivalent beams: (00) (10) and (11); $30<E<450 \mathrm{eV}$

STRUCTURE TYPE

Bulk termination with multilayer relaxations

COMMENTS
RE=R-factor defined by Legg et al, J. Phys. C10, 937 (1977)

THEORY/DATA TREATMENT

Dynamical LEED (RFS): 57 beams, 8 phase shifts; Vor optimised to $-9 \mathrm{eV} ; \Theta D=344 \mathrm{~K}$

STRUCTURES EXAMINED
Relaxations of top 2 interlayer spacings from -7.5 to +2.5\%
QUALITY OF EXPERIMENT-THEORY FIT
RE=0.14 (see comments)
2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	AY (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	(1.000, 0.000$)$	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $4 \quad$ Bulk z = $1.810 \AA$

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{X} \pm \mathrm{EX}$	Dy $\pm \epsilon y$	$D z \pm \epsilon Z$	$\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				1.277 A	1.277 \&	1.810 A	
intf	Cu	1	b	1.00	0	0.000 f	0.000 f	$0.000 \quad \AA$	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.830 \pm .020 \AA$	101.1 ± 1.1
subl	Cu	4	b	1.00	3	0.500 f	0.500 f	1.810 \&	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Cu1	Cu1(1,0)	Cu2	59.8
2.535	Cu1	Cu2	Cu3	90.0
2.571	Cu2	Cu3	Cu4	90.5

COMMON NAME	$:$ Cu(100)-(1×1)
CLASSIFICATION	$: 29.43$
TECHNIQUE	: SPLEED
AUTHORS	: D.M. Lind, F.B. Dunning, G.K. Walters and H.L. Davis
REFERENCE	: Phys. Rev., B35, 9037 (1987)

STRUCTURE TYPE
Bulk termination with multilayer relaxations
SURFACE TYPE

Substrate : Cu	Adsorbate:
Crystal face: 100	Coverage:
Temperature: $R T^{*}$	Pattern: (1×1)
Bulk lattice: fcc	Matrix: $(1.000,0.000)$
2D bulk symm: p4m	

2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : Art sputtering for 30min followed by 30 min anneals at 823 K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

DATA COLLECTION
Technique: SPLEED
Dataset : spin asymmetry parameter vs incident electron energy $(A-V)$: 3 non-equivalent beams (10, 11, 20) at normal incidence

STRUCTURES EXAMINED
Variation of top two interlayer spacings

QUALITY OF EXPERIMENT-THEORY FIT
RS=0.11 (single-beam R-factor)

2 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.553	0.000	0.000	2.553	90.0	$(1.000,1.000)$	(1×1)	s1: commens.
superlattice								

3D COORDINATES

$0.02 \AA$ error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4

THEORY/DATA TREATMENT

Dynamical spin-polarized LEED: truncated free atom relativistic potential; VoiaE**1/3; $@ 0=330 \mathrm{~K}$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{D} \quad \pm \epsilon \mathrm{X}$	$D y \pm E y$	$D Z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon Z / B z$
epir		-2				f	f	A	
subr		-1				1.277 A	1.277 A	1.805 A	
intf	Cu	1	b	1.00	0	0.000 f	0.000 f	0.000 \&	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.783 \pm .020$ A	98.8 ± 1.1
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.821 \pm .020 \AA$	100.9 ± 1.1
subl	Cu	4	b	1.00	3	0.500 f	0.500 f	1.805 \&	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Cu1	Cu1 (0,1)	Cu2	59.8
2.537	Cu1	Cu2	Cu3	89.9
2.564	Cu2	Cu3	Cu4	90.3

SURFACE TYPE		
Substrate : Cu	Adsorbate:	
Crystal face: 100	Coverage :	
Temperature : RT*	Pattern	(1x1)
Bulk lattice: fcc	Matrix	(1.000, 0.000)
2D bulk symm: p4m		(0.000, 1.000)

SAMPLE PREPARATION (1 sample)
Treatment : sputtering and annealing cycles Crystallinity: sharp (1x1) LEED pattern
Anal. methods: AES
Contamination:

DATA COLLECTION

Technique: MEI scattering
Dataset : 3 scattering geometries

STRUCTURE TYPE
Multilayer ralaxation
Coverage
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

STRUCTURES EXAMINED
Variation of 1st and 2nd interlayer spacings

COMMENTS

Anisotropy found in surface vibrations; checked for beam induced damage

THEORY/DATA TREATMENT
Monte Carlo simulations and R-factor analysis

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	$B \times(\AA)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	0.000	0.000	2.556	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$\mathrm{DX} \pm \pm \mathrm{X}$	Dy \pm Ey	$D \mathbf{Z} \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				1.278 A	1.278 A	1.807	
intf	Cu	1	s1	1.00	0	0.000 A	0.000 A	0.000 A	0.0
intf	Cu	2	s1	1.00	0	1.278 A	1.278 k	$1.764 \pm .015 \AA$	$97.6 \pm .8$
subl	Cu	3	b	1.00	0	0.000 A	0.000	$3.590 \pm .018 \AA$	198.6 ± 1.0

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.526	Cu1	Cu2		
2.569	$C u 2$	$C u 3$		

COMMON NAME	$:$ Cu(110)-(1x1)
CLASSIFICATION	$: 29.25 b$
TECHNIQUE	: LEED
AUTHORS	H.L. Davis and J.R. Noonan
REFERENCE	: Surf. Sci., 126, 245 (1983)

SURFACE TYPE
Substrate: Cu

Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: prm

```
Adsorbate:
```

Adsorbate:
Coverage :
Coverage :
Pattern : (1x1)
Pattern : (1x1)
Matrix :(1.000, 0.000)
Matrix :(1.000, 0.000)
(0.000, 1.000)

```
    ( 0.000, 1.000)
```

STRUCTURE TYPE
Bulk termination with multilayer relaxation

SAMPLE PREPARATION (sample)
COMMENTS
Treatment : see Davis, Noonan and Jenkins, Surf. Sci. 83, 559 (1979)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
THEORY/DATA TREATMENT
Technique: LEED
Dataset : four inequivalent $I-V$ profiles, equivalent beam averaging

STRUCTURES EXAMINED
Variation of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
$\mathrm{RZJ}=0.067, \mathrm{R} 2=0.039, \mathrm{R} 5=0.188$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.553	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES

$0.05 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B ($)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Cu1	Cu1 (0,1)		
2.496	Cu1	Cu2		
2.567	Cu2	Cu3		

AUTHORS : I. Stensgaard, R. Feidenhans'l and J.E. Sorensen

REFERENCE : Surf. Sci., 128, 281 (1983)

SURFACE TYPE

Substrate : Cu	Adsorbate:
Crystal face: 110	Coverage :
Temperature: RT*	Pattern : (1x1)
Bulk lattice: fcc	Matrix : $1.000,0.000)$
20 bulk symm: pmm	

20 surf symm: prm

STRUCTURE TYPE
Bulk termination with multilayer relaxation

SAMPLE PREPARATION (1 sample)
Treatment : numerous cycles of $1 \mathrm{k} \mathrm{eV} \mathrm{Ar}+$ sputtering and annealing to 700 K
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES: clean

DATA COLLECTION
Technique: HEIS
Dataset : energy spectra of 300k eV He+ beams

COMMENTS

THEORY/DATA TREATMENT
Single alignment ion scattering (Rutherford backscattering); Moliere approximation to Thomas Fermi potential; $\Theta 0=320 \mathrm{~K}$

STRUCTURES EXAMINED
Variation of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RIS $=0.90$

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	s1: commens.
superlattice								

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = $1.278 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$\mathrm{Dx} \pm \boldsymbol{\pm}$	Dy $\pm \boldsymbol{\pm}$ Y	$D z \pm \boldsymbol{Z}$	$\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{F} / \mathrm{Bz}$
epir		-2				f	f	A	
subr		-1				1.805 A	1.277	1.278 A	
intf	Cu	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.210 \pm .020 \AA$	94.7 ± 1.6
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.320 \pm .020 \AA$	103.3 ± 1.6
subl	Cu	4	b	1.00	3	0.500 f	0.500 f	1.278 \&	100.0

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.553	Cu1	Cu1 $(0,1)$		
2.520	Cu1	Cu2		
2.575	Cu2	Cu3		
2.554	Cu3	Cu4		

COHMON NAME : Cu(110)-(1x1)
ILLUSTRATION: 4
CLASSIFICATION : 29.29
TECHNIQUE : LEED
AUTHORS : D.L. Adams, H.B. Nielsen and J.N. Andersen
REFERENCE : Surf. Sci., 128, 294 (1983)

SURFACE TYPE

Substrate : Cu	Adsorbate:	
Crystal face: 110	Coverage :	
Temperature : RT*	Pattern	(1x1)
Bulk lattice: fcc	Matrix	(1.000, 0.000)
2D bulk symm: pmm		(0.000, 1.000)
2D surf symm: prm		

SAMPLE PREPARATION (1 sample)
Treatment : Ar+ ion bombardment ($500 \mathrm{eV}, 10 \mu \mathrm{~A}$ beam current), anneal 900 K
Crystallinity:
Anal. methods:
Contamination: AES: no S, O, C contamination
DATA COLLECTION
Technique: LEED; spot photometer
Dataset : I-V spectra: 9 symm.-inequivalent beams at normal incidence; E range 20-360 eV

STRUCTURE TYPE
Bulk termination with multilayer relaxation

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 10 phase shifts (Moruzzi et al potential); $00=335 \mathrm{~K}$

STRUCTURES EXAMINED
Variation of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
$\mathrm{R} 2=0.023$
2D UNIT CELLS (1 domain observed)

Cell	$A x$ (\AA)	Ay (\AA)	$B X(\AA)$	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D X \pm E X$	Dy \pm Ey	$D Z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr intf intf intf subl	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{Cu} \\ & \mathrm{Cu} \\ & \mathrm{Cu} \end{aligned}$	-2 -1 1 2 3 4	b b b b	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	0 1 2 3	$\begin{array}{rr\|} \hline & f \\ 1.805 & \AA \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \\ 0.500 & f \end{array}$	$\begin{array}{rr\|} \hline & f \\ 1.277 & A \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f \\ 0.500 & f \end{array}$	$\begin{array}{lll} & & A \\ 1.278 & & A \\ 0.000 & & A \\ 1.170 \pm .008 & A \\ 1.307 & \pm .010 & A \\ 1.278 & & A \end{array}$	$\begin{array}{rl} 0.0 & \\ 91.6 & \pm \\ 102.3 & .6 \\ 100.0 & .8 \end{array}$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Cu1	Cu1 (0,1)		
2.501	Cuf	Cu2		
2.477	Cul	Cu3		
2.568	Cu2	Cu3		
2.585	Cu2	Cu4		
2.554	Cu3	Cu4		

AUTHORS : J.A. Yarmoff, D.M. Cyr, J.H. Huang, S. Kim and R.S. Williams
REFERENCE : Phys. Rev., B33, 3856 (1986)

SURFACE TYPE
Substrate : Cu
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
20 surf symm: prm
SAMPLE PREPARATION (1 sample)
Treatment : cycles of 1 keV eV ion bombardment followed by annealing
Crystallinity:
Anal. methods:
Contamination: monitored by Auger and LEED
DATA COLLECTION
Technique: ICISS
Dataset : polar scans along $[1,-1,0],[1,-1,2]$, [0,0,1] azimuths

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : $(1.000,0.000)$
($0.000,1.000$)

STRUCTURE TYPE
Bulk termination with top layer contraction

COMMENTS

THEORY/DATA TREATMENT

Monte Carlo sim. at shadow and blocking cones: Moliere pot;
fitted screening length; $00=343 \mathrm{~K}, \times 1.5$ surface enhancem.

STRUCTURES EXAMINED
Top interlayer spacing varied

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	s1: commens.
superlattice								

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C ~\left({ }^{\circ}\right)$
2.550	Cu1	Cu1 (0,1)	Cu2	59.2
2.491	Cu1	Cu2	Cu3	57.6
2.430	Cui	Cu3	Cu4	120.1
2.554	Cu2	Cu3	Cu4	60.2
2.560	Cu2	Cu4		
2.554	Cu3			

COMMON NAME Cu(110)-(1×1)

ILLUSTRATION: 4
CLASSIFICATION
TECHNIQUE
29.38

AUTHORS : M. Copel, T. Gustafsson, W.R. Graham and S.M. Yalisove
REFERENCE : Phys. Rev., B33, 8110 (1986)

SURFACE TYPE

Substrate
Crystal face: 110
Temperature : 323 K
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm
SAMPLE PREPARATION (1 sample)

```
Adsorbate:
Coverage
Pattern : (1x{)
Matrix : ( 1.000, 0.000)
    ( 0.000, 1.000)
```


STRUCTURE TYPE

Bulk termination with multilayer relaxations

COMMENTS

Ne+ sputtering and annealing; final flash to 723 K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED
DATA COLLECTION
Technique: MEIS
Dataset : angular scans for 2 geometries: beam in (-111) plane, [0-11] channeling [101] blocking; (100) pl. [-100] chann [010] bl.

THEORY/DATA TREATMENT

Comparison with Monte-Carlo calcs of chann. and blocking; fitted isotropic vibr. ampl. $0.072 \AA$ ($+55 \%$ at surface)

STRUCTURES EXAMINED
Relaxations of top two interplanar spacings
QUALITY OF EXPERIMENT-THEORY FIT
RS=0.21 (scaled R -factor)
2D UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	$A y(A)$	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.553	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=1.278 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Cu1	Cul $(0,1)$	Cu2	59.4
2.507	Cu1	Cu2	cu3	58.8
2.492	Cu1	Cu3	Cu 4	120.0
2.570	Cu2	Cu3	Cu4	60.7
2.588	Cu2	Cu4		
2.554	Cu3	Cu_{4}		

COMMON NAME : Cu(110)-(1x1)
CLASSIFICATION : 29.41a
TECHNIQUE : LEED
AUTHORS : A.P. Baddorf, I.-W. Lyo, E.W. Plummer and H.L. Davis
REFERENCE : J. Vac. Sci. Technol., A5, 782 (1987)

SURFACE TYPE
Substrate: Cu Crystal face: 110
Temperature : 90 K
Bulk lattice: fcc
2D bulk symm: pmm
20 surf symm: prm

Adsorbate:
STRUCTURE TYPE
Bulk termination with multilayer relaxations

SAMPLE PREPARATION (sample)
COMMENTS
Treatment
Crystallinity:
Anal. methods:
Contamination: close attention to H coverage
DATA COLLECTION
Coverage :
Pattern : (1x1)
Matrix : ($1.000,0.000$)
($0.000,1.000$)

Technique: LEED
Dataset : IV curves for 6 non-equivalent beams: (10), (01), (11), (20), (02), (12); E range $50-430 \mathrm{eV}$

STRUCTURES EXAMINED
Variation of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
$R 2=0.116$

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	AY (\AA)	$B X$ (A)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
$0.02 \AA$ error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Cu1	Cu1 (0,1)	Cu2	59.2
2.496	Cu1	Cu2	Cu3	58.9
2.499	Cu1	Cu3	Cu4	120.0
2.586	Cu2	Cu3	Cu4	61.3
2.619	Cu2	Cu4		
2.554	Cu3	Cu4		

TECHNIQUE
LEIS
AUTHORS : E. Van de Riet, J.B.J. Smeets, J.M. Fluit and A. Niehaus
REFERENCE : Surf. Sci., 214, 111 (1989)

STRUCTURE TYPE
Contraction of the 1st interlayer spacing
Adsorbate:
Coverage
Pattern : (1x1)
Matrix : ($1.000,0.000$)
($0.000,1.000$)

Substrate: Cu
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm

SAMPLE PREPARATION (1 sample)
Treatment : Ne+ bombardment followed by annealing
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION THEORY/DATA TREATMENT
Technique: LEIS
Dataset :

Classical dynamics

STRUCTURES EXAMINED
Variation of the 1 st interlayer spacing

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	3.615	90.0	$(1.000,0.000)$	(1x1)	
Surface 1	2.556	0.000	0.000	3.615	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1x1)

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\left.A-B-C()^{\circ}\right)$
2.556	Cu1	Cu2		

SURFACE TYPE

Substrate $:$ Cu	Adsorbate:
Crystal face: 110	Coverage :
Temperature : RT*	Pattern $:(1 \times 2)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: pmm	

2D surf symm: prm
SAMPLE PREPARATION (2 sample)
Treatment:Ar ion bombardment and annealing
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; video LEED
Dataset : IV spectra for 3 integral - and 4 fractional order beams

STRUCTURES EXAMINED

Missing-row, row pairing and sawtooth models
QUALITY OF EXPERIMENT-THEORY FIT
Average $R=0.18$

STRUCTURE TYPE

Alkali-impurity-induced missing-row reconstruction:
top Cu interlayer spacing contracted,
lateral pairing in the 2 nd Cu layer

COMMENTS

K and Cs atoms are disordered

THEORY/DATA TREATMENT
Dynamical LEED: layer-doubling; RFS

$$
\text { 2D UNIT CELLS (} 1 \text { domain observed) }
$$

Cell	Ax (A)	Ay (\AA)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	3.615	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	0.000	0.000	7.230	90.0	$(1.000,0.000)$	(1x2)	s1: commens.
						(0.000, 2.000)		superlattice

3D COORDINATES
top interlayer spacing contracted; lateral pairing in the 2nd layer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $5 \quad$ Bulk $z=1.278$ A

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\left.A-B-C()^{\circ}\right)$
2.522	Cu1	Cu2		

COMMON NAME	$:$ Cu(110$)-(1 \times 2)$ (Li induced)
CLASSIFICATION	$: 29.3 .1$
TECHNIQUE	: MEIS
AUTHORS	: M. Copel, W.R. Graham, T. Gustafsson and S. Yalisove
REFERENCE	: Solid State Commun., $54,695(1985)$

SURFACE TYPE

Substrate: $:$ Cu	Adsorbate: Li
Crystal face: 110	Coverage : $0.2 \mathrm{Li} / \mathrm{Cu}$
Temperature: RT	Pattern $:(1 \times 2)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: prm	

Coverage : $0.2 \mathrm{Li} / \mathrm{Cu}$

STRUCTURE TYPE
Missing-row reconstruction induced by Li (Li position undetermined)

COMMENTS

A structure with a 5.3% contraction of 1 st layer spacing and 3.3% expansion of 2 nd layer spacing also agrees with the experimental data; a pairing model with small displacements ($<0.12 \AA$) is possible with stiffened vibrations
Anal. methods:
Contamination: AES: no contamination on clean surface

DATA COLLECTION

THEORY/DATA TREATMENT

Monte Carlo simulation: E $\approx 100 \mathrm{k} \mathrm{eV}$; $\Theta \mathrm{D}=250 \mathrm{~K}$

STRUCTURES EXAMINED
Missing row model; buckling/pairing model
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2 D UNIT CELLS (1 domain observed)

Cell	Ax ($\mathrm{A}^{\text {) }}$	Ay (A)	8x (A $^{\text {) }}$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	3.610	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
Surface 1	2.550	0.000	0.000			$\left(\begin{array}{ll}0.000, ~ 1.000) \\ (1.000 & 0.000\end{array}\right)$		
				7.220	90.0	$(1.000,0.000)$ $(0.000, ~ 2.000)$	(1x2)	s1: commens. superlattice

3D COORDINATES
Cu1: remaining rows (ridges); $0.02 \AA$ error bars assumed for tabulation
Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk z $=1.278 \&$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	Cu1	Cu1 (1,0)	Cu2	59.7
2.529	Cu1	Cu2	cu3	59.1
2.508	Cu1	Cu3	Cu2	60.0
2.553	Cu2	Cu3	Cu1	60.0

TECHNIQUE : LEED
AUTHORS : S.A. Lindgren, L. Wal(den, J. Rundgren and P. Westrin
REFERENCE : Phys. Rev., B29, 576 (1984)

SURFACE TYPE

Substrate : Cu	Adsorbate:	
Crystal face: 111	Coverage :	
Temperature : RT*	Pattern	(1x1)
Bulk lattice: fcc	Matrix	(1.000, 0.000)
2D bulk symm: p3m1		(0.000, 1.000)

2D bulk symm: p3m1
2D surf symm: p3m1

STRUCTURE TYPE
Relaxed bulk termination

SAMPLE PREPARATION (1 sample)
Treatment: Ar+ bombardment ($1 \mu \mathrm{~A}, 250 \mathrm{eV}$), heating to 750 K
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION

Technique: LEED
Dataset : I-V curves: $00\left(\Theta=5^{\circ}\right), 10$ and $01\left(\Theta=0^{\circ}\right)$ beams, E range 16-190 eV

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 8 phase shifts, energy-dep. Voi and Vor; $\Theta 0=343 \mathrm{~K}(b u(k), 300 \mathrm{~K}(t o p$ layer)

STRUCTURES EXAMINED
Variation of topmost interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Four metrics used as R-factors

COMMENTS

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay ($\AA)$	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	1.280	2.217	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.560	0.000	1.280	2.217	60.0	$(1.000,1.000)$	(1×1)	s1: commens.
superlattice								

30 COORDINATES

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	Dx \pm		Dy		Dz	$\pm \epsilon \boldsymbol{z}$		Dz/Bz(\%)	$\pm \epsilon$	$\epsilon z / B z$
epir		-2					f		f			\AA			
subr		-1				1.280	A	0.739	\AA	2.090		A			
intf	Cu	1	b	1.00	0	0.000	f	0.000	f	0.000		A	0.0		
intf	Cu	2	b	1.00	1	0.333	f	0.333	f	2.076	$\pm .020$	A	$99.3 \pm$	± 1	1.0
subl	Cu	3	b	1.00	2	0.333	f	0.333	f	2.090		A	100.0		

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.560	Cu1	Cu1 (1,0)		
2.548	Cu1			
2.560	Cu 2	Cu2 $(1,0)$		

COMMON NAME : Cu(311)-(1×1)

ILLUSTRATION: 8
CLASSIFICATION : 29.11
technique : leed
AUTHORS : R.W. Streater, W.T. Moore, P.R. Watson, D.C. Frost and K.A.R. Mitchell

REFERENCE : Surf. Sci., 72, 744 (1978)

SURFACE TYPE

Crystal face: 31
Temperature : RT*
Bulk lattice: fcc 2D bulk symm: cm 2D surf symm: cm

```
Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
    (0.000, 1.000)
```

STRUCTURE TYPE
Bulk termination with top layer relaxation
SAMPLE PREPARATION (sample)
Treatment: see Moore et al, Sol. St. Commun. 24,
139 (1977)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION THEORY/DATA TREATMENT
Technique: LEED
Dataset : I-V spectra for 13 beams (incl. 4
equivalent pairs), energy up to 220 eV
COMMENTS

Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): 8 phase shifts from Burdick-Chodorow potential; VoiaE**1/3

STRUCTURES EXAMINED

Variation of topmost interlayer spacing from 5% expansion to 15% contraction from bulk value
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.088
20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	-1.275	4.229	106.8	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.553	0.000	-1.275	4.229	106.8	$(1.000,1.000)$	(1×1)	
s1: commens.								
superlattice								

3D COORDINATES

Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=1.090 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.553	Cu1	$\operatorname{Cu1}(1,0)$		
2.528	$\operatorname{Cu1}$	$\operatorname{Cu2}$		
2.508	$\operatorname{Cu1}$	$\operatorname{Cu3}(0,-1)$		
2.509	$\operatorname{Cu1}$	$\operatorname{Cu3}(-1,-1)$		
2.554	$\operatorname{Cu2}$	$\operatorname{Cu3}$		

TECHNIQUE : LEED
AUTHORS : P.R. Watson and K.A.R. Mitchell

REFERENCE : Surf. Sci., 203, 323 (1988)

SURFACE TYPE

SUbstrate : Cu	Adsorbate:
Crystal face: 311	Coverage :
Temperature : RT*	Pattern $:(1 \times 1)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: cm	

STRUCTURE TYPE
Bulk termination with multilayer relaxations

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 8 phase shifts from Burdick potential; VoiaE**1/3; $00=343 \mathrm{~K}$

STRUCTURES EXAMINED
Variation of first 3 interlayer spacings (registries kept bulk-like)
QUALITY OF EXPERIMENT-THEORY FIT
R2 $=0.0399$, RZJ $=0.0420$, RPE $=0.1406$
2D UNIT CELLS (1 domain observed)

Cell	Ax ($\mathrm{A}^{\text {) }}$	Ay (${ }_{\text {A }}$)	BX (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	1.276	4.233	73.2	(1.000, 0.000)	(191)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.553	0.000	1.276	4.233	73.2	(1.000, 0.000)	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.553	Cu1	Cu1 (1,0)	Cu2	59.6
2.520	Cu1	Cu2	Cu3	180.0
2.570	Cu 2	Cu3	Cu4	60.7

COMMON NAME	$:$ Cu(100)-c(2×2)-Au
CLASSIFICATION	$: 29.79 .2$
TECHNIQUE	LEED
AUTHORS	Z.Q. Wang, Y.S. Li, C.K.C. Lok, J. Quinn, F. Jona and P.M.
	Marcus
REFERENCE	: Solid State Commun., 62,181 (1987)

```
CLASSIFICATION : 29.79.2
TECHNIQUE : LEED
REFERENCE : Solid State Commun.. 62, 181 (1987)
```


SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : RT* Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION (1 sample)

$$
\begin{aligned}
& \text { Adsorbate: } \mathrm{Au} \\
& \text { Coverage }: 0.5 \mathrm{Au} / \mathrm{Cu} \\
& \text { Pattern }: c(2 \times 2) \\
& \text { Matrix }:(1.000,1.000) \\
& \\
& \\
& \\
& \\
& (-1.000,1.000)
\end{aligned}
$$

STRUCTURE TYPE
Substitutional adsorption, forming buckled monolayer of mixed alloy

COMMENTS

Treatment: Au evaporated from Au ribbon
Crystallinity:
Anal. methods: PED normal emission spectra for energies of 40 to 280 eV
Contamination: coverage and cleanliness checked by AES
DATA COLLECTION
Technique: LEED
Dataset : IV spectra at normal incidence for 6
beams, at $(\Theta, \phi)=(7,0)^{\circ}$ for 7 beams

THEORY/DATA TREATMENT
Dynamical LEED and PED

STRUCTURES EXAMINED
Overlayer model with Au-Cu spacing from 1.23 to $2.03 \AA$ and relaxations of top Cu layer from 1.6 to $2.2 \AA$; buckled mixed layer with variable first interlayer spacing; mixed layers in first and third atomic planes

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.560	2.560	-2.560	2.560	90.0	$(1.000,1.000)$	(1.000)	c(2x2)

3D COORDINATES
Au1-Cu2: mixed buckled top layer; $0.05 \AA$ error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.562	Au1	Cu2	Cu3	62.5
2.685	Au1	Cu3 $(-1,0)$	Cu4	92.6
2.612	Cu 2	Cu3	Cu4	120.7

COMMON NAME : Cu(100)-CH3O disordered
CLASSIFICATION: 29.6.1.8.10
TECHNIQUE : PED
AUTHORS \quad : Th. Lindner, J. Somers, A.M. Bradshaw, A.L. Kilcoyne and D.P. Woodruff

REFERENCE : Surf. Sci., 203, 333 (1988)

SURFACE TYPE

Substrate : Cu	Adsorbate: CH30
Crystal face: 100	Coverage : unknown
Temperature: 200 K	Pattern : disordered
Bulk lattice: fcc	Matrix : $1.000,0.000)$
2D bulk symm: p4m	
2D surf symm: none	

2D surf symm: none

SAMPLE PREPARATION (1 sample)

Treatment : dosing with 3E-5 mbar 02, then 3E-5 mbar CH3OH at 200 K
Crystallinity:
Anal. methods:
Contamination: monitored by LEED, AES and NEXAFS
DATA COLLECTION
Technique: PED
Dataset : NEXAFS: Auger electron yield at emission angles 0 to 90°; ARUPS: normal emission Ek 50 to 400 eV

STRUCTURE TYPE

CH3O- (methoxy) adsorption with 0 end down (forming tilted bridge with 2 Cu atoms) and CH 3 pointing away from and perp. to surface (H positions not determined)

COMMENTS

NEǨAFS polarisation dependence was used to indicate that CO axis is tilted by less than 10° from the surface normal

THEORY/DATA TREATMENT

NEXAFS: polarization dependence of 6a(1) resonance; ARUPS: curved wave calcs (500 atom cluster)

STRUCTURES EXAMINED

Adsorption sites between bridge and hollow; molecular tilts of 0 to 60°; adsorption heights of 0.8 to $1.6 A$; substrate kept bulk-like; H positions not determined

2D UNIT CELLS (2 domains observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1x1)	b: bulk lattice
Surface 1	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	disordered	

3D COORDINATES

C1-02: perp. axis of OCH3, 0 pointing down to surface; $0.1 \AA$ error bars assumed for tabulation
Dx/Dy in \mathcal{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $4 \quad$ Bulk $z=1.810 \quad \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
1.430 2.375 2.770	C1	02	$\operatorname{Cu3}(-1,0)$	139.3

SURFACE TYPE
Substrate: Cu
Crystal face: 100
Temperature : 60 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none
SAMPLE PREPARATION (1 sample)
Treatment : see Arvanitis et al, Surf. Sci. 178, 696 (1986)
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION

Technique: SEXAFS; SEXAFS with total electron yield
Dataset : SEXAFS spectra at normal x-ray incidence; range of photoelectron wavevector 4-11A-1

Adsorbate: C 2 H 2
Coverage : <1ML
Pattern : disordered
Matrix : ($1.000,0.000)$
(0.000, 1.000)

STRUCTURE TYPE

Disordered molecular adsorption parallel to surface, with
each C near a bridge site, and a stretched $C-C$ bond of $1.42 \pm 0.05 \AA$

THEORY/DATA TREATMENT

Fourier transform using an experimental phase shift from a bulk Cu phthalocyanine standard

STRUCTURES EXAMINED
Various adsorption geometries on a bulk-like substrate

2D UNIT CELLS (4 domains observed)

Cell	$A x(\AA)$	Ay (\AA)	Bx (A)	By (A)	α (${ }^{\circ}$)	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1x1)	$b:$ bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	0.000	0.000	2.556	90.0	($1.000,0.000)$	disordered	nd1: non-recon.
						(0.000, 1.000)		lattice-gas dis

3D COORDINATES

C1-C2: disordered molecular C2H2 layer
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=1.805 \AA$

BOND DISTANCES AND ANGLES

No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
1.420	C1	C2		
1.735	C1	Cu3		
2.554	Cu 3	Cu4		

COMMON NAME : Cu(100)-C2H4 disordered
ILLUSTRATION: 74
CLASSIFICATION : 29.6.1.2b
TECHNIQUE : SEXAFS
AUTHORS : D. Arvanitis, L. Wenzel and K. Baberschke
REFERENCE : Phys. Rev. Lett., 59, 2435 (1987)

SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : 60 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none

> Adsorbate: C 2 H 4 Coverage : <1ML Pattern : disordered Matrix $:(1.000,0.000)$ ($0.000,1.000)$

STRUCTURE TYPE

Disordered molecular adsorption parallel to surface, centered on hollow site, oriented along [110], with a stretched C-C bond of $1.47 \pm 0.05 \AA$

COMMENTS

SAMPLE PREPARATION (1 sample)
Treatment : see Arvanitis et al, Surf. Sci. 178, 696 (1986)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: SEXAFS; SEXAFS with total electron yield
Dataset : SEXAFS spectra at normal X-ray incidence; range of photoelectron wavevector 4-11A-1

THEORY/DATA TREATMENT

Fourier transform using an experimental phase shift from a bulk Cu phthalocyanine standard

STRUCTURES EXAMINED
Various adsorption geometries on a bulk-like substrate

2 UNIT CELLS (2 domains observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	$(1.000,0.000)$	(1x1)	
Surface 1	2.556	0.000	0.000	2.556	90.0	$(0.000,1.000)$	bulk lattice	

3D COORDINATES
C1-C2: disordered molecular C2H4 layer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.470	C1	C2		
1.868	C1	Cu3		
2.554	Cu3	Cu4		

ILLUSTRATION: -

STRUCTURE TYPE

Intact molecular adsorption over a 4-fold hollow site with the $\mathrm{C}-\mathrm{C}$ bond parallel to the [001] or [010] directions
Adsorbate: C 2 H 4 (ethylene)
Coverage : 0.1ML Pattern : disordered Matrix : $(1.000,0.000)$

SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none

SAMPLE PREPARATION (sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: NEXAFS
Dataset :

COMMENTS
Coverage assumed to be 0.1 ML for tabulation

THEORY/DATA TREATMENT
Multiple-scattering cluster method of NEXAFS

2 UNIT CELLS (2 domains observed)

Cell	$A x(A)$	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	0.000	0.000	2.556	90.0	$(1.000,0.000)$	disordered	nd1: non-recon. lattice-gas dis

3D COORDINATES
C1-C2: ethylene over 4-fold hollow site; $C-C$ bond parallel to the [001] or [010] directions
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.460	$C 1$	$C 2$		
1.900	$C 1$	$C u 3$		
1.900	$C 2$	$C u 3$		

AUTHORS : S. Andersson and J.B. Pendry
REFERENCE : J. Phys., C13, 3547 (1980)

SURFACE TYPE

Substrate : Cu	Adsorbate: CO
Crystal face: 100	Coverage : $1 / 2$ (CO/Cu)
Temperature : 80 K	Pattern :c(2x2)
Bulk lattice: fcc	Matrix : $1.000,1.000)$
$2 D$ bulk symm: p4m	
$2 D$ surf symm: 4 m	

STRUCTURE TYPE
Molecular adsorption on top sites; $\mathrm{C}-\mathrm{O}$ axis perpendicular to surface, bonding through C end

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 8 phase shifts (Chodorow pot for Cu , superposition pots for C and 0); VoiaE**1/3

STRUCTURES EXAMINED
CO perpendicular to unrelaxed substrate in top site with variable Cu-C and C-O layer spacings

QUALITY OF EXPERIMENT-THEORY FIT

RPE=0.50
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay ($\AA)$	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.560	2.560	-2.560	2.560	90.0	$(1.000,1.000)$	c(2x2)	

3D COORDINATES
01-C2: upright $C O$ molecules in top sites
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.130	01	C2		
1.900	C2	Cu3		
2.560	Cu3	Cu3 (1,0)		
2.560	Cu3			

COMMON NAME : Cu(100)-c(2×2)-CO
ILLUSTRATION: 71
CLASSIFICATION : 29.6.8.1
TECHNIQUE : NEXAFS
AUTHORS : C.F. McConville, D.P. Woodruff, K.C. Prince, G. Paolucci, V. Chab, M. Surman and A.M. Bradshaw

REFERENCE : Surf. Sci., 166, 221 (1986)

SURFACE TYPE

Substrate: Cu	Adsorbate: CO
Crystal face: 100	Coverage : $1 / 2 \mathrm{CO} / \mathrm{Cu}$
Temperature: 100 K	Pattern :c(2x2)
Bulk lattice: fcc	Matrix $:(1.000,1.000)$
2D bulk symm: p4m	
2D surf symm: p4m	

SAMPLE PREPARATION (1 sample)

Treatment : ion bombardment and annealing; CO adsorption at 100 K
Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES

DATA COLLECTION
Technique: NEXAFS
Dataset : NEXAFS: O(KVV) Auger electron detection (510-560 eV); PED: C1s and 01s peak region for 180-240eV

STRUCTURE TYPE

Molecular adsorption perp. to surface with C down on top site

COMMENTS

PED (normal photoelectron diffraction) also used

THEORY/DATA TREATMENT

NEXAFS of π^{*} feature with polarization dependence;
PED (single scatt): Vor=-11 eV, Voi=-7.5eV, therm. effects

STRUCTURES EXAMINED
PED: perpendicular $C O$ in top, bridge and hollow sites on unrelaxed Cu(100) substrate; CO bond length of $1.13 \AA$ assumed

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	BX (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.560	2.560	-2.560	2.560	90.0	(1.000, 1.000)	$c(2 \times 2)$	s1: commens.
						(-1.000, 1.000)		superlattice

3D COORDINATES
01-C2: CO overlayer on top sites
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
1.130	01	C 2	Cu 3	180.0
1.920	C 2	$\mathrm{Cu3}$	Cu 4	135.0

COMMON NAME	$: C u(100)-c(2 \times 2)-\mathrm{Cl}$
CLASSIFICATION	$: 29.17 .12$
TECHNIQUE	: XSW
AUTHORS	J.R. Patel, D.W. Berreman, F. Sette, P.H. Citrin, J.E.
	Rowe, P.L. Cowan, T. Jach and B. Karlin
REFERENCE	: Phys. Rev., B40, 1330 (1989)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT* Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: 14 m

SAMPLE PREPARATION (1 sample)
Treatment : see PRL 49,1712(1982), PRL 61,1384(1988)
Crystallinity:
Anal. methods: SEXAFS for bond distances
Contamination:
DATA COLLECTION
Technique: XSW; fluorescence yield at NSLS
Dataset : standing-wave data at fixed incidence angle as fct. of crystal rotation about [111]

Adsorbate: Cl
Coverage : 0.5 ($\mathrm{Cl} / \mathrm{Cu}$)
Pattern : $c(2 \times 2)$
Matrix $:(1.000,1.000)$
(-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in hollow site with expanded top $\mathrm{Cu}-\mathrm{Cu}$ interlayer spacing

COMMENTS

THEORY/DATA TREATMENT

8×8 matrix dynamical x-ray theory, with 2 fit parameters: $P=$ at. pos. above (111) plane, $F=$ coherent fraction

STRUCTURES EXAMINED

XSW and SEXAFS data directly give 4 -fold hollow site; difference between XSW and SEXAFS for Cl-Cu spacing indicates change in top Cu-Cu spacing from bulk, since XSW refers adsorbate position to deep bulk layers

20 UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (A)	Bx (\AA)	By (${ }_{\text {A }}$)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	b: bulk lattice
Surface ?	2.556	2.556	-2.556	2.556	90.0	$\begin{array}{r} (1.000, \\ (-1.000, \\ (.000) \end{array}$	$c(2 \times 2)$	s1: commens. superlattice

3D COORDINATES
Cl1 forms overlayer in hollow sites; coordinates are derived from bond distance and spacings
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.368	Cl1	Cu2	Cl(1) 1,0$)$	99.5
2.368	Cl1	Cu2	Cu2(1,0)	122.7
2.556	Cu 2	Cu2 (1,0)	$\mathrm{Cu}(1,0)$	60.6
2.606	Cu2	Cu3	Cu4	91.1

COMMON NAME : $\mathrm{Cu}(100)-\mathrm{c}(2 \times 2)-\mathrm{Cl}$
ILLUSTRATION: 28,29

CLASSIFICATION
technique 29.17.13

AUTHORS ARPEFS
: L.-Q. Wang, A.E. Schach von Wittenau, Z.G. Ji, L.S. Wang,
Z.Q. Huang and D.A. Shirley

REFERENCE : Phys. Rev., B44, 1292 (1991)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : 110 K
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : sputter-anneal cycles, then exposure to Cl2 and 400 K anneal
Crystallinity: sharp LEED pattern with no background
Anal. methods:
Contamination: monitored by AES

DATA COLLECTION

Technique: ARPEF; $2870-3370 \mathrm{eV}$ soft x -ray beam (2eV re Dataset : ARPEFS spectra for two emission angles: [100], [110]; kinetic E range 50-550 eV

STRUCTURE TYPE

Atomic adsorption in hollow site, with multilayer relaxation relaxation and 2nd Cu layer buckling

COMMENTS

Same analysis performed both at 110 K and 300K (110K gives deeper information): average result reported

THEORY/DATA TREATMENT

Fourier transform; MSSW calcs: 16 ph shs; HF Cl pot; $00=343 \mathrm{~K}($ bulk Cu$), 243 \mathrm{~K}($ surf Cu$), 325 \mathrm{~K}(\mathrm{Cl})$, then fit

STRUCTURES EXAMINED
Top, bridge and hollow site: FT and MSSW favor hollow; automated fitting of Cl-Cu spacing, 1st Cu layer buckling, top 3 Cu-Cu interlayer spacings, optimized by R -factor fitting (also fitting of emission directions, photon polarization angles, sample and Debye temperatures, Vor)

QUALITY OF EXPERIMENT-THEORY FIT
R2=0.06-0.15
20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.547	0.000	0.000	2.547	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.547	2.547	-2.547	2.547	90.0	$(0.000,1.000)$ $(1.000,1.000)$ $(-1.000,1.000)$	$c(2 \times 2)$	s1: commens. superlattice

3D COORDINATES
C11: overlayer in hollow sites; Cu3-Cu4: buckled second Cu layer;
error bars are statistical precision, not accuracy
Dx/Dy in \AA, or as a fraction of tayer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $7 \quad$ Bulk z $=1.801 \&$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D X \pm \epsilon x$	DY \pm EY	$D z \pm \epsilon z$	$\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon z / 8 z$
epir		-2				f	f	\AA	
subr		-1				1.274 A	1.274 A	1.801 A	
ovrl	Cl	1	s 1	. 50	0	0.000 f	0.000 f	$0.000 \quad \AA$	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.604 \pm .005 \AA$	$89.1 \pm .3$
intf	Cu	3	s1	. 50	2	0.500 f	0.000 f	$1.808 \pm .021 \AA$	100.4 ± 1.2
intf	Cu	4	s1	. 50	3	-0.500 f	-0.500 f	$0.041 \pm .012 \AA$	$2.3 \pm .7$
intf	Cu	5	b	1.00	4	0.500 f	0.500 f	$1.769 \pm .027 \AA$	98.2 ± 1.5
intf	Cu	6	b	1.00	5	-0.500 f	-0.500 f	$1.810 \pm .033 \AA$	100.5 ± 1.8
subl	Cu	7	b	1.00	6	0.500 f	0.500 f	1.801 \&	100.0

Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.412	$C l 1$	$C u 2$	$C l 1(1,0)$	96.6
2.412	$C l 1$	$C u 2$	$C u 2(1,0)$	121.9
2.412	$C l 1$	$C u 2$	$C u 3$	86.8
2.552	$C u 2$	$C u 3$	$C u 4$	60.8

COMMON NAME : Cu(100)-c(2×2)-Cl
ILLUSTRATION: 28,29
CLASSIFICATION : 29.17.5
TECHNIQUE : LEED
AUTHORS : F. Jona, D. Westphal, A. Goldman and P.M. Marcus
REFERENCE : J. Phys., C16, 3001 (1983)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

> Adsorbate: Cl Coverage $: 0.5 \mathrm{cl} / \mathrm{Cu}$ Pattern $: \mathrm{c}(2 \times 2)$ Matrix $:(1.000,1.000)$ $(-1.000,1.000)$

STRUCTURE TYPE
Atomic adsorption in hollow site of unreconstructed substrate

COMMENTS
R-factor is mean for combined normal and off-normal inc.: variation of Cl muffin-tin radius between 1.23 and $1.13 \AA$ did not significantly change the result of the structure determination

THEORY/DATA TREATMENT
Dynamical LEED (CHANGE): 8 phase shifts; Vor=-9 eV, Voi=-3.5eV obtained by minimising R-factor; rms ampl $0.15 \AA$

STRUCTURES EXAMINED

1. 4-fold hollow site; 2. various Cl -Cu interlayer spacings $1.55-1.65 \AA$;
2. various top Cu-Cu layer spacings 1.81-1.86A

QUALITY OF EXPERIMENT-THEORY FIT
$\mathrm{RZJ}=0.17$ (see comments)
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1x1)	b : bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	2.556	-2.556	2.556	90.0	$(1.000,1.000)$	$c(2 \times 2)$	si: commens.
						$(-1.000,1.000)$		superlattice

3D COORDINATES
Cl1: overlayer in hollow sites

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=1.807 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{D} \quad \pm \epsilon \mathrm{X}$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				1.278 A	1.278 A	1.807 A	
ovrl	Cl	1	s1	. 50	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.600 \pm .030$ A	88.5 ± 1.7
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.850 \pm .030$ A	102.4 ± 1.7
subl	Cu	4	b	1.00	3	$0.500 \quad f$	$0.500 \quad f$	1.807 A	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.414	$\mathrm{Cl1}$	$\mathrm{Cu2}$	$\mathrm{Cl}(1,0)$	97.0
2.414	$\mathrm{Cl1}$	$\mathrm{Cu2}$	$\mathrm{CuZ}(1,0)$	122.0

cu(100)-c(2×2)-cl
29.17 .5

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\left.A-B-C()^{\circ}\right)$
2.586	$\mathrm{Cu2}$	Cu 3		
2.556	Cu 3	$\mathrm{Cu4}$		

STRUCTURES EXAMINED

1. 1-fold top model; 2. 2-fold bridge model; 3. 4-fold hollow site model; 4. mixed layer model; models distinguished by comparing exp. and theor. effective coordination

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.556	2.556	-2.556	2.556	90.0	$(0.000,1.000)$	$(1.000,1.000)$	$c(2 \times 2)$

3D COORDINATES
Cl1: overlayer in hollow sites; coordinates are derived from bond distance
Dx/Dy in \mathcal{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

BOND DISTANCES AND ANGLES

No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.407	$C l 1$	$C u 2$	$C l 1(1,0)$	97.3
2.407	Cl1	Cu2	$\operatorname{Cu2(1,0)}$	122.1
2.556	$C u 2$	$C u 2(1,0)$		

COMMON NAME : Cu(111)-($\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{Cl}$
ILLUSTRATION: 22,24
CLASSIFICATION: 29.17.8
TECHNIQUE : SEXAFS
AUTHORS : M.D. Crapper, C.E. Riley, P.J.J. Sweeney, C.F. McConville and D.P. Woodruff
REFERENCE : Surf. Sci., 182, 213 (1987)

SURFACE TYPE

Substrate : Cu
Crystal face: 111
Temperature : RT*
Bulk lattice: fcc
2D butk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION (1 sample)
Treatment : Cl adsorbed fro

```
Adsorbate: Cl
Coverage : 0.333 Cl/Cu
Pattern : ( }\sqrt{3}{3}\times\sqrt{}{3})\mp@subsup{\textrm{R}}{}{\prime}\mp@subsup{0}{}{\circ
Matrix : ( 1.000, 1.000)
    (-2.000, 1.000)
```


STRUCTURE TYPE

Atomic adsorption in fec hollow sites

COMMENTS

Complementary photoelectron diffraction studies provided distinction between fcc and hep hollow sites

THEORY/DATA TREATMENT

SEXAFS: single shell Fourier filtering and multishell sim.; photoelectron diffraction: single scattering; 00 : 180 K

STRUCTURES EXAMINED

Bridge, top, fcc and hcp hollow sites; $\mathrm{Cl}-\mathrm{Cu}$ spacing varied
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.552	0.000	1.276	2.210	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.828	2.210	-3.828	2.210	120.0	(1.000, 1.000)	$(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}$	s1: commens.
						(-2.000, 1.000)		superlattice

30 COORDINATES
Cl1: overlayer in fcc hollow sites; coordinates are derived from bond distances and angles
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.389	$\mathrm{Cl1}$	$\mathrm{Cu2}$	$\mathrm{Cu}(1,0)$	122.3
2.389	$\mathrm{Cl1}$	$\mathrm{Cu2}$	Cu 3	177.2
2.552	$\mathrm{Cu2}$	$\mathrm{Cu2}(1,0)$		

SURFACE TYPE

Substrate: Cu
Crystal face: 111
Temperature : RT*
Bulk lattice: fcc
2 D bulk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION (1 sample)
Treatment : Ar ion bombardment
Crystallinity:
Anal. methods: LEED, AES
Contamination:

DATA COLLECTION
Technique: XSW; cylindrical mirror analyzer
Dataset : Auger electron emissions from Cu 2p and Cl 1s photon energy scanned though the (111) Bragg reflection

STRUCTURE TYPE

Atomic adsorption in hollow site (believed fcc);
slight contraction in top subtrate spacing
Coverage : 0.33 ML
Pattern : $(\sqrt{3} \times \sqrt{3})$ R30 0°
Matrix : $(1.000,1.000)$
(-2.000, 1.000)

ILLUSTRATION: 22,24

COMMENTS

Compatible with SEXAFS structure; no high degree of crystalline perfection

THEORY/DATA TREATMENT

XSW analysis
$2 D$ UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.552	0.000	1.276	2.210	60.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	
Surface 1	3.828	2.210	-3.828	2.210	120.0	$\begin{aligned} & (1.000, \\ & (-2.000, \\ & 1.000) \end{aligned}$	$(\sqrt{3} \times \sqrt{3}) R 30^{\circ}$	si: commens. superlattice

3D COORDINATES

cl1: atomic overlayer in hollow site (believed fcc)
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 3
Bulk z $=2.080 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.334	$C l 1$	Cu2		

TECHNIQUE : LEED
AUTHORS : A. Clarke, G. Jennings, R.F. Willis, P.J. Rous and J.B.
Pendry
REFERENCE : Surf. Sci., 187, 327 (1987)

SURFACE TYPE

Substrate: Cu	Adsorbate: Co
Crystal face: 100	Coverage : $1.0 \mathrm{Co} / \mathrm{Cu}$
Temperature: RT	Pattern : (1×1)
Bulk lattice: fcc	Matrix : $1.000,0.000)$
2D bulk symm: p4m	

2D surf sym: pim

STRUCTURE TYPE
Epitaxial (1×1) monolayer, continuing fcc lattice

SAMPLE PREPARATION (1 sample)
Treatment: Co evaporated from Co wire filament
Crystallinity:
Anal. methods: Co coverage and purity monitored by AES Contamination: AES: C contamination < 'a few percent'

DATA COLLECTION

Technique: LEED
Dataset : IV spectra at normal incidence: 3 inequivalent beams; E range 30-180 eV

COMMENTS
Voi varied from -3 to -7 eV ; Co phase shifts constructed with Co in hcp and fec (Cu) lattices: no significant difference in the best fit structure was found

IHEORY/DATA TREATMENT
Dynamical LEED (RFS): 8 phase shifts, 57 beams; Vor=-8 eV (fit); VoiaE**1/3; $00=343 \mathrm{~K}$

STRUCTURES EXAMINED
Top, bridge and hollow sites; top two spacings relaxed by -15 to $+3 \%$ of Cu bulk value
QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.22
2D UNIT CELLS (1 domain observed)

Cell	$A x$ (A)	Ay (A)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	$\left.\begin{array}{l} (1.000, \\ (0.000) \\ (0.000, \\ 1.000 \end{array}\right)$	(1×1)	b: bulk lattice
Surface 1	2.550	0.000	0.000	2.550	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1x1)	s1: commens. superlattice

3D COORDINATES
Co1: (1x1) epitaxial monolayer, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=1.810 \AA$

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{Cx} \pm \epsilon \mathrm{X}$	$D y \pm \epsilon y$	$D z \pm \boldsymbol{Z}$		$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f		A	
subr		-1				1.275 A	1.275 A	1.810	\AA	
ovrl	Co	1	b	1.00	0	0.000 f	0.000 f	0.000	\AA	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.700 \pm .020$	$\boldsymbol{\alpha}$	93.9 ± 1.1
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.700 \pm .040$	A	93.9 ± 2.2
subl	Cu	4	b	1.00	3	0.500 f	0.500 f	1.810	\AA	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	Co1	Co1(1,0)	Cu2	59.0
2.478	Co1	Cu 2	Cu3	86.6
2.478	Cu2	Cu3		

```
COMMON NAME : Cu(100)-(1x1)-8Co ILLUSTRATION: 83
CLASSIFICATION : 29.27.2b
techniQue : LEED
AUTHORS : A. Clarke, G. Jennings, R.F. Willis, P.J. Rous and J.B.
                                Pendry
REFERENCE : Surf. Sci., 187, }327\mathrm{ (1987)
```


SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT Bulk lattice: fcc $2 D$ bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION (1 sample)
Treatment : Co evaporated from Co wire filament Crystallinity:
Anal. methods: Co coverage and purity monitored by AES Contamination: AES: C contamination < 'a few percent'

DATA COLLECTION
Technique: LEED
Dataset : IV spectra at normal incidence: 3
inequivalent beams; E range $30-180 \mathrm{eV}$

STRUCTURE TYPE
8 epitaxial (1x1) monolayers, continuing fcc lattice

COMMENTS

Voi varied from -3 to -7 eV; Co phase shifts constructed with Co in hep and fcc (Cu) lattices: no significant difference in the best fit structure was found; determination insensitive to spacing beyond top two Co layers: contracted Co-Co spacing of $1.76 \AA$ slightly better

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 8 phase shifts, 57 beams;
Vor=-8 eV (fit); VoiaE**1/3; $00=343 \mathrm{~K}$

STRUCTURES EXAMINED
Hollow (continuation) sites only; top 2 spacings varied from -11 to 0% of bulk Cu spacing; spacing of remaining Co layers varied from -11 to 0% of Cu spacing

QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.25$
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.550	0.000	0.000	2.550	90.0	$(1.000,1.000)$ (10.000)	(1×1)	
s1: commens.								
superlattice								

3D COORDINATES
Co1-C08: 8 (1x1) epitaxial monolayers, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 10
Bulk z $=1.810 \quad \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	Dx $\pm \in \mathrm{X}$	Dy $\pm \in y$	$D z \pm E Z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				1.275 A	1.275 A	1.810 A	
ovrl	Co	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
ovrl	Co	2	b	1.00	1	0.500 f	0.500 f	$1.700 \pm .020 \AA$	93.9 ± 1.1
ovrl	Co	3	b	1.00	2	-0.500 f	-0.500 f	$1.750 \pm .040 \AA$	96.7 ± 2.2
ovrl	Co	4	b	1.00	3	0.500 f	0.500 f	$1.760 \pm .040 \AA$	97.2 ± 2.2
ovrl	Co	5	b	1.00	4	-0.500 f	-0.500 f	$1.760 \pm .040 \AA$	97.2 ± 2.2
ovrl	Co	6	b	1.00	5	0.500 f	0.500 f	$1.760 \pm .040 \AA$	97.2 ± 2.2
ovrl	Co	7	b	1.00	6	-0.500 f	-0.500 f	$1.760 \pm .040 \AA$	97.2 ± 2.2
ovrl	Co	8	b	1.00	7	0.500 f	0.500 f	$1.760 \pm .040 \AA$	97.2 ± 2.2
intf	Cu	9	b	1.00	8	-0.500 f	-0.500 f	$1.760 \pm .040 \AA$	97.2 ± 2.2
subl	Cu	10	b	1.00	9	0.500 f	0.500 f	1.810 \&	100.0

Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	$\mathrm{Co1}$	$\mathrm{Co1}(1,0)$	$\mathrm{Co2}$	59.0
2.478	$\mathrm{Co1}$	Co 2	$\mathrm{Co3}$	87.5
2.513	$\mathrm{Co2}$	$\mathrm{Co3}$	Co 4	88.5

COMMON NAME	$: \operatorname{Cu}(100)-(1 \times 1)-20 C o$
CLASSIFICATION	$: 29.27 .3$
TECHNIQUE	$:$ ARXPS
AUTHRS	$:$ Hong Li and B.P. Tonner
REFERENCE	: Surf. Sci., 237. 141 (1990)

SURFACE TYPE
Substrate: Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (sample)
Treatment : Co evaporated from Co wire filament
Crystallinity: p(1x1) LEED pattern
Anal. methods: Co coverage monitored by quartz microbalance and AES/XPS
Contamination:
DATA COLLECTION
Technique: ARXPS; see Rev. Sci. Instrum. 58 (1987) 116
Dataset : Cu and Co $2 \mathrm{p} 3 / 2$ ARXPS patterns for Co
coverages ranging from 0 to 20 ML

STRUCTURE TYPE
20 epitaxial (1×1) monolayers, continuing fcc lattice

COMMENTS

No structure optimization; only the lattice type of the overlayer determined

STRUCTURES EXAMINED
No theoretical analysis: ARXPS is used in the finger-print mode to show that Co overlayers are fcc.

2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (\AA)	$B X(A)$	By (${ }_{\text {A }}$)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.550	0.000	0.000	2.550	90.0	(1.000, 0.000$)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
Co1-Co20: 20 (1×1) epitaxial monolayers, continuing fcc lattice;
Cu21 represents bulk
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $21 \quad$ Bulk $z=1.810 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{DX} \pm \in \mathrm{X}$	$D Y \pm \epsilon y$	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				1.275 A	1.275 A	1.810 A	
ovrl	Co	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
ovrl	Co	2	b	1.00	1	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	3	b	1.00	2	-0.500 f	-0.500 f	1.810 \&	100.0
ovrl	Co	4	b	1.00	3	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	5	b	1.00	4	-0.500 f	-0.500 f	1.810 A	100.0
ovrl	Co	6	b	1.00	5	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	7	b	1.00	6	-0.500 f	-0.500 f	1.810 A	100.0
ovrl	Co	8	b	1.00	7	0.500 f	0.500 f	1.810 \&	100.0
ovrl	Co	9	b	1.00	8	-0.500 f	-0.500 f	1.810 A	100.0
ovrl	Co	10	b	1.00	9	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	11	b	1.00	10	-0.500 f	-0.500 f	1.810 A	100.0
ovrl	Co	12	b	1.00	11	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	13	b	1.00	12	-0.500 f	-0.500 ff	1.810 A	100.0
ovrl	Co	14	b	1.00	13	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	15	b	1.00	14	-0.500 f	-0.500 f	1.810 A	100.0
ovrl	Co	16	b	1.00	15	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	17	b	1.00	16	-0.500 f	-0.500 f	1.810 A	100.0
ovrl	Co	18	b	1.00	17	0.500 f	0.500 f	1.810 A	100.0
ovrl	Co	19	b	1.00	18	-0.500 f	-0.500 f	1.810 A	100.0
ovrl	Co	20	b	1.00	19	0.500 f	0.500 f	1.810 A	100.0
subl	Cu	21	b	1.00	20	-0.500 f	-0.500 f	1.810 A	100.0

Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	Col	Co1 (1,0)	Co2	60.0
2.550	Col	Co 2	Co3	90.0
2.550	Co 2	Co3	Co4	90.0

COMMON NAME	$:$ Cu(111)-(1x1)-1Co
CLASSIFICATION: 29.27 .1	
TECHNIQUE	$:$ SEXAFS
AUTHORS	: D. Chandesris, P. Roubin, G. Rossi and J. Lecante
REFERENCE	: Surf. Sci., 169, $57(1986)$

SURFACE TYPE
Substrate: Cu Crystal face: 111 Temperature : RT Bulk lattice: fcc
2D bulk symm: p3m
20 surf symm: p3m9

```
Adsorbate: Co
Coverage : 1.0 Co/Cu
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
    ( 0.000, 1.000)
```

SAMPLE PREPARATION (1 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION

Technique: SEXAFS
Dataset : SEXAFS spectra for polarisation normal and parallel to surface; photon energy from 50 to 450 eV above Co K edge

STRUCTURE TYPE
Epitaxial (1x1) monolayer, continuing fcc lattice

20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	1.275	2.208	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.550	0.000	1.275	2.208	60.0	$(1.000,0.000)$	(1×1)	$(0.000,1.000)$

3D COORDINATES
Co1: (1x1) epitaxial monolayer; coordinates are derived from bond distances
Dx/Dy in \mathbb{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=2.080 \AA$

No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	$\operatorname{Co1}$	$\operatorname{Co1(1,0)}$	$\operatorname{Cu2}(0,-1)$	58.9
2.467	$\operatorname{Co1}$	$\operatorname{Cu2(-1,0)}$	$\operatorname{Cu3}$	118.9
2.548	$\operatorname{Cu2}$			

2D surf symm: p3m1

SAMPLE PREPARATION (1 sample)

Treatment : Cs evaporated to saturation coverage, giving (2x2) pattern
Crystallinity:
Anal. methods:
Contamination: workfunction and EELS measurements

DATA COLLECTION

Technique: LEED
Dataset : I-V spectra for
$(1,0),(0,1),(1 / 2,0),(0,1 / 2)$ beams at $\Theta=0$; $10<E<150 \mathrm{eV}$; better data obtained by Fourie

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 10 phase shifts from Cu7Cs cluster and from LMTO band structure; $\Theta D=60 \mathrm{~K}(/ /)$, 180K(perp)

STRUCTURES EXAMINED

Cu-Cs spacing varied from 2.5 to $4.5 \AA$; bulk Cu assumed
QUALITY OF EXPERIMENT-THEORY FIT
Metric distances used
20 UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	$A y(\AA)$	$B x(\AA)$	$B y(\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	1.280	2.217	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	5.120	0.000	2.560	4.434	60.0	$(2.000,0.000)$	(2x2)	

3D COORDINATES
Cs: overlayer in top sites
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
5.120	$C s 1$	$C s 1(1,0)$		
3.010	$C s 1$	$C u 2$		
3.951	$C u 2$	$C s 1(1,0)$		
2.560	$C u 2$	$C u 2(1,0)$		

```
COMMON NAME : Cu(100)-(1x1)-1Fe
CLASSIFICATION : 29.26.2a
TECHNIQUE : LEED
AUTHORS : Y. Darici, J. Marcano, H. Min and P.A. Montano
REFERENCE : Surf. Sci., 182, 477 (1987)
```

ILLUSTRATION: 83

SURFACE TYPE

Substrate : Cu	Adsorbate: Fe
Crystal face: 100	Coverage : $1.0 \mathrm{Fe} / \mathrm{Cu}$
Temperature : RT	Pattern : (1×1)
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: p4m	

SAMPLE PREPARATION (1 sample)
Treatment : Fe evaporated from Knudsen cell onto substrate held a RT
Crystallinity: Fe grows 'approximately' layer by layer Anal. methods:
Contamination: Fe coverage and purity monitored by AES
DATA COLLECTION
Technique: LEED
Dataset : IV spectra at normal incidence: 3 inequivalent beams; E range 25 and 470 eV

STRUCTURE TYPE
Epitaxial (1x1) monolayer, continuing fcc lattice

COMMENTS

Fe deposited at 463 K caused Cu segregation to the surface over 1hr;
note: initial growth now thought to be more complex (eds.)

THEORY/DATA TREATMENT

Dynamical LEED (RFS): 8 phase shifts, 57 beams; Voi const, Vor=-11 eV (fit); $\Theta D=344 \mathrm{~K}(\mathrm{Cu}$, assumed), $233 \mathrm{~K}(F e, f i t)$

STRUCTURES EXAMINED
Hollow site with adsorption height varied 1.68-1.83A; relaxation of top Cu spacings varied 1.68-1.83A
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.550	0.000	0.000	2.550	90.0	$(1.000,1.000)$	(1×1)	

Fe1: (1x1) epitaxial monolayer
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{D} \quad \pm \epsilon \mathrm{X}$	$D y \pm \epsilon y$	$D z \pm \boldsymbol{Z}$	$\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{F} / 8 \mathrm{z}$
epir		-2				f	f	\AA	
subr		-1				1.275 A	1.275 A	1.810 A	
ovrt	Fe	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.810 \pm .020 \AA$	100.0 ± 1.1
subl	Cu	4	b	1.00	3	0.500 f	$0.500 \quad f$	1.810 \&	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	Fe1	Fe1 1.0$)$	Cu2	59.8
2.534	Fe1	Cu2	Cu3	89.7
2.555	Cu2	Cu3	Cu4	90.2

COMMON NAME	$:$ Cu(100)-(1x1)-1Fe	
CLASSIFICATION	$: 29.26 .3 a$	
TECHNIQUE	: LEED	
AUTHORS	A. Clarke, P.J. Rous, M. Arnott, G. Jennings and R.F. Willis	
REFERENCE	: Surf. Sci., 192, L843 (1987)	

SURFACE TYPE	STRUCTURE TYPE
Substrate : Cu Adsorbate: Fe	Epitaxial (1xi) monolayer, continuing fec lattice
Crystal face: 100 Coverage : $1.0 \mathrm{Fe} / \mathrm{Cu}$	
Temperature : RT Pattern : (1x1)	
Bulk lattice: fcc Matrix : (1.000, 0.000)	
2 D bulk symm: p 4 m ($0.000,1.000$)	
2D surf symm: p 4 m	
SAMPLE PREPARATION (1 sample)	COMMENTS
Treatment : Fe evaporated at RT and not annealed after deposition	Annealing the film after deposition promotes interdiffusion; note: initial growth now thought to be more complex (eds.)
Crystallinity: Fe grows layer by layer	
Anal. methods:	
Contamination: Fe coverage and purity monitored by AES	
DATA COLLECTION	THEORY/DATA TREATMENT
Technique: LEED	Dynamical LEED (RFS): 8 phase shifts, 57 beams; Voi=-4 eV,
Dataset : IV spectra at normal incidence: 3 inequivalent beams, E range $30-180 \mathrm{eV}$	Vor=-11 eV (fit); Θ ($=343 \mathrm{~K}$
FITC continuation: first two interlayer spacings relaxed by -15 to $+5 \%$ relative to Cu bulk	
QUALITY OF EXPERIMENT-THEORY FIT	
RPE $=0.26$	

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	$B \times$ (A)	By (${ }^{\text {a }}$)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1x1)	si: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
Fe1: (1x1) epitaxial monolayer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=1.810 \AA$

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{D} \quad \pm \epsilon \mathrm{X}$	Dy $\pm \in Y$	Dz $\pm \boldsymbol{E Z}$		$D z / B z(\%) \pm \in z / B z$
epir		-2				f	f		\AA	
subr		-1				1.275 \&	1.275 A	1.810	A	
ovrl	Fe	1	b	1.00	0	0.000 f	0.000 f	0.000	\AA	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.770 \pm .020$	A	97.8 ± 1.1
subl	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.810 \pm .040$	A	100.0 ± 2.2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.550	Fe1	Fe1(1,0)	Cu2	59.7
2.527	Fe1	Cu2	Cu3	89.6
2.555	Cu2	Cu3		

TECHNIQUE : LEED
AUTHORS : A. Clarke, P.J. Rous, M. Arnott, G. Jennings and R.F. Willis
REFERENCE : Surf. Sci., 192, L843 (1987)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : Fe evaporated at RT and not annealed after deposition
Crystallinity: Fe grows layer by layer
Anal. methods:
Contamination: Fe coverage and purity monitored by AES

```
DATA COLLECTION
Technique: LEED
Dataset : IV spectra at normal incidence: 3
    inequivalent beams, energy range 30-180 eV
```

Coverage : $2.0 \mathrm{Fe} / \mathrm{Cu}$
Pattern : (1x1)
Matrix : ($1.000,0.000)$

STRUCTURE TYPE
$\frac{2}{2}$ epitaxial (1×1) monolayers, continuing fcc lattice

COMMENTS

Anneal ing the film after deposition promotes interdiffusion; note: initial growth now thought to be more complex (eds.)

STRUCTURES EXAMINED
Fcc continuation: first two interlayer spacings relaxed by -15 to $+5 \%$ relative to Cu bulk
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.30$
2 D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice s $1:$ commens. superlattice

3D COORDINATES
Fe1-Fe2: 2 (1×1) epitaxial monolayers, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $4 \quad$ Bulk $z=1.810 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $\mathrm{A}-\mathrm{B}(\mathrm{A})$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.550	Fe 1	$\mathrm{Fe} 1(1,0)$	Fe 2	60.3
2.569	Fe 1	$\mathrm{Fe2}$	C 3	
2.591	Fe 2	Cu 3	$\mathrm{Cu4}$	91.3

TECHNIQUE : LEED

AUTHORS : A. Clarke, P.J. Rous, M. Arnott, G. Jennings and R.F. Willis
REFERENCE : Surf. Sci., 192, L843 (1987)

SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

SAMPLE PREPARATION (1 sample)

Treatment : Fe evaporated at RT and not annealed after deposition
Crystallinity: Fe grows layer by layer
Anal. methods:
Contamination: Fe coverage and purity monitored by AES

DATA COLLECTION

Technique: LEED
Dataset : IV spectra at normal incidence: 3 inequivalent beams, energy range 30-180 eV

Adsorbate: Fe
Coverage : $3.0 \mathrm{Fe} / \mathrm{Cu}$
Pattern : (1x1)
Matrix $:(1.000,0.000)$
($0.000,1.000$)

STRUCTURE TYPE
3 epitaxial (1x1) monolayers, continuing fcc lattice

COMMENTS

Annealing the film after deposition promotes interdiffusion; note: initial growth now thought to be more complex (eds.)

THEORY/DATA TREATMENT

Dynamical LEED (RFS): 8 phase shifts, 57 beams; Voi=-4 eV, Vor $=-11 \mathrm{eV}$ (fit); $\Theta 0=343 \mathrm{~K}$

STRUCTURES EXAMINED
Fcc continuation: first 3 interlayer spacings relaxed by -15 to $+5 \%$ relative to cu bulk
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.29$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left(^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	(1) s1: commens. superlattice

3D COORDINATES
Fe1-Fe3: 3 (1x1) epitaxial monolayers, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $5 \quad$ Bulk z $=1.810 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	Fe1	$\mathrm{Fe} 1(1,0)$	Fe2	60.4
2.583	Fe1	Fe 2	Fe3	91.9
2.605	Fe 2	Fe3	Cu4	92.4

COMMON NAME	$:$ Cu(100)-(1x1)-4Fe
CLASSIFICATION	$: 29.26 .3 d$
TECHNIQUE	$:$ LEED
AUTHORS	: A. Clarke, P.J. Rous, M. Arnott, G. Jennings and R.F. Willis
REFERENCE	: Surf. Sci., 192, L843 (1987)


```
Coverage : 4.0 Fe/Cu
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
( 0.000, 1.000)
```

SAMPLE PREPARATION (1 sample)
Treatment : Fe evaporated at RT and not annealed
after deposition

COMMENTS
Annealing the film after deposition promotes interdiffusion; note: initial growth now thought to be more complex (eds.)

Crystallinity: Fe grows layer by layer
Anal. methods:
Contamination: Fe coverage and purity monitored by AES
DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (RFS): 8 phase shifts, 57 beams; Voi=-4 eV, Vor=-11 eV (fit); $00=343 \mathrm{~K}$
Technique: LEED
Dataset : IV spectra at normal incidence: 3
inequivalent beams, energy range $30-180 \mathrm{eV}$
STRUCTURE TYPE

SAMPLE PREPARATION (1 sample)

STRUCTURES EXAMINED
Fcc continuation: first 4 interlayer spacings relaxed by -15 to $+5 \%$ relative to Cu bulk
QUALITY OF EXPERIMENT - THEORY FIT
RPE $=0.25$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	$B X(\AA)$	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	(1.000, 0.000)	$\begin{aligned} & (1 \times 1) \\ & (1 \times 1) \end{aligned}$	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$		s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
Fe1-Fe4: 4 (1x1) epitaxial monolayers, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.550	Fe 1	$\mathrm{Fe} 1(1,0)$	Fe 2	60.6
2.598	Fe 1	Fe 2	Fe 3	92.5
2.619	Fe 2	Fe 3	Fe 4	93.0

COMMON NAME : Cu(100)-(1x1)-5Fe
TECHNIQUE : LEED

AUTHORS : A. Clarke, P.J. Rous, M. Arnott, G. Jennings and R.F. Willis
REFERENCE : Surf. Sci., 192, L843 (1987)

SURFACE TYPE

Substrate : Cu	Adsorbate: Fe
Crystal face: 100	Coverage : $5.0 \mathrm{Fe} / \mathrm{Cu}$
Temperature : RT	Pattern : (1x1)
Bulk lattice: fcc	Matrix : ($1.000,0.000)$
2D bulk symm: p4m	(0.000, 1.000)

2D surf symm

SAMPLE PREPARATION (1 sample)
Treatment : Fe evaporated at RT and not annealed after deposition
Crystallinity: Fe grows layer by layer
Anal. methods:
Contamination: Fe coverage and purity monitored by AES
DATA COLLECTION
Technique: LEED
Dataset : IV spectra at normal incidence: 3 inequivalent beams, energy range $30-180 \mathrm{eV}$

STRUCTURE TYPE
5 epitaxial (1x1) monolayers, continuing fcc lattice

COMMENTS

Annealing the film after deposition promotes interdiffusion; note: initial growth now thought to be more complex (eds.)

STRUCTURES EXAMINED

FCC continuation: first 4 interlayer spacings relaxed by -15 to $+5 \%$ relative to Cu bulk
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.30$
20 UNIT CELLS (1 domain observed)

Cell	$A X$ (A)	Ay (A)	$B \times$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	b: bulk lattice
Surface 1	2.550	0.000	0.000	2.550	90.0	$\begin{aligned} & (1.000,0.000) \\ & (0.000,1.000) \end{aligned}$	(1×1)	s1: commens. superlattice

3D COORDINATES
Fe1-Fe5: 5 (1xi) epitaxial monolayers, continuing fcc lattice
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $7 \quad$ Bulk $2=1.810 \quad \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.550	Fe 1	$\mathrm{Fe} 1(1,0)$	Fe 2	60.7
2.605	Fe 1	$\mathrm{Fe2}$	Fe 3	93.0
2.634	Fe 2	Fe 3	Fe 4	93.6

COMMON NAME	: $C u(100)-(1 \times 1)-10 \mathrm{Fe}$
CLASSIFICATION	$: 29.26 .2 b$
TECHNIQUE	: LEED
AUTHORS	Y. Darici, J. Marcano, H. Min and P.A. Montano
REFERENCE	: Surf. Sci., $182,477(1987)$

SURFACE TYPE
Substrate: Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
20 bulk symm: p4m
20 surf symm: p4m

```
Adsorbate: Fe
Coverage : 10.0 Fe/Cu
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
    (0.000, 1.000)
```

STRUCTURE TYPE
10 epitaxial (1×1) monolayers, continuing fcc lattice

SAMPLE PREPARATION (1 sample)
Treatment : Fe evaporated from Knudsen cell onto substrate held a RT
Crystallinity: Fe grows 'approximately' layer by layer Anal. methods:
Contamination: Fe coverage and purity monitored by AES
DATA COLLECTION
Technique: LEED
Dataset : IV spectra at normal incidence: 3 inequivalent beams; E range 25 and 470 eV

COMMENTS

Fe deposited at 463 K caused Cu segregation to the surface over 1 hr

STRUCTURES EXAMINED

Fe overlayers in Cu continuation (hollow) sites; top two interlayer spacing and common interlayer spacing of remaining Fe layers varied

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	$A y(A)$	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	0.000	2.550	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.550	0.000	0.000	2.550	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)

3D COORDINATES
Fe1-Fe10: 10 (1x1) epitaxial monolayers
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 12
Bulk z $=1.810 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	DX $\pm \in \mathrm{X}$	Dy $\pm \epsilon y$	$D z \pm \boldsymbol{Z}$	$\mathrm{Dz} / \mathrm{Bz}(\%) \pm \in Z / B z$
epir		-2				f	f	\AA	
subr		-1				1.275 A	1.275 A	1.810 A	
ovrl	Fe	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
ovrl	Fe	2	b	1.00	1	0.500 f	0.500 f	$1.810 \pm .010 \AA$	$100.0 \pm .6$
ovrl	Fe	3	b	1.00	2	-0.500 f	-0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
ovrl	Fe	4	b	1.00	3	0.500 f	0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
ovrl	Fe	5	b	1.00	4	-0.500 f	-0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
ovrl	Fe	6	b	1.00	5	0.500 f	0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
ovrl	Fe	7	b	1.00	6	-0.500 f	-0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
ovrl	Fe	8	b	1.00	7	0.500 f	0.500 f	$1.780 \pm .020$ A	98.3 ± 1.1
ovrl	Fe	9	b	1.00	8	-0.500 f	-0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
ovrl	Fe	10	b	1.00	9	0.500 f	0.500 f	$1.780 \pm .020 \AA$	98.3 ± 1.1
intf	Cu	11	b	1.00	10	-0.500 f	-0.500 f	1.780 A	98.3
subl	Cu	12	b	1.00	11	0.500 f	0.500 f	1.810 A	100.0

Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	Fe 1	$\mathrm{Fe} 1(1,0)$	Fe 2	60.1
2.555	Fe 1	Fe 2	Fe 3	89.7
2.534	Fe 2	Fe 3	Fe 4	89.3

COMMON NAME : Cu(110)-(1x1)-Fe
ILLUSTRATION: 85
CLASSIFICATION : 29.26.11
TECHNIQUE : LEED
AUTHORS : J. Marcano, Y. Darici, H. Min, Y. Yin, and P.A. Montano
REFERENCE : Surf. Sci., 217, 1 (1989)

SURFACE TYPE
Substrate: Cu
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm

> Adsorbate: Fe Coverage $: 1.0 \mathrm{Fe} / \mathrm{Cu}$ Pattern $:(1 \times 1)$ Matrix $:(1.000,0.000)$

STRUCTURE TYPE

Pseudomorphic Fe monolayer; $\mathrm{Fe}-\mathrm{Cu}$ and $\mathrm{Cu}(1)-\mathrm{Cu}(2)$
interlayer spacings are (within error bar) equal
to $\mathrm{Cu}-\mathrm{Cu}$ bulk interlayer spacing

COMMENTS

Fit fails for $T=383 \mathrm{~K}$ and $T=423 \mathrm{~K}$, probably because of surface segregation of Cu

SAMPLE PREPARATION (1 sample)
Treatment: Cu cleaned by cycles of Ar sputtering and annealing at 823 K
Crystallinity:
Anal. methods: AES for Fe thickness
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : IV curves for 5 inequivalent beams: cumul.
Dynamical LEED: Burdick pot. for Cu; Vor, Voi, ©D fit: Vor $=-6 \mathrm{eV}$, Voi $=-4 \mathrm{eV}$, $\Theta 0=344 \mathrm{~K}$

STRUCTURES EXAMINED
Fe in Cu continuation sites with variation of top 3 intertayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.038$
2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	$A y(A)$	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	3.615	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1 1	2.556	0.000	0.000	3.615	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)

3D COORDINATES
Fe1: epitaxial monolayer in hollow sites
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathbf{D} \pm \boldsymbol{x}$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \epsilon \boldsymbol{z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				1.278 \&	1.807 \&	1.278 \&	
ovrl	Fe	1	s1	1.00	0	0.000 f	0.000 f	$-1.250 \pm .025 \AA$	97.8 ± 2.0
ovrl	Cu	2	s1	1.00	0	0.500 f	0.500 f	$0.000 \pm .025 \AA$	0.0 ± 2.0
ovrl	Cu	3	s1	1.00	2	-0.500 f	-0.500 f	$1.270 \pm .025 \AA$	99.4 ± 2.0
subl	Cu	4	b	1.00	3	0.500 f	0.500 f	1.278 A	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.556	Fe1	Fe1 $(1,0)$	Cu 2	59.8
2.542	Fe1	Cu2	Fe1 1 1, 1)	121.1
2.520	Fe1	Cu3	Cuz	60.2
2.520	Fe1	Cu3	Cu3 (1,0)	90.0
2.556	Cu2	Cu2 (1,0)	Fe1(1,1)	59.8

Cu(110)-(1×1)-Fe
29.26.11

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.520	Cu 3	Fe 1	$\mathrm{Fe}(1,0)$	90.0
2.520	Cu 3	Fe 1	$\mathrm{Cu}(-1,-1)$	60.6

AUTHORS : Y. Darici, J. Marcano, H. Min and P.A. Montano

REFERENCE : Surf. Sci., 195, 566 (1988)

SURFACE TYPE
Substrate : Cu
Adsorbate: Fe
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1

SAMPLE PREPARATION (1 sample)

Treatment: Fe evaporated from Knudsen cell onto substrate held a RT
Crystallinity:
Anal, methods: Fe coverage and purity monitored by AES
Contamination: AES: no evidence for C or S impurities

DATA COLLECTION

Technique: LEED
Dataset : IV spectra: 3 inequivalent beams at normal incidence averaged from 5 beams for energies between 40 and 400 eV

STRUCTURE TYPE
1 monolayer epitaxial growth, continuing fcc lattice

COMMENTS

LEED measurements performed at 373 K and 433 K ; segregation of Cu to the surface was seen at elevated temperatures;
Fe grows 'approximately' layer by layer;
five different muffin-tin potentials were considered

THEORY/DATA TREATMENT

Dynamical LEED (RFS): 8 phase shifts, 61 beams; Voi and and Vor optimised; $00=344$ K (CU)

STRUCTURES EXAMINED
Cu continuation sites with variation of top 3 interlayer spacings from 1.96 to $2.16 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
$R 2 J=0.035$
2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.550	0.000	1.275	2.208	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.550	0.000	1.275	2.208	60.0	($1.000,0.000$)	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
Fe1: (1x1) epitaxial monolayer
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.550	Fe1	Fe1(1,0)	$\operatorname{Cu2(1,-1)}$	120.7
2.500	Fe 1	$\operatorname{Cu2(-1,0)}$	$\operatorname{Cu3}$	119.1
2.532	Cu 2	$\operatorname{Cu3}$	$\operatorname{Cu4}$	180.0

COMMON NAME : Cu(100)-p(2x1)-Fe multilayer

TECHNIQUE	: LEED
AUTHORS	: H.Landskron, G. Schmidt, K. Heinz, K. Muller, C. Stuhlmann,
	U. Beckers, M. Wuttig and H. Ibach
REFERENCE	$:$ Surf. Sci., 256, 115 (1991)

REFERENCE : Surf. Sci., 256, 115 (1991)

SURFACE TYPE

Substrate: $:$ Cu	Adsorbate: Fe
Crystal face: 100	Coverage : $5.0 \mathrm{Fe} / \mathrm{Cu}$
Temperature : 90 K	Pattern $:(1 \times 2)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: p4m	
2D surf sym: Pmg	

SAMPLE PREPARATION (1 sample)
Treatment : Cu cleaned by cycles of Ne sputtering and annealing at 900 K
Crystallinity:
Anal. methods: thickness calibrated with AES and MEED
Contamination: CO below 3 at. $\%$

DATA COLLECTION
Technique: LEED; Auto-LEED optics
Dataset : IV curves for 15 beams: $E=65-500 \mathrm{eV}$
(fitted 65-350 range), off-normal
incidence angle as determined for clean Cu

STRUCTURE TYPE
4-6 epitaxial Fe layers: except for top Fe layer, atoms reside in nearly ideal fec positions given by the Cu lattice; in top Fe layer adjacent close-packed Fe rows are shifted antiparallel with respect to each other by $0.14 \AA$, forming zigzag rows with pmg symmetry

COMMENTS

Coverage measured with AES gives wrong thickness by a factor of 3

THEORY/DATA TREATMENT
Dynamical LEED: 11 phase shifts; angle of inc. $\theta=1.25^{\circ}$; Voi $=-5 \mathrm{eV}, 00=343 \mathrm{~K}(\mathrm{Cu}), 467 \mathrm{~K}(\mathrm{Fe})$

STRUCTURES EXAMINED
Variation of interlayer spacings Fe-Fe, Fe-Cu and Cu-Cu; lateral shift in top Fe layer; number of Fe monolayers (between 1 and 7): best fit between 4 and 6 layers

QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.25$
20 UNIT CELLS (2 domains observed)

Cell	Ax (\AA)	Ay (\AA)	$B x(\AA)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	0.000	0.000	5.112	90.0	$(1.000,0.000)$	(1x2)	s1: commens.
						(0.000, 2.000)		superlattice

3D COORDINATES
Fe1-Fe2: planar top Fe monolayer with zigzag structure; Fe3-Fe5: next 3 epitaxial Fe monolayers
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Bond distances and angles are derived from coordinates
No. of distances/angles:

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.556	Fe1	Fe1 $(1,0)$	Fe2	83.8
2.556	Fe1	Fe1 $(1,0)$	$\mathrm{Fe} 3(1,0)$	116.6
2.571	Fe1	$\mathrm{Fe} 2(-1,0)$	Fe1 $(0,1)$	167.5
2.571	Fe1	Fe2 (-1,0)	Fe 2	83.8
2.542	Fe1	Fe3	Fe1 1 1,0)	58.6
2.542	Fe1	Fe3	Fe 2	84.6
2.679	Fe1	$\mathrm{Fe} 3(-1,0)$	Fe1 (-1,0)	58.6
2.679	Fe1	Fe3 (-1,0)	$\mathrm{Fe} 3(-1,1)$	118.5

COMMON NAME : Cu(110)-(1x1)-H 2L
CLASSIFICATION : 29.1.2a
TECHNIQUE : LEED
AUTHORS : A.P. Baddorf, I.-W. Lyo, E.W. Plummer and H.L. Davis
REFERENCE : J. Vac. Sci. Technol., A5, 782 (1987)

SURFACE TYPE

Substrate $: ~ C u$	Adsorbate: H
Crystal face: 110	Coverage : 2 L
Temperature: 90 K	Pattern : (1×1)
Bulk lattice: fcc	Matrix : $1.000,0.000)$
2D bulk symm: pmm	
$0.000,1.000)$	

STRUCTURE TYPE

Atomic adsorption inducing changes in top two $\mathrm{Cu}-\mathrm{Cu}$
interlayer spacings (H position not determined)

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (RSP): up to 11 ph shs from truncated atomic pot (full Slater exchange); Voi=-4 eV; $\Theta 0=340 \mathrm{~K} ; \mathrm{H}$ ignored;

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay ($\AA)$	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	$(0.000,1.000)$

3D COORDINATES

$0.03 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{X} \pm \mathrm{EX}$	Dy \pm ¢ \quad ¢	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	A	
subr		-1				1.805 A	1.277 A	1.278 \&	
intf	Cu	1	b	1.00	0	0.000 f	0.000 f	$0.000 \quad \AA$	0.0
intf	Cu	2	b	1.00	1	0.500 f	0.500 f	$1.176 \pm .030$ A	92.0 ± 2.4
intf	Cu	3	b	1.00	2	-0.500 f	-0.500 f	$1.334 \pm .030$ A	104.4 ± 2.4
subl	Cu	4	b	1.00	3	0.500 f	0.500 f	1.278 \&	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.553	Cu1	Cu1 (0,1)	Cu2	59.4
2.504	Cu?	Cu2	Cu3	59.1
2.504	Cul	Cu2	Cu4	118.0
2.582	Cu2	Cu3	Cu4	61.1

CLASSIFICATION	$: 29.1 .2 \mathrm{~b}$
TECHNIQUE	: LEED
AUTHORS	: A.P. Baddorf, I.-W. Lyo, E.W. Plummer and H.L. Davis
REFERENCE	: J. Vac. Sci. Technol., A5, 782 (1987)

SURFACE TYPE

Substrate : Cu

Crystal face: 110
Temperature : 90 K
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm
SAMPLE PREPARATION (1 sample)
Treatment : exposure to atomic H dissociated over heated W filament
Crystallinity:
Anal. methods:
Contamination: close attention to H coverage
DATA COLLECTION
Technique: LEED
Dataset : IV curves for 6 non-equivalent beams: (10), (01), (11), (20), (02), (12); energy range $50-430 \mathrm{eV}$

```
Adsorbate: H
Coverage : 10L
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
```


STRUCTURE TYPE

Atomic adsorption inducing changes in top two $\mathrm{Cu}-\mathrm{Cu}$ interlayer spacings (H position not determined)

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (RSP): up to 11 ph shs from truncated atomic pot (full slater exchange); Voi $=-4 \mathrm{eV} ; \Theta 0=340 \mathrm{~K} ; \mathrm{H}$ ignored;

STRUCTURES EXAMINED
Variation of top two $\mathrm{Cu}-\mathrm{Cu}$ interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
R2=0.122
20 UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.553	90.0	$\left(\begin{array}{l}\text { (} 0.000,1.000) \\ (1.000,0.000)\end{array}\right.$	(1x1)	
surface 1			0.00	2.553	90.0	(0.000, 1.000)	(${ }^{(1)}$	superlattice

30 COORDINATES

$0.03 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk $z=1.278 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $A-B(A)$	Atom A	Atom 8	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.553	Cu1	Cu1 0,1$)$	Cu2	59.7
2.527	Cu1	Cu2	Cu3	59.9
2.527	Cu1	Cu2	Cu4	119.0
2.576	Cu2	Cu3	Cu4	60.9

| TECHNIQUE | : LEED |
| :--- | :--- | :--- |
| AUTHORS | : A.P. Baddorf, I.-W. Lyo, E.W. Plummer and H.L. Davis |
| REFERENCE | : J. Vac. Sci. Technol., A5, 782 (1987) |

SURFACE TYPE

Substrate : Cu	Adsorbate: H
Crystal face: 110	Coverage : 50 L
Temperature: 90 K	Pattern : (1×1)
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk sym: pmm	

Temperature : 90 K

D bulk symm

20 surf symm: pmm

STRUCTURE TYPE

Atomic adsorption inducing changes in top two $\mathrm{Cu}-\mathrm{Cu}$
interlayer spacings (H position not determined)

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (RSP): up to 11 ph shs from truncated atomic pot (full Slater exchange); Voi $=-4 \mathrm{eV}$; $00=340 \mathrm{~K}$; H ignored;

STRUCTURES EXAMINED
Variation of top two Cu-Cu interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
$R 2=0.128$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.553	90.0	$(1.000,1.000)$	(1×1)	

3D COORDINATES
$0.03 \AA$ error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (\&)	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.553	Cu1	Cu1 $(0,1)$	Cu 2	59.8
2.538	Cu1	Cuz	Cu3	60.1
2.538	Cu1	Cu 2	Cu4	119.4
2.571	Cu2	Cu3	Cu4	60.7

COMMON NAME	: Cu(110)-(1×1)-H 200L
CLASSIFICATION	: $29.1 .2 d$
TECHNIQUE	: LEED
AUTHORS	: A.P. Baddorf, I.-W. Lyo, E.W. Plummer and H.L. Davis
REFERENCE	: J. Vac. Sci. Technol., A5, 782 (1987)

ILLUSTRATION: 4
REFERENCE : J. Vac. Sci. Technol., A5, 782 (1987)

SURFACE TYPE

Substrate : Cu	Adsorbate: H
Crystal face: 110	Coverage : 200L
Temperature : 90 K	Pattern : (1x1)
Bulk lattice: fcc	Matrix : ($1.000,0.000$)
2D bulk symm: prm	(0.000, 1.000)

STRUCTURE TYPE

Atomic adsorption inducing changes in top two $\mathrm{Cu}-\mathrm{Cu}$ interlayer spacings (H position not determined)

COMMENTS

IHEORY/DATA TREATMENT

Dynamical LEED (RSP): up to 11 ph shs from truncated atomic pot (full Slater exchange); Voi=-4 eV; $\Theta D=340 \mathrm{~K} ; \mathrm{H}$ ignored;

STRUCTURES EXAMINED

Variation of top two Cu-Cu interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RZ $=0.152$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	2.553	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES
$0.03 \AA$ error bars assumed for tabulation
$D x / D y$ in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Cu1	$C u 1(0,1)$	$C u 2$	59.9
2.549	Cu1	$C u 2$	$C u 3$	60.6
2.549	Cu1	$C u 2$	$C u 4$	119.8
2.572	Cu2	$C u 3$	$C u 4$	60.8

COMMON NAME : Cu(110)-HCO2 disordered
CLASSIFICATION : 29.6.1.8.3
TECHNIQUE : SEXAFS
AUTHORS : A. Puschmann, J. Haase, M.D. Crapper, C.E. Riley and D.P. Woodruff
REFERENCE : Phys. Rev. Lett., 54, 2250 (1985)

SURFACE TYPE

Crystal face: 110
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: none

SAMPLE PREPARATION (1 sample)

Treatment : formate species formed by exposure to formic acid at RT
Crystallinity:
Anal. methods: NEXAFS to determine C-O bond length and Contamination:

DATA COLLECTION

Technique: SEXAFS
Dataset : NEXAFS of 0 KLL Auger line with 2
polarization orientations; SEXAFS of 0 K edge with similar polarization orientations

STRUCTURE TYPE

Disordered HCO2 (formate) species with two oxygens over two adjacent short bridge sites (off-center toward each other), C bridging the two oxygens in a plane perpendicular to the surface (H assumed perpendicular above C)

COMMENTS

Cu-0 bond length determined by SEXAFS is an average of two unequal lengths (1.88 and 2.08í);
0.25 ML coverage assumed here

THEORY/DATA TREATMENT

NEXAFS: empirical correlations to get bond length and angle; SEXAFS: calc. vs exp. amplitudes to get adsorption site

STRUCTURES EXAMINED
Formate plane perpendicular to surface along [1-10] azimuth with oxygens pointing towards the surface and C atom over a top or bridge site; H ignored

2D UNIT CELLS (1 domain observed)

Cell	$A X(\AA)$	Ay (A)	Bx (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	3.620	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000$)$		
Surface 1	2.560	0.000	0.000	3.620	90.0	(1.000, 0.000)	disordered	nd1: non-recon.
						(0.000, 1.000)		lattice-gas dis

30 COORDINATES
C1-02-03: disordered HCO2 molecule; $0.1 \AA$ error bars assumed for tabulation
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $5 \quad$ Bulk z = $1.280 \AA$

BOND DISTANCES AND ANGLES

No. of distances/angles: 5

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.250	$C 1$	02		
2.040	C1	Cu4		
1.887	02	Cu4		
2.560	Cu4	Cu4(1,0)		
2.560	Cu4	Cu5		

COMMON NAME	: Cu(100)-HCO2 disordered
CLASSIFICATION	: 29.6.1.8.8a
TECHNIQUE	: PED
AUTHORS	: D.P. Woodruff, C.F. McConville, A.L.D. Kilcoyne,
	Th.Lindner, J. Somers, M. Surman, G. Paolucci and
REFERENCE	: Surf. Sci., 201, 228 (1988)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none
SAMPLE PREPARATION (1 sample)
Treatment : exposure to formic acid to about 0.25 ML
Crystallinity:
Anal. methods:
Contamination: monitored by XPS

DATA COLLECTION

Technique: PED
Dataset : PED curves at normal emission with photon energy range of $80-380 \mathrm{eV}$ above threshold

Adsorbate: HCO2
Coverage : $0.25 \mathrm{HCO} / \mathrm{Cu}$
Pattern : disordered
Matrix : ($1.000,0.000$) ($0.000,1.000$)

STRUCTURE TYPE
HCO2 (formate) adsorption with both O down forming OCO bridge between 2 Cu atoms (OCO plane perp. to surface); H position undetermined, probably perp. above C

COMMENTS

CLASSIFICATION : 29.6.1.8.8a
AUTHORS : D.P. Woodruff, C.F. McConville, A.L.D. Kilcoyne, Th.Lindner, J. Somers, M. Surman, G. Paolucci and A.M. Brads : Surf. Sci., 201, 228 (1988)

THEORY/DATA TREATMENT

Analysis with curved-wave double scattering calculations (H ignored)

STRUCTURES EXAMINED
Several adsorption sites, with two equal $0-\mathrm{Cu}$ bonds and $0-\mathrm{C}-0$ plane normal to surface (H ignored); Cu-0 bond length and 0-C-O bond angle varied; substrate kept bulk-like

2D UNIT CELLS (2 domains observed)

Cell	AX (A)	Ay (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.560	0.000	0.000	2.560	90.0	(1.000, 0.000)	disordered	nd1: non-recon.
						(0.000, 1.000)		lattice-gas dis

3D COORDINATES
C1-02-03: HCO2, C up, Os down near top sites over 2 Cu ; $0.1 \AA$ lateral error bars assumed for tabulation
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z $=1.810 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.251	$C 1$	02	Cu4	116.7
1.980	02	Cu4	Cu4(1,0)	93.7
1.980	02	Cu4	Cu5	137.6

AUTHORS : D.P. Woodruff, C.F. McConville, A.L.D. Kilcoyne,
Th.Lindner, J. Somers, M. Surman, G. Paolucci and A.M. Brads

REFERENCE : Surf. Sci., 201, 228 (1988)

SURFACE TYPE
Substrate: Cu
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: none

SAMPLE PREPARATION (1 sample)
Treatment: exposure to formic acid to about 0.25 ML
Crystallinity:
Anal. methods:
Contamination: monitored by XPS
DATA COLLECTION
Technique: PED
Dataset : PED curves at normal emission with photon energy range of $80-380 \mathrm{eV}$ above threshold

Adsorbate: HCO2
Coverage : 0.25 HCO2/Cu
Pattern : disordered
Matrix : (1.000, 0.000)
($0.000,1.000$)

STRUCTURE TYPE
HCO2 (formate) adsorption with both 0 down forming OCD bridge between 2 Cu atoms along ridge (OCO plane perp. to surface); H position undetermined, probably perp. above C

COMMENTS

STRUCTURES EXAMINED

Several adsorption sites, with two equal $0-\mathrm{Cu}$ bonds and O-C-O plane normal to surface (H ignored); Cu-0 bond length and 0-C-O bond angle varied; substrate kept bulk-like

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	3.620	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.560	0.000	0.000	3.620	90.0	$(0.000,1.000)$	$(1.000,0.000)$	disordered

3D COORDINATES
C1-02-03: HCO2, C up, Os down near top sites over 2 Cu ; $0.1 \AA$ lateral error bars assumed for tabulation Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 5
Bulk z $=1.280 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.251	$C 1$	02	Cu4	116.7
1.980	02	Cu4	Cu4(1,0)	93.7
1.980	02	Cu4		122.1

COMMON NAME : Cu(100)-(2x2)-I
ILLUSTRATION: 28,30
CLASSIFICATION : 29.53.2b
TECHNIQUE : SEXAFS
AUTHORS : P.H. Citrin, P. Eisenberger and R.C. Hewitt
REFERENCE : Phys. Rev. Lett., 45, 1948 (1980)

SURFACE TYPE

Substrate : Cu	Adsorbate:
Crystal face: 100	Coverage : 0.25 (I/Cu)
Temperature: 300 K	Pattern : (2x2)
Bulk lattice: fcc	Matrix $:(2.000,0.000)$
$2 D$ bulk symm: p4m	

emperature : 300

2D bulk symm: p4m
2D surf symm: p4m

> Adsorbate:
> Coverage $: 0.25$ (I/Cu)
> Pattern $:(2 \times 2)$
> Matrix $:(2.000,0.000)$

STRUCTURE TYPE

Atomic adsorption in 4 -fold hollow sites

THEORY/DATA TREATMENT

Fourier transform and polarization dependence

COMMENTS
 OMITS

DATA COLLECTION
Technique: SEXAFS; SEXAFS with synchrotron radiation Dataset : light polarization angle parallel and 70° to surface

SAMPLE PREPARATION (1 sample)
Treatment : differentially pumped iodine doser used as iodine source
Crystallinity:
Anal. methods:
Contamination: checked by LEED and AES

STRUCTURES EXAMINED
Top, bridge, and hollow site

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.555	0.000	0.000	2.555	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	5.110	0.000	0.000	5.110	90.0	$(2.000,0.000)$	$(2 x 2)$	$(0.000,2.000)$

3D COORDINATES
I1: overlayer in 4-fold hollow sites coordinates are derived from bond distance
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.680	11	Cu 2	Cu2 $(1,0)$	118.5
2.555	Cu2	Cu2 (1,0)		
2.557	Cu2	Cu3		

COMMON NAME : Cu(111)-($\sqrt{3} \times \sqrt{3})$ R30 $0^{\circ}-1$
ILLUSTRATION: 22,24
CLASSIFICATION : 29.53.2a
TECHNIQUE : SEXAFS
AUTHORS : P.H. Citrin, P. Eisenberger and R.C. Hewitt
REFERENCE : Phys. Rev. Lett., 45, 1948 (1980)

SURFACE TYPE

2D surf symm: p31m

SAMPLE PREPARATION (1 sample)
Treatment : differentially pumped iodine doser used as iodine source
Crystallinity:
Anal. methods:
Contamination: checked by LEED/AES

DATA COLLECTION

Technique: SEXAFS; synchrotron radiation
Dataset : light polarization parallel and 70° to surface

STRUCTURE TYPE

Atomic adsorption in 3-fold hollow site (hcp assumed here)

COMMENTS
Analysis could not discriminate between fec and hep hollow sites

THEORY/DATA TREATMENT

SEXAFS with Fourier transform and polarization dependence

STRUCTURES EXAMINED
Top, bridge, and hollow sites
QUALITY OF EXPERIMENT-THEORY FIT Visual

2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.558	0.000	1.279	2.215	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.837	2.215	. 000	4.430	60.0	$(1.000,1.000)$	($\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}$	s1: commens. superlattice

3D COORDINATES
11: overlayer in 3-fold hollow sites (hcp site assumed here, but not determined); coordinates are derived from bond distance

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad B u l k \quad z=2.080 \quad \AA$

BOND DISTANCES AND ANGLES

No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.658	11	Cu 2	$\operatorname{Cu}(1,-1)$	61.2
2.658	11	Cu2	Cu2 $(0,1)$	118.8
2.558	Cu2	Cu2 $(1,0)$		
2.551	Cu2	Cu3		

COMMON NAME : Cu(100)-c(2x2)-N
ILLUSTRATION: 28,29
CLASSIFICATION : 29.7.3
TECHNIQUE : LEED
AUTHORS : H.C. Zheng, R.N.S. Sodhi and K.A.R. Mitchell
REFERENCE : Surf. Sci., 188, 599 (1987)

SURFACE TYPE

Substrate : Cu	Adsorbate: N
Crystal face: 100	Coverage : 0.5 (N / Cu)
Temperature : RT*	Pattern : $c(2 \times 2)$
Bulk lattice: fcc	Matrix : (1.000, 1.000)
2 D bulk symm: p4m	(-1.000, 1.000)

Crystal face: 100
Temperature : RT* Bulk lattice: fcc 20 bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION (1 sample)
Treatment : exposure at 300 K for 50 min to N 2 at 5E-5 torr, then anneal
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : 3 IV curves at normal incidence and 7 at $\Theta=15^{\circ}, \phi=0^{\circ}$ (symm. independent); energy range $50-220 \mathrm{eV}$

STRUCTURE TYPE

Atomic overlayer coplanar with top Cu layer in 4 -fold hollow sites

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 8 ph shs (Cu Moruzzi et al, N at. superpos pot); Vor $=-10 \mathrm{eV}, \mathrm{Voi}=-5 \mathrm{eV} ; \Theta 0=343 \mathrm{~K}(\mathrm{Cu}), 731 \mathrm{~K}(\mathrm{~N})$

STRUCTURES EXAMINED

Bulk substrate; N at top, bridge and hollow sites as overlayer;
variable top substrate interlayer spacing and N at hollow sites from $0.6 \AA$ above to $0.15 \AA$ below top Cu layer; without N, buckling in second Cu layer.

QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.46$
$2 D$ UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.556	2.556	-2.556	2.556	90.0	$(1.000,1.000)$	(1.000)	c(2x2)

30 COORDINATES
N1-Cu2: coplanar layer (N intercalated in bulk structure);
$0.05 \AA$ error bars assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.807	N1	Cu2	Cu3	47.2
1.950	N1	Cu3	Cu2	42.8
2.556	Cu2	Cu2 (1,0)		

Bond Distances and Angles - Continued

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.659	Cu 2	Cu 3	Cu 4	92.2

COMMON NAME : Cu(100)-c(2x2)-N ILLUSTRATION: 28,29
CLASSIFICATION : 29.7.4
TECHNIQUE : LEED
AUTHORS : H.C. Zeng and K.A.R. Mitchell
REFERENCE : Langmuir, 5 , 829 (1989)

SURFACE TYPE

Substrate: Cu	Adsorbate: N
Crystal face: 100	Coverage : $0.5(\mathrm{~N} / \mathrm{Cu})$
Temperature: RT*	Pattern:c(2x2)
Bulk lattice: fcc	Matrix $:(1.000,-1.000)$
$2 D$ bulk symm: 04 m	

20 surf symm: p4m

STRUCTURE TYPE
N almost coplanar with 1 st Cu layer ($\mathrm{N} 0.06 \AA$ above); buckling in 2 nd Cu layer (Cu below N pushed down 0.09\&)

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED

DATA COLLECTION
Technique: LEED
Dataset : 3 beams at normal incidence (2 int. + 1
Dataset: $\quad \begin{aligned} & 3 \text { beams at normal incidence }(2 \text { int. }+1 \\ & \\ & \\ & \text { fract. order }), 7 \text { beams at } 15^{\circ} \text { off-normal }\end{aligned}$ incidence (4+3)

Treatment : same as Surf. Sci. 188, 599 (1987)
Crystallinity:
Anal. methods:
Contamination:

SAMPLE PREPARATION (1 sample)

STRUCTURES EXAMINED
Incidence angle fit ($13-17^{\circ}$) clock rotation, registry shift (1st $\mathrm{Cu}+\mathrm{N}$ layer), subsurface N (+ clock rotation in 2nd Cu layer) tested

QUALITY OF EXPERIMENT-THEORY FIT
RRZJ $=0.27$, RPE $=0.37$
20 UNIT CELLS (1 domain observed)

Cell	$A X(\AA)$	Ay (A)	Bx (${ }^{(1)}$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	-2.556	2.556	2.556	90.0	($1.000,-1.000)$	$c(2 \times 2)$	s1: commens.
						($1.000,1.000$)		superlattice

3D COORDINATES
N1: adsorbate in 4-fold hollow sites; Cu2,3: 1st Cu layer, Cu4,5: 2nd Cu layer
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.808	N1	Cu2	$N 1(1,0)$	176.2
2.000	N1	Cu5	$\operatorname{Cu2}(0,1)$	43.0

| TECHNIQUE | : LEED |
| :--- | :--- | :--- |
| AUTHORS | : M.A. Abu-Joudeh, B.M. Davies and P.A. Montano |
| REFERENCE | : Surf. Sci., 171, 331 (1986) |

REFERENCE : Surf. Sci., 171, 331 (1986)

SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

> Adsorbate: Ni Coverage : $1.0 \mathrm{Ni} / \mathrm{Cu}$ Pattern $:(1 \times 1)$ Matrix $:(1.000,0.000)$

STRUCTURE TYPE
Epitaxial (1x1) monolayer, continuing fcc lattice

SAMPLE PREPARATION (1 sample)
Treatment : Ni evaporated from Knudsen cell at 473 K
Crystallinity:
Anal. methods: coverage calibrated by AES
Contamination: monitored by AES and LEED

OATA COLLECTION

Technique: LEED
Dataset : IV curves for 3 inequivalent beams for $50<E<450 \mathrm{eV}$ at normal incidence and 7° off-normal

COMMENTS

Authors state that interdiffusion was only a few percent during typical deposition cycles

THEORY/DATA TREATMENT

Dynamical LEED (RFS): 57 beams, 8 phase shifts; Vor=-10 eV (fit); $\Theta 0=268 \mathrm{~K}(N i, f i t), 344 \mathrm{~K}(\mathrm{Cu})$

STRUCTURES EXAMINED

Hollow (continuation) site; $\mathrm{Ni}-\mathrm{Cu}$ and top $2 \mathrm{Cu}-\mathrm{Cu}$ spacings varied
QUALITY OF EXPERIMENT-THEORY FIT
RE=0.24
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	s1: commens.
superlattice								

3D COORDINATES
Ni1: (1×1) epitaxial monolayer, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = 1.810

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	Dx	$\epsilon \mathrm{X}$	Dy		Dz	$\pm \epsilon Z$		Dz/Bz(\%) \pm	$\epsilon z / B z$
epir		-2					f		f			A		
subr		-1				1.277	\AA	1.277	A	1.810		A		
ovrl	Ni	1	b	1.00	0	0.000	f	0.000	f	0.000		A	0.0	
intf	Cu	2	b	1.00	1	0.500	f	0.500	f	1.800	$\pm .020$	A	$99.5 \pm$	1.1
intf	Cu	3	b	1.00	2	-0.500	f	-0.500	f	1.780	$\pm .020$	A	$98.3 \pm$	1.1
subl	Cu	4	b	1.00	3	0.500	f	0.500	f	1.810	$\pm .020$	A	$100.0 \pm$	

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C ~\left({ }^{\circ}\right)$
2.553	Ni1	Ni1(1,0)	Cu2	60.0
2.549	Ni1	Cu2	Cu3	89.5
2.535	Cu2	Cu3	Cu4	89.7

2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : Ni evaporated onto RT substrate, then annealed up to 500 K

COMMENTS

No interdiffusion of Ni and Cu observed by AES;
see also 4ML structure 29.28.4b
Crystallinity: sharp (1x1) LEED pattern
Anal. methods: coverage from AES and quartz oscillator Contamination: monitored by AES

DATA COLLECTION

Technique: HREELS
Dataset : HREELS spectra at various primary electron energies (incl. 160 eV)

STRUCTURE TYPE
2 epitaxial (1×1) monolayers, continuing fcc lattice

THEORY/DATA TREATMENT

First fit of vibr. frequencies by phonon calc.; then dynamical LEED-like calc. with R-factor fit

STRUCTURES EXAMINED
FCC continuation; $\mathrm{Ni}-\mathrm{Ni}$ and $\mathrm{Ni}-\mathrm{Cu}$ spacings varied

20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	BX (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.553	0.000	0.000	2.553	90.0	$\left.\begin{array}{l} (1.000, \\ (0.000, \\ 0.000 \end{array}\right)$	(1x1)	s1: commens. superlattice

3D COORDINATES
Ni1-Ni2: $2(1 \times 1)$ epitaxial monolayers, continuing fec lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.553	Nil	Ni1 (1,0)	Ni2	59.5
2.514	Ni1	Ni2	Cu3	88.2
2.514	Ni2	Cu3	Cu4	89.0

SURFACE TYPE

Substrate : Cu	Adsorbate: Ni
Crystal face: 100	Coverage: $3.0 \mathrm{Ni} / \mathrm{Cu}$
Temperature: RT*	Pattern : (1×1)
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: p4m	
2D surf symm: 04 m	

SAMPLE PREPARATION (1 sample)
Treatment : Ni evaporated from Knudsen cell at 473 K Crystallinity:
Anal. methods: coverage calibrated by AES
Contamination: monitored by AES and LEED
DATA COLLECTION
Technique: LEED
Dataset : IV curves for 3 inequivalent beams for $50<E<450 \mathrm{eV}$ at normal incidence and 7° off-normal

STRUCTURE TYPE
3 epitaxial (1×1) monolayers, continuing fcc lattice

COMMENTS
Authors state that interdiffusion was only a few percent during typical deposition cycles

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 57 beams, 8 phase shifts; Vor=-10 eV (fit); $\Theta 0=268 \mathrm{~K}(N i, f i t), 344 \mathrm{~K}(\mathrm{Cu})$

STRUCTURES EXAMINED

Hollow (Continuation) site; top $2 \mathrm{Ni}-\mathrm{Ni}$ spacings varied
QUALITY OF EXPERIMENT-THEORY FIT
RE=0.14
20 UNIT CELLS (1 domain observed)

Cell	$A x(A)$	$A y(A)$	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	$(0.000,1.000)$

3D COORDINATES
Ni1-Ni3: 3 (1×1) epitaxial monolayers, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site oce.	Rel. to	$D \mathrm{X} \pm \pm \mathrm{X}$	$D Y \pm \epsilon y$	$D z \pm \boldsymbol{Z}$	$D z / B z(\%) \pm E z / B z$
epir		-2				f	f	\AA	
subr		-1				-1.277 \&	-1.277 \&	1.810 A	
ovrl	Ni	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
ovrl	Ni	2	b	1.00	1	0.500 f	0.500 f	$1.740 \pm .020 \AA$	96.1 ± 1.1
ovrl	Ni	3	b	1.00	2	-0.500 f	-0.500 f	$1.760 \pm .020 \AA$	97.2 ± 1.1
intf	Cu	4	b	1.00	3	0.500 f	0.500 f	$1.760 \pm .020 \AA$	97.2 ± 1.1
subl	Cu	5	b	1.00	4	-0.500 f	-0.500 f	1.810 \&	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $\mathrm{A}-\mathrm{B}(\AA)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.553	$\mathrm{Ni1}$	$\mathrm{Ni1(1,0)}$	$\mathrm{Ni2}$	59.4
2.507	$\mathrm{Ni1}$	$\mathrm{Ni2}$	Ni 3	88.2
2.521	$\mathrm{Ni2}$	$\mathrm{Ni3}$	Cu 4	88.6

2D surf symm: p4m

SAMPLE PREPARATION (1 sample)
Treatment : Ni evaporated onto RT substrate, then annealed up to 500 K

COMMENTS

No interdiffusion of Ni and Cu observed by AES;
see also 2ML structure 29.28.4a
Crystallinity: sharp (1×1) LEED pattern
Anal. methods: coverage from AES and quartz oscillator
Contamination: monitored by AES
DATA COLLECTION
Technique: HREELS
Dataset : HREELS spectra at various primary electron energies (incl. 160 eV)

4 epitaxial (1x1) monolayers, continuing fcc lattice

THEORY/DATA TREATMENT

First fit of vibr. frequencies by phonon calc.;
then dynamical LEED-like calc. with R-factor fit

STRUCTURES EXAMINED
FCc continuation; top $\mathrm{Ni}-\mathrm{Ni}$ and common deeper spacings varied

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	Bx (\AA)	By (A)	$\alpha\left(^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.553	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	$(0.000,1.000)$

3D COORDINATES

Ni1-Ni4: 4 (1x1) epitaxial monolayers, continuing fcc lattice
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	site oce.	$\mathrm{Rel} \text {. }$ to	$\mathrm{DX} \pm \in \mathrm{X}$	$D Y \pm \epsilon y$	$D z \pm \epsilon \mathcal{Z}$	$D z / B z(\%) \pm \in Z / B z$
epir		-2				f	f	\AA	
subr		-1				-1.277 A	-1.277 \&	1.800 A	
ovrl	Ni	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
ovrl	Ni	2	b	1.00	1	0.500 f	0.500 f	$1.700 \pm .100 \AA$	94.4 ± 5.6
ovrl	Ni	3	b	1.00	2	-0.500 f	-0.500 f	$1.800 \pm .100 \AA$	100.0 ± 5.6
ovrl	Ni	4	b	1.00	3	0.500 f	0.500 f	$1.800 \pm .100 \AA$	100.0 ± 5.6
intf	Cu	5	b	1.00	4	-0.500 f	-0.500 f	$1.800 \pm .100 \AA$	100.0 ± 5.6
subl	Cu	6	b	1.00	5	0.500 f	0.500 f	$1.800 \AA$	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Ni1	Ni1(1,0)	Ni2	59.0
2.480	Ni1	Ni2	Ni3	88.2
2.549	Ni2	Ni 3	Ni4	89.8

COMMON NAME
CLASSIFICATION: 29.28 .1
TECHNIQUE
LEED
AUTHORS : S.P. Tear and K. Roell
REFERENCE : J. Phys., C15, 5521 (1982)

SURFACE TYPE

Substrate : Cu
Crystal face: 111
Temperature : 298 K
Bulk lattice: fcc
20 bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : Ni from heating Ni-wrapped W filament while Cu at 180C
Crystallinity:
Anal. methods:
Contamination: AES: up to $6 \% M L$ C present
DATA COLLECTION
Technique: LEED
Dataset : $1-V$ spectra: 27 beams at 3 diffraction geometries $\left(~ \Theta=0 ; ~ \theta=10^{\circ}, \phi=0^{\circ} ; \theta=10^{\circ}, \phi=30^{\circ}\right.$)

SIRUCTURE TYPE
(1x1) Ni monolayer on Cu , continuing fec lattice

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (CAVLEED): $00=343 \mathrm{~K}(\mathrm{Cu}), 242 \mathrm{~K}(\mathrm{Ni})$

STRUCTURES EXAMINED
Relaxation of topmost interlayer spacing; fcc lattice assumed to continue into Ni layer
QUALITY OF EXPERIMENT-THEORY FIT
RZJ $=0.0545$
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	1.277	2.211	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.553	0.000	1.277	2.211	60.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES

Ni1: monolayer continuing fcc substrate
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=2.080 \AA$

BOND DISTANCES AND ANGLES
Bond distances are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.553	Ni1	Ni1(1,0)		
2.517	Ni1	Cu2(-1,0)		
2.553	Cu2	Cu2(1,0)		

COMMON NAME	$: C u(100)-c(2 \times 2)-0$
CLASSIFICATION	29.8 .15
TECHNIQUE	SEXAFS
AUTHORS	U. Doebler, K. Baberschke, J. Stoehr and D.A. Outka
REFERENCE	: Phys. Rev., B31, 2532 (1985)

CLASSIFICATION : 29.8.15
AUTHORS : U. Doebler, K. Baberschke, J. Stoehr and D.A. Outka
REFERENCE : Phys. Rev., B31, 2532 (1985)

SURFACE TYPE

Substrate $: ~ C u$	Adsorbate: 0
Crystal face: 100	Coverage : $0.50 / \mathrm{Ni}$
Temperature: 300 K	Pattern :c(2x2)
Bulk lattice: fcc	Matrix $:(1.000,1.000)$
2D bulk symm: p4m	

2D bulk symm: p4m
20 surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : 300L 02 dosage at 300 K
Crystallinity:
Anal. methods:
Contamination: AES: no $0, S$, or C

DATA COLLECTION

Technique: SEXAFS; partial electron yield SEXAFS
Dataset : yield vs energy ($500-900 \mathrm{eV}$) detected for polar angles 90 and 45°; SEXAFS amplitude ratio $A\left(90^{\circ}\right) / A\left(45^{\circ}\right)=1.4(2)$

STRUCTURE TYPE
Atomic adsorption in hollow site of unreconstructed substrate

COMMENTS

This structure is now believed to have a missing-row substrate reconstruction (eds.)
authors' estimate for upper limit for additional adsorption site such as $(\sqrt{ } 2 \times 2 \sqrt{2}) R 45^{\circ}$ is 30%

THEORY/DATA TREATMENT
Fourier transform method

STRUCTURES EXAMINED

1. reconstructed surface layer with alternating Cu and 0 ; 2. bridge site $1.4 \AA$ above first Cu layer;
2. hollow site with various $0 / \mathrm{Cu}$ spacings $0.0-1.5 \AA$

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	$B \times(\AA)$	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000$)$	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	2.556	-2.556	2.556	90.0	$\begin{aligned} & (1.000, \\ & (-1.000, \\ & (1.000) \end{aligned}$	$c(2 \times 2)$	s1: commens. superlattice

30 COORDINATES
01: overlayer in hollow sites coordinates are derived from bond distance
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $3 \quad$ Bulk z = 1.810 A

BOND DISTANCES AND ANGLES

No. of distances/angles: 4

Interatomic dist. A-B ($)$	Atom A	Atom B	Aton C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.938 1.938 2.556 2.558	01	Cu2		

```
COMMON NAME : Cu(100)-c(2x2)-0
CLASSIFICATION : 29.8.2
TECHNIQUE : LEED
AUTHORS : J.H. Onuferko and D.P. Woodruff
REFERENCE : Surf. Sci., 95, 555 (1980)
```

ILLUSTRATION: 28,29

SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION (2 sample)
Treatment: cycles of Ar+ bombardment and annealing Crystallinity:
Anal. methods:
Contamination: AES: clean

DATA COLLECTION
Technique: LEED
Dataset : I-V curves for $(0,0),(1,0),(1 / 2,1 / 2),(1,1)$ beams at several incidence angles for energies 30-200 ev

Adsorbate: O

Coverage : 1/2 (0/Cu)
Pattern : c(2x2)
Matrix: $\quad \begin{aligned}(1.000, & 1.000) \\ (-1.000, & 1.000)\end{aligned}$

STRUCTURE TYPE
Atomic adsorption in bridge site of unreconstructed substrate

COMMENTS

This structure is now believed to have a missing-row substrate reconstruction (eds.)

THEORY/DATA TREATMENT
Dynamical LEED (reverse scattering perturbation of Zimmer and Holland): 6 phase shifts

STRUCTURES EXAMINED
Unrelaxed substrate, 0 in hollow and bridge sites with variable $0-C u$ layer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.560	2.560	-2.560	2.560	90.0	$(1.000,1.000)$ $(-1.000,1.000)$	c(2x2)	

3D COORDINATES

01: overlayer in bridge sites; 0.1\& error bar assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{X} \pm \boldsymbol{\pm}$	Dy $\pm \epsilon \boldsymbol{y}$	$D Z \pm \epsilon \boldsymbol{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				1.280 \&	1.280 A	1.810 A	
ovrl	0	1	s 1	. 50	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cu	2	b	1.00	1	0.000 f	0.500 f	$1.400 \pm .100 \AA$	77.4 ± 5.5
subl	Cu	3	b	1.00	2	0.500 f	0.500 f	1.810 \&	100.0

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 3

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.897 2.560 2.560	01	$\mathrm{Cu2}$	$\mathrm{Cu2}$	Cu2(1,0)

```
COMMON NAME : Cu(100)-c(2x2)-0
CLASSIFICATION : 29.8.7
TECHNIQUE : PED
AUTHORS : J.G. Tobin, L.E. Klebanoff, D.H. Rosenblatt, R.F. Davis,
    E.Umbach, A. Baca, D. Shirley, Y. Huang, H. Kang and S.Y. To
REFERENCE : Phys. Rev., B26, 7076 (1982)
```


SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : exposures of 400L 02, then annealing to 375 K for 4 min
Crystallinity:
Anal. methods:
Contamination: AES, PED, LEED: C/Cu AES ratio <0.005
DATA COLLECTION
Technique: PED; normal photoelectron diffraction
Dataset : O(1s) cross section vs. kinetic energy $(30-180 \mathrm{eV})$

STRUCTURE TYPE

Atomic adsorption in hollow site of unreconstructed substrate

COMMENTS

This structure is now believed to have a missing-row substrate reconstruction (eds.);
R-factor was normalized to Zanazzi-Jona R-factor; R-factors show relative minimum at $0.1 \AA$ (hollow) and absolute minimum at $0.8 \AA$ (hollow) for $0-\mathrm{Cu}$ spacing

THEORY/DATA TREATMENT
Convergent multiple scattering and R-factor comparisons; also Fourier transform used independently

STRUCTURES EXAMINED
Various 0/Cu spacings between 0 and $1.2 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
RZJ $=0.16$ (see comments)
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A)	$B \times(\AA)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	2.556	-2.556	2.556	90.0	($1.000,1.000)$	$c(2 \times 2)$	s1: commens.
						(-1.000, 1.000)		superlattice

3D COORDINATES
01: overlayer in hollow sites; $0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=1.810 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.977	01	Cu 2	Cu2 $(0,1)$	130.3
2.556	Cu 2	Cu2 $(1,0)$		
2.558	Cu2	Cu3		

COMMON NAME	$:$ Cu(100)-(2V $2 x \sqrt{ } 2) R 45^{\circ}-20$
CLASSIFICATION	$: 29.8 .39$
TECHNIQUE	: LEED
AUTHORS	: H.C. Zeng and K.A.R. Mitchell
REFERENCE	Surf. Sci., 239, L571 (1990)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc 20 bulk symm: p 4 m 2D surf symm: pmm

Adsorbate: 0
Coverage : 0.5 ($0 / \mathrm{Cu}$)
Pattern : ($2 \sqrt{2} \times \sqrt{2}$) $\mathrm{R}^{2} 5^{\circ}$
Matrix : ($1.000,-1.000$)
(2.000, 2.000)

STRUCTURE TYPE

0 in 4 -fold coordinated site with 1 Cu neighbor missing; missing Cu row in $(1,-1)$ direction, lateral shift of top Cu atoms adjacent to rows (pairing, $0.3 \AA$) and lifting up (0.01 A); buckling in 2 nd Cu layer (0.1 A), Cu below 0 is lifted

SAMPLE PREPARATION (1 sample)
Treatment : oxygen exposure 10E-6 Torr, 3-5 min at 300C \& flash 300C
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; Video LEED
Dataset : 2 integer, 4 fractional order beams at normal incidence E range $50-220 \mathrm{eV}$

COMMENTS

Same fit in joint STM paper (fewer details):
Ch.Woell, R.J.Wilson, S.Chiang, H.C.Zeng and K.A.R.Mitchell Phys. Rev. B42, 11926 (1990)
Previous publication with experimental details: H.C.Zeng R.A.McFarlane and K.A.R.Mitchell, Surf. Sci. 208, L7 (1989)

THEORY/DATA TREATMENT

dynamical calculation (RFS, composite layers, comb. space)

STRUCTURES EXAMINED
2 more complicated missing row models: missing row two layers deep
missing atoms crosswise in 1st and 2nd Cu layer
QUALITY OF EXPERIMENT-THEORY FIT
RRZJ=0.148, RPE=0.326
2D UNIT CELLS (2 domains observed)

Cell	Ax (\AA)	AY (\AA)	Bx (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	2.556	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.556	-2.556	5.112	5.112	90.0	(1.000,-1.000)	$(2 \sqrt{2} \times \sqrt{ } 2) R 45^{\circ}$	s1: commens.
						(2.000, 2.000)		superlattice

3D COORDINATES
01,02: adsorbate in 4-fold coordinated sites next to missing cu rows;
Cu3-5: 1st Cu layer, Cu6-9: 2nd Cu layer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 10
Bulk z $=1.807 \AA$

Cu(100)-(2 $2 x \sqrt{2}) R 45^{\circ}-20$
29.8.39

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
1.835	01	Cu4(1, -1)	01(1,0)	160.2
1.818	01	Cu5		167.4
2.140	01	Cu6	Cu4(1,-1)	41.9
1.835	02	Cu3 $(1,0)$	02(1,0)	160.2
1.818	02	Cu5	01	167.4
2.140	02	Cu7	$\mathrm{Cu} 3(1,0)$	41.9

AUTHORS : M. Bader, A. Puschmann, C. Ocal and J. Haase

REFERENCE : Phys. Rev. Lett., 57, 3273 (1986)

SURFACE TYPE

Substrate $: ~ C u$	Adsorbate: 0
Crystal face: 110	Coverage : $0.50 / \mathrm{Cu}$
Temperature: 100 K	Pattern $:(2 \times 1)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: pmm	

2D surf symm: pmm

STRUCTURE TYPE

Atomic adsorption in long-bridge sites (O above top Cu (layer), with missing Cu [001] rows

SAMPLE PREPARATION (1 sample)
Treatment : exposure to 02 at RT
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

DATA COLLECTION

Technique: SEXAFS; oxygen K-edge SEXAFS
Dataset : data for normal incidence ($\Theta=90$) with E-vector in $[0,0,1]$ and $[1,-1,0]$ azimuths, and $\theta=45$ with E in $[1,-1,0]$ azimuth

COMMENTS

Strong anisotropy of both surface mean free path and surface Debye-Waller factor was found;
O-Cu interlayer spacing taken from U. Dobler et al, Phys. Rev. Lett. 52, 1437 (1984)

THEORY/DATA TREATMENT

Fourier transform and polarization dependence

STRUCTURES EXAMINED

Buckled-row, missing-row and sawtooth reconstruction models examined by bond-length determination and SEXAFS amplitude comparisons

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	5.106	90.0	$(1.000,1.000)$	(1×2)	
s1: commens.								
superlattice								

3D COORDINATES
01: occupies long-bridge sites between remaining CU2 rows; $0.03 \AA$ error bars assumed for tabulation Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: $4 \quad$ Bulk $z=1.276 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	$\begin{aligned} & \text { Rel. } \\ & \text { to } \end{aligned}$	$\mathrm{DX} \pm \boldsymbol{\mathrm { X }}$	DY $\pm \epsilon \boldsymbol{Y}$	$\mathrm{Dz} \pm \boldsymbol{\epsilon} \mathbf{Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				1.805 A	1.277 \&	1.276 A	
intf	0	1	s1	. 50	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cu	2	s1	. 50	1	0.500 f	0.000 f	$0.350 \pm .030 \AA$	27.4 ± 2.4
intf	Cu	3	b	1.00	2	-0.500 f	0.500 f	1.276 A	100.0
subl	Cu	4	b	1.00	3	0.500 f	0.500 f	1.276 A	100.0

BOND DISTANCES AND ANGLES

No. of distances/angles: 4

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.839	01	Cu 2	01(1,0)	158.1
1.839	01	Cu 2	Cu3	53.2
1.839	01	Cu2	Cu4 (0, -1)	101.0
2.553	Cu 2	Cu3	Cu4	90.0

```
COMMON NAME : Cu(110)-(2x1)-0
CLASSIFICATION : 29.8.18a
TECHNIQUE : ICISS
AUTHORS : J.A. Yarmoff, D.M. Cyr, J.H. Huang, S. Kim and R.S. Williams
REFERENCE : Phys. Rev., B33, 3856 (1986)
```


SURFACE TYPE

Substrate $:$ Cu	Adsorbate: 0
Crystal face: 110	Coverage : $1 / 20 / \mathrm{Cu}$
Temperature : RT*	Pattern $:(2 \times 1)$
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
2D bulk symm: pmm	

Crystal face: 110 Temperature : RT* Bulk lattice: fcc $2 D$ surf sym:

SAMPLE PREPARATION (1 sample)
Treatment : 02 leaked in at 10E-6 torr
Crystallinity:
Anal. methods:
Contamination: checked with AES
DATA COLLECTION
Technique: ICISS; ICISS with 5 keV Li+ ions
Dataset : polar scans along three azimuths [1-10], [1-12] and [001]

STRUCTURE TYPE
Atomic adsorption in long-bridge sites (O below top Cu
layer), with missing Cu [001] rows

COMMENTS

0 position taken from LEIS result of Dewit et al, Surf. Sci. 82, 177 (1979) and Hupkens and Fluit, Surf. Sci. 143, 267
(1984), giving unusual $0-\mathrm{Cu}$ distances

THEORY/DATA TREATMENT

Comparison with Monte Carlo simulation: thermal vibrations 1.5 x rms bulk ampl in top Cu layer

SIRUCTURES EXAMINED
Variation of top two Cu-Cu interlayer spacings, assuming missing-row model; oxygen shown to have negligible effect and ignored

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (A)	BX (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.610	0.000	0.000	2.553	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.610	0.000	0.000	5.106	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×2)
							s1: commens. superlattice	

3D COORDINATES
Cu1: remaining row; 02: occupies long-bridge sites between remaining Cu rows
Dx/Dy in \mathcal{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z = $1.278 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $A-B(A)$	Atom A	Atom ${ }^{\text {B }}$	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.902	cu1	02	Cu1 $(1,0)$	143.2
1.902	Cu1	02	Cu 3	101.2
2.729	Cu1	Cu3	Cu4	63.4
1.622	02	Cu3	Cu4	83.2
1.622	02	Cu3	Cu5	128.1
2.492	Cu3	Cu4	Cu5	57.5

COMMON NAME
Cu(110)-(2x1)-0
ILLUSTRATION: 39
Classification
29.8.30
technique
XRD
AUTHORS : R. Feidenhans'l, F. Grey, R.L. Johnson, S.G.J. Mochrie, J.
Bohr and M. Nielsen
REFERENCE : Phys. Rev., B41, 5420 (1990)

SURFACE TYPE

Substrate : Cu	Adsorbate: 0
Crystal face: 110	Coverage $: 0.50 / \mathrm{Cu}$
Temperature : 300 K	Pattern $:(2 \times 1)$
Bulk lattice: fcc	Matrix $:(2.000,0.000)$
20 bulk symm: pmm	
20	$(0.000,1.000)$

STRUCTURE TYPE

Atomic adsorption in long bridge sites with
missing-row reconstruction and slight second-row pairing away from 0 sites

COMMENTS

SAMPLE PREPARATION (1 sample)
Treatment : Ar+ sputtering, 730 K anneal;
adsorption of 10 L 02 at 300 K
Crystallinity: crystal 1.4° from (110)
Anal. methods:
Contamination:
DATA COLLECTION
Technique: XRD
Dataset : 15 fractional and 7 integer order symm.-inequivalent reflections, corrected for Lorentz factor

THEORY/DATA TREATMENT

Structure factor obtained by summing layers from a semi-infinite crystal

STRUCTURES EXAMINED
Performed a least squares analysis of intensities
QUALITY OF EXPERIMENT-THEORY FIT
Chi ${ }^{\circ} 2=2.6$
20 UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (${ }_{\text {(}}$)	BX (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	3.615	90.0	$\begin{aligned} & (1.000, \\ & (0.000, \\ & (1.000) \end{aligned}$	(1x1)	b: bulk lattice
Surface 1	5.112	0.000	0.000	3.615	90.0	$\left.\begin{array}{l} (2.000, \\ (0.000, \\ 0.000 \end{array}\right)$	(2×1)	s1: commens. superlattice

3D COORDINATES
Cu1: remaining atoms in top Cu layer; 02: adatom in long bridge site, $0.34 \AA$ below top Cu; Cu3-Cu4: slightly paired 2nd Cu layer rows;
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z $=1.278$ A

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $\left.A-B-C()^{\circ}\right)$
1.839	Cu1	02	Cu1(0,1)	158.7
1.839	Cu1	O2	Cu3	97.5
2.774	Cu1	Cu3	Cu4	118.2

ATLAS OF SURFACE STRUCTURES

Cu(110)-(2x1)-0
29.8 .30

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.926	Cu1	Cu5	Cu3	60.2
1.851	02	Cu3	Cu1	41.1
1.851	02	Cu3	Cu_{4}	135.0
2.494	Cu3	Cu4	Cu1(1,0)	118.2

AUTHORS : S.R. Parkin, H.C. Zeng, M.Y. Zhou and K.A.R. Mitchell

REFERENCE : Phys. Rev., B41, 5432 (1990)

SURFACE TYPE

Substrate: Cu Crystal face: 110 Temperature : RT* Bulk lattice: fcc 20 bulk symm: prmm 20 surf symm: pmm

Adsorbate: 0
Coverage : $0.50 / \mathrm{Cu}$
Pattern : (2x1)
Matrix : (2.000, 0.000)
(0.000, 1.000)

STRUCTURE TYPE

Atomic adsorption in long bridge sites with missing-row reconstruction and slight second-row pairing by $0.03 \AA$ away from 0 sites

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer-doubling, composite layer for top 0/Cu layers)

STRUCTURES EXAMINED

Tested missing-row and buckled-row models; varied interlayer spacings and lateral displacements for Cu and $\mathrm{O}-\mathrm{Cu}$ bond length

QUALITY OF EXPERIMENT-THEORY FIT
RMZJ $=0.228$

2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	AY (A)	$\mathrm{Bx}(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	3.615	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	5.112	0.000	0.000	3.615	90.0	(2.000, 0.000)	(2×1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
01: adatom in long bridge site, slightly above top Cu; Cu2: remaining atoms in top Cu layer; cu3-Cu4: paired 2nd Cu layer rows; Cu5-Cu6: buckled 3rd Cu layer; 0.05A error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $7 \quad$ Bulk $z=1.278$ A

Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
1.808	01	Cu		$01(0,1)$
1.808	01	Cu	180.0	
2.013	01	Cu 3	Cus	48.6
2.683	$\mathrm{Cu2}$	$\mathrm{Cu3}$	Cu 4	130.5
2.700	$\mathrm{Cu2}$	$\mathrm{Cu5}$	$\mathrm{Cu6}$	119.2

COMMON NAME	$:$ Cu(110)-(2x1)-0
CLASSIFICATION	$: 29.8 .51$
TECHNIQUE	: ICISS
AUTHORS	: H. Duerr, Th. Fauster and R. Schneider
REFERENCE	: Surf. Sci., 244,237 (1991)

```
CLASSIFICATION : 29.8.51
AUTHORS : H. Duerr, Th. Fauster and R. Schneider
REFERENCE : Surf. Sci., 244, 237 (1991)
```


SURFACE TYPE

Substrate : Cu	Adsorbate: 0
Crystal face: 110	Coverage : $0.50 / \mathrm{Cu}$
Temperature : RT*	Pattern : (2×1)
Bulk lattice: fcc	Matrix : (2.000, 0.000)
2D bulk symm: prmm	(0.000, 1.000)

Substrate : Cu
Adsorbate: 0
Coverage : $0.50 / \mathrm{Cu}$
Matrix : (2.000, 0.000)
(0.000, 1.000)

STRUCTURE TYPE

0 in long bridge sites with missing row reconstruction; row pairing (away from 0) of second Cu layer

COMMENTS

THEORY/DATA TREATMENT

Also examined [001],[1-10],[3-32], and [1-11] directions calculated critical angles are in good agreement

STRUCTURES EXAMINED

Unreconstructed, buckling-row and missing-row substrates; for latter: top 2 Cu interlayer spacings, row-pairing in 2nd Cu layer, O-Cu spacing

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	AY (A)	$B x$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.556	0.000	0.000	3.615	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	5.112	0.000	0.000	3.615	90.0	$(2.000,0.000)$	(2x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES
oxygen atom in long bridge
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $6 \quad$ Bulk $2=1.278$ A

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 11

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.809	Cu1	02	Cu1 (0,1)	174.9
2.499	Cu3	Cu5		
2.499	Cu4	Cu5		
1.809	Cu?	02	Cu3	91.8
2.739	Cu1	Cu3	Cuf (0,1)	82.6
2.739	Cul	Cu 3	02	41.3

Cu(110)-(2x1)-0
29.8.51

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.739	$\mathrm{Cu1}$	Cu 3	Cu4	120.7
1.809	02	$\mathrm{Cu}(0,1)$	$02(0,1)$	174.9
2.000	02	Cu 3	Cu 1	41.3
2.000	$\mathrm{O2}$	Cu 3	Cu 4	134.4
2.316	Cu 3	$\mathrm{Cu4}$		

AUTHORS : K.A. Thompson and C.S. Fadley
REFERENCE : Surf. Sci., 146, 281 (1984)

SURFACE TYPE

Substrate: Cu
Crystal face: 410
Temperature : RT*
Bulk lattice: fcc 2D bulk symm: cm
2D surf symm: cm

```
Adsorbate: 0
Coverage : 1 (0/1\times1)
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
    ( 0.000, 1.000)
```


STRUCTURE TYPE

Atomic 0 adsorption in 4 -fold coord. step sites, $0.4 \AA$ above (100) terrace plane (this site is like 4 -fold site on (100) terrace, but lacks one of the 4 metal surface atoms)

COMMENTS

THEORY/DATA TREATMENT

Single scattering in clusters of ≈ 200 atoms: free-atom phase shifts; vibr ampl 0.0108 (surf), $0.0065 \AA^{* * 2 ~(s u b s) ~}$

STRUCTURES EXAMINED
Unrelaxed (410) substrate; one 0 in hollow site at terrace edge with variable height (-0.4 to $1.4 \AA$) over terrace
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	$A y(A)$	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.620	0.000	1.810	7.464	76.4	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.620	0.000	1.810	7.464	76.4	$(1.000,0.000)$	(1×1)	si: commens.
superlattice								

3D COORDINATES
01 in hollow site at step edge
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.854	01	Cu2 $0,-1)$	01(1,0)	155.1
1.854	01	Cu2 $(0,-1)$	Cu3	133.7
1.854	01	Cu3 (-1,0)	Cu2 $(0,-1)$	46.3
2.210	01	Cub (0,-1)	$\mathrm{Cu} 2(0,-1)$	45.0

Cu(410)-(1×1)-0
29.8.12a

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.560	Cu 2	$\mathrm{Cu} 3(0,1)$		

TECHNIQUE
AUTHORS
: K.A. Thompson and C.S. Fadley
REFERENCE : Surf. Sci., 146, 281 (1984)

STRUCTURE TYPE
 Atomic 0 adsorption in 4 -fold coord. step sites, $0.4 \AA$ above (100) terrace plane (this site is like 4 -fold site on (100) terrace, but lacks one of the 4 metal surface atoms); 2nd 0 per (1×1) cell forms c(2x2)-like structure on (100) terrace (also $0.4 \AA$ above terrace plane)

SURFACE TYPE

Substrate: Cu
Crystal face: 410
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: cm
2D surf symm: cm

```
Adsorbate: 0
Coverage : 2 (0/1x1)
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
                                ( 0.000, 1.000)
```

Treatment : exposure to $1 E 3 \mathrm{~L}$ oxygen
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: PED; AL $K \alpha(1486.6 \mathrm{eV}$) radiation source
Dataset : azimuthal XPD data obtained for 0 is emission at 9 polar angles from 7 to 45°

STRUCTURES EXAMINED
Unrelaxed (410) substrate; one 0 in hollow site at terrace edge with height $0.4 \AA$ over terrace as determined for Cu(410)-(1×1)-0; other 0 over hollow in terrace with variable height (-0.4 to $1.4 A$) over terrace; oxygens assumed to form $c(2 \times 2)$ lattice on (100) terrace

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS (1 domain observed)

| Cell | Ax (A) | Ay (A) | Bx (A) | By (A) | $\alpha\left({ }^{\circ}\right)$ | Matrix | Pattern | Cell type |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bulk | 3.620 | 0.000 | 1.810 | 7.464 | 76.4 | $(1.000,0.000)$ | (1×1) | b: bulk lattice |
| Surface 1 | 3.620 | 0.000 | 1.810 | 7.464 | 76.4 | $(1.000,0.000)$ | (1x1) | s1: commens. |
| superlattice | | | | | | | | |

3D COORDINATES

01 in hollow site at step edge; 04 in hollow site on (100) terrace (04 forms $c(2 \times 2)$ with 01)

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom D at the origin. Epir/subr are bulk repeat vectors.

Cu(410)-(1x1)-20
29.8.12b
bond oistances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
1.854	01	Cu2 (0, -1)	01(1,0)	155.1
1.854	01	Cu2(0,-1)	Cu3	133.7
1.854	01	Cu2(0,-1)	Cu3(-1,0)	46.3
2.210	01	$\operatorname{Cu7}(0,-1)$	Cu2 (0,-1)	45.0
2.560	Cu2	Cu3 $(0,1)$		
1.854	04	Cu3	01(1,0)	155.1
2.210	04	Cu9		

COMMON NAME	Cu(100)-c(2x2)-Pb
CLASSIFICATION	$: 29.82 .1 \mathrm{a}$
TECHNIQUE	LEED
AUTHORS	W. Hoesler and W. Moritz
REFERENCE	Surf. Sci., $117,196(1982)$

SURFACE TYPE

Substrate: Cu
Crystal face: 100
Temperature : 160 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION (1 sample)
Treatment : Pb evaporated from an rf heated source
Crystallinity:
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 7 beams at normal incidence

Adsorbate:	Pb
Coverage $:$	$0.5(\mathrm{~Pb} / \mathrm{Cu})$
Pattern $:$	$c(2 \times 2)$
Matrix $:$	$(1.000,1.000)$
	$(-1.000,1.000)$

Adsorbate: $\mathrm{Pb}(\mathrm{Pb} / \mathrm{Cu})$
Pattern : $c(2 \times 2)$
Matrix : ($1.000,1.000$)
(-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

COMMENTS

ZJ R-factors do not resolve well between hollow, top and bridge sites: comparison of $I-V$ peak heights provides additional means of discrimination

THEORY/DATA TREATMENT

Dynamical LEED: 8 phase shifts (modified Slater exchange); VoiaE**1/3; $\Theta D=330 \mathrm{~K}(\mathrm{Cu}), 70 \mathrm{~K}(\mathrm{~Pb})$

STRUCTURES EXAMINED
Variable Pb/Cu spacing in hollow, top and bridge sites
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.17 (see comments)
$2 D$ UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (A)	$B \times(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.560	2.560	-2.560	2.560	90.0	($1.000,1.000)$	$c(2 \times 2)$	s1: commens.
						(-1.000, 1.000)		superlattice

3D COORDINATES
Pb1: overlayer in 4 -fold hollow sites
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=1.810 \quad \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.620	Pb1	Pb1 1.0$)$		
3.006	Pb1	Cu2	Pb1 1 1,0)	74.0
3.006	Pb1	Cu2	Cu2 $(1,0)$	115.2
2.560	Cu2	Cu2 (1,0)		
2.560	Cu2	Cu3		

COMMON NAME	: $\mathrm{Cu}(100)-c(2 \times 2)-\mathrm{Pb}$
CLASSIFICATION	$: 29.82 .2$
TECHNIQUE	$:$ LEED
AUTHORS	W. Hoesler, W. Moritz, E. Tamura and R. Feder
REFERENCE	: Surf. Sci., 171, 55 (1986)

SURFACE TYPE
Substrate: Cu
Crystal face: 100
Temperature : 160 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p 4 m

$$
\begin{aligned}
& \text { Adsorbate: } \mathrm{Pb} \\
& \text { Coverage }: 0.5 \mathrm{~Pb} / \mathrm{Cu} \\
& \text { Pattern }: c(2 \times 2) \\
& \text { Matrix }:(1.000,1.000) \\
&(-1.000,1.000)
\end{aligned}
$$

STRUCTURE TYPE
Atomic adsorption in hollow sites

COMMENTS

SAMPLE PREPARATION (1 sample)
Treatment : Pb evaporated, then desorption/adsorption cycles
Crystallinity
Anal. methods:
Contamination: coverage and cleanliness checked by AES
DATA COLLECTION
Technique: LEED
Dataset : LEED and SPLEED IV and AV spectra: $50<E<280 \mathrm{eV}$; total E range $980 \mathrm{eV} ; 7$ non degenerate beams

THEORY/DATA TREATMENT

Dynamical LEED and SPLEED: spin averaged phase shifts
(SWWLA scheme); Voi $\alpha E^{* * 1 / 3 . ~ E-d e p . ~ V o r ~(f i t) ; ~} 00=100 \mathrm{~K}$

STRUCTURES EXAMINED
Hollow site with variation of $\mathrm{Pb}-\mathrm{Cu}$ and topmost $\mathrm{Cu}-\mathrm{Cu}$ interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
$R=0.10$

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	(1.000, 0.000)	(1x1) $c(2 \times 2)$	b: bulk lattice s1: commens. superlattice
						(0.000, 1.000)		
Surface 1	2.560	2.560	-2.560	2.560	90.0	(1.000, 1.000)		
						(-1.000, 1.000)		

COORDINATES
Pb1: overlayer in 4-fold hollow sites
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=1.810 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.620	Pb1	Pb1 1,0$)$		
2.919	Pb1	Cu2	Cu3	96.7
2.560	Cu2	Cu3		

COMMON NAME : Cu(100)-c(2×2)-Pd
CLASSIFICATION : 29.46.2
TECHNIQUE : LEED
AUTHORS : Z.Q. Wu, S.H. Lu, Z.Q. Wang, C.K.C. Lok, J. Quinn, Y.S. Li,
REFERENCE : Phys. Rev., B38, 5363 (1988)

SURFACE TYPE

Substrate : Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

SAMPLE PREPARATION (1 sample)
Treatment : Ar+ sputtering followed by 873 K annealing for 10 mins
Crystallinity:
Anal. methods:
Contamination: coverage and cleanliness checked by AES

DATA COLLECTION

Technique: LEED; PED
Dataset : IV spectra at normal incidence for 4 beams, at $(\Theta, \phi)=(10,0)^{\circ}$ for 5 beams

COMMENTS
Authors state that additional Pd atoms may lie below the topmost atomic plane

STRUCTURES EXAMINED
Overlayer model at hollow sites for Pd-Cu spacing of 1.74 to $2.14 \AA$; mixed top layer with buckling of 0.0 , 0.05 or $0.1 \AA$ and first interlayer spacing of 1.607 to $2.000 \AA$

2D UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	Bx (\AA)	By ($\AA)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.560	2.560	-2.560	2.560	90.0	$(1.000,1.000)$ $(-1.000,1.000)$	c(2x2)	

Pd1-Cu2: mixed buckled top layer

$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$\boldsymbol{D X} \pm \boldsymbol{x}$	Dy $\pm \in \boldsymbol{y}$	$\mathrm{Dz} \pm \boldsymbol{E Z}$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\AA	
subr		-1				-1.280 A	-1.280 \&	1.810 A	
intf	Pd	1	s1	. 50	0	0.000 f	0.000 f	0.000 A	0.0
intf	Cu	2	s1	. 50	1	0.500 f	0.500 f	$0.020 \pm .030 \AA$	1.1 ± 1.7
intf	Cu	3	b	1.00	2	0.500 f	-0.500 f	$1.810 \pm .030 \AA$	100.0 ± 1.7
subl	Cu	4	b	1.00	3	-0.500 f	-0.500 f	1.810 A	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.560	Pd1	Cu2	Cu3	60.4
2.574	Pd1	Cu3	Cu4	90.3
2.560	Cu2	Cu3	Cu4	120.0

COMMON NAME : $\mathrm{Cu}(100)-\mathrm{c}(5 \sqrt{2} \times \sqrt{2}) R 45^{\circ}-3 \mathrm{~Pb}$
ILLUSTRATION: 31
CLASSIFICATION : 29.82.1b

TECHNIQUE	$:$ LEED
AUTHORS	W. Hoesler and W. Moritz
REFERENCE	$:$ Surf. Sci., 117, 196 (1982)

SURFACE TYPE
Substrate: Cu
Crystal face: 100
Temperature : 160 K
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: cmm

Adsorbate: Pb
Coverage : 0.6 ($\mathrm{Pb} / \mathrm{Cu}$)
Pattern : $c(5 \sqrt{2} \times \sqrt{ } 2) R 45^{\circ}$
Matrix $:(2.000,3.000)$ $(-1.000,1.000)$

STRUCTURE TYPE

Atomic adsorption in 3 -atom wide strip domains of $c(2 \times 2)$ structure, with lateral relaxation at domain boundaries ($0.3 A$ displacements away from boundaries); central atoms in strips are on hollow sites, other $0.3 \AA$ from hollow sites

COMMENTS

Overlayer buckling is likely, but not explored in this study

THEORY/DATA TREATMENT

Dynamical LEED: 8 phase shifts (modified Slater exchange); VoiaE**1/3; $\Theta 0=330 \mathrm{~K}(\mathrm{Cu}), 70 \mathrm{~K}(\mathrm{~Pb})$

STRUCTURES EXAMINED
Planar Pb layer as: 1) pseudo hexagonal layer
2) $c(2 \times 2)$ domains separated by denser boundaries, with near- boundary Pb shifted $0.0,0.2,0.4 \AA$ parallel to surface away from boundary

QUALITY OF EXPERIMENT-THEORY FIT
$R Z J=0.41$
2D UNIT CELLS (2 domains observed)

Cell	Ax (\AA)	Ay (A)	BX (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	5.120	7.680	-2.560	2.560	78.7	(2.000, 3.000)	$c(5 \sqrt{2} \times \sqrt{2}) R 45^{\circ}$	s1: commens.
						(-1.000, 1.000)		superlattice

3D COORDINATES

Pb1: center row of $3-\mathrm{Pb}$-wide domains, in hollow site; Pb2-Pb3: 2 boundary rows, shifted $0.3 \AA$ from hollow sites; D.1\& lateral error bars assumed for tabulation

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (\AA	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.620	Pb1	$\operatorname{Pb} 1(0,1)$		
3.323	Pb1	Pb2 $(0,-1)$		
3.006	Pb1	Cu4	$\operatorname{Pb1}(0,1)$	74.1
3.006	Pb1	Cu4	Cu4(0,1)	115.2

$C u(100)-c(5 \sqrt{2 x} \sqrt{2}) R 45^{\circ}-3 \mathrm{~Pb}$
29.82.1b

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.010	Pb 2	Pb 3	$\mathrm{~Pb} 2(0,-1)$	74.0

COMMON NAME : $\mathrm{Cu}(100)-\mathrm{c}(5 \sqrt{2} \mathrm{x} \sqrt{2}) \mathrm{R} 45^{\circ}-3 \mathrm{~Pb}$
CLASSIFICATION : 29.82 .3
TECHNIQUE : LEED
AUTHORS : W. Hoesler and W. Moritz
REFERENCE : Surf. Sci., 175, 63 (1986)

SURFACE TYPE

Substrate : Cu	Adsorbate: Pb
Crystal face: 100	Coverage : $0.6 \mathrm{~Pb} / \mathrm{Cu}$
Temperature : 160 K	Pattern $: c\left(5 \sqrt{2 x \sqrt{2}) R 45^{\circ}}\right.$
Bulk lattice: fcc	Matrix $:(3.000,2.000)$
2D bulk symm: p4m	
2D surf	$(-1.000,1.000)$

2D surf sy

SAMPLE PREPARATION (1 sample)
Treatment : Pb evaporated from RF heated crucible
Crystallinity:
Anal. methods:
Contamination: AES and LEED: S and $C<2 \% M L$
DATA COLLECTION
Technique: LEED
Dataset : IV spectra: 21 inequivalent beams; cumulative E range 2150 eV

STRUCTURE TYPE

Atomic adsorption (3 Pb per supercell) at and near hollow sites, forming 3-Pb-wide strips (domains) of $c(2 \times 2)$ structure with compressed domain boundaries; no buckling in Pb layer or relaxations in substrate detected

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 10 phase shifts, Vor=-3.9 eV (fit); Voi $\alpha E^{* * 1 / 2 ; ~} 00=85 \mathrm{~K}(\mathrm{~Pb}), 330 \mathrm{~K}(\mathrm{Cu})$

STRUCTURES EXAMINED

Pseudo-hexagonal and domain boundary models with $3 P b$ per supercell in various lateral sites;
buckling of Pb overlayer; variations of $\mathrm{Pb}-\mathrm{Cu}$ spacing and relaxations of top Cu layer.

QUALITY OF EXPERIMENT-THEORY FIT

RPE $=0.46$
2D UNIT CELLS (2 domains observed)

Cell	AX (A)	Ay (A)	Bx (A)	By (A)	α (${ }^{\circ}$)	Matrix	Pattern	Cell type
Bulk	2.560	0.000	0.000	2.560	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	7.679	5.120	-2.560	2.560	101,3	$(3.000,2.000)$ $(-1.000$	$c(5 \sqrt{2} \times \sqrt{2}) R 45^{\circ}$	s1: commens.
						(-1.000, 1.000)		superlattice

30 COORDINATES
Pb1: positioned over 4-fold hollow sites; Pb2-Pb3: positioned $0.42 \AA$ laterally from 4-fold hollow sites, coplanar with $\mathrm{Pb} 1 ; 0.1 \AA$ error bars assumed for tabulation
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. A-B (A$)$	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
3.620	Pb 1	$\mathrm{~Pb} 1(0,1)$		
3.200	Pb 1	Pb 2	Pb 3	145.7
2.935	Pb 1	Cu 4	$\mathrm{Cu5}$	96.9
2.696	Pb 2	Cu 4	$\mathrm{Cu5}$	166.0

AUTHORS : E.L. Bullock, C.S. Fadley and P.J. Orders
REFERENCE : Phys. Rev., B28, 4867 (1983)

SURFACE TYPE
Substrate: Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m

Adsorbate: S
Coverage : 0.25 (S/Cu)
Pattern : $p(2 \times 2)$
Matrix : (2.000, 0.000) (0.000, 2.000)

STRUCTURE TYPE
Atomic adsorption in hollow site of unreconstructed substrate

COMMENTS

THEORY/DATA TREATMENT
Single scattering theory, using LEED scattering factors; cluster sum over 60 S atoms and 1800 Cu atoms in 8 layers

STRUCTURES EXAMINED
No structural variation
QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS (1 domain observed)

Cell	$A x$ (A)	Ay (\AA)	$B \times(\AA)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	5.105	0.000	0.000	5.105	90.0	(2.000, 0.000$)$	$p(2 \times 2)$	s1: commens.
						(0.000, 2.000)		superlattice

30 COORDINATES

S1: overlayer in hollow sites; $0.1 \AA$ error bar assumed for tabulation
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=1.810 ~ \&$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. $A-B(\AA)$	Atom A	Atom B	Atom C	Bond angle A-B-C (${ }^{\circ}$)
2.278	s1	Cu2	Cu2 $(1,0)$	124.1
2.553	Cu2	Cu2 $(1,0)$		
2.556	Cu2			

```
COMNON NAME : Cu(100)-p(2x2)-s ILLUSTRATION: 28,30
CLASSIFICATION : 29.16.1
TECHNIQUE : LEED 
REFERENCE : Surf. Sci., 177, 329 (1986)
```

SURFACE TYPE

Substrate : Cu	Adsorbate: S
Crystal face: 100	Coverage : $1 / 4(\mathrm{~S} / \mathrm{Cu})$
Temperature: 553 K	Pattern : $\mathrm{P}(2 \times 2)$
Bulk lattice: fcc	Matrix : $2.000,0.000)$
20 bulk symm: p4m	

Temperature : 553 K
BD bulk sym: P4m
2D surf symm: P4m

SAMPLE PREPARATION (1 sample)
Treatment : exposure at RT to H2S at 2E-8 torr
Crystallinity:
Anal. methods:
Contamination: checked by AES and LEED

DATA COLLECTION

Technique: LEED
STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites on unrelaxed substrate

COMMENTS
Only moderate theory-experiment agreement was found

THEORY/DATA TREATMENT

Dynamical LEED (RFS): 8 ph shs (Cu Moruzzi et al; S atomic superpos pot); VoiaE**1/3; $\Theta D=343 \mathrm{~K}(\mathrm{Cu}), 335 \mathrm{~K}(\mathrm{~S})$

STRUCTURES EXAMINED

Cu fixed at bulk structure; $\mathrm{s}-\mathrm{Cu}$ interlayer spacing varied: 1.20-1.60A over hollow;
1.45-2.05A over bridge; 1.70-2.30A over top site

QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.306$
20 UNIT CELLS (1 domain observed)

Cell	$A x$ (\AA)	Ay (A)	$B \times(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.553	0.000	0.000	2.553	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	5.105	0.000	0.000	5.105	90.0	$(2.000,0.000)$	$p(2 \times 2)$	s1: commens.
						(0.000, 2.000)		superlattice

3D COORDINATES
s1: overlayer in 4 -fold hollow sites
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z $=1.810 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C ($)$
2.236	S1	Cu2	$\operatorname{Cu2(1,0)}$	124.8
2.236	S1	Cu2	$\operatorname{Cu3}$	171.1
2.556	Cu2	Cu3		

```
COMMON NAME : Cu(100)-p(2\times2)-S
CLASSIFICATION : 29.16.10
TECHNIQUE : XSW
AUTHORS : J.R. Patel, D.W. Berreman, F. Sette, P.H. Citrin, J.E.
    Rowe, P.L. Cowan, T. Jach and B. Karlin
REFERENCE : Phys. Rev., B40, 1330 (1989)

SURFACE TYPE
Substrate: Cu Crystal face: 100
Temperature : RT* Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m
```

Adsorbate: S
Coverage : 0.25 (S/Cu)
Pattern : p(2x2)
Matrix : (2.000, 0.000)
(0.000, 2.000)

```

STRUCTURE TYPE
Atomic adsorption in hollow site of possibly relaxed substrate

\section*{COMMENTS}

No lateral relaxation allowed in topmost Cu layer: eds.: incompatibility found between XSW and SEXAFS results for relaxation of top Cu-Cu spacing may be caused by that assumption

THEORY/DATA TREATMENT
\(8 \times 8\) matrix dynamical x-ray theory, with 2 fit parameters: \(P=\) at. pos. above (111) plane, \(F=\) coherent fraction

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : see PRL 49,1712(1982), PRL 61,1384(1988) Crystallinity:
Anal. methods: SEXAFS for bond distances
Contamination:

\section*{DATA COLLECTION}

Technique: XSW; fluorescence yield at NSLS
Dataset : standing-wave data at fixed incidence angle as fct. of crystal rotation about [111]

\section*{STRUCTURES EXAMINED}

XSW and SEXAFS data directly give 4-fold hollow site; difference between XSW and SEXAFS for s-Cu spacing indicates change in top Cu-Cu spacing from bulk, since XSW refers adsorbate position to deep bulk layers; no lateral relaxation allowed in topmost Cu layer

2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.553 & 0.000 & 0.000 & 2.553 & 90.0 . & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.105 & 0.000 & 0.000 & 5.105 & 90.0 & ( 2.000, 0.000) & \(p(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
s1 forms overlayer in hollow sites; coordinates are derived from bond distance and spacings
Dx/Dy in Å, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = \(1.810 ~ \AA\)


No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{c}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.309 & S1 & Cu2 & Cu2(1,0) & 123.6 \\
2.309 & S1 & Cu2 & Cu3 & 83.7 \\
2.556 & Cu2 & Cu3 & Cu4 & 90.2 \\
2.556 & Cu3 & Cu4 & & \\
\hline
\end{tabular}
```

COMMON NAME : Cu(100)-p(2x2)-s
CLASSIFICATION : 29.16.2
TECHNIQUE : ARPEFS
AUTHORS : C.C. Bahr, J.J. Barton, Z. Hussain, S.W. Robey, J.G.
Tobinand and D.A. Shirley
REFERENCE : Phys. Rev., B35, 3773 (1987)

```

\section*{SURFACE TYPE}

Substrate : Cu
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to 40 L of H 2 S and flashing to 500 K
Crystallinity:
Anal. methods:
Contamination: monitored by LEED

DATA COLLECTION
Technique: ARPEFS
Dataset : 3 independent ARPEFS curves corresponding to emission angles aligned with [100], [110] and [111] directions

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites on unrelaxed substrate

\section*{COMMENTS}

Evidence found for second-layer buckling, with the Cu atoms under fourfold symmetric open sites lying \(0.13 \AA\) deeper than the Cu atoms under S sites

\section*{THEORY/DATA TREATMENT}

Direct Fourier analysis and multiple-scattering sphericalwave calculation; \(\Theta 0=337 \mathrm{~K}(\mathrm{~S}), 239 \mathrm{~K}(\) surf Cu\(), 343 \mathrm{~K}(b u l k \mathrm{Cu})\)

\section*{STRUCTURES EXAMINED}

Top, bridge and hollow adsorption sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(A\) ) & BX ( \(A\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.553 & 0.000 & 0.000 & 2.553 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.105 & 0.000 & 0.000 & 5.105 & 90.0 & ( 2.000, 0.000) & \(p(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

S1: overlayer in 4 -fold hollow sites

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.810\) A


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.260 & S1 & Cu2 & \(\mathrm{Cu}(1,0)\) & 124.4 \\
2.260 & Si & \(\mathrm{Cu2}\) & Cu 3 & 171.9 \\
2.556 & \(\mathrm{Cu2}\) & Cu & & \\
\hline
\end{tabular}

COMMON NAME : Cu(100)-p(2x2)-S
ILLUSTRATION: 28,30
CLASSIFICATION : 29.16.3
TECHNIQUE : HREELS
AUTHORS : Z.Q. WU, M.L. Xu, Y. Chen, S.Y. Tong, M.H. Mohamed and L.L. Kesmodel
REFERENCE : Phys. Rev., 836, 9329 (1987)

SURFACE TYPE
Substrate: Cu Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: S
Coverage : \(0.25 \mathrm{~S} / \mathrm{Cu}\)
STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites on unrelaxed substrate
Pattern : \(p(2 \times 2)\)
Matrix \(:(2.000,0.000)\) ( \(0.000,2.000\) )

SAMPLE PREPARATION ( 1 sample)
COMMENTS
Treatment : exposure to 30L H2S at RT and anneal to 473 K for \(10-15 \mathrm{mins}\)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: HREELS
Dataset : phonon loss spectra at \(5 \mathrm{k} / /\) points.

THEORY/DATA TREATMENT
Ms HREELS cross-section analysis of bulk and surface phonons: nn lattice dynamical model for 31-layer slab

STRUCTURES EXAMINED
Hollow site with adsorption heights of 1.1 to \(1.5 \AA\) in steps of \(0.05 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(A\) ) & \(B X\) ( \(A\) ) & By (A) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.550 & 0.000 & 0.000 & 2.550 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.100 & 0.000 & 0.000 & 5.100 & 90.0 & \((2.000,0.000)\) & \(p(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in 4 -fold hollow sites
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are butk repeat vectors.
No. of atoms: \(3 \quad\) Bulk \(z=1.807 \quad \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.223 & S 1 & \(\mathrm{Cu2}\) & \(\mathrm{Cu}(1,0)\) & 125.0 \\
2.223 & S 1 & \(\mathrm{Cu2}\) & Cu 3 & 170.7 \\
2.553 & Cu 2 & Cu 3 & & \\
\hline
\end{tabular}


2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.556 & 0.000 & 0.000 & 2.556 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.112 & 0.000 & 0.000 & 5.112 & 90.0 & \((0.000,1.000)\) & & \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: adsorbate in 4-fold hollow sites; Cu2-5: 1st Cu layer
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \({ }^{\circ}\) )
\end{tabular} \\
\hline 2.189 & S1 & Cu2 & & \\
2.997 & S1 & Cu6 & & \\
2.189 & Cu2 & S1 & \(C u 3(-1,-1)\) & 114.1
\end{tabular}

Cu(100)-(2x2)-s
29.16 .12

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.189 & Cu2 & \(S 1\) & \(\operatorname{Cu4}(0,-1)\) & 72.8 \\
2.189 & Cu2 & S1 & \(\operatorname{Cu6}\) & 57.1 \\
\hline
\end{tabular}


SAMPLE PREPARATION ( 1 sample)

Crystallinity: substrate AES clean, (1x1) sharp LEED
Anal. methods: AES
Contamination: AES cleanliness checked periodically
DATA COLLECTION
Technique: MEIS; MEIS, channeling incidence, 100 keV P
Dataset : 3 incident scatt. angles, detection angles scanned

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Blocking angles indicate interatomic directions;
Monto Carlo simulations of scattering process

STRUCTURES EXAMINED
\(\frac{\text { Blocking angles used }}{}\) for Cu positions, fit by R-factor (PR B38, 10197 (1988))

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline Cell & Ax \((\AA)\) & Ay \((A)\) & \(B x(A)\) & By \((\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.556 & 0.000 & 0.000 & 2.556 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.112 & 0.000 & 0.000 & 5.112 & 90.0 & \begin{tabular}{l} 
( \(0.000,1.000)\) \\
\((2.000,0.000)\) \\
\((0.000,2.000)\)
\end{tabular} & \((2 \times 2)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

\section*{3D COORDINATES}

S1: adsorbate in 4-fold hollow site; cu2-5: laterally relaxed 1st substrate layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|c|c|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.251 & S 1 & Cu2(0,-1) & Cu 3 & 54.7 \\
\hline
\end{tabular}

COMMON NAME : Cu(100)-(2×2)-S
CLASSIFICATION : 29.16.14
TECHNIQUE : LEED
AUTHORS : H.C. Zeng, R.A. McFarlane and K.A.R. Mitchell
REFERENCE : Can. J. Phys., 68, 353 (1990)

SURFACE TYPE
Substrate : Cu
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : H2S exposure at 1E-7 Torr
Crystallinity:
Anal. methods:
Contamination: sharpest LEED at 20L H2S
DATA COLLECTION
Technique: LEED; Video LEED
Dataset : 5 beams (2 int. +3 fract. order) at normal incidence, 7 beams (3+4) at \(8^{\circ}\) off-normal incidence

\section*{STRUCTURE TYPE}

4 -fold hollow site for \(S\), spacing to 1st Cu layer 1.28A;
lateral expansion of site (shift of Cu atoms 0.04A away);
buckling in 2nd layer (atom below \(S\) pushed down)
by up to 0.03A

\section*{COMMENTS}

Previous publication / normal incidence data only:
H.C. Zeng, R.A. McFarlane and K.A.R. Mitchell

Phys. Rev. B39, 8000 (1989)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (combined space, matrix inv, layer doubling): new phase shifts tried

STRUCTURES EXAMINED
Site contraction by \(0.05 \AA\) : can be ruled out; off-normal angle fitted \(6-10^{\circ}\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.556 & 0.000 & 0.000 & 2.556 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 5.112 & 0.000 & 0.000 & 5.112 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 \times 2)\) \\
si: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: adsorbate in 4-fold hollow sites; Cu2-5: 1st layer Cu, Cu6-9: 2nd layer Cu
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(10 \quad\) Bulk \(2=1.807 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel . \\
to
\end{tabular} & DX \(\pm\) & & Dy & & Dz \(\pm\) & \(\pm \epsilon Z\) & & \multicolumn{2}{|l|}{\[
D z / B z(\%) \pm \in Z / B z
\]} \\
\hline epir & & -2 & & & & & f & & f & & & A & & \\
\hline subr & & -1 & & & & 1.278 & \(\AA\) & 1.278 & \(\AA\) & 1.807 & & A & & \\
\hline ovrl & S & 1 & s1 & . 25 & 0 & 0.000 & \(\AA\) & 0.000 & \(\AA\) & \(0.000 \pm\) & \(\pm .030\) & A & \(0.0 \pm\) & 1.7 \\
\hline intf & Cu & 2 & s1 & . 25 & 1 & 1.306 & A & 1.306 & \(\AA\) & 1.280 & & A & 70.7 & \\
\hline intf & Cu & 3 & s1 & . 25 & 1 & 3.806 & \(\AA\) & 1.306 & \(\AA\) & 1.280 & & A & 70.7 & \\
\hline intf & Cu & 4 & s1 & . 25 & 1 & 1.306 & \(\AA\) & 3.806 & \(\AA\) & 1.280 & & A & 70.7 & \\
\hline intf & Cu & 5 & s1 & . 25 & 1 & 3.806 & \(\AA\) & 3.806 & A & 1.280 & & A & 70.7 & \\
\hline intf & Cu & 6 & s1 & . 25 & 1 & 2.556 & A & 2.556 & A & 3.090 & & \(\AA\) & 170.7 & \\
\hline intf & Cu & 7 & s1 & . 25 & 1 & 0.000 & A & 2.556 & \(\AA\) & 3.110 & & \(\AA\) & 171.8 & \\
\hline intf & Cu & 8 & s1 & . 25 & 1 & 2.556 & \(\AA\) & 0.000 & A & 3.110 & & A & 171.8 & \\
\hline intf & Cu & 9 & s1 & . 25 & 1 & 0.000 & \(\AA\) & 0.000 & \(\AA\) & 3.120 & & \(\AA\) & 172.4 & \\
\hline subl & Cu & 10 & b & 1.00 & 1 & 1.278 & A & 1.278 & \(\AA\) & 4.930 & & \(\AA\) & 272.4 & \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.248 & S1 & Cu2 & Cu 3 & 125.5
\end{tabular}

Cu(100)-(2x2)-s
29.16.14

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.248 & Cu & & & \\
2.248 & Cu & S 1 & \(\mathrm{Cu3}(-1,0)\) & 71.1 \\
\hline
\end{tabular}

COMMON NAME : Cu(100)-(2x2)-Te

AUTHORS : A. Salwen and J. Rundgren
REFERENCE : Surf. Sci., 53, 523 (1975)

\section*{SURFACE TYPE}

Substrate: Cu
Crystal face: 100
Temperature : RT* Bulk lattice: fcc 20 bulk symm: p4m 2D surf symm: p4m
```

Adsorbate: Te
Coverage : 0.25 (Te/Cu)
Pattern : (2x2)
Matrix : (2.000, 0.000)
(0.000, 2.000)

```

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

THEORY/DATA TREATMENT
Dynamical LEED: 5 different potentials for Te; TFA-HFP pot for Cu (Clementi w.f.); 6 phase shifts; \(\Theta D=343 \mathrm{~K}\)

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.560 & 0.000 & 0.000 & 2.560 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.120 & 0.000 & 0.000 & 5.120 & 90.0 & \((2.000,0.000)\) & \((2 \times 2)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Te1: overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = \(1.810 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.483 & Te1 & Cu 2 & Cu2 \((1,0)\) & 121.0 \\
\hline 2.560 & Cu2 & Cu2 \((1,0)\) & & \\
\hline 2.560 & Cu2 & Cu3 & & \\
\hline
\end{tabular}
```

COMMON NAME : Cu(100)-(2x2)-Te
CLASSIFICATION : 29.52.2a
TECHNIQUE : SEXAFS
AUTHORS : F. Comin, P.H. Citrin, P. Eisenberger and J.E. Rowe
REFERENCE : Phys. Rev., B26, 7060 (1982)

```

SURFACE TYPE
Substrate: Cu
Crystal face: 100
Temperature : 623 K
Bulk lattice: fcc 2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: Te
Coverage : 0.25 (Te/Cu)
Pattern : (2x2)
Matrix : ( \(2.000,0.000)\)
( 0.000, 2.000)

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Fourier transform and polarization dependence

Technique: SEXAFS: total yield SEXAFS
Dataset : total yield from Te L(III) edge at different polarization directions

SAMPLE PREPARATION ( 1 sample)
Treatment : evaporation of Te onto previously cleaned surface
Crystallinity: checked by LEED
Anal. methods:
Contamination: checked by LEED and AES
DATA COLLECTION

STRUCTURES EXAMINED
Top, bridge, hollow and substitutional sites; theoretical surface atom coordination numbers tested against experimentally determined values

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.560 & 0.000 & 0.000 & 2.560 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.120 & 0.000 & 0.000 & 5.120 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & (2x2) \\
\hline
\end{tabular}

3D COORDINATES
Te1: overlayer in 4-fold hollow sites; coordinates are derived from bond distance
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.810 \AA\)


BOND DISTANCES AND ANGLES

No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.624 & Te1 & Cu 2 & \(\mathrm{Cu}(1,0)\) & 119.2 \\
2.560 & \(\mathrm{Cu2}\) & \(\mathrm{Cu2}(1,0)\) & & \\
\hline
\end{tabular}
```

COMMON NAME : \alpha-Cu(111)-16%Al-(\sqrt{}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ}
CLASSIFICATION : 29.13.2
TECHNIQUE : LEED
AUTHORS : R.J. Baird, D.F. Ogletree, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 165, 345 (1986)

```

\section*{SURFACE TYPE}

Substrate: Cu(111)-16\%AL Adsorbate:
Crystal face: 111 Coverage :
Temperature : \(150 \mathrm{~K} \quad\) Pattern : \((\sqrt{3} \times \sqrt{3})\) R \(30^{\circ}\)
Bulk lattice: fcc alloy
2D bulk symm: p3m1
2D surf symm: p31m

STRUCTURE TYPE
( \(\sqrt{3} \times \sqrt{3}\) )R30 \({ }^{\circ}\) ordered top layer in otherwise random
Cu(1-x)Alx fcc alloy: top layer has Cu2Al1 composition in
undistorted fcc lattice (Al substitution for Cu);
second and deeper layers may have random distributions of
Al and Cu atoms
```

SAMPLE PREPARATION (1 sample)
Treatment : Ar+ sputtering, heating to 670 K, final
quenching to 150K

```
Crystallinity:

Anal. methods:
Contamination: AES: clean

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 7 indep. beams at normal incidence, 15 at \(\Theta=15^{\circ}\); E range 20-200 eV

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (matrix inversion for mixed layers, RFS): \(\Theta D(A 1)=514 \mathrm{~K}, \Theta D(C u)=335 \mathrm{~K}\)

STRUCTURES EXAMINED
1) \(1 / 3 \mathrm{ML}\) Al in fcc and hep hollows on Cu(111), Cu-Al spacing \(1.707-2.337 \AA\); 2) \(1 / 3 \mathrm{ML}\) Al located substitutionally within top (ayer of Cu(111), with buckling and relaxation; 3) as 2) with hep termination of Cu; 4) as 2) but with
Al substituted in every other layer
QUALITY OF EXPERIMENT-THEORY FIT
\(R \mathrm{VH}=0.218, \mathrm{RZ} J=0.300, \mathrm{RPE}=0.514\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.540 & 0.000 & 1.270 & 2.200 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000 ) & & \\
\hline Surface 1 & 3.811 & \(-2.200\) & 3.811 & 2.200 & 60.0 & \((2.000,-1.000)\)
\((1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

Al1-Cu2-Cu3: planar mixed top layer of fcc(111) lattice
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z = 2.090 A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rei. to & \(0 \mathrm{X} \pm \mathrm{EX}\) & Dy \(\pm \in y\) & \(D z \pm \epsilon z\) & \(D z / B Z(\%) \pm \in Z / B Z\) \\
\hline epir & & -2 & & & & f & f & A & \\
\hline subr & & -1 & & & & 1.270 A & -0.733 \& & 2.090 A & \\
\hline ovrl & Al & 1 & s1 & . 33 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & Cu & 2 & s1 & . 33 & 1 & 0.333 f & 0.333 f & \(0.000 \pm .050 \AA\) & \(0.0 \pm 2.4\) \\
\hline ovrl & Cu & 3 & s 1 & . 33 & 2 & 0.333 f & 0.333 f & 0.000 A & 0.0 \\
\hline intf & Cu & 4 & b & 1.00 & 3 & -1.333 f & -0.333 f & \(2.090 \pm .050 \AA\) & \(100.0 \pm 2.4\) \\
\hline subt & Cu & 5 & b & 1.00 & 4 & 0.667 f & -0.333 f & \(2.090 \pm .050\) A & \(100.0 \pm 2.4\) \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{l|l|l|l|l}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.540 & Al1 & Cu2 & & \\
2.553 & Al1 & Cu4 & & \\
2.540 & Cu2 & Cu3 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Cu0.85Pd0.15(110)-(2×1) \\
CLASSIFICATION & \(: 29.46 .4\) \\
IECHNIQUE & : LEED \\
AUTHORS & : M. Lindroos, C.J. Barnes, M. Bowker and D.A. King \\
REFERENCE & : Springer Series in Surface Sciences, 24, 287 (1991)
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment: argon-ion sputtering and annealing to 700 K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; video camera
Dataset :

CLASSIFICATION : 29.46.4
\begin{tabular}{|c|c|c|c|c|}
\hline SURFACE TYPE & & & & STRUCTURE TYPE \\
\hline Substrate: & Cu0.85Pd0. 15 & Adsorbate: & & \\
\hline Crystal face: & & Coverage & & Cu-rich top layer ( \(70 \% \mathrm{Cu}\) ); chemically ordered ( \(2 \times 1\) ) 2nd \\
\hline Temperature : & & Pattern & (2x1) and disorde & -layer (50\% Cu), buckled by 0.07A (Cu outward); pure Cu \\
\hline Bulk lattice: & fcc & Matrix & ( 0.000, 0.000) & 3rd layer; all deeper layers disordered with bulk compos. \\
\hline 2 D bulk symm: & none & & ( 0.000, 0.000) & 85\% \(\mathrm{cu} / 15 \% \mathrm{Pd}\); 1st, 2nd spacings contracted by \(4.7 \%, 0.8 \%\) \\
\hline
\end{tabular}

SUbACE TYPE
Crystal face: 110
emperature : RT*

D bulk symm: none
2D surf symm: none
COMMENTS
Here the disordered top and bulk layers are simulated as a (2×3) ordering

\section*{STRUCTURES EXAMINED}

Variation of number and position of ordered CuPd layers, first two interlayer spacings, buckling within composite CuPd layers and composition within the substitutionally disordered surface layers

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.3\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & \multicolumn{1}{c|}{ Pattern } & Cell type \\
\hline Bulk & 2.602 & 0.000 & 0.000 & 3.680 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.204 & 0.000 & 0.000 & 11.040 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & disordered \\
\hline
\end{tabular}

3D COORDINATES

Pd1-Pd2, Cu3-Cu6: disordered planar top layer (70\% Cu); Cu7-Pd8: (2x1) ordered buckled second layer (50\% Cu); Cu9: third layer ( \(100 \% \mathrm{Cu}\) ); Pd10-Cu15: period. repeating disordered planar bulk layer ( \(85 \% \mathrm{Cu}\) )

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Cu0.85PdO.15(110)-(2×1)
29.46 .4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.602 & Pd1 & Cu4 & \(\operatorname{Pd1}(1,0)\) & 180.0 \\
\hline 2.602 & Pd1 & Cu4 & Cu7 & 59.6 \\
\hline 2.572 & Pd1 & Cu7 & Cu3 & 122.4 \\
\hline 2.573 & Pd1 & Cu9 \((0,-1)\) & \(\operatorname{Pd} 2(0,-1)\) & 122.4 \\
\hline 2.602 & Pd2 & Cu6 \((1,0)\) & Pd2 \((1,0)\) & 180.0 \\
\hline 2.572 & Pd2 & Cu8 & Cu 3 & 91.3 \\
\hline
\end{tabular}
AUTHORS : K.O. Legg, F. Jona, D.W. Jepsen and P.M. Marcus

\section*{SURFACE TYPE}

Substrate : Fe
Adsorbate:
Coverage :
Pattern : ( \(1 \times 1\) )
Matrix \(:\left(\begin{array}{l}1.000,0.000) \\ 0.000, \\ 1.000)\end{array}\right.\)
Temperature : RT*
Bulk lattice: bce
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : polish, long Ar+ bombardment at 625-675 K , anneal at 725-775K
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES: O, C, S dominant <2-3\% ML
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 16 beams at 3 angles of incidence: \(\Theta=0,10,20^{\circ}\) at \(\pi=0^{\circ}, E\) range \(50-150 \mathrm{eV}\)

STRUCTURE TYPE
Bulk termination with contraction of top layer spacing

COMMENTS
Non-structural parameters: Voi varied from -2 to -4 ev for energy range \(50-150 \mathrm{eV}\); Vor=-11.5 eV;
not ZJ R-factor, but: weighted R-factor from sum on beams, taking into account both peak positions and intensities

\section*{THEORY/DATA TREATMENT}

LEED KKR: 8 phase shifts and 38 beams; self consistent Hartree-Fock-Slater Fe potential; rms \(=0.115 \AA\)

\section*{STRUCTURES EXAMINED}

Varied first interlayer spacing from 1.35 to \(1.48 \AA \AA\)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}
\(\mathrm{R}=0.156\) (see comments)
2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
b: bulk lattice \\
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z \(=1.433 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.469 & Fe 1 & Fe 2 & \(\mathrm{Fe}(1,0)\) & 71.0 \\
2.469 & Fe 1 & Fe 2 & \(\mathrm{Fe} 2(1,0)\) & 125.5 \\
2.469 & Fe 1 & Fe 2 & Fe 3 & 70.1 \\
2.482 & Fe 2 & Fe 3 & Fe 1 & 54.7 \\
2.482 & Fe 2 & Fe 3 & \(\mathrm{Fe} 2(-1,0)\) & 70.5 \\
2.482 & Fe 2 & Fe 3 & \(\mathrm{Fe} 3(1,0)\) & 54.7 \\
\hline
\end{tabular}
AUTHORS : Z.Q. Wang, Y.S. Li, F. Jona and P.M. Marcus

REFERENCE : Solid State Commun., 61, 623 (1987)

\section*{SURFACE TYPE}

Substrate:
Crystal face: 100
Temperature : RT*
Bulk lattice: bce
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Bulk termination with multilayer relaxation perpendicular to surface

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 6 phase shifts, 49 beams

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & Ay ( \(A\) ) & Bx ( \(\AA\) ) & By ( \(\mathrm{A}^{\text {) }}\) & \(a\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000, \\
& 1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1×1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C} & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.866 & Fe 1 & \(\mathrm{Fe} 1(1,0)\) & & \\
2.442 & Fe 1 & Fe 2 \\
2.523 & Fe & Fe 3 & Fe 3 & 70.5 \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Fe}(100)-(1 \times 1)\)
CLASSIFICATION : 26.18a
technique : meis
AUTHORS : R.L. Headrick, P. Konarski, S.M. Yalisove and W.R. Graham
REFERENCE : Phys. Rev., B39, 5713 (1989)

SURFACE TYPE
Substrate : Fe Crystal face: 100 Temperature : RT* Bulk lattice: bcc 2D bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar sputtering, repolish, recleaning
with sputter-anneals
Crystallinity:
Anal. methods:
Contamination: AES: trace of \(O\)

DATA COLLECTION
Technique: MEIS
Dataset : blocking curves in two geometries

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000\) )
( 0.000, 1.000)

\section*{STRUCTURE TYPE}

Bulk termination with multilayer relaxation perpendicular to surface

\section*{COMMENTS}

THEORY/DATA TREATMENT
Monte Carlo simulations, incl. fit of \(\theta 0\) (exponentially increasing from 255 K at surface to 420 K in bulk)

\section*{STRUCTURES EXAMINED}

Variation of top two interlayer spacings
QUALITY OF EXPERIMENT - THEORY FIT \(R=0.30\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.860 & 0.000 & 0.000 & 2.860 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk (attice \\
Surface 1 & 2.860 & 0.000 & 0.000 & 2.860 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.430 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(D \mathrm{X} \pm \pm \mathrm{x}\) & Dy \(\pm \in y\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.430 A & 1.430 A & 1.430 A & \\
\hline intf & Fe & 1 & \(b\) & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Fe & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(1.380 \pm .040\) A & \(96.5 \pm 2.8\) \\
\hline intf & Fe & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(1.480 \pm .040\) A & \(103.5 \pm 2.8\) \\
\hline subl & Fe & 4 & b & 1.00 & 3 & 0.500 f & 0.500 f & 1.430 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.860 & Fe1 & Fe1 (1,0) & Fe2 & 54.3 \\
\hline 2.448 & Fe1 & Fe 2 & Fe3 & 70.5 \\
\hline 2.506 & Fe 2 & Fe3 & Fe4 & 71.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : Fe(100)-( \(1 \times 1\) ) epitaxial on Cu(100) \\
CLASSIFICATION \(: ~ 29.26 .7 ~\) \\
TECHNIQUE & : LEED \\
AUTHORS & S.H. Lu, J. Quinn, D. Tian, F. Jona and P.M. Marcus \\
REFERENCE & : Surf. Sci., \(209,364(1989)\)
\end{tabular}

CLASSIFICATION : 29.26.7

AUTHORS : S.H. Lu, J. Quinn, D. Tian, F. Jona and P.M. Marcus
REFERENCE : Surf. Sci., 209, 364 (1989)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Fe & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature : RT & Pattern : \(1 \times 1)\) \\
Bulk lattice: bct & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p4m &
\end{tabular}
```

Adsorbate:
Coverage:
(0.000, 1.000)

```

STRUCTURE TYPE
Epitaxial (1x1) multilayer (6 to 18 layers) grown on Cu(100) and Cu alloys, with lateral lattice constant of Cu(100); forms body-centered tetragonal lattice, related to fcc by \(2 \%\) uniaxial contraction in growth direction

SAMPLE PREPARATION ( 3 sample)
Treatment: cycles of Art bomb. and 600 C anneals; Fe vapor-deposited
Crystallinity: LEED: some disorder and defects
Anal. methods: AES
Contamination: AES: no contaminants

\section*{DATA COLLECTION}

Technique: LEED; TV camera-microcomputer system Dataset : IV spectra for 4 non-equiv. beams \((10,11,20,21)\) at normal incidence, 5 \((00,10,01,11,0-2)\) at \(\Theta=10^{\circ}, \phi=0^{\circ}\)

\section*{COMMENTS}

1-, 2- and 3-layer films gave poor experiment-theory fits, suggesting initial non-layer-by-layer growth

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 57 beams, 8 phase shifts;
Voi=-4 eV; Cu or alloy substrate below 12 Fe layers

\section*{STRUCTURES EXAMINED}

Fcc with variable 'bulk' spacing of 1.74-1.81\& perp. to surface (giving bct lattice), and variable top 2 interlayer spacings of 1.81-1.89 and 1.73-1.89 \(\AA\)

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.05,0.13\) for \(\Theta=0^{\circ}, \theta=10^{\circ}\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(\AA\) ) & BX (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.553 & 0.000 & 0.000 & 2.553 & 90.0 & ( 1.000, 0.000) & \multirow[t]{4}{*}{\[
\begin{aligned}
& (1 \times 1) \\
& (1 \times 1)
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
b: bulk lattice \\
si: commens. superlattice
\end{tabular}} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.553 & 0.000 & 0.000 & 2.553 & 90.0 & ( 1.000, 0.000\()\) & & \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline
\end{tabular}

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z \(=1.770 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & Dx \(\pm \boldsymbol{\pm} \mathbf{x}\) & Dy \(\pm\) ¢ \(\quad\) y & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 1.277 A & 1.277 \& & 1.770 A & \\
\hline intf & Fe & 1 & \(b\) & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Fe & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(1.840 \pm .030 \AA\) & \(104.0 \pm 1.7\) \\
\hline intf & Fe & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(1.760 \pm .030\) A & \(99.4 \pm 1.7\) \\
\hline subl & Fe & 4 & \(b\) & 1.00 & 3 & 0.500 f & 0.500 f & \(1.770 \pm .030 \AA\) & \(100.0 \pm 1.7\) \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.553 & Fe1 & Fel 10,0\()\) & Fe2 & 60.3 \\
\hline 2.578 & Fe1 & Fe 2 & Fe3 & 89.8 \\
\hline 2.521 & Fe2 & Fe3 & Fe4 & 88.7 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Fe(100)-(1x1) epitaxial on Cu(100) \\
CLASSIFICATION & : 29.26 .8 \\
TECHNIQUE & : LEED \\
AUTHORS & Y. Darici, J. Marcano, H. Min and P. Montano \\
REFERENCE & : Surf. Sci,, 217, 521 (1989)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Fe & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: 190c & Pattern : (1x1) \\
Bulk lattice: bct & Matrix : \(1.000,0.000)\) \\
20 bulk symm: p4m & \\
\hline \(0.000,1.000)\)
\end{tabular}

2D bulk symm: p4m
2D surf symm: p4m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : cycles of \(A r+\) bomb. and 550C anneals; Fe vapor-deposited
Crystallinity: clear and sharp LEED spots
Anal. methods: AES
Contamination: AES: no contaminants

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV spectra for 3 non-equiv. beams (10,11,20) at normal incidence, 1 (00) at off-normal incidence

\section*{STRUCTURE TYPE}

Epitaxial ( \(1 \times 1\) ) multilayer (5 layers) grown on Cu(100), with lateral lattice constant
of Cu(100); forms body-centered tetragonal lattice, related to fcc by \(2 \%\) uniaxial contraction in growth direction

\section*{COMMENTS}

10-layer film at RT gave same result, except top spacing reduced from 1.83 to 1.81A;
1- to 4-layer films gave poor experiment-theory fits, suggesting initial non-layer-by-layer growth and/or interdiffusion

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 57 beams, 8 phase shifts; Vor, Voi fit; \(\Theta 0=380 \mathrm{~K}(\) surf \(), 550 \mathrm{~K}\) (bulk) fit

STRUCTURES EXAMINED
Fcc with variable 'bulk' spacing perp. to surface (giving bct lattice), and variable top 2 interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RZJ<0.1
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.553 & 0.000 & 0.000 & 2.553 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.553 & 0.000 & 0.000 & 2.553 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Aton C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.553 & Fe1 & Fe1(1,0) & Fe 2 & 60.2 \\
2.571 & Fe 1 & Fe 2 & \(\mathrm{Fe3}\) & 90.0 \\
2.535 & Fe 2 & Fe 3 & Fe 4 & 89.2 \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Fe & Adsorbate: & \\
\hline Crystal face: & 100 & Coverage : & \\
\hline Temperature : & RT & Pattern & (1x1) \\
\hline Bulk lattice: & bct & Matrix & ( 1.000 \\
\hline 2D bulk symm: & p4m & & ( 0.000 \\
\hline
\end{tabular}

Adsorbate:
Pattern : (1x1)
( \(0.000,1.000\) )

STRUCTURE TYPE
Epitaxial ( \(1 \times 1\) ) multilayer ( 6 to 25 layers) grown on \(\mathrm{Ni}(100)\), with lateral lattice constant of \(\mathrm{Ni}(100)\); forms body-centered tetragonal lattice, related to fec by \(10 \%\) uniaxial expansion in growth direction

\section*{COMMENTS}

LEED pattern shows weak extra spots, perhaps due to small bec Fe(110) domains

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 49 beams, 6 phase shifts; E-dep. Vor and Voi

STRUCTURES EXAMINED
Fcc with variable 'bulk' spacing of 1.66-1.96A perp. to surface (giving bct lattice), varying top 2 interlayer spacings by -0.05 to \(+0.10 \AA\) and by -0.12 to \(+0.12 \AA\) from bulk \(N i\) spacing of \(1.76 \AA\)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RZJ=0.09
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\)
\end{tabular}

30 COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk \(2=1.940\) \&

bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.489 & Fe 1 & \(\mathrm{Fe} 1(1,0)\) & Fe2 & 62.5 \\
\hline 2.694 & Fel & Fe2 & Fe3 & 97.2 \\
\hline 2.631 & Fe2 & Fe3 & Fe4 & 95.8 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) Fe(110)-( \(1 \times 1)\) \\
CLASSIFICATION & \(: 26.8\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & : H.D. Shih, F. Jona, U. Bardi and P.M. Marcus \\
REFERENCE & :
\end{tabular}

CLASSIFICATION: 26.8
AUTHORS : H.D. Shih, F. Jona, U. Bardi and P.M. Marcus
REFERENCE : J. Phys., C13, 3801 (1980)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate \(: ~ F e\) & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : 300 K & Pattern : \(1 \times 1)\) \\
Bulk lattice: bcc & Matrix \(:(1.000,0.000)\) \\
20 bulk symm: cmm & \\
20 ( \(0.000,1.000)\)
\end{tabular}

20 surf symm: cmm
SAMPLE PREPARATION ( 1 sample)
Treatment polished, Ar+ sputtered and 1123 K annealed
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : \(1-v\) data: 2 sets of 7 and 9 beams at \(\theta=0^{\circ}\), 6 at \((\Theta, \pi)=(9,35.26)^{\circ}, 5\) at \((26,-54.74)^{\circ}\). 7 at \((26,-54.74)^{\circ}\)

\section*{STRUCTURE TYPE}

Bulk termination with possible slight expansion of topmost interlayer spacing
Pattern : (1x1)
Matrix \(:(1.000,0.000)\)
( \(0.000,1.000\) )

\section*{COMMENTS}

Mean vibrational amplitude chosen as \(\sqrt{ }\left\langle u^{*} u\right\rangle=0.115 \AA\); inner potential assumed independent of energy, with optimization yielding Vor \(=-11.5 \pm 0.4 \mathrm{eV}\)

THEORY/DATA TREATMENT
Dynamical LEED: 8 phase shifts and 31 beams

STRUCTURES EXAMINED
Initially truncated bulk, and structure with top-layer atoms rolled into quasi 3-fold positions (which gave visibly worse agreement, therefore eliminated); then 1 st interlayer spacing varied from 1.85 to \(2.15 \AA\) in steps of \(0.05 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
RZJ \(=0.07\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX (A) & AY ( \(A\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.486 & 0.000 & . 829 & 2.343 & 70.5 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.486 & 0.000 & . 829 & 2.343 & 70.5 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z \(=2.029 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.486 & Fe1 & Fel \((1,0)\) & Fel \((1,-1)\) & 70.5 \\
\hline 2.486 & Fe1 & Fe1(1,0) & Fe 2 & 70.6 \\
\hline 2.494 & Fe1 & \(\mathrm{Fe} 2(0,-1)\) & Fe3 & 109.6 \\
\hline 2.486 & Fe2 & \(\mathrm{Fe} 2(0,-1)\) & \(\mathrm{Fe} 3(1,0)\) & 54.7 \\
\hline
\end{tabular}
AUTHORS : J. Sokolov, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B33, 1397 (1986)

\section*{SURFACE TYPE}

Substrate: F
Crystal face: 111
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ ion bombardment followed by annealing at 850C
Crystallinity:
Anal. methods:
Contamination: monitored by AES
DATA COLLECTION
Technique: LEED
Dataset : 14 non degenerate LEED spectra at two angles of incidence, \(50<E<180 \mathrm{eV}\)
```

Adsorbate:
Adsorbate:
Adsorbate:
Adsorbate:
Adsorbate:

```

\section*{STRUCTURE TYPE}

Bulk termination with multilayer relaxation perpendicular to surface

\section*{COMMENTS \\ \\ COMENTS} \\ \\ COMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer KKR): 8 phase shifts from Hartree-
fock-Slater self-consistent potential; Voi=4 eV; rms \(0.115 \AA\)
to surface

\section*{STRUCTURES EXAMINED}

Varied first four interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.131\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(A^{\prime}\) ) & \(B \times\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.054 & 0.000 & 2.027 & 3.511 & 60.0 & ( 1.000, 0.000) & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
(1 \times 1)
\] \\
(1x1)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
b: bulk lattice \\
s1: commens. \\
superlattice
\end{tabular}} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.054 & 0.000 & 2.027 & 3.511 & 60.0 & ( 1.000, 0.000) & & \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(6 \quad\) Bulk z = .827 \(\AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 11
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.440 & Fel & \(\mathrm{Fe} 2(-1,0)\) & \(\mathrm{Fe} 1(0,1)\) & 112.3 \\
\hline 2.458 & Fe2 & Fe3 & Fe2 \((-1,0)\) & 111.1 \\
\hline 2.458 & Fe3 & Fe2 & Fe4(1,0) & 55.6 \\
\hline 2.440 & Fe1 & \(\mathrm{Fe} 2(-1,0)\) & Fe3 & 68.3 \\
\hline 2.440 & Fe1 & \(\mathrm{Fe} 2(-1,0)\) & Fe4 & 51.0 \\
\hline 2.300 & Fe1 & Fe4 & Fe2 (-1,0) & 55.5 \\
\hline
\end{tabular}
\(\mathrm{Fe}(111)-(1 \times 1)\)
26.17

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.300 & Fe1 & Fe4 & Fe3 & 69.8 \\
\hline 2.440 & Fe 2 & Fe1 \((1,0)\) & \(\mathrm{Fe} 2(0,-1)\) & 112.3 \\
\hline 2.440 & Fe 2 & Fel \((1,0)\) & Fe 3 & 56.2 \\
\hline 2.440 & Fe 2 & Fe1(1,0) & Fe4(1,0) & 73.6 \\
\hline 2.458 & Fe2 & Fe3 & Fe1 & 130.6 \\
\hline
\end{tabular}
AUTHORS : H.D. Shih, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Surf. Sci., 104, 39 (1981)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Fe & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature: 300 K & Pattern : (1x1) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
\hline
\end{tabular}

2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : polished, cleaned by Ar+ sputtering and annealed to 1125 K
Crystallinity:
Anal. methods:
Contamination: AES: \(<2-3 \%\) ML of \(0, C, S\) present

\section*{DATA COLLECTION}

Technique: LEED
Dataset : 2 sets of LEED IV curves: 5 beams at normal incidence and 9 beams at \(\theta=9^{\circ}\), \(\pi=0^{\circ}\); \(E<=180 \mathrm{eV}\)

STRUCTURE TYPE
Bulk termination with top spacing contraction

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (program THIN): Hartree-Fock-Slater potential for \(\mathrm{Fe} ; 8\) phase shifts; 55 beams; Vor=-11.1 \(\pm 0.9 \mathrm{eV}\), Voi=-4eV

STRUCTURES EXAMINED
Varied spacing between 1st 2 layers from 0.577 to 0.827 in steps of \(0.05 \AA\). (preliminary tests revealed a contraction of the 1st layer spacing)

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.15\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern \\
\hline Bulk & 4.054 & 0.000 & -2.027 & 3.511 & 120.0 & \((1.000,0.000)\) & (1x1) & Cell type \\
Surface 1 & 4.054 & 0.000 & -2.027 & 3.511 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & bulk lattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=.827 \quad \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.443 & Fe1 & Fe2 & Fe1 \((1,0)\) & 112.1 \\
\hline 2.443 & Fe1 & Fe 2 & Fe3 & 69.1 \\
\hline 2.443 & Fe 2 & Fe1 & \(\mathrm{Fe} 2(-1,0)\) & 112.1 \\
\hline 2.443 & Fe 2 & Fe1 & Fe3 & 56.1 \\
\hline 2.482 & Fe2 & Fe3 & Fel & 54.8 \\
\hline 2.482 & Fe2 & Fe3 & \(\mathrm{Fe} 2(0,1)\) & 109.5 \\
\hline 2.482 & Fe3 & Fe2 & Fe1 & 69.1 \\
\hline
\end{tabular}

Fe(111)-(1x1)
26.9

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & Atom B & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.482 & Fe 3 & Fe 2 & \(\mathrm{Fe}(1,0)\) & 109.5 \\
\hline
\end{tabular}

SURFACE TYPE
Substrate: F
Crystal face: 210
Temperature : 298 K
Bulk lattice: bcc
2D bulk symm: pm
2D surf symm: pm

Adsorbate:
Coverage :
Pattern : (1×1)
Matrix \(:(1.000,0.000)\)
( \(0.000,1.000\) )

SIRUCTURE TYPE
Bulk termination with multilayer relaxation perpendicular and parallel to surface

SAMPLE PREPARATION ( 1 sample)
Treatment : polish, Ar+ sputt., 850C anneal, cycles of sputt./anneal
Crystallinity:
Anal. methods:
Contamination: AES: S,C,O are main impurities
DATA COLLECTION
Technique: LEED; spot photometer
Dataset : \(35 \mathrm{I}-\mathrm{V}\) curves (31 non-degenerate) at normal incidence and at \(13.2^{\circ}\) off normal

COMMENTS

Fe(210)-(1x1)
26.16

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom 8 & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.555 & Fe1 & Fe2 & Fe3 & 111.1 \\
\hline 2.555 & Fel & Fe 2 & Fe4(0,-1) & 49.6 \\
\hline 2.604 & Fe1 & Fe3 \((0,-1)\) & \(\mathrm{Fe} 2(0,-1)\) & 128.9 \\
\hline 2.604 & Fel & Fe3 \((0,-1)\) & \(\mathrm{Fe} 4(0,-1)\) & 53.4 \\
\hline 2.268 & Fe1 & Fe4(0,-1) & Fe4(1,-1) & 129.2 \\
\hline 2.518 & Fe 2 & Fe3 & \(\mathrm{Fe} 1(0,1)\) & 128.9 \\
\hline 2.518 & Fe2 & Fe3 & Fe2(-1,0) & 69.5 \\
\hline
\end{tabular}
AUTHORS : J. Sokolov, H.D. Shih, U. Bardi, F. Jona and P.M. Marcus
REFERENCE : J. Phys., C17, 371 (1984)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Fe & Adsorbate: \\
Crystal face: 211 & Coverage : \\
Temperature: 300 K & Pattern: (1x1) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pm & \\
\hline
\end{tabular}

STRUCTURE TYPE
Bulk termination with multilayer relaxation perpendicular and parallel to surface

\section*{COMMENTS}

LEED calculations based on scheme particularly suited to small interlayer spacings;
Vor was assumed energy dependent and was optimized along with the structural parameters: Vor=-11.3 \(\pm 0.5 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (see comments): 8 phase shifts; up to 55 beams; rms vibr ampl \(0.115 \AA\)

STRUCTURES EXAMINED
Varied first 4 interlayer spacings and first 3 registries, maintaining mirror plane
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.111
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern \\
\hline Bulk & 2.480 & 0.000 & 0.000 & 4.050 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 2.480 & 0.000 & 0.000 & 4.050 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
\hline
\end{tabular}

3D COORDINATES

\section*{Fe1-Fe3 are relaxed}

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & \(D \mathrm{X} \pm \pm \mathrm{X}\) & & Dy \(\pm \in \boldsymbol{E}\) & \(D Z \pm E Z\) & \(D z / B Z(\%) \pm \epsilon Z / B z\) \\
\hline epir & & -2 & & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & -0.827 & \(\AA\) & 2.025 A & 1.172 A & \\
\hline intf & Fe & 1 & b & 1.00 & 0 & 0.000 & \(f\) & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Fe & 2 & b & 1.00 & 1 & \(0.569 \pm .012\) & \(f\) & 0.500 f & \(1.050 \pm .030 \AA\) & \(89.6 \pm 2.6\) \\
\hline intf & Fe & 3 & b & 1.00 & 2 & \(-0.219 \pm .012\) & \(f\) & -0.500 f & \(1.230 \pm .030 \AA\) & \(105.0 \pm 2.6\) \\
\hline intf & Fe & 4 & b & 1.00 & 3 & \(-0.350 \pm .012\) & \(f\) & 0.500 f & \(1.150 \pm .040 \AA\) & \(98.2 \pm 3.4\) \\
\hline subl & Fe & 5 & b & 1.00 & 4 & -0.333 & \(f\) & 0.500 f & 1.172 \& & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.480 & Fe1 & \(\mathrm{Fe} 1(1,0)\) & Fe 2 & 64.9 \\
\hline 2.480 & Fe1 & \(\mathrm{Fe} 1(1,0)\) & Fe3 & 54.7 \\
\hline 2.682 & Fe1 & Fe 2 & \(\mathrm{Fe} 1(1,0)\) & 56.9 \\
\hline 2.682 & Fel & Fe 2 & \(\mathrm{Fe} 2(1,0)\) & 121.7 \\
\hline 2.682 & Fe1 & Fe 2 & Fe3 & 56.7 \\
\hline 2.440 & Fe1 & Fe3 & \(\mathrm{Fe} 3(1,0)\) & 110.8 \\
\hline
\end{tabular}

Fe(211)-(1x1)
26.14

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.431 & Fe 2 & Fe 3 & \(\mathrm{Fe} 3(1,0)\) & 77.1 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Fe & Adsorbate: \\
Crystal face: 310 & Coverage : \\
Temperature: 300 K & Pattern : \((1 \times 1)\) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: cm & \\
2D &
\end{tabular}

2D bulk symm: cm
2D surf symm: cm
SAMPLE PREPARATION ( 1 sample)
Treatment: polished, cycles of sputt./anneal
Crystallinity:
Anal. methods:
Contamination: AES: S,O,C primary contaminants

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra for 33 beams ( 21 non-degenerate): 14 at \(\Theta=0\); 10 at \(\Theta=7, \phi=-107.5^{\circ} ; 9\) at \(\Theta=14, \phi=-107.5^{\circ} ; 40 \mathrm{eV}<E\)

\section*{STRUCTURE TYPE}

Buik termination with multilayer relaxation perpendicular and parallel to surface

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 8 phase shifts; up to 65 beams; rms vibr ampl \(0.115 \AA\)

STRUCTURES EXAMINED
Varied first 4 interlayer spacings and first 3 registries, maintaining mirror plane
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.115\) (mean for 3 data sets)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX (A) & Ay ( \(\AA\) ) & \(B X(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.870} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.432} & \multirow[t]{2}{*}{4.529} & \multirow[t]{2}{*}{72.5} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.870} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.432} & \multirow[t]{2}{*}{4.529} & \multirow[t]{2}{*}{72.5} & ( 1.000, 0.000) & (1x1) & \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Fe1-Fe3 are relaxed
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5 Bulk z = 908 A


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.511 & Fe1 & Fe2 & Fe1 \((1,0)\) & 69.6 \\
\hline 2.511 & Fe1 & Fe 2 & \(\mathrm{Fe} 2(1,0)\) & 124.7 \\
\hline 2.511 & Fe1 & Fe2 & Fe3 & 172.7 \\
\hline 2.475 & Fe2 & Fe3 & \(\mathrm{Fe} 1(0,1)\) & 67.0 \\
\hline
\end{tabular}

Fe(310)-(1x1)
26.13

> Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.475 & \(\mathrm{Fe2}\) & \(\mathrm{Fe3}\) & \(\mathrm{Fe} 2(1,0)\) & \begin{tabular}{c}
71.0 \\
2.475
\end{tabular} \\
\hline
\end{tabular}

COMMON NAME : Fe(100)-c(2×2)-C+O disordered
CLASSIFICATION : 26.6.8.1
TECHNIQUE : LEED
AUTHORS : F. Jona, K.O. Legg, H.D. Shih, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev. Lett., 40, 1466 (1978)

\section*{SURFACE TYPE}

Substrate: Fe
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: none

Adsorbate: C;O
Coverage : \(0.250, C / F e\)
Pattern : (2×2)
Matrix \(:(2.000,0.000)\)
( \(0.000,2.000\) )

\section*{STRUCTURE TYPE}

Decomposed CO as atomic C and O randomly positioned in
hollow sites of a \(c(2 \times 2)\) lattice; LEED shows \(c(2 \times 2)\);
(this structure is here modeled as alternating C and O atoms
in a (2x2) structure)

\section*{COMMENTS}

To model the random occupation the \(c(2 \times 2)\) structure, an atom with averaged \(C\) and 0 scattering properties was constructed (AES suggests \(C\) and 0 coverages of 0.4 and 0.6 ML )
```

IHEORY/DATA TREATMENT
Dynamical LEED: 5 phase shifts, }58\mathrm{ beams;
see comments

```
see comments

SAMPLE PREPARATION ( 1 sample)
Treatment : dissociative adsorption of CO on \(\mathrm{Fe}(100)\)
Crystallinity:
Anal. methods:
Contamination:

OATA COLLECTION
Technique: LEED
Dataset : 23 LEED spectra

\section*{STRUCTURES EXAMINED}
1. random occupation of \(c(2 \times 2)\) lattice; 2. 0.5 monolayer of 0 in \(c(2 \times 2)\) structure with \(c\) lying in
a) 4 -fold vacant hollow sites, b) 2 -fold bridge sites, c) top sites, d) tetrahedral interstitial sites,
e) octahedral interstitial sites

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(A\) ) & \(B X\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.870 & 0.000 & 0.000 & 2.870 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.740 & 0.000 & 0.000 & 5.740 & 90.0 & ( 2.000, 0.000) & (2x2) & m1: randomly mixed \\
\hline & & & & & & ( 0.000, 2.000) & & layer \\
\hline
\end{tabular}

3D COORDINATES
C1-01: in (randomized) \(c(2 \times 2)\) lattice on hollow sites; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk z \(=1.435 \mathrm{~A}\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.085 & C1 & Fe3 & 02 & 153.4 \\
\hline 2.085 & C1 & Fe3 & Fe3(1,0) & 133.5 \\
\hline 2.085 & C1 & Fe 3 & Fe4 & 48.6 \\
\hline 1.915 & C1 & Fe4 & Fe3 & 54.7 \\
\hline 2.486 & Fe3 & Fe4 & C1 & 54.7 \\
\hline
\end{tabular}

Fe(100)-c(2x2)-C+0 disordered 26.6.8.1

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.486 & \(\mathrm{Fe3}\) & Fe 4 & \(\mathrm{Fe3}(-1,0)\) & 70.5 \\
2.486 & Fe 3 & Fe 4 & \(\mathrm{Fe4}(1,0)\) & 54.7 \\
\hline
\end{tabular}

COMMON NAME : Fe(100)-(1×1)-3Co
ILLUSTRATION: 86
CLASSIFICATION : 26.27.1
TECHNIQUE : ARXPS/ARAES
AUTHORS : Hong Li and B.P. Tonner
REFERENCE : Phys. Rev., B40, 10241 (1989)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Fe & Adsorbate: \\
Crystal face: 100 & Coverage : 3 (Co/Fe) \\
Temperature : RT & Pattern : (1x1) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pHm & \\
2D &
\end{tabular}

2D bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment : Co and Fe evaporation
Crystallinity:
Anal. methods: LEED, quartz microbalance for thickness Contamination:

\section*{DATA COLLECTION}

Technique: ARXPS/ARAES; see Rev. Sci. Instrum. 58 (198 Dataset : several \(\mathrm{Fe} 2 p\) and Co LVV polar diffraction patterns

STRUCTURES EXAMINED
No structure optimization

STRUCTURE TYPE
3 epitaxial (1x1) Co monolayers, continuing bcc lattice

\section*{COMMENTS}

The substrate was an Fe film (3.5 ML) grown on Ag(001); here Ag substrate is ignored and the Fe layer is assumed to be semi-infinite; no attempt was made to optimize the structure: only the lattice type of the overlayer reported

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY ( \(\chi^{\prime}\) ) & Bx ( \({ }_{\text {A }}\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & ( \(1.000,0.000\) ) & (1x1) & si: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

\section*{Co1-Co3: Co overlayer}

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z = \(1.433 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.866 & \(\operatorname{Co1}\) & \(\operatorname{Co1(1,0)}\) & \(\operatorname{Co2}\) & 60.0 \\
2.866 & \(\operatorname{Co1}\) & \(\operatorname{Co2}\) & \(\mathrm{Co3}\) & 90.0 \\
2.866 & \(\operatorname{Co2}\) & \(\mathrm{Co3}\) & Fe4 & 90.0 \\
\hline
\end{tabular}

CLASSIFICATION : 26.29.1
TECHNIQUE : LEED
AUTHORS : Z.Q. Wang, S.H. Lu, Y.S. Li, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B35, 9322 (1987)

SURFACE TYPE
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Fe & Adsorbate: & Cu \\
\hline Crystal face: & 100 & Coverage & \\
\hline Temperature : & RT & Pattern & (1x1) \\
\hline Bulk lattice: & bec & Matrix & ( 1.000, 0.000) \\
\hline 2 D bulk symm: & p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}
\(k\) symm: 04 m
20 surf symm: p4m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : evaporation from small single-crystal Cu
Crystallinity: (1x1) diffuse LEED pattern
Anal. methods: AES
Contamination: traces of \(C\)

DATA COLLECTION
Technique: LEED; UHV chamber with LEED and AES
Dataset : (11)- and (20)-beam LEED spectra for several coverages ranging from 0 to 12; \(40<E(\mathrm{eV})<360\)

\section*{STRUCTURE TYPE}

Epitaxial growth of bcc Cu on bcc Fe(100); the lattice parameters of Cu are equal to or atmost equal to those of Fe; for this tabulation, they are considered to be identical

\section*{COMMENTS}

The Cu films are largely disordered, but a small ordered component ( \(20 \%\) or less) consists of a somewhat distorted bce Cu; for this tabulation, we assume the overlayer to be \(100 \% \mathrm{bcc} \mathrm{Cu}\)

\section*{THEORY/DATA TREATMENT}

2 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & \(B \times(A)\) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & \((1.000\),
\((0.000, ~ 1.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & (0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.866 & Cu1 & Cu1 (1,0) & Cu1 (1,1) & 90.0 \\
\hline 2.482 & Cu1 & Cu2 & Cu3 & 90.0 \\
\hline 2.482 & Cu2 & Cu3 & Fe4 & 90.0 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Fe
Crystal face: 110
Temperature : 110 K
Bulk lattice: bcc
20 bulk symm: cmm
20 surf symm: pm
SAMPLE PREPARATION ( 1 sample)
Treatment: H 2 exposure at 110 K and annealing to 280K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED; C, \(0<5 \% \mathrm{ML}\)

\section*{DATA COLLECTION}

Technique: LEED
Dataset : 18 IV curves ( 9 integral beams and 9 half-order beams): \(0=0,6.1,20,25.8^{\circ}\) with \(\phi=90^{\circ}\), E-range \(40-180 \mathrm{eV}\)
```

Adsorbate: H
Coverage : 0.5 (H/Fe)
Pattern : (2x1)
Matrix : (2.000, 0.000)

```

STRUCTURE TYPE
Atomic adsorption in 3-fold coordinated hollow sites

\section*{COMMENTS}
top and short bridge sites for H clearly ruled out; long bridge sites less favorable than quasi-bridge sites

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling and RFS): free atom H pot.
(radius 1.0\&); Moruzzi Fe pot.; Voi \(\alpha\) E**1/3; \(\Theta 0=467\) K

\section*{STRUCTURES EXAMINED}

H in top, long, short-bridge, and quasi-threefold hollow sites; first Fe-Fe spacing varied from 1.9-2.5\& in steps of \(0.05 \AA\); H-Fe spacing varied \(1.5-2.2 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.37, RPE=0.55
2D UNIT CELLS ( 2 domains observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X(A)\) & Ay ( \(\AA\) ) & \(\mathrm{Bx}(\AA)\) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.480} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.663} & \multirow[t]{2}{*}{2.339} & \multirow[t]{2}{*}{54.6} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.960} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.663} & \multirow[t]{2}{*}{2.339} & \multirow[t]{2}{*}{54.6} & ( 2.000, 0.000\()\) & \multirow[t]{2}{*}{(2xi)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
H1: overlayer in quasi-threefold hollow sites; \(0.05 \AA\) error bar assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=2.020 \quad \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.816 & Fe 2 & \(\mathrm{H} 1(2,0)\) & \(\mathrm{Fe} 2(1,0)\) & 88.1 \\
1.751 & Fe 2 & \(\mathrm{H} 1(1,1)\) & \(\mathrm{Fe} 2(0,1)\) & 110.1 \\
1.751 & Fe 2 & \(\mathrm{H} 1(1,1)\) & \(\mathrm{Fe}(-1,1)\) & 88.0
\end{tabular}

Fe(110)-(2x1)-H
26.1.1a

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|r}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.752 & Fe ) & \(\mathrm{H} 1(1,0)\) & \(\mathrm{Fe} 2(0,-1)\) & 110.1 \\
1.752 & Fe 2 & \(\mathrm{H} 1(1,0)\) & \(\mathrm{Fe} 2(-1,0)\) & 88.1 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Fe
Crystal face: 110
Temperature : 110 K
Bulk lattice: bcc
20 bulk symm: cmm
2D surf symm: cmm
SAMPLE PREPARATION ( 1 sample)
Treatment: H2 exposure at 110 K and annealing to 280K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED; C,0<5\% ML

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV curves at \(\theta=0,11.3^{\circ}\) with \(\phi=90^{\circ}: 7\) fract.-order beams and 4 integer-order beams; E-range 40-180 eV

\section*{STRUCTURE TYPE}

Atomic adsorption in 3 -fold coordinated hollow sites, two \(H\) per unit cell

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling and RFS): free atom H pot. (radius 1.0A); Moruzzi Fe pot.; Voi a E**1/3; eD=467 K

STRUCTURES EXAMINED
\(H\) in top, long, short-bridge and quasi-threefold hollow sites; first Fe-Fe spacing varied 1.9-2.5A in steps of \(0.05 \AA\); H-Fe spacing varied \(1.5-2.2 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.4, RPE=0.58
2D UNIT CELLS ( 2 domains observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & \(A x(\AA)\) & \(A y(A)\) & \(B x(\AA)\) & \(B y(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.480 & 0.000 & 1.663 & 2.339 & 54.6 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 7.440 & 0.000 & 1.663 & 2.339 & 54.6 & \((3.000,0.000)\) & (3x1) \\
\hline
\end{tabular}

3D COORDINATES
H1-H2: overlayer in quasi-threefold hollow sites; \(0.05 \AA\) error bar assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z \(=2.020 \&\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom \(B\) & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 1.805 & Fe 3 & H2 \((1,0)\) & Fe3 \((1,0)\) & 85.0 \\
\hline 1.805 & Fe3 & H2 (1,0) & \(\mathrm{Fe} 3(0,1)\) & 105.3 \\
\hline 1.804 & Fe3 & H2 (1,-1) & Fe3 \((1,-1)\) & 84.9 \\
\hline 1.804 & Fe3 & H2(1,-1) & \(\mathrm{Fe} 3(0,-1)\) & 105.3 \\
\hline 1.867 & Fe3 & H2 & \(\mathrm{Fe} 3(-1,1)\) & 84.9 \\
\hline
\end{tabular}

Fe(110)-(3x1)-2h 26.1.1b

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom \(A\) & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.867 & Fe 3 & H2 & \(\mathrm{Fe} 3(-1,0)\) & 85.0 \\
\hline
\end{tabular}

COMMON NAME : Fe(100)-c(2x2)-N
CLASSIFICATION : 26.7.1
TECHNIQUE : LEED
AUTHORS : R. Imbihl, R.J. Behm, G. Ertl and W. Moritz
REFERENCE : Surf. Sci., 123, 129 (1982)

\section*{SURFACE TYPE}

Substrate : Fe
Crystal face: 100
Temperature : 300 K
Bulk lattice: bcc
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : oxidation and sputter/anneal cycles; \(N\) from decomposing NH3
Crystallinity: sharp LEED pattern after \(N\) adsorption Anal. methods:
Contamination: AES: \(\mathrm{C}, \mathrm{O}<\mathrm{few} \%\) of a monolayer

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V curves for 17 beans in energy range 40-200 eV at incident angles \(\Theta=0,6\), \(11.6^{\circ}\) and \(\phi=-90^{\circ}\)

STRUCTURE TYPE
Atomic adsorption in 4-fold hollows

\section*{COMMENTS}

Results for clean \(\mathrm{Fe}(100)\) indicated a top layer contraction of \(1.5 \%\);
potentials: Morruzzi-Janak-Williams for Fe; superposition of atomic charge densities for N

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 7 phase shifts; Vor=-9 eV, Voi \(=-0.85 E^{* * 1 / 3 ~ e V ; ~} \Theta D=400 \mathrm{~K}\) (surf), 467 K (bulk)

\section*{STRUCTURES EXAMINED}
A) hollow sites with \(N\) radius varied from 0.5 to \(1.0 \AA\), 1 st Fe-Fe spacing from 1.35 to \(1.60 \AA\); b) top sites;
C) (domain averaged) bridge sites; d) underlayer

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.20\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.864 & 0.000 & 0.000 & 2.864 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.864 & -2.864 & 2.864 & 2.864 & 90.0 & \((1.000,-1.000)\) & c(2x2) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

N1: hollow-site overlayer
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z = \(1.430 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & \(\mathrm{Dx} \pm \boldsymbol{\pm} \mathbf{X}\) & Dy \(\pm \in \boldsymbol{y}\) & DZ \(\pm \boldsymbol{Z} \mathbf{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & f & \(\AA\) & \\
\hline subr & & -1 & & & & 1.432 A & \(1.432 \AA\) & 1.430 A & \\
\hline ovrl & \(N\) & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Fe & 2 & b & 1.00 & 1 & 0.500 f & -0.500 f & \(0.270 \pm .050 \AA\) & \(18.9 \pm 3.5\) \\
\hline intf & Fe & 3 & b & 1.00 & 2 & -0.500 f & 0.500 f & \(1.540 \pm .050 \AA\) & \(107.7 \pm 3.5\) \\
\hline subl & Fe & 4 & b & 1.00 & 3 & 0.500 f & -0.500 f & 1.430 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.043 & N1 & Fe2 & N1 (0,1) & 164.8 \\
2.043 & N1 & Fe2 & Fe2(1,0) & 134.5 \\
2.043 & N1 & Fe2 & Fe3(1,0) & 94.6 \\
2.043 & N1 & Fe2 & Fe3 & 44.9 \\
2.043 & N1 & Fe4 & 97.6
\end{tabular}
\(\mathrm{Fe}(100)-\mathrm{C}(2 \times 2)-\mathrm{N}\)
26.7 .1

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.810 & N 1 & Fe 3 & Fe 2 & 52.8 \\
1.810 & N 1 & Fe 3 & Fe 4 & 125.2 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Fe
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate:
Coverage : 3 (Ni/Fe)
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Triple (1x1) Ni overlayer in distorted bec lattice
(compressed perp. to surface), continuing Fe bcc lattice

\section*{COMMENTS}

The Ni film has the same multilayer relaxation as the clean \(F e(100)\) surface

SAMPLE PREPARATION ( 1 sample)
Treatment : Ni deposited by heating a Ni strip to about 1200C
Crystallinity:
Anal. methods:
Contamination: monitored with AES

DATA COLLECTION
Technique: LEED
Dataset : I-V curves at normal incidence (4 beams) and at off-normal incidence (4 beams) in E range 50 to 300 eV

THEORY/DATA TREATMENT
Dynamical LEED (CHANGE program): 6 phase shifts, 49 beams

STRUCTURES EXAMINED
Variation of top three interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.06\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.866 & 0.000 & 0.000 & 2.866 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Ni1-Ni2-Ni3: trilayer with distorted bcc lattice
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z \(=1.433\) A


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.866 & Ni1 & Ni1 (1,0) & Ni2 & 54.1 \\
\hline 2.442 & Nil & Ni2 & Ni3 & 70.5 \\
\hline 2.523 & Ni 2 & Ni3 & Fe4 & 71.8 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : Fe(100)-(1×1)-0 \\
CLASSIFICATION & \(: 26.8 .10\) \\
TECHNIQUE & : MEIS \\
AUTHORS & R.L. Headrick, P. Konarski, S.M. Yalisove and W.R. Graham \\
REFERENCE & : Phys. Rev., B39, \(5713(1989)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Fe
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc 2D bulk symm: p4m 2D surf symm: p4m

\section*{SAMPLE PREPARATION ( 2 sample)}

Treatment : Fe exposed to 02 at 1.0E-8 torr
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: MEIS
Dataset :

> Adsorbate: 0
> Coverage : \(1.00 / \mathrm{Fe}\)
> Pattern \(:(1 \times 1)\)
> Matrix \(:(1.000,0.000)\)

\section*{STRUCTURE TYPE}

Atomic adsorption in 4-fold hollow sites (assumed), with expansion of top \(2 \mathrm{Fe}-\mathrm{Fe}\) spacings by \(11 \%\) and \(0.7 \%\)

\section*{COMMENTS}

Coverage was measured to be \(1.00 \pm 0.05 \mathrm{ML}\) from deposition, \(0.98 \pm 0.05 \mathrm{ML}\) by segregation from bulk; both preparations give same results

\section*{THEORY/DATA TREATMENT}

Monte Carlo simulations, incl. fit of \(\Theta 0\) (exponentially increasing from 255 K at surface to 420 K in bulk)

STRUCTURES EXAMINED
Variation of top two Fe-Fe spacings, keeping spacing of \(1.97 \AA\) between 0 and 2 nd-layer fe sum of covalent radii)
\(2 D\) UNIT CELLS ( 1 domain observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.860 & 0.000 & 0.000 & 2.860 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.860 & 0.000 & 0.000 & 2.860 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
& & & & & & \((0.000,1.000)\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01 forms overlayer in 4-fold hollows
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atmi A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.058 & 01 & Fe2 & 01(1,0) & 88.1 \\
\hline 2.058 & 01 & Fe 2 & Fe2(1,0) & 134.0 \\
\hline 2.058 & 01 & Fe2 & Fe3 & 48.8 \\
\hline 1.970 & 01 & Fe3 & Fe4 & 125.5 \\
\hline 2.860 & Fe 2 & \(\mathrm{Fe} 2(1,0)\) & Fe3 (1,0) & 56.2 \\
\hline 2.573 & Fe2 & Fe 3 & Fe4 & 73.6 \\
\hline
\end{tabular}

SURFACE TYPE
Substrate: F
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: 0
STRUCTURE TYPE
Atomic adsorption deep in 4 -fold hollow sites

SAMPLE PREPARATION ( 1 sample)
Treatment : clean sample exposed to \(99.999 \%\) pure 02 at 1.0E-8 torr
Crystallinity:
Anal. methods:
Contamination: weak \(c(2 \times 2)-C O\) pattern below 1 ML 0

\section*{DATA COLLECTION}

Technique: LEED
Dataset : 16 LEED I-V spectra: E range \(40-160 \mathrm{eV}\) at incident angles \((\Theta, \phi)=(0,0),(10,0),(20,0)^{\circ}\)

\section*{COMMENTS}

Non-structural parameters: Vor=-12 eV, Voi energy dependent ranging from -2 eV at 50 eV to -4 eV at 150 eV ; R-factor (not RZJ) takes into account both peak positions and intensities: see Legg et al, J. Phys. C10, 937 (1977)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer KKR method): 8 phase shifts; 0 pot from superpos of at ch dens in bcc latt; rms ampl \(=0.115 \AA\)

STRUCTURES EXAMINED
Varied 0 -Fe spacings from 0.27 to \(0.8 \AA\) for 0 in 4 -fold hollows; first Fe-Fe spacing simultaneously varied by \(\pm 10 \%\)
QUALITY OF EXPERIMENT-THEORY FIT
\(R=0.3\) (see comments)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(A\) ) & BX ( \(\AA\) ) & By (A) & \(a\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.864 & 0.000 & 0.000 & 2.864 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.864 & 0.000 & 0.000 & 2.864 & 90.0 & \[
(1.000,0.000)
\] & (1x1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer deep in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.081 & 01 & \(\mathrm{Fe2}\) & \(01(1,0)\) & 87.0 \\
2.081 & 01 & \(\mathrm{Fe2}\) & \(\mathrm{Fe} 2(1,0)\) & 133.5 \\
2.081 & 01 & Fe 2 & Fe 3 & 50.6 \\
2.081 & 01 & \(\mathrm{Fe2}\) & Fe 4 & 103.3 \\
2.020 & 01 & Fe 3 & Fe 2 & 52.8
\end{tabular}

Fe(100)-(1x1)-0 26.8.3

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.020 & 01 & \(\mathrm{Fe3}\) & Fe 4 \\
2.544 & Fe & Fe & \(\mathrm{Fe4}\) & 125.2 \\
\hline
\end{tabular}
AUTHORS : J.M. van Zoest, J.M. Fluit, T.J. Vink and B.A. van Hassel
REFERENCE : Surf. Sci., 182, 179 (1987)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate \(: ~ F e\) & Adsorbate: 0 \\
Crystal face: 100 & Coverage : \(1.00 / \mathrm{Fe}\) \\
Temperature : RT & Pattern : \((1 \times 1)\) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p4m & \\
2D surf symm: p4m & \\
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : Fe cleaned by cycles of heating \(>450 \mathrm{~K}\), \(5 \mathrm{~K} \mathrm{eV} \mathrm{Ne}+\) ion bomb.
Crystallinity:
Anal. methods:
Contamination: clean Fe monitored with scattered Ne+

\section*{DATA COLLECTION}

Technique: LEIS
Dataset : Low energy ion scattering: azimuthal distributions of Ne ions and neutrals at specular refl. and \(45^{\circ}\) scatt. angle

\section*{STRUCTURE TYPE}

Atomic adsorption in 4 -fold hollow sites, with unrelaxed substrate assumed

\section*{COMMENTS}

LEIS insensitive to \(\mathrm{Fe}-\mathrm{Fe}\) spacings

\section*{THEORY/DATA TREATMENT}

O- recoil intensity as function of elevation angle of incidence at spec. refl. was used to calculate \(0-F e\) distance

STRUCTURES EXAMINED
Data consistent with 4 -fold symetrical hollow site; \(0-F e\) spacing was varied

QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & AY ( \(\AA\) ) & BX ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{4}{*}{\[
\begin{aligned}
& (1 \times 1) \\
& (1 \times 1)
\end{aligned}
\]} & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4 -fold hollows with shorter 0 -Fe bond length to 2nd Fe layer than to 1st
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z \(=1.430 ~ \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 2.101 & 01 & Fe 2 & \(\mathrm{Fe}(1,0)\) & 133.0 \\
2.101 & 01 & Fe 2 & Fe 3 & 50.7 \\
2.479 & Fe 2 & Fe 3 & Fe 4 & 70.5 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: F e(100)-(1 \times 1)-0\) & \\
CLASSIFICATION & \(: 26.8 .9\) & \\
TECHNIQUE & LEED & \\
AUTHORS & F. Jona and P.M. Marcus \\
REFERENCE & Solid State Commun., \(64,667(1987)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Fe
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc 20 bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment: Fe exposed to \(99.999 \%\) pure 02 at \(1.0 \mathrm{E}-8\) torr
Crystallinity:
Anal. methods:
Contamination: LEED: CO disappeared as 0 approached ML
DATA COLLECTION
Dataset : \(16 \mathrm{I}-\mathrm{V}\) spectra at 3 inc angles
\(\Theta=0,10,20, \phi=0^{\circ}\) : E range \(30-300 \mathrm{eV}\); respective cumulative \(E\) ranges 887,1463 an

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites, with expansion of top \(2 \mathrm{Fe}-\mathrm{Fe}\) spacings by \(8 \%\) and \(3 \%\)

\section*{COMMENTS}

R-factors RVHT and RPE were also calculated

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 8 ph shs (self-cons. Fe pot superpos O pot); Vor, E-dep Voi; rms vibs O.115A

\section*{STRUCTURES EXAMINED}

0 in 4 -fold hollow site; \(0-F e\) interlayer spacing varied \(0.28-0.58 \AA\) in steps of \(0.1 \AA \begin{aligned} & \text {; first Fe-Fe spacing varied }\end{aligned}\) 1.43 (bulk)-1.87 in steps of \(0.055 \AA\) (later \(0.04 \AA\) ); \(2 n d F e-F e\) spacing varied \(1.35-1.51 \AA\) in steps of \(0.02 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
RZJ \(=0.079,0.118,0.262\left(\Theta=0,10,20^{\circ}\right)\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.864 & 0.000 & 0.000 & 2.864 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.864 & 0.000 & 0.000 & 2.864 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01: overlayer in 4 -fold hollows with shorter 0 -Fe bond length to 2 nd Fe layer than to 1 st
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & DX & & Dy & & Dz & \(\pm \boldsymbol{Z}\) & & Dz/Bz(\%) & \(\pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & & \(f\) & & f & & & A & & \\
\hline subr & & -1 & & & & -1.432 & A & -1.432 & \(\AA\) & 1.432 & & A & & \\
\hline ovrl & 0 & 1 & b & 1.00 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 & \\
\hline intf & Fe & 2 & b & 1.00 & 1 & 0.500 & \(f\) & 0.500 & \(f\) & 0.450 & \(\pm .040\) & A & \(31.4 \pm\) & \(\pm 2.8\) \\
\hline intf & Fe & 3 & b & 1.00 & 2 & -0.500 & f & -0.500 & f & 1.550 & \(\pm .040\) & A & \(108.2 \pm\) & \(\pm 2.8\) \\
\hline intf & Fe & 4 & b & 1.00 & 3 & 0.500 & \(f\) & 0.500 & \(f\) & 1.470 & \(\pm .040\) & \(\AA\) & \(102.7 \pm\) & \(\pm 2.8\) \\
\hline subl & Fe & 5 & b & 1.00 & 4 & -0.500 & \(f\) & -0.500 & \(f\) & 1.432 & & \(\AA\) & 100.0 & \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.075 & 01 & Fe2 & Fe2(1,0) & 133.7 \\
\hline 2.075 & 01 & Fe 2 & Fe3 & 50.0 \\
\hline
\end{tabular}

Fe(100)-(1×1)-0
26.8.9

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.000 & 01 & \(\mathrm{Fe3}\) & Fe 4 & 126.0 \\
2.550 & Fe 2 & Fe 3 & \(\mathrm{Fe4}\) & 73.4 \\
\hline
\end{tabular}

CLASSIFICATION : 26.8 .8
TECHNIQUE : LEED
AUTHORS : J. Sokolov, F. Jona and P.M. Marcus
REFERENCE : Europhys. Lett., 1, 401 (1986)

\section*{SURFACE TYPE}

\section*{Substrate: Fe}

Crystal face: 211
Temperature : 300 K
Bulk lattice: bcc
2D bulk symm: pm
2D surf symm: pm

> Adsorbate: 0 Coverage \(: 0.5(0 / \mathrm{Fe})\) Pattern \(:(2 \times 1)\) Matrix \(:(1.000,0.000)\) \((0.000,2.000)\)

\section*{STRUCTURE TYPE}

Atomic adsorption in long-bridge sites, forming - \(\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}-\mathrm{O}\) strings perpendicular to clean-surface ridges, in which half the Fe atoms are missing ('missing-row' model);

\section*{COMMENTS}

This structure is qualitatively similar to the corresponding missing-row structure of Ni and \(\mathrm{Cu}(110)-(2 \times 1)-0\)

THEORY/DATA TREATMENT
Dynamical LEED: 8 phase shifts, \(<=47\) beams; Vor \(=-10.5 \pm 1 \mathrm{eV}\), Voi \(=-4 \mathrm{eV}\)

STRUCTURES EXAMINED
Unreconstructed models: 0 in various sites on ridges, in troughs and in between; reconstructed models: missing-row and sawtooth models with 0 in various sites; variation of 0-Fe spacing, top Fe-Fe spacing and registry

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RZJ=0.136
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.054 & 0.000 & 0.000 & 2.482 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.054 & 0.000 & 0.000 & 4.964 & 90.0 & \((1.000,0.000)\) & \((2 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-Fe2: nearly straight bonded -Fe-0-Fe-0- strings
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{D} \quad \pm \mathrm{x}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 2.027 A & 0.828 A & 1.170 A & \\
\hline ovrl & 0 & 1 & s 1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Fe & 2 & s1 & . 50 & 1 & 0.500 f & 0.984 f & \(0.260 \pm .050\) A & \(22.2 \pm 4.3\) \\
\hline intf & Fe & 3 & b & 1.00 & 2 & -0.500 f & -0.533 f & \(1.090 \pm .040\) A & \(93.2 \pm 3.4\) \\
\hline subl & Fe & 4 & \(b\) & 1.00 & 3 & 0.500 f & 0.333 f & 1.170 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & Atom \(A\) & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.045 & 01 & \(\mathrm{Fe} 2(0,-1)\) & \(01(1,0)\) & 164.7 \\
2.045 & 01 & \(\mathrm{Fe} 2(0,-1)\) & \(\mathrm{Fe}(0,-1)\) & 42.0 \\
1.946 & 01 & \(\mathrm{Fe}(0,-1)\) & \(\mathrm{Fe} 4(0,-2)\) & 95.0
\end{tabular}

Fe(211)-(2x1)-0
26.8 .8

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.654 & Fe 2 & Fe 3 & Fe 4 & 53.4 \\
2.313 & Fe 2 & Fe 4 & \(\mathrm{Fe} 4(0,1)\) & 77.7 \\
\hline
\end{tabular}
AUTHORS : K.O. Legg, F. Jona, D.W. Jepsen and P.M. Marcus

REFERENCE : Surf. Sci., 66, 25 (1977)

SURFACE TYPE
Substrate : Fe
Crystal face: 100
Temperature : 300 K
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : S deposited from \(99.999 \%\) pure \(S\) at 1.0E-10 torr

Crystallinity: sharp LEED pattern seen for overlayer
Anal. methods:
Contamination: AES: 2-4\%ML C
DATA COLLECTION
Technique: LEED
Dataset : \(241-\mathrm{V}\) curves: 6 at normal incidence, 18 at 2 off-normal geometries; \(50<E<150 \mathrm{eV}\)

STRUCTURE TYPE
Atomic adsorption in hollow sites
Adsorbate: S
Coverage : \(0.5 \mathrm{~S} / \mathrm{Fe}\)
Pattern : c(2x2)
Matrix \(:(1.000,1.000)\)
\((-1.000,1.000)\)

COMMENTS
R-factor is product of intensity \(R\)-factor and mean peak deviat \({ }^{\text {onf }}\)
the best \(S\)-Fe spacing depended somewhat on the \(S\) muffin-tin sphere radius chosen, at the \(0.02 \AA\) level

THEORY/DATA TREATMENT
Dynamical LEED (layer KKR): 8 phase shifts and 58 beams rms vibr ampl \(0.115 \AA\)

STRUCTURES EXAMINED
Varied S-Fe spacing \(0.93-1.19 \AA\) assuming bulk truncation, then adjusted 1 st-2nd fe spacing using optimised S -Fe; best fit for the unrelaxed substrate

QUALITY OF EXPERIMENT-THEORY FIT
See comments
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(A\) ) & BX ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{4}{*}{(1xi) \(c(2 \times 2)\)} & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{-2.864} & \multirow[t]{2}{*}{2.864} & \multirow[t]{2}{*}{90.0} & \((1.000,1.000)\) & & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
\$1: hollow-site overlayer
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.281 & S1 & Fe2 & S1(1,0) & 125.2 \\
\hline 2.281 & S1 & Fe2 & Fe2(1,0) & 128.9 \\
\hline 2.281 & S1 & Fe2 & Fe3 & 62.6 \\
\hline 2.480 & S1 & Fe3 & Fe2 & 54.8 \\
\hline 2.864 & Fe2 & Fe2 \((1,0)\) & \(\mathrm{Fe} 3(1,0)\) & 54.7 \\
\hline 2.479 & Fe2 & Fe3 & \(\mathrm{Fe} 2(-1,0)\) & 70.6 \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Fe}(100)-\mathrm{c}(2 \times 2)-\mathrm{S}\)
ILLUSTRATION: 48,50
CLASSIFICATION : 26.16.6
technique : ARPEFS
AUTHORS : X.S. Zhang, L.J. Terminello, S. Kim, Z.Q. Huang, A.E.
Schach von Wittenau and D.A. Shirley
Reference : J. Chem. Phys., 89, 6538 (1988)

\section*{SURFACE TYPE}

Substrate: Fe
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
20 bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: S
Coverage : 0.5 S/Fe
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

\section*{STRUCTURE TYPE}

Atomic adsorption in hollow sites with multilayer relaxation (no detectable layer buckling)

\section*{COMMENTS}

SAMPLE PREPARATION ( 1 sample)
Treatment : 5 weeks of sputter-anneal cycles, then exposure to H2S
Crystallinity:
Anal. methods:
Contamination: AES: no contaminants

\section*{DATA COLLECTION}

Technique: ARPEFS; 2500-3000eV soft x-rays (1.5eV reso
Dataset : ARPEFS spectra for two emission angles: [100], [110]; kinetic E range 50-600 eV

\section*{THEORY/DATA TREATMENT}

Fourier transform; MSSW calcs: 17 ph shs; Moruzzi et al Fe pot; HF S pot; \(\Theta 0=420 \mathrm{~K}(b u l k\) Fe), 297 K (surf Fe ), \(395 \mathrm{~K}(\mathrm{~S})\)

STRUCTURES EXAMINED
Top, bridge and hollow site: FT and MSSW favor hollow; variation of \(\mathrm{S}-\mathrm{Fe}\) spacing, 1 st Fe layer buckling, top 2 Fe-Fe interlayer spacings, optimized by \(R\)-factor fitting

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B X(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.860 & 0.000 & 0.000 & 2.860 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.860 & 2.860 & \(-2.860\) & 2.860 & 90.0 & \[
\left(\begin{array}{cc}
1.000, & 1.000) \\
(-1.00 n & 1
\end{array}\right.
\] & \(c(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}
s1: hollow-site overlayer
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk z \(=1.430 \quad \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( A ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.302 & S1 & Fe2 & S1(1,0) & 122.9 \\
\hline 2.302 & S1 & Fe2 & Fe2 \((1,0)\) & 128.4 \\
\hline 2.302 & S1 & Fe2 & Fe3 & 63.2 \\
\hline 2.460 & Fe2 & Fe3 & Fe4 & 70.5 \\
\hline
\end{tabular}
```

COMMON NAME : Fe(110)-p(2x2)-S
CLASSIFICATION : 26.16.4
technique : leed
AUTHORS : H.D. Shih, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev. Lett., 46, }731\mathrm{ (1981)

```

SURFACE TYPE
\begin{tabular}{|c|c|c|}
\hline Substrate : Fe & Adsorbate: & S \\
\hline Crystal face: 110 & Coverage : & 0.25 \\
\hline Temperature : RT* & Pattern & (2x2) \\
\hline Bulk lattice: bcc & Matrix & ( 2.000, 0.000) \\
\hline 2 D bulk symm: cmm & & ( 0.000, 2.000) \\
\hline
\end{tabular}

2D surf symm: cmm
SAMPLE PREPARATION ( 1 sample)
Treatment : see Shih et al, J. Phys. C13, 3801 (1980); \(s\) from capsule

Crystallinity:
Anal. methods:
Contamination: monitored by AES

\section*{DATA COLLECTION}

Technique: LEED
Dataset : LEED I-V spectra for 8 beams at normal incidence and 7 at \(\Theta=9^{\circ}, \phi=35.26^{\circ} ; E<=170\) ev

STRUCTURE TYPE
Atomic \(S\) at center site (14-fold' hollow);
top substrate layer laterally relaxed

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 8 phase shifts; 124 beams; Vor=-11.5 eV, Voi=-4eV; vibr amps=0.115 \(\AA\)
varied with Fe atoms in truncated bulk positions; spheres with bulk radius in \((2 \times 2)\) cells, preserving

Other models also tested, including 3 fold hollow site

STRUCTURES EXAMINED
1. S on 4 fold hollow sites and \(\mathrm{Fe}-\mathrm{S}\) interlayer spacing
2. various reconstructions of the substrate with hard symmetry and commensurability with the bulk

QUALITY OF EXPERIMENT-THEORY FIT Visual

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|r|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.485 & 0.000 & -.833 & 2.341 & 109.6 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 4.969 & 0.000 & -1.665 & 4.682 & 109.6 & \((2.000,0.000)\) & (2x2) \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in distorted '4-fold' hollows; Fe2-Fe5: laterally relaxed top substrate layer;
Fe6: periodic bulk layer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Fe(110)-p(2x2)-S
26.16 .4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
16
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.166 & s1 & \(\mathrm{Fe} 2(-1,-1)\) & Fe3 (-1, -1) & 138.7 \\
\hline 2.489 & Fe 2 & Fe4(1,0) & Fe5 & 55.0 \\
\hline 2.489 & Fe2 & Fe4(1,0) & Feb ( 2,1 ) & 70.6 \\
\hline 2.504 & Fe2 & Fe4 & Fe3 & 59.3 \\
\hline 2.504 & Fe 2 & Fe4 & \(\mathrm{Fe} 5(0,1)\) & 54.6 \\
\hline 2.504 & Fe 2 & Fe4 & Feb (0,1) & 103.5 \\
\hline 2.489 & Fe 2 & Fe5 (0,1) & \(\mathrm{Fe} 3(1,1)\) & 81.6 \\
\hline 2.489 & Fe2 & Fe5 (0,1) & Fe4(1,1) & 136.7 \\
\hline 2.166 & S1 & \(\mathrm{Fe} 2(-1,-1)\) & Fe4(0, -1 ) & 60.6 \\
\hline 2.166 & S1 & \(\mathrm{Fe} 2(-1,-1)\) & Fe6 & 92.6 \\
\hline 2.365 & S1 & Fe4(0,-1) & Fe2(0,-1) & 133.8 \\
\hline 2.365 & S1 & Fe4(0, -1) & Fe5 & 94.6 \\
\hline 2.365 & S1 & \(\mathrm{Fe}(0,0,-1)\) & Fe6 & 84.3 \\
\hline 2.475 & Fe 2 & Fe3 & Fe4 & 60.4 \\
\hline 2.475 & Fe 2 & Fe3 & Feb (1,0) & 93.9 \\
\hline 2.475 & Fe2 & Fe3 & Fe6 & 128.7 \\
\hline
\end{tabular}
```

COMMON NAME : GaAs(110)-(1x1)
CLASSIFICATION : 31.33.26
TECHNIQUE : LEED
AUTHORS : C.B. Duke and A. Paton
REFERENCE : J. Vac. Sci. Technol., B2, 327 (1984)

```

\section*{SURFACE TYPE}

Substrate : GaAs
Crystal face: 110
Temperature : RT*
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
```

Adsorbate:
Coverage :
Pattern : (ix\)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Relaxed bulk termination with \(31.3^{\circ}\) tilt in top layer

\section*{COMMENTS}

Authors conclude parallel displacements in top bilayer are \(=<0.1 A\);
this is re-examination of previously published data

Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION

\section*{THEORY/DATA TREATMENT}

Quasi-dynamical LEED: Vor=-10 eV; mfp=8A; no thermal vibs

\section*{STRUCTURES EXAMINED}
1. best-fit structure of Duke et al with lateral displace- ments of top Ga and As towards their unreconstructed lateral positions; 2. complete reoptimisation of structure: lateral displacements in the top bilayer to be zero - no improvement

\section*{QUALITY OF EXPERIMENT-THEORY FIT}
\(\mathrm{RX}=0.18\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX (A) & AY ( \(\AA\) ) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.998 & 0.000 & 0.000 & 5.654 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.998 & 0.000 & 0.000 & 5.654 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

As1-Ga2, Ga3-As4: 2 bilayers with tilted Ga-As chains; Ga5-As6: bulk bilayer;
Ga7-As8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad \mathrm{Bulk} 2=1.999 \AA\)


GaAs(110)-(1x1)
31.33 .26

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 2.401 & As1 & Ga2 & As1 11,0\()\) & 112.7 \\
\hline 2.474 & Ga3 & As6(0,1) & Ga7 & 109.9 \\
\hline 2.401 & As1 & Ga2 & As 4 & 123.4 \\
\hline 2.433 & As1 & Ga3 \((0,-1)\) & As4(0,-1) & 107.5 \\
\hline 2.433 & As 1 & Ga3 \((0,-1)\) & As6 & 116.3 \\
\hline 2.443 & Ga2 & As4 & Ga3 & 116.1 \\
\hline 2.443 & Ga2 & As4 & Ga5 & 92.2 \\
\hline 2.449 & Ga3 & As4 & \(\mathrm{Ga3}(1,0)\) & 109.4 \\
\hline 2.449 & Ga3 & As4 & Ga5 & 110.9 \\
\hline 2.474 & Ga3 & As6(0,1) & Ga5 (0, 1) & 109.3 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) GaAs \((110)-(1 \times 1)\) & \\
CLASSIFICATION & \(: 31.33 .27\) & \\
TECHNIQUE & \(:\) HEIS \\
AUTHORS & \(: H . J . G r o s s m a n ~ a n d ~ W . M . ~ G i b s o n ~\) \\
REFERENCE & \(:\) J. Vac. Sci. Technol., B2, \(343(1984)\)
\end{tabular}

SURFACE TYPE
\begin{tabular}{|c|c|c|c|c|}
\hline Substrate & GaAs & Adsorbate: & & \\
\hline Crystal face: & 110 & Coverage : & & \\
\hline Temperature : & RT* & Pattern & (1x1) & \\
\hline Bulk lattice: & zincblende & Matrix & ( 1.000, & 0.000) \\
\hline 2 D bulk symm: & pm & & ( 0.000 , & 1.000) \\
\hline
\end{tabular}

STRUCTURE TYPE
Relaxed bulk termination with \(15.8^{\circ}\) tilt in top layer

\section*{COMMENTS}

This technique has large error bars on normal displacements; an upper limit of \(0.1 \AA\) on the lateral displacements in the first layer was found

\section*{THEORY/DATA TREATMENT}

High energy ion channeling with computer simulation of intensities; rms ampl \(=0.0895 \AA(\mathrm{Ga}), 0.0928 \AA(\mathrm{As})\)

Technique: HEIS; surface peak intensities
Dataset : intensities for normal incidence as function of tilt angle about channel direction, and for <111> incidence

STRUCTURES EXAMINED
1) bulk terminated surface; 2) \(27^{\circ}\) 1st layer rotation model of Tong et al (1978); 3) \(7^{\circ}\) reconstruction of Duke et al (1983); possibility of lateral displacements was also examined

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\mathrm{A}^{\text {) }}\) & Ay (A) & BX (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.998 & 0.000 & 0.000 & 5.654 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.998 & 0.000 & 0.000 & 5.654 & 90.0 & ( 1.000, 0.000) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

As1-Ga2: top bilayer with tilted Ga-As chains; Ga3-As4, Ga5-As6: 2 bulk bilayers;
Ga7-As8: periodically repeating bulk bilayer;
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z \(=1.999 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(\mathbf{D X} \pm \boldsymbol{\pm} \mathbf{X}\) & Dy \(\pm \boldsymbol{\pm} \boldsymbol{y}\) & Dz \(\pm \in \mathcal{Z}\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & f & & \\
\hline subr & & -1 & & & & 1.999 A & 2.827 A & 1.999 & \\
\hline intf & As & 1 & \(b\) & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 & 0.0 \\
\hline intf & Ga & 2 & b & 1.00 & 1 & \(0.500 \pm .025 \mathrm{f}\) & \(0.250 \pm .018 \mathrm{f}\) & \(0.400 \pm .300\) & \(20.0 \pm 15.0\) \\
\hline intf & Ga & 3 & \(b\) & 1.00 & 2 & \(-0.500 \pm .025 \mathrm{f}\) & \(0.500 \pm .018 \mathrm{f}\) & \(1.790 \pm .300\) & \(89.5 \pm 15.0\) \\
\hline intf & As & 4 & \(b\) & 1.00 & 3 & 0.500 f & -0.250 f & 0.000 & 0.0 \\
\hline intf & Ga & 5 & b & 1.00 & 4 & 0.000 f & -0.250 f & 1.999 & 100.0 \\
\hline intf & As & 6 & b & 1.00 & 5 & -0.500 f & -0.250 f & 0.000 & 0.0 \\
\hline subl & Ga & 7 & b & 1.00 & 6 & 0.000 f & 0.750 f & 1.999 & 100.0 \\
\hline subl & As & 8 & \(b\) & 1.00 & 7 & 0.500 f & -0.250 f & 0.000 & 0.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.481 & As 1 & Ga2 & As1 \((1,0)\) & 107.4 \\
\hline 2.448 & Ga3 & As6 (0,1) & Ga7 & 109.5 \\
\hline 2.481 & As 1 & Ga2 & As 4 & 118.7 \\
\hline 2.607 & As 1 & \(\mathrm{Ga} 3(0,-1)\) & As4 (0,-1) & 108.3 \\
\hline 2.607 & As 1 & Ga3 (0,-1) & As6 & 111.9 \\
\hline 2.281 & Ga2 & As 4 & Ga3 & 111.0 \\
\hline 2.281 & Ga2 & As 4 & Ga5 & 106.4 \\
\hline 2.448 & Ga3 & As 4 & Ga3 (1,0) & 109.5 \\
\hline 2.448 & Ga3 & As 4 & Ga5 & 109.5 \\
\hline 2.448 & Ga3 & As6(0,1) & Ga5 (0, 1) & 109.5 \\
\hline
\end{tabular}
COMMON NAME: GaAs(110)-(1x1

CLASSIFICATION : 31.33.29a
TECHNIQUE : LEED
AUTHORS : S.Y. Tong, W.M. Mei and G. Xu
REFERENCE : J. Vac. Sci. Technol., B2, 393 (1984)
\begin{tabular}{lll} 
Substrate : GaAs & Adsorbate: & Relaxed bulk termination with \(28^{\circ}\) tilt in top layer \\
Crystal face: 110 & Coverage: & \\
Temperature: RT* & Pattern : \(1 \times 1)\) & \\
Bulk lattice: zincblende & Matrix \(:(1.000,0.000)\) & \\
2D bulk symm: pm & & \((0.000,1.000)\)
\end{tabular}

\section*{SAMPLE PREPARATION ( sample) \\ COMMENTS}
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
THEORY/DATA TREATMENT
Technique: LEED
Dynamical LEED (combined space method)
Dataset : I-V spectra: 14 beams from previously published exp. results: Tong et al, Phys. Rev. B17, 3303 (1978)

STRUCTURES EXAMINED
1. bond conserving tilt of top layer Ga-As bond; 2. lateral relaxations of top Ga and As

QUALITY OF EXPERIMENT-THEORY FIT
RN and RZJ used
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax \((A)\) & \(A y(A)\) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.998 & 0.000 & 0.000 & 5.654 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.998 & 0.000 & 0.000 & 5.654 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES

As1-Ga2, Ga3-As4: 2 bilayers with tilted Ga-As chains; Ga5-As6: bulk bilayer;
Ga7-As8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.480 & As 1 & Ga2 & As 1 11,0\()\) & 107.5 \\
\hline 2.457 & Ga3 & As6 (0,1) & Ga7 & 109.6 \\
\hline 2.480 & As 1 & Ga2 & As4 & 125.3 \\
\hline 2.468 & As 1 & Ga3 \((0,-1)\) & As4 (0, -1) & 106.9 \\
\hline 2.468 & As 1 & Ga3 \((0,-1)\) & As6 & 116.0 \\
\hline 2.307 & Ga 2 & As 4 & Ga3 & 115.5 \\
\hline 2.307 & Ga2 & As 4 & Ga5 & 95.0 \\
\hline 2.448 & Ga3 & As 4 & Ga3 (1,0) & 109.5 \\
\hline 2.448 & Ga3 & As 4 & Ga5 & 110.2 \\
\hline 2.457 & Ga3 & As6(0, 1) & Ga5 (0, 1) & 109.4 \\
\hline
\end{tabular}

CLASSIFICATION : 31.33.68
TECHNIQUE : LEED
AUTHORS : W.K. Ford, T. Guo, D.L. Lessor and C.B. Duke
REFERENCE : Phys. Rev., B42, 8952 (1990)

SURFACE TYPE
Substrate: GaAs
Crystal face: 110
Temperature : 1100 K
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION ( sample)
Treatment : cleavage in vacuum
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : 18 ineq. symmetry-averaged I-V curves:

Adsorbate:
Coverage
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( \(0.000,1.000\) )

STRUCTURE TYPE
Relaxed bulk termination with \(28.4^{\circ}\) tilt in top layer and other relaxations in top two layers

\section*{COMMENTS}
\(50<E<300 \mathrm{eV}\)

STRUCTURES EXAMINED
Relaxation of 5 struct. parameters: 1 st and 2nd bilayer rotation angles, Ga-As bond lengths in 1 st bilayer and between 1st and 2nd bilayers

QUALITY OF EXPERIMENT-THEORY FIT
\(R X=0.204\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.997 & 0.000 & 0.000 & 5.653 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.997 & 0.000 & 0.000 & 5.653 & 90.0 & \((1.000,0.000)\)
\((0.000,1.000)\) & (1x) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
As1-Ga2, Ga3-As4: 2 bilayers with tilted Ga-As chains; As5-Ga6: unrelaxed bulk bilayer;
As7-Ga8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z = 1.999 Å
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{D} \quad \pm \epsilon \mathrm{X}\) & Dy \(\pm \epsilon y\) & \(D z \pm \epsilon z\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 1.999 A & 2.827 A & 1.999 \& & \\
\hline intf & As & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ga & 2 & \(b\) & 1.00 & 1 & 0.500 f & \(0.229 \pm .018 \mathrm{f}\) & \(0.698 \pm .100 \AA\) & \(34.9 \pm 5.0\) \\
\hline intf & Ga & 3 & \(b\) & 1.00 & 2 & -0.500 f & \(0.572 \pm .018 \mathrm{f}\) & \(1.444 \pm .100 \AA\) & \(72.2 \pm 5.0\) \\
\hline intf & As & 4 & b & 1.00 & 3 & 0.500 f & \(-0.250 \pm .018 \mathrm{f}\) & \(0.084 \pm .100 \AA\) & \(4.2 \pm 5.0\) \\
\hline intf & As & 5 & \(b\) & 1.00 & 4 & -0.500 f & -0.499 \(\pm .018 \mathrm{f}\) & \(1.955 \pm .100 \AA\) & \(97.8 \pm 5.0\) \\
\hline intf & Ga & 6 & \(b\) & 1.00 & 5 & 0.500 f & 0.238 f & 0.000 A & 0.0 \\
\hline subl & As & 7 & b & 1.00 & 6 & 0.000 f & 0.250 f & 1.999 A & 100.0 \\
\hline subl & Ga & 8 & \(b\) & 1.00 & 7 & -0.500 f & 0.250 f & \(0.000 \quad \AA\) & 0.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.480 & As 1 & Ga2 & As1(1,0) & 107.4 \\
\hline 2.485 & Ga3 & As5 (0,1) & Ga8 & 108.6 \\
\hline 2.480 & As 1 & Ga2 & As 4 & 125.5 \\
\hline 2.420 & As 1 & Ga3 \((0,-1)\) & As4(-1,-1) & 107.4 \\
\hline 2.420 & As 1 & Ga3 \((0,-1)\) & As5 & 117.4 \\
\hline 2.380 & Ga2 & As4 & Ga3 & 114.8 \\
\hline 2.380 & Ga2 & As 4 & Ga6 & 92.9 \\
\hline 2.448 & Ga3 & As4 & Ga3(1,0) & 109.5 \\
\hline 2.448 & Ga3 & As4 & Ga6 & 112.0 \\
\hline 2.485 & Ga3 & As5 (0,1) & Ga6(0,1) & 108.7 \\
\hline
\end{tabular}
AUTHORS : S.Y. Tong. G. Xu and W.M. Mei
REFERENCE : Phys. Rev. Lett., 52, 1693 (1984)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: GaAs & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature: RT* & Pattern : \(2 \times 2)\) \\
Bulk lattice: zincblende & Matrix : \(2.000,0.000)\) \\
2D bulk symm: p3m1 & \\
\((0.000,2.000)\)
\end{tabular}

2D bulk symm: p3m1
20 surf symm: p3m1

\section*{Pattern : (2x2)}

Matrix : ( \(2.000,0.000)\)
( \(0.000,2.000\) )

STRUCTURE TYPE
1 missing Ga per ( \(2 \times 2\) ) unit cell in heavily relaxed top bilayer; top bilayer almost planar

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ bombardment, then annealing at 500C at \(3 \mathrm{E}-10\) torr
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION

Technique: LEED
Dataset : I-V spectra for 5 integral order and 5 fractional order beams

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (combined space method)

\section*{COMMENTS}

Sp3 bonds rehybridized to sp2 for Ga surface atoms same analysis also given in Tong et al, JVST B2, 393 (1984); the \(R\)-factor used is the 'normalised R-factor' of Tong et al

STRUCTURES EXAMINED
M1: 1/4 layer vacancies in top layer + vertical compression; M2: same as M1 + lateral shifts in 1st layer;
M3: as for M2 but with additional vertical shifts; M4: structure given in the tables;
M5: M4 with the vacancy filled with an As atom
QUALITY OF EXPERIMENT-THEORY FIT
\(\mathrm{RN}=0.127\) (see comments)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & \multirow[t]{2}{*}{3.998} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.999} & \multirow[t]{2}{*}{3.462} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & (1×1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{7.996} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.998} & \multirow[t]{2}{*}{6.925} & \multirow[t]{2}{*}{60.0} & ( 2.000, 0.000) & (2x2) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ga1 through As7: reconstructed top bilayer; Ga8 through As15: slightly distorted bulk bilayer; Ga16-As17: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 17
Bulk z \(=3.264 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & \(D \mathrm{X} \pm \epsilon \mathrm{X}\) & & Dy \(\pm \epsilon y\) & & \(D z \pm \boldsymbol{Z}\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & & f & & f & & A & \\
\hline subr & & -1 & & & & 1.999 & A & 1.154 & A & 3.264 & \(\AA\) & \\
\hline intf & Ga & 1 & s1 & . 25 & 0 & 0.522 & \(f\) & 0.000 & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Ga & 2 & s1 & . 25 & 1 & -0.522 \(\pm .005\) & \(f\) & \(0.000 \pm .014\) & f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Ga & 3 & s1 & . 25 & 2 & \(0.000 \pm .005\) & \(f\) & \(0.522 \pm .014\) & f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & As & 4 & s1 & . 25 & 3 & \(0.214 \pm .005\) & \(f\) & \(0.132 \pm .014\) & \(f\) & \(0.070 \pm .100\) & \(\AA\) & \(2.1 \pm 3.1\) \\
\hline intf & As & 5 & s1 & . 25 & 4 & \(0.439 \pm .005\) & \(f\) & \(-0.439 \pm .014\) & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline intf & As & 6 & s1 & . 25 & 5 & \(0.000 \pm .005\) & \(f\) & \(0.439 \pm .014\) & f & 0.000 & A & 0.0 \\
\hline intf & As & 7 & s1 & . 25 & 6 & \(-0.480 \pm .005\) & f & \(-0.480 \pm .014\) & f & \(0.130 \pm .100\) & \(\AA\) & \(4.0 \pm 3.1\) \\
\hline intf & Ga & 8 & s1 & . 25 & 7 & 0.500 & \(f\) & 0.000 & \(f\) & \(2.350 \pm .100\) & \(\AA\) & \(72.0 \pm 3.1\) \\
\hline intf & Ga & 9 & s1 & . 25 & 8 & -0.500 & \(f\) & 0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline intf & Ga & 10 & s1 & . 25 & 9 & 0.500 & \(f\) & 0.000 & f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Ga & 11 & s1 & . 25 & 10 & -0.500 & \(f\) & -0.500 & f & \(0.090 \pm .100\) & A & \(2.8 \pm 3.1\) \\
\hline intf & As & 12 & s1 & . 25 & 11 & 0.167 & \(f\) & 0.667 & \(f\) & \(0.740 \pm .100\) & \(\AA\) & \(22.7 \pm 3.1\) \\
\hline intf & As & 13 & s1 & . 25 & 12 & 0.000 & f & -0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline intf & As & 14 & s1 & . 25 & 13 & 0.500 & \(f\) & 0.000 & \(f\) & 0.000 & A & 0.0 \\
\hline intf & As & 15 & s1 & . 25 & 14 & 0.000 & \(f\) & 0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline subl & Ga & 16 & b & 1.00 & 15 & 0.000 & \(f\) & 0.000 & \(f\) & 2.448 & \(\AA\) & 75.0 \\
\hline subl & As & 17 & b & 1.00 & 16 & -0.667 & \(f\) & -0.667 & f & 0.816 & A & 25.0 \\
\hline
\end{tabular}

GaAs(111)-(2x2)
31.33 .24

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 12
\begin{tabular}{l|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.422 & Ga1 & As5 & Ga2(1,0) & 104.3 \\
2.453 & Ga8 & As13 & Ga9 & 109.2 \\
2.453 & Ga8 & As13 & Ga11 & 110.2 \\
2.453 & Ga8 & As13 & Ga16 \(-1,-1)\) & 109.8 \\
2.422 & Ga1 & As5 & Ga8 & 87.7 \\
2.416 & As7 & Ga2 & 119.3 \\
2.416 & Ga1 & As7 & Ga11 & 94.8 \\
2.422 & As4 & Ga2(0,1) & As5 \((-1,1)\) & 135.5 \\
2.422 & Ga2(0,1) & As7(0,1) & 111.9 \\
2.496 & As4 & Ga9 & As12 & 106.5 \\
2.496 & As4 & Ga9 & As12(-1,0) & 116.2 \\
2.440 & As7 & Ga11 & As13 & 107.8 \\
\hline
\end{tabular}


CLASSIFICATION
GaAs(311)-(1x1) As termination
TECHNIQUE
31.33.53b
: C.B. Duke, C. Mailhiot, A. Paton, A. Kahn and K. Stiles
REFERENCE : J. Vac. Sci. Technol., A4, 947 (1986)

SURFACE TYPE


SAMPLE PREPARATION ( 1 sample)
Treatment : crystal cut, polished, ion bombarded and vacuum annealed
Crystallinity:
Anal. methods: etching assessed termination before
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: normal incidence, 15 beams, \(40<E<240 \mathrm{eV}\)

STRUCTURES EXAMINED
1. relaxed clean surface - As termination; 2. 3-fold Ga adatom on relaxed clean surface with As term.;
3. relaxed clean surface - Ga termination

QUALITY OF EXPERIMENT-THEORY FIT
\(R X=0.24, R I=0.06\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.998 & 0.000 & -1.999 & 6.630 & 106.8 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.998 & 0.000 & -1.999 & 6.630 & 106.8 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES
As3-Ga4: periodically repeating set of bulk layers; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = \(1.710 \AA\)


\footnotetext{
BOND DISTANCES AND ANGLES
}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.492 & As1 & Ga2(-1,-1) & As3(0,-1) & 111.6 \\
2.398 & Ga2 & As3 & Ga4 & 109.5 \\
2.449 & As3 & Ga4 & & \\
\hline
\end{tabular}

COMMON NAME
CLASSIFICATION
GaAs(311)-(1x1) Ga termination
ILLUSTRATION:
122
ON : 31.33.53a
AUTHORS : C.B. Duke, C. Mailhiot, A. Paton, A. Kahn and K. Stiles
REFERENCE : J. Vac. Sci. Technol., A4, 947 (1986)

\section*{SURFACE TYPE}

Substrate: GaAs
Crystal face: 311
Temperature : 300 K
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm

Adsorbate:
Coverage
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( 0.000, 1.000)

SAMPLE PREPARATION ( 1 sample)
Treatment : crystal cut, polished, ion bombarded and vacuum annealed
Crystallinity:
Anal. methods: etching assessed termination before
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra: normal incidence, 15 beams, \(40<E<240 \mathrm{eV}\)

STRUCTURE TYPE
Ga-terminated bulk lattice with spacing relaxations between top 3 mono-atomic layers

COMMENTS
RX=X-ray R-factor, RI=integrated intensity R-factor

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 6 phase shifts

STRUCTURES EXAMINED
1. relaxed clean surface - As termination; 2. 3-fold Ga adatom on relaxed clean surface with As term.;
3. relaxed clean surface - Ga termination

QUALITY OF EXPERIMENT-THEORY FIT
\(\mathrm{RX}=0.24, \mathrm{RI}=0.08\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(A\) ) & Ay (A) & BX ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & \multirow[t]{2}{*}{3.998} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.999} & \multirow[t]{2}{*}{6.630} & \multirow[t]{2}{*}{106.8} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b : bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.998} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.999} & \multirow[t]{2}{*}{6.630} & \multirow[t]{2}{*}{106.8} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

As4-Ga5: periodically repeating set of bulk layers; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z = \(1.710 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{D} \pm \mathrm{Ex}\) & Dy \(\pm \epsilon y\) & \(D z \pm \epsilon Z\) & \(D z / B z(\%) \pm \in Z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & & \\
\hline subr & & -1 & & & & -0.000 \& & 3.617 & 1.710 & \\
\hline intf & Ga & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 & 0.0 \\
\hline intf & As & 2 & b & 1.00 & 1 & 0.455 f & 0.909 f & \(1.080 \pm .100\) & \(63.2 \pm 5.9\) \\
\hline intf & Ga & 3 & \(b\) & 1.00 & 2 & -0.182 f & -0.364 f & \(0.580 \pm .100\) & \(33.9 \pm 5.9\) \\
\hline subl & As & 4 & \(b\) & 1.00 & 3 & 0.455 f & -0.091 f & 1.280 & 74.9 \\
\hline subl & Ga & 5 & b & 1.00 & 4 & -0.182 f & -0.364 f & 0.430 & 25.2 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{l} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.351 & Ga1 & As2(0,-1) & Ga3(0,-1) & 110.9 \\
2.351 & Ga1 & As2(0,-1) & Ga5 & 106.7 \\
2.480 & As2 & Ga3 & As4 & 111.2 \\
2.480 & As2 & Ga3 & As4(-1,0) & 111.2 \\
2.588 & As2 & Ga5(0,1) & As4(0,1) & 107.7
\end{tabular}

GaAs(311)-(1×1) Ga termination 31.33.53a

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.449 & Ga3 & As4 & Ga5 & 109.5 \\
\hline
\end{tabular}

SURFACE TYPE
Substrate: GaAs
Crystal face: 110
Temperature : RT
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION ( \(>2\) sample)
Treatment : sputter-annealed n-type wafers; also cleaved surfaces
Crystallinity:
Anal. methods: Ga-3d, As-3d, Al-2p core level SXPS spectra
Contamination: monitored by LEED
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for beams:
\(01,0-1,11=-11,1-1=-1-1,10=-10,02=0-2\),
1-2=-1-2,2-1=-2-1 at normal incidence

STRUCTURE TYPE
Adsorbate: Al Substitution of Al in 2nd-layer Ga positions;
Coverage : 0.5-1.0ML (Al/1x1)otherwise same structure as GaAs(110) (class. no. 31.33.26),
Pattern : (1×1)
Matrix : ( \(1.000,0.000\) )
( \(0.000,1.000\) )
except for \(0.1 \AA\) reduction of 1 st-2nd layer spacing

COMMENTS
RT deposition of Al on GaAs(110) produces disordered overlayer with possibly some random Al-Ga replacements; annealing leads to ordered structures in which Al first replaces \(G a\) in 2 nd layer and then in 3rd, 1st and deeper layers (see class. nos. 31.33.13.4b and c)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: Overlapping atomic potentials with Slater exchange

STRUCTURES EXAMINED
Substitutional replacements in GaAs(110): 0.5ML with Al replacing Ga in 1st or 2nd layer; 1ML with Al replacing Ga in 1st and 2nd, or 2nd and 3rd layers; large coverages with Al in 1st 3 layers, or 6 layers (pure AlAs); from GaAs(110) struc., relaxations of 1st-2nd layer spacing

QUALITY OF EXPERIMENT-THEORY FIT
RZJ \(=0.24, ~ R X=0.25\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(A\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & 0.000 & 5.660 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.000 & 0.000 & 0.000 & 5.660 & 90.0 & ( 1.000, 0.000 ) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
As1-Ga2, Al3-As4: 2 bilayers with tilted chains; Ga5-As6: bulk bilayer;
Ga7-As8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z \(=2.000 \AA\)


GaAs(110)-(1x1)-1Al (low coverage)
31.33.13.4a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.402 & As 1 & Ga2 & As1 1.0\()\) & 112.7 \\
\hline 2.475 & Al3 & As6(0,1) & Ga7 & 109.8 \\
\hline 2.402 & As 1 & Ga2 & As4 & 123.5 \\
\hline 2.347 & As 1 & Al3(0, -1) & As4(0,-1) & 108.1 \\
\hline 2.347 & As1 & Al3(0,-1) & As6 & 115.0 \\
\hline 2.384 & Ga2 & As4 & Al3 & 116.9 \\
\hline 2.384 & Ga2 & As4 & Ga5 & 90.3 \\
\hline 2.451 & Al3 & As4 & Al3(1,0) & 109.4 \\
\hline 2.451 & Al3 & As 4 & Ga5 & 110.9 \\
\hline 2.475 & Al3 & As6(0,1) & Ga5 (0, 1) & 109.3 \\
\hline
\end{tabular}

COMMON NAME: GaAs(110)-(1x1)-2Al (medium coverage)
ILLUSTRATION: 127
CLASSIFICATION : 31.33.13.4b
TECHNIQUE LEED
AUTHORS
A. Kahn, J. Carelli, D. Kanani, C.B. Duke, A. Paton and L. Brillson
REFERENCE : J. Vac. Sci. Technol., 19, 331 (1981)

\section*{SURFACE TYPE}

Substrate : GaAs
Crystal face: 110
Temperature : RT
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION (>2 sample)
Treatment : sputter-annealed n-type wafers; also cleaved surfaces
Crystallinity:
Anal. methods: Ga-3d, As-3d, Al-2p core level SXPS spectra
Contamination: monitored by LEED
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for beams:
\(01,0-1,11=-11,1-1=-1-1,10=-10,02=0-2\), \(1-2=-1-2,2-1=-2-1\) at normal incidence

STRUCTURE TYPE
Adsorbate: Al Substitution of Al in 2nd- and 3rd-layer Ga positions;
Coverage : 1.5-1.0ML (Al/1x1)otherwise same structure as GaAs(110) (class. no. 31.33.26),
Pattern : ( \(1 \times 1\) ) except for \(0.1 A\) reduction of 1 st-2nd layer spacing
Matrix : ( \(1.000,0.000\) )
( \(0.000,1.000\) )

COMMENTS
RT deposition of Al on GaAs(110) produces disordered overlayer with possibly some random Al-Ga replacements; annealing leads to ordered structures in which Al first replaces \(\mathbf{G a}\) in 2 nd layer and then in 3rd, 1st and deeper layers (see class. nos. 31.33.13.4a and c)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: overlapping atomic potentials with Slater exchange

\section*{STRUCTURES EXAMINED}

Substitutional replacements in GaAs(110): 0.5ML with Al replacing Ga in 1st or 2nd layer; 1ML with Al replacing Ga in 1st and 2nd or 2nd and 3rd layers; large coverages with Al in 1st 3 layers, or 6 layers (pure AlAs); from GaAs(110) struc., relaxations of 1 st-2nd layer spacing

QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.29, RX=0.29
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & 0.000 & 5.660 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.000 & 0.000 & 0.000 & 5.660 & 90.0 & \(\left(\begin{array}{lll}1.000, ~ 0.000) \\ (0.000, ~\end{array}\right.\) & (1x1) & s1: commens. \\
\hline & & & & & & (0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
As1-Ga2, Al3-As4: 2 bilayers with tilted chains; Al5-As6: bulk-like bilayer;
Ga7-As8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk z = \(2.000 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathbf{D} \pm \boldsymbol{x}\) & Dy \(\pm \in \boldsymbol{y}\) & \(\mathrm{Dz} \pm \boldsymbol{E z}\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 2.000 & 2.830 A & 2.000 A & \\
\hline intf & As & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ga & 2 & b & 1.00 & 1 & \(0.500 \pm .025 \mathrm{f}\) & \(0.201 \pm .018 \mathrm{f}\) & \(0.690 \pm .100 \AA\) & \(34.5 \pm 5.0\) \\
\hline intf & Al & 3 & \(b\) & 1.00 & 2 & \(-0.500 \pm .025 f\) & \(0.591 \pm .018 \mathrm{f}\) & \(1.340 \pm .100 \AA\) & \(67.0 \pm 5.0\) \\
\hline intf & As & 4 & b & 1.00 & 3 & \(0.500 \pm .025 \mathrm{f}\) & \(-0.250 \pm .018 \mathrm{f}\) & \(0.060 \pm .100 \AA\) & \(3.0 \pm 5.0\) \\
\hline intf & Al & 5 & b & 1.00 & 4 & \(0.000 \pm .025 \mathrm{f}\) & \(-0.250 \pm .018 \mathrm{f}\) & \(1.970 \pm .100 \AA\) & \(98.5 \pm 5.0\) \\
\hline intf & As & 6 & b & 1.00 & 5 & -0.500 f & -0.250 f & 0.000 \& & 0.0 \\
\hline subl & Ga & 7 & b & 1.00 & 6 & 0.000 f & 0.750 f & 2.000 A & 100.0 \\
\hline subl & As & 8 & b & 1.00 & 7 & 0.500 f & -0.250 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

GaAs(110)-(1×1)-2Al (medium coverage)
31.33.13.4b

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.402 & As 1 & Ga2 & As 1 (1,0) & 112.7 \\
\hline 2.475 & Al3 & As6(0,1) & Ga7 & 109.8 \\
\hline 2.402 & As 1 & Ga2 & As4 & 123.5 \\
\hline 2.347 & As 1 & Al3 (0, -1) & As4 (0, -1) & 108.1 \\
\hline 2.347 & As 1 & Al3 (0, -1) & As6 & 115.0 \\
\hline 2.384 & Ga2 & As4 & Al3 & 116.9 \\
\hline 2.384 & Ga2 & As 4 & Al5 & 90.3 \\
\hline 2.451 & Al3 & As 4 & Al3 (1,0) & 109.4 \\
\hline 2.451 & Al3 & As 4 & Al5 & 110.9 \\
\hline 2.475 & Al3 & As6(0,1) & Al5 \((0,1)\) & 109.3 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : GaAs \((110)-(1 \times 1)-3 A l\) (high coverage) \\
CLASSIFICATION & \(: 31.33 .13 .4 \mathrm{c}\) \\
TECHNIQUE & : LEED \\
AUTHORS & : A. Kahn, J. Carelli, D. Kanani, C.B. Duke, A. Paton and \(L\) \\
& Brillson \\
REFERENCE & : J. Vac. Sci. Technol., 19, 331 (1981)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : GaAs
Crystal face: 110
Temperature : RT
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION (>2 sample)
Treatment : sputter-annealed n-type wafers; also cleaved surfaces
Crystallinity:
Anal. methods: Ga-3d, As-3d, Al-2p core level SXPS spectra
Contamination: monitored by LEED

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for beams:
\(01,0-1,11=-11,1-1=-1-1,10=-10,02=0-2\), \(1-2=-1-2,2-1=-2-1\) at normal incidence

\section*{STRUCTURE TYPE}

Substitution of Al in 1st, 2nd- and 3rd-layer Ga positions;
otherwise same structure as GaAs(110) (class. no. 31.33.26), except for \(0.1 \AA\) reduction of 1 st-2nd layer spacing;
higher coverages cause Al substitution in deeper layers,
e.g. at 8.5ML substitution down to at least 6th layer

\section*{COMMENTS}

RT deposition of Al on GaAs(110) produces disordered overlayer with possibly some random Al-Ga replacements; annealing leads to ordered structures in which Al first replaces Ga in 2nd layer and then in 3rd, 1st and deeper layers (see class. nos. 31.33.13.4a and b)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: overlapping atomic potentials with Slater exchange

\section*{STRUCTURES EXAMINED}

Substitutional replacements in GaAs(110): 0.5ML with Al replacing Ga in 1st or 2nd layer; 1 ML with Al replacing Ga in 1st and 2nd or 2nd and 3rd layers; large coverages with Al in 1st 3 layers, or 6 layers (pure AlAs); from GaAs(110) struc., relaxations of 1st-2nd layer spacing

QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.29, RX=0.22
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & 0.000 & 5.660 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.000 & 0.000 & 0.000 & 5.660 & 90.0 & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

As1-Al2, Al3-As4: 2 bilayers with tilted chains; Al5-As6: bulk-like bilayer;
Ga7 (or Al7)-As8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors


Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-8-C\left({ }^{\circ}\right)
\] \\
\hline 2.400 & As 1 & Al2 & As1 \((1,0)\) & 112.9 \\
\hline 2.475 & Al3 & As6(0,1) & Ga 7 & 109.8 \\
\hline 2.400 & As 1 & Al2 & As 4 & 123.4 \\
\hline 2.347 & As 1 & Al3 \((0,-1)\) & As4 (0, -1) & 108.1 \\
\hline 2.347 & As1 & Al3 (0,-1) & As6 & 115.0 \\
\hline 2.389 & Al2 & As 4 & Al3 & 117.0 \\
\hline 2.389 & Al2 & As 4 & Al5 & 90.2 \\
\hline 2.451 & Al3 & As4 & Al3(1,0) & 109.4 \\
\hline 2.451 & Al3 & As 4 & Al5 & 110.9 \\
\hline 2.475 & Al3 & As6(0,1) & Al5 (0, 1) & 109.3 \\
\hline
\end{tabular}

COMMON NAME
: GaAs(110)-(1x1)-2Bi
ILLUSTRATION:
CLASSIFICATION : 31.33.83.2
TECHNIQUE : LEED
AUTHORS : W.K. Ford, T. Guo, D.L. Lessor and C.B. Duke
REFERENCE : Phys. Rev., B42, 8952 (1990)

SURFACE TYPE
Substrate : GaAs Adsorbate: Bi
Crystal face: 110
Temperature : <150 K
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION ( sample)
Treatment : cleavage in vacuum; Bi deposited by sublimation
Crystallinity: LEED: (6×1) pattern
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : 18 ineq. symmetry-averaged I-V curves: \(50<E<300 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

Bi forms slightly tilted zigzag chains continuing GaAs
lattice outward but with expanded \(\mathrm{Bi}-\mathrm{Bi}\) and Bi -substrate distances and with slight tilting of topmost GaAs chains

\section*{COMMENTS}

Preparation-dependent ( \(6 \times 1\) ) LEED pattern observed: (1×1) structure assumed

STRUCTURES EXAMINED
Relaxation of 5 struct. parameters: 1st and 2nd bilayer rotation angles, bond lengths in 1st bilayer and between 1st and 2nd bilayers; also tested: disordered model (Bi ignored), Skeath model (dangling Bi chain)

QUALITY OF EXPERIMENT-THEORY FIT
\(\mathrm{RX}=0.238\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.997} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{5.653} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.997} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{5.653} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: cormens. \\
\hline & & & & & & (0.000, 1.000\()\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Bi1-Bi2, As3-Ga4: 2 bilayers with tilted chains; As5-Ga6: unrelaxed bulk bilayer;
As7-Ga8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk z \(=1.999 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & \(\mathrm{DX} \pm \in \mathrm{X}\) & Dy \(\pm \in y\) & \(D Z \pm \epsilon \boldsymbol{Z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \& & \\
\hline subr & & -1 & & & & 1.999 A & 2.827 A & 1.999 A & \\
\hline ovrl & Bi & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline ovrt & Bi & 2 & b & 1.00 & 1 & 0.500 f & \(0.364 \pm .018 \mathrm{f}\) & \(0.093 \pm .100 \AA\) & \(4.7 \pm 5.0\) \\
\hline intf & Ga & 3 & b & 1.00 & 2 & -0.500 f & \(0.449 \pm .018 \mathrm{f}\) & \(2.424 \pm .100 \AA\) & \(121.3 \pm 5.0\) \\
\hline intf & As & 4 & b & 1.00 & 3 & 0.500 f & \(-0.249 \pm .018 \mathrm{f}\) & \(0.106 \pm .100 \AA\) & \(5.3 \pm 5.0\) \\
\hline intf & As & 5 & \(b\) & 1.00 & 4 & -0.500 f & \(-0.514 \pm .018 \mathrm{f}\) & \(1.942 \pm .100 \AA\) & \(97.2 \pm 5.0\) \\
\hline intf & Ga & 6 & b & 1.00 & 5 & 0.500 f & 0.250 f & 0.000 \& & 0.0 \\
\hline subl & As & 7 & \(b\) & 1.00 & 6 & 0.000 f & 0.250 f & 1.999 \& & 100.0 \\
\hline subl & Ga & 8 & b & 1.00 & 7 & -0.500 f & 0.250 f & \(0.000 \AA\) & 0.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.870 & Bi1 & Bi2 & Bi1(1,0) & 88.3 \\
2.870 & Bi1 & Bi2 & As4 & 108.8 \\
2.730 & Bi1 & Ga3(0,-1) & As4(0,-1) & 105.2 \\
2.730 & Bi1 & Ga3(0,-1) & As5 & 124.0 \\
2.770 & Bi2 & As4 & Ga3 & 101.3 \\
2.770 & Bi2 & As4 & Ga6 & 118.5 \\
2.448 & Ga3 & As4 & Ga6 & 112.6 \\
2.448 & As4 & Ga6 & As7 & 107.2 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : GaAs & Adsorbate: Sb \\
Crystal face: 110 & Coverage : \(2.0 \mathrm{Sb} /(1 \times 1)\) \\
Temperature : 300 K & Pattern : \((1 \times 1)\) \\
Bulk lattice: zincblende & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf & \((0.000,1.000)\)
\end{tabular}

SAMPLE PREPARATION ( 2 sample)
Treatment : sputtering and annealing, or in situ cleavage; Sb exposure
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V data: 14 beams averaged from 2 sets of experimental data \(60=<E=<210 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

Sb forms zigzag chains continuing GaAs lattice outward, but with expanded \(\mathbf{S b}-\mathbf{S b}\) and \(\mathbf{S b}\)-substrate distances, and with slight tilting of topmost GaAs chains

\section*{COMMENTS}
quasi-dynamical LEED: scattered amplitudes from 2 slabs, each consisting of 3 layers, are superposed; scattering within the uppermost slab is calculated exactly, but within the lower slab multiple scattering is neglected

\section*{THEORY/DATA TREATMENT}

Quasi-dynamical LEED: 6 bilayer slabs, 6 ph shs from superpos. atomic charge densities; mfp=8 \(\AA_{\text {; }}\) Vor=-10 eV (fit)

STRUCTURES EXAMINED
1) sp 3 chain: Sb in Ga and As sites of the next monolayer; 2) overlapping chain: \(\pi\)-bonding between Sb and Ga , As ;
3) single Sb defect model: 0.5ML Sb bonding to Ga substr.; 4) Sb2 dimer model: Sb2 m-orbitals bond to Ga pz orbitals;
5) p3 bonding model: Skeath et al, JVST 19, 556 (1981)

QUALITY OF EXPERIMENT - THEORY FIT
RX=0.2
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & 0.000 & 5.650 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 4.000 & 0.000 & 0.000 & 5.650 & 90.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Sb1-Sb2: zigzag chain continuing GaAs lattice outward; As7-Ga8: periodically repeating set of bulk layers; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z \(=2.000 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & DX \(\pm \in \mathbf{X}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 2.000 A & 2.825 A & 2.000 A & \\
\hline ovrl & Sb & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & Sb & 2 & b & 1.00 & 1 & 0.500 f & \(0.297 \pm .018 \mathrm{f}\) & \(0.100 \pm .100\) A & \(5.0 \pm 5.0\) \\
\hline intf & Ga & 3 & b & 1.00 & 2 & -0.500 f & \(0.520 \pm .018 \mathrm{f}\) & \(2.290 \pm .100 \AA\) & \(114.5 \pm 5.0\) \\
\hline intf & As & 4 & \(b\) & 1.00 & 3 & 0.500 f & -0.250 f & \(0.100 \pm .100 \AA\) & \(5.0 \pm 5.0\) \\
\hline intf & As & 5 & b & 1.00 & 4 & -0.500 f & -0.500 f & \(1.900 \pm .100 \star\) & \(95.0 \pm 5.0\) \\
\hline intf & Ga & 6 & b & 1.00 & 5 & 0.500 f & 0.250 f & 0.000 A & 0.0 \\
\hline subl & As & 7 & b & 1.00 & 6 & 0.000 f & 0.250 f & 2.000 A & 100.0 \\
\hline subl & Ga & 8 & b & 1.00 & 7 & -0.500 f & 0.250 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

GaAs(110)-(1x1)-2sb
31.33 .51 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.613 & Sb1 & Sb2 & Sb1 (1,0) & 99.9 \\
\hline 2.613 & Sb1 & Sb2 & As 4 & 112.2 \\
\hline 2.604 & Sb1 & Ga3 \((0,-1)\) & As4(0, -1) & 105.5 \\
\hline 2.604 & Sb1 & Ga3(0,-1) & As5 & 121.4 \\
\hline 2.835 & Sb2 & As 4 & Ga3 & 106.0 \\
\hline 2.835 & Sb2 & As 4 & Gab & 110.8 \\
\hline 2.451 & Ga3 & As 4 & Gab & 112.1 \\
\hline 2.368 & As 4 & Ga6 & As 7 & 108.1 \\
\hline
\end{tabular}

CLASSIFICATION : 31.33.51.5

TECHNIQUE
AUTHORS LEED
: W.K. Ford, T. Guo, D.L. Lessor and C.B. Duke
REFERENCE : Phys. Rev., B42, 8952 (1990)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : GaAs & Adsorbate: Sb \\
Crystal face: 110 & Coverage : \(2.0 \mathrm{Sb} /(1 \times 1)\) \\
Temperature : <150 K & Pattern : \((1 \times 1)\) \\
Bulk lattice: zincblende & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf symm: pm & \((0.000,1.000)\)
\end{tabular}

\section*{STRUCTURE TYPE}

Sb forms slightly tilted zigzag chains continuing GaAs
lattice outward but with expanded Sb -Sb and Sb -substrate distances and with slight tilting of topmost GaAs chains

SAMPLE PREPARATION ( sample)
Treatment : cleavage in vacuum; \(S b\) deposited by subl imation
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
THEORY/DATA TREATMENT
Technique: LEED
Dataset : 18 ineq. symmetry-averaged I-V curves:
Dynamical LEED (quasi-dyn. below 4th bilayer): 6 ph shs from relat. Hartree-Fock-Slater pot.; E-dep. mfp; no thermal vibs

STRUCTURES EXAMINED
Relaxation of 5 struct. parameters: 1st and 2nd bilayer rotation angles, bond lengths in 1st bilayer and between 1st and 2nd bilayers; also tested: disordered model (Sb ignored), Skeath model (dangling Sb chain)

QUALITY OF EXPERIMENT-THEORY FIT
RX=0.199
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B \times(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.997 & 0.000 & 0.000 & 5.653 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.997 & 0.000 & 0.000 & 5.653 & 90.0 & ( \(1.000,0.000\) ) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Sb1-Sb2, Ga3-As4: 2 bilayers with tilted chains; As5-Ga6: unrelaxed bulk bilayer:
As7-Ga8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk z \(=1.999 \AA\)


Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.770 & Sb1 & Sb2 & Sb1(1,0) & 92.4 \\
2.770 & Sb1 & Sb2 & As4 & 109.0 \\
2.640 & Sb1 & Ga3(0,-1) & As4(0,-1) & 107.3 \\
2.640 & Sb1 & Ga3(0,-1) & As5 & 120.4 \\
2.660 & Sb2 & As4 & Ga3 & 102.0 \\
2.660 & Sb2 & As4 & Ga6 & 116.7 \\
2.448 & Ga3 & As4 & Ga6 & 112.8 \\
2.448 & As4 & Ga6 & As7 & 107.1 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
SURFACE TYPE & \\
Substrate \(:\) GaP & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : 125 K & Pattern \(:(1 \times 1)\) \\
Bulk latice: zincblende. & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf symm: pm & \\
&
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ bombardment for 20 mins, then anneal for 4 hrs at 823 K
Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES
DATA COLLECTION
Technique: LEED
Dataset : \(1-V\) curves: 14 beams
\(10=-10,01=0-1,11=-11,1-1=-1-1,02\),
\(20=-20,12=-12,1-2=-1-2,21=-21,2-1=-2-1,13=-\)

STRUCTURE TYPE
Relaxed bulk termination with \(27.5^{\circ}\) tilt in top layer
Coverage :
Pattern : (1x1)
( \(0.000,1.000\) )

\section*{COMMENTS}

X-ray R-factor showed 2 minima corresponding to top-layer Ga-P tilts of \(2.5^{\circ}\) and \(27.5^{\circ}\); integrated beam R-factor RI clearly distinguishes in favor of \(27.5^{\circ}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: multiple scattering model of Meyer et al, Phys. Rev. B19, 5194 (1979); \(m f p=6 \AA\); charge overlap pots

\section*{STRUCTURES EXAMINED}

Bond length conserving rotation of top layer was used to determine Ga-P spacing; spacing between top 2 layers was varied; Ga-P spacing in 2nd-layer was varied; \(G a\) and \(P\) registries in top layer were varied

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RX=0.22, RI=0.07
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.854 & 0.000 & 0.000 & 5.451 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.854 & 0.000 & 0.000 & 5.451 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
P1-Ga2: top bilayer with tilted Ga-P chains; Ga3-P4, Ga5-P6: 2 bulk bilayers; Ga7-P8: periodically repeating bulk bilayer; 0.1\& error bars assumed for tabulation

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk \(z=1.927 \AA\)


GaP(110)-(1×1)
31.15 .4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.361 & P1 & Ga2 & P1 \((1,0)\) & 109.4 \\
\hline 2.360 & Ga3 & P6(0,1) & Ga7 & 109.5 \\
\hline 2.361 & P1 & Ga2 & P4 & 124.7 \\
\hline 2.272 & P1 & Ga3 (0,-1) & P4(0, -1) & 105.4 \\
\hline 2.272 & P1 & \(\mathrm{Ga} 3(0,-1)\) & P6 & 117.3 \\
\hline 2.297 & Ga2 & P4 & Ga3 & 117.4 \\
\hline 2.297 & Ga2 & P4 & Ga5 & 91.9 \\
\hline 2.360 & Ga3 & P4 & Ga3 (1,0) & 109.5 \\
\hline 2.360 & Ga3 & P4 & Ga5 & 109.5 \\
\hline 2.360 & Ga3 & P6(0,1) & Ga5 (0, 1) & 109.5 \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{|c|c|c|c|}
\hline Substrate & & Adsorbate: & \\
\hline Crystal face: & & Coverage : & \\
\hline Temperature : & RT* & Pattern & (2x2) \\
\hline Bulk lattice: & zincblende & Matrix & ( 2.000, 0.000) \\
\hline 2D bulk symm: & p3m1 & & ( 0.000, 2.000) \\
\hline
\end{tabular}
bulk symm: p3m1

\section*{STRUCTURE TYPE}

1 missing Ga per (2x2) unit cell in heavily relaxed top bilayer; top bilayer almost planar

2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)

\section*{COMMENTS}

Treatment : etch, clean Ga rich face by Ar+, anneal at 550C
Crystallinity:
Anal. methods:
Contamination: AES: trace ( \(<1 \%\) ) carbon
DATA COLLECTION
Technique: LEED
Dataset : IV curves: 5 independent substrate and 5 independent super- lattice beams; E range \(20-220 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (matrix inversion and RFS): 6 phase shifts; 229 beams; Voi \(\alpha E^{\star * 1 / 3 ; ~ r m s ~ a m p l ~} 0.13 \AA\)

STRUCTURES EXAMINED
Vary top Ga-As spacing \(0-1.4 A\); then vary \(G a\) and \(P\) positions in first 2 bilayers, as per GaAs study (Tong et al, PRL 52 1693 (1984)), and remove \(1 / 4\) of Ga atoms from first bilayer

QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.21\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & \multicolumn{1}{c|}{ Pattern } & Cell type \\
\hline Bulk & 3.854 & 0.000 & 1.927 & 3.338 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 7.708 & 0.000 & 3.854 & 6.675 & 60.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 \times 2)\) \\
\hline
\end{tabular}

3D COORDINATES
Ga1 through P7: reconstructed top bilayer; Ga8 through P15: slightly distorted bulk bilayer; Ga16-P17: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 14
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom \(B\) & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.400 & Ga1 & P5 (0,-1) & Ga3(0, -1) & 89.8 \\
\hline 2.492 & Ga2 & P7 & Gal1 & 92.1 \\
\hline 2.424 & P4 & Ga8 & P12 & 120.7 \\
\hline 2.424 & P4 & Ga8 & P13 & 104.3 \\
\hline 2.401 & P7 & Ga11 & P15 & 107.4 \\
\hline 2.367 & Ga8 & P12 & Ga9 \((1,0)\) & 109.0 \\
\hline 2.400 & Ga1 & P5 (0, -1) & Ga9(0,-1) & 82.4 \\
\hline 2.498 & Gal & P7 & Ga2 & 119.8 \\
\hline 2.498 & Ga1 & P7 & Ga11 & 92.1 \\
\hline 2.398 & Ga2 & P4(0,-1) & Ga3(1, -1) & 90.0 \\
\hline 2.398 & Ga2 & P4 \((0,-1)\) & Ga8(0,-1) & 82.4 \\
\hline 2.406 & Ga2 & P6 & Gai( 1,0 ) & 89.8 \\
\hline 2.406 & Ga2 & P6 & Ga10 & 82.4 \\
\hline 2.492 & Ga2 & P7 & Ga3 & 120.1 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{GaSb}(110)-(1 \times 1)\) \\
CLASSIFICATION & \(: 31.51 .2\) \\
TECHNIQUE & LEED \\
AUTHORS & C.B. Duke, A. Paton and A. Kahn \\
REFERENCE & : Phys. Rev., B27, \(3436(1983)\)
\end{tabular}
\begin{tabular}{ll} 
SURFACE TYPE & \\
Substrate \(:\) GaSb & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : 125 K & Pattern : \(1 \times 1)\) \\
Bulk lattice: zincblende & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf symm: pm & \\
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment: Ar+ bombardment and annealing at 430 K for 1 hour
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra: 14 beams at normal incidence; \(30<E<220 \mathrm{eV} ; 2\) sets of data taken and averaged to improve signal to noise

STRUCTURE TYPE
Relaxed bulk termination with \(30^{\circ}\) tilt in top layer

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Quasi-dynamical LEED: 6 atomic bilayers; 6 phase shifts; mfp \(=8 \AA\); Vor optimised

STRUCTURES EXAMINED
Bond length conserving rotations in top bilayer of up to \(35^{\circ}\) and various vertical and lateral displacements of top bilayer; smaller second layer displacements also considered

QUALITY OF EXPERIMENT-THEORY FIT
RX=0.24
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.326 & 0.000 & 0.000 & 6.118 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.326 & 0.000 & 0.000 & 6.118 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

Sb1-Ga2: top bilayer with tilted Ga-Sb chains; Ga3-Sb4, Ga5-Sb6: 2 bulk bilayers;
Ga7-Sb8: periodically repeating bulk bilayer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad B u l k z=2.163 \quad A\)

\(\operatorname{GaSb}(110)-(1 \times 1)\)
31.51 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom 8 & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.652 & Sb1 & Ga2 & Sb1 (1,0) & 109.3 \\
\hline 2.649 & Ga3 & Sb6 (0,1) & Ga7 & 109.5 \\
\hline 2.652 & Sb1 & Ga 2 & Sb4 & 125.0 \\
\hline 2.653 & Sb1 & Ga3 \((0,-1)\) & Sb4 (0, -1) & 104.7 \\
\hline 2.653 & Sb1 & Ga3 \((0,-1)\) & Sb6 & 118.8 \\
\hline 2.648 & Ga2 & Sb4 & Ga3 & 117.2 \\
\hline 2.648 & Ga2 & Sb4 & Ga5 & 92.3 \\
\hline 2.649 & Ga3 & Sb4 & Ga3(1,0) & 109.5 \\
\hline 2.649 & Ga3 & Sb4 & Ga5 & 109.5 \\
\hline 2.649 & Ga3 & Sb6 (0, 1) & Ga5 (0, 1) & 109.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{GaSb}(110)-(1 \times 1)\) \\
CLASSIFICATION \(: 31.51 .3\) \\
TECHNIQUE & \(:\) MEIS \\
AUTHORS & : L. Smit, R.M. Tromp and J.F. van der Veen \\
REFERENCE & : Phys. Rev., B29. 4814 (1984)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : GaSb & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : RT* & Pattern : (1x1) \\
Bulk lattice: zincblende & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf symm: pm & \((0.000,1.000)\)
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : in situ cleavage
Crystallinity:
Anal. methods:
Contamination: monitored by LEED

\section*{DATA COLLECTION}

Technique: MEIS; Rutherford back scattering of He+ Dataset : [-1-1 2] channeling direction; detection in (110) plane for exit angles \(>10^{\circ},<30^{\circ}\); 174k eV

STRUCTURE TYPE
Relaxed bulk termination with \(29^{\circ}\) tilt in top layer

\section*{COMMENTS}

The bond rotation of \(29(+7-4)^{\circ}\) is in good agreement with the LEED determination and rules out the \(7^{\circ}\) model; vibrational amplitudes for the bulk were assumed to be Ga: \(\sqrt{ }\left\langle u^{*} u\right\rangle=0.122\), Sb: \(\sqrt{ }\left\langle u^{*} u\right\rangle=0.104 \AA \AA\); a surface enhancement factor of \(1.5 \pm 0.2\) was found

\section*{THEORY/DATA TREATMENT}

Monte Carlo simulations

STRUCTURES EXAMINED
Bond length conserving rotations in top bilayer of up to \(40^{\circ}\); enhancement of surface vibrations was varied; subsurface reconstruction was not considered.

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B x(A)\) & By (A) & \(a\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.326 & 0.000 & 0.000 & \multirow[t]{4}{*}{\[
\begin{aligned}
& 6.118 \\
& 6.118
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 90.0 \\
& 90.0
\end{aligned}
\]} & ( \(1.000,0.000)\) & \multirow[t]{4}{*}{\begin{tabular}{l}
(1×1) \\
(1×1)
\end{tabular}} & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.326} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & & & \((1.000,0.000)\) & & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Sb1-Ga2: top bilayer with tilted Ga-Sb chains; Ga3-Sb4, Ga5-Sb6: 2 bulk bilayers;
Ga7-Sb8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8 Bulk z=2.163 A


GaSb(110)-(1x1)
31.51 .3

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.652 & Sb1 & Ga 2 & Sbl 11,0\()\) & 109.3 \\
\hline 2.649 & Ga3 & Sb6 (0,1) & Ga7 & 109.5 \\
\hline 2.652 & Sb1 & Ga2 & Sb4 & 125.0 \\
\hline 2.653 & Sb1 & Ga3(0,-1) & Sb4(0,-1) & 104.7 \\
\hline 2.653 & Sb1 & Ga3(0,-1) & S66 & 118.8 \\
\hline 2.648 & Ga2 & Sb4 & Ga3 & 117.2 \\
\hline 2.648 & Ga2 & Sb4 & Ga5 & 92.3 \\
\hline 2.649 & Ga3 & Sb4 & Ga3(1,0) & 109.5 \\
\hline 2.649 & Ga3 & Sb4 & Ga5 & 109.5 \\
\hline 2.649 & Ga3 & Sb6 (0,1) & Ga5 (0,1) & 109.5 \\
\hline
\end{tabular}

GaSb(110)-(1x1)
ILLUSTRATION: 116
CLASSIFICATION : 31.51.3a
TECHNI QUE
MEIS
AUTHORS : L. Smit and J.F. van der Veen
REFERENCE : Surf. Sci., 166, 183 (1986)

\section*{SURFACE TYPE}

Substrate : GaSb Adsorbate:
Crystal face: 110 Coverage :
Temperature : RT
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION ( 1 sample)
Treatment : in-situ cleavage monitored by laser light back scattering
Crystallinity: sharp (1×1) LEED pattern
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: MEIS; 174 keV He+ Rutherford back scattering
Dataset : scattering aligned with [-1-1 2]
channeling axis and exit angles > \(10^{\circ}\), <
\(30^{\circ}\), ions incident from both directions

STRUCTURE TYPE
Relaxed bulk termination with \(28.5 \pm 2.6^{\circ}\) tilt in top layer

\section*{COMMENTS}

Thermal vibrations: bulk Ga rms amplitude 0.112A, bulk Sb amplitude \(0.104 \AA\); surface layer vibrations were optimized to \(1.6 \pm 0.1\) times the bulk

\section*{IHEORY/DATA TREATMENT}

Monte Carlo simulation: see comment

\section*{STRUCTURES EXAMINED}

Bond length conserving rotations in top bilayer up to \(40^{\circ}\) and enhancement of surface layer vibration; bond length relaxation was permitted but substrate relaxation was not included

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \({ }_{\text {A }}\) ) & \(B x(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & \multirow[t]{2}{*}{4.326} & 0.000 & 0.000 & 6.118 & 90.0 & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.326} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{6.118} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Sb1-Ga2: top bilayer with tilted Ga-Sb chains; Sb3-Ga4: bulk bilayer;
Sb5-Ga6: periodically repeating bulk bilayer; 0.1\& error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.650 & Sb1 & Ga2 & Sb1(1,0) & 109.4 \\
2.650 & Sb1 & Ga2 & Sb3 & 124.7 \\
2.649 & Sb1 & Ga4(0,-1) & Sb3(0,-1) & 104.8 \\
2.649 & Sb1 & Ga4(0,-1) & Sb5 & 118.6
\end{tabular}

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.648 & Ga2 & Sb3 & Ga4 & 116.9 \\
\hline 2.648 & Ga2 & Sb3 & Ga6 & 93.2 \\
\hline 2.649 & Sb3 & Ga4 & Sb3 (-1,0) & 109.5 \\
\hline 2.649 & Sb3 & Ga4 & Sb5 (0,1) & 109.5 \\
\hline 2.649 & Sb3 & Ga6 & Sb5 & 109.5 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate \(:\) GaSb & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature : RT* & Pattern : \(2 \times 2)\) \\
Bulk lattice: zincblende & Matrix \(:(2.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2D surf symm: p3m1 & \\
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of 500 eV Ar+ bombardment, then annealing at 773 K
Crystallinity: sharp ( \(2 \times 2\) ) LEED pattern
Anal. methods:
Contamination: photoemission: no trace of impurities

\section*{DATA COLLECTION}

Technique: XRD; grazing incidence x-ray diffraction
Dataset : 15 fract-order and 4 integer-order integrated intensities after symmetry averaging at lamda=1.242A

\section*{STRUCTURE TYPE}

1 missing Ga per ( \(2 \times 2\) ) unit cell in heavily relaxed top bilayer; top bilayer relatively planar

\section*{COMMENTS}

Of 6 possible surface registries, preferred structure has \(c h i^{2}=20\), for the rest ch \(i^{2}>250\);
lateral displacement errors: in surface layer hexagon the Sb atoms were displaced radially outwards by \(0.38 \pm 0.03 \AA\) and the \(G a\) atoms by \(0.17 \pm 0.06 \mathrm{~A}\)

\section*{THEORY/DATA TREATMENT}

Model structure factors compared with exp. by chi-squared testing; vibr. ampl. squared \(=0.0 \pm 1.0 \AA^{2}\)

STRUCTURES EXAMINED
Similarity of exp. results to \(\operatorname{lnSb}(111)-(2 \times 2)\) (PRL 541275 ) implied similar 7 atom model; combinations of surface cell atoms, position relaxation, and surface cell registry tried, and Ga to Sblayer distances of 0 , 0.3 and \(0.8 A\) in surface. bilayer

QUALITY OF EXPERIMENT-THEORY FIT
\(\mathrm{Chi}^{2}=20\)
20 UNIT CELLS ( 1 domain observed)


3D COORDINATES
Ga1 through Sb7: reconstructed top bilayer; Ga8-Sb9: undistorted bulk bilayer;
Ga10-Sb11: periodically repeating bulk bilayer; 0.1A error bars assumed for tabulation (see comment)
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.642 & Ga1 & Sb4 (-1,0) & \(\operatorname{Ga2}(-1,0)\) & 99.0 \\
\hline 2.642 & Ga1 & Sb4(-1,0) & \(\operatorname{Ga8}(-1,-1)\) & 84.6 \\
\hline 2.634 & Ga1 & Sb6 & Ga3 & 99.2 \\
\hline 2.634 & Ga1 & Sb6 & Ga8(0, -1) & 84.7 \\
\hline 2.660 & Ga1 & Sb7(0,-1) & \(\mathrm{Ga} 2(0,-1)\) & 119.8 \\
\hline 2.660 & Ga1 & Sb7 \(0,-1\) ) & \(\mathrm{Ga} 3(0,-1)\) & 120.1 \\
\hline 2.640 & Sb7 & Ga8 & Sb9 & 109.5 \\
\hline 2.640 & Ga8 & Sb9 & Ga10 & 109.5 \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Ge & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: 300 K & Pattern : (2x1) \\
Bulk lattice: diamond & Matrix : \(2.000,0.000)\) \\
2D bulk symm: pmm & \\
2D surf &
\end{tabular}
```

Adsorbate:
Coverage :
Matrix : (2.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Tilted dimer reconstruction with lateral relaxation in 2nd layer

\section*{COMMENTS}

Each basic model was used to fix the direction and symmetry of atomic displacements from the unreconstructed positions; the magnitude of displacement for each model was then determined by comparison with experimental data

\section*{THEORY/DATA TREATMENT}

Least squares fit of integrated intensity to kinematic intensities; rms vibs \(=0.24 \AA\)

STRUCTURES EXAMINED
1) dimer model: Farnsworth et al, J Appl Phys 291150 1958; 2) 2-layer model: Appelbaum et al Surf Sci 7421 1978; 3) Chadi's asymmetric dimer model: Phys Rev Lett 4343 1979; 1) gave poor fit and was eliminated; 2) and 3) yielded identical structures for the displacements examined

QUALITY OF EXPERIMENT-THEORY FIT
Least squares fit
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.995 & 0.000 & 0.000 & 3.995 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 7.990 & 0.000 & 0.000 & 3.995 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 x 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ge1-Ge2: asymmetrical dimer; Ge3-Ge4: laterally relaxed planar 2nd layer;
Ge5-Ge6: periodically repeating bulk layer pair
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6


Ge(100)-(2×1)
32.1
bOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.509 & Ge1 & Ge2 & Ge1(1,0) & 114.5 \\
\hline 2.278 & Ge2 & Ge4 & \(\operatorname{Ge} 3(-1,0)\) & 110.5 \\
\hline 2.509 & Ge1 & Ge 2 & \(\operatorname{Ge} 3(-1,0)\) & 122.4 \\
\hline 2.509 & Ge1 & Ge 2 & Ge4 & 118.0 \\
\hline 2.509 & Ge1 & Ge2 & Ge5 & 93.2 \\
\hline 2.960 & Ge1 & Ge3( \(-1,0\) ) & Gel( 0,1 ) & 84.9 \\
\hline 2.960 & Ge1 & \(\mathrm{Ge} 3(-1,0)\) & \(\mathrm{Ge} 2(-1,1)\) & 118.1 \\
\hline 2.960 & Ge1 & \(\operatorname{Ge} 3(-1,0)\) & \(\operatorname{Ge} 4(-1,0)\) & 105.8 \\
\hline 2.960 & Ge1 & \(\mathrm{Ge} 3(-1,0)\) & Ge5 & 101.1 \\
\hline 2.960 & Ge1 & Ge3( \(-1,0\) ) & \(\mathrm{Ge} 5(-1,0)\) & 127.4 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Ge}(100)-(2 \times 1)\) \\
CLASSIFICATION & \(: 32.5\) \\
TECHNIQUE & \(: X R D\) \\
AUTHORS & \(:\) \\
& F. Grey, R.L. Johnson, J.S. Pederson, M. Nielsen and R. \\
& Feidenhans'l \\
REFERENCE & : Springer Series in Surface Sciences, 11, 292 (1988)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Ge & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT* & Pattern : (2x1) \\
Bulk lattice: diamond & Matrix : \(2.000,0.000)\) \\
2D bulk symm: pmm & \\
\hline
\end{tabular}

STRUCTURE TYPE
Symmetric dimer reconstruction (with relaxations down to 7th layer taken from theory)

\section*{COMMENTS}

Small dimer buckling cannot be ruled out

\section*{THEORY/DATA TREATMENT}

Least squares fit of integrated intensity to theoretical kinematic intensities

STRUCTURES EXAMINED
Large data set eliminated all but the dimer model; various amounts of buckling tested; subsurface configuration was assumed to be mainly bond bending, not bond stretching, with relaxations chosen from J.A. Appelbaum and D.R. Hamann, Surf. Sci. 74, 21 (1978)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.995 & 0.000 & 0.000 & 3.995 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 7.990 & 0.000 & 0.000 & 3.995 & 90.0 & \((2.000,1.000)\) & \((2 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
Ge1-Ge2: symmetric dimer; Ge3-Ge16: relaxed substrate layers (from theory);
Ge17-Ge18: periodically repeating set of bulk layers; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(18 \quad\) Bulk \(\mathbf{z}=2.825 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel. to & \(D X \pm E X\) & DY \(\pm \in \boldsymbol{y}\) & \(D z \pm \epsilon z\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{z} / \mathrm{Bz}\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.998 A & 1.998 A & 2.825 A & \\
\hline intf & Ge & 1 & s 1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ge & 2 & s1 & . 50 & 1 & \(0.292 \pm .013 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100 ~ A\) & \(0.0 \pm 3.5\) \\
\hline intf & Ge & 3 & s1 & . 50 & 2 & \(0.609 \pm .013 \mathrm{f}\) & 0.500 f & \(1.170 \pm .100 ~ A\) & \(41.4 \pm 3.5\) \\
\hline intf & Ge & 4 & s1 & . 50 & 3 & -0.510 f & 0.000 f & \(0.000 \pm .100\) & \(0.0 \pm 3.5\) \\
\hline intf & Ge & 5 & s 1 & . 50 & 4 & 0.255 f & 0.000 f & 1.360 A & 48.2 \\
\hline intf & Ge & 6 & s 1 & . 50 & 5 & -0.500 f & 0.000 f & 0.300 A & 10.6 \\
\hline intf & Ge & 7 & s1 & . 50 & 6 & 0.500 f & -0.500 f & 1.110 & 39.3 \\
\hline intf & Ge & 8 & s 1 & . 50 & 7 & -0.500 f & 0.000 f & 0.300 A & 10.6 \\
\hline intf & Ge & 9 & s1 & . 50 & 8 & 0.747 f & 0.000 f & 1.380 A & 48.9 \\
\hline intf & Ge & 10 & s1 & . 50 & 9 & -0.494 fif & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ge & 11 & s1 & . 50 & 10 & \(0.494 \quad f\) & 0.500 f & 1.410 A & 49.9 \\
\hline intf & Ge & 12 & s1 & . 50 & 11 & -0.494 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ge & 13 & s1 & . 50 & 12 & -0.253 f & 0.000 f & 1.380 A & 48.9 \\
\hline intf & Ge & 14 & s 1 & . 50 & 13 & 0.500 f & 0.000 f & 0.120 A & 4.3 \\
\hline intf & Ge & 15 & s1 & . 50 & 14 & -0.500 f & -0.500 f & 1.290 A & 45.7 \\
\hline intf & Ge & 16 & s1 & . 50 & 15 & 0.500 f & 0.000 f & 0.120 A & 4.3 \\
\hline subl & Ge & 17 & b & 1.00 & 16 & 0.500 f & 0.000 f & 1.412 A & 50.0 \\
\hline subl & Ge & 18 & b & 1.00 & 17 & 0.000 f & 0.500 f & \(1.412 \quad \AA\) & 50.0 \\
\hline
\end{tabular}

Ge(100)-(2x1)
32.5

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.333 & Ge1 & Ge2 & Ge3( \(-1,0\) ) & 110.6 \\
\hline 2.446 & Gel & \(\operatorname{Ge} 3(-1,0)\) & Ge5 (-2,0) & 122.3 \\
\hline 2.446 & Ge 1 & Ge3 ( \(-1,0\) ) & \(\operatorname{Ge}(-1,0)\) & 123.6 \\
\hline 2.450 & Ge3 & Ge5 & Ge7 & 108.7 \\
\hline 2.450 & Ge3 & Ge5 & \(\mathrm{Ge} 8(1,0)\) & 111.2 \\
\hline 2.567 & Ge3 & Ge6 (1,0) & Ge ( 1,0 ) & 108.3 \\
\hline
\end{tabular}
REFERENCE : Chem. and Phys. of Sol. Surf. VIII, 22, 395 (1990)

\section*{SURFACE TYPE}
Substrate: Ge
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3mi
2D surf symm: pm
```

Adsorbate:
Coverage :
Pattern : c(2x8)
Matrix : (2.000, 0.000)
(-1.000, 4.000)

```

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment:
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV curves for 7 beams: \(E=30-320 \mathrm{eV}\), normal incidence

\section*{STRUCTURE TYPE}

2 adatoms \(A\) and \(B\) in the top layer in T4 sites with identical local environments; relaxations found in the top 5 Ge layers (adatoms +2 bilayers)

\section*{COMMENTS}

The positions of the adatoms make \(1 / 4\) order spots vanish in kinematic approximation; their intensities are due to multiple scattering and are two orders of magnitude smaller than for \(1 / 2\) order spots, in agreement with experiment R-factor used not mentioned.

\section*{THEORY/DATA TREATMENT}

Quasi-dynamical LEED (Ge bilayers treated as composite layers):

STRUCTURES EXAMINED
1) dimers-chain model (K. rakayanagi et al. Phys. Rev. B34 10324 (1986)), 2) relaxed H3 adatoms, 3) relaxed T4 adatoms, 3) is preferred

QUALITY OF EXPERIMENT - THEORY FIT
1) \(R=0.34\), 2) \(R=0.31,3\) ) \(R=0.27\)
\(2 D\) UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & 2.000 & 3.464 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 8.000 & 0.000 & 4.000 & 13.857 & 73.9 & \[
(2.000,0.000)
\] & \(c(2 \times 8)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ge1-Ge2: adatoms; Ge3-Ge10: top half of 1st bilayer; Ge11-Ge18: bottom half of 1st bilayer; Ge19-26 and Ge27-34: 2nd bilayer; Ge35-Ge36: bulk bilayer; 0.1A error bars set for fitted coordinates

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{D} \quad \pm \epsilon \mathrm{X}\) & Dy \(\pm \epsilon y\) & & Dz \(\pm \boldsymbol{E Z}\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & & f & & A & \\
\hline subr & & -1 & & & & 2.000 A & 1.155 & A & 3.267 & A & \\
\hline intf & Ge & 1 & s1 & .13 & 0 & 0.000 A & 0.000 & A & \(-8.506 \pm .100\) & A & \(-347.2 \pm 4.1\) \\
\hline intf & Ge & 2 & s1 & .13 & 0 & 8.000 A & 6.932 & A & -8.506 & A & -347.2 \\
\hline intf & Ge & 3 & s1 & .13 & 0 & 4.000 A & 2.311 & A & -7.356 & A & -300.3 \\
\hline intf & Ge & 4 & s1 & .13 & 0 & 4.000 A & 9.243 & A & -7.356 & A & -300.3 \\
\hline intf & Ge & 5 & s1 & . 13 & 0 & 8.000 A & \(2.011 \pm .100\) & A & \(-7.136 \pm .100\) & A & -291.3 \(\pm 4.1\) \\
\hline intf & Ge & 6 & s 1 & . 13 & 0 & 8.000 A & 8.943 & \(\AA\) & -7.136 & A & -291.3 \\
\hline intf & Ge & 7 & s 1 & .13 & 0 & 5.741 A & 12.852 & \(\AA\) & -7.136 & A & -291.3 \\
\hline intf & Ge & 8 & s1 & . 13 & 0 & 1.741 A & 5.927 & A & -7.136 & A & -291.3 \\
\hline intf & Ge & 9 & s1 & .13 & 0 & 10.260 A & 12.852 & A & -7.136 & A & -291.3 \\
\hline intf & Ge & 10 & s1 & . 13 & 0 & 6.259 A & 5.927 & A & -7.136 & A & -291.3 \\
\hline intf & Ge & 11 & s1 & . 13 & 0 & 4.000 A & \(0.120 \pm .100\) & A & \(-6.639 \pm .100\) & A & -271.0 \(\pm 4.1\) \\
\hline intf & Ge & 12 & s1 & .13 & 0 & 4.000 A & 7.052 & \(\AA\) & -6.639 & A & -271.0 \\
\hline intf & Ge & 13 & s1 & . 13 & 0 & 2.105 A & 3.406 & A & -6.639 & A & -271.0 \\
\hline intf & Ge & 14 & s1 & . 13 & 0 & 10.105 A & 10.338 & A & -6.639 & A & -271.0 \\
\hline intf & Ge & 15 & s1 & .13 & 0 & 5.895 A & 3.406 & A & -6.639 & A & -271.0 \\
\hline intf & Ge & 16 & s1 & . 13 & 0 & 5.895 A & 10.338 & A & -6.639 & A & -271.0 \\
\hline intf & Ge & 17 & s1 & .13 & 0 & 0.000 A & 0.000 & \(\AA\) & \(-5.919 \pm .100\) & A & -241.6 \(\pm 4.1\) \\
\hline intf & Ge & 18 & s 1 & . 13 & 0 & 8.000 A & 6.932 & A & -5.919 & A & -241.6 \\
\hline intf & Ge & 19 & s1 & . 13 & 0 & 4.000 A & 0.000 & \(\AA\) & \(-4.126 \pm .100\) & \(\AA\) & -168.4 \(\pm 4.1\) \\
\hline intf & Ge & 20 & s1 & . 13 & 0 & 4.000 A & 6.932 & \(\AA\) & \(-4.126\) & \(\AA\) & -168.4 \\
\hline
\end{tabular}
```

Ge(111)-c(2x8)

```

3D Coordinates - Continued


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 16
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.433 & Ge1 & \(\operatorname{Ge} 5(-1,0)\) & Ge13 & 123.8 \\
\hline 2.433 & Ge2 & Ge8(1,0) & Ge13(1,0) & 127.6 \\
\hline 2.433 & Ge 2 & Ge8(1,0) & Ge18 & 65.5 \\
\hline 2.305 & Ge3 & Ge11 & Ge7(0,-1) & 110.8 \\
\hline 2.305 & Ge3 & Ge11 & \(\operatorname{Ge} 9(0,-1)\) & 110.8 \\
\hline 2.305 & Ge3 & Ge11 & Ge19 & 110.9 \\
\hline 2.303 & Ge3 & Ge13 & Ge5 (-1, 0) & 110.8 \\
\hline 2.303 & Ge3 & Ge15 & Ge23 & 110.9 \\
\hline 2.433 & Ge1 & Ge5(-1,0) & Ge15 (-1,0) & 123.8 \\
\hline 2.433 & Ge1 & Ge5 (-1,0) & Ge17 & 65.5 \\
\hline 2.433 & Ge1 & \(\operatorname{Ge} 7(0,-1)\) & Ge11 & 123.8 \\
\hline 2.433 & Ge1 & \(\operatorname{Ge} 7(0,-1)\) & Ge16(0,-1) & 123.8 \\
\hline 2.587 & Ge1 & Ge17 & \(\operatorname{Ge} 7(0,-1)\) & 58.8 \\
\hline 2.587 & Ge1 & Gel7 & Ge9 (-1,-1) & 58.8 \\
\hline 2.587 & Ge1 & Ge17 & Ge25 & 180.0 \\
\hline 2.433 & Ge 2 & Ge8(1,0) & Ge12 (1,0) & 123.8 \\
\hline
\end{tabular}

TECHNIQUE : LEED and AES
AUTHORS : K.J.Wan, W.K. Ford, G.J. Lapeyre and J.C. Hermanson
REFERENCE : Phys. Rev., B44, 6500 (1991)

SURFACE TYPE
Substrate: Ge
Crystal face: 111
Temperature : 320C
Bulk lattice: diamond 2D bulk symm: p3m1 20 surf symm: p31m

Adsorbate: Bi
Coverage : \(1 / 3 \mathrm{Bi} / 1 \mathrm{x} 1\)
Pattern : \((\sqrt{3} x \sqrt{3})\) R \(30^{\circ}\)
Matrix : ( \(1.000,1.000\) )
(-1.000, 2.000)

\section*{STRUCTURE TYPE}

Atomic adsorption of Bi in T4 site (3-fold hollow above 2nd Ge layer) on unreconstructed, relaxed substrate

SAMPLE PREPARATION ( 2 sample)
Treatment : Bi depos. on hot-sample surface(320C) showing ( \(1 \times 1\) ) pattern
Crystallinity: same IVs for different preparations
Anal. methods:
Contamination: AES used to monitor coverage

\section*{DATA COLLECTION}

Technique: LEED and AES
Dataset : IV curves for 11 ineq. beams: \(E=50-300 \mathrm{eV}\), cumul. E range 2000 eV

\section*{IHEORY/DATA TREATMENT}

Dynamical LEED : extension of Duke-Laramore codes 6 relativistic phase shifts; Voi, Vor fit

\section*{STRUCTURES EXAMINED}

T4 site (Bi in 3-fold hollow above 2nd layer Ge atom); H3 site (in 3-fold hollow above 4th layer Ge); full structural optimization for T4 site

QUALITY OF EXPERIMENT - THEORY FIT
\(\mathrm{RX}=0.244\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \({ }_{\text {A }}\) ) & Ay ( \(\AA\) ) & \(B x\) (A) & By ( \({ }_{\text {A }}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.464} & \multirow[t]{2}{*}{-2.000} & \multirow[t]{2}{*}{3.464} & \multirow[t]{2}{*}{2.000} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{6.928} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.464} & \multirow[t]{2}{*}{6.000} & \multirow[t]{2}{*}{60.0} & ( 1.000, 1.000 ) & \multirow[t]{2}{*}{\((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\)} & s1: commens. \\
\hline & & & & & & (-1.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Bi1: atomic overlayer in T4 sites; Ge2-Ge4, Ge5-Ge7, Ge8-Ge10: 1st, 2nd and 3rd planar half
Ge bilayers; Ge11-Ge12: periodically repeating set of bulk layers; error bars of \(0.1 \AA\) set for fitted coord.
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 12
Bulk z \(=3.267 \AA\)

\(\mathrm{Ge}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Bi}\)
32.83.1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 12
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.090 & Bi1 & \(\mathrm{Ge} 2(-1,0)\) & Ge3 & 47.9 \\
\hline 2.449 & Ge10 & Ge11 & Ge8 & 106.3 \\
\hline 2.560 & Ge11 & Ge8 & Ge5 & 115.6 \\
\hline 2.449 & Ge11 & Ge10 & Ge7 & 109.5 \\
\hline 2.585 & Bi1 & Ge7 & \(\mathrm{Ge} 2(-1,0)\) & 52.0 \\
\hline 2.585 & Bi1 & Ge7 & Ge10 & 180.0 \\
\hline 2.800 & Ge2 & Ge3 \((1,0)\) & Bi1(1,0) & 47.9 \\
\hline 2.800 & Ge 2 & Ge3 \((1,0)\) & Ge4(1,-1) & 60.0 \\
\hline 2.051 & Ge3 & Ge7 & Bi1 & 52.1 \\
\hline 2.051 & Ge3 & Ge7 & \(\operatorname{Ge} 2(-1,0)\) & 86.1 \\
\hline 2.429 & Ge10 & Ge7 & Bi1 & 180.0 \\
\hline 2.429 & Ge10 & Ge7 & \(\operatorname{Ge} 2(-1,0)\) & 128.0 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
AUTHORS & : P.H. Citrin, J.E. Rowe and P. Eisenberger \\
REFERENCE & : Phys. Rev., B28, 2299 (1983)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Ge & Adsorbate: Cl \\
Crystal face: 111 & Coverage : 1ML Cl/Si \\
Temperature: RT* & Pattern : (1x1) \\
Bulk lattice: diamond & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2D & \((0.000,1.000)\)
\end{tabular}

2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : Ar \({ }^{+}\), resistive annealing and exposure to Cl 2
Crystallinity: (1x1) LEED pattern after annealing
Anal. methods:
Contamination:
DATA COLLECTION
Technique: SEXAFS; polarization dependent SEXAFS
Dataset : SEXAFS \(\left(\Theta=10^{\circ}, 90^{\circ}\right)\) : filtered data in range 1.0-2.8A

STRUCTURE TYPE
Atomic adsortion in top sites on unrelaxed unreconstructed substrate

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Fourier transform and polarization dependence of first-neighbor peak

STRUCTURES EXAMINED
Only top site is consistent with polarization dependence of nearest-neighbor peak in fourier transformed spectrum
\[
2 D \text { UNIT CELLS ( } 1 \text { domain observed) }
\]
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.995 & 0.000 & -1.998 & 3.460 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.995 & 0.000 & -1.998 & 3.460 & 120.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Cl1: top-site overlayer; Ge4-Ge5: periodically repeating bulk bilayer
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.070 & Cl1 & Ge2 & Ge3 & 109.5 \\
\hline 2.447 & Ge2 & Ge3 & Ge4 & 109.5 \\
\hline
\end{tabular}


20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & \multirow[t]{2}{*}{4.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 3.464 \\
& 3.464
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 120.0 \\
& 120.0
\end{aligned}
\]} & ( \(1.000,0.000\) ) & \multirow[t]{4}{*}{\[
\begin{aligned}
& (1 \times 1) \\
& (1 \times 1)
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
b: bulk lattice \\
s1: commens. superlattice
\end{tabular}} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.000 & 0.000 & & & & ( 1.000, 0.000) & & \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline
\end{tabular}

3D COORDINATES
Ge1-Ge2: relaxed top bilayer: Ge3-Ge4: unrelaxed 2nd bilayer:
Ge5-Ge6: periodically repeating set of bulk layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 6
Bulk z \(=3.267 \AA\)


Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.418 & Ge 1 & Ge 2 & Ge 3 & 107.2 \\
2.500 & Ge 2 & Ge 3 & Ge 4 & 109.5 \\
2.449 & Ge 3 & Ge 4 & Ge 5 & 109.5 \\
2.450 & Ge 4 & Ge 5 & 109.5 \\
\hline
\end{tabular}
```

COMMON NAME : Ge(111)-(1x1)-I ILLUSTRATION: 96,99
CLASSIFICATION : 32.53.2
TECHNIQUE : XSW, SEXAFS
AUTHORS : M.J. Bedzyk, Q. Shen, M.E. Keeffe and G. Navrotski
REFERENCE : Surf. Sci., 220, 419 (1989)

```

SURFACE TYPE
Substrate : Ge
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : Ar sputt, annealing, then I deposited from electrol. source
Crystallinity:
Anal. methods:
Contamination: AES, LEED used to assess clean Ge(111)

DATA COLLECTION
Technique: XSW, SEXAFS; XSW measurement, \(E\) (gamma)=6. OK Dataset : I L3 peak at 1400 eV scanned over 5.3 eV range

\section*{STRUCTURE TYPE}

Atomic adsorption of \(I\) in top sites on unreconstructed, relaxed substrate: first substrate interlayer spacing contracted by 10\%

\section*{COMMENTS}

XSW data measured in this work used together with SEXAFS data previously recorded to determine structure

2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(A\) ) & BX ( \(A\) ) & By ( \(A^{\prime}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & -2.000 & 3.464 & 120.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.000 & 0.000 & -2.000 & 3.464 & 120.0 & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

I1: atomic overlayer in top sites; Ge2-Ge3: unreconstructed, contracted top substrate bilayer; Ge4-Ge5: periodically repeating set of bulk layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z \(=3.267 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.500 & 11 & Ge2 & Ge3 & 107.1 \\
\hline 2.416 & Ge2 & Ge3 & Ge2 \((0,1)\) & 111.8 \\
\hline 2.416 & Ge 2 & Ge3 & Ge4 & 107.1 \\
\hline 2.503 & Ge3 & Ge4 & \(\mathrm{Ge} 5(0,1)\) & 108.3 \\
\hline 2.503 & Ge4 & Ge3 & Ge2(1,1) & 107.1 \\
\hline 2.432 & Ge4 & \(\operatorname{Ge} 5(0,1)\) & Ge4(1,1) & 110.6 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Ge}(111)-(1 \times 1)-\mathrm{PHx}\) \\
CLASSIFICATION: & 32.15 .1 .1 \\
TECHNIQUE & : ARPEFS \\
AUTHORS & L.J. Terminello, K.T. Leung, Z. Hussain, Y. Hayashi, X.S. \\
& 2hang and D.A. Shirley \\
REFERENCE & : Phys. Rev., B41, 12787 (1990)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Ge & Adsorbate: PHx \((x<=3)\) \\
Crystal face: 111 & Coverage : \(1.0 \mathrm{PHx} / 1 \times 1\) \\
Temperature : RT* & Pattern : \(1 \times 1)\) \\
Bulk lattice: diamond & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2D surf symm: pm & \\
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to PH3: saturation achieved after 3-4 cycles
Crystallinity: clear (1×1) with minimum background
Anal. methods:
Contamination: AES, LEED used to assess clean Ge(111)
DATA COLLECTION
Technique: ARPEFS
Dataset : normal, off-normal emiss. fine struct. chi(E) \(50<E<550 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

Adsorption of partially dissociated PH3 in tilted top sites on unreconstructed, relaxed substrate; first Ge-Ge
interlayer spacing contracted by \(16 \%\)

\section*{COMMENTS}

Indirect evidence that PH2 is the specie adsorbed

\section*{THEORY/DATA TREATMENT}

Curved wave multiple scattering theory with R-factor; non-structural parameters described in SSD 32.16.1

STRUCTURES EXAMINED
P in top (a), 3-fold (eclipsed(b) and hollow(c)) and substitutional(d) sites; displacement of \(P\) used to choose a over \(c\); optimization of \(P\) position and first two Ge layer spacings for final structure determination; H neglected

2 CNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & -2.000 & 3.464 & 120.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.000 & 0.000 & -2.000 & 3.464 & 120.0 & ( 1.000, 0.000) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
P1: forms PHx overlayer in tilted top sites; Ge2-Ge3: unreconstructed, contracted top substrate bilayer; Ge4-Ge5: periodically repeating set of bulk layers

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5 Bulk z = 3.267 A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{D} \quad \pm \epsilon \mathrm{X}\) & Dy \(\pm \in Y\) & \(\mathrm{Dz} \pm \boldsymbol{E z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & -2.000 \& & -1.155 \& & 3.267 A & \\
\hline ovrl & P & 1 & s1 & 1.00 & 0 & 0.000 A & \(0.630 \pm .050 \AA\) & \(-2.260 \pm .040 \AA\) & \(-69.2 \pm 1.2\) \\
\hline intf & Ge & 2 & s1 & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ge & 3 & s1 & 1.00 & 0 & 0.333 f & 0.667 f & 0.680 A & 20.8 \\
\hline subl & Ge & 4 & b & 1.00 & 0 & 0.333 f & 0.667 f & 3.340 A & 102.2 \\
\hline subl & Ge & 5 & b & 1.00 & 3 & 0.333 f & -0.333 f & 3.267 A & 100.0 \\
\hline
\end{tabular}

\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C} & \begin{tabular}{r} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.346 & P 1 & Ge 2 & Ge 3 & 90.8 \\
2.346 & G 1 & Ge 2 & \(\mathrm{Ge} 3(0,-1)\) & 113.6 \\
2.408 & Ge 2 & Ge 3 & \(\mathrm{Ge} 2(1,1)\) & 112.4 \\
2.408 & Ge 2 & Ge 3 & Ge 4 & 106.4
\end{tabular}

Ge(111)-(1x1)-PHx
32.15.1.1

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.660 & Ge 3 & Ge 4 & Ge 5 & 104.7 \\
2.660 & Ge 4 & Ge 3 & Ge 2 & 106.4 \\
2.388 & Ge 4 & \(\mathrm{Ge5}\) & \(\mathrm{Ge4}(1,0)\) & 113.8 \\
2.388 & Ge 4 & Ge 5 & \(\mathrm{Ge} 4(0,-1)\) & 113.8 \\
\hline
\end{tabular}

COMMON NAME : Ge(111)-( \(3 \times \sqrt{3}\) )R30 \({ }^{\circ}-\mathrm{Pb}(1 / 3 M L)\)
CLASSIFICATION : 32.82.6a
TECHNIQUE : LEED
AUTHORS : H. Huang, C.M. Wei, H. Li, B.P. Tonner and S.Y. Tong
REFERENCE : Phys. Rev. Lett., 62, 559 (1989)

\section*{SURFACE TYPE}

Substrate: Ge
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond 2D bulk symm: p3mi 2D surf symm: p31m

SAMPLE PREPARATION ( sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 5 inequivalent beams at normal incidence; \(50<E<300 \mathrm{eV}\)
full relaxation of Pb position and first Ge layer consistent with p 31 m symmetry; only vertical relaxation (again p3m1) for 2nd and 3rd Ge layers

QUALITY OF EXPERIMENT-THEORY FIT
\(R(V H T)=0.28\)
\[
\begin{aligned}
& \text { Adsorbate: } \mathrm{Pb} \\
& \text { Coverage : } 1 / 3 \mathrm{~Pb} / 1 \times 1 \\
& \text { Pattern : }(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ} \\
& \text { Matrix }:(2.000,1.000) \\
& \\
& \\
& \\
& \\
& (-1.000,1.000)
\end{aligned}
\]

STRUCTURE TYPE
\(\alpha\) structure: atomic adsorption of Pb in T 4 sites on unreconstructed, relaxed substrate: buckling of second and third Ge monolayers (first is planar)

COMMENTS
Compare 4/3ML B structure: SSD 32.82 .6 b

\section*{THEORY/DATA TREATMENT}

Dynamical LEED

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & Ay ( \(A\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.000 & -3.464 & 2.000 & 3.464 & 120.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 6.000 & -3.464 & 0.000 & 6.928 & 120.0 & \[
\begin{aligned}
& (2.000, \\
& (-1.000, \\
& (1.000)
\end{aligned}
\] & \((\sqrt{3} \times \sqrt{3}) 830^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

30 COORDINATES
Pb1: atomic overlayer in T4 sites; Ge2-Ge4, Ge5-Ge7, Ge8-Ge10: 1st, 2nd and 3rd half bilayers; Ge11-Ge12 form period. repeated bulk set error bars of \(0.1 \AA\) set for fitted coord.

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D X \pm \epsilon X\) & DY \(\pm \in Y\) & \(D z \pm \epsilon \mathcal{L}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 2.000 \& & 1.155 A & 3.267 A & \\
\hline ovrl & Pb & 1 & s1 & . 33 & 0 & \(0.000 \quad \AA\) & 2.310 A & \(-5.785 \pm .100 \AA\) & \(-177.1 \pm 3.1\) \\
\hline intf & Ge & 2 & s1 & . 33 & 0 & 0.000 A & \(4.201 \pm .100\) A & \(-4.085 \pm .100 \AA\) & \(-125.1 \pm 3.1\) \\
\hline intf & Ge & 3 & s1 & . 33 & 0 & 1.637 A & 1.365 A & -4.085 \& & -125.1 \\
\hline intf & Ge & 4 & s1 & . 33 & 0 & 4.363 A & -2.099 A & -4.085 \& & -125.1 \\
\hline intf & Ge & 5 & s1 & . 33 & 0 & 2.000 A & -1.155 \& & \(-3.368 \pm .100 \AA\) & \(-103.1 \pm 3.1\) \\
\hline intf & Ge & 6 & s1 & . 33 & 0 & 4.000 A & 2.309 A & -3.368 A & -103.1 \\
\hline intf & Ge & 7 & s 1 & . 33 & 0 & 0.000 A & 2.310 A & \(-2.918 \pm .100 \AA\) & \(-89.3 \pm 3.1\) \\
\hline intf & Ge & 8 & s1 & . 33 & 0 & 2.000 \& & -1.155 A & \(-0.867 \pm .100 \AA\) & \(-26.5 \pm 3.1\) \\
\hline intf & Ge & 9 & s1 & . 33 & 0 & 4.000 A & 2.309 A & -0.867 \(\AA\) & -26.5 \\
\hline intf & Ge & 10 & s1 & . 33 & 0 & 0.000 A & 2.310 A & \(-0.617 \pm .100 \AA\) & \(-18.9 \pm 3.1\) \\
\hline subl & Ge & 11 & b & 1.00 & 0 & 0.000 A & 0.000 A & 0.000 A & 0.0 \\
\hline subl & Ge & 12 & b & 1.00 & 11 & \(0.000 \AA\) & 0.000 A & 2.450 A & 75.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 2.543 & Pb1 & Ge2 & Ge5 (0, 1) & 128.6 \\
\hline 2.467 & Ge8 & Ge11 & Ge9(-1,-1) & 108.3 \\
\hline 2.467 & Ge8 & Ge11 & Ge10 & 111.2 \\
\hline 2.450 & Ge11 & Ge12 & & \\
\hline 2.450 & Ge12 & Ge11 & Ge8 & 110.6 \\
\hline 2.450 & Ge4 & Ge5 & Ge6 & 109.5 \\
\hline 2.543 & Pb1 & Ge2 & Ge 7 & 73.6 \\
\hline 2.867 & Pb1 & Ge7 & Ge2 & 58.3 \\
\hline 2.643 & Ge2 & Ge5 (0, 1) & Ge3 \((0,1)\) & 112.9 \\
\hline 2.643 & Ge2 & Ge5 (0,1) & Ge4(0,1) & 113.0 \\
\hline 2.222 & Ge2 & Ge 7 & Pb1 & 58.3 \\
\hline 2.222 & Ge2 & Ge 7 & Ge3 & 94.9 \\
\hline 2.501 & Ge5 & Ge8 & Ge11(1,1) & 110.6 \\
\hline 2.301 & Ge7 & Ge10 & Ge11(0,1) & 105.0 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
CLASSIFICATION & : 32.82 .6 b \\
TECHNIQUE & LEED \\
AUTHORS & : H. Huang, C.M. Wei, H. Li, B.P. Tonner and S.Y. Tong \\
REFERENCE & : Phys. Rev. Lett., 62,559 (1989)
\end{tabular}

STRUCTURE TYPE
B structure: two Pb layers separated by \(0.44 \AA\) on unreconstructed, relaxed substrate: inner layer has Pb in H3 sites ( \(1 / 3 \mathrm{ML}\) ); outer layer has Pb in off-centered T1 sites (1ML)

\section*{COMMENTS}
B.N.Dev et al analyzed same structure with XSW, finding
1.3太 spacing between Pb layers (instead of \(0.44 \AA\) ):
this model gives \(R(V H T)=0.339\) by LEED
compare \(B\) structure with 1/3ML \(\alpha\) structure: SSD 32.82.6a
THEORY/DATA TREATMENT
Dynamical LEED

Technique: LEED
Dataset : I-V spectra: 10 inequivalent beams at normal incidence; \(30<E<300 \mathrm{eV}\)
full relaxation for Pb atoms and first \(G e\) layer consistent with p31m symmetry; only vertical relaxation (again p3m1) for 2nd layer

QUALITY OF EXPERIMENT-THEORY FIT
\(R(\) VHT \()=0.275\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & BX ( \(\mathrm{A}^{\text {) }}\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.000 & -3.464 & 2.000 & 3.464 & 120.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 6.000 & -3.464 & 0.000 & 6.928 & 120.0 & \[
\begin{array}{cc}
(2.000, & 1.000) \\
(-1.000, & 1.000)
\end{array}
\] & \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

\section*{30 COORDINATES}

Pb1-Pb3: in off-center T1 (top) sites; Pb4: in H3 (hollow) Ge5-Ge7, Ge8-Ge10: 1st and 2nd Ge layers; Ge14 and Ge15: periodically repeating set of bulk layers; error bar of \(0.1 \AA\) set for fitted coord.

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors. No. of atoms: \(15 \quad\) Bulk z \(=3.267 \AA\)


Bond distances and angles are derived from coordinates
No. of distances/angles: 13
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) (A) & Atom A & Atom 8 & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 3.544 & Pb1 & Pb2 & Pb1 11,0\()\) & 155.6 \\
\hline 3.183 & Pb4 & Ge5 & Pb 2 & 61.5 \\
\hline 3.183 & Pb4 & Ge5 & Ge8 & 84.6 \\
\hline 2.496 & Ge5 & Ge8 & Ge6 & 108.6 \\
\hline 2.496 & Ge5 & Ge8 & Ge11 & 110.3 \\
\hline 3.544 & Pb1 & Pb2 & Pb3 0,1\()\) & 60.0 \\
\hline 3.064 & Pb1 & Pb4(0,1) & \(\operatorname{Pb1}(0,1)\) & 165.3 \\
\hline 3.064 & Pb1 & Pb4(0,1) & \(\mathrm{Pb} 2(0,1)\) & 118.0 \\
\hline 3.921 & Pb1 & Pb4 & \(\operatorname{Pb1}(0,-1)\) & 165.3 \\
\hline 3.921 & Pb1 & Pb4 & Pb2 & 59.5 \\
\hline 2.743 & Pb1 & Ge7 & Pb4 \((0,1)\) & 60.9 \\
\hline 2.743 & Pb1 & Ge7 & Ge8(0,1) & 117.1 \\
\hline 2.766 & Pb2 & Ge5 & Pb4 & 61.5 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate:
Crystal face: 100
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: pmm
2D surf symm: prmm
```

Adsorbate: S
Coverage : 0.5 S/Ge
Pattern : (2x1)
Matrix : (2.000, 0.000)
(0.000, 1.000)

```

\section*{STRUCTURE TYPE}

Atomic adsorption in bridge (i.e. bulk continuation) sites of unreconstructed but relaxed substrate

\section*{COMMENTS}

All structures incorporating the here tabulated bridge site give similar agreement; the here tabulated structure gives best agreement for \(E>100 \mathrm{eV}\) where CWMS theory performs best

\section*{THEORY/DATA TREATMENT}

Curved wave multiple scattering theory with R-factor minimization; \(\Theta D=300-380 \mathrm{~K}\) (bulk), 350-450K (surface)

\section*{STRUCTURES EXAMINED}
\(S\) in top, 4-fold, or bridge site (a) above the 2nd layer Ge atom and (b) above the 4th layer Ge atom; for site (a) structures with S-S bonds parallel or perpendicular to the dangling bonds were considered, including variable Ge-S bond lengths and 1st Ge-Ge interlayer spacing

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X\) ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B x\) ( \(A\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Butk & 3.995 & 0.000 & 0.000 & 3.995 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 7.990 & 0.000 & 0.000 & 3.995 & 90.0 & ( 2.000, 0.000) & (2x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

S1: overlayer bridging Ge2-Ge3 pairs; Ge2-Ge3: planar relaxed layer;
Ge6-Ge7: periodically repeating set of bulk layers; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D X \pm \epsilon x\) & Dy \(\pm \epsilon \boldsymbol{y}\) & \(D z \pm \epsilon Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & \(\AA\) & \\
\hline subr & & -1 & & & & 1.998 A & -1.998 \& & 2.825 A & \\
\hline ovrl & S & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ge & 2 & s1 & . 50 & 1 & \(0.737 \pm .013 \mathrm{f}\) & 0.000 f & \(1.080 \pm .100 \AA\) & \(38.2 \pm 3.5\) \\
\hline intf & Ge & 3 & s1 & . 50 & 2 & \(-0.474 \pm .013 \mathrm{f}\) & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ge & 4 & b & 1.00 & 3 & \(-0.026 \pm .025 \mathrm{f}\) & 0.500 f & \(1.410 \pm .100 \AA\) & \(49.9 \pm 3.5\) \\
\hline intf & Ge & 5 & b & 1.00 & 4 & -0.500 f & 0.000 f & \(1.460 \pm .100 \AA\) & \(51.7 \pm 3.5\) \\
\hline subl & Ge & 6 & \(b\) & 1.00 & 5 & 0.000 f & -0.500 f & 1.412 A & 50.0 \\
\hline subl & Ge & 7 & b & 1.00 & 6 & 0.500 f & 0.000 f & 1.412 A & 50.0 \\
\hline
\end{tabular}

Ge(100)-(2×1)-S
32.16 .2
bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & Atom B & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.363 & S 1 & Ge 3 & Ge 4 & 103.0 \\
2.447 & Ge 3 & Ge 4 & Ge 5 & 112.0 \\
\hline
\end{tabular}

COMMON NAME : Ge(111)-(2x2)-S
ILLUSTRATION: 96,98
CLASSIFICATION : 32.16.1
TECHNIQUE : ARPEFS
AUTHORS : S.W. Robey, C.C. Bahr, Z. Hussain, J.J. Barton, K.T. Leung, J. Lou, A.E. Schach von Wittenau and D.A. Shirley

REFERENCE : Phys. Rev., B35, 5657 (1987)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Ge & Adsorbate: S \\
Crystal face: 111 & Coverage : \(0.25 \mathrm{~S} / \mathrm{Ge}\) \\
Temperature : RT* & Pattern : (2x2) \\
Bulk lattice: diamond & Matrix \(:(2.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2D surf symm: cm & \((0.000,2.000)\)
\end{tabular}

2D surf symm: cm

> Adsorbate: s Coverage \(: 0.25 \mathrm{~s} / \mathrm{Ge}\) Pattern \(:(2 \times 2)\) Matrix \(:(2.000,0.000)\)    \((0.000,2.000)\)

\section*{STRUCTURE TYPE}

Atomic adsorption in bridge sites with shorter bond to 3 rd Ge atom, with unreconstructed substrate relaxed perpendicular to surface

\section*{COMMENTS}

Technique found insensitive to substrate layer buckling

SAPLE-PREPARATION ( 1 sample)
Treatment : exposure to H2S and anneal to 573-623 K to desorb excess H
Crystallinity: sharp (2x2) pattern
Anal. methods:
Contamination: AES: no sign of impurities
DATA COLLECTION
Technique: ARPEFS; monochromatic x-rays ( \(2500-3000 \mathrm{eV}\) )
Dataset : angles of incidence chosen for greatest sensitivity to the various structures

\section*{THEORY/DATA TREATMENT}

Multiple scattering calculations: \(\Theta 0=350-450 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}
1) top site; 2) 3-fold eclipsed; 3) 3-fold hollow; 4); 2-fold hollow; 5) several models of subsurface incorporation

\section*{QUALITY OF EXPERIMENT-THEORY FIT \(R=0.5\)}

2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.000 & 0.000 & -2.000 & 3.464 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 8.000 & 0.000 & -4.000 & 6.928 & 120.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & (2x2) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

S1: overlayer in bridge sites, bonding to Ge2 and Ge3; Ge2-Ge3 and Ge4-Ge5: slightly relaxed bulk layers; Ge6-Ge7: periodically repeating set of bulk layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Ge(111)-(2x2)-S
32.16 .1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.250 & S 1 & Ge 2 & Ge 3 & 53.4 \\
2.105 & S 1 & Ge 3 & Ge 4 & 146.7 \\
2.422 & Ge 2 & Ge 3 & Ge 4 & 107.5 \\
2.650 & Ge 3 & Ge 4 & \(\mathrm{Ge5}\) & 109.5 \\
2.449 & Ge 4 & \(\mathrm{Ge5}\) & Ge 6 & 109.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{HfC}(100)-(1 \times 1)\) \\
CLASSIFICATION & \(: 72.6 .2\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) \\
& G.R. Gruzalski, D.M. Zehner, J.R. Noonan, H.L. Davis, R.A. \\
& DiDio and K. Mueller \\
REFERENCE & \(:\) J. Vac. Sci. Technol., A7, 2054 (1989)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: HfC & Adsorbate: \\
Crystal face: 100 & Coverage: \\
Temperature: RT* & Pattern : \(1 \times 1)\) \\
Bulk lattice: NaCl & Matrix : \(1.000,0.000)\) \\
2D bulk symm: PH m &
\end{tabular}

2D butk symm: p4m
\[
(0.000,1.000)
\]

\section*{STRUCTURE TYPE}

Bulk termination with buckled top two mixed layers (C moves outward, Hf inward) and contraction of first interlayer spacing

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar-ion bombardment and annealing to 2900 K
Crystallinity: sharp (1x1) LEED pattern
Anal. methods: ARUPS, XPS and AES
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 7 non-degenerate beams at normal incidence; \(20<E<350 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 10 phase shifts, different \(\Theta D\) for \(H f\) and \(C\)

STRUCTURES EXAMINED
Variations in spacing between C and Hf in 1st and 2nd mixed layers
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.081\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.280 & 0.000 & 0.000 & 3.280 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.280 & 0.000 & 0.000 & 3.280 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
C1-Hf2: buckled top mixed layer; C3-Hf4: buckled 2nd mixed layer;
C5-Hf6: periodically repeating mixed bulk layer
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & DX \(\pm \in X\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.640 A & 1.640 \& & 2.320 A & \\
\hline intf & C & 1 & \(b\) & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Hf & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(0.110 \pm .100 \AA\) & \(4.7 \pm 4.3\) \\
\hline intf & C & 3 & b & 1.00 & 2 & 0.000 f & 0.000 f & \(2.220 \pm .100 \AA\) & \(95.7 \pm 4.3\) \\
\hline intf & Hf & 4 & b & 1.00 & 3 & -0.500 f & -0.500 f & \(0.030 \pm .100 \AA\) & \(1.3 \pm 4.3\) \\
\hline subl & C & 5 & \(b\) & 1.00 & 4 & 0.000 f & 0.000 f & 2.320 A & 100.0 \\
\hline subl & Hf & 6 & \(b\) & 1.00 & 5 & 0.500 f & 0.500 f & 0.000 \& & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.322 & \(C 1\) & Hf2 & \(\mathrm{C}(1,0)\) & 89.9 \\
2.322 & \(C 1\) & Hf2(0,-1) & \(\mathrm{C} 1(1,0)\) & 89.9 \\
2.360 & \(C 1\) & Hf4 & Hf2 & 45.9
\end{tabular}
\(\mathrm{HfC}(100)-(1 \times 1)\)
72.6 .2

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Interatomic \\
dist. A-B ( \(\left.{ }^{( }\right)\)
\end{tabular} & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.220 & Hf2 & C3 & Hf4(1, 1) & 90.7 \\
\hline 2.120 & Hf2 & C3 & & 90.0 \\
\hline
\end{tabular}
```

COMMON NAME : InAs(110)-(1x1)
CLASSIFICATION : 49.33.1
TECHNIQUE : LEED
AUTHORS : C.B. Duke, A. Paton, A. Kahn and C.R. Bonapace
REFERENCE : Phys. Rev., B27, 6189 (1983)

```

\section*{SURFACE TYPE}

Substrate : InAs
Crystal face: 110
Temperature : 110 K
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)

```

STRUCTURE TYPE
Relaxed bulk termination with \(36.5 \pm 3^{\circ}\) tilt in top layer

\section*{COMMENTS}

Quasi-dynamical LEED \(=\) scattering amplitudes from the top 3 bilayers calculated exactly, those from next 3 layers assumed no interlayer scattering; the amplitudes from these 2 slabs are superposed

\section*{THEORY/DATA TREATMENT}

Quasi-dynamical LEED(see comm.): 6 bilayers, 6 phase shifts; rel. Hara exch. pot.; mfp=12Å; Vor=-12 eV (fit); \(\Theta 0=300 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}
1. unreconstructed geometry; 2. bond length conserving top layer rotations: 0 to \(34.8^{\circ}\); 3. top intra-bilayer spacing: -0.2 to \(+0.2 \AA\) for \(31^{\circ} ; 4\). 2nd layer shears: -0.1 to \(0.3 \AA\) for \(31^{\circ} ; 5\). various lateral registries

\section*{QUALITY OF EXPERIMENT-THEORY FIT}
\(R X=0.23\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.270 & 0.000 & 0.000 & 6.040 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.270 & 0.000 & 0.000 & 6.040 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES
As1-In2, In3-As4: 2 bilayers with tilted In-As chains; In7-As8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars parallel to surface assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z \(=2.135 \AA\)


InAs(110)-(1x1)
49.33.1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
9
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.504 & As 1 & In2 & As1 11,0\()\) & 117.0 \\
\hline 2.504 & As1 & In2 & As4 & 121.5 \\
\hline 2.670 & As 1 & \(\ln 3(0,-1)\) & As4 (0, -1) & 110.4 \\
\hline 2.670 & As 1 & \(\ln 3(0,-1)\) & As5 & 114.3 \\
\hline 2.663 & In2 & As 4 & In6 & 92.1 \\
\hline 2.619 & \(\operatorname{In} 3\) & As 4 & \(\operatorname{In} 3(1,0)\) & 109.2 \\
\hline 2.619 & \(\ln 3\) & As 4 & In6 & 112.8 \\
\hline 2.677 & \(\ln 3\) & As5 (0,1) & In6 (0, 1) & 109.0 \\
\hline 2.677 & \(\ln 3\) & As5 (0,1) & \(\ln 7\) & 110.4 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: InAs
Crystal face: 110
Temperature : RT
Bulk lattice: zincblende
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION ( 1 sample)
Treatment : in-situ cleavage monitored by laser light back scattering
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination:
DATA COLLECTION
Technique: MEIS; 174 keV He+ Rutherford back scattering

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000\) )
( 0.000, 1.000)

Dataset : scattering aligned with [-1-1 2] channeling axis and exit angles \(>10^{\circ}\), \(<30^{\circ}\), ions incident from both directions

STRUCTURE TYPE
Relaxed bulk termination with \(30^{\circ}\) tilt in top layer

\section*{COMMENTS}

Thermal vibrations: bulk in rms amplitude \(=0.108 \AA\), bulk As amplitude \(=0.101 \AA\); the surface layer vibrations were optimized to \(1.7 \pm 0.1\) times the bulk

\section*{THEORY/DATA TREATMENT}

Monte Carlo simulation: see comment

STRUCTURES EXAMINED
Bond length conserving rotations in top bilayer up to \(40^{\circ}\) and enhancement of surface layer vibration; bond length relaxation allowed but no substrate relaxation

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & \(8 \times(\AA)\) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.270 & 0.000 & 0.000 & 6.040 & 90.0 & \[
\left.\begin{array}{l}
(1.000, \\
(0.000 \\
(0.000
\end{array} 1.000\right)
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 4.270 & 0.000 & 0.000 & 6.040 & 90.0 & \[
\begin{array}{ll}
(1.000, & 0.000 \\
(0.000, & 1.000)
\end{array}
\] & (1×1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
As1-In2: top bilayer with tilted In-As chain; In3-As4: bulk bilayer;
In5-As6: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( A\()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom \(C\)} & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.617 & As1 & \(\operatorname{In2}\) & As1(1,0) & 109.4 \\
2.617 & As1 & In2 & As3 & 125.0 \\
2.614 & As1 & In4(0,-1) & As5 & 118.7 \\
2.614 & In2 & As3 & In4 & 117.2
\end{tabular}

InAs(110)-(1x1)
49.33.2

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
\left.A-B-C()^{\circ}\right)
\] \\
\hline 2.614 & In2 & As3 & In6 & 92.3 \\
\hline 2.615 & As3 & In4 & As5 \((0,1)\) & 109.5 \\
\hline 2.615 & In4 & As5 \((0,1)\) & In6 \((0,1)\) & 109.5 \\
\hline 2.615 & As5 & In6 & As5 (1,0) & 109.5 \\
\hline
\end{tabular}

CLASSIFICATION : 49.15.2
TECHNIQUE : LEED
AUTHORS : R.J. Meyer, C.B. Duke, A. Paton, J.C. Tsang, J.L. Yeh, A. Kahn and P. Mark
REFERENCE : Phys. Rev., B22, 6171 (1980)

\section*{SURFACE TYPE}
\begin{tabular}{lll} 
Substrate : lnP & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : 150 K & Pattern : \(1 \times 1)\) \\
Bulk lattice: zincblende & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pm & & \((0.000,1.000)\) \\
2D surf symm: pm & &
\end{tabular}

D surf symm: pm

SAMPLE PREPARATION ( 1 sample)
Treatment: Ar+ bombardment for 5 mins , then 16 hour anneal at 660 K
Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES
DATA COLLECTION
Technique: LEED
Dataset : 1-V spectra: 14 beams at normal incidence; \(30<E<250 \mathrm{eV}\)

STRUCTURE TYPE
Relaxed bulk termination with \(27.3^{\circ}\) tilt in top layer

\section*{COMMENTS}

Both X-ray and Zanazzi-Jona R-factors used, giving slightly different results

\section*{THEORY/DATA TREATMENT}

First kinematic analysis (10 layers, 10 phase shifts), then quasi-dynamical ( 6 layers, 6 phase shifts); Vor and Voi fit

STRUCTURES EXAMINED
Perp. displacements of \(P(<=0.35 \AA)\) and \(\ln (\ll=0.75 \AA)\) in 1st bilayer, smaller displacements in 2nd and 3rd bilayers; displacements parallel to surface allowed in 1st layer

QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.25 (also RX used)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right.\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.152 & 0.000 & 0.000 & 5.869 & 90.0 & \[
\begin{array}{ll}
(1.000, & 0.000) \\
(0.000, & 1.000)
\end{array}
\] & & b: bulk lattice \\
\hline Surface 1 & 4.152 & 0.000 & 0.000 & 5.869 & 90.0 & \[
\left(\begin{array}{ll}
(1.000, & 0.000) \\
(0.000, & 1.000)
\end{array}\right.
\] & (1x1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

P1-In2, In3-P4: 2 bilayers with tilted In-P chains; In7-P8: periodically repeating bulk bilayer
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

\(\operatorname{InP}(110)-(1 \times 1)\)
49.15 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 2.565 & P1 & In2 & P1 1 1,0) & 108.1 \\
\hline 2.600 & In3 & P6(0,1) & In7 & 110.4 \\
\hline 2.565 & P1 & In2 & P4 & 125.4 \\
\hline 2.361 & P1 & \(\ln 3(0,-1)\) & P4(0, -1) & 106.8 \\
\hline 2.361 & P1 & In3 \((0,-1)\) & P6 & 118.4 \\
\hline 2.475 & In2 & P4 & In3 & 116.5 \\
\hline 2.475 & In2 & P4 & In5 & 91.5 \\
\hline 2.543 & In3 & P4 & \(\operatorname{In} 3(1,0)\) & 109.4 \\
\hline 2.543 & In3 & P4 & In5 & 110.8 \\
\hline 2.600 & In3 & P6(0,1) & In5 \((0,1)\) & 109.0 \\
\hline
\end{tabular}
AUTHORS : S.P. Tear, M.R. Welton-Cook, M. Prutton and J.A. Walker
REFERENCE : Surf. Sci., 99, 598 (1980)

\section*{SURFACE TYPE}

Substrate : InP
Crystal face: 110
Temperature : RT*
Bulk lattice: zincblende 2D bulk symm: pm
20 surf symm: pm

Adsorbate:
STRUCTURE TYPE
Relaxed bulk termination with \(26.4^{\circ}\) tilt in top layer
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
( \(0.000,1.000\) )

SAMPLE PREPARATION ( 1 sample)
Treatment : in situ cleavage at RT and 2.0E-10 torr
Crystallinity:
Anal. methods:
Contamination: monitored by AES
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for total of 9 non-degenerate beams for incident polar angles of \(\Theta=0\) 1.5, 3.0, \(\pm 4.5^{\circ}\)

COMMENTS
Displacements considered only in outermost bilayer; theory-exp. agreement not good enough to trust results of Zanazzi-Jona R-factor analysis: visual inspection was used

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (2 atom/unit cell CAVLEED program): ph shs from superposed neutral atom charge densities

STRUCTURES EXAMINED
First only perpendicular 1st-bilayer displacements; then lateral shifts also considered, as predicted by Chadi,
Phys. Rev. B19, 2074 (1979)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay ( \(A\) ) & \(B x(A)\) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.149 & 0.000 & 0.000 & 5.869 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.149 & 0.000 & 0.000 & 5.869 & 90.0 & ( 1.000, 0.000\()\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

P1-In2: top bilayer with tilted In-P chains; P7-In8: periodically repeating bulk bilayer:
\(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors
No. of atoms: 8 Bulk z = 2.075 \&


InP(110)-(1x1)
49.15.3
bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom \(C\)} & \begin{tabular}{c} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 2.526 & \(P 1\) & \(\operatorname{In2}\) & \(P 1(1,0)\) & 110.4 \\
2.526 & \(P 1\) & \(\operatorname{In2}\) & \(P 3\) & 123.5 \\
2.574 & \(P 1\) & \(\ln 4(0,-1)\) & \(P 3(0,-1)\) & 106.3 \\
2.574 & \(P 1\) & \(\ln 4(0,-1)\) & \(P 5\) & 115.7 \\
2.460 & \(\operatorname{In2}\) & \(P 3\) & \(\operatorname{In} 4\) & 115.9 \\
2.460 & \(\operatorname{ln2}\) & \(P 3\) & \(\ln 6\) & 95.6 \\
2.541 & \(P 3\) & \(\ln 4\) & \(P 3(-1,0)\) & 109.5 \\
2.541 & \(P 3\) & \(\ln 6\) & \(P 5\) & 109.5 \\
2.541 & \(P 3\) & In6 & \(P 7\) & 109.5 \\
\hline
\end{tabular}

CLASSIFICATION : 49.51.1
TECHNIQUE : LEED
AUTHORS : R.J. Meyer, C.B. Duke, A. Paton, J.L. Yeh, J.C. Tsang, A. Kahn and P. Mark
REFERENCE : Phys. Rev., B21, 4740 (1980)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : InSb & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : 150 K & Pattern : (1x1) \\
Bulk lattice: zincblende & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf symm: pm & \\
\end{tabular}

STRUCTURE TYPE
Relaxed bulk termination with \(28.8^{\circ}\) tilt in top layer

SAMPLE PREPARATION ( 1 sample)
COMMENTS
Treatment : Ar + bombardment and annealing at 640 K for 75 min
Crystallinity:
Anal. methods:
Contamination: LEED and AES: \(<0.1 \%\) contamination
DATA COLLECTION
THEORY/DATA TREATMENT
Technique: LEED
Dataset : I-V spectra: 14 beams at \(\Theta=0, \phi=0^{\circ}\), averaged over 3 separate experimental runs

Quasi-dynamical LEED: 6 layers, 6 phase shifts (superpos. of atomic charge densities); Vor \(=-8 \mathrm{eV}\); \(m f p=8 \AA\)

STRUCTURES EXAMINED
1. various rotationally relaxed structures for top layer rotations between 25.7 and \(30.9^{\circ}\);
2. various second layer shears between \(0.0 \AA\) and \(0.2 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(A\) ) & Ay ( \(A\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{4.581} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{6.478} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000 ) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.581} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{6.478} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1×1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000\()\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Sb1-In2, In3-Sb4: 2 bilayers with tilted In-Sb chains; In7-Sb8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars parallel to surface assumed for tabulation

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{X} \quad \pm \in \mathrm{X}\) & \(D y \pm \epsilon y\) & \(D \mathbf{Z} \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & \(2.291 \quad \AA\) & 3.239 A & 2.290 A & \\
\hline intf & Sb & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & In & 2 & b & 1.00 & 1 & 0.500 f & \(0.219 \pm .015 \mathrm{f}\) & \(0.781 \pm .100 \AA\) & \(34.1 \pm 4.4\) \\
\hline intf & In & 3 & b & 1.00 & 2 & -0.500 f & \(0.590 \pm .015 \mathrm{f}\) & \(1.597 \pm .100 \AA\) & \(69.7 \pm 4.4\) \\
\hline intf & Sb & 4 & b & 1.00 & 3 & 0.500 f & \(-0.250 \pm .015 \mathrm{f}\) & \(0.180 \pm .100 \AA\) & \(7.9 \pm 4.4\) \\
\hline intf & Sb & 5 & \(b\) & 1.00 & 4 & -0.500 f & \(-0.500 \pm .015 \mathrm{f}\) & \(2.201 \pm .100 \AA\) & \(96.1 \pm 4.4\) \\
\hline intf & In & 6 & b & 1.00 & 5 & 0.500 f & 0.250 f & 0.000 \& & 0.0 \\
\hline subl & In & 7 & \(b\) & 1.00 & 6 & -0.500 f & 0.500 f & 2.290 A & 100.0 \\
\hline subl & Sb & 8 & b & 1.00 & 7 & 0.500 f & -0.250 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.805 & Sb1 & In2 & Sb1 1,0 ) & 109.5 \\
\hline 2.805 & Sb1 & In2 & Sb4 & 124.6 \\
\hline 2.681 & Sb1 & \(\operatorname{In3}(0,-1)\) & Sb4 (0, -1) & 108.8 \\
\hline 2.681 & Sb1 & \(\operatorname{In} 3(0,-1)\) & Sb5 & 118.3 \\
\hline 2.830 & In2 & Sb4 & In3 & 114.1 \\
\hline 2.830 & In2 & Sb4 & In6 & 92.6 \\
\hline 2.880 & In3 & Sb5 (0, 1) & In6(0,1) & 109.0 \\
\hline 2.880 & In3 & Sb5 \((0,1)\) & In7 & 110.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{InSb}(110)-(1 \times 1)\) \\
CLASSIFICATION & \(: 49.51 .6\) \\
TECHNIQUE & LEED \\
AUTHORS & V.E. de Carvalho, M. Prutton and S.P. Tear \\
REFERENCE & : Surf. Sci., 184,198 (1987)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|}
\hline Substrate : InSb & Adsorbate: & \\
\hline Crystal face: 110 & Coverage & \\
\hline Temperature : RT & Pattern & (1×1) \\
\hline Bulk lattice: zincblende & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: pm & & ( 0.000, 1.000) \\
\hline
\end{tabular}

STRUCTURE TYPE
Relaxed bulk termination with \(41^{\circ}\) tilt in top layer

\section*{COMMENTS}

Non-structural parameters considered: \(\Theta 0=113,160 \mathrm{~K}\) (bulk), \(250,400 \mathrm{~K}\), and rigid lattice; exchange parameter \(\alpha=1 / 3,2 / 3\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 9 phase shifts; 104 beams; Voi=-4 eV; Pendry and \(x\)-ray \(R\)-factors; \(\Theta 0=160 \mathrm{~K}\) : see comment

STRUCTURES EXAMINED
Several bond length conserving rotations including 1st interlayer spacing relaxation; lateral displacements in optimum structures; finally surface bond length change and 2nd layer buckling and relaxation

QUALITY OF EXPERIMENT-THEORY FIT RPE \(=0.49\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.581 & 0.000 & 0.000 & 6.478 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 4.581 & 0.000 & 0.000 & 6.478 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: conmens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Sb1-In2, In3-Sb4: 2 bilayers with tilted In-Sb chains; In5-Sb6: bulk bilayer;
In7-Sb8: periodically repeating bulk bilayer; \(0.1 \AA\) lateral error bars assumed for tabulation
\(D X / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & \(D \mathrm{X} \pm \boldsymbol{\pm}\) & DY \(\pm \in Y\) & \(D z \pm \epsilon z\) & \(\mathrm{Oz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{F} / \mathrm{Bz}\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 2.291 A & 3.239 A & 2.290 A & \\
\hline intf & Sb & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & In & 2 & b & 1.00 & 1 & 0.500 f & \(0.202 \pm .015 \mathrm{f}\) & \(0.810 \pm .060 \AA\) & \(35.4 \pm 2.6\) \\
\hline intf & In & 3 & b & 1.00 & 2 & -0.500 f & \(0.597 \pm .015 \mathrm{f}\) & \(1.590 \pm .060 \AA\) & \(69.4 \pm 2.6\) \\
\hline intf & Sb & 4 & \(b\) & 1.00 & 3 & 0.500 f & -0.250 f & \(0.180 \pm .030 \AA\) & \(7.9 \pm 1.3\) \\
\hline intf & In & 5 & \(b\) & 1.00 & 4 & 0.000 f & -0.250 \(\pm .015 \mathrm{f}\) & \(2.200 \pm .030 \AA\) & \(96.1 \pm 1.3\) \\
\hline intf & Sb & 6 & b & 1.00 & 5 & -0.500 f & -0.250 f & 0.000 A & 0.0 \\
\hline subl & In & 7 & \(b\) & 1.00 & 6 & 0.000 f & 0.750 f & 2.290 A & 100.0 \\
\hline subl & Sb & 8 & b & 1.00 & 7 & 0.500 f & -0.250 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 2.760 & Sb1 & In2 & Sb1 (1,0) & 112.2 \\
\hline 2.732 & Sb4 & In5 & Sb8 & 108.4 \\
\hline 2.760 & Sb1 & In2 & Sb4 & 123.7 \\
\hline 2.760 & Sb1 & In2 & In5 & 111.4 \\
\hline 2.731 & Sb1 & \(\ln 3(0,-1)\) & Sb4 (0, -1) & 109.3 \\
\hline 2.731 & Sb1 & \(\operatorname{In} 3(0,-1)\) & Sb6 & 117.3 \\
\hline 2.861 & In2 & Sb4 & In3 & 114.4 \\
\hline 2.861 & In2 & Sb4 & In5 & 91.9 \\
\hline 2.811 & In3 & Sb4 & In5 & 113.2 \\
\hline 2.732 & Sb4 & In5 & Sb6 & 110.0 \\
\hline
\end{tabular}

COMMON NAME : Ir(100)-(1x1)
ILLUSTRATION: 2
CLASSIFICATION LEED
AUTHORS : K. Heinz and G. Besold
REFERENCE : Surf. Sci.. 125, 515 (1983)

SURFACE TYPE
Substrate : Ir
Adsorbate:
Crystal face: 100
Temperature : 100 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000) ( \(0.000,1.000\) )

\section*{STRUCTURE TYPE}

Unreconstructed metastable surface with \(3.6 \%\) top spacing contraction

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Quasidynamical LEED (RFS, no intralayer mult. scatt., with extra damping for convergence): 00420 K

STRUCTURES EXAMINED
Variation of topmost interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=<0.65\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.720 & 0.000 & 0.000 & 2.720 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.720 & 0.000 & 0.000 & 2.720 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\)
\end{tabular}

3D COORDINATES
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.920 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.720 & Ir 1 & \(\operatorname{Ir} 1(1,0)\) & Ir2 & 59.4 \\
\hline 2.669 & Ir1 & Ir2 & Ir3 & 88.8 \\
\hline 2.718 & Ir2 & Ir3 & & \\
\hline
\end{tabular}

COMMON NAME : Ir(100)-(1×5)
CLASSIFICATION : 77.11
technique : LEED
AUTHORS : E. Lang, K. Mueller, K. Heinz, M.A. Van Hove, R.J. Koestner and G.A. Somorjai
REFERENCE : Surf. Sci., 127, 347 (1983)

\section*{SURFACE TYPE}

Substrate: Ir
Adsorbate:
Coverage
Pattern : (1x5)
Matrix : ( \(1.000,0.000)\)
( \(0.000,5.000\) )

STRUCTURE TYPE
Quasi-hexagonal commensurate buckled top-layer
reconstruction with 'two-bridges' registry

\section*{COMMENTS}

Full buckling is preferred, defined by positions of touching balls with bulk radii on a (100) substrate

\section*{IHEORY/DATA TREATMENT}

Dynamical LEED (RFS, RSP): 6 ph shs (Arbman/Hoernfelt and relat. pots); Vor=fitted, Voi=-5.0 eV; \(\Theta=236 \mathrm{~K}\)

STRUCTURES EXAMINED
56 structures of different types: hexagonal top-layer model with 2-bridges or top-hollow registry (with different bucklings), shifted-rows models (with 5-, 4- and 3-atom clusters) and charge-density-wave model

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.51, RZJ=0.34
2 D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|r|r|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.715 & 0.000 & 0.000 & 2.715 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.715 & 0.000 & 0.000 & 13.575 & 90.0 & \((0.000,1.000)\) & \((1 \times 5)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
Ir1-Ir6: quasi-hexagonal buckled top layer in 'two-bridge sites' over substrate layer Ir7;
0.1 A lateral error bars assumed for tabulation

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom \(O\) at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk \(z=1.920\) A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reg } \\
& \text { ion }
\end{aligned}
\] & Chem el. & At. no. & Cell type & Site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & Dx \(\pm\) ¢ X & Dy \(\pm \in Y\) & \(D z \pm \epsilon z\) & & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{z} / \mathrm{Bz}\) \\
\hline epir subr & & -2
-1 & & & & 1.358 ( \begin{tabular}{l} 
f \\
\\
\hline
\end{tabular} & \(\begin{array}{ll}1.358 & \text { f } \\ \text { \& }\end{array}\) & 1.920 & A & \\
\hline intf & 1 r & 1 & s1 & . 20 & 0 & 0.000 f & \(0.167 \pm .007 \mathrm{f}\) & 0.000 & A & 0.0 \\
\hline intf & Ir & 2 & s1 & . 20 & 0 & 0.000 f & \(0.833 \pm .007 \mathrm{f}\) & 0.000 & \(\star\) & 0.0 \\
\hline intf & Ir & 3 & s1 & . 20 & 0 & 0.500 f & \(0.000 \pm .007 \mathrm{f}\) & \(0.340 \pm .020\) & A & \(17.7 \pm 1.0\) \\
\hline intf & Ir & 4 & s1 & . 20 & 0 & 0.000 f & \(0.500 \pm .007 \mathrm{f}\) & \(0.340 \pm .020\) & A & \(17.7 \pm 1.0\) \\
\hline intf & Ir & 5 & s1 & . 20 & 0 & 0.500 f & \(0.333 \pm .007 \mathrm{f}\) & \(0.480 \pm .020\) & A & \(25.0 \pm 1.0\) \\
\hline intf & Ir & 6 & s1 & . 20 & 0 & 0.500 f & \(0.667 \pm .007 \mathrm{f}\) & \(0.480 \pm .020\) & A & \(25.0 \pm 1.0\) \\
\hline intf & Ir & 7 & \(b\) & 1.00 & 0 & 0.000 f & \(0.000 \pm .037 \mathrm{f}\) & \(2.500 \pm .050\) & A & \(130.2 \pm 2.6\) \\
\hline subl & Ir & 8 & b & 1.00 & 7 & 0.500 f & 0.500 f & 1.920 & \(\AA\) & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-8 (A) & Atom A & Atom B & Atom C & Bond angle
\[
\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)
\] \\
\hline 2.715 & Ir 1 & \(\operatorname{Ir} 1(1,0)\) & Ir3 & 59.3 \\
\hline 2.715 & Ir 1 & \(\operatorname{Ir1}(1,0)\) & Ir5 & 59.6 \\
\hline 2.660 & Ir1 & Ir3 & Ir1(1,0) & 61.4 \\
\hline 3.372 & Ir1 & Ir7 & Ir 1 \((0,-1)\) & 52.4 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Ir}(100)-(1 \times 5)\) \\
CLASSIFICATION: & 77.6 \\
TECHNIQUE & : LEED \\
AUTHORS & \(:\) M.A. Van Hove, R.J. Koestner, P.C. Stair, J.P. Biberian, \\
& \\
& L.L. Kesmodel, I. Bartos and G.A. Somorjai \\
REFERENCE & Surf. Sci., 103, \(218(1981)\)
\end{tabular}

STRUCTURE TYPE
Quasi-hexagonal commensurate buckled top-layer reconstruction with 'two-bridges' registry

\section*{COMMENTS}

1/2 or \(1 / 3\) buckling preferred (full buckling defined by positions of touching hard balls with bulk radii on a (100) substrate), giving spacing of \(0.477 \AA\) between most separated nuclear planes, with smallest distance from nuclear planes of buckled hexagonal layer to 1 st substrate layer of \(2.2 \AA\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS, RSP): 6 ph shs (Arbman/Hoernfelt and relat. pots); Vor=fitted, Voi=-5.0 eV; \(\Theta D=236 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

Various spacings between top and 2nd layers for hexagonal top layer (planar, 1/2 or 1/3 or fully buckled, etc); hex. top layer with 1 missing row; shifted rows models; charge density wave model

\section*{QUALITY OF EXPERIMENT-THEORY FIT Visual}

20 UNIT CELLS ( 2 domains observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\chi^{(1)}\) & BX (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.715 & 0.000 & 0.000 & 2.715 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.715 & 0.000 & 0.000 & 13.575 & 90.0 & \((1.000,0.000)\) & (1x5) & s1: commens. \\
\hline & & & & & & ( 0.000, 5.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ir1-Ir6: quasi-hexagonal buckled top layer in 'two-bridge sites' over substrate layer Ir7;
\(0.1 \AA\) lateral error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z \(=1.920 \AA\)


Bond distances and angles are derived from coordinates

No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.715 & Ir1 & Ir \(1(1,0)\) & Ir3 & 59.1 \\
\hline 2.715 & Ir1 & Ir \(1(1,0)\) & Ir5 & 59.1 \\
\hline 2.642 & 1 r 1 & Ir3 & Ir1(1,0) & 61.8 \\
\hline 3.298 & Ir 1 & Ir7 & \(\operatorname{Ir} 1(0,-1)\) & 54.0 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COHMON NAME & \(: \operatorname{Ir}(110)-(1 \times 1)\) & \\
CLASSIFICATION & \(: 77.3\) \\
TECHNIQUE & LEED \\
AUTHORS & C.M. Chan, S.L. Cunningham, K.L. Luke, W.H. Weinberg and \\
& S.P. Withrow \\
REFERENCE & Surf. Sci., \(78,15(1978)\)
\end{tabular}
REFERENCE : Surf. Sci., 78, 15 (1978)

\section*{SURFACE TYPE}

Substrate : Ir
Crystal face: 110
\[
\begin{aligned}
& \text { Adsorbate: } \\
& \text { Coverage : } \\
& \text { Pattern : (1x1) }
\end{aligned}
\]
Bulk lattice: fcc
2D bulk symm: prmm
2D surf symm: pimn

SAMPLE PREPARATION ( 1 sample)
Treatment : (1x2) surface treated for 2 mins at 1123 K in oxygen
Crystallinity:
Anal. methods:
Contamination: 0.25 ML of disordered 0

\section*{DATA COLLECTION}

\section*{Technique: LEED}

Dataset : I-V spectra at normal incidence for \(01,10,11,12,21,02,20,22\) beams; cumulative energy range 1140 eV

STRUCTURE TYPE
Impurity-stabilized unreconstructed surface with top layer spacing contraction by 7.4\%

\section*{COMMENTS}
(1x1) structure stabilized by 0.25 ML of disordered oxygen to avoid (1x2) reconstruction

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 8 phase shifts, Arbman/ Hoernfelt atomic Ir potential ( 0 ignored); Vor=-8 eV,Voi=-5eV

STRUCTURES EXAMINED
Variation of top interlayer spacing from 1.156 to \(1.564 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.715 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.715 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.360\) A


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)
\] \\
\hline 2.715 & Ir1 & \(\operatorname{Ir} 1(1,0)\) & Ir2 & 59.4 \\
\hline 2.668 & Ir1 & Ir2 & Ir3 & 58.2 \\
\hline 2.716 & 1 r 2 & Ir3 & & \\
\hline
\end{tabular}
AUTHORS : C.-M. Chan and M.A. Van Hove
REFERENCE : Surf. Sci., 171, 226 (1986)

SURFACE TYPE
\begin{tabular}{lll} 
Substrate \(: ~ I r\) & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature: RT & Pattern : (1x2) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: prm & & \((0.000,2.000)\)
\end{tabular}

20 surf symm: pmm

> Adsorbate:
> Coverage :
> Pattern : \((1 \times 2)\)
> Matrix \(:(1.000,0.000)\)

STRUCTURE TYPE
Missing-row reconstruction with multilayer relaxations, row-pairing in second layer and buckling in third layer

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling, RSP): 6 ph shs (Arbman/ Hoernfelt pot); Voi=-5 eV; \(\Theta 0=280 \mathrm{~K}\) (bulk), 237K(surf)

STRUCTURES EXAMINED
Bonzel-Ferrer (sawtooth) and two similar models with relaxations in top two interlayer spacings;
missing-row model with relaxations in top three interlayer spacings, variable row-pairing in second layer and buckling in third layer

QUALITY OF EXPERIMENT-THEORY FIT
RVH=0.25
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.717 & 0.000 & 0.000 & 3.843 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.717 & 0.000 & 0.000 & 7.685 & 90.0 & \((1.000,0.000)\) & (1x2) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Ir1: ridge (remaining row); Ir2-Ir3: paired rows in second layer;
Ir4-Ir5: buckled third layer: \(0.1 \AA\) lateral error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 7
Bulk z \(=1.359 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{X} \quad \pm \epsilon \mathrm{X}\) & Dy \(\pm \epsilon y\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & A & \\
\hline subr & & -1 & & & & -1.359 \& & -1.921 A & 1.359 A & \\
\hline intf & Ir & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ir & 2 & s1 & . 50 & 1 & 0.500 f & \(0.255 \pm .013 \mathrm{f}\) & \(1.190 \pm .070\) \& & \(87.6 \pm 5.2\) \\
\hline intf & Ir & 3 & s1 & . 50 & 2 & 0.000 f & \(0.490 \pm .013 \mathrm{f}\) & 0.000 A & 0.0 \\
\hline intf & Ir & 4 & s1 & . 50 & 3 & -0.500 f & \(-0.245 \pm .013 \mathrm{f}\) & \(1.200 \pm .070 \wedge\) & \(88.3 \pm 5.2\) \\
\hline intf & Ir & 5 & s1 & . 50 & 4 & 0.000 f & -0.500 f & \(0.230 \pm .070 \AA\) & \(16.9 \pm 5.2\) \\
\hline intf & Ir & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & \(1.280 \pm .070 \AA\) & \(94.2 \pm 5.2\) \\
\hline subl & Ir & 7 & b & 1.00 & 6 & -0.500 f & -0.500 f & 1.359 A & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.717 & Ir 1 & \(\operatorname{Ir} 1(1,0)\) & Ir 2 & 59.4 \\
\hline 2.665 & Ir 1 & Ir 2 & Ir 4 & 118.0 \\
\hline 2.620 & 1 r 1 & Ir5 & Ir6 & 118.6 \\
\hline 2.614 & 1 r 2 & \(1{ }^{1} 4\) & Ir6 & 60.0 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: \operatorname{Ir}(110)-(1 \times 3)\) & ILLUSTRATION: 7 \\
CLASSIFICATION & \(: 77.26\) \\
TECHNIQUE & \(:\) TOF-SARS \\
AUTHORS & \(:\) M. Shi, H. Bu and J.W. Rabalais \\
REFERENCE & : Phys. Rev., B42, \(2852(1990)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate :
Crystal face: 110
Temperature : RT
Bulk lattice: fcc 2D bulk symm: pmm
2D surf symm: pmm
```

Adsorbate:
Coverage :
Pattern : (1x3)
Matrix : (1.000, 0.000)
(0.000, 3.000)

```

\section*{STRUCTURE TYPE}

Missing-row reconstruction exposing (111) facets, with relaxations in first 2 layers

\section*{COMMENTS}

This structure coexists with the (1x1) termination in a mixed, partly disordered manner, forming streaked LEED spots; the authors claim that the (1x2) reconstruction does not exist

\section*{THEORY/DATA TREATMENT}

Comparison with trajectory calculations with Biersack-
Ziegler pot., using experimentally determined shadow cone

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.715 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.715 & 0.000 & 0.000 & 11.519 & 90.0 & \((1.000,0.000)\) & (1x3) \\
\hline
\end{tabular}

3D COORDINATES

\footnotetext{
Ir1: ridge atom; Ir2-Ir3: 2nd coplanar layer, laterally expanded towards
} troughs

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk z = \(1.358 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{D} \pm \pm \mathrm{X}\) & \(D Y \pm \epsilon y\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 1.358 A & 1.920 A & 1.358 A & \\
\hline intf & Ir & 1 & s1 & . 33 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ir & 2 & s1 & . 33 & 1 & 0.500 f & \(0.823 \pm .009 \mathrm{f}\) & \(1.250 \pm .100 \AA\) & \(92.1 \pm 7.4\) \\
\hline intf & Ir & 3 & s1 & . 33 & 2 & 0.000 f & \(-0.646 \pm .009 f\) & 0.000 A & 0.0 \\
\hline intf & Ir & 4 & \(b\) & 1.00 & 3 & -0.500 f & 0.469 f & \(1.358 \pm .100 \AA\) & \(100.0 \pm 7.4\) \\
\hline subl & Ir & 5 & b & 1.00 & 4 & 0.500 f & 0.500 f & \(1.358 \pm .100\) A & \(100.0 \pm 7.4\) \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.715 & \(1{ }_{1} 1\) & Ir1(1,0) & Ir3 & 60.4 \\
\hline 2.751 & Ir1 & Ir3 & \(\operatorname{Ir} 1(1,0)\) & 59.1 \\
\hline 2.751 & Ir 1 & 1 r 3 & \(1 \mathrm{r} 3(1,0)\) & 119.6 \\
\hline 2.751 & Ir1 & Ir3 & \(\operatorname{Ir} 5(0,-1)\) & 114.9 \\
\hline 2.632 & Ir3 & \(1 \mathrm{I}_{4}\) & \(\operatorname{lr} 3(-1,0)\) & 62.1 \\
\hline 2.632 & Ir3 & \(1 \mathrm{I}_{4}\) & Ir 4 (1,0) & 58.9 \\
\hline 2.632 & Ir3 & Ir 4 & Ir5 & 118.9 \\
\hline
\end{tabular}
AUTHORS : C.M. Chan, S.L. Cunningham, M.A. Van Hove, W.H. Weinberg and S.P. Withrow
REFERENCE : Surf. Sci., 66, 394 (1977)

\section*{SURFACE TYPE}
\begin{tabular}{lll} 
Substrate : Ir & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature: 573 K & Pattern : (1x1) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk sym: p3m1 & & \((0.000,1.000)\)
\end{tabular}

2D bulk symm: p3m1
2D surf symm: p3m1

SAMPLE PREPARATION ( 1 sample)
Treatment : annealed, cycles of Ar+ bombardment and heating, annealed
Crystallinity:
Anal. methods:
Contamination: AES: no impurities

\section*{DATA COLLECTION}

Technique: LEED
Dataset : \(I-V\) curves: 00 beam at \(\Theta=7,13,25^{\circ}, \phi=0^{\circ}\); cumulative energy range 510 eV

Coverage :
Pattern : (1x1)
( \(0.000,1.000\) )

\section*{STRUCTURE TYPE}

Bulk termination with \(2.6 \%\) contracted top spacing

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (RFS): Arbman/Hoernfelt atomic potential;
8 phase shifts; Vor=-11.0 eV, Voi=-5.0eV; \(\varrho 0=196 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

Variations of top layer spacing
QUALITY OF EXPERIMENT-THEORY FIT Visual

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.715 & 0.000 & 1.358 & 2.351 & 60.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 2.715 & 0.000 & 1.358 & 2.351 & 60.0 & \((1.000,0.000)\) & (1x1) & bulk lattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.217 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.715 & Ir1 & \(\operatorname{Ir} 1(1,0)\) & Ir 2 & 59.4 \\
\hline 2.669 & Ir1 & Ir2 & \(\operatorname{Ir} 3(-1,0)\) & 119.4 \\
\hline 2.715 & Ir2 & Ir3 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Ir}(110)-c(2 x 2)-0\) \\
CLASSIFICATION & \(: 77.8 .1\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) C.-M. Chan, K.L. Luke, M.A. Van Hove, W.H. Weinberg and \\
& S.P. Withrow \\
REFERENCE & \(:\) Surf. Sci., 78,386 (1978)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate \(:\) Ir & Adsorbate: 0 \\
Crystal face: 110 & Coverage : 0.5 (0/Ir) \\
Temperature : 573 K & Pattern : \(c(2 \times 2)\) \\
Bulk lattice: fcc & Matrix \(:(1.000,-1.000)\) \\
2D bulk symm: pmm &
\end{tabular}

2D surf symm: cmm

STRUCTURE TYPE
Atomic adsorption in short-bridge site on unreconstructed substrate with top Ir-Ir layer spacing contraction by \(2 \%\)

\section*{COMMENTS}

Additional \(1 / 4\) monolayer of disordered 0 present on surface to remove ( \(1 \times 2\) ) reconstruction

SAMPLE PREPARATION ( 1 sample)
Treatment : 0.25ML 0 forms (1x1) from (1x2), then 2L of 0 added at RT
Crystallinity:
Anal. methods:
Contamination: Ir(110)(1x2) was AES-clean
DATA COLLECTION
Technique: LEED
Dataset : I-V curves at normal incidence: 01,11,02,20,1/2 1/2,1/2 3/2 3/2 1/2, 3/2 \(3 / 2\) beams; cumulative energy range: 940 eV

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 8 ph shs (Ir Arbman/Hoernfelt at pot, overlapping superpos pot for 0 ; Vor=-10 eV, VoiaE**1/3

STRUCTURES EXAMINED
Top site (registry 0,0 ); short bridge site ( \(0.25,0.25\) ); long bridge site ( \(0.75,0.25\) ); all with variable \(0 / \mathrm{l}\); spacing; for the short bridge site the 1 st Ir-Ir layer spacing varied from 1.22 to \(1.43 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
Visual
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & AY (A) & \(B \times(A)\) & By ( \(\AA\) ) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.715 & 0.000 & 0.000 & 3.840 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.715 & -3.840 & 2.715 & 3.840 & 109.5 & ( \(1.000,-1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in short-bridge site on unreconstructed relaxed substrate
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.929 & 01 & \(\operatorname{Ir2}\) & \(\operatorname{Ir2(1,0)}\) & 134.7 \\
1.929 & 01 & Ir2 & \(\operatorname{Ir} 3\) & 134.7
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.702 & Ir 2 & \(\operatorname{Ir3}\) & \(1 r 4\) & 59.5 \\
2.717 & Ir 3 & Ir 4 & & \\
\hline
\end{tabular}
```

COMMON NAME : Ir(111)-(2x2)-0
CLASSIFICATION : 77.8.2
TECHNIQUE : LEED
AUTHORS : C.-M. Chan and W.H. Weinberg
REFERENCE : J. Chem. Phys., 71, 2788 (1979)

```

STRUCTURE TYPE
Adsorbate: 0
Atomic adsorption in fcc-hollow sites
Coverage : \(1 / 4\) or \(1 / 2\) ? ( \(0 / 1 r\) )
Pattern : (2x2)
Matrix \(:(2.000,0.000)\)
( \(0.000,2.000\) )

\section*{SURFACE TYPE}

Substrate : Ir
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: \(p 3 \mathrm{~m} 1\)
SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to 20 L of 02 at RT, yielding sharp LEED pattern
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 3 integral-order and 7 half-order beams at normal incidence, \(E\) range \(40-160 \mathrm{eV}\)

\section*{COMMENTS}

It is not known whether surface has ( \(2 \times 2\) ) or ( \(2 \times 1\) ) periodicity with \(1 / 4\) or 1/2ML coverage (LEED analysis gave identical adsorption structure and R-factor either way): here (2x2) is assumed

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 7 phase shifts (Arbman-Hoernfelt Ir pot, superpos pot for 0); Voi=-5 eV; \(\Theta D=280 \mathrm{~K}(\mathrm{Ir})\), \(840 \mathrm{~K}(0)\)

STRUCTURES EXAMINED
Adsorbate on top, hcp and fcc hollow sites at variable spacings from 1.1 to \(2.2 A\) in both ( \(2 \times 2\) ) and ( \(2 \times 1\) ) periodicities

QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0. 22
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.717 & 0.000 & -1.359 & 2.353 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.434 & 0.000 & -2.717 & 4.706 & 120.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & (2x2) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01: overlayer in fec-hollow sites
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = \(2.218 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.037 & 01 & 1 r 2 & Ir3 & 164.9 \\
\hline 2.717 & 1 r 2 & Ir2(1,1) & Ir3 & 60.0 \\
\hline 2.717 & Ir2 & Ir3 & & \\
\hline
\end{tabular}

COMMON NAME : Ir(110)-(2x2)-2S
CLASSIFICATION : 77.16.2
TECHNIQUE : LEED
AUTHORS : C.-M. Chan and M.A. Van Hove
REFERENCE : Surf. Sci., 183, 303 (1987)

SURFACE TYPE
Substrate: Ir
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: p2mg
SAMPLE PREPARATION ( 1 sample)
Treatment: H2S exposure on clean reconstructed \(\operatorname{Ir}(110)-(1 \times 2)\)
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV curves for 3 integral-order and 7 half-order beams at normal incidence

STRUCTURE TYPE
Missing-row structure of substrate; atomic \(S\) over outermost 3 -fold fcc hollow sites in zig-zag arrangement (2 per cell), bonding to two top-layer Ir atoms and one second-layer Ir atom

\section*{COMMENIS}

P2mg symmetry implies zig-zag arrangement of \(S\) atoms along ridge direction

\section*{THEORY/DATA TREATMENT}

Dyn. LEED (comb. space with matrix inv., RFS): 6 phase shs Ir band struct. pot, S superpos. pot; \(00=200 \mathrm{~K}(\mathrm{Ir}), 343 \mathrm{~K}(\mathrm{~S})\)

\section*{STRUCTURES EXAMINED}

Missing-row model of substrate, with top two layer spacings, second-layer row-pairing and third-layer buckling variable; S in 3 different 3 -fold hollow sites of (111) facets, with variable distance from facet and, for best hollow, deflection towards metal ridges

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.628, R Z J=0.399\), RVHT \(=0.290\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.717 & 0.000 & 0.000 & 3.842 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.434 & 0.000 & 0.000 & 7.685 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 \times 2)\) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

S1 and S2: zigzag chain overlayer straddling metal ridges in fcc hollow sites of (111) facets; Ir3 and Ir4: ridge atoms; error bars of \(0.1 \AA\) assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=1.359 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & Cell type & Site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & \(D \mathrm{D} \quad \pm \epsilon \mathrm{x}\) & & Dy \(\pm \epsilon y\) & & \(D z \pm \epsilon z\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & & \(f\) & & f & & & \\
\hline subr & & -1 & & & & 1.359 & A & 1.921 & A & 1.359 & \(\AA\) & \\
\hline ovrl & S & 1 & s1 & . 25 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & A & 0.0 \\
\hline ovrl & S & 2 & s 1 & . 25 & 1 & 0.500 & \(f\) & 0.552 & f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Ir & 3 & s 1 & . 25 & 2 & \(0.250 \pm .018\) & \(f\) & \(0.224 \pm .013\) & f & \(0.936 \pm .100\) & A & \(68.9 \pm 7.4\) \\
\hline intf & Ir & 4 & s1 & . 25 & 3 & 0.500 & \(f\) & 0.000 & f & 0.000 & A & 0.0 \\
\hline intf & Ir & 5 & b & 1.00 & 4 & 0.500 & \(f\) & 0.500 & \(f\) & \(1.314 \pm .100\) & A & \(96.7 \pm 7.4\) \\
\hline subl & Ir & 6 & b & 1.00 & 5 & 0.500 & \(f\) & 0.500 & \(f\) & 1.377 & A & 101.3 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.384 & S1 & \(\operatorname{Ir} 3(-1,-1)\) & S2(0,-1) & 133.8 \\
\hline 2.384 & s1 & \(\operatorname{Ir} 3(-1,-1)\) & \(\operatorname{Ir} 3(0,-1)\) & 124.7 \\
\hline 2.384 & S1 & Ir3(-1, -1) & Ir5 & 52.4 \\
\hline 2.384 & S1 & Ir3(-1, -1) & \(\operatorname{Ir} 6(-1,-2)\) & 113.1 \\
\hline 2.259 & s1 & Ir5 & 1 r \(3(-1,-1\) ) & 56.7 \\
\hline 2.259 & S1 & Ir5 & I r 6 (-1, -1) & 124.4 \\
\hline
\end{tabular}
TECHNIQUE : LEED

AUTHORS : C.-M. Chan and W.H. Weinberg
REFERENCE : J. Chem. Phys., 71, 3988 (1979)

\section*{SURFACE TYPE}

Substrate: Ir
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p3m?
2D surf symm: p31m
SAMPLE PREPARATION ( 1 sample)
Treatment : decomposition of H2S at RT, annealing at 800 K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 11 beams at normal incidence; energy range \(0-200 \mathrm{eV}\)

Adsorbate: S
Coverage : \(1 / 3\) (S/Ir)
Pattern : \((\sqrt{3} \times \sqrt{3})\) R \(30^{\circ}\)
Matrix : ( 2.000, 1.000) ( \(1.000,2.000\) )

STRUCTURE TYPE
Atomic adsorption in fcc-hollow sites

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 8 ph shs (Ir Arbman/Hoernfelt pot, overlapping at pot for S); Voi=-5 eV; \(\Theta 0=310 \mathrm{~K}(\mathrm{Ir})\), \(649 \mathrm{~K}(\mathrm{~S})\)

STRUCTURES EXAMINED
Adsorbate on top, hcp and fcc hollow sites at variable spacings
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.19
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.717 & 0.000 & -1.359 & 2.353 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.076 & 2.353 & 0.000 & 4.706 & 60.0 & \((2.000,1.000)\) & \(1.000)\) & \((\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}\) \\
\hline
\end{tabular}

3D COORDINATES
s1: overlayer in fec-hollow sites
Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.277 & S1 & Ir2 & 1 r3 & 171.7 \\
\hline 2.717 & Ir2 & Ir2(1,0) & Ir3 & 60.0 \\
\hline 2.717 & Ir 2 & Ir3 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: M g O(100)-(1 \times 1)\) \\
CLASSIFICATION & \(: 12.8 .4\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) M.R. Wel ton-Cook and W. Berndt \\
REFERENCE & : J. Phys., C15, \(569(1982)\)
\end{tabular}

REFERENCE : J. Phys., C15, 569 (1982)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: MgO & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT* & Pattern : (1x1) \\
Bulk lattice: NaCl & Matrix : \(1.000,0.000)\) \\
20 bulk symm: p4m &
\end{tabular}

Crystal face: 100
emperature : RT*

20 bulk symm: p4m
2D surf symm: p4m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : air cleaved sample of MgO; repeated oxidations at 800 K

Crystallinity:
Anal. methods:
Contamination: AES: submonolayer traces of \(S\) and \(P\)

\section*{DATA COLLECTION}

Technique: LEED
Dataset : LEED spectra for 99 beams for 23 diffraction geometries; \(0<0<70^{\circ}, 20<E<150\) \(\mathrm{eV}, 27\) beams for 7 diffr. geometries

\section*{STRUCTURE TYPE}

Bulk termination with 2\% buckled top MgO mixed layer (O out) and no average first interlayer spacing relaxation

\section*{COMMENTS}

Lattice constant from Wyckoff (1963) crystal structure; spacing reliability based on double reliability factor analysis;

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CAVLEED package); 8 ph shs from Clementi/ Roetti charge dens, \(\alpha=1 / 3 ; 39\) beams; Vor=-13 eV, Voi=-3eV

STRUCTURES EXAMINED
\(-4 \%\) to \(+4 \%\) buckling and \(-4 \%\) to \(+4 \%\) relaxation of top interlayer spacing
QUALITY OF EXPERIMENT - THEORY FIT
RPE=0.2518

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & Ay ( \(A\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.978} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.978} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.978} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.978} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-Mg2: buckled top mixed Mgo layer, 0 outermost; Mg3-04: repeating bulk mixed copplanar MgO layer
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.106 & 01 & Mg2 & 01(1,0) & 90.0 \\
\hline 2.106 & 01 & Mg2 & \(\operatorname{Mg} 2(1,0)\) & 135.0 \\
\hline 2.106 & 01 & Mg2 & Mg3 & 45.9 \\
\hline 2.106 & 01 & Mg2 & 04 & 91.1 \\
\hline 2.106 & Mg2 & 01(1,1) & \(\operatorname{Mg} 3(1,1)\) & 88.9 \\
\hline 2.978 & Mg2 & \(\operatorname{Mg} 2(1,0)\) & \(\operatorname{Mg} 3(2,0)\) & 120.2 \\
\hline
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{c|}{ Atom \(C\)} & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.963 & \(\mathrm{Mg}^{2}\) & \(\mathrm{Mg} 3(1,1)\) & \(\mathrm{Mg3}(1,0)\) & 59.8 \\
2.085 & Mg 2 & 04 & Mg 3 & 90.0 \\
\hline
\end{tabular}

CLASSIFICATION : 12.8 .5
TECHNIQU LEED
AUTHORS : T. Urano, T. Kanaji and M. Kaburagi
REFERENCE : Surf. Sci.. 134, 109 (1983)

SURFACE TYPE
\begin{tabular}{|c|c|c|c|}
\hline Substrate & MgO & Adsorbate: & \\
\hline Crystal face: & 100 & Coverage & \\
\hline Temperature : & 300 K & Pattern & (1x1) \\
\hline Bulk lattice: & NaCl & Matrix & ( 1.000, 0.000) \\
\hline 2 b bulk symm: & p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}

2D surf symm: p4m
```

Adsorbate:

Pattern : (1x1)
(0.000, 1.000)

```

STRUCTURE TYPE
Ideal truncation of bulk lattice with mixed MgO layers;

SAMPLE PREPARATION ( 3 sample)
Treatment : 3 sample preps: cleavage in air and various anneals
Crystallinity:
Anal. methods:
Contamination:.in 1 prep: AES detected C before heating
DATA COLLECTION
Technique: LEED
Dataset : LEED I-V curves for (10), (11) and (20) beams for \(70<E<300 \mathrm{eV}\)
no spacing relaxation within error bars

\section*{COMMENTS}

3 preparation procedures gave very similar LEED spectra; buckling cannot be ruled out

THEORY/DATA TREATMENT
Dynamical LEED: 5 phase shifts, 29 beams

STRUCTURES EXAMINED
Varied first interplanar spacing in the range \(-5 \%\) to \(+5 \%\) in \(2.5 \%\) steps
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & BX (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.977 & 0.000 & 0.000 & 2.977 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000\()\) & & \\
\hline Surface 1 & 2.977 & 0.000 & 0.000 & 2.977 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{\(3 C\) COORDinates}

Mg1-02: topmost mixed coplanar layer; 03-Mg4; repeating bulk mixed coplanar layer;
\(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=2.105 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.977 & \(\mathrm{Mg1}\) & \(\mathrm{Mg1}(1,0)\) & & \\
2.105 & \(\mathrm{Mg1}\) & 02 & & \\
2.155 & \(\mathrm{Mg1}\) & 03 \\
2.977 & \(\mathrm{Mg1}\) & \(\mathrm{Mg4}\) & & \\
2.105 & \(\mathrm{O2}\) & \(\mathrm{Mg4}\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{MgO}(100)-(1 \times 1)\) \\
CLASSIFICATION & \(: 12.8 .8\) \\
TECHNIQUE & : LEED \\
AUTHORS & : D.L. Blanchard, D.L. Lessor, J.P. LaFemina, D.R. Baer, W.K. \\
& Ford and T. Guo \\
REFERENCE & \(:\) J. Vac. Sci. Technol., A9, 1814 (1990)
\end{tabular}

AUTHORS : D.L. Blanchard, D.L. Lessor, J.P. LaFemina, D.R. Baer, W.K. Ford and T. Guo
REFERENCE : J. Vac. Sci. Technol., A9, 1814 (1990)

SURFACE TYPE
\begin{tabular}{|c|c|c|}
\hline Substrate : Mgo & Adsorbate: & \\
\hline Crystal face: 100 & Coverage : & \\
\hline Temperature : 165 K & Pattern & (1x1) \\
\hline Bulk lattice: NaCl & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}
(repe PREPARATION ( 1 sample)
Treatment : air cleaved sample of MgO ; repeated oxidations at 750 K
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED; back-view LEED, CCD-based video camer
Dataset : I-V curves of 6 symm. inequivalent beams at normal incidence; E range \(60-350 \mathrm{eV}\)

STRUCTURE TYPE
Bulk termination with \(5 \%\) buckled top MgO compound layer where 0 moves towards the vacuum

\section*{COMMENTS}

At electron energies below 140 eV electrostatic charging of sample was prevented by pulsing the beam to 450 eV for \(1 / 3\) second, which discharged the sample for \(2 / 3\) seconds

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 7 phase shifts, 12 atomic layers
diffraction from top 6 layers calculated exactly; Voi=-5 eV

\section*{STRUCTURES EXAMINED}

Varied were: outward relaxation of top layer and buckling of \(O\) anions outward (relative to the Mg ions)
QUALITY OF EXPERIMENT-THEORY FIT
\(R \mathrm{RX}=0.10\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.978 & 0.000 & 0.000 & 2.978 & 90.0 & ( \(1.000,0.000)\) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.978 & 0.000 & 0.000 & 2.978 & 90.0 & ( \(1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-Mg2: buckled top compound MgO layer, 0 outermost; Mg3-04: bulk repeat compound Mgo layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad B u l k \quad 2=2.106 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\left.\mathcal{A}^{( }\right)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.106 & 01 & Mg2 & 01(1,0) & 90.0 \\
\hline 2.106 & 01 & Mg2 & \(\operatorname{Mg} 2(1,0)\) & 135.0 \\
\hline 2.106 & 01 & Mg2 & Mg3 & 45.9 \\
\hline 2.106 & Mg2 & 01(1,1) & \(\operatorname{Mg} 3(1,1)\) & 88.9 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
TECHNIQUE & : EELFS \\
AUTHORS & M. De Crescenzi, N. Motta, F. Patella, A. Sgarlata, F. \\
& Arciprete, A. Balzarotti, M. Benfatto and C.R. Natoli
\end{tabular}
REFERENCE : Springer Series in Surface Sciences, \(\underline{24}\), 665 (1991)

SURFACE TYPE
Substrate : Mgo
Adsorbate:
STRUCTURE TYPE
Bulk termination with no surface relaxations
Crystal face: 100
Temperature : RT
Bulk lattice: NaCl
20 bulk symm: P4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment: repeated heating to 700 K in \(1 \mathrm{E}-6\) torr 02
Crystallinity:
Anal. methods:
Contamination: AES: no contaminants or decomposition
DATA COLLECTION
Technique: EELFS
Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\) ( \(0.000,1.000\) )

COMMENTS
EXAFS also used for surface structure determination

THEORY/DATA TREATMENT
Fourier transform

Dataset : EELFS spectra at Mg K edge and O K edge; numerically integrated and FS extracted by background subtraction

STRUCTURES EXAMINED
Varied were: first, second and third nearest neighbor distances

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.978 & 0.000 & 0.000 & 2.978 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.978 & 0.000 & 0.000 & 2.978 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
01-Mg2: planar top compound Mgo layer; Mg3-04: bulk repeat compound MgO layer
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.106 & 01 & Mg2 & 01(1,0) & 90.0 \\
\hline 2.106 & Mg 2 & 01(1,1) & \(\operatorname{Mg} 3(1,1)\) & 90.0 \\
\hline
\end{tabular}

CLASSIFICATION : 46.25.3
TECHNIQUE : LEED
AUTHORS : D. Tian, S.C. Wu, F. Jona and P.M. Marcus
REFERENCE : Solid State Commun., 70, 199 (1989)

\section*{SURFACE TYPE}

Substrate : Mn
Crystal face: 100
Temperature : RT
Bulk lattice: bct
2D bulk symm: p4m
2D surf symm: 94 m
SAMPLE PREPARATION ( 2 sample)
Treatment : cycles of Ar+ bomb. and long anneals; Mn vapor-deposited
Crystallinity: LEED: some disorder and defects
Anal. methods: AES
Contamination: AES: no S, C, O

\section*{DATA COLLECTION}

Technique: LEED; TV camera-microcomputer system
Dataset : IV spectra for 3 non-equiv. beams (10,11,20) at normal incidence, 5 \((00,10,01,11,02)\) at \(0=8^{\circ}, \phi=0^{\circ}\)

Adsorbate:
Coverage :
Pattern : (1×1)
Matrix : (1.000, 0.000)
( 0.000, 1.000)

\section*{STRUCTURE TYPE}

Epitaxial (1x1) multilayer (10 layers) grown on Pd(100), with lateral lattice constant of Pd(100); forms body-centered tetragonal lattice, related to fcc by \(12 \%\) uniaxial contraction in growth direction

\section*{COMMENTS}

RZJ,RVHT,RPE \(=0.12,0.3,0.26\) and \(0.21,0.35,0.27\)
for \(\theta=0^{\circ}\) and \(\theta=8^{\circ}\), resp.;
films with 1 to 6 layers gave weak \(c(2 \times 2)\) pattern, suggesting interdiffusion

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 69 beams, 8 ph shs (Moruzzi et al); Voi=-4 eV; Pd substrate below 10 Fe layers

\section*{STRUCTURES EXAMINED}

Fcc with variable 'bulk' spacing of \(1.625-1.775 \AA\) perp. to surface (giving bet lattice), and top 2 interlayer spacings varied by up to \(\pm 0.4 \AA\) from bulk spacing

QUALITY OF EXPERIMENT-THEORY FIT
See comments
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1×1) & b: bulk lattice \\
\hline Surface 1 & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1×1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(\mathrm{DX} \pm \boldsymbol{\pm} \mathbf{X}\) & DY \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 1.375 A & 1.375 A & 1.715 A & \\
\hline intf & Mn & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Mn & 2 & \(b\) & 1.00 & 1 & 0.500 f & 0.500 f & \(1.805 \pm .030 \AA\) & \(104.0 \pm 1.8\) \\
\hline intf & Mn & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(1.715 \pm .040 \AA\) & \(99.4 \pm 2.3\) \\
\hline subl & Mn & 4 & b & 1.00 & 3 & 0.500 f & 0.500 f & \(1.715 \pm .030 \AA\) & \(100.0 \pm 1.8\) \\
\hline
\end{tabular}

\footnotetext{
BOND DISTANCES AND ANGLES
}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & \(M n 1\) & \(M n 1(1,0)\) & \(M n 2\) & 58.8 \\
2.653 & \(M n 1\) & \(M n 2\) & \(M n 3\) & 84.3 \\
2.593 & \(M n 2\) & \(M n 3\) & \(M n 4\) & 82.8 \\
\hline
\end{tabular}

Adsorbate:
STRUCTURE TYPE
Bulk termination with multilayer relaxation

SAMPLE PREPARATION ( 1 sample)
\(\begin{aligned} \text { Treatment } & \begin{array}{l}\text { : removed abov } \\ \\ \text { for over } 100 \mathrm{~h}\end{array}\end{aligned}\)
Crystallinity:
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : \(I-V\) curves for 16 non-degenerate beams at \((\Theta, \phi)=(11.5,8.5)^{\circ}\) and \((7,0)^{\circ}\)
cemoved above 2000 K in 10E-4Pa of 02 
\begin{tabular}{ll} 
COMMON NAME & \(:\) Mo(100)-(1×1) \\
CLASSIFICATION & \(: 42.4\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & L.J. Clarke \\
REFERENCE & \(:\) Surf. Sci., g1, 131 (1980)
\end{tabular}

SURFACE TYPE
Substrate: Mo
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: P4m
\begin{tabular}{|c|c|}
\hline CLASSIFICATION & N \\
\hline TECHNIQUE & \\
\hline AUTHORS & \\
\hline REFERENCE & : S \\
\hline SURFACE TYPE & \\
\hline Substrate : & Mo \\
\hline Crystal face: & 100 \\
\hline Temperature : & RT* \\
\hline Bulk lattice: & bcc \\
\hline 2D bulk symm: & p4m \\
\hline 2D surf symm: & p4m \\
\hline
\end{tabular}

Coverage :
Pattern : (1x1)
Matrix \(:(1.000,0.000)\)
( \(0.000,1.000\) )

\section*{COMMENTS}

This structure now viewed as disordered hightemperature version of low-temperature reconstruction, including lateral displacements (eds.)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 8 phase shifts with several Mattheiss-Loucks-type superposition pots; Voi=4 eV; \(\Theta D=230 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of top two layer spacings
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.146\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.147 & 0.000 & 0.000 & 3.147 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.147 & 0.000 & 0.000 & 3.147 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}
\(3 D\) COORDINATES

Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D X\) & & Dy & & Dz & \(\pm \epsilon \boldsymbol{Z}\) & & \multicolumn{3}{|l|}{\(D z / B z(\%) \pm \epsilon z / B z\)} \\
\hline epir & & -2 & & & & & \(f\) & & f & & & A & & & \\
\hline subr & & -1 & & & & 1.574 & \(\AA\) & 1.574 & A & 1.574 & & A & & & \\
\hline intf & Mo & 1 & \(b\) & 1.00 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 & & \\
\hline intf & Mo & 2 & b & 1.00 & 1 & 0.500 & \(f\) & 0.500 & f & 1.424 & \(\pm .030\) & A & \(90.5 \pm\) & \(\pm\) & 1.9 \\
\hline intf & Mo & 3 & b & 1.00 & 2 & -0.500 & \(f\) & -0.500 & f & 1.558 & \(\pm .030\) & A & \(99.0 \pm\) & \(\pm\) & 1.9 \\
\hline subl & Mo & 4 & b & 1.00 & 3 & 0.500 & \(f\) & 0.500 & \(f\) & 1.574 & , & \(\AA\) & 100.0 & & \\
\hline
\end{tabular}

\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 3.147 & Mo1 & Mo1 (1,0) & Mo2 & 53.4 \\
2.642 & Mo1 & Mo2 & Mo3 & 67.6 \\
2.717 & Mo2 & Mo3 & Mo4 & 70.3 \\
\hline
\end{tabular}
AUTHORS : D.G. Kelly, R.F. Lin, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 224, 97 (1989)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Mo & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature : 300 K & Pattern \(:(1 \times 1)\) disordered \\
Bulk lattice: bcc & Matrix \(:(1.000,0.000)\) \\
20 bulk symm: 04 m & \\
\hline
\end{tabular}

Bulk lattice: bcc Bulk symm: p4m 2D surf symm: none

\section*{STRUCTURE TYPE}
'high-temperature' disordered version of 'low-temperature'
reconstructed Mo(100): topmost atoms laterally relaxed by
\(0.13 \AA\) randomly in diagonal unit cell directions;
also multilayer relaxation perp. to surface

\section*{COMMENTS}

Disorder here modeled as (1x1) structure with uniformly displaced top layer atoms

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS); 8 phase shifts from cluster calculation; \(00=380 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of top 3 interlayer spacings and of top layer registry in 2 dimensions
QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.18, ~ R Z J=0.10\), \(R P E=0.30\)
2D UNIT CELLS ( 4 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(A\) ) & \(B x(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.147 & 0.000 & 0.000 & 3.147 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.147 & 0.000 & 0.000 & 3.147 & 90.0 & \((1.000,0.000)\) & (1x1) disordered & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000\()\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Mo1: laterally displaced top layer, representing disordered displacement direction
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( A\()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.568 & Mo1 & Mo2 & Mo3 & 180.0 \\
2.741 & Mo2 & Mo3 & Mo4 & 71.1 \\
\hline
\end{tabular}
TECHNIQUE : LEED
AUTHORS : L. Morales de la Garza and L.J. Clarke
REFERENCE : J. Phys., C14, 5391 (1981)
\begin{tabular}{|c|c|c|}
\hline \(\frac{\text { SURFACE TYPE }}{\text { Substrate }}\) : Mo & Adsorbate: & \\
\hline Crystal face: 110 & Coverage : & \\
\hline Temperature : RT* & Pattern & (1x1) \\
\hline Bulk lattice: bcc & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: cmm & & ( 0.000, 1.000) \\
\hline 2 D surf symm: cmm & & \\
\hline
\end{tabular}

STRUCTURE TYPE
Bulk termination with \(1.7 \%\) contracted top layer spacing

SAMPLE PREPARATION ( 1 sample)
Treatment : 1800 K desorbs S , 1300K in 02 removes c, 1100K removes CO
Crystallinity:
Anal- methods:
Contamination: AES: no traces of contaminants

DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 43 beams, forming 14 non-equivalent sets

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 9 phase shifts; 43 beams; Voi=-4 eV; Vor E -dependent; \(\Theta \mathrm{D}=295 \mathrm{~K}\)

STRUCTURES EXAMINED
Top layer spacing varied, and many non-structural parameters (Vor E-dependent, Voi, exchange parameter \(\alpha, \Theta 0\) )
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.085\)
2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By ( \({ }_{\text {A }}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.728 & 0.000 & . 909 & 2.572 & 70.5 & ( 1.000, 0.000 ) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.728 & 0.000 & . 909 & 2.572 & 70.5 & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.227 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\) ( \({ }^{\circ}\) ) \\
\hline 2.728 & Mo1 & Mo1 (1, 0) & Mo2 & 70.3 \\
\hline 3.124 & Mo1 & Mo2 & Mo1 (1, 1) & 91.0 \\
\hline 3.150 & Mo2 & Mo3 & \(\operatorname{Mo3}(1,0)\) & 54.7 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Mo \((111)-(1 \times 1)\) \\
CLASSIFICATION & \(: 42.8\) \\
TECHNIQUE & \(:\) LEIS \\
AUTHORS & S.H. Overbury \\
REFERENCE & : Surf. Sci., 175, 123 (1986)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Mo & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature : RT* & Pattern : (1x1) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p3m1 &
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination with multilayer relaxation perp. to surface

\section*{COMMENTS}

THEORY/DATA TREATMENT
Simulation of single scattering intensity

DATA COLLECTION
Technique: LEIS; low energy alkali (Li+) ion scatterin
Dataset : scattering intensity as function of incident polar angle in \([1,-2,1]\) and [2,-1,-1] azimuths for various scatt. angle
```

SAMPLE PREPARATION (}1\mathrm{ sample)
Treatment : Ar+ sputtering and repeated O treatment
up to 1500 K
Crystallinity:
Anal. methods:
Contamination: AES: residual C
DATA COLLECTION
Dataset : Scattering intensity as function of
[2,-1,-1] azimuths for various scatt. angle

```

STRUCTURES EXAMINED
Variation of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.455 & 0.000 & -2.228 & 3.858 & 120.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.455 & 0.000 & -2.228 & 3.858 & 120.0 & \((1.000,0.000)\) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|c|c|l|c}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.787 & Mo1 & Mo2 & Mo3 & 72.5 \\
2.928 & Mo1 & Mo4 & & \\
2.741 & Mo2 & Mo3 & Mo4 & 70.9 \\
2.728 & Mo3 & & & \\
\hline
\end{tabular}

COMMON NAME : Mo(100)-c(2x2)-C
ILLUSTRATION: 48,50
CLASSIFICATION: 42.6.2
TECHNIQUE : LEED
AUTHORS : P.J. Rous, D. Jentz, D.G. Kelly, R.Q. Hwang, M.A. Van Hove and G.A. Somorjai
REFERENCE : Springer Series in Surface Sciences, 24, 432 (1991)

SURFACE TYPE
Substrate : Mo
Crystal face: 100
Temperature : RT
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : heat-cleaned in 02, flash to 2000 K ; C from hydrocarbons
Crystallinity:
Anal. methods: AES
Contamination:
DATA COLLECTION
Technique: LEED; video camera
Dataset : IV spectra for 10 beams at normal inc.; E range \(70-310 \mathrm{eV}\)

STRUCTURE TYPE
Atomic adsorption in hollow site, without buckling in
2nd Mo layer, with shortest C-Mo bond to 2nd Mo layer

STRUCTURES EXAMINED
Hollow site with independent relaxation of 3 coordinates for all atoms in \(C\) and top 2 Mo layers (15 parameters + muffintin zero): result symmetrized a posteriori

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.464\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: tensor LEED with automated search, based on RFS

\section*{COMMENTS}

2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(A\) ) & Ay (A) & 8x (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{-3.150} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{90.0} & ( 1.000,-1.000) & \multirow[t]{2}{*}{\(c(2 \times 2)\)} & \multirow[t]{2}{*}{s1: commens. superlattice} \\
\hline & & & & & & ( 1.000, 1.000) & & \\
\hline
\end{tabular}

\section*{3D COORDINATES}

C1: overlayer in hollow sites; Mo2-Mo3: planar, laterally unrelaxed 1st Mo layer;
Mo4-Mo5: planar, laterally unrelaxed 2nd Mo layer; 0.05A error bars assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=1.575 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & \(D \mathrm{D} \pm \pm \mathrm{x}\) & Dy \(\pm\) Ey & \(D z \pm \epsilon z\) & & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & & \(\AA\) & \\
\hline subr & & -1 & & & & 1.575 A & 1.575 A & 1.575 & \(\lambda\) & \\
\hline ovrl & C & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 & A & 0.0 \\
\hline intf & Mo & 2 & b & 1.00 & 1 & \(0.500 \pm .016 \mathrm{f}\) & \(0.500 \pm .016 \mathrm{f}\) & \(0.430 \pm .050\) & A & \(27.3 \pm 3.2\) \\
\hline intf & Mo & 3 & b & 1.00 & 2 & \(-0.500 \pm .016 \mathrm{f}\) & \(-0.500 \pm .016 \mathrm{f}\) & \(1.560 \pm .050\) & A & \(99.1 \pm 3.2\) \\
\hline subl & Mo & 4 & b & 1.00 & 3 & \(0.500 \pm .016 \mathrm{f}\) & \(0.500 \pm .016 \mathrm{f}\) & \(1.575 \pm .050\) & \(\AA\) & \(100.0 \pm 3.2\) \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.269 & \(C 1\) & Mo2 & C1(0,1) & 158.2 \\
2.269 & \(C 1\) & Mo2 & Mo2(1,0) & 134.0 \\
2.269 & \(C 1\) & Mo2 & Mo3 & 45.9 \\
1.990 & C1 & Mo3 & Mo4 & 125.3
\end{tabular}

Mo(100)-c(2x2)-C
42.6.2

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.719 & Mo2 & Mo3 & Mo4 & 70.3 \\
\hline
\end{tabular}
TECHNIQUE : LEED
AUTHORS : M.L. Hildner, R.S. Daley, T.E. Felter and P.J. Estrup
REFERENCE : J. Vac. Sci. Technol., A9, 1604 (1991)

SURFACE TYPE
Substrate : Mo
Crystal face: 100
Temperature : 10 K
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: H (D)
Coverage : 2.0 H/Mo
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Unrelaxed bulk termination, both at 10 K and at 80 K

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of annealing in 02 and flashing in UHV, then 02 dep.
Crystallinity:
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED; 650 keV He+ ions
Dataset : backscattering spectra in [100] and [111]
channeling directions

\section*{COMMENTS}

H (D) positions not determined

\section*{THEORY/DATA TREATMENT}

Monte Carlo simulations (VEGAS code): Moliere pot.; isotropic vibrations; \(00=380 \mathrm{~K}\) (Mo bulk),240K(Mo surf)

STRUCTURES EXAMINED
Variation of top layer spacing and parallel displacement
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & Bx ( A ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.147 & 0.000 & 0.000 & 3.147 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & \(\left(\begin{array}{l}(0.000, ~ 1.000) \\ (1.000, ~ 0.000)\end{array}\right.\) & & \\
\hline Surface 1 & 3.147 & 0.000 & 0.000 & 3.147 & 90.0 & \[
\left(\begin{array}{ll}
(1.000, & 0.000) \\
(0.000, & 1.000)
\end{array}\right.
\] & (1x1) & s1: cormmens. superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

\section*{\(0.1 \AA\) error bars used for tabulation}

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{l} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{l}
3.147 \\
2.725
\end{tabular} & \begin{tabular}{l} 
Mo1 \\
Mo1
\end{tabular} & \begin{tabular}{l} 
Mo1 (1,0) \\
Mo2
\end{tabular} & & \\
\hline
\end{tabular}

SURFACE TYPE

Substrate : Mo
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment: exposure to N 2 gas at low pressure (eg 1.0E-8 torr)

Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES
DATA COLLECTION
Technique: LEED
Dataset : I-V curves: 6 integral order and 5 half-order beams at \(\Theta=9^{\circ}\)

\section*{STRUCTURE TYPE}

Atomic adsorption in 4 -fold hollow sites on unrelaxed substrate

\section*{COMMENTS}

Agreement between theory and experiment was not good for all beams: conclusions of this study must be viewed as tentative

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: Vor \(=-15 \mathrm{eV}\), Voi=-4eV; \(N\) potential from super pos. of at. charge dens. in fictitious bcc lattice; \(00=360 \mathrm{~K}\)

STRUCTURES EXAMINED
Hollow, top, and 2-fold bridge sites; N-Mo layer spacing varied from about 0.8 to \(1.4 \AA\) in steps of \(0.05 \AA\); top Mo-Mo spacing contracted 0,5 and \(10 \%\)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX (A) & Ay (A) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.154 & 0.000 & 0.000 & 3.154 & 90.0 & ( 1.000, 0.000) & \multirow[t]{4}{*}{\begin{tabular}{l}
(1x1) \\
\(c(2 \times 2)\)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
b: bulk lattice \\
s1: commens. superlattice
\end{tabular}} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.154 & 3.154 & -3.154 & 3.154 & 90.0 & ( \(1.000,1.000)\) & & \\
\hline & & & & & & (-1.000, 1.000) & & \\
\hline
\end{tabular}

3D COORDINATES
N1: overlayer in 4-fold hollow sites; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z = 1.580 \&


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{l|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.452 & N1 & Mo2 & Mo2(1,0) & 130.0 \\
2.600 & N1 & Mo3 & Mo2 & 54.7 \\
3.154 & Mo2 & Mo2(1,0) & N1(1,0) & 50.0 \\
2.733 & Mo2 & & & \\
\hline
\end{tabular}

COMMON NAME : Mo(100)-c(2x2)-S
ILLUSTRATION: 48,50
\begin{tabular}{ll} 
CLASSIFICATION & \(: 42.16 .10\) \\
TECHNIQUE & : LEED \\
AUTHORS & : P.J. Rous, D. Jentz, D.G. Kelly, R.Q. Hwang, M.A. Van Hove \\
& and G.A. Somorjai \\
REFERENCE & : Springer Series in Surface Sciences, 24,432 (1991)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Mo
Crystal face: 100
Temperature : RT
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : heat-cleaned in 02, flash to 2000 K ; S from el.chem. cell
Crystallinity:
Anal. methods: AES
Contamination:
DATA COLLECTION
Technique: LEED; video camera
Dataset : IV spectra for 8 beams at normal incidence; E range 60-250 eV

STRUCTURE TYPE
Atomic adsorption in hollow site, inducing buckling toward
S in 2nd Mo layer, with shortest S-Mo bond to 2nd Mo layer

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED: tensor LEED with automated search, based on RFS

STRUCTURES EXAMINED
Hollow site with independent relaxation of 3 coordinates for all atoms in \(S\) and top 2 Mo layers (15 parameters + muffintin zero): result symmetrized a posteriori

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.234\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & AY ( \(A\) ) & \(B \times\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{-3.150} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{3.150} & \multirow[t]{2}{*}{90.0} & ( 1.000,-1.000) & \multirow[t]{2}{*}{\(c(2 \times 2)\)} & s1: commens. \\
\hline & & & & & & ( 1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in hollow sites; Mo2-Mo3: planar, laterally unrelaxed 1st Mo layer;
M04-M05: buckled, laterally unrelaxed 2nd Mo layer; 0.05 A error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(7 \quad\) Bulk z = \(1.575 \&\)


Bond distances and angles are derived from coordinates
No. of distances/angles:
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.442 & S1 & Mo2 & S1(0,1) & 131.6 \\
2.442 & S1 & Mo2 & Mo2(1,0) & 130.2 \\
2.442 & \(S 1\) & Mo2 & Mo3 & 49.8 \\
2.380 & \(S 1\) & Mo4 & Mo2 & 58.2 \\
2.380 & S1 & Mo4 & Mo3 & 58.2 \\
2.380 & S1 & Mo4 & Mo5 & 92.9 \\
3.150 & Mo3 & Mo4 & 53.1 \\
3.150 & Mo2 & Mo3 & 54.4 \\
\hline
\end{tabular}

CLASSIFICATION TECHNIQUE
AUTHORS : A. Ignatiev, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev., 811, 4780 (1975)

\section*{SURFACE TYPE}

\section*{Substrate: Mo}

Crystal face: 100
Temperature : RT* Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment: Si exposure at \(0.2-0.5 \mathrm{ML}\) per minute at 1 to 5E-10 torr
Crystallinity:
Anal. methods:
Contamination: LEED and AES
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: \(\Theta=8^{\circ}, \phi=0^{\circ}\) : 6 non-degenerate beams; \(\Theta=21^{\circ}, \phi=0^{\circ}\) : 4 non-degenerate beams; \(20<E<150 \mathrm{eV}\)
```

Adsorbate: Si
Coverage : 1.0 Si/Mo
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites on unrelaxed substrate

\section*{COMMENTS}

Variation of the overlayer inner potential and \(\Theta D\) had little effect upon the structure determination

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer KKR): 8 phase shifts, 38 or 48 beams
Vor \(=-16 \mathrm{eV}\), Voi \(=-4 \mathrm{eV}\); \(\Theta D=114-360 \mathrm{~K}(\mathrm{Si}), 360 \mathrm{~K}(\mathrm{Mo})\)

STRUCTURES EXAMINED
Hollow, bridge and top sites; various Si/Mo spacings; top Mo-Mo spacing contracted \(0 \%\), \(5 \%\), and \(10 \%\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.146} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.146} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.146} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.146} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1: overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & DX & & Dy & & Dz & \(\pm\) & & & Dz/Bz(\%) \(\pm\) & \(\epsilon z / B z\) \\
\hline epir & & -2 & & & & & \(f\) & & \(f\) & & & & A & & \\
\hline subr & & -1 & & & & -1.573 & \(\AA\) & -1.573 & A & 1.570 & & & A & & \\
\hline ovrl & Si & 1 & b & 1.00 & 0 & 0.000 & f & 0.000 & f & 0.000 & & & A & 0.0 & \\
\hline intf & Mo & 2 & b & 1.00 & 1 & 0.500 & \(f\) & 0.500 & \(f\) & 1.160 & \(\pm\). & 100 & A & \(73.9 \pm\) & 6.4 \\
\hline subl & Mo & 3 & b & 1.00 & 2 & -0.500 & \(f\) & -0.500 & \(f\) & 1.570 & \(\pm\). & & A & \(100.0 \pm\) & 6.4 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.509 & Si1 & Mo2 & \(\operatorname{Mo2(1,0)}\) & 128.8 \\
2.730 & Si1 & \(\operatorname{Mo3}\) & \(\operatorname{Mo2}\) & 54.8 \\
3.146 & \(M o 2\) & \(\operatorname{Mo2(1,0)}\) & \(\operatorname{Si1}(1,0)\) & 51.2 \\
2.723 & \(M o 2\) & \(M o 3\) & & \\
\hline
\end{tabular}

TECHNI QUE
AUTHORS : B.J. Mrstik, R. Kaplan, T.L. Reinecke, M.A. Van Hove and S.Y. Tong

REFERENCE : Phys. Rev., B15, 897 (1977)

\section*{SURFACE TYPE}

Substrate : MOS2
Crystal face: 0001
Temperature : 95 K
Bulk lattice: \(2 \mathrm{H}-\mathrm{MoS} 2\)
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : cut from natural molybdenite in air; no further treatment
Crystallinity:
Anal. methods:
Contamination: AES: <3\% C

DATA COLLECTION
Technique: LEED
Dataset : I-V curves: \(10,01,11,20,02\) beams at \(\theta=0^{\circ}\); \(10<\mathrm{E}<200 \mathrm{eV}\); cumulative energy range: 740 eV (non-degenerate)

STRUCTURE TYPE
Bulk termination with complete S-Mo-S sandwich and slight layer spacing relaxations; bulk layer stacking maintained as BAB ABA BAB ABA ..

\section*{COMMENTS}

Later R-factor comparison (M.A. Van Hove et al, Surf. Sci. 64,85 (1977)) confirms this structure, with top spacings of \(1.518 \pm 0.005,1.593,2.87 \pm 0.01 \AA\), resp., and \(\mathrm{R} 2=0.09\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): up to 55 beams, 8 phase shifts, Mat theiss band structure pots; Vor \(=-5.0 \mathrm{eV}, \mathrm{Voi}=-5.0 \mathrm{eV}, 00=350 \mathrm{k}\)

STRUCTURES EXAMINED
Various spacings between layers 1 and 2, and between 3 and 4 also the registry between these layers (permutations of stacking sequence)

QUALITY OF EXPERIMENT-THEORY FIT
Visual (see comments)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.160 & 0.000 & 1.580 & 2.737 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.160 & 0.000 & 1.580 & 2.737 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

S1-Mo2-S3: top sandwich; S4-Mo5-S6 + S7-Mo8-S9: repeating set of bulk layers; \(0.1 A\) error bars assumed for tabulation (see comments)

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{D} \pm \boldsymbol{\pm}\) & DY \(\pm E Y\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & f & \(\AA\) & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 12.290 \& & \\
\hline intf & S & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Mo & 2 & b & 1.00 & 1 & 0.333 f & 0.333 f & \(1.513 \pm .100 \AA\) & \(95.0 \pm 6.3\) \\
\hline intf & S & 3 & b & 1.00 & 2 & -0.333 f & -0.333 f & 1.593 \& & 100.0 \\
\hline subl & 5 & 4 & b & 1.00 & 3 & 0.333 f & 0.333 f & \(2.959 \pm .100\) A & \(185.8 \pm 6.3\) \\
\hline subl & Mo & 5 & b & 1.00 & 4 & -0.333 f & -0.333 f & 1.593 A & 100.0 \\
\hline subl & S & 6 & b & 1.00 & 5 & 0.333 f & 0.333 f & 1.593 A & 100.0 \\
\hline subl & S & 7 & b & 1.00 & 6 & -0.333 f & -0.333 f & 2.959 A & 185.8 \\
\hline subl & Mo & 8 & \(b\) & 1.00 & 7 & 0.333 f & 0.333 f & 1.593 A & 100.0 \\
\hline subl & S & 9 & b & 1.00 & 8 & -0.333 f & -0.333 f & 1.593 A & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle \(A-B-C\left({ }^{\circ}\right)\) \\
\hline 2.370 & s1 & Mo2 & s1(1,0) & 83.6 \\
\hline 2.370 & S1 & Mo2 & Mo2(1,0) & 131.8 \\
\hline 2.370 & S1 & Mo2 & s3(1,0) & 135.2 \\
\hline 2.422 & Mo2 & S3(1,0) & Mo2 \((1,0)\) & 81.4 \\
\hline 2.422 & Mo2 & S3 & Mo2 \((-1,0)\) & 81.4 \\
\hline 2.422 & S4 & M05 & S4(-1,0) & 81.4 \\
\hline
\end{tabular}

CLASSIFICATION : 11.2
TECHNIGUE : LEED
AUTHORS : S.A. Lindgren, J. Paul, L. Wallden and P. Westrin
REFERENCE : J. Phys., C15, 6285 (1982)

SURFACE TYPE
Substrate : Na
Crystal face: 0001
Temperature : 100 K
Bulk lattice: hcp
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : Na evaporated onto Cu(111) in UHV
Crystallinity: tested by UPS of Cu 3d emission vs time
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for: 6 (10)-type beams at normal incidence ( \(10<E<110 \mathrm{eV}\) ): ( 00 ) beam at \(\Theta=4^{\circ} \quad(5<E<110 \mathrm{eV})\)

Adsorbate:
STRUCTURE TYPE
Ideal bulk termination
Coverage :
Pattern : (1×1)
Matrix : ( \(1.000,0.000)\)
( \(0.000,1.000\) )

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (symm. KKR program): excited state pot. with Hedin-Lundqvist model for exch. and corr.; \(\Theta 0=140 \mathrm{~K}\)

STRUCTURES EXAMINED
Fcc and hcp only, assuming packing densities as for bcc Na , and \(\mathrm{c} / \mathrm{a=1.63}\) for hcp structure
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.520 & 0.000 & -1.760 & 3.048 & 120.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 3.520 & 0.000 & -1.760 & 3.048 & 120.0 & \((1.000,0.000)\) & \((1,0 / 0,1)(1 \times 1)\) & bulk lattice \\
\hline
\end{tabular}

3D COORDINATES
bulk termination
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.520 & Na1 & Na1(1,1) & Na 2 & 60.0 \\
\hline 3.517 & Na 1 & Na 2 & Na1 (1,1) & 60.1 \\
\hline 3.517 & Na 1 & Na 2 & \(\mathrm{Na} 2(1,1)\) & 120.0 \\
\hline 3.517 & Na 1 & Na 2 & \(\mathrm{Na} 3(1,1)\) & 146.4 \\
\hline 3.517 & Nal & Na 2 & Na 3 & 109.4 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\begin{aligned} \text { Treatment } & \text { : film grown on clean } \mathrm{Ni}(100) \text { from heated } \\ & \text { break-seal ampule }\end{aligned}\)} \\
\hline Crystallinity: & growth monitored by LEED, EELS, and WFC \\
\hline Anal. methods: & \\
\hline Contamination: & \\
\hline \multicolumn{2}{|l|}{DATA COLLECTION} \\
\hline Technique: LEED & \\
\hline Dataset : norm & mal incidence I-V data for (00), (10), (11) beams; \(E<=80 \mathrm{eV}\) \\
\hline
\end{tabular}

STRUCTURE TYPE
Bulk-like, but lattice constant slightly contracted in this film deposited on Ni(100);

\section*{COMMENTS}

Test of different potentials yielded best fit with expt. for Hartree-Fock core treatment and Hedin-Lundqvist-type conduction-electron treatment

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling for E<40 eV, RFS for E>40eV): 8 phase shifts; \(00=114 \mathrm{~K}\) (surf.), 128K (bulk)

STRUCTURES EXAMINED
Truncated bulk only
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.290 & 0.000 & 2.145 & 3.035 & 54.7 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline Surface 1 & 4.290 & 0.000 & 2.145 & 3.035 & 54.7 & ( 0.000, 1.000) & & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES
ideal bulk termination, but contracted lattice constant
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site oce. & Rel. to &  & DY \(\pm E y\) & DZ \(\pm \boldsymbol{E Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
subl
\end{tabular} & Na
Na & -2
-1
1
2 & b & \[
\begin{aligned}
& 1.00 \\
& 1.00
\end{aligned}
\] & 0
1 & \(\begin{array}{ll} & f \\ 2.145 & \AA \\ 0.000 & f \\ 0.500 & f\end{array}\) & \begin{tabular}{ll} 
\\
0.000 & \(f\) \\
0.000 & \(A\) \\
0.000 & \(f\) \\
\hline
\end{tabular} & \begin{tabular}{ll} 
& \(A\) \\
3.000 & \(A\) \\
0.000 & \(\AA\) \\
3.000 & \(\AA\)
\end{tabular} & \[
\begin{array}{r}
0.0 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.717 & Na 1 & \(\mathrm{Na} 1(1,-1)\) & Na (1, 0) & 70.5 \\
\hline 3.717 & Na 1 & \(\mathrm{Na} 1(1,-1)\) & Na 2 & 54.5 \\
\hline 3.717 & Na1 & \(\mathrm{Na}(1,-1)\) & \(\mathrm{Na} 2(0,-1)\) & 70.4 \\
\hline 3.688 & Na 1 & Na 2 & \(\mathrm{Na} 1(1,0)\) & 71.1 \\
\hline 3.688 & Na 1 & Na 2 & \(\mathrm{Na} 2(1,0)\) & 125.6 \\
\hline 3.688 & Na 1 & Na 2 & \(\mathrm{Na} 2(0,1)\) & 109.6 \\
\hline 3.688 & Na 1 & Na 2 & \(\mathrm{Na} 2(-1,0)\) & 54.4 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \mathrm{Na}(110)-(1 \times 1)\) \\
CLASSIFICATION: & 11.1 a \\
TECHNIQUE & : LEED \\
AUTHORS & S. Andersson, J.B. Pendry, P.M. Echenique \\
REFERENCE & : Surf. Sci., 65,539 (1977)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Na & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature: 173 K & Pattern : (1×1) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
20 bulk symm: cmm &
\end{tabular}

20 surf symm: cmm

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment
: film grown on clean \(\mathrm{Ni}(100)\) from heated break-seal ampule
Crystallinity: growth monitored by LEED, EELS, and WFC
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : normal incidence I-V data for (00), (10), and (11) beams; \(E<=80 \mathrm{eV}\)

STRUCTURE TYPE
Bulk-like, but lattice constant slightly contracted in this film deposited on \(\mathrm{Ni}(100)\);

\section*{COMMENTS}

Hedin-Lundqvist potential provided better agreement with experiment than Slater construction with \(a=1 / 3\), especially at lower energies;
average interlayer spacing determined by Bragg's law for 00 beam

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling for \(E<20 \mathrm{eV}\), RFS for \(\mathrm{E}>20 \mathrm{eV}\) ): up to 35 beams and 5 phase shifts; \(\Theta 0=107\) K

STRUCTURES EXAMINED
Truncated bulk only
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.290 & 0.000 & 2.145 & 3.035 & 54.7 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 4.290 & 0.000 & 2.145 & 3.035 & 54.7 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES
ideal bulk termination, but contracted lattice constant
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 2
Bulk z \(=3.000 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & site occ. & Rel. to & \(D \mathrm{X} \pm \epsilon \mathrm{X}\) & Dy \(\pm \boldsymbol{\pm} \boldsymbol{y}\) & \(\mathbf{D z} \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
subl
\end{tabular} & Na
Na & -2
-1
1
2 & b & \[
\begin{aligned}
& 1.00 \\
& 1.00
\end{aligned}
\] & 0 & \(\begin{array}{ll} & f \\ 2.145 & f \\ 0.000 & f \\ 0.500 & f\end{array}\) & \(\begin{array}{ll} & f \\ 0.000 & A \\ 0.000 & f \\ 0.000 & f\end{array}\) & \begin{tabular}{ll} 
& \(\AA\) \\
3.000 & \(\AA\) \\
0.000 & \(\AA\) \\
3.000 & \(\AA\)
\end{tabular} & \[
\begin{array}{r}
0.0 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.717 & Na1 & \(\mathrm{Na}(1,-1)\) & Na1 (1,0) & 70.5 \\
\hline 3.717 & Na 1 & \(\mathrm{Na} 1(1,-1)\) & Na 2 & 54.5 \\
\hline 3.717 & Na1 & Na (1, -1) & \(\mathrm{Na} 2(0,-1)\) & 70.4 \\
\hline 3.688 & Na1 & Na 2 & \(\mathrm{Na} 1(1,0)\) & 71.1 \\
\hline 3.688 & Na1 & Na 2 & \(\mathrm{Na} 2(1,0)\) & 125.6 \\
\hline 3.688 & Nal & Na 2 & \(\mathrm{Na} 2(0,1)\) & 109.6 \\
\hline 3.688 & Na1 & Na 2 & \(\mathrm{Na} 2(-1,0)\) & 54.4 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Na2O(111)-(1\times 1)}\) \\
CLASSIFICATION & \(: 11.8 .1\) \\
TECHNIQUE & \(:\) LEED \\
AUTHRS & S. Andersson, J.B. Pendry and P.M. Echenique \\
REFERENCE & \(:\) Surf. Sci., 65,539 (1977)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SURFACE TYPE} \\
\hline Substrate : Na2O & Adsorbate: \\
\hline Crystal face: 111 & Coverage \\
\hline Temperature : 293 K & Pattern : (1x1) \\
\hline Bulk lattice: fluorite & Matrix : ( \(1.000,0.000\) ) \\
\hline 2 D bulk symm: p3m1 & ( 0.000, 1.000) \\
\hline 2D surf symm: p3m1 & \\
\hline \multicolumn{2}{|l|}{SAMPLE PREPARATION ( 1 sample)} \\
\hline \multicolumn{2}{|l|}{Treatment : oxidation of \(\mathrm{Na}(110)\) surface grown on
\[
\mathrm{Ni}(100)
\]} \\
\hline \multicolumn{2}{|l|}{Crystallinity: monitored growth by LEED and WFC} \\
\hline \multicolumn{2}{|l|}{Anal. methods:} \\
\hline \multicolumn{2}{|l|}{Contamination:} \\
\hline \multicolumn{2}{|l|}{DATA COLLECTION} \\
\hline \multicolumn{2}{|l|}{Technique: LEED} \\
\hline \begin{tabular}{l}
Dataset : normal incid \\
(11) beams:
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}-\mathrm{V} \text { data for }(00),(10), \\
& 0 \mathrm{eV}
\end{aligned}
\] \\
\hline
\end{tabular}

STRUCTURE TYPE
Bulk structure truncated at wide \(\mathrm{Na}-\mathrm{Na}\) spacing between two \(\mathrm{Na}-\mathrm{O}-\mathrm{Na}\) sandwiches

\section*{COMMENTS}

Empirically determined form for Voi;
\(\mathrm{Na}, \mathrm{O}, \mathrm{Na}\) termination dictated by electrostatic forces within the neutral ( \(\mathrm{Na}, \mathrm{O}, \mathrm{Na}\) ) sandwiches

\section*{IHEORY/DATA TREATMENT}

Dynamical LEED (layer doubling for E<20 eV, RFS for E>20eV): up to 31 beams and 5 phase shifts

STRUCTURES EXAMINED
3 terminations of the bulk stacking sequence: 1. \(\mathrm{Na}, \mathrm{O}, \mathrm{Na}, \mathrm{Na}, \mathrm{O}, \mathrm{Na}, \ldots\)
2. \(\mathrm{O}, \mathrm{Na}, \mathrm{Na}, \mathrm{O}, \mathrm{Na}, \mathrm{Na}, \ldots\). 3. \(\mathrm{Na}, \mathrm{Na}, \mathrm{O}, \mathrm{Na}, \mathrm{Na}, \mathrm{O}, \ldots\)

QUALITY OF EXPERIMENT-THEORY FIT
Visual
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.920 & 0.000 & -1.960 & 3.395 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.920 & 0.000 & -1.960 & 3.395 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Na1-02-Na3: repeating bulk trilayer; trilayers are spaced \(1.6 \AA\) apart;
\(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z \(=3.200 \quad \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.920 & Na1 & Na1(1,1) & 02(1,1) & 144.7 \\
\hline 3.920 & Na 1 & \(\mathrm{Na1}(1,1)\) & 02 & 35.3 \\
\hline 2.401 & Na 1 & 02 & Na1(1,1) & 109.5 \\
\hline 2.401 & Na 1 & 02 & Na 3 & 70.5 \\
\hline 2.772 & Na 1 & Na 3 & \(\mathrm{Na}(1,1)\) & 90.0 \\
\hline 2.772 & Na1 & Na3 & 02 & 54.7 \\
\hline
\end{tabular}
\(\mathrm{Na} 2 \mathrm{O}(111)-(1 \times 1)\)
11.8 .1

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.401 & 02 & Na1 & Na 3 & 54.7 \\
\hline
\end{tabular}
AUTHORS : Xu Mingde, C.N. Whang and R.J. Smith
REFERENCE : J. Vac. Sci. Technol., A8, 2501 (1990)

SURFACE TYPE
Substrate: Nb
Crystal face: 110
Temperature : RT
Bulk lattice: bcc 2D bulk symm: cmm 2D surf symm: cmm

SAMPLE PREPARATION ( 1 sample)
Treatment : sample cleaned by heating up to 2300C
Crystallinity:
Anal. methods: LEED and ion channeling to check quality of surface
Contamination:

\section*{DATA COLLECTION}

Technique: HEIS
Dataset : ion yield in Nb surf.peak versus ion energy ( \(0.5-2 \mathrm{M} \mathrm{eV}\) ) for [-1-10] and [-1-11] incident directions

STRUCTURE TYPE
Bulk terminated structure with no detectable relaxations
Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( 0.000, 1.000)

\section*{COMMENTS}

Ion beam incident along [-1-10] and [-1-11] directions; scattered ions collected at grazing exit angle (10 \({ }^{\circ}\) ); reduced bulk vibrational amplitudes possibly related to correlated nature of vibrations

\section*{THEORY/DATA TREATMENT}

Computer simulation of expected ion yield

SIRUCTURES EXAMINED
Adjustable parameters: 1) surface atom vibration amplitude, 2) bulk atom vibr. ampl., 3) relaxation of first layer; best fit with no enhancement in surface vibr., no relaxation, reduced bulk vibr. (wrt 275K ©0)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.864 & 0.000 & .955 & 2.700 & 70.5 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.864 & 0.000 & .955 & 2.700 & 70.5 & \((1.000,1.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(\mathrm{DX} \pm \boldsymbol{\mathrm { X }}\) & Dy \(\pm \boldsymbol{\pm}\) & \(\mathrm{Dz} \pm \boldsymbol{E} \mathbf{Z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
subl
\end{tabular} & Nb
Nb & -2
-1
1
2 & b & 1.00
1.00 & 0 & \(\begin{array}{lll} & \\ 1.909 & f \\ \text { A }\end{array}\) & \(\begin{array}{ll} \\ 1.350 & f \\ 0.000 \pm .037 & A \\ 0.500 & f\end{array}\) & \[
\begin{array}{ll} 
& A \\
2.338 & A \\
0.000 \pm .100 & \AA \\
2.338 & A \\
\AA
\end{array}
\] & \[
\begin{array}{r}
0.0 \pm 4.3 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom \(B\)} & \multicolumn{1}{|c|}{ Atom \(C\)} & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.864 & Nb 1 & \(\mathrm{Nb} 1(1,0)\) & \(\mathrm{Nb} 1(1,1)\) & 109.5 \\
2.864 & Nb 1 & \(\mathrm{Nb} 1(1,0)\) & \(\mathrm{Nb} 1(1,-1)\) & 70.5 \\
3.307 & Nb 1 & \(\mathrm{Nb2}\) & \(\mathrm{Nb} 1(1,1)\) & 90.0 \\
3.307 & Nb 1 & Nb 2 & \(\mathrm{Nb} 1(1,0)\) & 54.7 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
TECHNIQUE & : LEED \\
AUTHORS & : B.J. Mrstik, R. Kaplan, T.L. Reinecke, M.A. Van Hove and \\
& S.Y. Tong \\
REFERENCE & \(:\) Phys. Rev., B15, 897 (1977)
\end{tabular}
REFERENCE : Phys. Rev., B15, 897 (1977)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: NbSe2 & Adsorbate: \\
Crystal face: 0001 & Coverage : \\
Temperature : 95 K & Pattern : (1×1) \\
Bulk lattice: \(2 \mathrm{H}-\mathrm{NbSe2}\) & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
\((0.000,1.000)\)
\end{tabular}

2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment: cleaved single crystal grown by 1 -vapor transport method
Crystallinity:
Anal. methods:
Contamination: AES: \(<3 \%\) C

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V curves: 10,01,11,20,02 beams at \(0=0^{\circ}\); \(10<E<200 \mathrm{eV}\); cumulative energy range: 740 eV (non-degenerate)

\section*{STRUCTURE TYPE}

Bulk termination with complete Se-Nb-Se sandwich and no layer spacing relaxations; bulk layer stacking maintained as CBC ABA CBC ABA ...

\section*{COMMENTS}

Later R-factor comparison (M.A. Van Hove et al, Surf. Sci. 64, 85 (1977)) confirms this structure, with top spacings of \(1.66 \pm 0.02,1.68,2.89 \pm 0.02 \AA\), resp., and \(\mathrm{R} 2=0.15\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): up to 55 beams, 8 phase shifts,
Mattheiss band structure pots; Vor \(=-5.0 \mathrm{eV}, \mathrm{Voi}=-5.0 \mathrm{eV}, ~ \oplus 0=280 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

Various spacings between layers 1 and 2, and between 3 and 4 also the registry between these layers (permutations of stacking sequence)

QUALITY OF EXPERIMENT-THEORY FIT
Visual (see comments)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.449 & 0.000 & 1.725 & 2.987 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.449 & 0.000 & 1.725 & 2.987 & 60.0 & \((1.000,0.000)\) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Se1-Nb2-Se3: top sandwich; Se4-Nb5-Se6 + Se7-Nb8-Se9: repeating set of bulk layers; \(0.1 \AA\) error bars assumed for tabulation (see comments)

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & \(D \mathrm{XX} \pm \boldsymbol{\mathrm { X }}\) & Dy \(\pm \epsilon \boldsymbol{y}\) & \(D Z \pm \in Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 12.540 \& & \\
\hline intf & Se & 1 & \(b\) & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Nb & 2 & b & 1.00 & 1 & 0.333 f & 0.333 f & \(1.680 \pm .100 \AA\) & \(100.0 \pm 6.0\) \\
\hline intf & Se & 3 & \(b\) & 1.00 & 2 & -0.333 f & -0.333 f & 1.680 \& & 100.0 \\
\hline subl & Se & 4 & \(b\) & 1.00 & 3 & 0.667 f & 0.667 f & \(2.910 \pm .100 \AA\) & \(173.2 \pm 6.0\) \\
\hline subl & Nb & 5 & \(b\) & 1.00 & 4 & -0.333 f & -0.333 f & 1.680 A & 100.0 \\
\hline subl & Se & 6 & \(b\) & 1.00 & 5 & 0.333 f & 0.333 f & 1.680 A & 100.0 \\
\hline subl & Se & 7 & \(b\) & 1.00 & 6 & -0.667 f & -0.667 f & 2.910 A & 173.2 \\
\hline subl & Nb & 8 & \(b\) & 1.00 & 7 & 0.333 f & 0.333 f & 1.680 A & 100.0 \\
\hline subl & Se & 9 & \(b\) & 1.00 & 8 & -0.333 f & -0.333 f & 1.680 A & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.605 & Se 1 & \(\mathrm{Nb2}\) & \(\mathrm{Se} 1(1,0)\) & 82.9 \\
2.605 & Se 1 & \(\mathrm{Nb2}\) & \(\mathrm{Nb} 2(1,0)\) & 131.5 \\
2.605 & Se 1 & \(\mathrm{Nb2}\) & \(\mathrm{Se}(1,0)\) & 135.1 \\
2.605 & Nb 2 & Se 3 & \(\mathrm{Nb} 2(0,-1)\) & 82.9 \\
\hline
\end{tabular}
AUTHORS : J.W.M. Frenken, J.F. van der Veen and G. Allan
REFERENCE : Phys. Rev. Lett., 51, 1876 (1983)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: 370 K & Pattern : (1x1) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p4m &
\end{tabular}

Coverage
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( \(0.000,1.000\) )

STRUCTURE TYPE
Bulk termination with top spacing contraction

\section*{COMMENTS}

Using tight-binding model, authors deduce strengthening of Ni interlayer force constants relative to bulk values, accompanying layer contraction

\section*{IHEORY/DATA TREATMENT}

Geometric interpretation of blocking curves

\section*{STRUCTURES EXAMINED}

Expansion and contraction of top interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(A\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & ( 1.000, 0.000) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COOROINATES

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom \(B\) & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.382 & Nil & Ni2 & Ni1(1,0) & 63.0 \\
\hline 2.382 & Nil & Ni2 & Ni2(1,0) & 121.5 \\
\hline 2.382 & Nil & Ni2 & Ni3 & 87.3 \\
\hline 2.490 & Ni 2 & Ni2 (1,0) & & \\
\hline 2.490 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-(1×1)
ILLUSTRATION: 2
CLASSIFICATION : 28.29a
techniaue : leed
AUTHORS : W. Ded, H. Lindner, U. Starke, K. Heinz, K. Mueller and J.B. Pendry

REFERENCE : Surf. Sci., 224, 179 (1989)

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)
Coverage :
Matrix $:(1.000,0.000)$
(0.000, 1.000)

```

STRUCTURE TYPE
\(1 \%\) contraction of top interlayer spacing

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of sputtering and annealing in oxygen
Crystallinity: sharp LEED pattern
Anal. methods: AES: impurities below detection level
Contamination:
DATA COLLECTION THEORY/DATA TREATMENT
Technique: LEED; video LEED
Dataset : IV curves at normal incidence for 7 integer beams; \(E<=500 \mathrm{eV}\); cumul. E range 1700 eV

Dynamical LEED: 11 phase shifts;
Vor \(=-5 \mathrm{eV}\) (E-dependence tested)

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.22
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = \(1.762 \AA\)

```

COMMON NAME : Ni(100)-(1x1)
AUTHORS : J.E. Demuth, P.M. Marcus and D.W. Jepsen
REFERENCE : Phys. Rev., B11, 1460 (1975)

SURFACE TYPE

Substrate : Ni	Adsorbate:	
Crystal face: 100	Coverage :	
Temperature : RT	Pattern :	(1×1)
Bulk lattice: fcc	Matrix	(1.000, 0.000)
2D bulk symm: p4m		(0.000, 1.000)

STRUCTURE TYPE
Bulk termination with slight top spacing expansion

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer KKR): 8 phase shifts (Wakoh pot), Voi $\alpha E^{* * 1 / 3}$ (different functions tested); $\Theta D=335 \mathrm{~K}$

STRUCTURES EXAMINED
Variation of top layer spacing
QUALITY OF EXPERIMENT-THEORY FIT Visual

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.490	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1x1)	
Surface 1	2.490	0.000	0.000	2.490	90.0	$(0.000,1.000)$	bulk lattice	

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. $\mathrm{A}-\mathrm{B}(\AA)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.504	$\mathrm{Ni1}$	$\mathrm{Ni2}$	$\mathrm{Ni} 1(1,0)$	59.6
2.490	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni} 3(1,0)$	60.0

```
COMMON NAME : Ni(110)-(1x1) ILLUSTRATION: 
CLASSIFICATION : 28.11a
TECHNIQUE : MEIS
AUTHORS : J.F. van der Veen, R.M. Tromp, R.G. Smeenk and F.W. Saris
REFERENCE : Surf. Sci., 82, 468(1979)
```

SURFACE TYPE		STRUCTURE TYPE
Substrate $: ~ N i$	Adsorbate:	Bulk termination with top spacing contraction
Crystal face: 110	Coverage :	
Temperature : RT	Pattern $:(1 \times 1)$	
Bulk lattice: fcc	Matrix $:(1.000,0.000)$	
2D bulk symm: pmm		$(0.000,1.000)$

SAMPLE PREPARATION (1 sample)
Treatment : Ar+ sputtering at 570 K followed by 4
min annealing at 1120 K
Crystallinity:
Anal. methods:
Contamination: back scattering: $S<.02,0<.05, C<.1 M L$
DATA COLLECTION
COMMENTS
Technique: MEIS

THEORY/DATA TREATMENT

Medium energy ion beam scattering (blocking cones); $00=390 \mathrm{~K}$
STRUCTURES EXAMINED
Relaxation of top layer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.520	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.520	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	s1: commens.

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z $=1.245 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $\mathrm{A}-\mathrm{B}(\AA)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.490	Ni 1	$\mathrm{Ni} 1(0,1)$	$\mathrm{Ni2}$	59.7
2.465	Ni 1	$\mathrm{Ni2}$	$\mathrm{Ni3}$	59.0
2.465	Ni 1	$\mathrm{Ni2}$	$\mathrm{Ni4}$	119.0
2.440	Ni 1	$\mathrm{Ni3}$	$\mathrm{Ni4}$	120.0
2.490	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	60.0
2.490	$\mathrm{Ni3}$	$\mathrm{Ni4}$	$\mathrm{Ni2}$	60.0

```
SURFACE TYPE
Substrate : Ni
Crystal face: }11
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: pmm
```

2D surf symm: pmm

SAMPLE PREPARATION (1 sample)
Treatment : many Ar+ sputtering and annealing cycles Crystallinity: LEED: well ordered surface
Anal. methods:
Contamination: monitored by AES

DATA COLLECTION
Technique: HEIS; surface peak yield of 300 keV He+ Dataset : surface peak yield along (101), (100) axes: angular scans for each axis recorded 9 times, then averaged;

Adsorbate:
STRUCTURE TYPE
Bulk termination with multilayer relaxations

EXAMINED
First and second Ni interlayer spacings varied independently in the range -0.02 to $0.08 \AA$
QUALITY OF EXPERIMENT-THEORY FII
See comments
$2 D$ UNIT CELLS (1 domain observed)

Cell	Ax (A)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.520	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.520	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	s1: cormens.
superlattice								

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $\mathrm{A}-\mathrm{B}(\AA)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.490	Ni 1	$\mathrm{Ni} 1(0,1)$	$\mathrm{Ni2}$	59.6
2.458	$\mathrm{Ni1}$	$\mathrm{Ni2}$	$\mathrm{Ni3}$	59.2
2.458	$\mathrm{Ni1}$	$\mathrm{Ni2}$	Ni 4	118.7
2.450	Ni 1	$\mathrm{Ni3}$	Ni 4	120.0
2.502	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	60.5
2.490	$\mathrm{Ni3}$	$\mathrm{Ni4}$	$\mathrm{Ni4}(0,1)$	120.0

COMMON NAME	$: N i(110)-(1 \times 1)$
CLASSIFICATION $: ~ 28.17$	
TECHNIQUE	$:$ HEIS
AUTHORS	$:$ E. Tornqvist, E.D. Adams, M. Copel, T. Gustafsson and W.R.
	Graham
REFERENCE	: J. Vac. Sci. Technol., AZ, 939 (1984)

CLASSIFICATION : 28.17
TECHNIQUE : HEIS

REFERENCE : J. Vac. Sci. Technol., AZ, 939 (1984)

SURFACE TYPE
Substrate:
Adsorbate:
STRUCTURE TYPE
Crystal face: 110
Temperature : 300 K
overage
Pattern : (1×1)
Matrix $:(1.000,0.000)$
($0.000,1.000$)
2D bulk symm: prm

2D surf symm: pmm
SAMPLE PREPARATION (1 sample)
Treatment : cycles of ion bombardment and annealing at 2E-10 torr

COMMENTS

Vibrational amplitudes assumed the same as for $\mathrm{Ni}(111)$: see Surf. Sci. 114, 331 (1982);
authors speculate that discrepancy with LEED analysis may be due to deeper layer relaxations; analysis of co-covered Ni(110)-(2x1) yields unrelaxed substrate

THEORY/DATA TREATMENT

Monte Carlo analysis of proton scattering intensities as functions of angle, using a screened Coulomb potential

2D UNIT CELLS (1 domain observed)

Cell	Ax ($\mathrm{A}_{\text {) }}$	Ay (A)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.520	0.000	0.000	2.490	90.0	(1.000, 0.000)	(1x1)	$b:$ bulk lattice
						(0.000, 1.000)		
Surface 1	3.520	0.000	0.000	2.490	90.0	(1.000, 0.000)	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

8OND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.490	Ni1	Ni $1(0,1)$	Ni2	59.7
2.464	Ni1	Ni2	Ni3	59.0
2.464	Ni1	Ni2	Ni4	119.0
2.439	Ni1	Ni3	Ni4	120.0

Ni(110)-(1x1)
28.17

Bond Distances and Angles - Continued

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle A-B-C ($\left.{ }^{\circ}\right)$
2.490	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	60.0
2.490	Ni 3	$\mathrm{Ni4}$	$\mathrm{Ni} 4(0,1)$	120.0

COMMON NAME	$: N i(110)-(1 \times 1)$
CLASSIFICATION	$: 28.18$
TECHNIQUE	: LEED
AUTHORS	Y. Gauthier, R. Baudoing, Y. Joly, C. Gaubert and J.
	\quad Rundgren
REFERENCE	J. Phys., C17, 4547 (1984)

SURFACE TYPE
Substrate: Ni
Adsorbate:
Coverage :
Pattern : (1x1)
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc

Matrix : ($1.000,0.000)$
2D bulk symm: pmm

$$
(0.000,1.000)
$$

STRUCTURE TYPE
Bulk termination with multilayer relaxation

ILLUSTRATION: 4
2D surf symm: pmm

SAMPLE PREPARATION (1 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : $35 \mathrm{I}-\mathrm{V}$ spectra for 7 different diffraction geometries for energy range $30<E<200 \mathrm{eV}$

COMMENTS

Analysís was based on metric distances (see Lindgren et al, Phys. Rev. B29, 576 (1984)); RPE and RZJ also calculated: RPE favors 1 st layer contraction of 7%, RZJ favors 4% and metric distances favor 8%

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): Voi energy dependent
(Gauthier, J. Phys. C15, 3231 (1982)); $00=335 \mathrm{~K}$

STRUCTURES EXAMINED
$+3 \%$ to -12% relaxation of 1 st layer spacing; -8% to $+8 \%$ relaxation of 2 nd layer spacing;
-3 eV to +2eV variation of Vor

QUALITY OF EXPERIMENT-THEORY FIT
See comments
2D UNIT CELLS (1 domain observed)

Cell	AX (A)	Ay (\AA)	BX (A)	By (${ }^{\text {a }}$)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.520	0.000	0.000	2.490	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.520	0.000	0.000	2.490	90.0	(1.000, 0.000$)$	(1x1)	s1: commens.
						(0.000, 1.000)		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	site occ.	Rel. to	$D \mathrm{D} \pm \pm \mathrm{X}$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \epsilon z$	$\mathrm{Oz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{z} / \mathrm{Bz}$
epir		-2				f	f	\AA	
subr		-1				1.760 A	1.245 A	1.245 A	
intf	Ni	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Ni	2	b	1.00	1	0.500 f	0.500 f	$1.140 \pm .010 \AA$	$91.6 \pm .8$
intf	Ni	3	b	1.00	2	-0.500 f	-0.500 f	$1.284 \pm .013 \AA$	103.1 ± 1.0
subl	Ni	4	b	1.00	3	0.500 f	0.500 f	1.245 A	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $\mathrm{A}-\mathrm{B}(\mathrm{A})$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.490	Ni 1	$\mathrm{Ni}(\mathrm{O}, 1)$	Ni 2	59.3
2.439	Ni 1	$\mathrm{Ni2}$	Ni 3	58.7
2.439	$\mathrm{Ni1}$	$\mathrm{Ni2}$	$\mathrm{Ni4}$	117.9
2.424	$\mathrm{Ni1}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	120.0
2.509	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	60.8
2.490	Ni 3	$\mathrm{Ni4}$	$\mathrm{Ni} 4(0,1)$	120.0

SURFACE TYPE

Substrate: Ni

Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2 D bulk symm: prm
20 surf symm: pmm

```
Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
    ( 0.000, 1.000)
```

STRUCTURE TYPE
Bulk termination with multilayer relaxation

SAMPLE PREPARATION (2 sample)
Treatment : Ar ${ }^{+}$sputtering, annealing at 800-1100 K, flashing to 900 K

COMMENTS
Optimization of Vor, Voi and 00 carried out

Crystallinity:
Anal. methods:
Contamination: AES: <0.1ML C, <0.02ML S
DATA COLLECTION
Technique: LEED
Dataset : I-V curves at normal incidence: 9 inequivalent beams; E range $60 \cdot 360 \mathrm{eV}$

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 10 phase shifts (Moruzzi potential); Voi=-3.3 eV; $\Theta 0=514 \mathrm{~K}$

STRUCTURES EXAMINED
Relaxation of first 3 interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
R2 $=0.02$
2 D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.520	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.520	0.000	0.000	2.490	90.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)
s1: commens.								
superlattice								

3D COORDINATES

Dx/Dy in \mathcal{A}, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $5 \quad$ Bulk $z=1.245 \mathrm{~A}$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.490	Ni1	Ni1(0,1)	Ni2	59.3
2.438	Ni1	Ni2	Ni3	58.6
2.438	Ni 1	Ni 2	Ni4	117.8
2.509	Ni 2	Ni3	Ni4	60.7
2.509	Ni2	Ni3	Ni5	120.8
2.524	Ni 2	Ni 4	Ni5	120.0

CLASSIFICATION : 28.23
TECHNIQUE : LEED
AUTHORS : M.L. Xu and S.Y. Tong
REFERENCE : Phys. Rev., B31, 6332 (1985)

SURFACE TYPE
Substrate: Ni
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm

Adsorbate
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

STRUCTURE TYPE
Bulk termination with multilayer relaxation

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED: 8 phase shifts; Voi α E**1/3

STRUCTURES EXAMINED
Variation of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RVHT=0.165
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx ($\AA)$	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.520	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	3.520	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	s1: conmens.
super(attice								

30 COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.490	Nil	Ni1 (0, 1)	Ni 2	59.2
2.431	Ni1	Ni2	Ni3	58.5
2.431	Ni1	Ni2	Ni 4	117.5
2.415	Ni1	Ni3	Ni4	120.0
2.513	Ni2	Ni3	Ni4	60.9
2.490	Ni3	Ni 4	$\mathrm{Ni} 4(0,1)$	120.0

SURFACE TYPE

Substrate : Ni
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: pmm
SAMPLE PREPARATION (1 sample)
Treatment : extensive sputter (670 K) and anneal (1070K or 1170K)
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination: ISS: no C, S, or 0
DATA COLLECTION
Technique: MEIS
Dataset : 110 k eV proton beam in (001) and (010) scattering planes.

STRUCTURE TYPE
Bulk termination with multilayer relaxation
Adsorbate
Coverage :
Pattern : (1×1)
Matrix : ($1.000,0.000$) ($0.000,1.000$)

COMMENTS
Previous discrepancies between LEED and ion scattering for $\mathrm{Ni}(110)$ surface attributed to level of surface cleanliness

THEORY/DATA TREATMENT

Monte Carlo analysis of proton scattering intensities as a function of scattering angle; surface $\Theta 0=395 \mathrm{~K}$

STRUCTURES EXAMINED
Top two interlayer spacings varied
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A $^{\text {) }}$	$B \times$ (A)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.524	0.000	0.000	2.492	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.524	0.000	0.000	2.492	90.0	$(1.000,0.000)$	(1×1)	s1: commens.
						(0.000, 1.000$)$		superlattice

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.438	$\mathrm{Ni1}$	$\mathrm{Ni2}$	$\mathrm{Ni3}$	58.6
2.424	Ni 1	$\mathrm{Ni3}$	$\mathrm{Ni4}$	120.0
2.514	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	60.9

COMMON NAME	$:$ Ni(110)-(1x1)
CLASSIFICATION	$: 28.26 a$
TECHNIQUE	$:$ LEED
AUTHORS	: W. Reimer, V. Penka, M. Skottke, R.J. Behm, G. Ertl and W.
	Moritz
REFERENCE	: Surf. Sci., 186, $45(1987)$

ILLUSTRATION: 4

SURFACE TYPE
Substrate : Ni
Adsorbate:
STRUCTURE TYPE
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: pmm
SAMPLE PREPARATION (1 sample)

```
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( \(0.000,1.000\) )
```


COMMENTS

Bulk termination with multilayer relaxation

Treatment:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : I-V curves over E range $40-390 \mathrm{eV}$

STRUCTURES EXAMINED
First 3 interlayer spacings varied
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.20$, RZJ $=0.04$
2 D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (A)	$B x$ (A)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	3.520	0.000	0.000	2.490 2.490	$\begin{aligned} & 90.0 \\ & 90.0 \end{aligned}$	(1.000, 0.000)	$\begin{aligned} & (1 \times 1) \\ & (1 \times 1) \end{aligned}$	b: bulk lattice
						(0.000, 1.000)		
Surface 1	3.520	0.000	0.000			(1.000, 0.000)		s1: commens.
						(0.000, 1.000)		superlattice

30 COORDINATES
'x/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z $=1.245 \AA$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C ($)$
2.439	$\mathrm{Ni1}$	$\mathrm{Ni2}$	$\mathrm{Ni3}$	58.8
2.430	$\mathrm{Ni1}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	120.3
2.512	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	61.2

REFERENCE : Phys. Rev. Lett., 47, 417 (1981)

SURFACE TYPE		
Substrate : Ni	Adsorbate:	
Crystal face: 111	Coverage	
Temperature : 300 K	Pattern	(1x1)
Bulk lattice: fec	Matrix	(1.000, 0.000)
20 bulk symm: p3m1		(0.000, 1.000)

2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : oxidation/reduction cycles, Ar+ bombardment, annealing
Crystallinity:
Anal. methods:
Contamination: in situ AES, 5 keV electron diffraction
DATA COLLECTION
Technique: HEIS; high energy He+ ion scattering Dataset :

STRUCTURE TYPE
Unrelaxed bulk termination

STRUCTURES EXAMINED

Bulk like structures with enhanced and unenhanced surface thermal vibration
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.490	0.000	1.245	2.156	60.0	$(1.000,0.000)$	(1x1)	b: bulk lattice
Surface 1	2.490	0.000	1.245	2.156	60.0	$(0.000,1.000)$	$(1.000,0.000)$	(1x1)

3D COORDINATES
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk $z=2.033 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \pm \boldsymbol{\mathrm { X }}$	Dy $\pm \in \boldsymbol{y}$	$D z \pm \epsilon z$	$D z / B z(\%) \pm \epsilon z / B z$
epir subr intf intf subl	$\begin{aligned} & \mathrm{Ni} \\ & \mathrm{Ni} \\ & \mathrm{Ni} \end{aligned}$	-2 -1 1 2 3	b b b	1.00 1.00 1.00	0 1 2	$\begin{array}{ll} & \\ 1.245 & f \\ 0.000 & \AA \\ 0.333 & f \\ 0.333 & f \\ \end{array}$	f 0.719 f 0.000 f 0.333 f 0.333 f	$\begin{array}{ll} & \\ 2.033 & A \\ 0.000 & A \\ 2.033 \pm .020 & \AA \\ 2.033 & \\ \AA \end{array}$	$\begin{gathered} 0.0 \\ 100.0 \pm 1.0 \\ 100.0 \end{gathered}$

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2

Interatomic dist. $\mathrm{A}-\mathrm{B}(\mathrm{A})$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.490	$\mathrm{Ni1}$	$\mathrm{Ni2}$		
2.490	$\mathrm{Ni2}$	$\mathrm{Ni3}$		

```
\begin{tabular}{ll} 
COMMON NAME & \(:\) Ni(111)-(1x1) \\
CLASSIFICATION & 28.4a \\
TECHNIQUE & LEED \\
AUTHORS & J.E. Demuth, P.M. Marcus and D.W. Jepsen \\
REFERENCE & \(:\) Phys. Rev., B11, 1460 (1975)
\end{tabular}
```


SURFACE TYPE

Substrate : Ni	Adsorbate:
Crystal face: 111	Coverage :
Temperature : RT	Pattern : (1×1)
Bulk lattice: fcc	Matrix $:(1.000,0.000)$
20 bulk symm: $\mathrm{p3} 1 \mathrm{~m} 1$	

20 bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (1 sample)
Treatment : see J.E. Demuth and T.N. Rhodin, Surf. Sci. 42, 261 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves include 00 beam at $\theta=4,10,20^{\circ}$ with $\phi=0^{\circ}$ and $10,-10$ beams at $\Theta=0^{\circ}$; E range $10-220 \mathrm{eV}$

STRUCTURE TYPE

Bulk termination with top spacing contraction

THEORY/DATA TREATMENT

Dynamical LEED (layer KKR): 8 phase shifts (Wakoh pot), Voi $\alpha E^{* *} 1 / 3$ (different functions tested); $\oplus 0=335 \mathrm{~K}$

COMMENTS

STRUCTURES EXAMINED
Variation of top layer spacing
QUALITY OF EXPERIMENT-THEORY FII
Visual
2D UNIT CELLS (1 domain observed)

Cell	$A x(A)$	$A y(A)$	$B x(A)$	$B y(A)$	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.490	0.000	1.245	2.156	60.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.490	0.000	1.245	2.156	60.0	$(0.000,1.000)$	$(1.000,0.000)$	(1×1)

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4

Interatomic dist. $\mathrm{A}-\mathrm{B}(\mathrm{A})$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.467	$\mathrm{Ni1}$	Ni 2	$\mathrm{Ni} 1(1,0)$	60.6
2.467	Ni 1	Ni	$\mathrm{Ni}(1,0)$	120.3
2.490	$\mathrm{Ni2}$	$\mathrm{Ni} 2(1,0)$	$\mathrm{Ni}(1,0)$	59.7
2.488	Ni 2	$\mathrm{Ni3}$	$\mathrm{Ni} 2(1,0)$	60.1

SURFACE TYPE

Substrate: Ni
Adsorbate:
Coverage
Pattern : (1x1)
Matrix : ($1.000,0.000)$
Matrix : $\begin{aligned}(1.000,0.000) \\ (0.000,1.000)\end{aligned}$
Crystal face: 311
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: cm

STRUCTURE TYPE
Bulk termination with contraction of first layer spacing

2D surf symm: cm
SAMPLE PREPARATION (1 sample)
Treatment: cycles of Ar+ bombardment and annealing
Crystallinity:
Anal. methods:
Contamination: AES: <0.02ML S

DATA COLLECTION

Technique: LEED
Dataset : I-V spectra for 14 beams at normal incidence over energy range 50-230 eV in 2eV intervals

COMMENTS

OD determined from weighted average of vibrational amplitudes for 1st 5 layers (Clark et al, Phys. Rev. 139 1860 (1965))
RZJ gives Vor=-10.8 eV and 14% contraction;
see also Surf. Sci. 116, 261 (1982)

THEORY/DATA TREATMENT

Dynamical LEED: 8 phase shifts (Wakoh Ni potential); up to 51 non-eq. beams; Vor optimised; Voi α E**1/3; $\Theta D=380 \mathrm{~K}$

STRUCTURES EXAMINED
Relaxation of 1 st interlayer spacing from 0% to 24% relative to bulk spacing of $1.0626 \AA$
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.344 ; ~ R Z J=0.127$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left(^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.492	0.000	-1.248	4.132	106.8	$(1.000,0.000)$	(1x1)	b: bulk lattice
Surface 1	2.492	0.000	-1.248	4.132	106.8	$(1.000,0.000)$	(1x1)	s1: commens.
superlattice								

3D COORDINATES
$0.1 \AA$ error bars assumed for tabulation

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{X} \pm \pm \mathrm{X}$	Dy \pm ¢ \quad ¢	$D z \pm \epsilon Z$	$D z / B z(\%) \pm \in Z / B z$
epir		-2				f	f	\AA	
subr		-1				0.002 \&	-2.252 \&	1.063 A	
intf	Ni	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Ni	2	b	1.00	1	0.727 f	0.454 f	$0.915 \pm .100 \AA$	86.1 ± 9.4
intf	Ni	3	b	1.00	2	-0.273 f	0.455 f	$1.063 \pm .100 \AA$	100.0 ± 9.4
subl	Ni	4	b	1.00	3	-0.272 f	-0.545 f	1.063	100.0

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 8

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle A-B-C (
2.492	Ni 1	$\mathrm{Ni}(1,0)$	Ni 2	59.2
2.430	Ni 1	$\mathrm{Ni2}$	$\mathrm{Ni3}$	119.1
2.430	Ni 1	$\mathrm{Ni2}$	$\mathrm{Ni4}$	87.1
2.367	Ni 1	$\mathrm{Ni3}(0,-1)$	$\mathrm{Ni4}$	88.5
2.494	$\mathrm{Ni2}$	$\mathrm{Ni3}$	$\mathrm{Ni4}$	60.0
2.490	$\mathrm{Ni2}$	$\mathrm{Ni3}(0,-1)$	$\mathrm{Ni4}$	60.0

Ni(311)-(1x1)
28.12

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.491	$\mathrm{Ni2}$	$\mathrm{Ni4}$	$\mathrm{Ni} 3(0,-1)$	59.9
2.490	$\mathrm{Ni3}$	$\mathrm{Ni4}$	$\mathrm{Ni} 4(1,0)$	90.1

TECHNIQUE : LEED

AUTHORS : D.L. Adams, W.T. Moore and K.A.R. Mitchell
REFERENCE : Surf. Sci., 149, 407 (1985)

SURFACE TYPE

Substrate
Crystal face: 311
Temperature : 298 K
Bulk lattice: fcc
20 bulk symm: cm
2D surf symm: cm
SAMPLE PREPARATION (1 sample)
Treatment : Ar+ bombardment 2000-500 eV and annealing 600-700C
Crystallinity:
Anal. methods:
Contamination: AES: <2\%ML S

DATA COLLECTION

Technique: LEED; vidicon/photography
Dataset : I-V curves: 12 beams, 9 symmetry-inequivalent at normal incidence; energy range 60-230 eV

Adsorbate:

Coverage :
Pattern : (1×1)
Matrix : (1.000, 0.000)
($0.000,1.000$)

STRUCTURE TYPE
Bulk termination with multilayer relaxations, mainly perpendicular to surface

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (layer doubling): 10 phase shifts (Moruzzi et al potential); Voi=-4 eV; $\Theta 0=450 \mathrm{~K}$

STRUCTURES EXAMINED
Relaxation of first three interlayer vectors within symmetry constraints

QUALITY OF EXPERIMENT-THEORY FIT

$R 2=0.048$
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.492	0.000	-1.246	4.132	106.8	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	2.492	0.000	-1.246	4.132	106.8	$(1.000,0.000)$	(1×1)	$(0.000,1.000)$

3D COORDINATES

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: $5 \quad B u l k z=1.063 \AA$

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{D} \quad \pm \epsilon \mathrm{X}$	$D Y \pm \epsilon y$	$D Z \pm \epsilon Z$	$D z / B z(\%) \pm \epsilon z / B z$
epir		-2				f	f	\&	
subr		-1				1.246 A	1.876	1.063 A	
intf	Ni	1	b	1.00	0	0.000 f	0.000 f	0.000 A	0.0
intf	Ni	2	b	1.00	1	$0.727 \pm .009 \mathrm{f}$	$0.454 \pm .019 \mathrm{f}$	$0.894 \pm .010$ \&	$84.1 \pm .9$
intf	Ni	3	b	1.00	2	$-0.273 \pm .009 \mathrm{f}$	$0.455 \pm .019 \mathrm{f}$	$1.106 \pm .016$ A	104.1 ± 1.5
intf	Ni	4	b	1.00	3	$-0.272 \pm .016 \mathrm{f}$	$-0.545 \pm .032 \mathrm{f}$	$1.045 \pm .017 \AA$	98.3 ± 1.6
subl	Ni	5	b	1.00	4	0.727 f	0.454 f	1.063 \&	100.0

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7

Interatomic dist. A-B (\AA)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.492	Ni1	Ni1 (1,0)	Ni2	59.1
2.423	Ni?	Ni2	Ni3	119.1
2.423	Ni?	Ni2	Ni4	86.9
2.386	Ni1	Ni3 $(0,-1)$	Ni 4	88.4
2.513	Ni2	Ni3	Ni4	60.4
2.483	Ni3	Ni4	$N \mathrm{Ni4}(1,0)$	90.0

Ni(311)-(1x1)
28.21

Bond Distances and Angles - Continued

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
2.483	Ni 3	Ni 4	$\mathrm{Ni} 4(-1,0)$	90.0

CLASSIFICATION TECHNIQUE
AUTHORS 28. ARXPD
: W.F. Egelhoff, Jr.
REFERENCE : J. Vac. Sci. Technol., A3, 730 (1988)

SURFACE TYPE

Substrate: Ni

Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p3m1

```
Adsorbate: Ag
Coverage :
Pattern : (111)
Matrix : ( 1.000, 0.000)
                                (0.000, 1.000)
```


STRUCTURE TYPE

Beyond 2ML coverage, Ag seems to grow as a conventional (111) surface; at 1 ML coverage a $c(8 \times 2)$ LEED pattern is observed

SAMPLE PREPARATION (1 sample)
Treatment :
Crystallinity: sharp LEED patterns
Anal. methods: thickness monitors and LEED
Contamination:
DATA COLLECTION

THEORY/DATA TREATMENT

Technique: ARXPD; UHV x-ray photoelectron spectrometer
Dataset : LEED patterns and ARXPS polar scans along the <100> azimuth

COMMENTS

2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	Ay (\AA)	BX (\AA)	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.893	0.000	1.446	2.505	60.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.893	0.000	1.446	2.505	60.0	$\left.\begin{array}{l} (1.000, \\ (0.000 \\ 0.000 \end{array} 1.000\right)$	(1x1)	s1: commens. superlattice

3D COORDINATES
$D x / D y$ in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

Reg ion	Chem el.	At. no.	Cell type	Site occ.	Rel. to	$D \mathrm{DX} \pm \boldsymbol{\pm}$	Dy $\pm \in y$	$D z \pm \epsilon Z$	$D z / B z(\%) \pm \in z / B z$
epir subr subl	Ag	-2 -1 1	b	1.00	0	$\begin{array}{ll} \\ 1.446 & f \\ 0.000 & \mathbf{f}\end{array}$	$\begin{array}{ll} \\ 0.835 & f \\ 0.000 & \text { A }\end{array}$	$\begin{array}{ll} & A \\ 2.361 & A \\ 0.000 & A \end{array}$	0.0

Bond distances and angles are derived from coordinates

No. of distances/angles: 1

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
2.893	Ag1	Ag1(1,0)	Ag1 (1,1)	120.0

COMMENTS

THEORY/DATA TREATMENT

Transmission channeling: multi-row continuum model

DATA COLLECTION

Technique: Transm. Channeling	
Dataset $:$	$0-40^{\circ}$ angular scans in [100], [011] and
	$[111]$ directions

STRUCTURES EXAMINED
Hcp, bridge, fac and top sites

QUALITY OF EXPERIMENT-THEORY FIT visual

2D UNIT CELLS (1 domain observed)

Cell	$A x(\AA)$	Ay (\AA)	$B \times(A)$	By (A)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.489	0.000	0.000	2.489	90.0	(1.000, 0.000)	(1x1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	2.489	2.489	-2.489	2.489	90.0	$(1.000$, $(-1.000$,	$c(2 \times 2)$	s1: commens.

3D COORDINATES
Bi1: atomic overlayer in 4 -fold hollow site
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\left.A-B-C()^{\circ}\right)$
2.702	Bi1	$\mathrm{Ni2}$		

COMMON NAME	$: N i(100)-p 4 g(2 \times 2)-2 C$
CLASSIFICATION	$: 28.6 .16$
TECHNIQUE	$:$ LEED
AUTHORS	: Y. Gauthier, R. Baudoing-Savois, K. Heinz and H. Landskron
REFERENCE	: Surf. Sci., $251 / 252,493$ (1991)

SURFACE TYPE

Substrate: N
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p 4 g

```
Adsorbate: C
Coverage : 0.5 C/N
Pattern : (2x2)
Matrix : ( 2.000, 0.000)
```

SAMPLE PREPARATION (1 sample)
Treatment : C segregation after bulk doping or CO cracking with elec.
Crystallinity: well defined 2×2 after annealing
Anal. methods: AES and LEED-IV to check stability in Contamination: no S or O by AES

DATA COLLECTION
Technique: LEED; halfsphere optics, spot photometer
Dataset : IV curves for 2 integer, 4 fractional order beams: cumul. E range 805 eV

STRUCTURE TYPE

Carbon adsorbed in fec hollow site;
clockwise rotation of top Ni layer atoms around hollow (shift in <010> directions by 0.45£);
buckling of 2 nd Ni layer (Ni directly below C moves up by 0.16A)

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (composite layers, layer doubling) matrix inversion, 8 phase shifts

STRUCTURES EXAMINED
Bridge site ruled out
QUALITY OF EXPERIMENT-THEORY FIT
RPE $=0.22$
20 UNIT CELLS (1 domain observed)

| Cell | Ax (\AA) | Ay (A) | Bx (A) | By (A) | $\alpha\left(^{\circ}\right)$ | Matrix | Pattern | Cell type |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bulk | 2.492 | 0.000 | 0.000 | 2.492 | 90.0 | $(1.000,0.000)$ | (1×1) | b: bulk lattice |
| Surface 1 | 4.984 | 0.000 | 0.000 | 4.984 | 90.0 | $(2.000,0.000)$ | (2×2) | s1: commens. |
| super(attice | | | | | | | | |

3D COORDINATES

C1-C2: adatoms in symm. equivalent hollow sites; $\mathrm{Ni} 3-\mathrm{Ni}$: top Ni layer, clockwise rotation around C ;
Ni7-Ni10: buckled 2nd Ni layer
Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 11
Bulk z $=1.762 \AA$

$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{C}$
28.6.16

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.823	C1	Ni4		
1.950	C1	Ni8		
1.823	C2	Ni3		
1.950	C2	Ni7		
1.823	Ni3	C1(0, 1)	$N \mathrm{~N} 4(0,1)$	89.8
1.823	Ni3	C1 $(0,1)$	Ni5 (0,1)	172.5
1.823	Ni3	C2	Ni4	89.8
1.823	Ni3	C2	Ni5 (1, 0)	172.5

SURFACE TYPE

Substrate: Ni	Adsorbate: C
Crystal face: 100	Coverage : $0.5 \mathrm{C} / \mathrm{Ni}$
Temperature: RT*	Pattern : p(2x2)
Bulk lattice: fcc	Matrix $:(2.000,0.000)$
2D bulk symm: pHm	

Substrate : Ni
Adsorbate: C
Trytal face: RT*
Bulk lattice: fcc
bulk symm: p4m
2D surf symm: p4g

SAMPLE PREPARATION (1 sample)

Treatment : ethylene exposure at elevated temperatures
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION

Technique: PED; photoelectron diffraction: BESSY Dataset : energy scans (30 eV wide integration) above C 1s edge 45° incidence in <110> az.; data range 80-400 eV

STRUCIURE TYPE

Carbon adsorbed in hollow site, $0.10 \AA$ above 1st $N i$ layer; clock rotation of 4 Ni neighbors by $0.55 \AA$
expansion of top $\mathrm{Ni}-\mathrm{Ni}$ interlayer spacing by $0.15 \AA$

COMMENTS

THEORY/DATA TREATMENT

Double scattering cluster calculation (500 atoms)

STRUCTURES EXAMINED

Ideal termination, layer relaxation, rotation amplitude

2D UNIT CELLS (1 domain observed)

Cell	AX (\AA)	AY (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.492	0.000	0.000	2.492	90.0	(1.000, 0.000)	(1×1)	b: bulk lattice
						(0.000, 1.000)		
Surface 1	4.984	0.000	0.000	4.984	90.0	(2.000, 0.000)	$p(2 \times 2)$	s1: commens.
						(0.000, 2.000)		superlattice

3D COORDINATES
C1-2 = adsorbate in symm. equivalent hollows Ni3-6 is clock rotated 4 fold hollow in 1 st layer Ni7 is bulk

Dx/Dy in \AA, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 5

Interatomic dist. A-B (A)	Atom A	Atom B	Atom C	Bond angle $A-B-C\left({ }^{\circ}\right)$
1.849	$C 1$	$N i 3$		
1.849	$C 2$	$N i 3$		
1.990	$C 2$	$N i 7$		

$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{C}$
28.6.17

Bond Distances and Angles - Continued

Interatomic dist. $\mathrm{A}-\mathrm{B}(\mathrm{A})$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
1.849	$\mathrm{Ni3}$	C 1	$\mathrm{Ni4}$	173.8 1.849
$\mathrm{Ni3}$	C	$\mathrm{Ni5}$	89.8	

AUTHORS : J.H. Onuferko, D.P. Woodruff and B.W. Holland
REFERENCE : Surf. Sci., 87, 357 (1979)

SURFACE TYPE
Substrate : Ni
Crystal face: 100
remperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4g

```
Adsorbate: C
Coverage : 0.5 C/Ni
Pattern : (2x2)
Matrix : ( 2.000, 0.000)
    ( 0.000, 2.000)
```


STRUCTURE TYPE

Atomic adsorption in rotated, expanded 4 -fold hollow sites;
2 C per (2×2) unit cell in $c(2 \times 2)$ positions, but with opposite Ni rotations

COMMENTS

THEORY/DATA TREATMENT

Dynamical LEED (reverse scattering perturbation): 6 ph shs 18 subplanes (tested for clean $\mathrm{Ni}(100)$); Vor=-11 eV; mfp=8\&

STRUCTURES EXAMINED
Various combinations of perp. and parallel displacements of first-layer Ni atoms with C in either bridge or 4 -fold hollow sites at several perpendicular positions; preliminary calculation eliminated possibility of sublayer C

QUALITY OF EXPERIMENT-THEORY FIT

Visual
2D UNIT CELLS (1 domain observed)

Cell	Ax (\AA)	Ay (\AA)	Bx (\AA)	By (\AA)	$\alpha\left({ }^{\circ}\right)$	Matrix	Pattern	Cell type
Bulk	2.490	0.000	0.000	2.490	90.0	$(1.000,0.000)$	(1×1)	b: bulk lattice
Surface 1	4.980	0.000	0.000	4.980	90.0	$(2.000,0.000)$	(2×2)	$(0.000,2.000)$

3D COORDINATES
C1-C2: atomic overlayer in equivalent 4-f hollow sites; Ni3-Ni6: planar, laterally relaxed top Ni layer; accuracy of lateral displacements $0.35 \AA$ (assumed 4 -fold symmetrical)
$D x / D y$ in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8 Bulk z = $1.760 \AA$

$\mathrm{Ni}(100)-\mathrm{p} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{C}$
28.6.2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

Interatomic dist. $A-B(A)$	Atom A	Atom B	Atom C	Bond angle $\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)$
1.798	c1	Ni3	c2	156.5
1.798	c1	Ni3	$\mathrm{Ni} 3(1,0)$	123.6
1.798	c1	Ni3	$N \mathrm{~N} 4$	157.4
1.798	c1	Ni 3	Ni5	112.3
1.798	c1	Ni3	Ni6($-1,0$)	160.1
1.798	c1	Ni3	Ni7	50.7
2.060	C1	Ni7	Ni 3	42.5
2.060	c1	Ni7	$\mathrm{Ni} 3(-1,0)$	47.2

```
COMMON NAME : Ni(110)-(2x1)-C
CLASSIFICATION : 28.6.18
TECHNIQUE : EELFS
AUTHORS : L.S. Caputi, A. Amoddeo, R. Tucci and L. Papagno
REFERENCE : Phys. Rev., B44, 1357 (1991)
ILLUSTRATION: 35

\section*{SURFACE TYPE}

Substrate : N
Crystal face: 110
Temperature : 520 K
Bulk lattice: fcc 2D bulk symm: pmm 2D surf symm: pm

SAMPLE PREPARATION ( 1 sample)
Treatment : sputtering and annealing; exposure to ethylene at 520 K
Crystallinity: sharp (1×1) LEED pattern
Anal. methods: AES
Contamination:

DATA COLLECTION
Technique: EELFS
Dataset : carbon \(K\)-edge from \(k=2-6.8 \AA ̊-1\)
\[
\begin{aligned}
& \text { Adsorbate: carbidic carbon } \\
& \text { Coverage : } 0.5 \mathrm{ML} \\
& \text { Pattern }:(2 \times 1) \\
& \text { Matrix }:(2.000,0.000) \\
&
\end{aligned}
\]

STRUCTURE TYPE
Atomic adsorption in threefold site within troughs

\section*{COMMENTS}

Sharp (1x1) LEED pattern of the clean surface; poor (2x1) LEED pattern after exposure to ethylene

\section*{THEORY/DATA TREATMENT}

Fourier analysis with phase shift corrections
in the [110] direction

STRUCTURES EXAMINED
Top, bridge, threefold and fourfold sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS ( 2 domains observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 3.524 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 4.984 & 0.000 & 0.000 & 3.524 & 90.0 & \((0.000,1.000)\) & bulk lattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

C1: in 3-fold hollow site inside the Ni(110) troughs;
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 3
Bulk z \(=1.246 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates

No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( A\()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.850 & C1 & \(\mathrm{Ni2}\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{COMMON NAME : Ni(111)-(2x2)-C2H2} & \multirow[t]{5}{*}{ILLUSTRATION: 64} \\
\hline \multicolumn{3}{|l|}{CLASSIFICATION : 28.6.1.2} & \\
\hline TECHNIQUE : LE & \multicolumn{2}{|c|}{LEED} & \\
\hline \multicolumn{2}{|l|}{AUTHORS : G. Casalone, M.G. Cattania, F. Merati} & \multirow[t]{2}{*}{and M. Simonetta} & \\
\hline REFERENCE : Sur & , 120, 171 (1982) & & \\
\hline \multicolumn{2}{|l|}{SURFACE TYPE} & \multicolumn{2}{|l|}{STRUCTURE TYPE} \\
\hline Substrate : Ni & Adsorbate: C2H2 & \multicolumn{2}{|l|}{Molecular adsorption parallel to surface across bridge site,} \\
\hline Crystal face: 111 & Coverage : 0.25 ( \(\mathrm{C} 2 \mathrm{H} 2 / \mathrm{Ni}\) ) & \multirow[t]{3}{*}{i.e. two C sitt
H neglected} & low sites (off-cen \\
\hline Temperature : 140 K & Pattern : \((2 \times 2)\) & & \\
\hline Bulk lattice: fcc & Matrix : ( 2.000, 0.000) & & \\
\hline 2D bulk symm: p3m1 & ( 0.000, 2.000) & & \\
\hline 2D surf symm: cm & & & \\
\hline \multicolumn{2}{|l|}{SAMPLE PREPARATION ( 1 sample)} & \multicolumn{2}{|l|}{COMMENTS} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{cc} 
Treatment & \begin{tabular}{c}
\(\mathrm{Ar}+\) bombardment, 720 K anneal, 0.5 L \\
C 2 H 2 at 250 K
\end{tabular}
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Crystallinity:} \\
\hline \multicolumn{4}{|l|}{Anal. methods:} \\
\hline \multicolumn{4}{|l|}{Contamination: checked by LEED and AES} \\
\hline DATA COLLECTION & & \multicolumn{2}{|l|}{THEORY/DATA TREATMENT} \\
\hline \multicolumn{2}{|l|}{Technique: LEED} & \multicolumn{2}{|l|}{Dynamical LEED (layer doubling): 7 phase shifts (Wakoh} \\
\hline \multicolumn{2}{|l|}{Dataset : I-V curves for 5 beams at normal incidence ( \(30<\mathrm{E}<90 \mathrm{eV}\) )} & Ni potential, & H neglected) \\
\hline \multicolumn{4}{|l|}{STRUCTURES EXAMINED} \\
\hline hol (ow sites); Ni-C to surface. & with C-C perpendicular or stance varied from 1.8-2.1 & allel bonded to - -C bond length & ridge, and two lecular axis para \\
\hline \multicolumn{3}{|l|}{QUALITY OF EXPERIMENT-THEORY FIT} & \\
\hline \multicolumn{2}{|l|}{RZJ=0.19} & & \\
\hline
\end{tabular}

2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(\mathrm{Bx}(\AA)\) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 1.245 & 2.156 & 60.0 & ( 1.000, 0.000) & (1) 1 ) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000 ) & & \\
\hline Surface 1 & 4.980 & 0.000 & 2.490 & 4.313 & 60.0 & \((2.000,0.000)\) & (2x2) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
C1-C2: C2(H2) molecule parallel surface, centered over and oriented across bridge site
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 11
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.208 & C1 & C2 & Ni3 & 136.0 \\
\hline 2.490 & Ni3 & \(\mathrm{Ni} 3(1,0)\) & C2 \((1,0)\) & 124.1 \\
\hline 2.490 & Ni3 & Ni4 & & \\
\hline 2.159 & C2 & Ni 3 & \(\mathrm{Ni} 3(1,0)\) & 128.5 \\
\hline 2.159 & C2 & Ni3 & Ni4 & 169.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.041 & Ni3 & C1 \((1,0)\) & C2 & 72.2 \\
\hline 2.041 & Ni3 & C1 1,0 ) & Ni3(0, -1) & 72.7 \\
\hline 2.041 & Ni3 & C2(1,0) & C1 1.0\()\) & 131.7 \\
\hline 2.159 & Ni3 & C2 & C1 & 136.0 \\
\hline 2.159 & Ni3 & C2 & \(\mathrm{Ni} 3(-1,0)\) & 72.7 \\
\hline 2.490 & Ni3 & Ni3 \((1,0)\) & C1 \((1,0)\) & 92.8 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) Ni(100)-C6SH5 disordered & \\
CLASSIFICATION & \(: 28.6 .16 .1\) \\
TECHNIQUE & SEXAFS, XANES & \\
AUTHORS & Y. Takata, T. Yokoyama, S. Yagi, N. Happo, H. Sato, K. \\
REFERENCE & Seki, T. Ohta, Y. Kitajima and H. Kuroda
\end{tabular}

SURFACE TYPE
Substrate: Ni
Crystal face: 100
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none

SAMPLE PREPARATION ( 1 sample)
Treatment : sputtering and annealing cycles; exposed to thiophenol
Crystallinity:
Anal. methods: AES, LEED
Contamination:

DATA COLLECTION
Technique: SEXAFS, XANES
Dataset : S K-edge photoelectrons, XANES analysis from 2460-2510 eV, SEXAFS from \(2400-2900 \mathrm{eV}\)

STRUCTURE TYPE
Adsorbate: C6SH5 (thiophenol) Thiophenol adsorbs, losing a hydrogen, in a disordered Coverage : 0.17ML fashion with the S in a 4 -fold hollow site;
Pattern : disordered S-C bond is normal to the surface
Matrix : ( \(1.000,0.000\) )
( \(0.000,1.000\) )

COMMENTS
Orientation of the benzene ring is unknown: not included in tabulation

THEORY/DATA TREATMENT
Fourier transform technique

STRUCTURES EXAMINED
Hollow, bridge and top sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & disordered \\
\hline
\end{tabular}

3D COORDINATES
C1: benzene C bonded to S; S-C bond normal to surface; s2: bonded to \(C\) and 4 -fold hollow site
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.762 \AA\)


No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{l} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.840 & C1 & S2 & & \\
2.250 & S2 & Ni3 & & \\
\hline
\end{tabular}

CLASSIFICATION : 28.6.8.11
TECHNIQUE : LEED
AUTHORS : K. Heinz, E. Lang and K. Mueller
REFERENCE : Surf. Sci., 87, 595 (1979)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : 100 K
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment: CO exposure \(1 \mathrm{E}-5 \mathrm{~Pa} \times 50 \mathrm{sec}\)
Crystallinity: LEED intensities match published data
Anal. methods:
Contamination: AES: very little \(C\) on clean surface
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: \((1,1)(1,0)(1 / 2,1 / 2)\) beams at normal incidence \((0,0)\) beam at \(\Theta=4^{\circ}, \phi=0^{\circ}\); \(E\) range \(30-400 \mathrm{eV}\)

STRUCTURE TYPE
Molecular on-top adsorption, C bonding to Ni
Coverage : \(1 / 2 \mathrm{CO} / \mathrm{Ni}\)
Pattern : \(c(2 \times 2)\)
Matrix: \(\begin{aligned}(1.000,1.000) \\ (-1.000,1.000)\end{aligned}\)

COMMENTS
Spectra were taken within 16 sec after termination of adsorption process

THEORY/DATA TREATMENT
Comparison with earlier dynamical LEED I-V spectra by Pendry

STRUCTURES EXAMINED
Linearly bonded CO perpendicular to surface; variation of c-0 bond length: 0.9-1.2 in steps of 0.05 ;
variation of Ni-C bond length: 1.7. 1.8, 1.9\&; bulk interlayer spacings assumed in metal
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.19
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax \((\AA)\) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-C2: upright on-top molecule ( C bonded to Ni3)
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.150 & 01 & C2 & Ni3 & 180.0 \\
\hline 1.800 & C2 & Ni3 & & \\
\hline 2.489 & Ni 3 & Ni3 (1,0) & & \\
\hline 2.489 & Ni3 & Ni4 & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni(100)-c(2x2)-CO
CLASSIFICATION : 28.6.8.12b
TECHNIQUE : PED
AUTHORS : S.D. Kevan, R.F. Davis, D.H. Rosenblatt, J.G. Tobin, M.G.
Mason, D.A. Shirley, C.H. Li and S.Y. Tong
REFERENCE : Phys. Rev. Lett., 46, 1629 (1981)

```
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{SURFACE TYPE
Substrate
Crystal face:
Temperature :
Bulk lattice:
2D bulk symm:} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : 'standard procedures' (see Davis et al, PRL 45, 1877(1980))
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: PED; normal photoelectron diffraction
Dataset : photoelectron yield on both C(1s) and \(0(1 s)\) core levels in photon energy range from 300 to 650 eV

Adsorbate: co
Coverage : \(1 / 2 \mathrm{CO} / \mathrm{Ni}\)
Pattern : c(2x2)
Matrix : ( \(1.000,1.000\) )
( \(-1.000,1.000\) )

STRUCTURE TYPE
Molecular on-top adsorption, C bonding to Ni

COMMENTS

\section*{THEORY/DATA TREATMENT}

Convergent multiple-scattering calculation: Wakoh Ni pot, \(X \alpha\) scattered-wave potentials for \(C\) and \(O\)

STRUCTURES EXAMINED
CO bond axis normal to surface with C end down; top, bridge and hollow sites;
various \(\mathrm{C}-\mathrm{Ni}\) interplanar distances and C-O bond distances between 1.6 and \(2.3 \AA\) in steps of \(0.1 \AA\);
bulk Ni assumed
QUALITY OF EXPERIMENT-THEORY FIT
Visual
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & \(\mathrm{Bx}(\mathrm{A})\) & By ( A ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \[
\begin{aligned}
& (1.000, \\
& (-1.000, \\
& (1.000)
\end{aligned}
\] & \(c(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-C2: upright on-top molecule ( C bonded to Ni )
Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 1.130 & 01 & c2
\(N\) & \multirow[t]{3}{*}{Ni3} & \multirow[t]{3}{*}{180.0} \\
\hline 1.800 & C2 & Ni3 & & \\
\hline 2.489 & \(\mathrm{Ni3}\) & \(\mathrm{Ni} 3(1,0)\) & & \\
\hline
\end{tabular}
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & \(\mathrm{Ni3}\) & Ni & & \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)\)-CO
CLASSIFICATION : 28.6.8.4
TECHNIQUE : LEED
AUTHORS : M. Passler, A. Ignatiev, F. Jona, D.W. Jepsen and P.M.
Marcus
REfERENCE : Phys. Rev. Lett., 43, 360 (1979)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : 100 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : CO adsorbed to 2 L ; care to avoid electron-beam damage
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : normal incidence and off normal incidence ( \(\Theta=10^{\circ}, \phi=0^{\circ}\) ) IV spectra
```

Adsorbate: CO
Coverage : 1/2 CO/Ni
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

STRUCTURE TYPE
Molecular on-top adsorption, C bonding to Ni

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED: O, C, top Ni layers in ang. mom. repres., bulk in beam repres.; 5 phase shifts; 58 beams

STRUCTURES EXAMINED
Co molecule perpendicular to the surface, carbon end down; various adsorption sites (hollow, bridge, top);
varied \(\mathrm{Ni}-\mathrm{C}\) and \(\mathrm{C}-\mathrm{O}\) distances; bulk spacings assumed for Ni
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\mathrm{A}^{\text {) }}\) & Bx ( \(\mathrm{A}^{\text {) }}\) & By ( A ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \[
\begin{gathered}
(1.000 ; \\
(-1.000,1.000) \\
\hline
\end{gathered}
\] & \(c(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-C2: upright on-top molecule (C bonded to Ni3); \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA \mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=1.760 \AA\)


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.150 & 01 & \(\mathrm{C2}\) & Ni 3 & 180.0 \\
1.720 & CZ & \(\mathrm{Ni3}\) \\
2.489 & \(\mathrm{Ni3}\) & \(\mathrm{Ni3}(1,0)\) & & \\
2.489 & \(\mathrm{Ni3}\) & \(\mathrm{Ni4}\) & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni(100)-c(2x2)-CO
ILLUSTRATION: 71
CLASSIFICATION : 28.6.8.6
TECHNIQUE : PED
AUTHORS : L.G. Petersson, S. Kono, N.F.T. Hall, C.S. Fadley and J.B.
Pendry
REFERENCE : Phys. Rev. Lett., 42, 1545 (1979)

```

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

Adsorbate: CO
STRUCTURE TYPE
Molecular on-top adsorption, C bonding to Ni

SAMPLE PREPARATION ( 1 sample)
Treatment : CO adsorbed to -2.OL (see PRL 41, 117 \& 41, 1831 (1978))
Crystallinity
Anal. methods:
Contamination: checked by ARXPS: <3\%ML C

\section*{DATA COLLECTION}

Technique: PED; angle resolved x-ray photoemission Dataset : polar-angle scans of \(C(1 \mathrm{~s})\) and \(0(1 \mathrm{~s})\) intensities

Coverage : \(1 / 2 \mathrm{CO} / \mathrm{Ni}\)
Pattern : c(2x2)
Matrix \(:(1.000,1.000)\)

\section*{COMMENTS}

Average orientation of CO is determined to be within \(12^{\circ}\) of normal

STRUCTURES EXAMINED
\(\mathrm{C}-\mathrm{O}\) and \(\mathrm{Ni}-\mathrm{C}\) distance were assumed \(1.15 \AA\) and \(1.8 \AA\), resp.; various \(\mathrm{C}-0\) tilt angles tested; bulk Ni layer spacings assumed

QUALITY OF EXPERIMENT-THEORY FIT
Visual

\section*{THEORY/DATA TREATMENT}

Single-scattering calculations for both a single \(C O\) molecule and a finite cluster

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \begin{tabular}{l}
\((1.000,1.000)\) \\
\((1.000,1.000)\)
\end{tabular} & c(2x2) bulk lattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01-C2: upright on-top molecule (C bonded to Ni3)
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.150 & 01 & C2 & Ni3 & 180.0 \\
\hline 1.800 & C2 & Ni3 & & \\
\hline 2.489 & Ni3 & Ni3(1,0) & & \\
\hline 2.489 & Ni3 & Ni4 & & \\
\hline
\end{tabular}


\section*{3D COORDINATES}

01-C2: upright on-top molecule (C bonded to Ni3)
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.150 & 01 & C2 & Ni3 & 180.0 \\
\hline 1.710 & C2 & Ni3 & & \\
\hline 2.489 & Ni3 & Ni3 (1,0) & & \\
\hline 2.489 & Ni3 & Ni4 & & \\
\hline
\end{tabular}
AUTHORS : S.Y. Tong, A. Maldonado, C.H. Li and M.A. Van Hove
REFERENCE : Surf. Sci.., 94, 73 (1980)
```

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : 100 k
Bulk lattice: fcc
2D bulk symm: P4m

```
2D surf symm: p4m
SAMPLE PREPARATION ( sample)
Treatment : see Passler et al, Phys. Rev. Lett. 43,
    360 (1979)

Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : \(1-V\) curves: \(\theta=0^{\circ}\) : 3 beams; \(\theta=10^{\circ}, \phi=[110]\) : 10 beams

STRUCTURE TYPE
Molecular on-top adsorption, C bonding to Ni

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): Wakoh Ni pot, X \(\alpha\) CO pot, 8 ph sh;Vor \(=-11.85 \mathrm{eV}\); VoiaE**1/3; \(\oplus 0=371 \mathrm{~K}(\mathrm{Ni}), 688 \mathrm{~K}(\mathrm{C}), 596 \mathrm{~K}(0)\)

STRUCTURES EXAMINED
\(\mathrm{Ni}-\mathrm{C}\) and \(\mathrm{C}-\mathrm{O}\) layer spacings varied in top and bridge sites; CO kept perpendicular to surface
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & c(2x2) & \\
\hline
\end{tabular}

3D COORDINATES
01-C2: upright on-top molecule (C bonded to Ni3)
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.130 & 01 & C2 & Ni3 & 180.0 \\
\hline 1.700 & C2 & Ni3 & & \\
\hline 2.489 & Ni3 & Ni3(1,0) & & \\
\hline 2.489 & Ni3 & Ni4 & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni(110)-p(2x1)-2CO
ILLUSTRATION: 78
CLASSIFICATION : 28.6.8.20
TECHNIQUE : LEED
AUTHORS : D.J. Hannaman and M.A. Passler
REFERENCE : Surf. Sci., 203, 449(1988)

```

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 110
Temperature : 125 K
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: p2mg

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment: CO exposure at 5E-8 torr at 125 K for 2-3min; 5-10L
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV curves for 9 non-equivalent beams at normal incidence

Adsorbate: CO
Coverage : 1.0 (CO/Ni)
Pattern : p(2x1)
Matrix : (2.000, 0.000)
( 0.000, 1.000)

\section*{STRUCTURE TYPE}

Tilted molecular adsorption through \(C\) ends over short bridge sites in zigzag arrangement (Ni-C tilt of \(27^{\circ}, \mathrm{C}-\mathrm{O}\) tilt of \(17^{\circ}\) from normal; tilt is toward troughs)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS and composite layer method):
5 phase shifts

\section*{STRUCTURES EXAMINED}

Long and short bridge, hollow and top sites; variations of \(\mathrm{C}-\mathrm{O}\) bond length from 0.95 to \(1.35 \AA\); Ni-C length from 1.7 to 2.07A; Ni top interplanar spacing relaxed from -3 to \(+7 \%\); variations of \(\mathrm{Ni}-\mathrm{C}\) and \(\mathrm{C}-\mathrm{O}\) tilt angles from 0 to \(45^{\circ}\) from normal

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)


\section*{3D COORDINATES}

01-C3, 02-C4: 2 oppositely tilted CO molecules, \(C\) down; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(6 \quad\) Bulk z = \(1.245 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{l} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.117 & 01 & C3(0,-1) & Ni5(0,-1) & 139.2 \\
1.948 & C3 & Ni5 & Ni6 & 105.7 \\
2.490 & Ni5 & Ni5(1,0) & &
\end{tabular}
\(\mathrm{Ni}(110)-\mathrm{p}(2 \times 1)-2 \mathrm{CO}\)
28.6.8.20

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{r} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.490 & Ni5 & Ni6 & & \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Ni}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{CO}\)
ILLUSTRATION: 61
CLASSIFICATION : 28.6.8.12a
TECHNIQUE : PED
AUTHORS : S.D. Kevan, R.F. Davis, D.H. Rosenblatt, J.G. Tobin, M.G. Mason, D.A. Shirley, C.H. Li and S.Y. Tong
REFERENCE : Phys. Rev. Lett., 46, 1629 (1981)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 111
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p3m?
2D surf symm: cm
SAMPLE PREPARATION ( 1 sample)
Treatment : 'standard procedures' (see comments)
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: PED; normal photoelectron diffraction
Dataset : PED on both the C(1s) and O(1s) adsorbate core levels in the photon energy range from 300 to 600 eV

Adsorbate: CO
Coverage : \(0.33 \mathrm{CO} / \mathrm{Ni}\)
Pattern : ( \(\sqrt{3} x \sqrt{3}\) ) R30 \({ }^{\circ}\)
Matrix : ( \(1.000,1.000\) )
(-2.000, 1.000 )

\section*{STRUCTURE TYPE}

Molecular adsorption perpendicular to surface in bridge sites

COMMENTS
Prep: R.F. Davis, S.D. Kevan, D.H. Rosenblatt, M.G. Mason, J.G. Tobin and D.A. Shirley, Phys. Rev. Lett. 45,1877 (1980)

\section*{THEORY/DATA TREATMENT}

Convergent multiple-scattering calculation: Wakoh Ni potential, \(\mathrm{X} \alpha\) scattered-wave potentials for CO

STRUCTURES EXAMINED
CO axis normal to surface with carbon end down; various adsorption sites (top, bridge, and hollow); various \(\mathrm{C}-\mathrm{Ni}\) interplanar spacings between 1.6 and \(2.3 \AA\) in steps of \(0.1 \AA\); C-O distance of \(1.13 \AA\) fixed; bulk spacings assumed in Ni

QUALITY OF EXPERIMENT-THEORY FIT
visual
2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.488 & 0.000 & 1.244 & 2.155 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.733 & 2.155 & -3.733 & 2.155 & 120.0 & ( \(1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3}) \mathrm{R}^{3} 0^{\circ}\) & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

01-C2: overlayer of upright molecules in bridge sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = 2.030
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & site occ. & Rel.
to & Dx & & Dy \(\pm\) & & & Dz & \(\epsilon \mathrm{Z}\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & & \(f\) & & f & & & A & & \\
\hline subr & & -1 & & & & 0.000 & A & -1.437 & A & & 2.030 & \(A\) & & \\
\hline ovrl & 0 & 1 & s1 & . 33 & 0 & 0.000 & \(f\) & 0.000 & f & & 0.000 & A & & 0.0 \\
\hline ovrl & C & 2 & s1 & . 33 & 1 & 0.000 & \(f\) & 0.000 & \(f\) & & 1.130 & \(\AA\) & & 55.7 \\
\hline intf & Ni & 3 & \(b\) & 1.00 & 2 & -0.500 & \(f\) & 1.000 & & & 1.27 & \(\pm .500\) & & \(62.6 \pm 3.0\) \\
\hline subl & Ni & 4 & \(b\) & 1.00 & 3 & 0.333 & \(f\) & -0.667 & \(f\) & & 2.030 & A & & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.130 & 01 & C2 & Ni 3 & 120.5 \\
\hline 2.501 & C2 & Ni 3 & \(\mathrm{Ni} 3(0,-1)\) & 41.8 \\
\hline 2.501 & C2 & Ni3 & Ni4 & 85.2 \\
\hline 1.778 & Ni3 & C2 \((0,1)\) & Ni3(1,0) & 88.8 \\
\hline
\end{tabular}
\(\mathrm{Ni}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{CO}\)
28.6.8.12a

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 1.778 & Ni3 & c2(0,1) & \(\mathrm{Ni} 3(0,1)\) & 68.7 \\
\hline 2.488 & Ni3 & \(\mathrm{Ni} 3(1,0)\) & C2 11.0\()\) & 134.4 \\
\hline 2.487 & Ni3 & \(\mathrm{Ni4}\) & & \\
\hline
\end{tabular}


\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(A^{\prime}\) ) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{-2.492} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{90.0} & ( \(1.000,-1.000)\) & \multirow[t]{2}{*}{\(c(2 \times 2)\)} & s1: commens. \\
\hline & & & & & & ( 1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

C1: in a 4-fold site; small expansion of the 1 st \(N i\) interlayer spacing; coordinates derived from bond lengths and \(\mathrm{Ni}-\mathrm{Cl}\) layer spacing

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
\(\mathrm{Ni}-\mathrm{Ni}\) bond distances are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{l|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(\left.\mathrm{A}-\mathrm{B}-\mathrm{C} \mathrm{( }{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.380 & Cli & \(\mathrm{Ni2}\) & & \\
2.637 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}

COMMON NAME : Ni(111)-( \(\sqrt{3} x \sqrt{3}) R 30^{\circ}-\mathrm{Cl}\)
ILLUSTRATION: 22,24
CLASSIFICATION
TECHNIQU
: SEXAFS and X-ray SW
AUTHORS : M. Funabashi, T. Yokoyama, Y. Takata, T. Ohta, Y. Kitajima and H. Kuroda
REFERENCE : Surf. Sci., 242, 59 (1991)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 111
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION ( 1 sample)
Treatment : Cl from electrochemical source; monitored by AES, LEED
Crystallinity: clean LEED pattern
Anal. methods:
Contamination:

DATA COLLECTION
Technique: SEXAFS and X-ray SW
Dataset : Cl K-edge from 0-6A-1 at two incident angles XSW around normal incidence

Adsorbate: Cl
Coverage : 0.33 ML
Pattern : \((\sqrt{3} \times \sqrt{3})\) R30 \(0^{\circ}\)
Matrix : ( \(1.000,1.000\) ) (-2.000, 1.000)

\section*{STRUCTURE TYPE}

Atomic adsorption in 3-fold hollow site no surface relaxation; unsure as to fcc or hop (fcc assumed in the tabulation)

INED
Top, hollow and bridge sites
QUALITY OF EXPERIMENT-THEORY FIT Visual

THEORY/DATA TREATMENT
Fourier transform analysis

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY (A) & \(B \times\) (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 1.246 & 2.158 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.738 & 2.158 & -3.738 & 2.158 & 120.0 & ( \(1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Cl1: overlayer in fcc or hop hollow sites (uncertain); error bars: \(\pm-0.03\) on the \(\mathrm{Cl}-\mathrm{Ni}\) bond length; coordinates are derived from bond distances and angles

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.330 & \(\mathrm{Cl1}\) & Ni 2 & & \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Ni}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{Cl}\)
ILLUSTRATION: 22,24
CLASSIFICATION : 28.17.3
TECHNIQUE : ARPEFS
AUTHORS : Li-Qiong Wang, Z. Hussain, Z.Q. Huang, A.E. Schach von Wittenau, D.W. Lindle and D.A. Shirley
REFERENCE : Phys. Rev., B44, 13711 (1991)

SURFACE TYPE
Substrate : Ni
Crystal face: 111
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: p3m1
20 surf symm: p31m
SAMPLE PREPARATION ( 2 sample)
Treatment : exposed to Cl2 at RT followed by heating to 350 K
Crystallinity: sharp LEED pattern
Anal. methods: AES, LEED
Contamination:

DATA COLLECTION
Technique: ARPEFS
Dataset : Cl 1s photoemission from 50-550 eV
```

Adsorbate: Cl
Coverage : 0.33 ML
Pattern : (}\sqrt{3}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ
Matrix : (1.000, 1.000)
(-2.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in fcc hollow site with contraction between the 1st and 2nd Ni layers

COMMENTS
Also conducted at 300 K with same result

\section*{IHEORY/DATA TREATMENT}

Fourier and MSSW

STRUCTURES EXAMINED
Fcc and hep hollow sites
QUALITY OF EXPERIMENT-THEORY FIT
Chi**2=0.05-0.13
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(A\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.246} & \multirow[t]{2}{*}{2.158} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.738} & \multirow[t]{2}{*}{2.158} & \multirow[t]{2}{*}{-3.738} & \multirow[t]{2}{*}{2.158} & \multirow[t]{2}{*}{120.0} & ( \(1.000,1.000)\) & \multirow[t]{2}{*}{\((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\)} & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Cl1: atomic overlayer in fcc hollow site
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.035 \AA\)


BOND DISTANCES AND ANGLES

Bond angles and distances are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.332 & \(\mathrm{Cl1}\) & \(\mathrm{Ni1}\) & & \\
3.763 & \(\mathrm{C}!1\) & \(\mathrm{Ni2}\) & & \\
1.926 & Ni 1 & \(\mathrm{Ni2}\) & & \\
\hline
\end{tabular}


\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100 Temperature : RT Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : resistive heating of purified Co Crystallinity:
Anal. methods: quartz crystal oscillator to monitor Co layer thickness
Contamination:

\section*{DATA COLLECTION}

Technique: ARAES; angle-resolved Auger diffraction Dataset : polar angle intensity distributions for \(\mathrm{Ni}(100)\) and Co/Ni(100) interface over a wide range of coverages.

STRUCTURE TYPE
Unstrained layers of fec Co on fec Ni(001) up to 30 ML (the highest studied); 1 and 2 ML films show island formation; only 3 ML case is tabulated here

\section*{COMMENTS}

No theoretical interpretation of layers thicker than 3 ML ; absence of strain was determined by noticing the absence of movements in peaks corresponding to forward-scattering directions

\section*{THEORY/DATA TREATMENT}

Single scattering calculations for layers of 1-3 ML thickness

STRUCTURES EXAMINED
Strained structures were excluded as there was no movement in the forward scattering peaks

20 UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & \(B x\) ( \(A\) ) & By ( \({ }_{\text {A }}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & \[
(1.000,0.000)
\] & \multirow[t]{2}{*}{(1x1)} & \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

\section*{Co1-Co3: 3 overlayers of Co}

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk \(2=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & \(\operatorname{Co1}\) & \(\operatorname{Co2}\) & \(\operatorname{Co3}\) & 90.0 \\
2.489 & \(\operatorname{Co1}\) & \(\operatorname{Co}(1,0)\) & \(\operatorname{Co}(1,1)\) & 90.0 \\
2.489 & \(\operatorname{Co3}\) & Ni 1 & \(\mathrm{Ni} 1(1,1)\) & 90.0 \\
\hline
\end{tabular}


20 surf symm: p 4 m

> Adsorbate: Cu Coverage \(: 1.0(\mathrm{Cu} / \mathrm{Ni})\) Pattern \(:(1 \times 1)\) Matrix \(:(1.000,0.000)\)   \((0.000,1.000)\) (

STRUCTURE TYPE
Substrate : Ni

\section*{SAMPLE PREPARATION ( 1 sample) \\ Treatment : Cu deposited by heating Knudsen cell to 1250c ( \(1 \mathrm{~A} / \mathrm{min}\) )}

Crystallinity:
Anal. methods:
Contamination: AES: no impurities detected
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for \(00,10,11,20\) and 22 beams: \(20<E<240 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 8 phase shifts, \(00=440 \mathrm{~K}(\mathrm{Ni}), 344 \mathrm{~K}(\mathrm{Cu})\)

STRUCTURES EXAMINED
Variation of \(\mathrm{Cu}-\mathrm{Ni}\) interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual

\section*{COMMENTS}
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
Cu1: overlayer, continuing fcc lattice
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk \(2=1.770 \AA\)


BOND DIStances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.489 & Cu1 & Cu1 (1,0) & Ni2 & \\
\hline 2.518 & Cu1 & Ni2 & Ni3(1,0) & 120.5 \\
\hline 2.518 & Cu1 & Ni2 & Ni3 & 90.8 \\
\hline 2.496 & Ni 2 & & & \\
\hline
\end{tabular}

CLASSIFICATION : 28.29.5a
TECHNIQUE : MEED
AUTHORS : S.A. Chambers, I.M. Vitomirov, S.B. Anderson and J.H. Weaver
REFERENCE : Phys. Rev., B35, 2490 (1987)

SURFACE TYPE
Substrate: Ni
Adsorbate: Cu
Crystal face: 100
Temperature : RT
Coverage : \(3 \mathrm{Cu} /(1 \times 1)\)
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( 0.000, 1.000)
2D bulk symm: 04 m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: MEED; medium-energy electron diffraction
Dataset : 1-k eV elastic-peak polar-angle distributions for Ni(100), 12\& Cu/Ni(001), and cu(001) in the (100) azimuth

\section*{STRUCTURE TYPE}

For 12A of pseudomorphic Cu on \(\mathrm{Ni}(100)\), a tetragonal distortion perpendicular to the surface is observed; the new lattice constant for Cu in that direction is 3.75 \(0.02 \AA\) (compared to \(3.61 \AA\) for the bulk)

\section*{COMMENTS}

In the structure optimization, the Cu lattice constant in the plane of the interface was held at the value for Ni (3.52 A)

\section*{THEORY/DATA TREATMENT}

Single-scattering plane-wave calculations: incident beam channeling neglected

SIRUCTURES EXAMINED
Perpendicular lattice parameter varied from 3.6 to \(3.9 \AA\); best fits to experiment found at \(3.73,3.75\) and \(3.77 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) & s1: commens. \\
super(attice \\
\hline
\end{tabular}

3D COORDINATES
Cu1-Cu3: 3 layers (app. \(12 \AA\) ) of Cu
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( \()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & Cu1 & Cu1(1,0) & Cu1(1,1) & 90.0 \\
2.572 & Cu1 & Cu2 & Cu3 & 93.6 \\
2.572 & Cu2 & Cu3 & Ni4 & 91.8 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : Ni(100)-(1x1)-Cu multilayer \\
CLASSIFICATION: \(: 28.29 .5\) \\
TECHNIQUE & : AED \\
AUTHORS & S.A. Chambers, H.W. Chen, I.M. Vitomirov, S.B. Anderson and \\
& J.H. Weaver \\
REFERENCE & : Phys. Rev., B33, 8810 (1986)
\end{tabular}

CLASSIFICATION : 28.29 .5
: Phys. Rev., B33, 8810 (1986)

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: Cu
Coverage : multilayer (<14A)
Pattern : (1×1)
Matrix: $\begin{aligned}(1.000,0.000) \\ (0.000,1.000)\end{aligned}$

```

STRUCTURE TYPE
Epitaxial strained (1x1) multilayer, with Cu lattice
constant perpendicular to interface (=interlayer spacing \(\times 2\) )
of \(3.71 \AA\), vs \(3.52 \AA\) parallel to interface (same as Ni)

\section*{COMMENTS}

Treatment : resistive evaporation of high-purity Cu Crystallinity:
Anal. methods:
Contamination: monitored with LEED and AES
DATA COLLECTION
Technique: AED
Dataset : polar profiles of Ni and Cu
L(3)M(4,5)M(4,5) Auger intensities

THEORY/DATA TREATMENT
Comparison of exp. profiles to single scattering theory

STRUCTURES EXAMINED
Cu lattice constant perpendicular to interface examined

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\) & \\
\hline
\end{tabular}

\section*{30 COORDINATES}

Cu1-Cu3: beginning of strained Cu multilayer (thickness < 14\&);
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk \(2=1.860 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & \begin{tabular}{l} 
Cu1 \\
Cu1
\end{tabular} & \begin{tabular}{l} 
Cu1(1,0) \\
Cu2
\end{tabular} & \(\mathrm{Cu3}\) & \\
\hline
\end{tabular}

\section*{TECHNIQUE}
28.26

AUTHORS : S.H. Lu, Z.Q. Wang, D. Tian, Y.S. Li, F. Jona and P.M.
REFERENCE : Surf. Sci., 221, 35 (1989)

\section*{SURFACE TYPE}

\section*{Substrate : Ni}

Adsorbate: Fe
STRUCTURE TYPE
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 3 sample)
Treatment: cycles of Ar+ bomb. and 800-1000C anneals; Fe vapor-depos.
Crystallinity: LEED: some defects and disorder
Anal. methods: AES
Contamination: AES: no contaminants

\section*{DATA COLLECTION}

Technique: LEED; TV camera-microcomputer system
Dataset : IV spectra for 4 beams \((10,11,20,21)\) at normal incidence; cumul. E range 820 eV

\section*{Epitaxial (1x1) monolayer}

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 49 beams, 6 phase shifts from Moruzzi et al pot (Ni); E-dep. Vor and Voi

\section*{STRUCTURES EXAMINED}

Fce continuation, varying top 2 interlayer spacings between \(-12 \%\) and \(+12 \%\) of bulk \(N i\) spacing of \(1.76 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.08\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
\hline
\end{tabular}

3D COORDINATES
Fe1: epitaxial overlayer in fcc continuation; \(0.05 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors
No. of atoms: \(4 \quad\) Bulk z = \(1.760 \AA\)


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.489 & Fe 1 & \(\mathrm{Fe} 1(1,0)\) & Ni 2 & 60.8 \\
2.553 & Fe 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 2(1,0)\) & 119.2 \\
2.483 & Ni 2 & Ni 3 & Ni 4 & 89.9 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
TECHNIQUE & : LEED \\
AUTHORS & S.H. Lu, Z.Q. Wang, D. Tian, Y.S. Li, F. Jona and P.M. \\
REFERENCE & Marcus \\
: Surf. Sci., 221, 35 (1989)
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Ni
Adsorbate: Fe
Coverage : 2.0 \(\mathrm{Fe} / \mathrm{Ni}\)
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
20 surf symm: p4m
SAMPLE PREPARATION ( 3 sample)
Treatment : cycles of Ar+ bomb. and 800-1000C anneals; Fe vapor-depos.
Crystallinity: LEED: some defects and disorder
Anal. methods: AES
Contamination: AES: no contaminants
DATA COLLECTION
Technique: LEED; TV camera-microcomputer system
Dataset : IV spectra for 4 beams ( \(10,11,20,21\) ) at normal incidence; cumul. E range 820 eV

Pattern : (1×1)
Matrix : ( \(1.000,0.000\) )
\[
(0.000,1.000)
\]

STRUCTURE TYPE
Epitaxial ( \(1 \times 1\) ) bilayer

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 49 beams, 6 phase shifts from Moruzzi et al pot (Ni); E-dep. Vor and Voi

STRUCTURES EXAMINED
Fcc continuation, varying top 2 interlayer spacings between \(-12 \%\) and \(+12 \%\) of bulk \(N i\) spacing of \(1.76 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.09
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Fe1-Fe2: epitaxial overlayers in fcc continuation; \(0.05 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & Fe 1 & \(\mathrm{Fe} 1(1,0)\) & Fe 2 & 61.3 \\
2.590 & Fe 1 & Fe 2 & \(\mathrm{Ni3}\) & 92.1 \\
2.483 & Fe & \(\mathrm{Ni3}\) & \(\mathrm{Ni4}\) & 89.9 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: H(D) \\
Crystal face: 100 & Coverage : unknown \\
Temperature: 120 K & Pattern : disordered \\
Bulk tattice: fcc & Matrix : (1.000, 0.000) \\
2D bulk symm: p4m & \\
2D surf symm: none & \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : D2 exposure at \(1 \mathrm{E}-10\) torr at 170 K Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED.

\section*{DATA COLLECTION}

Technique: HEIS; He(3) transmission channeling: E=800k Dataset : angular scans along [100], [110] and [111] for angles of \(\pm 8^{\circ}\) off normal.

STRUCTURE TYPE
Disordered atomic adsorption in 4-fold hollow sites

COMMENTS
Analysis resulted in the use of a fitted rms vibrational amplitude of 0.24A parallel to the surface

\section*{THEORY/DATA TREATMENT}

Comparison with angular scans from a multirow continuum model; rms vib ampls=0.21A

STRUCTURES EXAMINED
Hollow and bridge sites: spacings of \(0.3,0.5\) and \(0.7 \AA\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & disordered \\
\hline
\end{tabular}

H1: disordered D overlayer in 4 -fold hollow sites (coverage unknown: assumed 0.25 here)
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{c}
1.830 \\
2.490
\end{tabular} & H 1 & \(\mathrm{Ni2}\) \\
\(\mathrm{Ni2}\)
\end{tabular}

COMMON NAME : Ni(110)-(2×1)-2H
ILLUSTRATION: 35,37
CLASSIFICATION : 28.1.23
TECHNIQUE : LEED
AUTHORS : W. Reimer, V. Penka, M. Skottke, R.J. Behm, G. Ertl and W. Moritz
REFERENCE : Surf. Sci., 186, 45 (1987)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: H \\
Crystal face: 110 & Coverage : \(1 \mathrm{H} / \mathrm{Ni}\) \\
Temperature: 180 K & Pattern : (2x1) \\
Bulk lattice: fcc & Matrix \(:(2.000,0.000)\) \\
2D bulk symm: pmm & \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Atomic adsorption in fcc 3-fold hollows on (111) facets of unreconstructed substrate with multilayer relaxations perp. to surface

\section*{IHEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): Moruzzi et al pot (Ni), H xtal pot, 8 ph shs; Vor \(\alpha E^{* *}-1 / 2\), VoiaE**1/3; \(\Theta D=450 \mathrm{~K}\)

SAMPLE PREPARATION ( 1 sample)
Treatment: exposure to 0.8 LH H2 at 120 K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : IV curves at normal and off-normal incidence; \(40<E<180 \mathrm{eV}\)

\section*{COMMENTS}

STRUCTURES EXAMINED
Top 3 interlayer spacings varied; positions of \(H\) atoms varied parallel and perpendicular to surface for:
1) long bridge sites; 2) fcc hollow sites on (111) facets;
also test of lateral displacement of top-layer Ni atoms
QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.27, RZJ=0.17
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 3.520 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 0.000 & 3.520 & 90.0 & \((2.000,0.000)\) & \((2 \times 1)\) & \((0.000,1.000)\)
\end{tabular}

3D COORDINATES
H1-H2: zigzag chains in Ni troughs over fcc hollow sites of (111) facets (each H bonds to 2 Ni 3 and \(1 \mathrm{Ni4}\) atoms)
Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.712 & H 1 & \(\mathrm{Ni}(0,-1)\) & \(\mathrm{Ni4}\) & 44.6 \\
1.730 & H 1 & \(\mathrm{Ni4}\) & \(\mathrm{Ni5}\) & 138.2 \\
2.490 & \(\mathrm{Ni3}\) & \(\mathrm{Ni} 3(1,0)\) & &
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.463 & \(\mathrm{Ni3}\) & \(\mathrm{Ni4}\) & \(\mathrm{Ni5}\) & 60.2 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: N i(111)-(2 \times 2)-2 H\) & \\
CLASSIFICATION & \(: 28.1 .6\) & \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & K. Christmann, R.J. Behm, G. Ertl, M.A. Van Hove and W.H. \\
& Weinberg \\
REFERENCE & J. Chem. Phys., \(70,4168(1979)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 111
Temperature : 110 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : hydrogen exposure yields about 0.5 ML coverage
Crystallinity:
Anal. methods:
Contamination: AES: C-free; ultrapure H2 gas (99.95\%)

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V curves: \((\Theta=0, \phi=0)\) : \(1 / 20,0 \quad 1 / 2,1 / 21 / 2\) beams; integral orders insensitive to H ; total E-range 220 eV

\section*{STRUCTURE TYPE}

Atomic adsorption in both kinds of hollow sites
simultaneously, at same height, forming honeycomb lattice

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: Wakoh Ni potential, H potential with Slater exchange; 5 phase shifts; Vor \(=-11.0 \mathrm{eV}\), Voi \(\alpha E 1 / 3 ; \Theta 0=314 \mathrm{~K}\)

STRUCTURES EXAMINED
1) \(1 / 4\) ML (2x2): 11 positions (2 hollows, bridge); 2) \(1 / 2\) ML ( \(2 \times 1\) ): 45 positions (top, hollow, bridge, underlayer); 3) \(1 / 2 \mathrm{ML}\) ( \(2 \times 2\) ): 25 positions (honeycomb, planar or buckled with different hollows or hollow/top combinations; 4) \(1 / 2 \mathrm{ML}\) (2×2) quasi molecular: 16 positions, parallel or tilted

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A \times(\AA)\) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 1.245 & 2.156 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000 ) & & \\
\hline Surface 1 & 4.980 & 0.000 & 2.490 & 4.313 & 60.0 & \[
(2.000,0.000)
\] & (2x2) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
H1-H2: honeycomb overlayer in both kinds of 3-fold hollow sites
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk \(2=2.033 \&\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.841 & Ni3 & H1(1,1) & H2 & 141.3
\end{tabular}
\(\mathrm{Ni}(111)-(2 \times 2)-2 H\)
28.1 .6

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.841 & Ni3 & H1(1, 1) & Ni3(1,0) & 85.1 \\
\hline 2.490 & Ni3 & Ni3(1,0) & H2 & 90.0 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: N i(111)-(2 \times 2)-2 H(D)\) \\
CLASSIFICATION & \(: 28.1 .31\) \\
TECHNIQUE & \(:\) HEIS \\
AUTHORS & \(:\) K. Mortensen, F. Besenbacher, I. Stensgaard and W.R. Wampler \\
REFERENCE & \(:\) Surf. Sci., 205,433 (1988)
\end{tabular}

REFERENCE : Surf. Sci., 205, 433 (1988)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate : Ni & \multicolumn{3}{|l|}{Adsorbate: H (D)} \\
\hline Crystal face: 111 & Coverage & 0.5 D/N & \\
\hline Temperature : 140 K & Pattern & (2x2) & \\
\hline Bulk lattice: fcc & Matrix & ( 2.000 & 0.000) \\
\hline 2 D bulk symm: p3m1 & & 0.000 & 2.000) \\
\hline
\end{tabular}

Substrate : Ni
Crystal face: 111
Temperature : 140 K
20 bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : sputtering/heating and \(0 / H\) reduction cycles; D deposition
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: HEIS; transmission channeling of high-E ion Dataset : angular scans around the [111], [110], [112] and [100] axial and across the \{100\} and \{111\} planar directions

STRUCTURE TYPE
Atomic adsorption with equal occupation of fcc and hcp hollow sites

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Multirow continuum calculation, including electr. and nucl. scattering; D detected through 0 to He 4 nuclear reaction

STRUCTURES EXAMINED
Fcc and hcp hollow sites (equally occupied); hap hollow site; fcc hollow site; top site; \(\mathrm{D}-\mathrm{Ni}\) spacing varied, substrate bulk-like

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & -1.245 & 2.156 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & -2.490 & 4.313 & 120.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 x 2)\) \\
\hline
\end{tabular}

3D COORDINATES
H1-H2: overlayer in both fcc and hep hollow sites
Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = \(2.030 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.645 & H 1 & \(\mathrm{Ni3}\) & H 2 & 121.8 \\
1.645 & H 1 & \(\mathrm{Ni3}\) & Ni 4 & 154.4 \\
2.490 & Ni 3 & \(\mathrm{Ni3}(1,0)\) & & \\
\hline
\end{tabular}

CLASSIFICATION
28.80 .1

TECHNIQUE XSW
AUTHORS : N.P. Prince, N.K. Singh, W. Walter, D.P. Woodruff and Robert G. Jones
REFERENCE : J. Phys. CM, 1, SB21 (1989)

SURFACE TYPE
Substrate: Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
Adsorbate: Hg
Coverage \(: 0.5 \mathrm{ML}\)
Pattern :
Matrix \(:(2 \times 2)\)

Adsorbate: Hg
Pattern : \(c(2 \times 2)\)
Matrix : ( \(1.000,1.000\) )
( \(-1.000,1.000\) )

STRUCTURE TYPE
Atomic adsorption in bridge site with \(\mathrm{Ni}-\mathrm{Hg}\) bond length characteristic of metallic radii or the NiHg compound

\section*{COMMENTS}

SAMPLE PREPARATION ( 1 sample)
Treatment : ion bombardment and annealing
Crystallinity: sharp LEED pattern
Anal. methods: LEED, AES
Contamination:
DATA COLLECTION
THEORY/DATA TREATMENT
XSW analysis
Technique: XSW

Dataset : Auger yield of Ni and Hg as fct of E around normal incidence

STRUCTURES EXAMINED
Variation of adsorbate-substrate layer spacing bridge, top and hollow sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.492 & 2.492 & -2.492 & 2.492 & 90.0 & \((1.000,1.000)\) & c(2x2) \\
\hline
\end{tabular}

3D COORDINATES
Hg1: atomic overlayer in bridge site
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.669 & Hg 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 2(1,0)\) & 64.1 \\
\hline
\end{tabular}
```

COMMON NAME : Ni(100)-c(2x2)-I
CLASSIFICATION : 28.53.2
TECHNIQUE : SEXAFS
AUTHORS : R.G. Jones, S. Ainsworth, M.D. Crapper, C. Somerton and D.P. Woodruff
REFERENCE : Surf. Sci., 179, 425 (1987)

```

\section*{SURFACE TYPE}

\section*{Substrate: Ni \\ Ni}

Substrate:
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
Temperature : RT
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m
```

Adsorbate: I
Coverage : 0.5 1/Ni
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

SAMPLE PREPARATION ( 1 sample)
STRUCTURE TYPE

COMMENTS
Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES
DATA COLLECTION
Technique: SEXAFS; synchroton radiation, 2 GeV electro \(\frac{\text { THEORY/DATA TREATMENT }}{\text { Multi-shell simulation of SEXAFS }}\)
Dataset : SEXAFS

STRUCTURES EXAMINED
Iodine in hollow, bridge, and top sites with variable \(\mathrm{Ni}-\mathrm{I}\) bond length

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \((1.000)\) & c(2x2) \\
\hline
\end{tabular}

3D COORDINATES
11: overlayer in 4-fold hollow sites; coordinates are derived from bond distances and angles
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad B u l k \quad=1.760 \quad \&\)


BOND DISTANCES AND ANGLES

No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{c}
2.779 \\
2.489
\end{tabular} & I 1 & \(\mathrm{Ni2}\) & Ni3 & 95.7 \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Ni}(100)-\mathrm{phg}(2 \times 2)-2 N\)
CLASSIFICATION : 28.7.2
TECHNIQUE : SEXAFS
AUTHORS : L. Wenzel, D. Arvanitis, W. Daum, H.H. Rotermund, J. Stoehr, K. Baberschke and H. Ibach
REFERENCE : Phys. Rev., B36, 7689 (1987)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: \(N\) \\
Crystal face: 100 & Coverage : \(1 / 2\) (N/Ni) \\
Temperature : 90 K & Pattern :(2x2) \\
Bulk lattice: fcc & Matrix \(:(2.000,0.000)\) \\
2D bulk symm: p4m & \\
20 surf sym: p4g &
\end{tabular}

20 surf symm: p4g

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : see Daum, Lehwald, Ibach, Surf. Sci. 178, 528 (1986)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: SEXAFS
Dataset : SEXAFS spectra at normal incidence and \(20^{\circ}\) grazing inc.; two temperatures, 90 K and 295K, give same structural results

\section*{STRUCTURE TYPE}

Atomic adsorption in rotated, expanded 4 -fold hollow sites 2 N per (2x2) unit cell in \(\mathrm{c}(2 \times 2)\) positions, but with opposite rotations (linear Ni displacement parallel to surface by \(0.68 \AA\) )
perp. distance between \(N\) and 2nd Ni layer well determined,

\section*{COMMENTS}

But assumption of bulk-like spacing between 1st and 2nd Ni layers-yields very small \(\mathrm{Ni}-\mathrm{Ni}\) bond distances (eds.); same result found at 90 K and 295 K

\section*{THEORY/DATA TREATMENT}

SEXAFS with experimentally determined phase shifts from bulk NiO standard ( N and O phase shift assumed identical)

STRUCTURES EXAMINED
Hollow site with p4g-compatible rotation of 4 Ni atoms around each hollow site; all \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacings assumed bulk-like; variable spacing between \(N\) and 1st \(N i\) layer

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & AY ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.984} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{4.984} & \multirow[t]{2}{*}{90.0} & \((2.000,0.000)\) & \multirow[t]{2}{*}{(2x2)} & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
N1-N2: atomic overlayer in equivalent 4-f hollow sites; Ni3-Ni6: planar, laterally relaxed top \(N\) i layer; coordinates are derived from bond distances and angles

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathbf{X} \pm \in \mathbf{X}\) & DY \(\pm \in Y\) & \(D Z \pm \epsilon \mathcal{L}\) & Dz/Bz(\%) \(\pm \in z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 2.492 A & 2.492 A & 1.762 \& & \\
\hline ovrl & \(N\) & 1 & s1 & . 25 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & N & 2 & s1 & . 25 & 1 & 0.500 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 3 & s1 & . 25 & 2 & -0.154 f & -0.347 f & \(0.110 \pm .060 ~ A\) & \(6.2 \pm 3.4\) \\
\hline intf & Ni & 4 & s1 & . 25 & 3 & 0.500 f & 0.193 f & 0.000 A & 0.0 \\
\hline intf & Ni & 5 & s 1 & . 25 & 4 & -0.193 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 6 & s 1 & . 25 & 5 & -0.500 f & -0.193 f & 0.000 A & 0.0 \\
\hline subl & Ni & 7 & b & 1.00 & 6 & -0.307 f & -1.307 f & 1.762 A & 100.0 \\
\hline
\end{tabular}

No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.892 & N1 & Ni3 & N2 & 137.3 \\
\hline 1.892 & N1 & Ni3 & \(\mathrm{Ni} 3(1,0)\) & 155.9 \\
\hline 1.892 & N1 & Ni3 & Ni4 & 175.7 \\
\hline 1.892 & N1 & Ni3 & Ni5(0, -2 ) & 111.1 \\
\hline 1.892 & N1 & Ni3 & Ni6(1,-1) & 155.9 \\
\hline 1.892 & N1 & Ni3 & Ni7 & 46.3 \\
\hline 1.872 & N1 & Ni7 & Ni3 & 47.0 \\
\hline 1.872 & N1 & Ni7 & Ni3(-1,0) & 31.6 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
CLASSIFICATION & \(: 28.7 .4\) \\
TECHNIQUE & : PED \\
AUTHORS & : A.L.D. Kilcoyne, D.P. Woodruff, A.W. Robinson, Th. Lindner, \\
& J.S.Somers and A.M.Bradshaw \\
REFERENCE & : Surf. Sci., 253, 107 (1991)
\end{tabular}

\section*{STRUCTURE TYPE}

N adsorbed in hollow site, O .10 A above ist Ni layer;
clock rotation of 4 Ni neighbors by \(0.55 \AA\);
top \(\mathrm{Ni}-\mathrm{Ni}\) interlayer expansion by \(0.15 \AA\)

\section*{COMMENTS}

SAMPLE PREPARATION ( 1 sample)
Treatment : 500 eV ion bombardment with \(N\), annealing
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: PED; photoelectron diffraction, BESSY Dataset : energy scans ( 30 eV wide integration) above \(N\) 1s edge \(45^{\circ}\) incidence in <110> az.; data range \(80-400 \mathrm{eV}\)

Adsorbate: N
Coverage : 0.5 (N/Ni)
Pattern : \(p(2 \times 2)\)
Matrix \(:(2.000,0.000)\)
( 0.000, 2.000)

\section*{THEORY/DATA TREATMENT}

Double scattering cluster calculation (500 atoms)

STRUCTURES EXAMINED
Ideal termination, layer relaxation, rotation amplitude

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A \times(A)\) & Ay ( \(A\) ) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.984 & 0.000 & 0.000 & 4.984 & 90.0 & \((2.000,0.000)\) & \(p(2 \times 2)\) & si: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
N1-2 = adsorbate in symm. equivalent hollows Ni3-6 is clock rotated 4 fold hollow in 1 st layer Ni 7 is bulk
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(7 \quad \mathrm{Bulk} 2=1.762 \mathrm{~A}\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \()\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.849 & N1 & Ni3 & & \\
1.849 & N2 & Ni3 & & \\
1.990 & N2 & Ni7 & &
\end{tabular}
\(\mathrm{Ni}(100)-\mathrm{P} 4 \mathrm{~g}(2 \times 2)-2 \mathrm{~N}\)
28.7 .4

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.849 & Ni3 & N1 & Ni4 & 173.8 \\
1.849 & \(\mathrm{Ni3}\) & N1 & Ni5 & 89.8 \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}+\mathrm{O}\) disordered
ILLUSTRATION: 28,29
CLASSIFICATION : 28.7.8.1
TECHNIQUE : LEED
AUTHORS : M.A. Passler, T.H. Lin and A. Ignatiev
REFERENCE : J. Vac. Sci. Technol., 18, 481 (1981)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none

SAMPLE PREPARATION ( 1 sample)
Treatment : NO dep. at 10E-8 torr with ion pump on to remove C
Crystallinity: nitric oxide admitted
Anal. methods:
Contamination: checked by LEED/AES
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 3 beams at normal incidence, 7 beams at \(10^{\circ}\) off normal; E range 50-275 eV

STRUCTURE TYPE
Decomposed NO as atomic \(N\) and o randomly positioned in 4 -fold hollow sites of a \(c(2 \times 2)\) lattice;
(this structure is here modeled as alternating \(N\) and \(O\) atoms in a \(p(2 \times 2)\) structure)

\section*{COMMENTS}

Top site yields similar best R-factor as hollow site, but with improbable inner potential

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 8 phase shifts with average t-matrix approximation

\section*{STRUCTURES EXAMINED}

Two models for dissociated NO: filled site model; random occupation model
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.22\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.978 & 0.000 & 0.000 & 4.978 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 x 2)\) \\
m1: randomly mixed \\
layer \\
\hline
\end{tabular}

\section*{3D COORDINATES}

N1-02: in (randomized) \(c(2 \times 2)\) lattice on hollow sites
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.991 & N1 & Ni3 & 02 & 124.3 \\
\hline 1.991 & N1 & Ni 3 & \(\mathrm{Ni} 3(1,0)\) & 128.7 \\
\hline 1.991 & N1 & Ni3 & Ni4(1,1) & 162.9 \\
\hline 1.991 & N1 & Ni3 & \(\mathrm{Ni} 4(1,0)\) & 109.3 \\
\hline 1.991 & N1 & Ni3 & Ni4 & 72.9 \\
\hline 2.489 & Ni3 & \(\mathrm{Ni} 3(1,0)\) & N1(1,0) & 128.7 \\
\hline
\end{tabular}
\(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{N}+\mathrm{O}\) disordered
28.7.8.1

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & Ni 3 & \(\mathrm{Ni4}\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Na}\) \\
CLASSIFICATION & \(: 28.11 .3\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & S. Andersson and J.B. Pendry \\
REFERENCE & : Solid State Commun., 16, 563 (1975)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: Na
Coverage : 0.5 ( \(\mathrm{Na} / \mathrm{Ni}\) )
Pattern : \(c(2 \times 2)\)
Matrix : (1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 5 phase shifts; 25 beams;
Vor \(=-7 \mathrm{eV}\), Voi varied with energy from -1 eV to -4 eV

STRUCTURES EXAMINED
Various Na-Ni interlayer spacings in hollow and top sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & \(B X(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & \[
2.489
\] & \[
0.000
\] & \[
0.000
\] & \[
2.489
\] & \[
90.0
\] & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & \[
(1 \times 1)
\] & b: bulk lattice \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \[
\begin{aligned}
& (1.000,1.000) \\
& (-1.000,1.000)
\end{aligned}
\] & \(c(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Na1: atomic overlayer in 4 -fold hollow sites
\(D x / D y\) in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.520 & Na1 & \(\mathrm{Na} 1(1,0)\) & Ni2(1,1) & 128.7 \\
\hline 2.817 & Nal & Ni2 & Ni2(1,0) & 116.2 \\
\hline 2.817 & Nal & Ni2 & Ni3 & 96.3 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \mathrm{Ni}(100)-c(2 \times 2)-\mathrm{Na}\) \\
CLASSIFICATION & \(: 28.11 .4\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) J.E. Demuth, D.W. Jepsen and P.M. Marcus \\
REFERENCE & \(:\) J. Phys., ç8, L25 (1975)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : 298 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment : Na deposited from heated breakseal glass ampule
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : from Andersson and Pendry, Sol. St. Commun. 16, 563 (1975)

Adsorbate: Na
Coverage : \(0.5 \mathrm{Na} / \mathrm{Ni}\)
Pattern : c(2x2)
Matrix : ( \(1.000,1.000\) )
(-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED: 8 (5) phase shifts for Pigid Ni (vibr. Na); up to 50 beams; Vor=-11 eV, Voi=-2.5eV; \(\Theta D=100\) to 800 K

STRUCTURES EXAMINED
Na in 4-fold hollow site: Na/Ni layer spacing varied from 1.17 to \(3.07 \AA\); effects of Na potential, surface barriers, non-structural parameters such as adsorbate scattering, adsorbate 00 and vor were examined

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & (2x2) \\
\hline
\end{tabular}

3D COORDINATES
Na1: atomic overlayer in 4-fold hollow sites

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & \(D X \pm \in X\) & Dy \(\pm\) Ey & \(D Z \pm E Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
intf \\
subl
\end{tabular} & Na
Ni
Ni & -2
-1
1
2
3 & s 1
\(b\)
\(b\) & .50
1.00
1.00 & 0
1
2 & \(\begin{array}{rr} & f \\ -1.245 & \AA \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f\end{array}\) & \[
\begin{array}{rr} 
& f \\
-1.245 & \AA \\
0.000 & f \\
0.500 & f \\
-0.500 & f
\end{array}
\] & \[
\begin{array}{ll} 
& A \\
1.760 & A \\
0.000 & A \\
2.230 \pm .100 & \AA \\
1.760 & A
\end{array}
\] & \[
\begin{gathered}
0.0 \\
126.7 \pm 5.7 \\
100.0
\end{gathered}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.520 & Na1 & \(\mathrm{Na} 1(1,0)\) & Ni2(1,1) & 128.3 \\
\hline 2.841 & Na1 & Ni2 & Ni2(1,0) & 116.0 \\
\hline 2.841 & Na1 & Ni2 & Ni3 & 96.7 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

CLASSIFICATION : 28.11.16.1a
TECHNIQUE : LEED
AUTHORS : S. Andersson and J.B. Pendry
REFERENCE : J. Phys., C9, 2721 (1976)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : 1E-4L H2S decomp. at 523 K ; high purity Na evaporation
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 3 beams at normal incidence from emergence to 100 eV : ( 00 ), ( \(1 / 2,1 / 2\) ), (01)

Coverage : \(0.5 \mathrm{Na}, \mathrm{S} / \mathrm{Ni}\)
Pattern : \(c(2 \times 2)\)
Matrix: \(\left(\begin{array}{c}(1.000,1.000) \\ (-1.000,1.000)\end{array}\right.\)

STRUCTURE TYPE
Atomic adsorption over hollow sites in mixed 50/50 layer;
Na and S individually form \(\mathrm{c}(2 \times 2)\) superlattices

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED: 5 phase shifts, 25 beams

\section*{STRUCTURES EXAMINED}

Various \(\mathrm{Ni}-\mathrm{S}\) and \(\mathrm{S}-\mathrm{Na}\) spacings

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \((2 \times 2)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Na1-S2: mixed overlayer in alternating hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z = \(1.760 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(\mathrm{DX} \pm \boldsymbol{\pm}\) & Dy \(\pm \epsilon y\) & \(D \mathbf{z} \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & A & \\
\hline subr & & -1 & & & & -1.245 \& & -1.245 \(\quad \AA\) & 1.760 A & \\
\hline ovrl & Na & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & S & 2 & s1 & . 50 & 1 & 0.500 f & 0.500 f & \(1.200 \pm .100 \AA\) & \(68.2 \pm 5.7\) \\
\hline intf & Ni & 3 & b & 1.00 & 2 & 0.500 f & -0.500 f & \(1.300 \pm .100 \AA\) & \(73.9 \pm 5.7\) \\
\hline subl & Ni & 4 & b & 1.00 & 3 & -0.500 f & -0.500 f & 1.760 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 2.763 & Na1 & S2 & \(\mathrm{Na}(1,0)\) & 79.1 \\
\hline 2.763 & Na 1 & S2 & Ni3 & 75.3 \\
\hline 3.057 & Na1 & Ni3 & S2 & 60.9 \\
\hline 3.057 & Na1 & Ni3 & Ni3(1,0) & 114.0 \\
\hline 3.057 & Na1 & Ni3 & Ni4 & 99.9 \\
\hline 2.188 & S2 & Ni3 & Ni3(1,0) & 124.7 \\
\hline
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.188 & S 2 & \(\mathrm{Ni3}\) & \(\mathrm{Ni4}\) & 114.8 \\
2.489 & \(\mathrm{Ni3}\) & \(\mathrm{Ni3}(1,0)\) & & \\
2.489 & \(\mathrm{Ni3}\) & \(\mathrm{Ni4}\) & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-p(2x2)-Na+2S
ILLUSTRATION: 28,30
CLASSIFICATION : 28.11.16.1b
TECHNIQUE LEED
AUTHORS : S. Andersson and J.B. Pendry
REFERENCE : J. Phys., C9, 2721 (1976)

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: Na.s STRUCTURE TYPE
Atomic adsorption over hollow sites in mixed layer;
Coverage : \(0.25 \mathrm{Na} / \mathrm{Ni}, 0.5 \mathrm{~S} / \mathrm{NiNa}\) forms \(\mathrm{p}(2 \times 2)\) lattice; S forms \(\mathrm{c}(2 \times 2)\) lattice;
Pattern : \(\mathrm{p}(2 \times 2)\) each Na bonds to 4 S atoms in adjacent hollows;
Matrix : (2.000, 0.000) each \(S\) bonds to 2 Na atoms in adjacent hollows

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED: 5 phase shifts, 49 beams

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 4 beams at normal incidence
from emergence to \(100 \mathrm{eV}:(00),(1 / 2,0)\), \((1 / 2,1 / 2)\), (01)

SAMPLE PREPARATION ( 1 sample)
Treatment : 1E-4L H2S decomp. at 523 K ; high purity Na evaporation
Crystallinity:
Anal. methods:
Contamination:

STRUCTURES EXÄMINED
Various \(\mathrm{Ni}-\mathrm{S}\) and \(\mathrm{S}-\mathrm{Na}\) spacings
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & \(B x(A)\) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & ( 1.000, 0.000) & (1) 1 ) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & ( 2.000, 0.000 ) & \(p(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES
Na1: \(p(2 \times 2)\) overlayer in hollow sites; \(s 2-s 3: c(2 \times 2)\) overlayer in hollow sites
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.764 & Na1 & S2 & Ni4 & 75.3 \\
\hline 3.058 & Na 1 & Ni4 & S2 & 61.0 \\
\hline 3.058 & Na 1 & Ni4 & Ni4 (1,0) & 114.0 \\
\hline 3.058 & Na 1 & Ni4 & Ni5 & 99.8 \\
\hline 2.189 & S2 & Ni4 & \(\mathrm{Ni4}(1,0)\) & 55.3 \\
\hline
\end{tabular}
\(\mathrm{Ni}(100)-\mathrm{p}(2 \times 2)-\mathrm{Na}+2 \mathrm{~S}\)
28.11.16.1b

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.189 & S 2 & \(\mathrm{Ni4}\) & \(\mathrm{Ni5}\) & 114.8 \\
2.490 & \(\mathrm{Ni4}\) & \(\mathrm{Ni4(1,0)}\) & & \\
2.490 & \(\mathrm{Ni4}\) & \(\mathrm{Ni5}\) & & \\
\hline
\end{tabular}

CLASSIFICATION TECHNIQUE AUTHORS 28.11.16.1c
. Andersson and J.B. Pendr

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: Na; S
Coverage : \(0.25 \mathrm{Na}, \mathrm{S} / \mathrm{Ni}\)
Pattern : p(2x2)
Matrix : ( \(2.000,0.000\) ) ( 0.000, 2.000)

\section*{STRUCTURE TYPE}

Atomic adsorption over hollow sites in mixed 50/50 layer;
Na and S individually form \(p(2 \times 2)\) superlattices;
Na and S form 1D strings of bonded atoms in adjacent hollows

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 5 phase shifts, 49 beams

STRUCTURES EXAMINED
Various Ni -S and S -Na spacings; Na sites 2 -fold and 4-fold S coordinated
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & BX ( \(A\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & ( 2.000, 0.000) & \(p(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Na1-s2: mixed overlayer, alternating in adjacent hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z = \(1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.764 & Na 1 & S2 & Ni3 & 75.3 \\
\hline 3.058 & Na 1 & Ni 3 & Ni3(1,0) & 114.0 \\
\hline 3.058 & Na 1 & Ni3 & Ni4 & 99.8 \\
\hline 2.189 & S2 & Ni3 & \(N \mathrm{Ni} 3(1,0)\) & 124.7 \\
\hline 2.189 & S2 & Ni3 & Ni4 & 114.8 \\
\hline 2.490 & Ni 3 & Ni3(1,0) & & \\
\hline
\end{tabular}

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.490 & \(\mathrm{Ni3}\) & Ni 4 & & \\
\hline
\end{tabular}
PED
AUTHORS : D.H. Rosenblatt, J.G. Tobin, M.G. Mason, R.F. Davis, S.D.
                                Kevan, D.A. Shirley, C.H. Li and S.Y. Tong
REFERENCE : Phys. Rev., B23, 3828 (1981)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100 Temperature : 300 K Bulk lattice: fcc 2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment: Ar+ sputtering, annealing to 875 K
Crystallinity:
Anal. methods:
Contamination: determined by sharp (1x1) LEED pattern
DATA COLLECTION
Technique: PED
Dataset : normal PED at SSRL with x-rays at near grazing incidence ( \(10^{\circ}\) ) measured to 195 eV above \(O\) (1s) edge
```

Adsorbate: 0
Coverage : 0.5 0/Ni
Pattern : c(2x2)
Matrix :(1.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites

\section*{COMMENTS}

THEORY/DATA TREATMENT
Full dynamical calcs: initial state calculated from Ms-Xa method for local 0 environment

STRUCTURES EXAMINED
4 -fold hollow ( \(\mathrm{d}=0.90 \AA\) ) and top ( \(\mathrm{d}=1.76 \AA\) ) sites

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY ( \(\AA\) ) & BX ( \(A_{\text {) }}\) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & ( 1.000, 1.000) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & \((-1.000,1.000)\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.977 & 01 & Ni 2 & 01(1,0) & 125.8 \\
\hline 1.977 & 01 & Ni 2 & \(\mathrm{Ni} 2(1,0)\) & 129.0 \\
\hline 1.977 & 01 & Ni 2 & \(\mathrm{Ni} 3(1,1)\) & 162.1 \\
\hline 1.977 & 01 & Ni2 & \(\mathrm{Ni} 3(1,0)\) & 108.8 \\
\hline 1.977 & 01 & Ni2 & Ni3 & 72.1 \\
\hline
\end{tabular}
\(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-0\)
28.8.21

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Atom C
\end{tabular}} & \begin{tabular}{c} 
Bond angle \\
\(A-B-C(O)\)
\end{tabular} \\
\hline 2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2}(1,0)\) & \(01(1,0)\) & 51.0 \\
2.489 & Ni 2 & Ni 3 & & \\
\hline
\end{tabular}

SEXAFS
AUTHORS : J. Stoehr, R. Jaeger and T. Kendelewicz
REFERENCE : Phys. Rev. Lett., 49, 142 (1982)

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

Adsorbate: 0
Coverage : 20L
Pattern : \(c(2 \times 2)\)
Matrix : ( \(1.000,1.000\) ) (-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

SAMPLE PREPARATION ( sample)
Treatment : see Brennan et al, Phys. Rev. B24, 4871 (1981)

COMMENTS
For analysis of the corresponding XANES see Norman et al Phys. Rev. Lett. 51, 2052 (1983)

Crystallinity:
Anal. methods:
Contamination: AES: <1\%ML \(\mathrm{C}, \mathrm{O}\), and S
DATA COLLECTION
Technique: SEXAFS
Dataset : SEXAFS at SSRL with x-ray incidence of \(45^{\circ}\)

\section*{THEORY/DATA TREATMENT}

Conventional EXAFS with experimentally determined phase shifts from bulk NiO standard

STRUCTURES EXAMINED
Different \(0-N i\) spacings in 4 -fold hollow site; spacing \(0.26 A\) ruled out by absence of polarization dep. of Ni-O bond length

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & Bx (A) & By (A) & \(0\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4-fold hollow sites; coordinates are derived from bond length
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES

No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.959 & 01 & Ni2 & 01(1,0) & 127.9 \\
\hline 1.959 & 01 & Ni 2 & Ni2(1,0) & 129.4 \\
\hline 1.959 & 01 & Ni 2 & Ni3(1,1) & 161.0 \\
\hline 1.959 & 01 & Ni2 & Ni3(1,0) & 108.1 \\
\hline 1.959 & 01 & Ni2 & Ni3 & 71.0 \\
\hline 2.489 & Ni2 & Ni2(1,0) & 01(1,0) & 50.6 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}\)
ILLUSTRATION: 28,29
CLASSIFICATION : 28.8.32a
TECHNIQUE : XANES (NEXAFS)
AUTHORS : D. Norman, J. Stoehr, R. Jaeger, P.J. Durham and J.B. Pendry
REFERENCE : Phys. Rev. Lett., 51, 2052 (1983)

SURFACE TYPE
Substrate: Ni
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( sample)
Treatment : see J. Stoehr and R. Jaeger, Phys. Rev. B26, 4111 (1982)

\section*{Adsorbate: 0}

Coverage : \(0.5(0 / \mathrm{Ni})\)
Pattern : \(c(2 \times 2)\)
Matrix \(:(1.000,1.000)\)
\[
(-1.000,1.000)
\]

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites

COMMENTS
Authors report small differences between \(p(2 \times 2)\) and \(c(2 \times 2)\) measured spectra

Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: XANES (NEXAFS)
Dataset : XANES for normal and grazing x-ray
incidence from threshold (approx. 530 eV ) to 564 eV with resolution 2.5 eV

\section*{THEORY/DATA TREATMENT}

Dynamical XANES: 30 atom cluster, Mattheis muffin-tin pots; Voi=-0.7 eV

\section*{STRUCTURES EXAMINED}
\(0-\mathrm{Ni}\) layer spacings of 0.2 and \(0.9 \AA\) in the 4 fold hollow site; bridge and top sites with fixed \(0-\mathrm{Ni}\) bond length of \(1.98 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY ( \(A\) ) & Bx ( \(\mathrm{A}^{\text {) }}\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000\()\) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4-fold hollow sites;
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 1.977 & 01 & Ni 2 & 01(1,0) & 125.8 \\
\hline 1.977 & 01 & Ni 2 & \(\mathrm{Ni} 2(1,0)\) & 129.0 \\
\hline 1.977 & 01 & Ni 2 & \(\mathrm{Ni} 3(1,1)\) & 162.1 \\
\hline 1.977 & 01 & Ni2 & \(\mathrm{Ni} 3(1,0)\) & 108.8 \\
\hline 1.977 & 01 & Ni2 & Ni3 & 72.1 \\
\hline 2.489 & Ni2 & \(\mathrm{Ni} 2(1,0)\) & 01(1,0) & 51.0 \\
\hline
\end{tabular}

> Bond Distances and Angles - Continued
\begin{tabular}{l|l|l|l|l}
\begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C ~(\%)\)
\end{tabular} \\
\hline 2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni(100)-c(2x2)-0
CLASSIFICATION : 28.8.35
techniQue : LEED
AUTHORS : J.E. Demuth, N.J. Dinardo and G.S. Cargill III
REFERENCE : Phys. Rev. Lett., 50, 1373 (1983)

```

SURFACE TYPE
\begin{tabular}{ll} 
Substrate \(: N i\) & Adsorbate: 0 \\
Crystal face: 100 & Coverage \(: 0.50 / \mathrm{Ni}\) \\
Temperature : 160 K & Pattern \(: c(2 \times 2)\) \\
Bulk lattice: fcc & Matrix \(:(1.000,1.000)\) \\
20 bulk symm: p4m &
\end{tabular}

2D surf symm: pm
SAMPLE PREPARATION ( 1 sample)
Treatment : 25 L 0 exposure at \(2 \mathrm{E}-8\) torr at 423 K , and briefly to 520K
Crystallinity:
Anal. methods:
Contamination: monitored by AES
DATA COLLECTION
Technique: LEED
Dataset : LEED I-V spectra: \(60<E<260 \mathrm{eV} ; 4\) inequivalent beams at normal incidence, ( 00 ) and \((1 / 2,1 / 2)\) beams for \(\theta=5^{\circ}\) and \(\theta=10^{\circ}\)

STRUCTURE TYPE
Atomic adsorption 0.1\& laterally away from 4-fold hollow site towards bridge site

\section*{COMMENTS}

Various oxide potentials were investigated but with little variation in the resulting spectra;
the asymmetric site is preferred independent of \(\Theta 0\),
Vor, Voi or the potential;
asymetrical site is no longer thought correcき (eds.)
THEORY/DATA TREATMENT
Dynamical LEED: 8 phase shifts; 58, 90,138 beams for
\(\mathrm{E}>60\), 128; 198 eV resp.; rms amps \(=0.009 \AA(\mathrm{Ni}) 0.012 \AA(0)\)

STRUCTURES EXAMINED
0 in 4 -fold hollow site from 0.05 to \(0.85 \AA\) above \(N i\) layer; nearly coplanar \(0 / \mathrm{Ni}\) structures with substrate distortions; reconstr. surfaces with 0 replacing alternate top Ni atoms; mixed layers with interstitial 0 between 1st and 2nd layers

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.17\)
2D UNIT CELLS ( 4 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(A\) ) & AY (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right.\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( \(1.000,0.000\) ) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01: overlayer in asymmetrical site near Ni hollows
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline \[
\begin{aligned}
& 1.756 \\
& 2.138 \\
& 2.489
\end{aligned}
\] & \begin{tabular}{l}
01 \\
01 \\
Ni2
\end{tabular} & \[
\begin{aligned}
& \mathrm{Ni} 2 \\
& \mathrm{Ni} 2(0,-1) \\
& \mathrm{Ni} 2(1,0)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ni} 3 \\
& \mathrm{Ni} 3(0,-1)
\end{aligned}
\] & \[
\begin{array}{r}
114.2 \\
68.0
\end{array}
\] \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: 0
Coverage : 0.3 0/N
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

SAMPLE PREPARATION ( 1 sample)
Treatment : sputtering, heating (1000C), oxidation/reduction cycles
Crystallinity:
Anal. methods:
Contamination: well below 0.01ML impurities

DATA COLLECTION
Technique: SEELFS
Dataset : SEELFS above 0 K edge and \(\mathrm{Ni} M(23)\) edge using primary electron energies between 1500-2000 eV

\section*{COMMENTS}

Analysis assumed validity of dipole approximation for the SEELFS matrix element;
data indicated large oxygen vibr. ampl.

\section*{THEORY/DATA TREATMENT}

EXAFS theory (see comments) with experimentally determined phase shifts from thermally grown Nio film on \(\mathrm{Ni}(100)\)

SIRUCTURES EXAMINED
Structures consistent with \(0-N i n n d i s t a n c e ~ o f ~ 1.96 \pm 0.03 \AA\) (from 0 K edge data) and an unperturbed substrate (from Ni M(23) data)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
\(2 D\) UNIT CELLS ( 1 domain observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \((1.000)\) & c(2x2) \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4-fold hollow sites; coordinates are derived from bond length
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.955 & 01 & Ni 2 & 01(1,0) & 128.4 \\
\hline 1.955 & 01 & Ni2 & Ni2(1,0) & 129.6 \\
\hline 1.955 & 01 & Ni2 & Ni3 \((1,1)\) & 160.8 \\
\hline 1.955 & 01 & Ni2 & Ni3 (1,0) & 107.9 \\
\hline 1.955 & 01 & Ni2 & Ni3 & 70.8 \\
\hline
\end{tabular}

Ni(100)-C(2x2)-0
28.8.36

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.489 & \(\mathrm{Ni2}\) \\
2.489 & \(\mathrm{Ni2}\) & \begin{tabular}{l}
\(\mathrm{Ni} 2(1,0)\) \\
\(\mathrm{NiS3}\)
\end{tabular} & \(01(1,0)\) & 50.5 \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2×2)-0
CLASSIFICATION : 28.8.37
TECHNIQUE : PED
AUTHORS : S.Y Tong, W.M. Kang, D.H. Rosenblatt, J.G. Tobin and D.A. Shirley
REFERENCE : Phys. Rev., B27, 4632 (1983)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: 0 \\
Crystal face: 100 & Coverage : \(0.50 / \mathrm{Ni}\) \\
Temperature: 300 K & Pattern :c(2x2) \\
Bulk lattice: fcc & Matrix \(:(1.000,1.000)\) \\
2D bulk symm: p4m &
\end{tabular}

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

SAMPLE PREPARATION ( sample)
Treatment : see Rosenblatt et al, Phys. Rev. B23, 3828 (1981)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: PED
Dataset : normal PED data of Rosenblatt et al, Phys. Rev. B23, 3828 (1981)

\section*{THEORY/DATA TREATMENT}

Mult. scatt. theory (combined space method of Tong and Van Hove, Phys. Rev. B16, 1459 (1977)): 5 phase shifts

STRUCTURES EXAMINED
Various \(0-N i\) layer spacings ( 0.0 to \(1.2 A\) ) with 0 in 4 -fold hollow site
QUALITY OF EXPERIMENT-THEORY FIT
\(R=0.2\) (average of \(6 R\)-factors)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((0.000,1.000)\) & \((1.000,1.000)\) & c(2x2) \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4-fold hollow sites;
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = \(1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.955 & 01 & Ni2 & \(01(1,0)\) & 128.4 \\
\hline 1.955 & 01 & Ni 2 & Ni2(1,0) & 129.6 \\
\hline 1.955 & 01 & Ni2 & Ni3(1,1) & 160.8 \\
\hline 1.955 & 01 & Ni2 & Ni3(1,0) & 107.9 \\
\hline 1.955 & 01 & Ni2 & Ni3 & 70.8 \\
\hline
\end{tabular}
\(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}\)
28.8.37

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(A)\)
\end{tabular} & Atom A & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & Ni 2 & \(\mathrm{Ni} 2(1,0)\) & \(01(1,0)\) & 50.5 \\
2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}

CLASSIFICATION : 28.8.42
TECHNIQUE : MEIS
AUTHORS : J.W.M. Frenken, J.F. van der Veen and G. Allan
REFERENCE : Phys. Rev. Lett., 51, 1876 (1983)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : 370 K
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( sample)
Treatment : 'standard procedures'
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: MEIS; Rutherford back scattering Dataset : blocking curves

Adsorbate: 0
Coverage : \(0.46 \pm 0.40 / \mathrm{Ni}\)
Pattern : \(c(2 \times 2)\)
Matrix : \(\begin{array}{r}(1.000,1.000) \\ (-1.000,1.000)\end{array}\)

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites

\section*{COMMENTS}

Using tight-binding model, authors deduce strengthening of Ni interlayer force constants relative to bulk values, accompanying oxygen-induced expansion

\section*{THEORY/DATA TREATMENT}

Geometric interpretation of blocking curves

STRUCTURES EXAMINED
Various \(\mathrm{O}-\mathrm{Ni}\) layer spacings only
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

01: overlayer in 4-fold hollow sites;
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.959 & 01 & Ni2 & 01(1,0) & 127.9 \\
\hline 1.959 & 01 & Ni2 & Ni2(1,0) & 129.4 \\
\hline 1.959 & 01 & Ni2 & Ni3(1,1) & 159.6 \\
\hline 1.959 & 01 & Ni2 & Ni3 (1,0) & 108.6 \\
\hline 1.959 & 01 & Ni2 & Ni3 & 72.5 \\
\hline 2.489 & Ni2 & Ni2(1,0) & 01(1,0) & 50.6 \\
\hline
\end{tabular}

Ni(100)-c(2x2)-0
28.8.42

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.553 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & \(\mathrm{Ni4}\) & 91.4 \\
2.489 & Ni 3 & \(\mathrm{Ni4}\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: N i(100)-c(2 \times 2)-0\) \\
CLASSIFICATION \(:\) & 28.8 .48 \\
TECHNIQUE & \(:\) HREELS \\
AUTHORS & \(:\) \\
& T.S. Rahman, D.L. Mills, J.E. 8 lack, J.M. Szeftel, S. \\
& Lehwald and H. Ibach \\
REFERENCE & \(:\) \\
& Phys. Rev., B30, 589 (1984)
\end{tabular}

AUTHORS : T.S. Rahman, D.L. Mills, J.E. 8lack, J.M. Szeftel, S. REFERENCE : Phys. Rev., B30, 589 (1984)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : RT* Bulk lattice: fcc 20 bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment: Ne+ bombardment, cycles of sputtering and annealing
Crystallinity:
Anal. methods:
Contamination: checked by AES and HREELS

\section*{DATA COLLECTION}

Technique: HREELS
Dataset : off-specular HREELS

Adsorbate: 0
Coverage :
Pattern : \(c(2 \times 2)\)
Matrix \(:(1.000,1.000)\)
\((-1.000,1.000)\)

\section*{STRUCTURE TYPE}

Atomic adsorption in 4 -fold hollow sites

\section*{STRUCTURES EXAMINED}
\(0-N i\) layer spacings of 0.9 and \(0.26 \AA\) in 4 fold hollow site; pseudo-bridge adsorption site ( \(0.3 \AA\) displacement along (100) direction)

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & c(2x2) & \begin{tabular}{l} 
( \(1.000,1.000)\)
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4-fold hollow sites \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

\section*{COMMENTS}

Authors conclude that \(c(2 \times 2)\) and \(p(2 \times 2)\) adsorbate-substrate relationship is the same, though \(\mathrm{O}-\mathrm{Ni}\) force constant is greater in the \(c(2 \times 2)\) structure by a factor of 0.55

\section*{THEORY/DATA TREATMENT}

Calc of surface phonon spectra for \(O\) and 1st three \(N i\) layers with short-range central force, dipole-dipole interactions
\(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{O}\)
28.8.48

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & \(\mathrm{Ni2}\) & Ni 3 & & \\
\hline
\end{tabular}

```

CLASSIFICATION : 28.8.59
AUTHORS : R. Saiki, A. Kaduwela, J. Osterwalder, M. Sagurton, C.S.
Fadley and C.R. Brundle
REFERENCE : J. Vac. Sci. Technol., A5, 932 (1987)

```


Substrate: Ni
STRUCTURE TYPE
Atomic adsorption in hollow sites
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: \(p 4 m\)

SAMPLE PREPARATION ( 1 sample)
Treatment: see C.S. Fadley, Prog. Surf. Sci. 16, 275 (1984)
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: PED; \(x\)-ray photelectron diffraction (XPD)
Dataset : azimuthal scans of 01s photoelectron distributions at polar angles of \(45^{\circ}\) and \(8^{\circ}\) (wrt surface plane)

Adsorbate: 0
Coverage : \(1 / 2\) ( \(0 / \mathrm{Ni}\) )
Pattern : \(c(2 \times 2)\)
Matrix \(:(1.000,1.000)\) (-1.000, 1.000)

\section*{THEORY/DATA TREATMENT}

Comprison with single-scattering cluster approach including spher.-wave scattering and correlated vibrations

STRUCTURES EXAMINED
0 in hollows at various heights above unrelaxed substrate; 'pseudo-bridge' position of Demuth et al, PRL 50 1373 (1983)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & Ay ( \(\AA\) ) & \(B \times\) ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \[
\begin{array}{ll}
(1.000, & 0.000) \\
(0.000, & 1.000)
\end{array}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \[
\begin{aligned}
& (1.000, \\
& (-1.000, \\
& (1.000)
\end{aligned}
\] & c (2x2) & s1: commens. superlattice \\
\hline
\end{tabular}

\section*{01: overlayer in 4-fold hollows}

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk \(z=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{c}
1.955 \\
2.489
\end{tabular} & O & \(\mathrm{Ni2}\) & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Ni(100)-c(2x2)-0 \\
CLASSIFICATION & \(: 28.8 .61\) \\
TECHNQUE & \(:\) SEXAFS \\
AUTHORS & \(:\) L. Wenzel, D. Arvanitis, W. Daum, H.H. Rotermund, J. \\
REFERENCE & Stoehr, K. Baberschke and. H. Ibach \\
R Phys. Rev., B36, 7689 (1987)
\end{tabular}

ILLUSTRATION: 28,29

SURFACE TYPE
Substrate: Ni
Crystal face: 100
Temperature : 50 K
Bulk lattice: fcc
2D bulk symm: \(\varnothing 4 \mathrm{~m}\)
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : 15L 02 adsorption at 75C
Crystallinity: sharp and clear LEED spots visible
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: SEXAFS
Dataset : SEXAFS spectra at normal incidence and \(20^{\circ}\) grazing inc.; two temperatures, 50 K and 295K, give same structural results

Adsorbate: 0
Coverage : \(1 / 2(\mathrm{O} / \mathrm{Ni})\)
Pattern : c(2x2)
Matrix \(:(1.000,1.000)\)
(-1.000, 1.000)

Atomic adorption in hollow site

\section*{STRUCTURE TYPE}

COMMENTS
This result rules out an off-center hollow site; same result found at 50 K and 295 K

\section*{THEORY/DATA TREATMENT}

SEXAFS with experimentally determined phase shifts from bulk NiO standard

STRUCTURES EXAMINED
Hollow site and small shifts away from hollow site; variable \(0-\mathrm{Ni}\) spacing, bulk-like substrate assumed

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \({ }^{\text {a }}\) ) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000\()\) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & ( \(1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

01: overlayer in 4-fold hollow sites; coordinates are derived from bond distances and angles
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 1.968 & 01 & Ni2 & \multirow[t]{2}{*}{Ni3} & \multirow[t]{2}{*}{71.6} \\
\hline 2.489 & Ni2 & \(\mathrm{Ni} 2(1,0)\) & & \\
\hline
\end{tabular}

SURFACE TYPE

\section*{Substrate: Ni}

Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: 0
Coverage : \(0.5 \mathrm{O} / \mathrm{Ni}\)
Pattern : \(c(2 \times 2)\)
Matrix: \(\begin{aligned}(1.000,1.000) \\ (-1.000,1.000)\end{aligned}\)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

SAMPLE PREPARATION ( sample)
Treatment: see J.E. Demuth and T.N. Rhodin, Surf. Sci. 45, 249 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : \(1-V\) spectra for \((0,0)(0,1)(1,1)\) \((1 / 2,1 / 2)\) beams at \(\Theta=0^{\circ}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer-KKR method, Bloch): Ni: Wakoh pot., VoiaE**1/3, \(00=420 \mathrm{~K}\); 0 : superpos. pot., Voi=-3 eV, \(\Theta 0=335 \mathrm{~K}\)

STRUCTURES EXAMINED
Bulk spacings assumed for \(\mathrm{Ni} ; \mathrm{O}-\mathrm{Ni}\) layer spacing varied from 0.815 to \(1.760 \AA\) in steps of \(0.105 \AA\)

\section*{QUALITY OF EXPERIMENT-THEORY FIT \\ Visual}

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \({ }_{\text {A }}\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \[
\begin{aligned}
& (1.000, \\
& (0.000) \\
& (0.000, \\
& 1.000)
\end{aligned}
\] & \[
(1 \times 1)
\] & b: bulk lattice \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \[
\begin{array}{ll}
(1.000, & 1.000) \\
(-1.000, & 1.000)
\end{array}
\] & \(c(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 4-fold hollow sites; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.986 & 01 & \(\mathrm{Ni2}\) & \(\mathrm{O}(1,0)\) & 124.8 \\
1.986 & 01 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 2(1,0)\) & 128.8 \\
1.986 & 01 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(1,1)\) & 162.6 \\
1.986 & 01 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(1,0)\) & 109.1 \\
1.986 & 01 & \(\mathrm{Ni2}\) & Ni 3 & 72.6
\end{tabular}

Ni(100)-c(2x2)-0 28.8.7

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & \(\mathrm{Ni2}\) & \begin{tabular}{l}
\(\mathrm{Ni2} 2(1,0)\) \\
\(\mathrm{Ni3}\)
\end{tabular} & \(01(1,0)\) & 51.2 \\
2.489 & \(\mathrm{Ni2}\) & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2x2)-O
ILLUSTRATION: 28,29
CLASSIFICATION
TECHNIQU
28.8 .71

AUTHORS
LEED
W. Oed, H. Lindner, U. Starke, K. Heinz, K. Mueller and J.B. Pendry

REFERENCE : Surf. Sci., 224, 179 (1989)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : 120 K
Bulk lattice: fcc 2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : adsorption at 400 K , 6 L oxygen exposure, annealing to 750 K
Crystallinity: sharp c(2x2) LEED spots
Anal. methods: HREELS to control purity of phase, no
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; video LEED
Dataset : IV curves at normal incidence for 4 integer, 2 fractional order beams; cumul. E range 1330 eV
\[
\begin{aligned}
& \text { Adsorbate: } 0 \\
& \text { Coverage : } 0.50 / \mathrm{Ni} \\
& \text { Pattern }: c(2 \times 2) \\
& \text { Matrix }:(1.000,-1.000) \\
& \\
& \\
& \\
& (1.000,1.000)
\end{aligned}
\]

\section*{STRUCTURE TYPE}

Oxygen adsorbed in hollow site;
\(0.35 \AA\) buckling in 2nd Ni layer;
top \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing expanded by \(6 \%\)

\section*{COMMENTS}

No evidence for Demuth's pseudobridge model; but also no sensitivity to 0 side shift up to \(0.2 \AA\);
local minimum for side shift occurs with bulk-like substrate, i.e. if 2nd Ni layer assumed planar

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (comb. space method, layer doubling): 11 phase shifts ( \(E=50-350 \mathrm{eV}\) )

STRUCTURES EXAMINED
Hollow site (incl. off center site), substr. reconstr. varied: 0 height, 0 off-center shift, 1 st \(N i-N i\) interlayer spacing, 2nd Ni-Ni interlayer spacing, 2nd Ni layer buckling

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.28\)
\(2 D\) UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{-2.492} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{90.0} & ( 1.000,-1.000) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

01: overlayer in hollow sites; Ni2-Ni3: planar top Ni layer;
Ni4-Ni5: buckled 2nd Ni layer

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \[
\begin{aligned}
& \text { Cell } \\
& \text { type }
\end{aligned}
\] & Site occ. & Rel. to & \(\mathrm{DX} \pm \boldsymbol{\mathrm { X }}\) & Dy \(\pm \in y\) & Dz \(\pm \boldsymbol{E Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & \(\AA\) & \\
\hline subr & & -1 & & & & 1.246 A & 1.246 A & 1.762 A & \\
\hline ovrl & 0 & 1 & s1 & . 50 & 0 & \(0.000 \pm .200\) A & \(0.000 \pm .200 \AA\) & \(0.000 \pm .040 \AA\) & \(0.0 \pm 2.3\) \\
\hline intf & Ni & 2 & s1 & . 50 & 1 & 0.500 f & 0.000 f & \(0.770 \pm .020 \AA\) & \(43.7 \pm 1.1\) \\
\hline intf & Ni & 3 & s1 & . 50 & 1 & 0.000 f & -0.500 f & \(0.770 \pm .020\) A & \(43.7 \pm 1.1\) \\
\hline intf & Ni & 4 & s1 & . 50 & 1 & 0.500 f & -0.500 f & \(2.615 \pm .020 \AA\) & \(148.4 \pm 1.1\) \\
\hline intf & Ni & 5 & s1 & . 50 & 1 & 0.000 f & 0.000 f & \(2.650 \pm .020\) A & \(150.4 \pm 1.1\) \\
\hline subl & Ni & 6 & b & 1.00 & 1 & -0.500 f & -0.500 f & 4.390 A & 249.1 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.923 & 01 & \(\mathrm{Ni2}\) & & \\
2.650 & 01 & \(\mathrm{Ni5}\) & & \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Ni & Adsorbate: 0 \\
Crystal face: 100 & Coverage : 1.5 L \\
Temperature : 300 K & Pattern : (2x2) \\
Bulk lattice: fcc & Matrix : \(2.000,0.000)\) \\
2D bulk sym: p4m & \\
2D &
\end{tabular}

Substrate: Ni
Crystal face: 100
Temperature : 300 K
2D bulk sym: phm
2D surf symm: p4m

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites
Coverage : 1.5 L
Pattern : (2x2)
Matrix : (2.000, 0.000)

SAMPLE PREPARATION ( sample)
Treatment : see Brennan et al, Phys. Rev. B24 4871 (1981)

Crystallinity:
Anal. methods: LEED
Contamination: AES: <1\%ML \(C, 0\), and \(S\)
DATA COLLECTION
Technique: SEXAFS; SEXAFS at SSRL
Dataset : x-ray incidence at \(45^{\circ}\)

\section*{COMMENTS}

For analysis of the corresponding XANES see Norman et al, Phys. Rev. Lett. 51, 2052 (1983)

\section*{THEORY/DATA TREATMENT}

Conventional EXAFS with experimentally determined phase shifts from bulk NiO standard

\section*{STRUCTURES EXAMINED}

Different \(\mathrm{O}-\mathrm{Ni}\) layer spacings in the 4 fold hollow sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right.\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & \((2.000,0.000)\) & (2x2) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: atomic overlayer in 4-fold hollow sites; coordinates derived from bond length
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.760 \AA\)


No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle
\[
\mathrm{A}-8-\mathrm{C}\left({ }^{\circ}\right)
\] \\
\hline 1.960 & 01 & Ni2 & Ni2(1,0) & 129.5 \\
\hline 1.960 & 01 & Ni 2 & Ni3(1,1) & 161.0 \\
\hline 1.960 & 01 & Ni2 & Ni3(1,0) & 108.1 \\
\hline 1.960 & 01 & Ni2 & Ni3 & 71.0 \\
\hline 2.620 & 01 & Ni3 & & \\
\hline 2.490 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Ni & Adsorbate: 0 \\
Crystal face: 100 & Coverage : \(0.25(0 / \mathrm{Ni})\) \\
Temperature: 300 K & Pattern : \(2 \times 2)\) \\
Bulk lattice: fcc & Matrix \(:(2.000,0.000)\) \\
2D bulk symm: p4m & \\
\hline
\end{tabular}

2D bulk symm: ptm
2D surf symm: p4m
SAMPLE PREPARATION ( sample)
Treatment : see J. Stoehr and R Jaeger, Phys. Rev. B26, 4111 (1982)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: XANES (NEXAFS)
Dataset : XANES for normal and grazing x-ray incidence from threshold (approx. 530 eV ) to 564 eV with resolution 2.5 eV

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

\section*{COMMENTS}

Authors report small differences between \(p(2 \times 2)\) and \(c(2 \times 2)\) measured spectra

\section*{THEORY/DATA TREATMENT}

Dynamical XANES: 30 atom cluster, Matheis muffin-tin pots; Voi=-0.7 eV

STRUCTURES EXAMINED
\(0-\mathrm{Ni}\) layer distances of 0.2 and \(0.9 \AA\) in the 4 -fold hollow site; bridge and top sites with fixed \(0-\mathrm{Ni}\) bond length of \(1.98 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & \(B x(\AA)\) & \(B y(A)\) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & \((2.000,0.000)\) & \((2 \times 2)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

01: atomic overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (Å) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.977 & 01 & Ni2 & Ni2 \((1,0)\) & 129.0 \\
\hline 1.977 & 01 & Ni2 & Ni3(1,1) & 162.1 \\
\hline 1.977 & 01 & Ni2 & Ni3(1,0) & 108.8 \\
\hline 1.977 & 01 & Ni 2 & Ni3 & 72.1 \\
\hline
\end{tabular}
\(\mathrm{Ni}(100)-p(2 \times 2)-0\)
28.8.32b

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C} \mathrm{( }{ }^{\circ}\) )
\end{tabular} \\
\hline 2.660 & \(\mathrm{O1}\) & \(\mathrm{Ni3}\) & & \\
2.490 & \(\mathrm{Ni2}\) & Ni 3 & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: N i(100)-\mathrm{p}(2 \times 2)-0\) & \\
CLASSIFICATION & \(: 28.8 .5\) & \\
TECHNIQUE & LEED & \\
AUTHORS & \(:\) M.A. Van Hove and S.Y. Tong \\
REFERENCE & J. Vac. Sci. Technol., 12, \(230(1975)\) &
\end{tabular}

SURFACE TYPE
Substrate: Ni
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m 2D surf symm: p4m

Adsorbate: 0
Coverage : \(1 / 4\) ( \(\mathrm{O} / \mathrm{Ni}\) )
Pattern : (2x2)
Matrix : ( 2.000, 0.000)
( 0.000, 2.000)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites
```

SAMPLE PREPARATION (sample)
Treatment : see Demuth and Rhodin, Surf. Sci. 42,
261 \& 45, 249 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset :

```

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED: layer doubling; Wakoh Ni potential, overlapping 0 at. pot., 8 phase shifts; Vor=-11.2 eV, VoiaE**1/3

STRUCTURES EXAMINED
8 to \(10 \mathrm{Ni}-\mathrm{O}\) spacings, \(0.2 \AA\) apart, at hollow, bridge and top sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & \((2.000,0.000)\) & \((2 \times 2)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
01: atomic overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = \(1.760 \AA\)


BOND DISTAI'CES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.977 & 01 & Ni2 & Ni2(1,0) & 129.0 \\
\hline 1.977 & 01 & Ni2 & Ni3(1,1) & 162.1 \\
\hline 1.977 & 01 & Ni2 & Ni3 (1,0) & 108.8 \\
\hline 1.977 & 01 & Ni2 & Ni 3 & 72.1 \\
\hline 2.660 & 01 & Ni 3 & & \\
\hline 2.490 & Ni2 & Ni 3 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
TECHNIQUE & : LEED \\
AUTHORS & : W. Oed, H. Lindner, U. Starke, K. Heinz, K. Mueller, D.K. \\
& Saldin, P.L. de Andres and J.B.Pendry \\
REFERENCE & : Surf. Sci., 225, 242 (1990)
\end{tabular}

SURFACE TYPE
Substrate:
Crystal face: 100
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: \(p 4 m\)

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : adsorption at \(400 \mathrm{~K}, 2 \mathrm{~L}\) oxygen exposure, annealing to 750K
Crystallinity: sharp p(2x2) LEED spots
Anal. methods: HREELS to control purity of phase, no Contamination:

\section*{DATA COLLECTION}

Technique: LEED; video LEED
Dataset : IV curves at normal incidence for 4 integer, 3 fractional order beams; cumul. E range 1730 eV

\section*{STRUCTURE TYPE}

Oxygen in hollow site; expansion of top \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing by \(2.5 \%\); second Ni layer buckling \(0.10 \AA\)

\section*{COMMENTS}

No evidence for Demuth's pseudobridge model;
but also no sensitivity to 0 side shift up to \(0.4 A\);
local minimum for side shift occurs with bulk-like
substrate, i.e. if 2nd Ni-layer assumed planar

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (comb. space method, layer doubling): 11 phase shifts ( \(E=50-350 \mathrm{eV}\) )

STRUCTURES EXAMINED
Hollow site (incl. off center site), substr. reconstr. varied: 0 height, O off-center shift, 1 st \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing, 2nd \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing, 2nd Ni layer buckling; 1st Ni layer lateral shifts

QUALITY OF EXPERIMENT - THEORY FII
\(\operatorname{RPE}=0.24, \operatorname{Var}(R)=0.04\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & ( 1.000, 0.000 ) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.984 & 0.000 & 0.000 & 4.984 & 90.0 & \((2.000, ~ 0.000)\)
\((0.000,2.000)\) & \(p(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in hollow sites; Ni2-Ni5: planar top Ni layer;
Ni6-Ni9: buckled 2nd Ni layer
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 10
Bulk z \(=1.762 \AA\)


Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.935 & 01 & Ni2 & & \\
2.645 & 01 & Ni9 & & \\
\hline
\end{tabular}

SURFACE TYPE
Substrate : Ni
Adsorbate: 0
Crystal face: 100
Temperature : 80 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: none

Coverage : \(0.10 / \mathrm{Ni}\)
Pattern : disordered
Matrix : ( 1.000, 0.000)
( \(0.000,1.000\) )

STRUCTURE TYPE
Disordered hollow site adsorption in off center position (pseudobridge) shifted by \(0.45 \AA\); 2nd layer buckled, sideshift of Ni atoms close to O of up to \(0.15 \AA\) possible; local minimum for 4 -fold-site with 1st layer buckling; disordered substrate relaxation modeled here as ( \(3 \times 3\) )

SAMPLE PREPARATION ( 1 sample)
Treatment : adsorption at 80 K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; video (diffuse) LEED, Y-function maps Dataset : intensities at 8 energies ( \(48 \mathrm{eV}-76 \mathrm{eV}\) ) for 7 Y-function maps; average over 1000 video frames, symm-eq data, 2D smoothing

\section*{COMMENTS}

Experimental data similar for \(0.015-0.25 \mathrm{ML}\) coverage range: same structure can be assumed
diagonal lateral displacement of Ni2, Ni4 (away from 0) up to 0.15A possible

THEORY/DATA TREATMENT
Dynamical LEED (3-step DLEED method, tensor LEED):
6 phase shifts, Voi=-4 eV

STRUCTURES EXAMINED
Hollow site, off center oxygen, substrate relaxations Buckling of 4 NN's in 1st layer, buckling of 9 atoms in 2nd layer: A below oxygen, \(4^{*} B=N N\) of \(A, 4^{*} C=d i a g\). NN of \(A\) only \(A\) buckles

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.198\) ( \(=\mathrm{MSD}\) of Y -functions)
2D UNIT CELLS ( 4 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax \((\AA)\) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 7.476 & 0.000 & 0.000 & 7.476 & 90.0 & \((3.000,1.000)\) & bulk lattice \\
\hline
\end{tabular}

3D COORDINATES
01: disordered adatom offcenter from hollow sites; Ni2-Ni10: top Ni layer, buckled, with possible lateral relaxations; Nil1-Ni19: 2nd Ni layer

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

\(\mathrm{Ni}(100)-\mathrm{O}\) disordered 28.8.82

BOND DISTANCES AND ANGLES
Bond distances for no lateral shift in Ni layer
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.710 & 01 & \(\mathrm{Ni2}\) & & \\
2.570 & O & Ni 11 & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll}
\hline Substrate: Ni & Adsorbate: 0 \\
Crystal face: 110 & Coverage : \(0.50 / \mathrm{Ni}\) \\
Temperature: RT* & Pattern : (2x1) \\
Bulk lattice: fcc & Matrix : (2.000, 0.000) \\
2D bulk symm: pmm & \\
2D surf symm: pmm & \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ bomb. and anneal, then 1mbar-s 0 deposited at 450 K
Crystallinity: sharp (2x1) LEED superstructure
Anal. methods: AES, ISS, LEED
Contamination: monitored by LEED
DATA COLLECTION
Technique: ALICISS; alkali impact collision ion scatt
Dataset : Na+ of \(\mathrm{E}=2000 \mathrm{eV}\) scattered through \(145^{\circ}\) in 3 azimuthal planes containing <1-10>, <1-12>, <001> directions

\section*{STRUCTURE TYPE}

Missing row reconstruction, removing every other ridge atom, with \(O\) occupying bridge sites between remaining Ni atoms in adjacent ridges; substrate relaxations not analyzed

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Fit of shadow cone to data and used to predict ALICISS profiles for different structural models

STRUCTURES EXAMINED
Unreconstructed, sawtooth and missing row models tested; with miss. row model, 0 height was examined, a bridge site being assumed

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & \(A x(A)\) & \(A y(A)\) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 3.520 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 0.000 & 3.520 & 90.0 & \((2.000,0.000)\) & (2x1) & \begin{tabular}{l} 
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01-Ni2: form \(-\mathrm{O}-\mathrm{Ni}-\mathrm{O}-\mathrm{Ni}-\) string, with O higher than \(\mathrm{Ni} ; \mathrm{Ni}\) : remaining row of atoms in Ni ridges;
\(0.2 \AA\) error bar assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z \(=1.245 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.778 & 01 & \(\mathrm{Ni2}\) & \(01(0,1)\) & 163.8 \\
1.778 & 01 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}(0,1)\) & 140.4 \\
1.778 & 01 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & 51.0 \\
1.778 & 01 & \(\mathrm{Ni2}\) & \(\mathrm{Ni4}\) & 98.1
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \({ }^{\circ}\) )
\end{tabular} \\
\hline 2.490 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}
AUTHORS : K. Baberschke, U. Dobler, L. Wenzel and D. Arvanitis
REFERENCE : Phys. Rev., B33, 5910 (1986)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pm
```

Adsorbate: O
Coverage : 0.5 (0/Ni)
Pattern : (2x1)
Matrix : (2.000, 0.000)
(0.000, 1.000)

```

\section*{SIRUCTURE TYPE}

Atomic adsorption in long-bridge site of saw-tooth reconstructed substrate

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment: exposure to 0.8 L oxygen at 463 K
Crystallinity: sharp (2x1) LEED pattern
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: SEXAFS; oxygen-K-edge SEXAFS
Dataset : spectra at normal inc. with E-vector // \([0,0,1],[-1,1,0]\), and off-normal inc. \(\left(\Theta=45,25^{\circ}\right)\) with \(E\) in (001) plane

\section*{COMMENTS}

An unspecified tilt of each oxygen towards (100) facets of the reconstructed substrate is favored (tilt is not included in tabulated coordinates)

\section*{THEORY/DATA TREATMENT}

SEXAFS with polarized \(x\)-ray and Fourier transform analysis

\section*{STRUCTURES EXAMINED}

Distance to nearest backscatterer and amplitude ratio for normal incidence for different models (missing-row and sawtooth) and orientations were calculated

2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 3.520 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 0.000 & 3.520 & 90.0 & \((2.000,1.000)\) & \((2 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
01: O-Ni-O-Ni strings with Ni2 (Ni2 is edge of sawtooth); Ni3: forms sloping side of sawtooth;
Ni4: periodically repeating bulk layer; 0.03A error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.847 & 01 & Ni2 & Ni3(-1,0) & 58.5 \\
\hline 2.193 & 09 & Ni3(-1,0) & \(\mathrm{Ni} 4(-1,0)\) & 97.3 \\
\hline 2.490 & Ni2 & \(\mathrm{Ni} 3(-1,0)\) & Ni4(-1,0) & 60.0 \\
\hline 2.490 & Ni3 & Ni4 & & \\
\hline
\end{tabular}

CLASSIFICATION : 28.8.70
TECHNIQUE : LEED
AUTHORS : G. Kleinle, J. Wintterlin, G. Ertl, R.J. Behm; F. Jona and W. Moritz

REFERENCE : Surf. Sci., 225, 171 (1990)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: 0 \\
Crystal face: 110 & Coverage : 0.50 ML \\
Temperature: 90 K & Pattern : (2x1) \\
Bulk lattice: fcc & Matrix \(:(2.000,0.000)\) \\
20 bulk symm: pmm &
\end{tabular}

STRUCTURE TYPE
Missing-row structure in which the 0 atoms are above long bridge sites in [001] direction with slight asymmetry; top 2 Ni layers have an expanded separation while the 2nd and 3rd have a contracted separation; the 3rd layer is slightly buckled

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling, composite layers)

SAMPLE PREPARATION ( 1 sample)
Treatment : exposed to 0.80 L at 90 K ; annealed to 500K
Crystallinity: perfect (2x1) LEED pattern
Anal. methods: work function, LEED
Contamination:

DATA COLLECTION
Technique: LEED; video LEED
Dataset : IV spectra for 8 non-equivalent beams: 5 integral and 3 fractional

STRUCTURES EXAMINED
Missing-row, sawtooth and buckled models for the substrate with the 0 in the bridge site
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.179\)

2D UNIT CELLS ( 2 domains observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & \(8 \times(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 3.524 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.984 & 0.000 & 0.000 & 3.524 & 90.0 & \((0.000,1.000)\) & \((2 \times 1)\) & \begin{tabular}{l} 
(2.000, 0.000\()\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
01: in tilted bridge site wrt Ni2; Ni2: remaining row in missing-row model
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(7 \quad\) Bulk z = \(1.246 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.773 & 01 & Ni2 & &
\end{tabular}
\(\mathrm{Ni}(110)-(2 \times 1)-\mathrm{O}\)
28.8.70

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.860 & 01 & \(\mathrm{Ni3}\) & & \\
2.040 & 01 & \(\mathrm{Ni4}\) & & \\
\hline
\end{tabular}

COMMON NAME : Ni(111)-p(2x2)-0
CLASSIFICATION : 28.8.75a
TECHNIQUE : LEED
AUTHORS : D.T. Vu Grimsby, Y.K. Wu and K.A.R. Mitchell
REFERENCE : Surf. Sci., 232, 51 (1990)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2 D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : 02 exposure \(1 \mathrm{E}-8\) torr at RT
Crystallinity: well ordered \(1 \times 1\) substrate (AES/LEED)
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; video LEED
Dataset : IV curves for 3 integer, 7 fractional beams at normal incidence; cumul. E range 1300 eV

Adsorbate: 0
Coverage : \(0.250 / \mathrm{Ni}\)
Pattern : p(2x2)
Matrix : ( \(2.000,0.000\) )
( 0.000, 2.000)

\section*{STRUCTURE TYPE}

Oxygen adsorbed in fec hollow sites;
buckling and lateral shifts in 1st Ni layer:
3 Ni next to 0 are lifted (by \(0.12 \AA\) ) and rotated/outwards
shifted ( \(120^{\circ}, 0.08 \AA\) ); 1st \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing
contracts (to 1.95§); deeper layers are bulk like

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS, combined space method): 8 phase shifts from band structure for Ni , from Demuth for O

\section*{STRUCTURES EXAMINED}

Fcc site, hcp site, graphitic (0.5ML) overlayer: fcc site favored, then variation of top interlayer spacing,
buckling (1st Ni layer), rotation/expansion of hollow
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.1087\), RZJ \(=0.1326\), average optim.
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline Cell & Ax \((\AA)\) & Ay \((\AA)\) & Bx \((\AA)\) & By \((\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 1.246 & 2.158 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.984 & 0.000 & 2.492 & 4.316 & 60.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \(\mathrm{p}(2 \times 2)\) \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in fcc hollow sites; \(\mathrm{Ni} 2-\mathrm{Ni} 4: 3 \mathrm{Ni}\) nearest O in top Ni layer (lifted, rotated);
\(\mathrm{Ni5}: 4\) th Ni in top Ni layer; \(0.03 \AA\) error bars are estimated from 'visual observation'
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{c}
1.834 \\
1.834
\end{tabular} & 01 & Ni 3 & \(\mathrm{Ni2}\) & \(\mathrm{Ni}(1,0)\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: N i(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-0\) \\
CLASSIFICATION & \(: 28.8 .27\) \\
TECHIQUE & \(:\) HEIS \\
AUTHRS & \(:\) T. Narusawa, w.M. Gibson and E. Tornqvist \\
REFERENCE & \(:\) Surf. Sci., 114, 331 (1981)
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION ( 1 sample)
Treatment : oxidation/reduction, Ar+ bombardment, anneal, 4L O2
Crystallinity:
Anal. methods:
Contamination: AES: impurities<0.1\%
DATA COLLECTION
Technique: HEIS; high energy He+ ion scattering Dataset :
```

Adsorbate: O
Coverage : 1.3 (O/Ni)
Pattern : (\sqrt{}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ}
Matrix : (1.000, 1.000)
(-1.000, 2.000)

```

\section*{STRUCTURE TYPE}

Atomic adsorption (in undetermined hollow sites, fec assumed here); expanded top \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing

\section*{COMMENTS}

Result assumes 1.2A \(0-\mathrm{Ni}\) layer separation derived from LEED (Marcus et al, Phys. Rev. B15, 1460 (1975), where fcc vs hcp site was also undetermined and substrate relaxation not tested); substrate result is insensitive to 0 position

\section*{THEORY/DATA TREATMENT}

Comparison to theory assuming a binary collision model; e0=330 K

STRUCTURES EXAMINED
Various uniform and non-uniform relaxations of the top layer in steps of \(0.03 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & \multicolumn{1}{c|}{ Pattern } & Cell type \\
\hline Bulk & 2.490 & 0.000 & 1.245 & 2.156 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.735 & 2.156 & 0.000 & 4.313 & 60.0 & \((0.000,1.000)\) & \((1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3})\) R30 \\
\hline
\end{tabular}

30 COORDINATES

01: overlayer in hollow sites (assumed fcc here) at height determined by LEED
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = \(2.033 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|r}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.873 & 01 & \(\mathrm{Ni2}\) & Ni 3 & 163.3 \\
2.490 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & Ni 3 & 61.5 \\
2.611 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & Ni 4 & 121.5 \\
\hline
\end{tabular}

COMMON NAME : \(\mathrm{Ni}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-0\)
ILLUSTRATION: 22,24
CLASSIFICATION
TECHNIQUE 28.8.85
: LEED
AUTHORS : M.A. Mendez, H. Oed, A. Fricke, L. Hammer, K. Heinz and K. Mueller
REFERENCE : Surf. Sci., 253, 99 (1991)

\section*{SURFACE TYPE}

Substrate : N
Crystal face: 111
Temperature : 80 k
Bulk lattice: fcc
20 bulk symm: p3m1
2D surf symm: p3im
SAMPLE PREPARATION ( 1 sample)
Treatment : 0.03 L 0 at 220 K
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; video LEED
Dataset : IV-curves at normal incidence for 5 integer, 4 fractional order beams; \(E<=300\) eV , cumul. E range 1550 eV

Adsorbate: 0
Coverage : \(1 / 3 \mathrm{O} / \mathrm{Ni}\)
Pattern : \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\)
Matrix : ( \(1.000,1.000\) )
\((-1.000,2.000)\)

STRUCTURE TYPE
O adsorbed in fcc hollow site; substrate has
expanded 1st interlayer spacing, no lateral shifts
or buckling

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (comb. space, RFS):
11 phase shifts; VoiaE**1/3, Vor optimized

STRUCTURES EXAMINED
Fec hollow, hep hollow and domain mixture of both; variation of \(2 \mathrm{Ni}-\mathrm{Ni}\) layer spacings and oxygen height; lateral 1st layer substrate displacements: radial and rotational shifts of 3 next neighbors

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.16\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX (A) & Ay (A) & Bx ( \({ }_{\text {( }}\) ) & By ( \({ }^{\text {a }}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 1.246 & 2.158 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
\hline Surface 1 & 3.738 & 2.158 & 0.000 & 4.316 & 60.0 & \[
\begin{aligned}
& (1.000,1.000) \\
& (-1.000,2.000)
\end{aligned}
\] & \((\sqrt{3} x \sqrt{3}) R 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

01: overlayer in fcc hollow site
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.799 & 01 & Ni2(0,-1) & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2×2)-S
CLASSIFICATION : 28.16.10a
TECHNIQUE : PED
AUTHORS : D.H. Rosenblatt, J.G. Tobin, M.G. Mason, R.F. Davis, S.D. Kevan, D.A. Shirley, C.H. Li and S.Y. Tong
REFERENCE : Phys. Rev., B23, 3828 (1981)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment: \(:\) from effusive beam of H2S, 20-30L, 300 K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

\section*{DATA COLLECTION}

Technique: PED
Dataset : E-dependent photoyield up to 200 eV above threshold

STRUCTURES EXAMINED
Hollow, bridge, and top sites

Adsorbate: S
Coverage : 0.5 (S/Ni)
Pattern : \(c(2 \times 2)\)
Matrix \(:\left(\begin{array}{l}1.000, \\ (-1.000, \\ \hline\end{array}\right.\)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

QUALITY OF EXPERIMENT-THEORY FIT
visual

\section*{COMMENTS}

Bulk spacing (1.76\&) obtained by averaging over two spacings of 1.72 and \(1.81 \AA\) due to two peaks in data

\section*{IHEORY/DATA TREATMENT}

Dynamical theory of normal photoelectron diffraction

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & \((1.000)\) & c(2x2) \\
\hline
\end{tabular}

3D COORDINATES
S1: atomic overlayer in 4-fold hollow sites
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Aton A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.188 & S1 & Ni2 & Ni2(1,0) & 124.7 \\
\hline 2.188 & S1 & Ni 2 & Ni3(1,1) & 171.5 \\
\hline 2.188 & S1 & Ni2 & Ni3(1,0) & 114.8 \\
\hline 2.188 & S1 & Ni2 & Ni3 & 81.5 \\
\hline 2.489 & Ni2 & Ni2(1,0) & S1(1,0) & 55.3 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2x2)-S

ILLUSTRATION: 28,29
CLASSIFICATION : 28.16.13
TECHNIQUE : SEXAFS
AUTHORS : J. Stoehr, R Jaeger and \(S\) Brennan
REFERENCE : Surf. Sci., 117, 503 (1982)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment : dosed with H2S, then characterized by AES and LEED
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

\section*{DATA COLLECTION}

Technique: SEXAFS; SEXAFS: electron or ion yield detec
Dataset : photon flux \(1 E 11\) photons/s; radiation in 200-400 eV spectral range; x-ray incidence angles 90,45 and \(10^{\circ}\) from surfac

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

\section*{COMMENTS}

S-Ni distance found to be \(2.23 \pm 0.02 \AA\);
site determined from second-nearest neighbor distance of \(4.15 \pm 0.10 \mathrm{~A}\); site also determined from comparison of experimental and calculated polarization dependent SEXAFS amplitude ratios

\section*{THEORY/DATA TREATMENT}

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X\) ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B \times\) ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{-2.489} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & ( \(1.000,1.000)\) & \multirow[t]{2}{*}{\(c(2 \times 2)\)} & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES

S1: atomic overlayer in 4-fold hollow sites; coordinates are derived from bond distances

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & DX \(\pm \in \boldsymbol{x}\) & \(D y \pm \epsilon y\) & Dz \(\pm \in \boldsymbol{Z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
intf \\
subl
\end{tabular} & S
Ni
Ni & -2
-1
1
2
3 & s 1
\(b\)
\(b\) & \[
\begin{array}{r}
.50 \\
1.00 \\
1.00
\end{array}
\] & 0
1
2 & \begin{tabular}{rr} 
\\
-1.245 & \(f\) \\
0.000 & \(A\) \\
0.500 & \(f\) \\
-0.500 & \(f\) \\
\hline
\end{tabular} & \[
\begin{array}{rr}
\hline & f \\
-1.245 & A \\
0.000 & f \\
0.500 & f \\
-0.500 & f
\end{array}
\] & \[
\begin{array}{ll} 
& A \\
1.760 & A \\
0.000 & A \\
1.370 \pm .040 & A \\
1.760 & A
\end{array}
\] & \[
\begin{array}{cc}
0.0 \\
77.8 & \\
100.0 &
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES

No. of distances/angles: 6
\begin{tabular}{l|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 2.230 & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni}(1,0)\) & 123.9 \\
2.230 & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(1,1)\) & 172.9 \\
2.230 & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(1,0)\) & 115.7 \\
2.230 & S 1 & \(\mathrm{Ni2}\) & Ni 3 & 82.9 \\
2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & \(\mathrm{~S} 1(1,0)\) & 56.1 \\
2.489 & \(\mathrm{Ni2}\) & Ni 3 & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

Adsorbate: S
STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites
Coverage : 0.5 (S/Ni)
Pattern : c(2x2)
Matrix : ( \(1.000,1.000)\)
(-1.000, 1.000)

SAMPLE PREPARATION ( sample)
Treatment : clean crystals exposed to H2S at room temperature
Crystallinity: c(2x2) pattern after heating to 2000
Anal. methods:
Contamination: checked by AES
DATA COLLECTION
Technique: ARPEFS; soft x-ray beam (2000-3000 eV)
Dataset : data taken in [110] and [010] directions; 100-500 eV range

\section*{COMMENTS}

Primary information is \(\mathrm{S}-\mathrm{Ni}\) bond length of \(2.23 \pm 0.03 \AA\)

\section*{THEORY/DATA TREATMENT}

Single scattering theory with published atomic phase shifts

STRUCTURES EXAMINED
\(\mathrm{S}-\mathrm{Ni}\) bond length variation; hollow site assumed (since data consistent with that site)
QUALITY OF EXPERIMENT-THEORY FIT
Visual

\section*{2D UNIT CELLS ( 1 domain observed )}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X(A)\) & Ay (A) & \(B x\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(191)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{-2.489} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & ( 1.000, 1.000) & \multirow[t]{2}{*}{\(c(2 \times 2)\)} & s1: commens. \\
\hline & & & & & & \((-1.000,1.000)\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

S1: atomic overlayer in 4-fold hollow sites; coordinates derived from bond distance
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = 1.760


BOND DISTANCES AND ANGLES

No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom 8 & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.230 & S1 & Ni2 & Ni2(1,0) & 123.9 \\
\hline 2.230 & S1 & Ni 2 & Ni3(1,1) & 172.9 \\
\hline 2.230 & S1 & Ni2 & Ni3(1, 0) & 115.7 \\
\hline 2.230 & S1 & Ni2 & Ni3 & 82.9 \\
\hline 2.489 & Ni2 & Ni2(1,0) & S1(1,0) & 56.1 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2x2)-S
CLASSIFICATION : 28.16.16
TECHNIQUE : PED
AUTHORS : E.L. Bullock, C.S. Fadley and P.J. Orders
REFERENCE : Phys. Rev., B28, 4867 (1983)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: S \\
Crystal face: 100 & Coverage : \(0.5(\mathrm{~S} / \mathrm{Ni})\) \\
Temperature: RT* & Pattern :c(2x2) \\
Bulk lattice: fcc & Matrix : \(1.000,1.000)\) \\
2D bulk symm: p4m &
\end{tabular}

2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( sample)
Treatment : \(c(2 \times 2)\) obtained by decomposition of H2S
Crystallinity:
Anal. methods:
Contamination: see Barton et al, PRL 51, 272 (1983)
DATA COLLECTION
Technique: PED; off-normal diffraction (OPD)
Dataset : E-dependent photo-yield due to Barton et al: \(\Theta \mathrm{e}-=45^{\circ}\), so emission along [110]; Ohv \(=45^{\circ}\), so pol. along emission

Coverage : 0.5 (S/Ni)
Pattern : \(c(2 \times 2)\)
Matrix : ( \(1.000,1.000)\)
(-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Single scattering theory referenced to LEED to determine scattering factors; cluster with \(120 / 1800 \mathrm{~S} / \mathrm{Ni}\) atoms

\section*{STRUCTURES EXAMINED}

No structural variation
QUALITY OF EXPERIMENT-THEORY FIT
Visual
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000\()\) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \[
\begin{array}{ll}
(1.000, & 1.000) \\
(-1.000, & 1.000)
\end{array}
\] & \(c(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: atomic overlayer in 4-fold hollow sites; \(0.1 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.218 & S1 & \(\mathrm{Ni2}\) & S1(1,0) & 105.0 \\
\hline 2.218 & S1 & Ni 2 & Ni3(1,1) & 172.5 \\
\hline 2.218 & S1 & Ni 2 & Ni3(1,0) & 115.5 \\
\hline 2.218 & S1 & Ni2 & Ni3 & 82.5 \\
\hline 2.489 & Ni2 & Ni2(1,0) & S1(1,0) & 55.9 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

AUTHORS : P.J. Orders, B. Sinkovic, C.S. Fadley, R. Trehan, Z. Hussain and J. Lecante
REFERENCE : Phys. Rev., B30, 1838 (1984)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : 30L exposure to H2S at RT to get \(c(2 \times 2)\)
Crystallinity:
Anal. methods:
Contamination: checked by LEED
DATA COLLECTION
Technique: PED; x-ray photoelectron diffraction Dataset : azimuthal-dependent photo-yields at photon energies of 2672 and 2744 eV ; \(\mathrm{e}-=38.5^{\circ}\), Ohv=51.5 \({ }^{\circ}\)

\section*{STRUCTURE TYPE}
```

Adsorbate: S
Coverage : 0.5 (S/Ni)
Pattern : c(2x2)
Matrix : (1.000, 1.000)

```

Atomic atomic adsorption in 4 -fold hollow sites

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Single-scattering theory for \(S\) 1s emission at kinetic E of 200-300 eV and geometry emphasizing backscattering

STRUCTURES EXAMINED
4-fold hollow, 2-fold bridge, and top site; six different Ni -S spacings between 1.20 and \(1.60 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & ( 1.000, 1.000) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
51: atomic overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk \(2=1.760 \&\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.218 & S1 & Ni2 & S1 (1,0) & 105.0 \\
\hline 2.218 & S1 & Ni 2 & Ni3(1,1) & 172.5 \\
\hline 2.218 & S1 & Ni 2 & Ni3 (1,0) & 115.5 \\
\hline 2.218 & S1 & Ni2 & Ni3 & 82.5 \\
\hline 2.489 & Ni2 & \(\mathrm{Ni} 2(1,0)\) & Si ( 1,0 ) & 55.9 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2x2)-S
ILLUSTRATION: 28,29
CLASSIFICATION
28.16.19
tECHNIQUE
SEXAFS
AUTHORS : J. Stoehr, E.B. Kollin, D.A. Fischer, J.B. Hastings, F. Zaera and F. Sette
REFERENCE : Phys. Rev. Lett., 55, 1468 (1985)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : 100 K
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: S
Coverage : 0.5 (S/Ni)
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

\section*{STRUCTURE TYPE}

Atomic adsorption in 4 -fold hollow sites

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Polarization-dependent x-ray fluorescence yield and electron yield SEXAFS

STRUCTURES EXAMINED
Site and bond length determination for S ; bulk Ni assumed
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X\) ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & ( 1.000, 1.000) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: atomic overlayer in 4 -fold hollow sites; coordinates are derived from bond distances
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.760 \AA\)


No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.224 & \(S 1\) & \(N i 2\) & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2x2)-S
ILLUSTRATION: 28,29
CLASSIFICATION : 28.16.22
\begin{tabular}{ll} 
TECHNIQUE & : ARPEFS \\
AUTHORS & : J.J. Barton, C.C. Bahr, S.W. Robey, Z. Hussain, E. Umbach \\
& and D.A. Shirley \\
REFERENCE & \(:\) Phys. Rev., B34, 3807 (1986)
\end{tabular}

REFERENCE : Phys. Rev., B34, 3807 (1986)

\section*{SURFACE TYPE}

\section*{Substrate: Ni}

Crystal face: 100
Temperature : 473 K
Bulk lattice: fcc
20 bulk symm: p 4 m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to \(0.5 \mathrm{~L} S\) and annealing to 1023 K
Crystallinity: sharp \(c(2 \times 2)\) overlayer LEED pattern
Anal. methods:
Contamination: no AES or LEED of the clean surface
DATA COLLECTION
Technique: ARPEFS
Dataset : \(S\) is ARPEFS measured along [011] and [001] directions

Coverage : 0.5 ( \(\mathrm{S} / \mathrm{Ni}\) )
Pattern : c(2x2)
Matrix: \(\begin{aligned}(1.000,1.000) \\ (-1.000,1.000)\end{aligned}\)

STRUCTURE TYPE
Atomic adsorption in hollow sites

\section*{COMMENTS}

A similar analysis using a generalized Ramsauer-Townsend resonance in ARPEFS (Barton et al, Phys. Rev. B35, 933 (1987)) confirms this result, with a \(\mathrm{S}-\mathrm{Ni}\) spacing of \(1.32 \pm 0.04 \mathrm{~A}\);
some evidence for buckling in the second Ni layer is found
THEORY/DATA TREATMENT
Fourier analysis and multiple-scattering calculations

STRUCTURES EXAMINED
Fourier transform indicates 4 -fold hollow site; \(\mathrm{S}-\mathrm{Ni}\) and first \(\mathrm{Ni}-\mathrm{Ni}\) spacing varied
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & Ay ( \(A\) ) & \(B x(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & ( \(1.000,1.000)\) & \(c(2 \times 2)\) & s1: cormens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in 4-fold hollow sites
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{c}
2.194 \\
2.489
\end{tabular} & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2}\) \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2x2)-S
CLASSIFICATION : 28.16.23a
TECHNIQUE : ICISS
AUTHORS: Th. Fauster, H. Durr and D. Hartwig
REFERENCE : Surf. Sci., 178, 657 (1986)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : RT* Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment : S adsorption at RT from H2S
Crystallinity:
Anal. methods:
Contamination: monitored by ISS, AES, LEED
DATA COLLECTION
Technique: ICISS; 5 KeV Ne + ions
Dataset : polar angle scan from clean and \(s\) covered surface along [100] and [110] azimuths

\section*{Adsorbate: S}

Coverage : 0.5 ( \(\mathrm{S} / \mathrm{Ni}\) )
Pattern : \(c(2 \times 2)\)
Matrix: \(\begin{aligned}(1.000,1.000) \\ (-1.000,1.000)\end{aligned}\)

STRUCTURE TYPE
Atomic adsorption in hollow sites

\section*{THEORY/DATA TREATMENT}

Experimentally calibrated shadow cone was used to determine surface structure

STRUCTURES EXAMINED
Critical angles for several adsorption geometries (top, bridge, hollow sites) were calculated and used to compare with the ICISS data

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((0.000,1.000)\) & \((1.000,1.000)\) & c(2x2) \\
\hline
\end{tabular}

3D COORDINATES
s1: overlayer in 4-fold hollow sites
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad B u l k z=1.760 \&\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.249 & S 1 & \(\mathrm{Ni2}\) \\
2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 2(1,0)\) & Ni 3 & 83.5 \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2×2)-S
CLASSIFICATION : 28.16.28
TECHNIQUE : SEXAFS
AUTHORS : Z. Yu
REFERENCE : Phys. Rev. Lett., B37, 9083 (1988)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: SEXAFS
Dataset : SEXAFS spectrum for \(S \mathrm{~K}\)-edge for photon energies from 2400 to 2900 eV; Auger electron yield mode

\section*{STRUCTURE TYPE}

Atomic adsorption in hollow sites
Coverage : \(0.5 \mathrm{~S} / \mathrm{Ni}\)
Pattern : c(2x2)
Matrix: \(:(1.000,1.000)\)

\section*{COMMENTS}

Analysis includes an additional \(k\)-independent constant to compensate for error in the theoretical phase shifts: this quantity was fitted to experimental data

\section*{THEORY/DATA TREATMENT}

Fitting to Fourier transformed SEXAFS signal: amplitude and phase shifts calculated using method of Teo and Lee

STRUCTURES EXAMINED
Hollow site assumed: interatomic distances determined as 2.22A, 4.03A and 4.15A, resp.

2D UNIT CELLS ( 1 domain observed)


3n COORDINATES
S1: overlayer in 4-fold hollow sites; coordinates are derived from bond distances and angles
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.237 & S1 & Ni2 \\
2.489 & Ni2 & Ni2(1,0) & Ni3 & 83.1 \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2×2)-S
ILLUSTRATION: 28,29
CLASSIFICATION 28.16.35

TECHNIQUE
AUTHORS : U. Starke, F. Bothe, W. Oed and K. Heinz
REFERENCE : Surf. Sci., 232, 56 (1990)

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : 90 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: S
Coverage : \(0.5 \mathrm{~S} / \mathrm{Ni}\)
Pattern : c(2x2)
Matrix : ( \(1.000,-1.000\) )
( \(1.000,1.000\) )

STRUCTURE TYPE
Sulfur in hollow site; expansion of top \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing by \(2 \pm 1 \%\); contraction of 2 nd \(\mathrm{Ni}-\mathrm{Ni}\) spacing by \(\mathbf{1 \pm 2 \%}\); second Ni layer buckling \(0.01 \pm 0.03 \AA\)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (also direct method) hollow site assumed from literature:

Technique: ; video LEED
Dataset : IV curves at normal incidence: \(E<=350 \mathrm{eV}\), cumul. E range 1665 eV

SAMPLE PREPARATION ( 1 sample)
Treatment : 10L H2S at \(90 \mathrm{~K}, 250 \mathrm{~K}\) anneal, 10L more at \(90 \mathrm{~K}, 400 \mathrm{~K}\) anneal
Crystallinity: sharp c(2x2) pattern
Anal. methods: TPD to control H desorption
Contamination:

STRUCTURES EXAMINED
Variation of layer distances, 2nd layer buckling
QUALITY OF EXPERIMENT - THEORY FIT
RPE \(=0.25\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.492 & -2.492 & 2.492 & 2.492 & 90.0 & \((1.000,-1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

30 COORDINATES
S1: overlayer in hollow sites; Ni2-Ni3: planar top Ni layer;
Ni4-Ni5: buckled 2nd Ni layer, Ni6 = bulk
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=1.762 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.190 & S1 & \(\mathrm{Ni2}\) & & \\
\hline 3.095 & S 1 & \(\mathrm{Ni5}\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: N i(100)-c(2 \times 2)-S\) \\
CLASSIFICATION & \(: 28.16 .4 c\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & : P.M. Marcus, J.E. Demuth and D.W. Jepsen \\
REFERENCE & : Surf. Sci., 53, 501 (1975)
\end{tabular}

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

SAMPLE PREPARATION ( sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: \(20<E<200 \mathrm{eV}\)
```

Adsorbate: S
Coverage : 0.5 S/Ni
Pattern : c(2x2)
Matrix: : (1.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in 4-fold hollow sites

COMMENTS
Vor was chosen by aligning positions of peaks in the experimental and calculated I-V spectra for \(\theta=\phi=0^{\circ}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer KKR): 8 ph sh; Vor=-11.4 eV,VoiaE**1/3 (bulk), Voi=-3 eV (surface); \(\Theta D(b u(k)=420 \mathrm{~K}, \varrho D\) (surface) \(=335 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}
1. 4-fold hollow site with Ni-S spacing 1.175-2.12A; 2. other low symmetry adsorption sites;
3. coplanar alloy type structures

\section*{QUALITY OF EXPERIMENT-THEORY FIT \\ Visual}

2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & AY ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right.\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & ( 1.000, 1.000\()\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: atomic over layer in 4-fold hollow sites \(0.1 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z = \(1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.176 & S1 & Ni2 & S1(1,0) & 108.0 \\
\hline 2.176 & S1 & Ni2 & Ni3(1,1) & 171.0 \\
\hline 2.176 & S1 & Ni 2 & Ni3(1,0) & 114.6 \\
\hline 2.176 & S1 & Ni2 & Ni3 & 81.0 \\
\hline 2.489 & Ni2 & Ni2(1,0) & S1(1,0) & 55.1 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2×2)-S
ILLUSTRATION: 28,29
CLASSIFICATION : 28.16 .9
TECHNIQUE : LEED
AUTHORS : Y. Gauthier, D. Aberdam and R. Baudoing
REFERENCE : Surf. Sci., 78, 339 (1978)

SURFACE TYPE
Substrate: Ni
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: S
Coverage : 0.5 (S/Ni)
Pattern : c(2x2)
Matrix \(:\left(\begin{array}{l}(1.000,1.000) \\ (-1.000,1.000)\end{array}\right.\)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED: Wakoh Ni pot.; cluster S overlap pot.; \(\Theta D=420 \mathrm{C}\) (Ni), 335C (S)

STRUCTURES EXAMINED
4-fold hollow, 2-fold bridge, top site: \(N i-s\) spacing varied from 1.1 to \(1.8 \AA\) in steps of \(0.1 A\)
QUALITY OF EXPERIMENT - THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(a\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((0.000,1.000)\) & \((1.000,1.000)\) & c(2x2) \\
\hline
\end{tabular}

3D COORDINATES
S1: atomic overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.188 & S1 & Ni2 & Ni2(1,0) & 124.7 \\
\hline 2.188 & S1 & Ni 2 & \(\mathrm{Ni} 3(1,1)\) & 171.5 \\
\hline 2.188 & S1 & Ni2 & \(\mathrm{Ni} 3(1,0)\) & 114.8 \\
\hline 2.188 & S1 & Ni2 & Ni3 & 81.5 \\
\hline 2.489 & Ni 2 & Ni2(1,0) & Si(1,0) & 55.3 \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni(100)-p(2\times2)-s
TEChNIQUE :
AUTHORS : W. Oed, U. Starke, F. Bothe and K. Heinz
REFERENCE : Surf. Sci., 234, }72\mathrm{ (1990)

```

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 100
Temperature : 90 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: S
Coverage : $0.25 \mathrm{~S} / \mathrm{Ni}$
Pattern : $p(2 \times 2)$
Matrix : ($2.000,0.000)$
(0.000, 2.000)

```

STRUCTURE TYPE
Sulfur in hollow site;
1st \(\mathrm{Ni}-\mathrm{Ni}\) interlayer spacing expanded \(0.5 \pm 1 \%\);
second Ni layer buckling 0.07 \(\pm 0.05 \AA\)

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED

Technique: ; video LEED
Dataset : IV curves at normal incidence, \(E<=350 \mathrm{eV}\) cumul. E range 1415 eV
SAMPLE PREPARATION ( 1 sample)
Treatment : 8L H2S at \(90 \mathrm{~K}, 10\) s annealing at 500K, or desorbing \(c(2 \times 2)\)
Crystallinity: streaks from \((1 / 2,0)\) through (1/2,1/2)
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

STRUCTURES EXAMINED
Hollow site assumed from literature: variation of interlayer spacings, 2nd Ni layer buckling
QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.21
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 0.000 & 2.492 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.984 & 0.000 & 0.000 & 4.984 & 90.0 & \((2.000,0.000)\) & p(2x2) & ( \(0.000,2.000)\)
\end{tabular}

3D COORDINATES
S1: overlayer in hollow sites; Ni2-Ni5: planar top Ni layer;
Ni6-Ni9: buckled 2nd Ni layer
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.160 & \(\mathrm{S1}\) & \(\mathrm{Ni2}\) & & \\
3.060 & \(\mathrm{S1}\) & \(\mathrm{Ni9}\) & & \\
\hline
\end{tabular}

CLASSIFICATION
TECHNIQUE
28.16.4a
: M.A. Van Hove and S.Y. Tong
REFERENCE : J. Vac. Sci. Technol., 12, 230 (1975)

\section*{SURFACE TYPE}

Substrate: Ni
Adsorbate: S
Coverage : \(1 / 4\) (S/Ni)
Pattern : (2x2)
Matrix : (2.000, 0.000)
( 0.000, 2.000)

Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

SAMPLE PREPARATION ( sample)
Treatment : see Demuth and Rhodin, Surf. Sci. 42, 261 \& 45, 249 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset :

\footnotetext{
THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): Wakoh Ni potential, overlap atomic \(S\) potential, 8 phase shifts; Vor=-11.2 eV, VoioE**1/3
}

STRUCTURES EXAMINED
8 to \(10 \mathrm{Ni}-\mathrm{S}\) spacings, \(0.2 \AA\) apart, at hollow, bridge and top sites.
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY (A) & Bx (Å) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & \[
\begin{aligned}
& (2.000, \\
& (0.000, \\
& (0.000)
\end{aligned}
\] & ( \(2 \times 2\) ) & s1: commens. superlattice \\
\hline
\end{tabular}

30 COORDINATES
S1: atomic overlayer in 4 -fold hollow sites
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & DX \(\pm \in \mathrm{X}\) & Dy \(\pm \in y\) & \(\mathrm{Dz} \pm \boldsymbol{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
intf \\
subl
\end{tabular} & \[
\begin{aligned}
& \mathbf{S} \\
& \mathrm{Ni} \\
& \mathbf{N i}
\end{aligned}
\] & \[
\begin{array}{r}
-2 \\
-1 \\
1 \\
2 \\
3
\end{array}
\] & \[
\begin{aligned}
& \mathrm{s} 1 \\
& \mathrm{~b} \\
& \mathrm{~b}
\end{aligned}
\] & \[
\begin{aligned}
& .25 \\
& 1.00 \\
& 1.00
\end{aligned}
\] & 0
1
2 & \[
\begin{array}{rr} 
& f \\
-1.245 & \AA \\
0.000 & f \\
0.500 & f \\
-0.500 & f
\end{array}
\] & \[
\begin{array}{rr} 
& f \\
-1.245 & \AA \\
0.000 & f \\
0.500 & f \\
-0.500 & f
\end{array}
\] & \[
\begin{array}{ll} 
& \AA \\
1.760 & \AA \\
0.000 & \AA \\
1.300 \pm .100 & \AA \\
1.760 & \AA
\end{array}
\] & \[
\begin{array}{cc}
0.0 \\
73.9 & \\
100.0 & \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.189 & S1 & Ni2 & Ni2(1,0) & 124.7 \\
\hline 2.189 & S1 & Ni2 & Ni3(1,1) & 171.5 \\
\hline 2.189 & S1 & Ni2 & Ni3(1,0) & 114.8 \\
\hline 2.189 & S1 & Ni 2 & & 81.4 \\
\hline 2.490 & Ni 2 & Ni2(1,0) & S1(1,0) & 124.7 \\
\hline 2.490 & Ni2 & Ni 3 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline COMMON NAME & Ni(100)-S disordered \\
\hline CLASSIFICATION & : 28.16.36b \\
\hline TECHNIQUE & : LEED \\
\hline AUTHORS & U. Starke, W. Oed, P. Bayer, F. Bothe, G. Fuerst, P.L. de Andres, K. Heinz and J.B. Pendry \\
\hline REFERENCE & : Springer Series in Surface Sciences, 24, 427 (1991) \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: S \\
Crystal face: 100 & Coverage : \(0.1 \mathrm{~S} / \mathrm{Ni}\) \\
Temperature : 80 K & Pattern : \((1 \times 1)\) disordered \\
Bulk lattice: fcc & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: p4m & \\
2D surf symm: none & \\
\hline
\end{tabular}

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : adsorption of H2S at 80 K
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; video (diffuse) LEED, Y-function maps Dataset : intensities at 8 energies ( \(48 \mathrm{eV}-76 \mathrm{eV}\) ) for 7 Y-function maps; average over 1000 video frames, symm-eq data, 20 smoothing

\section*{STRUCTURE TYPE}

Disordered hollow site adsorption in off center position (pseudobridge) shifted by 0.45A; 2nd layer buckled,
sideshift of Ni atoms close to 0 of up to \(0.15 \AA\) possible; local minimum for 4-fold-site with 1st layer buckling; disordered substrate relaxation modeled here as (3x3)

\section*{COMMENTS}
experimental data similar for \(0.015-0.25 \mathrm{ML}\) coverage range: same structure can be assumed

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (3-step OLEED method, tensor LEED):
6 phase shifts, Voi=-4 eV

STRUCTURES EXAMINED
Hollow site, off center oxygen, substrate relaxations Buckling of 4 NN's in 1 st layer, buckling of 9 atoms in 2nd layer: A below oxygen, \(4^{*} B=N N\) of \(A, 4^{*} C=d i a g\). NN of \(A\) only \(A\) buckles

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.225 (=MSD of \(Y\)-functions)
2D UNIT CELLS ( 4 domains cbserved)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX (A) & AY (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.492} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{7.476} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{7.476} & \multirow[t]{2}{*}{90.0} & ( 3.000, 0.000) & \multirow[t]{2}{*}{disordered} & \multirow[t]{2}{*}{rd1: reconstr. lattice-gas dis} \\
\hline & & & & & & ( 0.000, 3.000) & & \\
\hline
\end{tabular}

\section*{3D COORDINATES}

S1: disordered adatom offcenter from hollow sites; Ni2-Nito: top Ni layer, buckled, with possible lateral relaxations; Nil1-Ni19: 2nd Ni layer

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel. to & \(D \mathrm{X} \quad \pm \boldsymbol{X}\) & Dy \(\pm\) ¢ \(\quad\) ¢ & \(\mathrm{Dz} \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(A\) & \\
\hline subr & & -1 & & & & 1.246 A & 1.246 À & 1.762 A & \\
\hline ovrl & S & 1 & rd1 & .11 & 0 & 0.600 \& & 0.000 A & 0.000 A & 0.0 \\
\hline intf & Ni & 2 & rdi & .11 & 1 & 0.167 f & 0.500 f & 1.200 A & 68.1 \\
\hline intf & Ni & 3 & rd1 & .11 & 1 & 0.500 f & -0.167 f & 1.200 A & 68.1 \\
\hline intf & Ni & 4 & rd1 & .11 & 1 & 0.500 f & 0.167 f & 1.200 A & 68.1 \\
\hline intf & Ni & 5 & rd1 & . 11 & 1 & 0.500 f & 0.500 f & 1.200 A & 68.1 \\
\hline intf & Ni & 6 & rd1 & . 11 & 1 & -0.167 f & -0.167 f & 1.200 A & 68.1 \\
\hline intf & Ni & 7 & rd1 & .11 & 1 & -0.167 f & 0.167 f & 1.200 A & 68.1 \\
\hline intf & Ni & 8 & rd1 & .11 & 1 & -0.167 f & 0.500 f & 1.200 A & 68.1 \\
\hline intf & Ni & 9 & rd1 & .11 & 1 & 0.167 f & -0.167 f & 1.200 A & 68.1 \\
\hline intf & Ni & 10 & rdi & .11 & 1 & 0.167 f & 0.167 f & 1.200 A & 68.1 \\
\hline intf & Ni & 11 & rd1 & .11 & 1 & -0.333 f & 0.333 f & 2.940 A & 166.9 \\
\hline intf & Ni & 12 & rd1 & .11 & 1 & -0.333 f & -0.333 f & 2.940 A & 166.9 \\
\hline intf & Ni & 13 & rd1 & . 11 & 1 & -0.333 f & 0.000 f & 2.940 A & 166.9 \\
\hline intf & Ni & 14 & rd1 & .11 & 1 & 0.000 f & -0.333 f & 2.940 A & 166.9 \\
\hline intf & Ni & 15 & rd1 & .11 & 1 & 0.000 f & 0.000 f & 2.940 A & 166.9 \\
\hline intf & Ni & 16 & rdi & .11 & 1 & 0.000 f & 0.333 f & 2.940 A & 166.9 \\
\hline intf & Ni & 17 & rd1 & .11 & 1 & 0.333 f & 0.000 f & 2.940 A & 166.9 \\
\hline intf & Ni & 18 & rd1 & .11 & 1 & 0.333 f & 0.333 f & 2.940 A & 166.9 \\
\hline
\end{tabular}

Ni(100)-S disordered
28.16.36b

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline \(\mathbf{1 . 8 5 0}\) & S1 & Ni6 & & \\
3.000 & S1 & Ni15 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: N i(110)-c(2 \times 2)-\mathrm{S}\) \\
CLASSIFICATION & \(: 28.16 .17\) \\
TECHNIQUE & ; AED \\
AUTHORS & : R. Baudoing, E. Blanc, C. Gaubert, Y. Gauthier and N. \\
& Gnuchev \\
REFERENCE & \(:\) Surf. Sci., 128, \(22(1983)\)
\end{tabular}

CLASSIFICATION : 28.16.17
technique ; aEd

REFERENCE : Surf. Sci., 128, 22 (1983)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: cmm
SAMPLE PREPARATION ( sample)
Treatment : see Y. Gauthier et al., J. Phys. C15, 3223 (1982)
Crystallinity:
Anal. methods:
Contamination: AES: clean

DATA COLLECTION
Technique: AED; Auger electron diffraction intensities
Dataset : M(23)VV emission of Ni and L(23)VV emission of \(S\) from normal incidence to glancing

Coverage : \(0.5 \mathrm{~S} / \mathrm{Ni}\)
Pattern : \(c(2 \times 2)\)
Matrix : ( \(1.000,1.000)\)
(-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in hollow (center) site

COMMENTS
Only a test of theory, not supposed to be a good structure determination

\section*{THEORY/DATA TREATMENT}

Theoretical comparison with experimental angle resolved AED curves; use of angular momenta \(l=0\) to 3

STRUCTURES EXAMINED
\(S-N i\) spacing relaxation and long-bridge vs. hollow site for \(S ; S-N i\) spacing varied from 0.85 to \(1.3 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(A\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.488 & 0.000 & 0.000 & 3.519 & 90.0 & \[
\left.\begin{array}{ll}
(1.000, & 0.000 \\
(0.000, & 1.000
\end{array}\right)
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 2.488 & 3.519 & \(-2.488\) & 3.519 & 70.5 & \[
\begin{aligned}
(1.000, & 1.000) \\
(-1.000, & 1.000)
\end{aligned}
\] & c (2x2) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

S1: overlayer in hollow (center) sites; 0.1^ error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(\mathrm{Dx} \pm \epsilon \mathrm{X}\) & Dy \(\pm\) Ey & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
intf \\
subl
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& \mathrm{Ni} \\
& \mathrm{Ni}
\end{aligned}
\] & -2
-1
1
2
3 & s1
b
b & .50
1.00
1.00 & 0
1
2 & \(\begin{array}{rr} & f \\ -1.244 & \AA \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f\end{array}\) & \[
\begin{array}{rr}
\hline & f \\
-1.760 & \AA \\
0.000 & f \\
0.500 & f \\
-0.500 & f
\end{array}
\] & \[
\begin{array}{ll} 
& \\
1.245 & \AA \\
0.000 & \AA \\
0.900 \pm .100 & \AA \\
1.245 & \\
\AA
\end{array}
\] & \[
\begin{gathered}
0.0 \\
72.3 \pm 8.0 \\
100.0
\end{gathered}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.335 & S1 & \(\mathrm{Ni2}\) & \(\mathrm{~S} 1(1,0)\) & 134.7 \\
2.335 & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni}(1,0)\) & 122.2 \\
2.335 & S 1 & \(\mathrm{Ni2}\) & Ni 3 & 52.7 \\
2.145 & S 1 & \(\mathrm{Ni3}\) & Ni 2 & 60.0
\end{tabular}
\(\mathrm{Ni}(110)-\mathrm{c}(2 \times 2)-\mathrm{S}\)
28.16.17
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.488 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2}(1,0)\) & & \\
2.489 & \(\mathrm{Ni2}\) & Ni 3 & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni(110)-c(2x2)-S
CLASSIFICATION : 28.16.20
TECHNIQUE : LEED
AUTHORS : R. Baudoing, Y. Gauthier and Y. Joly
REFERENCE : J. Phys., C18, 4061 (1985)

```

SURFACE TYPE
Substrate : Ni
Crystal face: 110
Temperature : RT
Bulk lattice: fcc 2D bulk symm: pmm 2D surf symm: cmm

SAMPLE PREPARATION ( 1 sample)
Treatment : S segregated from bulk to surface by annealing
Crystallinity:
Anal. methods:
Contamination: AES: 0.5ML S
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 11 non-equivalent diffraction beams at normal incidence; E range 30-180 eV

Adsorbate: S
Coverage : \(0.5 \mathrm{~S} / \mathrm{Ni}\)
Pattern : \(c(2 \times 2)\)
Matrix \(:\left(\begin{array}{r}1.000,1.000) \\ (-1.000,1.000)\end{array}\right.\)

STRUCTURE TYPE
Atomic adsorption in hollow (center) site

\section*{COMMENTS}

S muffin tin radius of 1 and \(0.94 \AA\) used: \(1 \AA\) best;

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: combined space method and layer doubling; superposition potentials; \(00=420 \mathrm{~K}\) (S), 335K (Ni)

STRUCTURES EXAMINED
S in top, short-bridge, long-bridge, hollow sites; relaxations in top two substrate interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
Metric distances used
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.488} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.519} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.488} & \multirow[t]{2}{*}{3.519} & \multirow[t]{2}{*}{-2.488} & \multirow[t]{2}{*}{3.519} & \multirow[t]{2}{*}{70.5} & ( \(1.000,1.000\) ) & \multirow[t]{2}{*}{c (2x2)} & si: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in hollow (center) sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 2.313 & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{S1}(1,0)\) & 137.4 \\
2.313 & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & 122.5 \\
2.313 & S 1 & \(\mathrm{Ni2}\) & Ni 3 & 53.8 \\
2.212 & S 1 & \(\mathrm{Ni3}\) & Ni 4 & 119.1 \\
2.488 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & &
\end{tabular}

Ni(110)-c(2x2)-S
28.16.20

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C} & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.555 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & \(\mathrm{Ni4}\) & 61.6 \\
2.573 & \(\mathrm{Ni2}\) & \(\mathrm{Ni4}\) & \(\mathrm{Ni3}(1,1)\) & 60.9 \\
\hline
\end{tabular}

COMMON NAME : Ni(110)-c(2x2)-S
ILLUSTRATION: 35,36
CLASSIFICATION : 28.16.23b
TECHNIQUE : ICISS
AUTHORS : Th. Fauster, H. Durr and D. Hartwig
REFERENCE : Surf. Sci., 178, 657 (1986)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: cmm
SAMPLE PREPARATION ( 1 sample)
Treatment : S adsorption from H2S
Crystallinity:
Anal. methods:
Contamination: monitored by ISS, AES, LEED
data collection
Technique: ICISS; 5 KeV Ne ions
Dataset : ICISS polar angle scan for scattering from clean and \(s\) covered surface along \([1,-1,2],[0,0,1],[1,-1,0]\) azimuths

\section*{STRUCTURE TYPE}

Atomic adsorption in bulk continuation site (center of rectangle)

COMMENTS

\section*{THEORY/DATA TREATMENT}

Experimentally calibrated shadow cone was used to determine the surface structure

STRUCTURES EXAMINED
Critical angles for several adsorption geometries (top, hollow, short- and long-bridge sites) were calculated and used to fit the ICISS data

2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|r|r|r|c|c|c|l}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.488 & 0.000 & 0.000 & 3.519 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.488 & 3.519 & -2.488 & 3.519 & 70.5 & \begin{tabular}{c}
\(1.000,1.000)\) \\
\((1.000,1.000)\) \\
\((-1.000,1.000)\)
\end{tabular} & \(c(2 \times 2)\) & \begin{tabular}{l} 
s1: conmens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
s1: overlayer in center sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.332 & S1 & Ni2 & Ni3 & 53.7 \\
\hline 2.197 & S1 & Ni3 & Ni4 & 120.0 \\
\hline 2.488 & Ni2 & Ni2(1,0) & & \\
\hline 2.520 & Ni2 & Ni3 & \(\mathrm{Ni4}\) & 61.3 \\
\hline 2.489 & Ni3 & Ni4 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(110)-c(2x2)-S
ILLUSTRATION: 35,36
CLASSIFICATION : 28.16.25
TECHNIQUE : ARPEFS
AUTHORS : S.W. Robey, J.J. Barton, C.C. Bahr, G. Liu and D.A. Shirley
REFERENCE : Phys. Rev., B35, 1108 (1987)

SURFACE TYPE
Substrate: N
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc 2D bulk symm: pmm
2D surf symm: cmm

Adsorbate: S
Coverage : 0.5 (S/Ni)
Pattern : c(2x2)
Matrix : ( \(1.000,1.000)\)

STRUCTURE TYPE
Atomic adsorption in bulk continuation site (center of rectangle) with buckling in 2nd Ni layer

SAMPLE PREPARATION ( 1 sample)

\section*{COMMENTS}

Treatment : exposure to 1.5-2.OL of H2S
Crystallinity:
Anal. methods:
Contamination: AES and LEED: no \(C, 0, S\) on clean surf.

\section*{DATA COLLECTION}

Technique: ARPEFS; 2500-3000eV soft x-ray beam (2eV re
Dataset : ARPEFS measurements taken for four different experimental geometries with energy range \(60-500 \mathrm{eV}\)

STRUCTURES EXAMINED
Fourier transform analysis leads to the hollow site; filtering and backtransform analysis determine structural parameters; final comparison to mult.-scatt. calculation evaluated by R-factor

20 UNIT CELLS ( 1 domain observed )
\begin{tabular}{l|r|r|r|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.488 & 0.000 & 0.000 & 3.519 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.488 & 3.519 & -2.488 & 3.519 & 70.5 & \((1.000,1.000)\) & c(2x2) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in center sites; Ni2: bulk-like top Ni layer;
Ni3-Ni4: buckled 2nd Ni layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z = 1.245


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.306 & S 1 & \(\mathrm{Ni2}\) & Ni 3 & 116.6 \\
2.306 & S 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni4}\) & 53.5 \\
2.200 & S 1 & \(\mathrm{Ni4}\) & \(\mathrm{Ni5}\) & 120.0 \\
2.491 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & \(\mathrm{Ni5}\) & 62.7 \\
2.625 & \(\mathrm{Ni2}\) & \(\mathrm{Ni5}\) & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni(110)-c(2x2)-S
ILLUSTRATION: 35,36
CLASSIFICATION : 28.16.26
TECHNIQUE : SEXAFS
AUTHORS : D.R. Warburton, G. Thornton, D. Norman, C.H. Richardson, R.
McGrath and F. Sette
REFERENCE : Surf. Sci., 189/190, 495 (1987)

```

\section*{SURFACE TYPE}

\section*{Substrate : Ni}

Crystal face: 110
Temperature : 293 K
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: cmm

SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to 8 L of H 2 S at 293 K , then flashing to 393 K
Crystallinity:
Anal. methods
Contamination: monitored by AES and LEED

\section*{DATA COLLECTION}

Technique: SEXAFS; S KLL Auger-yield SEXAFS
\[
\begin{array}{ll}
\text { Coverage }: & 0.5(\mathrm{~S} / \mathrm{Ni}) \\
\text { Pattern }: & c(2 \times 2) \\
\text { Matrix }:(1.000,1.000) \\
& (-1.000,1.000)
\end{array}
\]

\section*{STRUCTURE TYPE}

Atomic adsorption in bulk continuation site (center of rectangle)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Polarization-dependent SEXAFS data with Fourier transform method

STRUCTURES EXAMINED
Single-shell and two-shell analyses used to fit the SEXAFS data for possible adsorption sites: top, hollow, short- and long-bridge sites

2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(A\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.488 & 0.000 & 0.000 & 3.519 & 90.0 & ( 1.000, 0.000) & (1x \({ }^{\text {( }}\) ) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.488 & 3.519 & -2.488 & 3.519 & 70.5 & ( \(1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in center sites; coordinates are derived from bond distances and angles
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.245 \AA\)


No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.309 & S1 & Ni2 & Ni3 & 54.1 \\
\hline 2.230 & S1 & Ni3 & Ni4 & 120.0 \\
\hline 2.488 & Ni2 & Ni2(1,0) & & \\
\hline 2.570 & Ni 2 & Ni3 & Ni 4 & 63.0 \\
\hline 2.489 & Ni3 & Ni4 & & \\
\hline
\end{tabular}


20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.488 & 0.000 & 0.000 & 3.519 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.488 & 3.519 & -2.488 & 3.519 & 70.5 & ( \(1.000,1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

S1: overlayer in hollow (center) sites
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = \(1.245 \AA\)


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.324 & S1 & Ni2 & S1(1,0) & 136.0 \\
\hline 2.324 & S1 & Ni 2 & \(\mathrm{Ni} 2(1,0)\) & 122.4 \\
\hline 2.324 & S1 & Ni2 & Ni3 & 53.3 \\
\hline 2.488 & Ni 2 & Ni2(1,0) & & \\
\hline 2.522 & Ni2 & Ni3 & Ni 4 & 61.3 \\
\hline
\end{tabular}

CLASSIFICATION : 28.16.4d
TEChniQue : LEED
AUTHORS : J.E. Demuth, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev. Lett., 32, 1182 (1974)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 110
Temperature : 300 K Bulk lattice: fcc 2D bulk symm: pmm 2D surf symm: pmm

Adsorbate: S
Coverage : 0.25 ( \(\mathrm{S} / \mathrm{Ni}\) )
Pattern : \(p(2 \times 2)\)
Matrix: \(\begin{aligned}(2.000,0.000) \\ (0.000,0.000)\end{aligned}\)

STRUCTURE TYPE
Atomic adsorption in hollow (center) site
STRUCTURE TYPE
Atomic adsorption in hollow (center) site


SAMPLE PREPARATION ( 1 sample)
Treatment: thermal diffusion of bulk \(S\) contaminants
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: \((0,0),(1 / 2,1 / 2),(0,1)\), ( 1,0 ), ( 1,1 ) beams at normal incidence; \(20<\mathrm{E}<160 \mathrm{eV}\)

THEORY/DATA TREATMENT
Dynamical LEED: 116 beams, 7 phase shifts; Wakoh Ni pot., S superpos. pot.; Vor=-11 eV + WFC

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 3.521 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.980 & 0.000 & 0.000 & 7.043 & 90.0 & \((2.000,0.000)\) & \(p(2 \times 2)\) & s1: commens. \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in hollow (center) sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z \(=1.245 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle \(A-B-C\left({ }^{\circ}\right)\) \\
\hline 2.348 & S1 & Ni2 & Ni2(1,0) & 58.0 \\
\hline 2.348 & S1 & Ni2 & Ni3 & 53.3 \\
\hline 2.175 & S1 & Ni3 & Ni2 & 60.0 \\
\hline 2.490 & Ni 2 & Ni2(1,0) & & \\
\hline 2.490 & Ni2 & Ni3 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : Ni(111)-(2x2)-s \\
CLASSIFICATION & \(: 28.16 .23 c\) \\
TECHNIQUE & : ICISS \\
AUTHORS & : Th. Fauster, H. Durr, D. Hartwig \\
REFERENCE & : Surf. Sci., \(178,657^{\prime}(1986)\)
\end{tabular}

\section*{SURFACE TYPE}


\section*{STRUCTURE TYPE}

Atomic adsorption in fce-hollow site
Coverage : 0.25 ( \(\mathrm{S} / \mathrm{Ni}\) )
Pattern : (2x2)
Matrix : (2.000, 0.000)

REFERENCE : Surf. Sci., 178, 657 (1986)

SAMPLE PREPARATION ( 1 sample)
Treatment : S adsorption from H2S at room temperature
Crystallinity:
Anal. methods:
Contamination: monitored by ISS, AES, LEED
DATA COLLECTION
Technique: ICISS; 5 keV Ne+ ions scattering
Dataset : ICISS polar angle scan for from clean and \(s\)-covered surface along \([-2,1,1],[-1,-1,2]\) and \([-1,0,1]\) azimuths

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Experimentally calibrated shadow cone used to determine surface structure

\section*{STRUCTURES EXAMINED}

Critical angle for several adsorption geometries (top, bridge, hcp-hollow and fcc-hollow sites) was calculated and used to fit the ICISS data

QUALITY OF EXPERIMENT-THEORY FIT
visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 1.245 & 2.156 & 60.0 & \((1.000,0.000)\) & \((1 x 1)\) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 2.490 & 4.313 & 60.0 & \((2.000,1.000)\) & \((2 \times 2)\) & s1: commens. \\
\hline
\end{tabular}

3D COORDINATES

\section*{s1: overlayer in fcc-hollow sites}

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.033 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom \(B\)} & Atom \(C\) & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.158 & Ni2 & \(S(1,1)\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Ni(111)-(2x2)-S \\
CLASSIFICATION & \(: 28.16 .4 \mathrm{~b}\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & J.E. Demuth, D.W. Jepsen and P.M. Marcus \\
REFERENCE & \(:\) \\
& Phys. Rev. Lett., 32, 1182 (1974)
\end{tabular}

SURFACE TYPE
Substrate : Ni
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Adsorbate: S
Coverage : \(0.25(\mathrm{~S} / \mathrm{Ni})\)
Pattern \(:(2 \times 2)\)
Matrix \(:(2.000,0.000)\)

Adsorbate: S
STRUCTURE TYPE
Atomic adsorption over fec 3 -fold hollow sites

Treatment : decomposition of H
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: \((1 / 2,0)(-1 / 2,0)(0,0)\) at normal incidence; \(20<E<160 \mathrm{eV}\)

CLASSIFICATION TECHNIQUE LEED Phys. Rev. Lett., 32, 1182 (1974)

STRUCTURES EXAMINED
S atom in 3-fold sites with hep and fcc termination for various adsorbate heights
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 1.245 & 2.156 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 2.490 & 4.313 & 60.0 & \((2.000,0.000)\) & \((2 x 2)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: atomic overlayer in 3-fold fcc hollow sites
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{X} \pm \mathrm{EX}\) & Dy \(\pm \in y\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
int f \\
subl
\end{tabular} & S
Ni
Ni & -2
-1
1
2
3 & \(s 1\)
\(b\)
\(b\) & .25
1.00
1.00 & 0
1
2 & \(\begin{array}{ll} & \\ 1.245 & f \\ 0.000 & A \\ 0.333 & f \\ 0.333 & f\end{array}\) & \[
\begin{array}{ll} 
& f \\
0.719 & A \\
0.000 & f \\
0.333 & f \\
0.333 & f
\end{array}
\] & \[
\begin{array}{ll} 
& A \\
2.030 & A \\
0.000 & A \\
1.400 \pm .100 & A \\
2.030 &
\end{array}
\] & \[
\begin{array}{r}
0.0 \\
69.0 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.007 & S1 & Ni2 & \(\mathrm{Ni} 2(1,0)\) & 128.4 \\
\hline 2.007 & S1 & Ni2 & Ni2 \(0,-1)\) & 51.7 \\
\hline 2.007 & S1 & Ni2 & Ni3 & 169.6 \\
\hline 2.007 & S1 & Ni 2 & \(\mathrm{Ni} 3(-1,0)\) & 111.2 \\
\hline 2.490 & Ni2 & Ni2(1,0) & & \\
\hline 2.488 & Ni2 & Ni3 & & \\
\hline
\end{tabular}
REFERENCE : Can. J. Chem., 67, 1975 (1989)

SURFACE TYPE
Substrate : Ni
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1

SAMPLE PREPARATION ( 1 sample)
Treatment : 2E-8 torr \(x 2\) min of H2S at RT
Crystallinity: LEED sharp
Anal. methods:
Contamination: AES: clean substrate

\section*{DATA COLLECTION}

Technique: LEED; video LEED
Dataset : IV curves at normal incidence for 3 integer, 7 fractional order beams; cumul. E range 1020 eV

Adsorbate: S
Coverage : \(0.25 \mathrm{~S} / \mathrm{Ni}\)
Pattern : p(2x2)
Matrix : ( 2.000, 0.000) ( 0.000, 2.000)

STRUCTURE TYPE
Overlayer in 3-fold hollow fcc sites
\(3 \%\) and \(2 \%\) expansions of top \(2 \mathrm{Ni}-\mathrm{Ni}\) interlayer spacings; lateral radial expansion of 3 -fold site \(0.03 \AA\)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (comb. space, RFS): 8 phase shifts

STRUCTURES EXAMINED
FCc and hcp sites: lateral expansion and rotation of 3-fold hollow
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.105 (RPE determined site)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\mathrm{A}^{\text {) }}\) & \(B \times\) (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.492 & 0.000 & 1.246 & 2.158 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.984 & 0.000 & 2.492 & 4.316 & 60.0 & ( 2.000, 0.000) & \(p(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES
S1: overlayer in fcc hollow sites; Ni2-5: top substrate layer; \(\mathrm{Ni} 2,4,5\) : expanded hollow \(0.03 \AA\) error bars given without details
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(7 \quad\) Bulk \(2=2.035 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline \[
\begin{aligned}
& 2.099 \\
& 2.099
\end{aligned}
\] & s1
\[
\mathrm{Ni} 2
\] & \[
\begin{aligned}
& \mathrm{Ni} 2(-1,0) \\
& \mathrm{s} 1(1,0)
\end{aligned}
\] & Ni4(1, -1) & \[
74.6
\] \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-c(2x2)-Se
ILLUSTRATION: 28,29
CLASSIFICATION
technique
AUTHORS : J.E. Demuth, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev. Lett., 31, 540 (1973)

SURFACE TYPE
Substrate : Ni Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: Se
Coverage : 1/2 (Se/Ni)
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites

SAMPLE PREPARATION ( sample)
Treatment : see J.E. Demuth and T.N. Rhodin, Surf. Sci. 45, 249 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves: E range 25-155 eV

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (layer KKR): 8 phase shifts, Wakoh Ni pot, Se superposition pot; Voi \(\alpha E^{* * 1 / 3 ; ~} \Theta D=420 \mathrm{~K}(\mathrm{Ni}), 335 \mathrm{~K}(\mathrm{Se})\)

STRUCTURES EXAMINED
Different adsorption sites with variable \(\mathrm{Se}-\mathrm{Ni}\) spacings

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(A\) ) & \(\mathrm{Bx}(\AA)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & ( 1.000, 0.000\()\) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \[
\begin{array}{ll}
(1.000, & 1.000) \\
(-1.000, & 1.000)
\end{array}
\] & \(c(2 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Se1: overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.280 & Se1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & 123.1 \\
2.280 & \(\mathrm{Se1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(1,1)\) & 174.5 \\
2.280 & \(\mathrm{Se1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Ni}(1,0)\) & 116.7 \\
2.280 & Se 1 & \(\mathrm{Ni2}\) & Ni 3 & 84.5 \\
2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & & \\
2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: N i(100)-c(2 x 2)-S e\) \\
CLASSIFICATION & \(: 28.34 .1\) \\
TECHNIQUE & \(:\) PED \\
AUTHORS & \(:\) D.H. Rosenblatt, S.D. Kevan, J.G. Tobin, R. Davis, M.G. \\
& Mason, D.A. Shirley, J.C. Tang and S.Y. Tong \\
REFERENCE & : Phys. Rev., B26, 3181 (1982)
\end{tabular}

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites
```

Coverage : $1 / 2$ (Se/Ni)
Pattern : $c(2 \times 2)$
Matrix $: \begin{aligned}(1.000,1.000) \\ (-1.000,1.000)\end{aligned}$
Adsorbate: Se
-.000, 1.000

```

SURFACE TYPE
Substrate : Ni
Crystal face: 100
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: P4m
2D surf symm: P4m

SAMPLE PREPARATION ( 1 sample)
Treatment: 20-30L dosing of H2Se at 500 K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: PED; normal photoelectron diffraction
Dataset : Se 3d spectra with kinetic energies in range 20-200 eV at normal and off-normal takeoff (total of 6 directions)

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical theory: \(\mathrm{X} \alpha\) initial state in Ni5se cluster (also gives Se phase shifts), Wakoh Ni phase shifts

STRUCTURES EXAMINED
Hollow site with overlayer spacing 1.45-1.75A; top site with spacing 2.34\& (hollow site had been established previously)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RZJ \(=0.05\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{-2.489} & \multirow[t]{2}{*}{2.489} & \multirow[t]{2}{*}{90.0} & ( 1.000, 1.000) & \multirow[t]{2}{*}{\(c(2 \times 2)\)} & \multirow[t]{2}{*}{s1: commens. superlattice} \\
\hline & & & & & & (-1.000, 1.000) & & \\
\hline
\end{tabular}

3D COORDINATES

Se1: overlayer in 4-fold hollow sites; \(0.1 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk \(z=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.345 & Sel & Ni2 & Ni2(1,0) & 122.1 \\
\hline 2.345 & Se1 & Ni 2 & \(\mathrm{Ni} 3(1,1)\) & 176.4 \\
\hline 2.345 & Se1 & Ni2 & \(\mathrm{Ni} 3(1,0)\) & 117.9 \\
\hline 2.345 & Se1 & Ni 2 & Ni3 & 86.4 \\
\hline
\end{tabular}
\(\mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Se}\)
28.34.1

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & & \\
2.489 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}


D surf syma P4

SAMPLE PREPARATION ( sample)
Treatment : see Demuth and Rhodin, Surf. Sci. 42, 261 \& 45, 249 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (RFS): Wakoh Ni potential, overlapping atomic potential for Se, 8 phase shifts; Vor=-11.2 eV, VoiaE**1/3

\section*{COMMENTS}

Technique: LEED

STRUCTURES EXAMINED
8 to 10 Ni -Se spacings, \(0.2 \AA\) apart, at hollow, bridge and top sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & \((2.000,1.000)\) & \((2 \times 2)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Se1: overlayer in 4-fold hollow sites

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{X} \pm \pm \mathrm{X}\) & Dy \(\pm\) ¢ 4 & \(D z \pm E z\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
intf \\
subl
\end{tabular} & Se
Ni
Ni & -2
-1
1
2
3 & s1
\(b\)
\(b\) & \[
\begin{array}{r}
.25 \\
1.00 \\
1.00
\end{array}
\] & 0
1
2 & \begin{tabular}{rr} 
& \(f\) \\
-1.245 & \(\AA\) \\
0.000 & \(f\) \\
0.500 & \(f\) \\
-0.500 & \(f\)
\end{tabular} & \begin{tabular}{rr} 
& \(f\) \\
-1.245 & \(A\) \\
0.000 & \(f\) \\
0.500 & \(f\) \\
-0.500 & \(f\)
\end{tabular} & \[
\begin{array}{ll} 
& \AA \\
1.760 & A \\
0.000 & \AA \\
1.550 \pm .100 & \AA \\
1.760 & A
\end{array}
\] & 0.0
88.1
100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.346 & Se1 & Ni 2 & \(\mathrm{Ni} 2(1,0)\) & 122.1 \\
\hline 2.346 & Se1 & Ni2 & Ni3(1,1) & 176.4 \\
\hline 2.346 & Se1 & Ni 2 & Ni3(1,0) & 117.9 \\
\hline 2.346 & Se1 & Ni2 & Ni3 & 86.4 \\
\hline 2.490 & Ni2 & Ni2 (1,0) & & \\
\hline 2.490 & Ni 2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(110)-c(2×2)-Se
ILLUSTRATION: 35,36
CLASSIFICATION : 28.34.0c
TECHNIQUE : PED
AUTHORS : D.H. Rosenblatt, S.D. Kevan, J.G. Tobin, R. Davis, M.G.Mason, D.R. Denley, D.A. Shirley, Y. Huang and S.Y. Tong

REFERENCE : Phys. Rev., B26, 1812 (1982)

\section*{SURFACE TYPE}

Substrate: Ni
Crystal face: 110
Temperature : 120 K
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: cmm
SAMPLE PREPARATION ( 1 sample)
Adsorbate: Se
Coverage : \(1 / 2(\mathrm{Se} / \mathrm{Ni})\)
Pattern : \(c(2 \times 2)\)
Matrix \(:(1.000,1.000)\)

Coverage : \(1 / 2\) ( \(\mathrm{Se} / \mathrm{Ni}\) )
ern : c(2x2
(-1.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in hollow (center) site

Treatment: 10-15L dosing of H2Se at 300 K
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: PED; normal photoelectron diffraction
Dataset : Se 3d spectra with kinetic energies in range 20-200 eV at normal takeoff

COMMENTS

STRUCTURES EXAMINED
Top, hollow and bridge sites with variable Se-Ni spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By ( \(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.488 & 0.000 & 0.000 & 3.519 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.488 & 3.519 & -2.488 & 3.519 & 70.5 & \begin{tabular}{c}
\((1.000,1.000)\) \\
\((-1.000,1.000)\)
\end{tabular} & c(2x2) & \begin{tabular}{l} 
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
Se1: overlayer in hollow (center) sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.420 & Se1 & Ni2 & Se1 (1,0) & 125.9 \\
\hline 2.420 & Se1 & Ni2 & \(\mathrm{Ni} 2(1,0)\) & 121.0 \\
\hline 2.420 & Sel & Ni2 & Ni3 & 57.1 \\
\hline 2.345 & Se1 & Ni3 & Ni2 & 60.0 \\
\hline 2.488 & Ni2 & Ni2(1,0) & & \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Ni & Adsorbate: Se \\
Crystal face: 111 & Coverage : \(1 / 4\) (Se/Ni) \\
Temperature : 120 K & Pattern : (2x2) \\
Bulk lattice: fcc & Matrix : (2.000, 0.000) \\
CD bulk symm: p3m1 &
\end{tabular}

20 surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
: 2L dosing of H2Se at 120 K and annealing at 500K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: PED; normal photoelectron diffraction
Dataset : Se 3d spectra with kinetic energies in range 20-200 eV at normal takeoff

STRUCTURE TYPE
Atomic adsorption in 3-fold fec hollow sites

COMMENTS
Low-coverage ( 0.1 ML ) disordered Se/Ni(111) also analyzed: same bonding geometry found

THEORY/DATA TREATMENT
Dynamical theory: X initial state in NiSSe cluster (also gives Se phase shifts), Wakoh Ni phase shifts

STRUCTURES EXAMINED
Top, hollow and bridge sites with variable Se-Ni spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & Ay ( \(A\) ) & \(B x\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.490} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.245} & \multirow[t]{2}{*}{2.156} & \multirow[t]{2}{*}{120.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.980} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-2.490} & \multirow[t]{2}{*}{4.313} & \multirow[t]{2}{*}{120.0} & ( 2.000, 0.000) & \multirow[t]{2}{*}{(2x2)} & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Se1: overlayer in 3-fold fec hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{Cx} \pm \boldsymbol{x}\) & \(D Y \pm \epsilon y\) & \(\mathrm{Dz} \pm \boldsymbol{E Z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
int f \\
subl
\end{tabular} & \begin{tabular}{l}
Se \\
Ni \\
Ni
\end{tabular} & -2
-1
1
2
3 & s 1
\(b\)
\(b\) & \[
\begin{aligned}
& .25 \\
& 1.00 \\
& 1.00
\end{aligned}
\] & 0
1
2 & \(\begin{array}{ll} & f \\ 1.245 & A \\ 0.000 & f \\ 0.333 & f \\ 0.333 & f\end{array}\) & \[
\begin{array}{rr} 
& f \\
-0.719 & \& \\
0.000 & f \\
0.667 & f \\
-0.333 & f
\end{array}
\] & \[
\begin{array}{lll} 
& & \AA \\
2.033 & & \AA \\
0.000 & & \AA \\
1.800 \pm .040 & \AA \\
2.033 & & \AA
\end{array}
\] & \[
\begin{array}{r}
0.0 \\
88.5 \pm 2.0 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.304 & Se 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 2(0,1)\) & 122.7 \\
2.304 & Se 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(0,1)\) & 176.7 \\
2.304 & Se 1 & \(\mathrm{Ni2}\) & Ni 3 & 117.3 \\
2.490 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & & \\
2.490 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \mathrm{Ni}(100)-\mathrm{c}(2 \times 2)-\mathrm{Te}\) \\
CLASSIFICATION & \(: 28.52 .1\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & : J.E. Demuth, D.W. Jepsen and P.M. Marcus \\
REFERENCE & : J. Phys., C6, L307 (1973)
\end{tabular}

SURFACE TYPE
Substrate: Ni
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: 14 m
2D surf symm: p4m
SAMPLE PREPARATION ( sample)
Treatment : see J.E. Demuth and T.N. Rhodin, Surf. Sci. 45, 249 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves: E range 25-155 eV

Adsorbate: Te
Coverage : 1/2 (Te/Ni)
Pattern : \(c(2 \times 2)\)
Matrix \(: \begin{gathered}(1.000,1.000) \\ (-1.000,1.000)\end{gathered}\)

STRUCTURE TYPE
Atomic adsorption in 4 -fold hollow sites
\(\qquad\)

COMMENTS

\section*{THEORY/DATA TREATMENI}

Dynamical LEED (layer KKR): 8 phase shifts, Wakoh Ni pot, Te superposition pot; VoiaE**1/3; \(\Theta D=420 \mathrm{~K}(\mathrm{Ni})\), 295K(Te)

STRUCTURES EXAMINED
Different adsorption sites with variable Te-Ni spacings
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.489 & 0.000 & 0.000 & 2.489 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 2.489 & 2.489 & -2.489 & 2.489 & 90.0 & \((1.000,1.000)\) & bulk lattice \\
\hline
\end{tabular}

3D COORDINATES
Tel: overlayer in 4-fold hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk \(2=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.590 & Te1 & Ni2 & Ni2 11,0\()\) & 118.7 \\
\hline 2.590 & Te1 & Ni 2 & Ni3(1,1) & 180.0 \\
\hline 2.590 & Te1 & Ni 2 & Ni3(1,0) & 121.3 \\
\hline 2.590 & Tel & Ni2 & Ni3 & 92.2 \\
\hline 2.489 & Ni 2 & Ni2(1,0) & & \\
\hline 2.489 & Ni2 & Ni3 & & \\
\hline
\end{tabular}

COMMON NAME : Ni(100)-p(2×2)-Te
ILLUSTRATION: 28,30
CLASSIFICATION : 28.52.1a
TECHNIQUE : LEED
AUTHORS : M.A. Van Hove and S.Y. Tong
REFERENCE : J. Vac. Sci. Technol., 12, 230 (1975)

\section*{SURFACE TYPE}

Substrate : Ni
Crystal face: 100
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( sample)
Treatment: see Demuth and Rhodin, Surf. Sci. 42, 261 \& 45, 249 (1974)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset :
```

Adsorbate: Te
Coverage : 1/4 (Te/Ni)
Pattern : (2x2)
Matrix : (2.000, 0.000)
(0.000, 2.000)

```

\section*{STRUCTURE TYPE}

Atomic adsorption in 4 -fold hollow sites

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (RFS): Wakoh Ni potential, overlapping atomic potential for Te, 8 phase shifts; Vor=-11.2 eV, VoiaE**1/3

STRUCTURES EXAMINED
8 to 10 Ni -Te spacings, \(0.2 \AA\) apart, at hollow, bridge and top sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.490 & 0.000 & 0.000 & 2.490 & 90.0 & ( 1.000, 0.000 ) & (191) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.980 & 0.000 & 0.000 & 4.980 & 90.0 & \[
\begin{array}{ll}
(2.000, & 0.000) \\
(0.000, & 2.000)
\end{array}
\] & (2x2) & s1: commens. superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Te1: overlayer in 4 -fold hollow sites
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.760 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 2.518 & Te 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 2(1,0)\) & 119.6 \\
2.518 & Te 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(1,1)\) & 180.0 \\
2.518 & Te 1 & \(\mathrm{Ni2}\) & \(\mathrm{Ni} 3(1,0)\) & 120.4 \\
2.518 & Te 1 & \(\mathrm{Ni2}\) & Ni 3 & 90.6 \\
2.490 & \(\mathrm{Ni2}\) & \(\mathrm{Ni2(1,0)}\) & & \\
2.490 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & & \\
\hline
\end{tabular}
```

COMMON NAME : Ni3Al(100)-(1x1)
CLASSIFICATION : 28.13.5
TECHNIQUE: LEED
AUTHORS : D. Sondericker, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B33, 900 (1986)
ILLUSTRATION: 134

```

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Ni3Al & Adsorbate: & \\
\hline Crystal face: & 100 & Coverage & \\
\hline Temperature : & RT* & Pattern & (1x1) \\
\hline Bulk lattice: & Aucu3 & Matrix & ( 1.000, 0.000) \\
\hline 2 D bulk symm: & p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 6 phase shifts from band structure potentials for pure Ni and Al ; Voi=-3.5 eV

DATA COLLECTION
Technique: LEED
Dataset : I-V curves (some degenerate): 15 beams at \(\theta, \phi=0,0^{\circ}, 14\) at \(15.5,45^{\circ}\), 16 at \(13.5,0^{\circ}\); \(42<E<165 \mathrm{eV}\); cum E range 4688 eV

STRUCTURE TYPE
Slightly buckled \(50-50\) mixed top NiAl layer with \(4 \%\) average top spacing contraction; even-numbered layers are pure Ni , odd-numbered layers \(50-50\) mixed NiAl, as in bulk

\section*{COMMENTS}

STRUCTURES EXAMINED
Variations of two topmost interlayer spacings and of top layer buckling
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.105,0.185,0.179\left(\Theta=0,15.5,13.5^{\circ}\right)\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.560 & 0.000 & 0.000 & 3.560 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 3.560 & 0.000 & 0.000 & 3.560 & 90.0 & \((0.000,1.000)\) & (1.000, 0.000) & (1x1) \\
\hline
\end{tabular}

30 COORDINATES
Al1-Ni2: planar top mixed layer; Al5-Ni8: periodically repeating set of bulk layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Ni3Al(100)-(1x1)
28.13 .5

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
11
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.560 & Al1 & Al1 (1,0) & Ni3 & 44.5 \\
\hline 2.482 & Ni2 & Ni3 & Al5 & 119.5 \\
\hline 2.482 & Ni2 & Ni3 & Ni6 & 89.2 \\
\hline 2.517 & Al1 & Ni 2 & Ni3 & 59.9 \\
\hline 2.517 & Al1 & Ni2 & Ni4 & 59.9 \\
\hline 2.496 & Al1 & Ni3 & Ni2 & 60.8 \\
\hline 2.496 & Al1 & Ni3 & Ni4 & 59.7 \\
\hline 2.496 & All & Ni3 & Al5 & 89.5 \\
\hline 2.496 & Al1 & Ni3 & Ni6 & 119.7 \\
\hline 3.530 & All 1 & Al5 & Ni6 & 90.0 \\
\hline 2.482 & Ni2 & Ni 3 & Ni4 & 59.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: N\) Ni3Al(110)-(1x1) \\
CLASSIFICATION & 28.13 .13 \\
TECHNIQUE & LEED \\
AUTHORS & : D. Sondericker, F. Jona and P.M. Marcus \\
REFERENCE & Phys. Rev., B34, 6775 (1986)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Ni3Al & Adsorbate: & \\
\hline Crystal face: & 110 & Coverage & \\
\hline Temperature : & RT* & Pattern & (1x1) \\
\hline Bulk lattice: & Cu3Au & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: & pmm & & ( 0.000, 1.000) \\
\hline 2D surf symm: & pmm & & \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : 10 cycles of Ar+ sputtering (1h) and 1223 K anneals (1h)
Crystallinity:
Anal. methods:
Contamination: AES monitoring of \(\mathrm{Ni} / \mathrm{Al}\) ratio
DATA COLLECTION
Technique: LEED
Dataset : I-V curves: 24 degenerate (10 non-deg.) beams at \(\Theta=0^{\circ}, 18\) (12) beams at \(\theta=15^{\circ}, \phi=90^{\circ}\); cum. E ranges \(2958 \mathrm{eV}, 2189 \mathrm{eV}\)

STRUCTURE TYPE
Unreconstructed bulk termination with mixed NiAl layer (rather than pure Ni layer), with buckling in top mixed layer and relaxations in top two interlayer spacings

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 6 phase shifts from band structure potentials for pure Ni and Al ; Voi=-3.5 eV, Vor=-10eV

STRUCTURES EXAMINED
Variation of two topmost interlayer spacings and of buckling in topmost mixed NiAl layer, for both pure-Ni termination and mixed NiAl termination

QUALITY OF EXPERIMENT-THEORY FIT
RZJ \(=0.14\left(0=0^{\circ}\right), 0.13\left(\Theta=15^{\circ}\right)\)
2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay ( \(\AA\) ) & \(B x\) (A) & By (A) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.560} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{5.035} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b : bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline \multirow[t]{2}{*}{Surface 1} & \multirow[t]{2}{*}{3.560} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{5.035} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Al1-Ni2: topmost buckled mixed NiAl layer; Ni3-Ni4: next pure Ni layer;
Al9-Ni10-Ni11-Ni12: periodically repeating bulk pair of mixed/pure layers
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 12
Bulk z = \(2.517 ~ \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & DX \(\pm \epsilon \mathrm{X}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{Z}\) & & \(D z / B z(\%) \pm \in Z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & & \(\AA\) & \\
\hline subr & & -1 & & & & 0.000 A & -2.517 \& & 2.517 & A & \\
\hline intf & Al & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Ni & 2 & b & 1.00 & 1 & 0.000 f & 0.500 f & \(0.020 \pm .030\) & A & . \(8 \pm 1.2\) \\
\hline intf & Ni & 3 & b & 1.00 & 2 & 0.500 f & 0.250 f & \(1.110 \pm .030\) & A & \(44.1 \pm 1.2\) \\
\hline intf & Ni & 4 & b & 1.00 & 3 & 0.000 f & -0.500 f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Al & 5 & b & 1.00 & 4 & -0.500 f & 0.250 f & \(1.300 \pm .030\) & A & \(51.6 \pm 1.2\) \\
\hline intf & Ni & 6 & \(b\) & 1.00 & 5 & 0.000 f & -0.500 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 7 & b & 1.00 & 6 & 0.500 f & 0.750 f & 1.259 & \(\AA\) & 50.0 \\
\hline intf & Ni & 8 & b & 1.00 & 7 & 0.000 f & -0.500 f & 0.000 & A & 0.0 \\
\hline subl & Al & 9 & \(b\) & 1.00 & 8 & -0.500 f & -0.250 f & 1.259 & A & 50.0 \\
\hline subl & Ni & 10 & b & 1.00 & 9 & 0.000 f & 0.500 f & 0.000 & \(\AA\) & 0.0 \\
\hline subl & Ni & 11 & b & 1.00 & 10 & 0.500 f & -0.250 f & 1.259 & A & 50.0 \\
\hline subl & Ni & 12 & b & 1.00 & 11 & 0.000 f & 0.500 f & 0.000 & A & 0.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.517 & Al1 & Ni2 & Ni3 & 121.2 \\
\hline 2.456 & Al1 & Ni3(0,-1) & Ni4 & 59.2 \\
\hline 2.446 & Ni2 & Ni3 & A15 & 57.8 \\
\hline 2.410 & Ni2 & Al5 & Ni 7 & 120.0 \\
\hline
\end{tabular}

COMMON NAME : Ni3Al(111)-(1x1)
ILLUSTRATION: 128
CLASSIFICATION : 28.13.12
TECHNIQUE : LEED
AUTHORS : D. Sondericker, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B34, 6770 (1986)

\section*{SURFACE TYPE}


STRUCTURE TYPE
Unreconstructed bulk termination with buckling in first mixed Ni3Al layer (Al outward) and slight contraction of topmost interlayer spacing

20 surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : \(2 \times 2 \mathrm{Nm}^{2}\) grain Ni3AL ingot, Ar+
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES monitored Al/Ni ratio during anneals
```

DATA COLLECTION
Technique: LEED
Dataset : I-V curves: 29 degenerate (10 non-deg.)
beams at }0=\mp@subsup{0}{}{\circ},19\mathrm{ (13) beams at
0=15}\mp@subsup{}{}{\circ},\phi=-6\mp@subsup{0}{}{\circ}\mathrm{ ; cum. E ranges 3255 eV, 2225eV

```

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 6 phase shifts from band structure
potentials for pure Ni and Al . Voi=-3.5 eV; Vor \(=-12 \mathrm{eV}\)

STRUCTURES EXAMINED
Variation of topmost interlayer spacing and of buckling in topmost layer
QUALITY OF EXPERIMENT - THEORY FIT
\(R Z J=0.128\left(\Theta=0^{\circ}\right), 0.165\left(\Theta=15^{\circ}\right)\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|r|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 5.035 & 0.000 & 2.517 & 4.360 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 5.035 & 0.000 & 2.517 & 4.360 & 60.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Al1-Ni2-Ni3-Ni4: buckled topmost layer; Al9-Ni10-Ni11-Ni12: periodically repeating bulk layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C \\
\hline 2.518 & Al1 & Ni2 & Al1 (1,0) & 177.3 \\
\hline 2.518 & Al1 & Ni2 & Ni3 & 60.0 \\
\hline 2.518 & Al1 & Ni2 & Ni7(0, -1) & 61.2 \\
\hline 2.517 & Ni 2 & Ni3 & Ni8( \(-1,0\) ) & 120.1 \\
\hline 2.509 & Ni2 & Al5 & \(\mathrm{Ni}{ }^{\text {a }}\) & 120.1 \\
\hline
\end{tabular}

COMMON NAME : NiAl(100)-(1x1)
CLASSIFICATION : 28.13.15c
TECHNIQUE : LEED
AUTHORS : H.L. Davis and J.R. Noonan
REFERENCE : Springer Series in Surface Sciences, 11, 152 (1988)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: \(:\) NiAl & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT & Pattern : (1×1) \\
Bulk lattice: CsCl & Matrix : \(1.000,0.000)\) \\
2D bulk sym: p4m & \\
\hline
\end{tabular}

D bulk sym: Phm

2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : mech. polish, Ar+ sputtering and annealing to about 870C
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES (CMA): clean, Al:Ni ratio \(\approx 1: 1\)
DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (RFS): 8 phase shifts from Moruzzi et al pot for bulk NiAl; Voi=-4.5 eV; \(\Theta D=350 \mathrm{~K}(\mathrm{Ni}), 500 \mathrm{~K}(\mathrm{Al})\)

Technique: LEED
Dataset: I-V curves at normal incidence: averaged within 6 symmetry sets; E range 50-300 eV

\section*{STRUCTURE TYPE}

Unreconstructed bulk termination with relaxation in top two interlayer spacings; Al termination favored

ILLUSTRATION: 143

\section*{COMMENTS}

For both Ni and Al terminations, variation of top two interlayer spacings: 1 st from \(-25 \%\) to \(+10 \%\), 2 nd from \(-15 \%\) to \(+20 \%\), in steps of \(5 \%\)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RZJ \(=0.084\)
2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Butk & 2.874 & 0.000 & 0.000 & 2.874 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.874 & 0.000 & 0.000 & 2.874 & 90.0 & ( 1.000, 0.000 ) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(0.05 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=1.437 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & DX \(\pm \boldsymbol{\pm} \mathbf{X}\) & Dy \(\pm \boldsymbol{\epsilon} \boldsymbol{y}\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm E Z / B Z\) \\
\hline epir & & -2 & & & & \(f\) & f & \(\AA\) & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 2.874 \& & \\
\hline intf & Al & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 2 & \(b\) & 1.00 & 1 & 0.500 f & 0.500 f & \(1.315 \pm .050 \AA\) & \(91.5 \pm 3.5\) \\
\hline intf & Al & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(1.495 \pm .050 \AA\) & \(104.0 \pm 3.5\) \\
\hline intf & Ni & 4 & b & 1.00 & 3 & 0.500 f & 0.500 f & 1.437 A & 100.0 \\
\hline subl & Al & 5 & \(b\) & 1.00 & 4 & -0.500 f & -0.500 f & 1.437 A & 100.0 \\
\hline subl & Ni & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & 1.437 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 2.421 & \(\mathrm{Al1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Al3}\) & 69.2 \\
2.523 & \(\mathrm{Ni2}\) & \(\mathrm{Al3}\) & \(\mathrm{Ni4}\) & 71.6 \\
\hline
\end{tabular}
TECHNIQUE : MEIS
AUTHORS : S.M. Yalisove and W.R. Graham
REFERENCE : Surf. Sci., 183, 556 (1987)

\section*{SURFACE TYPE}
\begin{tabular}{lll} 
Substrate \(: ~ N i A l ~\) & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature: & RT & Pattern : \(1 \times 1)\) \\
Bulk lattice: CsCl & Matrix \(:(1.000,0.000)\) \\
2D bulk sym: pmm & & \((0.000,1.000)\)
\end{tabular}

2D surf symm pmm

SAMPLE PREPARATION ( 1 sample)
Treatment : NiAl single crystal sputtered and annealed at about 1073 K
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination:

DATA COLLECTION
Technique: MEIS
Dataset : Ni and Al surface blocking curves in (100) zone

\section*{STRUCTURE TYPE}

Unreconstructed bulk termination with buckling and
interlayer spacing relaxations in top two NiAl layers: Al buckles out/inward in 1st/2nd NiAl layers

STRUCTURES EXAMINED
Variation of first two spacings between mixed NiAl layers and of buckling of first two mixed layers

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.874 & 0.000 & 0.000 & 4.064 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.874 & 0.000 & 0.000 & 4.064 & 90.0 & \((1.000,0.000)\) & (1x1) \\
& & & & & & \((0.000,1.000)\) & & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Al1-Ni2 and Ni3-Al4: buckled top two layers; Al7-Ni8: periodically repeating bulk layers; layer spacings between like elements in different layers are accurate to \(0.01 \AA\)

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z = \(2.032 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site OCC. & Rel.
to & \(D \mathrm{DX} \pm \boldsymbol{\chi}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D Z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm E z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 0.000 A & 2.032 A & 2.032 A & \\
\hline intf & Al & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(0.244 \pm .040\) A & \(12.0 \pm 2.0\) \\
\hline intf & Ni & 3 & b & 1.00 & 2 & 0.000 f & -0.500 f & \(1.829 \pm .010\) A & \(90.0 \pm .5\) \\
\hline intf & Al & 4 & b & 1.00 & 3 & -0.500 f & 0.500 f & \(0.041 \pm .040\) A & \(2.0 \pm .5\) \\
\hline intf & Al & 5 & b & 1.00 & 4 & 0.000 f & -0.500 f & \(2.012 \pm .010 \AA\) & \(99.0 \pm .5\) \\
\hline intf & Ni & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Al & 7 & b & 1.00 & 6 & -0.500 f & 0.000 f & 2.032 A & 100.0 \\
\hline subl & Ni & 8 & \(b\) & 1.00 & 7 & 0.500 f & -0.500 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.501 & \(\mathrm{Al1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & 57.4 \\
2.734 & \(\mathrm{Ni2}\) & \(\mathrm{Ni3}\) & \(\mathrm{Al4}\) & 53.4 \\
\hline
\end{tabular}

CLASSIfICATION TECHNIQUE AUTHORS 28.13.15b LEED
: H.L. Davis and J.R. Noonan

SUPFACE TYPE
\begin{tabular}{|c|c|c|c|}
\hline Substrate & NiAl & Adsorbate: & \\
\hline Crystal face: & 110 & Coverage : & \\
\hline Temperature : & RT & Pattern & (1x1) \\
\hline Bulk lattice: & CsCl & Matrix & ( 1.000, 0.000) \\
\hline 2 D bulk symm: & pmm & & ( 0.000, 1.000) \\
\hline
\end{tabular}

20 burf sym: Pm

SAMPLE PREPARATION ( 1 sample)
Treatment : mech. polish, Ar ion sputtering and annealing to about 870C
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES (CMA): clean; Al:Ni ratio \(\approx 1: 1\)
DATA COLLECTION
Technique: LEED
Dataset : I-V curves at normal incidence: averaged within 14 symmetry sets; E range \(50-330 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

Unreconstructed bulk termination with buckling and
interlayer spacing relaxations in top two NiAl layers:
Al buckles outward in both topmost NiAl layers

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 8 phase shifts from Moruzzi et al pot for bulk NiAl; Voi=-4.5 eV; \(00=350 \mathrm{~K}(\mathrm{Ni}), 500 \mathrm{~K}(\mathrm{Al})\)

STRUCTURES EXAMINED
Variation of top two spacings between mixed NiAl layers and of buckling of top two mixed layers
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.063\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay \((\AA)\) & Bx \((A)\) & By \((A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.874 & 0.000 & 0.000 & 4.064 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.874 & 0.000 & 0.000 & 4.064 & 90.0 & \begin{tabular}{l}
\((0.000,1.000)\) \\
\((1.000,0.000)\) \\
\((0.000,1.000)\)
\end{tabular} & \((1 \times 1)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
Al1-Ni2 and Al3-Ni4: buckled top two layers; Al7-Ni8: periodically repeating bulk layers; \(0.02 \AA\) error bars assumed for tabulation

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\[
\text { No. of atoms: } 8 \quad \text { Bulk } z=2.032 \AA
\]


Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom \(A\) & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.497 & \(\mathrm{Al1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Al3}\) & 73.8 \\
2.413 & Ni 2 & \(\mathrm{Al3}\) & \(\mathrm{Ni4}\) & 70.3 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: NiAl
Adsorbate:
Crystal face: 110
Temperature : RT* Bulk lattice: CsCl 20 bulk symm: pmm 20 surf symm: pmm

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ bombardment and annealing
Crystallinity:
Anal. methods:
Contamination: ISS: monitoring of \(\mathrm{Al} / \mathrm{Ni}\) ratio
DATA COLLECTION
Technique: LEIS
Dataset : polar-angle dependent scattering intensities in several azimuths

\section*{STRUCTURE TYPE}

Unreconstructed bulk termination with buckling in top NiAl layer: Al buckles outward

\section*{COMMENTS}

Second and deeper spacings are assumed bulk-like in this tabulation

\section*{THEORY/DATA TREATMENT}

LEIS using 500 eV Li+ ions, with shadow-cone analysis: scattering potentials obtained by self-calibration

STRUCTURES EXAMINED
Buckling of mixed Al/Ni top layer; technique not sensitive to deeper structure

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Celt } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.890 & 0.000 & 0.000 & 4.087 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.890 & 0.000 & 0.000 & 4.087 & 90.0 & \((1.000,1.000)\) & \((0.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Al1-Ni2: buckled top layer; Al3-Ni4: periodically repeating bulk layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z=2.043 \(\AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Aton C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.512 & \(\mathrm{Al1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Al3}\) & 74.7 \\
2.502 & \(\mathrm{Ni2}\) & \(\mathrm{Al3}\) & \(\mathrm{Ni4}\) & 70.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) NiAl(110)-(1x1) \\
CLASSIFICATION & \(: 28.13 .4\) \\
TECHIQUE & \(:\) LEED \\
AUTHRSS & H.L. Davis and J.R. Noonan \\
REFERENCE & \(:\) Phys. Rev. Lett., \(\underline{54}, 566\) (1985)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : NiAl & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : RT* & Pattern : (1x1) \\
Bulk lattice: CsCl & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pmm & \\
2D surf sym: &
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination with \(10 \%\) buckled top 50-50 mixed layer;
Bulk termination with \(10 \%\) buckled top
average top spacing contracted \(0.5 \%\)

\section*{COMMENTS}

\section*{IHEORY/DATA TREATMENT}

Dynamical LEED (matrix inv., RFS): 8 phase shifts, Wakoh Ni pot, Snow Al pot; Voi=4.5 eV; \(\Theta=550 \mathrm{~K}(\mathrm{Al}), 335 \mathrm{~K}(\mathrm{Ni})\)

STRUCTURES EXAMINED
Independent displacements perpendicular to surface of both atoms ( Ni and Al ) in top layer
QUALITY OF EXPERIMENT - THEORY FIT
\(R Z J=0.053\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & AY (A) & \(B x(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.886} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{4.082} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.886} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{4.082} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Al1-Ni2: buckled top 50-50 mixed AlNi layer; Al5-Ni6: periodically repeating bulk layer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 2.509 & All & Ni2 & Al1(1,0) & 70.2 \\
2.509 & Al1 & \(\mathrm{Ni2}\) & \(\mathrm{Al3}\) & 74.0 \\
2.581 & Al1 & \(\mathrm{Ni4}\) & \(\mathrm{Al5}\) & 110.7 \\
\hline
\end{tabular}

COMMON NAME : NiAl(111)-(1x1) Al-terminated
CLASSIFICATION: 28.13.14b
TECHNIQUE : LEED
AUTHORS : J.R. Noonan and H.L. Davis
REFERENCE : Phys. Rev. Lett., 59, 1714 (1987)

\section*{SURFACE TYPE}

Substrate:
Crystal face: 111
Temperature : RT
Bulk lattice: CsCl
2D bulk symm: p3m1
2D surf symm: p3m1

SAMPLE PREPARATION ( 1 sample)
Treatment: mech. polish, Ar+ sputtering and annealing to about 870C
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES (CMA): clean, Al:Ni ratio \(\approx 1: 1\)
DATA COLLECTION
Technique: LEED
Dataset : normal-incidence \(I-V\) curves averaged within 7 symmetry sets, energy range \(50-300 \mathrm{eV}\)

\section*{Adsorbate:}

Coverage
Pattern : (1x1)
Matrix : ( \(1.000,0.000\) )
( \(0.000,1.000\) )

\section*{STRUCTURE TYPE}

Al-terminated, unreconstructed, slightly relaxed structure; this Al-termination occurs in \(\approx 50-50\) mixture with Ni -term.: see its separate structure (class. no. 28.13.14a)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (16-layer giant-matrix inv.): 8 ph shs from Moruzzi NiAl bulk pot; Voi=-4.5 eV; \(\Theta 0=350 \mathrm{~K}(\mathrm{Ni}), 500 \mathrm{~K}(\mathrm{Al})\)

\section*{STRUCTURES EXAMINED}

For both Ni and Al terminations: variation of two topmost layer spacings: 1 st from \(-80 \%\) to \(+80 \%\), 2 nd from \(-30 \%\) to \(+50 \%\) ( \(-60 \%\) to \(+60 \%\) ) for \(\mathrm{Ni}-(\mathrm{Al}-\) ) termination; mixture of both terminations was tested by incoherent intensity addition

QUALITY OF EXPERIMENT-THEORY FII
RZJ=. 063
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & \(\mathrm{BX}(\AA)\) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.064 & 0.000 & 2.032 & 3.520 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000\()\) & & \\
\hline Surface 1 & 4.064 & 0.000 & 2.032 & 3.520 & 60.0 & ( 1.000, 0.000 ) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ni4-Ni5: periodically repeating bulk layers; \(0.05 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5 Bulk z = \(830 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel.
to & \(D \mathrm{X} \pm \epsilon \mathrm{x}\) & Dy \(\pm \in y\) & \(D z \pm \in \mathbf{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & f & A & \\
\hline subr & & -1 & & & & \(2.032 \AA\) & 1.173 A & 1.659 A & \\
\hline intf & Al & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 2 & b & 1.00 & 1 & 0.667 f & 0.667 f & \(0.789 \pm .050\) A & \(95.1 \pm 6.0\) \\
\hline intf & Al & 3 & b & 1.00 & 2 & -0.333 f & -0.333 f & \(0.872 \pm .050\) A & \(105.1 \pm 6.0\) \\
\hline subl & Ni & 4 & b & 1.00 & 3 & -0.333 f & -0.333 f & 0.830 A & 100.0 \\
\hline subl & Al & 5 & b & 1.00 & 4 & 0.667 f & 0.667 f & 0.830 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.475 & \(\mathrm{Al1}\) & \(\mathrm{Ni} 2(0,-1)\) & \(\mathrm{Al3}\) & 70.5 \\
2.503 & \(\mathrm{Ni2}\) & \(\mathrm{Al3}\) & \(\mathrm{Ni4}\) & 180.0 \\
\hline
\end{tabular}
TECHNIQUE : LEED

AUTHORS : J.R. Noonan and H.L. Davis
REFERENCE : Phys. Rev. Lett., 59, 1714 (1987)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : NiAl & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature : RT & Pattern \(:(1 \times 1)\) \\
Bulk lattice: CsCl & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2 &
\end{tabular}

STRUCTURE TYPE
Ni-terminated, unreconstructed, strongly relaxed structure;
this Ni -termination occurs in \(\approx 50-50\) mixture with Al-term.: see its separate structure (class. no. 28.13.14b)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (16-layer giant-matrix inv.): 8 ph shs from Moruzzi NiAl bulk pot; Voi=-4.5 eV; \(00=350 \mathrm{~K}(\mathrm{Ni}), 500 \mathrm{~K}(\mathrm{Al})\)

STRUCTURES EXAMINED
For both Ni and Al terminations: variation of two topmost layer spacings: 1 st from \(-80 \%\) to \(+80 \%\), 2 nd from \(-30 \%\) to \(+50 \%\) \((-60 \%\) to \(+60 \%\) ) for \(\mathrm{Ni}-(\mathrm{Al}-)\) termination; mixture of both terminations was tested by incoherent intensity addition

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RZJ=0.063
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X(\AA)\) & Ay ( \(\AA\) ) & BX ( \(A\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right.\) ) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{4.064} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.032} & \multirow[t]{2}{*}{3.520} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.064} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.032} & \multirow[t]{2}{*}{3.520} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(191)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ni5-Ni6: periodically repeating bulk layers; 0.05』 error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=.830 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.383 & Ni1 & A \(12(0,-1)\) & Ni3 & 67.0 \\
\hline 2.533 & Al2 & Ni3 & Al4 & 177.3 \\
\hline
\end{tabular}
```

COMMON NAME : NiO(100)-(1x1)
CLASSIFICATION : 28.8.20
TECHNIQUE : LEED
AUTHORS : M.R. Welton Cook and M. Prutton
REFERENCE : J. Phys., C13, }3993\mathrm{ (1980)

```

SURFACE TYPE
\begin{tabular}{|c|c|c|}
\hline Substrate : NiO & Adsorbate: & \\
\hline Crystal face: 100 & Coverage & \\
\hline Temperature : 390 K & Pattern & (1x1) \\
\hline Bulk lattice: NaCl & Matrix & ( 1.000, 0.000) \\
\hline 2 d bulk symm: p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : cleaned in situ at room temperature
Crystallinity:
Anal. methods:
Contamination: AES: \(\approx 1 \% \mathrm{Cl}\) and possibility of \(<1 \% \mathrm{C}\)
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for: \((0,-1),(-1,1)\) at normal incidence; \((0,0),(0,-1)\) at \(0, \phi=10.5,45^{\circ}\) : (1-2) at \(6.5,45^{\circ}\); see comment

\section*{STRUCTURE TYPE}

Bulk-like non-buckled non-polar termination with \(2 \%\) top spacing contraction

\section*{COMMENTS}

R-factor for high energy ( \(110<E<250 \mathrm{eV}\) ) also includes normal incidence data of Netzer and Prutton, J. Phys. C8, 2401 (1975)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: superposition pots, \(X \alpha\) exchange, 8 ph shs; Vor varied, Voi=-5 eV; no vibs; \(\alpha=2 / 3\), but \(\alpha=0\) for \(E>110 \mathrm{eV}\)

SIRUCTURES EXAMINED
\(0-4 \%\) relaxation of first spacing, -4 to \(+4 \%\) 1st-layer buckling
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.29
20 UNIT CELLS ( 1 domain observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.947 & 0.000 & 0.000 & 2.947 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.947 & 0.000 & 0.000 & 2.947 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ni1-02: planar mixed top layer; Ni5-06: periodically repeating bulk mixed layer;
\(0.05 \AA\) error bars assumed for tabulation
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=2.084 \mathrm{~A}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(\mathbf{D X} \pm \boldsymbol{X}\) & Dy \(\pm\) Ey & \(\mathrm{Dz} \pm \boldsymbol{Z}\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \underset{\sim}{*} \mathrm{~A} / \mathrm{Bz}\) \\
\hline epir & & -2 & & & & \(f\) & f & \(\AA\) & \\
\hline subr & & -1 & & & & 1.474 A & 1.474 A & 2.084 & \\
\hline intf & Ni & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & 0 & 2 & \(b\) & 1.00 & 1 & 0.500 f & 0.500 f & \(0.000 \pm .050\) A & \(0.0 \pm 2.4\) \\
\hline intf & Ni & 3 & b & 1.00 & 2 & 0.000 f & 0.000 f & \(2.043 \pm .050\) A & \(98.0 \pm 2.4\) \\
\hline intf & 0 & 4 & b & 1.00 & 3 & -0.500 f & -0.500 f & 0.000 A & 0.0 \\
\hline subl & Ni & 5 & b & 1.00 & 4 & 0.000 f & 0.000 f & 2.084 A & 100.0 \\
\hline subl & 0 & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & \(0.000 \AA\) & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.947 & Ni1 & Ni1(1,0) & & \\
\hline 2.084 & Ni1 & & & \\
\hline 2.043 & 02 & Ni3 & Ni1 & 45.6 \\
\hline
\end{tabular}

CLASSIFICATION : 14.28.6
TECHNIQUE : LEED
AUTHORS : S.C. Wu, Z.Q. Wang, Y.S. Li, F. Jona and P.M. Marcus
REFERENCE : Solid State Commun., 57, 687 (1986)

\section*{SURFACE TYPE}

Substrate : Nisi2
Crystal face: 100
Temperature : RT*
Bulk lattice: fluorite
2D bulk symm: p4m
2D surf symm: p4m

\author{
Adsorbate: \\ Coverage : \\ Pattern : (1×1) \\ Matrix : ( \(1.000,0.000)\) \\ ( 0.000, 1.000)
}

STRUCTURE TYPE
Unreconstructed bulk termination at pure si layer, with
additional Si layer, 4-fold coordinated to Si below, with
buckling in topmost pure Si layer and contraction of
interlayer spacing between top pure si layer and next Ni
layer (buckling breaks bulk 4-fold rot. symmetry)

SAMPLE PREPARATION ( 1 sample)
Treatment : 16-20ML Ni deposited on Si(100)-(2x1), annealed at 1073 K

\section*{COMMENTS}

Weak 1/2, 1/4, and \(1 / 5\) order spots visible in LEED pattern

Crystallinity:
Anal. methods: AES to confirm the silicide phase
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : IV curves for 10, 11, 20, 21, 22, beams at normal incidence, \(00,10,01,11,20,02\), \(1-2\) beams at \(\Theta=9^{\circ}, \phi=0^{\circ} ; E<200 \mathrm{eV}\)

STRUCTURES EXAMINED
Both Ni and Si bulk termination with top layer relaxation; Si termination with missing row (like (100) of Si lattice); Ni in 4 -fold site above 2nd layer Ni ; si in 4 -fold site above void in 2 nd layer;
Si in 4 -fold site above 2nd layer \(\mathrm{Ni}+\mathrm{Si}\) buckling

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Si1: overlayer in non-bulk positions; si2-si3 (buckled) and Ni4: 2 layers with contracted spacing; Si5-Si6 and Ni7: periodically repeating pair of bulk layers; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 2.142 & Si1 & Si2 & Si1(1,0) & 127.4 \\
\hline 2.142 & Si1 & si2 & Si3 & 53.2 \\
\hline 2.142 & Si1 & si2 & Ni4 & 63.4 \\
\hline 2.723 & si2 & si3 & Ni4 & 56.6 \\
\hline 2.406 & si2 & Ni4 & Si5 & 72.2 \\
\hline 2.291 & Si3 & Ni4 & Si6 & 68.2 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) NiSi2(100)-(1x1) \\
CLASSIFICATION: & 14.28 .9 \\
TECHNIQUE & \(:\) \\
AUTHORS & LEIS. \\
REFERENCE & : Surf. Sci., 186, 115 (1987)
\end{tabular}

\section*{SURFACE TYPE}

Substrate: NiSi2
Crystal face: 100
Temperature : RT*
Bulk lattice: fluorite
2D bulk symm: p4m
2D surf symm: p4m

> Adsorbate: Coverage : Pattern : \((1 \times 1)\) Matrix \(:(1.000,0.000)\)

\section*{STRUCTURE TYPE}

Unreconstructed bulk termination at pure Si tayer, with contraction of top interlayer spacing

COMMENTS
In addition to \(30 \%\) vacancies in top layer, also evidence for some buckling or disorder in topmost Ni layer

\section*{THEORY/DATA TREATMENT}

Shadowing and blocking compared with computer simulations: Moliere pot; vibr amplitudes: Ni 0.1A, Si \(0.11 \AA\)

STRUCTURES EXAMINED
Si terminated bulk Nisi2 with relaxed top layer with \(30 \%\) vacancies; also model of Wu et al (class. no. 14.28.6)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk (attice \\
Surface 1 & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES

Si1-Si2 and Ni3: 2 layers with contracted spacing; Si4-Si5 and Ni6: periodically repeating pair of bulk layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=1.350 ~ \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.715 & Si1 & Si2 & Ni3 & 51.7 \\
\hline 2.188 & Si1 & Ni3 & Si1(1,0) & 122.7 \\
\hline 2.188 & Sil & Ni3 & Si4 & 63.8 \\
\hline 2.347 & Ni3 & Si4 & Ni6 & 109.3 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) NiSi2(111)-(1x1) \\
CLASSIFICATION & \(: 14.28 .1\) \\
TECHIQUE & \(:\) LEED \\
AUTHORS & \(:\) W.S. Yang, F. Jona and P.M. Marcus \\
REFERENCE & \(:\) Phys. Rev., B28, 7377 (1983)
\end{tabular}


TECHNIQUE : LEED
REFERENCE : Phys. Rev., B28, 7377 (1983)

SURFACE TYPE
\begin{tabular}{ll} 
SUbstrate \(:\) Nisi2 & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature : 300 K & Pattern \(:(1 \times 1)\) \\
Bulk lattice: fluorite & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
& \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination in wide gap between SiNiSi sandwiches, exposing Si, with contracted top Si-Ni spacing

\section*{COMMENTS}

Two phases observed 1) high coverage (hc) > 6 monolayers, 2) low coverage (lc) < 6 monolayers; LEED analysis on hc phase only: for this phase angular dependence of AES suggests Si termination

\section*{IHEORY/DATA TREATMENT}

Dynamical LEED for semi-infinite NiSi 2 substrate

DATA COLLECTION
Technique: LEED
Dataset : \(4 \mathrm{I}-\mathrm{V}\) spectra for 2 beams at normal incidence, \(20<E<180 \mathrm{eV}\)

STRUCTURES EXAMINED
Ni and Si terminations; first interlayer spacing varied
QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( A \(^{\text {) }}\) & \(\mathrm{Bx}(\mathrm{A})\) & By ( A \(^{\text {) }}\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline Surface 1 & & & & & & ( 0.000, 1.000) & & \\
\hline urface & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000\),
\((0.000\),
\((0.000)\) & (1x1) & s1: commens. superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Si1-Ni2-si3: topmost sandwich; si4-Ni5-si6: periodically repeating bulk sandwich;
\(1.57 \AA\) is bulk Si-Si intersandwich spacing; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.293 & Si1 & \(\mathrm{Ni2}\) & \(\mathrm{Si} 1(0,1)\) & 113.7 \\
2.293 & \(\mathrm{Si1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Si3}\) & 68.2 \\
2.293 & \(\mathrm{Si1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Si4}\) & 104.8 \\
2.350 & Ni 2 & \(\mathrm{Si3}\) & \(\mathrm{Si4}\) & 54.7
\end{tabular}

\section*{WATSON, VAN HOVE, AND HERMANN}

NiSi2(111)-(1x1)
14.28.1

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.350 & Ni2 & Si3 & Ni5 & 109.4 \\
2.350 & Ni2 & Si4 & Si6 & 125.1 \\
2.350 & Si3 & Ni5 & Si6 & 70.4 \\
2.350 & \(\mathrm{Si4}\) & Ni5 & Si6 & \\
\hline
\end{tabular}

COMMON NAME : Nisi2(111)-(1×1)
ILLUSTRATION: 145
CLASSIFICATION : 14.28.13
TECHNIQUE : MEIS
AUTHORS : J. Vrijmoeth, P.M. Zagwijn, J.H.M. Frenken and J.F. van der
Veen
REFERENCE : Phys. Rev. Lett., 67, 1134 (1991)

SURFACE TYPE
Substrate : NiSi2
Crystal face: 111
Temperature : RT*
Bulk lattice: fluorite
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARAIION ( 2 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: MEIS; 100keV protons stable to 10 eV Dataset : incidence in (1-10) scattering plane, \(22.0^{\circ}\) wrt (111) plane blocking patterns for exit angles between \(20^{\circ}\) and \(80^{\circ}\)

STRUCTURE TYPE
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : $\begin{array}{r}(1.000,0.000) \\ (0.000,1.000)\end{array}$

```

Si terminated bulk

\section*{COMMENTS}

Epitaxial layer grown on si(111);
A- and B-type growth give same results;
high energy resolution allows separation of the
contributions from successive layers
IHEORY/DATA TREATMENT
High resolution RBS compared with Monte Carlo simulations

STRUCTURES EXAMINED
1)bulk Si-terminated surface with vertical relaxation of two topmost layers; data exclude si bilayers on top, as in cosi2 (see 14.27.11), as well as Ni termination

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Si1-Ni2-si3: topmost sandwich; si1 is relaxed inward; si4-Ni5-si6: periodically repeating bulk sandwich; 1.57 \(\AA\) is bulk Si-si intersandwich spacing;

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(6 \quad B u l k=1.570 \quad A\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.350 & Sil & Ni2 & Si1(1,1) & 109.6 \\
\hline 2.350 & Sil & Ni 2 & si3 \((0,1)\) & 180.0 \\
\hline 2.350 & Sil & Ni2 & Si3 & 70.4 \\
\hline 2.350 & Ni2 & Si3(0,1) & Si1(1, 1) & 54.8 \\
\hline
\end{tabular}

NiSi2(111)-(1x1)
14.28.13

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C \(\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.350 & \(\mathrm{Ni2}\) & \(\mathrm{Si} 3(0,1)\) & \(\mathrm{Ni} 2(1,1)\) & 109.6 \\
2.350 & \(\mathrm{Ni2}\) & \(\mathrm{Si} 3(0,1)\) & \(\mathrm{Si}(1,1)\) & 125.2 \\
2.688 & \(\mathrm{Si3}\) & \(\mathrm{Si} 4(1,0)\) & \(\mathrm{Ni} 2(1,0)\) & 55.6 \\
2.688 & \(\mathrm{Si3}\) & \(\mathrm{Si} 4(1,0)\) & \(\mathrm{Si3}(1,1)\) & 91.2 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: \operatorname{Pb}(100)-(1 \times 1)\) & \\
CLASSIFICATION & \(: 82.13\) \\
TECHNIQUE & LEED \\
AUTHORS & R.F. Lin, Y.S.Li, F. Jona and P.M. Marcus \\
REFERENCE & : Phys. Rev., B42, \(1150(1990)\)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: \(: ~ P b\) & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: 133 K & Pattern : (1x1) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p4m & \\
\hline
\end{tabular}

Treatment : cycles of 1 h Ar bombardnents and 0.5 h 513 K anneals
Crystallinity: sharp, low-background (1x1) pattern
Anal. methods: AES
Contamination: AES: no S, O, C
DATA COLLECTION
Technique: LEED; video camera
Dataset : IV curves at 2 inc. angles: 5 nondegenerate beams at \(\theta=0^{\circ}\) and 12 nondegenerate beams at \(\Theta=10^{\circ}, \phi=0^{\circ}\)

\section*{STRUCTURE TYPE}

Multilayer relaxation down to 4 th interlayer spacing

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): 10 relat. ph shs by Moritz; Vor \(=-6 \pm 2 \mathrm{eV}\) (fit), Voi=-4eV; \(90=90 \mathrm{~K}\) (bulk), 64 K (surf)

STRUCTURES EXAMINED
Relaxation of first 4 interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.12, RPE=0.13, RVHT \(=0.225\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & Bx ( \({ }^{\text {a }}\) ) & By (A) & \(a\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.484 & 0.000 & 0.000 & 3.484 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 3.484 & 0.000 & 0.000 & 3.484 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1×1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & Dx \(\pm \in \mathrm{X}\) & Dy \(\pm \in \boldsymbol{y}\) & Dz \(\pm \in \boldsymbol{z}\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{z} / \mathrm{Bz}\) \\
\hline epir & & -2 & & & & \(f\) & f & A & \\
\hline subr & & -1 & & & & 1.742 A & 1.742 A & 2.463 A & \\
\hline intf & Pb & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Pb & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(2.266 \pm .030 \AA\) & \(92.0 \pm 1.2\) \\
\hline intf & Pb & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(2.540 \pm .030\) A & \(103.1 \pm 1.2\) \\
\hline intf & Pb & 4 & b & 1.00 & 3 & 0.500 f & 0.500 f & \(2.389 \pm .030 \AA\) & \(97.0 \pm 1.2\) \\
\hline intf & Pb & 5 & b & 1.00 & 4 & -0.500 f & -0.500 f & \(2.414 \pm .099\) A & \(98.0 \pm 4.0\) \\
\hline subl & Pb & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & 2.463 \& & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.484 & Pb 1 & \(\mathrm{~Pb} 1(1,0)\) & Pb 2 & 58.6 \\
3.347 & Pb 1 & Pb 2 & Pb 3 & 88.5 \\
3.538 & Pb 2 & Pb 3 & Pb 4 & 90.0 \\
\hline
\end{tabular}


\footnotetext{
2D surf symm: prm
}

SAMPLE PREPARATION ( 1 sample)
Treatment: Ar ion bombardment, annealed 1 hour at 590 K
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination: no impurities detected by AES and RBS

\section*{DATA COLLECTION}

Technique: MEIS; 50.6 and 97.6 keV proton beams used
Dataset : Rutherford back scattering: blocking and channeling curves measured in ( \(1,-1,1\) ) scattering plane

STRUCTURES EXAMINED
Top 3 interlayer spacings varied; \(d 23\) and \(d 34\) satisfy: \(d 23+0.75 * d 34=(0.5 \pm 2.5) \%\)

\section*{COMMENTS}

In PRL 58, 401 (1987), the authors present further analyses at 29 K and 485 K ; the relaxation of the first interlayer spacing varies: \(-15.4 \pm 2.5 \%\) at \(29 \mathrm{~K},-15.8 \pm 2.5 \%\) at RT and \(-3 \pm 5 \%\) at 485 K , indicating a decreasing contraction with increasing temperature

\section*{THEORY/DATA TREATMENT}

Monte Carlo simulation of channeling and blocking data: vib. amps. \(0.27,0.31 \AA\) in layers 1,2

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & \(A x(A)\) & \(A y(A)\) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.950 & 0.000 & 0.000 & 3.500 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 4.950 & 0.000 & 0.000 & 3.500 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
(1) \\
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk \(2=1.750\) \&
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{X} \pm\) EX & Dy \(\pm \in y\) & \(D z \pm E z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 2.475 A & 1.750 A & 1.750 A & \\
\hline intf & Pb & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Pb & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(1.474 \pm .040 \AA\) & \(84.2 \pm 2.3\) \\
\hline subl & Pb & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & 1.750 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.500 & Pb 1 & \(\mathrm{~Pb} 1(0,1)\) & & \\
3.371 & Pb 1 & \(\mathrm{Pb2}\) & Pb 3 & 55.9 \\
3.500 & Pb 2 & Pb 3 & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: \operatorname{Pb}(110)-(1 \times 1)\) & \\
CLASSIFICATION & \(: 82.12\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & U. Breuer, K.C. Prince, H.P. Bonzel, W.Oed, K. Heinz, G. \\
& Schmidt and K. Mueller \\
REFERENCE & Surf. Sci., 239, L493 (1990)
\end{tabular}

SURFACE TYPE
\begin{tabular}{|c|c|c|}
\hline Substrate : Pb & Adsorbate: & \\
\hline Crystal face: 110 & Coverage & \\
\hline Temperature : 300 K & Pattern & (1x1) \\
\hline Bulk lattice: fcc & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: prm & & ( 0.000, 1.000) \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of Ar sputtering and annealing
Crystallinity: modestly sharp diffraction spots
Anal. methods: AES
Contamination: AES: clean

DATA COLLECTION
Technique: LEED; video camera
Dataset : IV curves for 10 beams up to 150 eV ; incidence angle fit to \(\Theta=0.5^{\circ}, \phi=10^{\circ}\) in struct. analysis; cumul. E range 750 eV

STRUCTURE TYPE
Multilayer relaxation down to 3rd interlayer spacing

\section*{COMMENTS}

Same analysis performed at 130 K gave same results within error bars, e.g. top layer spacing changes of \(-17.1 \pm 2.9 \%\), \(+3.4 \pm 2.9 \%,-6.8 \pm 4.6 \%\) (RPE \(=0.38\), cumul. E range 1700 eV for 20 beams);
R-factors are 'not satisfactory'

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 11 relativistic phase shifts; VoiaE**1/3; \(\Theta 0=105 \mathrm{~K}\) in bulk (fit in surface layers)

STRUCTURES EXAMINED
Relaxation of first 3 interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.26\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.500 & 0.000 & 0.000 & 4.950 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.500 & 0.000 & 0.000 & 4.950 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
& & & & & \((0.000,1.000)\) & & si: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & \(D x \pm 6 x\) & Dy \(\pm \epsilon y\) & \(D Z \pm \epsilon Z\) & \(D z / B z(\%) \pm \in Z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 1.750 A & 2.475 \& & 1.750 A & \\
\hline intf & Pb & 1 & \(b\) & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Pb & 2 & \(b\) & 1.00 & 1 & 0.500 f & 0.500 f & \(1.410 \pm .050\) A & \(80.6 \pm 2.9\) \\
\hline intf & Pb & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(1.830 \pm .080\) A & \(104.6 \pm 4.6\) \\
\hline intf & Pb & 4 & b & 1.00 & 3 & 0.500 f & 0.500 f & \(1.630 \pm .050\) A & \(93.1 \pm 2.9\) \\
\hline subl & Pb & 5 & \(b\) & 1.00 & 4 & -0.500 f & -0.500 f & 1.750 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom \(C\)} & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.500 & Pb 1 & \(\mathrm{~Pb} 1(1,0)\) & Pb 2 & 58.4 \\
3.343 & Pb 1 & Pb 2 & Pb 3 & 56.1 \\
3.343 & Pb 1 & \(\mathrm{Pb2}\) & Pb 4 & 115.0
\end{tabular}
\(\mathrm{Pb}(110)-(1 \times 1)\)
82.12

> Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond ang(e \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.240 & Pb 1 & Pb 3 & Pb 4 & 118.3 \\
3.541 & Pb 2 & Pb 3 & Pb 4 & 59.4 \\
\hline
\end{tabular}

COMMON NAME
CLASSIFICATION : 82.7
TECHNIQUE : LEED
AUTHORS : Y.S. Li, J. Quinn, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B40, 8239 (1989)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Pb & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature: 133 K & Pattern : (1x1) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: prm &
\end{tabular}

2D bulk symm: prm
20 surf symm: pmm
SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of 1 h Ar bombardments and 0.5 h 513 K anneals
Crystallinity: sharp, low-background (1x1) pattern
Anal. methods: AES
Contamination: AES: no S, \(0, C\)
DATA COLLECTION
Technique: LEED; video camera
Dataset : IV curves at 2 inc. angles: 10 nondegenerate beams at \(\theta=0^{\circ}\) and 15 nondegenerate beams at \(\theta=15^{\circ}, \phi=0^{\circ}\)

\section*{STRUCTURE TYPE}

Multilayer relaxation down to 3rd interlayer spacing

\section*{COMMENTS}

R-factor values indicate 'at best fair' agreement between theory and experiment

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE program): 10 ph shs from several pots Vor=-6t2 eV (fit), Voi=-4eV, rms vibr ampl \(=0.14 \AA\) (fit)

STRUCTURES EXAMINED
Relaxation of first 3 interlayer spacings
QUALITY OF EXPERIMENT - THEORY FIT
\(\mathrm{RZJ}=0.27\left(\Theta=0^{\circ}\right), 0.34\left(\Theta=15^{\circ}\right)\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.480} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{4.922} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.480} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{4.922} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk \(2=1.740 \AA\)


BOND DISTANCES AND ANGLES
Bond. distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 3.480 & Pb 1 & Pb1 (1,0) & Pb2 & 58.7 \\
\hline 3.347 & Pb1 & Pb2 & Pb3 & 56.6 \\
\hline 3.347 & Pb 1 & Pb2 & Pb4 & 115.8 \\
\hline 3.255 & Pb 1 & Pb3 & \(\mathrm{Pb}_{4}\) & 118.9 \\
\hline 3.510 & Pb2 & Pb3 & Pb4 & 59.8 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{lll} 
Substrate: \(: ~ P b\) & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature : 133 K & Pattern : \(1 \times 1)\) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk sym: p3m1 & & \((0.000,1.000)\)
\end{tabular}

STRUCTURE TYPE
Multilayer relaxation down to 3rd interlayer spacing

SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of 1 h Ar bombardments and 0.5 h 513 K anneals
Crystallinity: sharp, low-background (1x1) pattern
Anal. methods: AES
Contamination: AES: no \(S, 0, C\)

\section*{DATA COLLECTION}

Technique: LEED; video camera
Dataset : IV curves at 2 inc. angles: 5 nondeg. beams at \(\theta=0^{\circ}\) and 10 nondeg. beams at \(\theta=7.5^{\circ}, \phi=0^{\circ}\); cumul. E range 1110 eV

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): 10 relat. ph shs by Moritz; Vor \(=-4 \pm 2 \mathrm{eV}\) (fit), Voi=-4.5eV; \(00=90 \mathrm{~K}\) (bulk), 64 K (surf)

STRUCTURES EXAMINED
Relaxation of first 3 interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.19, RVHT=0.23
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(A\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.484 & 0.000 & 1.742 & 3.017 & 60.0 & ( 1.000, 0.000\()\) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.484 & 0.000 & 1.742 & 3.017 & 60.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.484 & Pb 1 & \(\mathrm{~Pb} 1(1,0)\) & Pb 2 & 59.2 \\
3.402 & Pb 1 & Pb 2 & Pb 3 & 180.0 \\
3.496 & Pb 2 & Pb 3 & \(\mathrm{~Pb} 4(1,0)\) & 120.5 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: P b(311)-(1 \times 1)\) & ILLUSTRATION: 8 \\
CLASSIFICATION & \(: 82.18\) \\
TECHNIQUE & \(:\) LEED & \\
AUTHORS & Y.S. Li, F. Jona and P.M.Marcus & \\
REFERENCE & : Phys. Rev., B44, \(8267(1991)\)
\end{tabular}

SURFACE TYPE
Substrate: Pb
Crystal face: 311
Temperature : 130 K
Bulk lattice: fcc
2D bulk symm: cm
2D surf symm: cm
\[
\begin{aligned}
& \text { Adsorbate: } \\
& \text { Coverage : } \\
& \text { Pattern }:(1 \times 1) \\
& \text { Matrix }:\left(\begin{array}{l}
\text { ( } 1.000,
\end{array}\right. \\
& \\
&
\end{aligned}
\]

\section*{STRUCTURE TYPE}

Multilayer relxations perpendicular to the surface by \(-14.1,-2.0,-0.07,5.4 \%\), and parallel to surface by 3.0 and \(-1.9 \%\)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 13 relat. phase shifts, Vor=-2 eV, Voi=-4.5eV

STRUCTURES EXAMINED
Varied the top 4 interlayer spacings and 2 registries
QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.41, RVHT=0.21, RZJ=0.21
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.484 & 0.000 & -1.742 & 5.804 & 106.7 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.484 & 0.000 & -1.742 & 5.804 & 106.7 & \((1.000,1.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

\section*{30 COORDINATES}
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{l} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.484 & Pb 1 & \(\mathrm{~Pb} 1(1,0)\) & & \\
3.462 & Pb 1 & Pb 2
\end{tabular}
\(\mathrm{Pb}(311)-(1 \times 1)\)
82.18

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.462 & Pb 2 & Pb 4 & & \\
3.479 & Pb 3 & Pb 4 & & \\
\hline
\end{tabular}

COMMON NAME : Pd(100)-(1×1)
ILLUSTRATION: 2
CLASSIFICATION : 46.2
TECHNIQUE : LEED
AUTHORS : R.J. Behm, K. Christmann, G. Ertl and M.A. Van Hove
REFERENCE : J. Chem. Phys., 73, 2984 (1980)

SURFACE TYPE
Substrate : Pd
Crystal face: 100
Temperature : 350 K
Bulk lattice: fcc
20 bulk symm: p 4 m
2D surf symm: p4m
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)

```

\section*{STRUCTURE TYPE}

Essentially unrelaxed bulk termination

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): Moruzzi et al potential, 8 phase shifts; Vor=-10.0 eV, VoiaE**1/3; \(00=193 \mathrm{~K}\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X(A)\) & Ay (A) & BX ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.740} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.740} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.740} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.740} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3


BOND DISTANCES AND ANGLES
Bond distances are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{l} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.740 & Pd1 & \begin{tabular}{l} 
Pd1 \((1,0)\) \\
Pd2
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
TECHNIQUE & : LEED \\
AUTHORS & J. Quinn, Y.S. Li, D. Tian, H. Li, F. Jona and P.M. Marcus \\
REFERENCE & : Phys. Rev., B42, \(11348(1990)\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SURFACE TYPE & & STRUCTURE TYPE \\
\hline Substrate : Pd & Adsorbate: & Multilayer relaxation \\
\hline Crystal face: 100 & Coverage : & \\
\hline Temperature : RT* & Pattern : ( \(1 \times 1\) ) & \\
\hline Bulk lattice: fce & Matrix : ( \(1.000,0.000)\) & \\
\hline 2D bulk symm: p4m & ( 0.000, 1.000) & \\
\hline
\end{tabular}

D

SAMPLE PREPARATION ( 1 sample)
Treatment : ion bombardment followed by annealing
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination:
\begin{tabular}{ll} 
DATA COLLECTION & THEORY/DATA TREATMENT \\
Technique: LEED & Dynamical LEED (CHANGE program) \\
Dataset \(:\) & IV spectra for 5 non-equivalent beams at \\
& normal incidence and for 6 non-equivalent \\
& beams at \(11^{\circ}\) off-normal
\end{tabular}

STRUCTURES EXAMINED
Variation of 1st and 2nd interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
PRE \(=0.35\)

\section*{COMMENTS}

IHEORY/DATA TREATMENT
Dynamical LEED (CHANGE program)

20 UNIT CELLS ( 1 domain observed)


Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.794 & Pd1 & Pd2 & & \\
2.737 & Pd2 & Pd3 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline COMmon name & : Pd(110)-(1x1) & ILLUSTRATION: 4 \\
\hline CLASSIFICATION & : 46.4a & \\
\hline TECHNIQUE & : LEED & \\
\hline AUTHORS & : C.J. Barnes, M.Q. Ding, M. Lindroos, R.D. Diehl and D.A. King & \\
\hline REFERENCE & : Surf. Sci., 162, 59 (1985) & \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Pd & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature: 300 K & Pattern : (1x1) \\
Bulk lattice: fcc & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: pmm & \\
2D &
\end{tabular}

2D surf symm: pmm

SAMPLE PREPARATION ( 1 sample)
Treatment: see Diehl et al, J. Phys. C18, 4069 (1985)

Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra for 7 symmetrically inequivalent beams at normal incidence, energy range 20-250 eV

STRUCTURE T.YPE
Bulk termination with multilayer relaxations

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (CAVLEED package)

STRUCTURES EXAMINED
Relaxations of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.155\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 3.890 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 0.000 & 3.890 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\)
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & Pd1 & Pd1(1,0) & Pd2 & 59.5 \\
2.709 & Pd1 & Pd2 & Pd3 & 58.5 \\
2.753 & Pd2 & Pd3 & Pd4 & 60.0 \\
\hline
\end{tabular}

AUTHORS : M. Skottke, R.J. Behm, G. Ertl, V. Penka and W. Moritz
REFERENCE : J. Chem. Phys., 87, 6191 (1987)

\section*{SURFACE TYPE}

Substrate : Pd Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: pmm
SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of Ar+ bombardment and annealing; C removed by 0
Crystallinity:
Anal. methods: cleanliness checked by H2 desorption Contamination: clean by AES

\section*{DATA COLLECTION}

Technique: LEED
Dataset : \(1-V\) curves for \(7(9)\) inequiv. beams at normal (off-normal) incidence; \(E\) range \(40-240 \mathrm{eV}\)

Adsorbate:
STRUCTURE TYPE
Relaxations in top two interlayer spacings
Coverage :
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
( 0.000, 1.000)

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 8 spin-averaged ph shs from relativistic atomic potential; Voi \(\alpha E^{* * 1 / 3 ; ~} 00=274 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of top 3 interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
\(R P E=0.22, R Z J=0.14\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 3.890 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 0.000 & 3.890 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) & si:000) \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad B u l k z=1.370 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.750 & Pd1 & Pd1 (1,0) & Pd2 & 59.6 \\
\hline 2.714 & Pd1 & Pd2 & Pd3 & 59.3 \\
\hline 2.710 & Pd1 & Pd3 & Pd4 & 119.9 \\
\hline 2.768 & Pd2 & Pd3 & Pd/4 & 60.5 \\
\hline 2.748 & Pd3 & Pd4 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Pd}(110)-(1 \times 2)\) \\
CLASSIFICATION & \(: 46.4 b\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) \\
& C.J. Barnes, M.Q. Ding, M. Lindroos, R.D. Dieht and D.A. \\
& King \\
REFERENCE & \(:\) \\
& Surf. Sci., 162, 59 (1985)
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Pd
Crystal face: 110 Temperature : 300 K
Bulk lattice: fcc 2D bulk symm: pmm 2D surf symm: pmm

> Adsorbate: Coverage : Pattern \(:(1 \times 2)\) Matrix \(:(1.000,0.000)\)

STRUCTURE TYPE
Alkali-impurity stabilized missing-row reconstruction

\section*{COMMENTS}

Disordered alkali overlayer ignored in structural analysis;
sawtooth model nearly as good as missing-row model, in which second-layer relaxations gave no improvement

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CAVLEED package): Voi=-4 eV

STRUCTURES EXAMINED
Missing-row model with row-pairing or buckling in second layer; sawtooth model; paired-row top layer; buckled top layer; latter three were kept bulk-like below first layer

QUALITY OF EXPERIMENT-THEDRY FIT
RPE \(=0.37\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 3.890 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.750 & 0.000 & 0.000 & 7.780 & 90.0 & ( \(1.000,0.000\) ) & (1x2) & si: cormmens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

Pd1: remaining row of missing-row model

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & \(D \mathrm{D} \pm \mathrm{EX}\) & DY \(\pm \in Y\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
intf \\
subl
\end{tabular} & Pd
Pd
Pd & -2
-1
1
2
3 & s1
b
b & .50
1.00
1.00 & 0
1
2 & \(\begin{array}{rr} & f \\ -1.375 & A \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f\end{array}\) & \[
\begin{array}{rr} 
& f \\
-1.945 & \& \\
0.000 & f \\
0.500 & f \\
-0.500 & f
\end{array}
\] & \[
\begin{array}{ll} 
& \\
1.370 & \AA \\
0.000 & \AA \\
1.300 \pm .030 & \AA \\
1.370 & \\
\hline
\end{array}
\] & \[
\begin{gathered}
0.0 \\
94.9 \pm 2.2 \\
100.0
\end{gathered}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & \(\mathrm{Pd1}\) & \(\mathrm{Pd1}(1,0)\) & \(\mathrm{Pd2}\) & 59.6 \\
2.714 & \(\mathrm{Pd1}\) & \(\mathrm{Pd2}\) & \(\mathrm{Pd3}\) & 58.5 \\
2.670 & \(\mathrm{Pd1}\) & \(\mathrm{Pd3}\) & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Pd
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: prm
SAMPLE PREPARATION ( 1 sample)
Treatment : Cs evaporated to saturation, then annealed to 800 K
Crystallinity: sharp (1x2) pattern
Anal. methods:
Contamination: clean by AES and LEED
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 6 integral and 4 fractional beams at normal incidence; \(E\) range 20-220 eV

Adsorbate: Cs
Coverage : <0.09ML
Pattern : (1x2)
Matrix \(:(1.000,0.000)\)
( 0.000, 2.000)

\section*{STRUCTURE TYPE}

Cs-stabilized missing-row reconstruction with multilayer relaxation (row pairing in 2nd Pd layer, buckling in 3rd)

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CAVLEED program: layer doubling): 9 phase shifts from Moruzzi et al pot (Cs ignored); Voi=-4 eV

STRUCTURES EXAMINED
1) missing-row model; 2) sawtooth model; 3) paired-row model; 4) buckled model;
initially only topmost interlayer spacing varied; then, in missing-row model, also 2nd and 3rd spacings, as well as 2nd layer pairing and 3rd layer buckling varied

QUALI'fY OF EXPERIMENT-THEORY FIT
RPE \(=0.28\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.750} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.890} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.750} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{7.780} & \multirow[t]{2}{*}{30.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x2)} & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES
Pd1: remaining row; Pd2-Pd3: paired 2nd layer; Pd4-Pd5: buckled 3rd layer;
Pd6: periodically repeating bulk layer; 0.1/0.05A lateral/perp. error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.750 & Pdi & \(\operatorname{Pd1}(1,0)\) & & \\
\hline 2.763 & Pd1 & Pd2 & \(\operatorname{Pd} 3(1,-1)\) & 116.2 \\
\hline 2.763 & Pd1 & \(\operatorname{Pd} 3(0,-1)\) & Pd4 \({ }^{\text {P }}\) & 57.4 \\
\hline 2.863 & Pd2 & Pd4 & Pd5 & 60.6 \\
\hline 2.863 & Pd2 & \(\mathrm{Pd}_{4}\) & Pd6 & 120.6 \\
\hline
\end{tabular}

CLASSIFICATION
46.3

TECHNIQUE : HEIS
AUTHORS : Y. Kuk, L.C. Feldman and P.J. Silverman
REFERENCE : Phys. Rev. Lett., 50, 511 (1983)

\section*{SURFACE TYPE}

Substrate : Pd
Crystal face: 111
Temperature : 298 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1

\section*{Adsorbate:}

Coverage
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( \(0.000,1.000\) )

STRUCTURE TYPE
Unrelaxed bulk termination

COMMENTS

DATA COLLECTION
Technique: HEIS; He ion scattering/channeling at 1.8 Me
Dataset : ion scattering/channeling along [00-1], [-1-1-1], and random directions to obtain Pd surface peak

THEORY/DATA TREATMENT
Simulation of ion scattering/channeling; \(\Theta 0=274 \mathrm{~K}\)

STRUCTURES EXAMINED
Relaxations of top interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 1.375 & 2.382 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 1.375 & 2.382 & 60.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
\(0.1 \AA\) error bar assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = 2.250


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B \((A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.750 & Pd1 & \begin{tabular}{l} 
Pdq \((1,0)\) \\
2.754
\end{tabular} & Pd1 & \\
\hline
\end{tabular}
```

COMMON NAME : Pd(111)-(1×1)
CLASSIFICATION : 46.5a
TECHNIQUE : LEED
AUTHORS : H. Ohtani, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 187, 372 (1987)

```

SURFACE TYPE
Substrate: Pd
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
20 surf symm: p3m1
```

Adsorbate:
Coverage :
Pattern : (1x1)
$\begin{aligned} & \text { Matrix }:(1.000,0.000) \\ &(0.000,1.000)\end{aligned}$

```

SAMPLE PREPARATION ( 1 sample)
Treatment : 773 K 0 treatment, Ar+ sputtering at RT and \(873 \mathrm{~K}, 773 \mathrm{~K}\) anneal
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED
DATA COLLECTION
Technique: LEED
Dataset : I-V curves at normal incidence ( 5 beams) and off-normal ( 21 beams) in the range 20 to 300 eV

STRUCTURE TYPE
Slight relaxation of top two interlayer spacings

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): band-structure potential; Voi \(=-5 \mathrm{eV}\); \(\Theta 0=225 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

Relaxation of top three interlayer spacings; various stacking sequences (ideal fcc, ideal hcp, fcc monolayer on hcp, hcp monolayer on fcc)

QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.12, R Z J=0.09\), RPE \(=0.22\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 1.375 & 2.382 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 1.375 & 2.382 & 60.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & Pd1 & Pd1(1,0) & \(P d 2\) & 60.3 \\
2.778 & \(P d 1\) & \(P d 2\) & \(P d 3\) & 180.0 \\
2.729 & \(P d 2\) & \(P d 3\) & \(P d 4(1,0)\) & 120.3 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Pd
Crystal face: 111
Temperature : 298 K
Bulk lattice: fce
2D bulk symm: p3m1
2D surf symm: p 3 m 1

Adsorbate: Au
Coverage : 1.0 (Au/Pd)
Pattern : (1xi)
Matrix \(:(1.000,0.000)\)
( 0.000, 1.000)

STRUCTURE TYPE
Overlayer continuing substrate fcc lattice

SAMPLE PREPARATION ( 1 sample)
Treatment : sample cleaned in situ by sputtering and annealing
Crystallinity: Au deposition at \(0.2 \mu \mathrm{~m} / \mathrm{min}\)
Anal. methods:
Contamination: no impurities by AES or ion scattering

\section*{DATA COLLECTION}

Technique: HEIS; He ion scattering/channeling at 1.8 Me
Dataset : ion scattering along [00-1], [-1-1-1], and random directions to obtain Au coverage, Pd surface peak, and Au-Au shadowing

\section*{COMMENTS}

Beyond 1ML Au overlayer loses registry with substrate; with 1ML Au several layer spacings expand slightly, but this analysis did not resolve individual layer spacing changes

\section*{THEORY/DATA TREATMENT}

Simulation of ion scattering/channeling

STRUCTURES EXAMINED
Various Au thicknesses in range 0-10ML; average layer spacing was monitored, as well as loss of registry (incommensuration)

QUALITY OF EXPERIMENT-THEORY FIT
visual
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 1.375 & 2.382 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 1.375 & 2.382 & 60.0 & \begin{tabular}{l}
\((1.000,0.000)\) \\
\((1.000,1.000)\)
\end{tabular} & \((1 \times 1)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
Au1: overlayer in fec hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(\mathrm{Dx} \pm \boldsymbol{\pm}\) & Dy \(\pm \epsilon y\) & \(D z \pm \epsilon z\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \in \mathrm{z} / \mathrm{Bz}\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
intf \\
subl
\end{tabular} & Au
Pd
Pd & -2
-1
1
2
3 & b & 1.00
1.00
1.00 & 0
1
2 & \(\begin{array}{rr} & f \\ -1.375 & \AA \\ 0.000 & f \\ 0.667 & f \\ -0.333 & f\end{array}\) & \begin{tabular}{rr} 
& \(f\) \\
-0.794 & \(\AA\) \\
0.000 & \(f\) \\
0.667 & \(f\) \\
-0.333 & \(f\)
\end{tabular} & \[
\begin{array}{ll} 
& A \\
2.250 & A \\
0.000 & A \\
2.250 \pm .190 & A \\
2.250 & A
\end{array}
\] & \[
\begin{aligned}
& 0.0 \\
& 100.0 \pm 8.4 \\
& 100.0
\end{aligned}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & Au1 & Au1 (1,0) & & \\
2.754 & Au1 & Pd2( \(-1,0)\) & & \\
2.754 & Pd2 & Pd3 & & \\
\hline
\end{tabular}

SURFACE TYPE
Substrate : Pd Crystal face: 111 Temperature : 150 K Bulk lattice: fcc 2D bulk symm: p3m1 20 surf symm: p 3 m 1

Adsorbate: C6H6;CO

Matrix : (3.000, 0.000)
( 0.000, 3.000)

Coverage : 1/9 Bz/Pd, 2/9 CO/2 upright CO per cell, all centered over fcc hollow sites,
Pattern : (3×3) both with relaxed bonds (H ignored), on unrelaxed substrate;
STRUCTURE TYPE
Molecular coadsorption of one flat-lying C 6 H 6 (benzene) and top two Pd-Pd spacings found expanded by \(0.05 \AA\) from bulk value of 2.25A

SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to CO and benzene at room temperature
Crystallinity
Anal. methods:
Contamination: monitored by AES and LEED

DATA COLLECTION
Technique: LEED
Dataset : I-V curves at normal incidence (16 beams) and off-normal incidence (29 beams); \(20<E<200 \mathrm{eV}\)

COMMENTS


THEORY/DATA TREATMENT
Dynamical LEED (BSN, RFS, KSLA): 5 phase shifts; \(00=225\) K

\section*{STRUCTURES EXAMINED}

Benzene in top, bridge, fcc, hcp sites with various high symmetry orientations and distortions including out of plane buckling, ring expansion and Kekule distortion; CO intact, stretched and normal to surface in same sites consistent with benzene orientations

QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.25, \mathrm{RZJ}=0.49, \mathrm{RPE}=0.48\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 1.375 & 2.382 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bu(k lattice \\
Surface 1 & 8.250 & 0.000 & 4.125 & 7.145 & 60.0 & \((3.000,0.000)\) & \((3 \times 3)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01-C15, 02-C16: 2 upright stretched COs in fec hollows; H3-8, C9-14: flat benzene over fcc site; substrate spacing found expanded from 2.25 to \(2.30 \AA\); \(0.1 A\) lateral error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 1.170 & 01 & \(C 15\) & Pd17 & 129.3 \\
1.398 & \(C 9\) & \(C 10\) & \(C 12\) & 120.0 \\
1.398 & \(C 9\) & \(C 10\) & Pd17(1,0) & 72.9 \\
1.463 & \(C 9\) & \(C 13\) & \(C 14\) & 120.0 \\
1.463 & \(C 9\) & \(C 13\) & Pd17(0,1) & 105.7 \\
2.052 & \(C 15\) & Pd17 & Pd18 & 163.9 \\
2.750 & Pd17 & Pd17(1,0) & & \\
2.795 & Pd17 & Pd18 & & \\
\hline
\end{tabular}

COMMON NAME : Pd(111)-( \(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{CO}\)
ILLUSTRATION: 61
CLASSIFICATION : 46.6.8.2
TECHNIQUE
: LEED
AUTHORS : H. Ohtani, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 187, 372 (1987)

\section*{SURFACE TYPE}

Substrate: Pd
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : Ar+ sputtering and oxygen treatment; exposure to CO at RT
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V curves at normal incidence ( 8 beams) and off-normal incidence ( 29 beams): \(20<E<200 \mathrm{eV}\)

Adsorbate: CO
Coverage : 1/3 CO/Pd
Pattern : \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\)
Matrix : ( \(1.000,1.000\) )
(-2.000, 1.000 )

STRUCTURE TYPE
Molecular upright adsorption (C down) in fec hollow sites

THEORY/DATA TREATMENT
Dynamical LEED (RFS); band-structure potential; Voi=-5 eV; \(\Theta D=225 \mathrm{~K}\)

STRUCTURES EXAMINED
CO perpendicular to surface in top, bridge and 2 hollow sites, with various Pd-Pd, Pd-C and C-O spacings; for fcchollow site, lateral radial relaxations of Pd atoms about site

QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.30, \mathrm{RZJ}=0.56, \mathrm{RPE}=0.55\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\mathrm{A}_{\text {) }}\) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.748 & 0.000 & 1.374 & 2.380 & 60.0 & ( 1.000, 0.000) & (1×1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.122 & 2.380 & -4.122 & 2.380 & 120.0 & \((1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) & \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-C2: upright CO overlayer in fcc hollow sites
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( B\()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{c}
1.150 \\
2.045
\end{tabular} & 01 & C 2 & Pd3 & 129.1 \\
& C 2 & Pd3 & Pd4 & 162.7.
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{l|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.748 & Pd 3 & \(\mathrm{Pd} 3(1,0)\) & Pd 4 & 61.4 \\
2.869 & Pd 3 & Pd 4 & Pd 5 & 121.4 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Pd}(100)-(2 \sqrt{ } 2 \times \sqrt{ } 2) R 45^{\circ}-2 C 0\) \\
CLASSIFIMATION & \(: 46.6 .8 .0 a\) \\
TECHNIQUE & LEED \\
AUTHORS & R.J. Behm, K. Christmann, G. Ertl and M.A. Van Hove \\
REFERENCE & \(:\) \\
& J. Chem. Phys., \(73,2984(1980)\)
\end{tabular}

ILLUSTRATION: 71,72
REFERENCE : J. Chem. Phys., \(\mathbf{7 3}, 2984\) (1980)

\section*{SURFACE TYPE}

Substrate : Pd
Crystal face: 100
Temperature : 350 K
Bulk lattice: fcc
2D bulk symm: p4m
2 D surf symm: pgg
SAMPLE PREPARATION ( 1 sample)
Treatment
Crystallinity:
Anal. methods:
Contamination: no impurities by AES, TDS and WFC
DATA COLLECTION
Technique: LEED
Dataset : I-V curves: 00 beam at \(\theta=0^{\circ} ; 10,1 / 2\)
1/2,3/2 1/2, 1/4-3/4, 1/4 5/4 at
\(\theta=8.5, \phi=12^{\circ}\); cum. E range: 630 eV

\section*{STRUCTURE TYPE}

Molecular adsorption in bridge sites: CO upright with \(C\) down with two differently oriented bridge sites occupied per cell

\section*{COMMENTS}

Coverage : \(1 / 2\) (CO/Pd)
Pattern : ( \(2 \sqrt{ } 2 \times \sqrt{2}\) ) R45 \({ }^{\circ}\)
Matrix : ( 2.000, 2.000) (-1.000, 1.000)

Dynamical LEED (RFS): Pd Moruzzi et al pot, CO X \(\alpha\) and Jona pots, 8 phase shifts; Vor \(=-10.0 \mathrm{eV}\), Voi \(\alpha E * * 1 / 3 ; \Theta 0=193 \mathrm{~K}(\mathrm{Pd})\)

STRUCTURES EXAMINED
Bridge sites only; \(C O\) perpendicular to surface; variable top Pd-Pd, Pd-C and \(\mathrm{C}-\mathrm{O}\) spacings
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X\) ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.740 & 0.000 & 0.000 & 2.740 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.480 & 5.480 & -2.740 & 2.740 & 90.0 & \[
\begin{array}{cc}
(2.000, & 2.000) \\
(-1.000, & 1.000)
\end{array}
\] & \((2 \sqrt{2} x \sqrt{2}) 845^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-C3 and 02-C4: 2 upright CO molecules in differently oriented bridge sites
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=1.945 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.150 & 01 & C3 & \(\operatorname{Pd5}(0,-1)\) & 134.8 \\
1.930 & C4 & Pd5 & \(\operatorname{Pd5(0,-1)}\) & 135.2 \\
2.745 & Pd5 & Pd6 & & \\
\hline
\end{tabular}

COMMON NAME Pd(100)-(1x1)-Cu multilayer

ILLUSTRATION: 83
\begin{tabular}{ll} 
CLASSIFICATION & \(: 46.29 .1\) \\
TECHNIQUE & : LEED \\
AUTHORS & : H. Li, S.C. Wu, D. Tian, J. Quinn, Y.S. Li, F. Jona and \\
REFERENCE & P.M. Marcus \\
& : Phys. Rev., B40, 5841 (1989)
\end{tabular}

\section*{STRUCTURE TYPE}

At least 6 epitaxial (1x1) monolayers, forming strained fcc Cu
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Pd & Adsorbate: & \\
\hline Crystal face: & 100 & Coverage & \(6 \mathrm{Cu} / \mathrm{Pd}\) \\
\hline Temperature : & RT & Pattern & (1x1) \\
\hline Bulk lattice: & fcc & Matrix & ( 1.000, 0.000) \\
\hline 2 D bulk symm: & p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{COMMENTS}

RVHT, RPE and RZJ gave results different by up to 0.16 A , indicating imperfect structural model; average of the 3 optimized structures is used in tabulation, as proposed by authors

THEORY/DATA TREATMENT
Dynamical LEED (CHANGE code): Moruzzi et al pot, 8 ph shs; Vor= -6 eV (fit), Voi=-4eV; rms vibs \(0.125 \AA\)

STRUCTURES EXAMINED
Semi-infinite Cu(100) with lateral Pt(100) lattice constant;
spacings varied: 'bulk' \(\mathrm{Cu}-\mathrm{Cu}\), top two \(\mathrm{Cu}-\mathrm{Cu}\)
QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.24\), \(\mathrm{RPE}=0.38, \mathrm{RZJ}=0.06\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.779 & 0.000 & 0.000 & 2.779 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.779 & 0.000 & 0.000 & 2.779 & 90.0 & \((0.000,1.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
s1: conmens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

\section*{3D COORDINATES}
\(1.62 \AA\) bulk spacing was fit, keeping lateral Pt distance
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=1.620 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{l|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.779 & \(\mathrm{Cu1}\) & \(\mathrm{Cu} 1(1,0)\) & Cu 2 & 56.2 \\
2.497 & \(\mathrm{Cu1}\) & \(\mathrm{CH2}\) & Cu 3 & 76.7 \\
2.515 & \(\mathrm{Cu2}\) & Cu 3 & \(\mathrm{Cu4}\) & 78.1 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Pd}(100)-(1 \times 1)-\mathrm{H}\) (D) \\
CLASSIFICATION & 46.1.13a \\
TECHNIQUE & Transm. Channeling \\
AUTHORS & F. Besenbacher, 1. Stensgaard, and K. Mortensen \\
REFERENCE & : Springer Series in Surface sciences, 11, 195 (1988)
\end{tabular}


2D bulk symm: p4m
2D surf symm: p4m


2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.751 & 0.000 & 0.000 & 2.751 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.751 & 0.000 & 0.000 & 2.751 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

H1: atomic overlayer in a 4 -fold hollow site
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatonic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.968 & \(H 1\) & Pd2 & & \\
\hline
\end{tabular}

COMMON NAME
CLASSIFICATION
TECHNI QUE
AUTHORS
REFERENCE : Springer Series in Surface Sciences, 11 195 (1988)

SURFACE TYPE
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Pd & Adsorbate: & H \\
\hline Crystal face: & 100 & Coverage : & 0.5 ML \\
\hline Temperature : & 140 K & Pattern & \(c(2 \times 2)\) \\
\hline Bulk lattice: & fce & Matrix & ( 1.000, \\
\hline 2D bulk symm: & p4m & & (-1.000, \\
\hline
\end{tabular}

2D bulk symm: p4m

STRUCTURE TYPE
Atomic adsorbed in a 4-fold hollow site

2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : Pd crystal grown on NaCl ; exposure to D Crystallinity:
Anal. methods: nuclear reaction
Contamination:
```

DATA COLLECTION
Technique: Transm. Channeling
Dataset : angular scans along the [001], [011],
[111] directions
QUALITY OF EXPERIMENT-THEORY FIT
Visual

```

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B \times(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.751 & 0.000 & 0.000 & 2.751 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.751 & 2.751 & -2.751 & 2.751 & 90.0 & \[
(1.000,1.000)
\] & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES

H1: atomic adsorbed in 4-fold hollow site
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

\section*{COMMENTS}

Lower exposure structure (see 46.1.13a for higher-exposure structure)

THEORY/DATA TREATMENT
Transmission channeling simulations


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 1.997 & H1 & Pd2 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Pd(110)-(1x2)-H \\
CLASSIFICATION & \(: 46.1 .11 \mathrm{a}\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) G. Kleinle, M. Skottke, V. Penka, G. Ertl, R.J. Behm and W. \\
& Moritz \\
REFERENCE & \(:\) Surf. Sci., 189/190, 177 (1987)
\end{tabular}

ILLUSTRATION:

\section*{SURFACE TYPE}

Substrate : Pd Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2 D bulk symm: pim
2D surf symm: pim
SAMPLE PREPARATION ( 1 sample)
Treatment : clean (1x1) surface exposed to 0.8L of H2 at 120 K
Crystallinity:
Anal. methods:
Contamination: close attention to \(H\) coverage
DATA COLLECTION

\section*{STRUCTURE TYPE}

H-induced row pairing reconstruction (H positions not determined)
Coverage : \(1.5 \mathrm{H} / \mathrm{Pd}\)
Pattern : (1x2)
Matrix : (1.000, 0.000) ( 0.000, 2.000)

THEORY/DATA TREATMENT
Dynamical LEED with layer doubling; H ignored
COMMENTS

STRUCTURES EXAMINED
Row pairing: variation of top 3 interlayer spacings, of row pairing in 1st layer and of buckling in 2nd layer; missing row: variation of top 3 interlayer spacings, of row pairing in 2nd layer and of buckling in 3 rd layer; H ignored

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.50, R Z J=0.22\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By ( \(\AA\) ) & a ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 3.890 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 0.000 & 7.780 & 90.0 & \((1.000,0.000)\) & (1x2) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

Pd1-Pd2: paired top layer; Pd3-Pd4: buckled 2nd layer
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & Pd1 & Pd1 \((1,0)\) & & \\
2.827 & Pd1 & Pd3 \((0,-1)\) & Pd4 \((0,-1)\) & 115.6 \\
2.690 & Pd1 & Pd4 & Pd5 & 117.8 \\
2.690 & Pd1 & Pd4 & Pd6 & 124.4 \\
\hline
\end{tabular}

COMMON NAME : Pd(110)-(2x1)-2H
ILLUSTRATION: 37
CLASSIFICATION : 46.1.12
TECHNIQUE : LEED
AUTHORS : M. Skottke, R.J. Behm, G. Ertl, V. Penka and W. Moritz
REFERENCE : J. Chem. Phys., 87, 6191 (1987)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Pd & Adsorbate: H \\
Crystal face: 110 & Coverage: \(1 \mathrm{H} / \mathrm{Pd}\) \\
Temperature: RT* & Pattern : (2x1) \\
Bulk lattice: fcc & Matrix : \(2.000,0.000)\) \\
20 bulk symm: pmm &
\end{tabular}

D surf symm

SAMPLE PREPARATION ( 1 sample)
Treatment : 0.3L of H 2 adsorbed at 130 K
Crystallinity:
Anal. methods: cleanliness checked by H2 desorption and WFC during \(H\) ads.
Contamination: clean by AES
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for total of 3(13) int-order and 1(5) fract-order inequivalent beams at \(\Theta=0^{\circ}\left(\theta>0^{\circ}\right) ; 40<E<180 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

Atomic adsorption over outermost 3-fold coord. hollow sites over (111) facets of bulk-like substrate with interlayer spacing relaxations

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 8 Pd ph shs from relat. pot for \(H\) from superpos; VoiaE**1/3; \(00=274 \mathrm{~K}\) (Pd and H)

\section*{STRUCTURES EXAMINED}

Variation of top 3 interlayer spacings; \(H\) on mirror plane near 3-fold hollow site of (111) facets: position parallel and perpendicular to surface varied

QUALITY OF EXPERIMENT - THEORY FIT
RPE=0.37, \(\mathrm{RZJ}=0.19\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 3.890 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.500 & 0.000 & 0.000 & 3.890 & 90.0 & \((0.000,1.000)\) & \((2 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

H1-H2: overlayer over 3-fold coord. hollows of (111) facets of multilayer-relaxed unreconstructed substrate Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.114 & H1 & \(\operatorname{Pd} 3(0,-1)\) & H2 (0, -1) & 147.0 \\
\hline 2.114 & H1 & \(\operatorname{Pd} 3(0,-1)\) & \(\operatorname{Pd} 3(1,-1)\) & 130.6 \\
\hline 2.114 & H1 & Pd3(0,-1) & Pd4 & 46.4 \\
\hline
\end{tabular}

Pd(110)-(2×1)-2H
46.1 .12

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.993 & H1 & & \\
2.733 & Pd3 & Pd4 & Pd5 & 131.0 \\
2.733 & Pd3 & Pd4 & Pd5 & 60.0 \\
2.768 & Pd4 & Pd5 & Pd6 & 119.4 \\
\hline
\end{tabular}

COMMON NAME : Pd(100)-(1x1)-12Fe
ILLUSTRATION: 83
CLASSIFICATION : 46.26.2a
TECHNIQUE : LEED
AUTHORS : J. Quinn, Y.S. Li, H. Li, D. Tian, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B43, 3959 (1991)


STRUCTURE TYPE
About 12 epitaxial (1x1) monolayers, forming bct Fe (distorted from bcc)

\section*{COMMENTS}

C and O impurities present, but are not expected to affect structure; coverages measured in layer-equivalents (i.e. giving equivalent AES signal as layer-by-layer growth): actual film thickness uncertain by factor 3; see also 53 and 200ML structures \(46.26 .2 b\) and \(c\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE code): Moruzzi et al pot, 8 ph shs; Vor=-10 eV (then fit), Voi=-4eV; rms vibs 0.125

STRUCTURES EXAMINED
Semi-infinite Fe(100) with lateral Pd(100) lattice constant;
spacings varied: 'bulk' Fe-Fe, top two Fe-Fe
QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.35, \mathrm{RPE}=0.58, \mathrm{RZJ}=0.13\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES
1.53\& bulk spacing was fit, keeping lateral Pd distance
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angtes: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & Fe 1 & \(\mathrm{Fe} 1(1,0)\) & Fe 2 & 56.8 \\
2.509 & Fe 1 & \(\mathrm{Fe2}\) & Fe 3 & 77.7 \\
2.487 & Fe 2 & Fe 3 & Fe 4 & 76.8 \\
\hline
\end{tabular}

COMMON NAME : Pd(100)-(1x1)-53Fe
ILLUSTRATION: 83
CLASSIFICATION : 46.26.2b
TECHNIQUE : LEED
AUTHORS : J. Quinn, Y.S. Li, H. Li, D. Tian, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B43, 3959 (1991)

\section*{SURFACE TYPE}

\section*{Substrate: Pd}

Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 2 sample)
Treatment : Fe deposited 'slowly' on RT or 120 K substrate
Crystallinity: broadening of LEED beams
Anal. methods: ARPES; coverage from AES
Contamination: AES: 2.5at\% 0, 11at\% C

\section*{DATA COLLECTION}

Technique: LEED; video LEED
Dataset : IV spectra at normal incidence: (10),(11),(20),(21),(22); \(40<E<360 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

About 53 epitaxial ( \(1 \times 1\) ) monolayers, forming bct Fe (distorted from bcc)

\section*{COMMENTS}

C and O impurities present, but are not expected to affect structure; coverages measured in layer-equivalents (i.e. giving equivalent AES signal as layer-by-layer growth): actual film thickness uncertain by factor 3; see also 12 and 200ML structures 46.26.2a and c

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE code): Moruzzi et al pot, 8 ph shs; Vor=-10 eV (then fit), Voi=-4eV; rms vibs \(0.125 \AA\)

STRUCTURES EXAMINED
Semi-infinite Fe(100) with lateral Pd(100) lattice constant;
spacings varied: 'bulk' Fe-Fe, top two Fe-Fe
QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.34\), RPE \(=0.59\), \(\mathrm{RZJ}=0.14\)
2 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B x(\AA)\) & \(B y(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

30 COORDINATES
\(1.50 \AA\) bulk spacing was fit, keeping lateral Pd distance
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk \(2=1.500 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & \(D \mathrm{X} \pm \epsilon \mathrm{X}\) & Dy \(\pm\) ¢ \(\quad\) y & Dz \(\pm \epsilon \boldsymbol{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & -1.375 A & -1.375 \& & 1.500 A & \\
\hline intf & Fe & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Fe & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(1.405 \pm .030\) A & \(93.7 \pm 2.0\) \\
\hline intf & Fe & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(1.445 \pm .030\) A & \(96.3 \pm 2.0\) \\
\hline subl & Fe & 4 & b & 1.00 & 3 & 0.500 f & 0.500 f & \(1.500 \pm .030\) & \(100.0 \pm 2.0\) \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.750 & Fe 1 & \(\mathrm{Fe} 1(1,0)\) & Fe 2 & 55.0 \\
2.399 & Fe 1 & \(\mathrm{Fe2}\) & Fe 3 & 72.5 \\
2.423 & Fe 2 & Fe 3 & Fe 4 & 74.3 \\
\hline
\end{tabular}

COMMON NAME : Pd(100)-(1x1)-200Fe
ILLUSTRATION: 83
CLASSIFICATION : 46.26.2c
TECHNIQUE : LEED
AUTHORS : J. Quinn, Y.S. Li, H. Li, D. Tian, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B43, 3959 (1991)

\section*{SURFACE TYPE}

Substrate : Pd
Crystal face: 100
Temperature : RT
Bulk lattice: fcc 2D bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION ( 2 sample)
Treatment: Fe deposited 'fast' on RT or 120 K substrate
Crystallinity: broadening of LEED beams
Anal. methods: ARPES; coverage from AES
Contamination:
DATA COLLECTION
Technique: LEED; video LEED
\begin{tabular}{rl} 
Adsorbate: & Fe \\
Coverage : \(200 \mathrm{Fe} / \mathrm{Pd}\) \\
Pattern \(:(1 \times 1)\) \\
Matrix \(:(1.000,0.000)\) \\
& \((0.000,1.000)\)
\end{tabular}

Coverage : \(200 \mathrm{Fe} / \mathrm{Pd}\)
STRUCTURE TYPE
About 200 epitaxial monolayers, forming slightly distorted bec Fe

Dataset IV spectra at norma
(10), (11), (20), (21), (22); \(40<E<360 \mathrm{eV}\)

\section*{COMMENTS}

C and 0 impurities present, and may affect structure; coverages measured in layer-equivalents
(i.e. giving equivalent AES signal as layer-by-layer growth): actual film thickness uncertain by factor 3; see also 20 and 53ML structures 46.26.2a and b

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CHANGE code): Moruzzi et al pot, 8 ph shs; Vor \(=-10 \mathrm{eV}\) (then fit), Voi=-4eV; rms vibs 0.125\&

STRUCTURES EXAMINED
Semi-infinite \(\mathrm{Fe}(100\) ) with lateral lattice constant expanded from \(\mathrm{Pd}(100)\) (from \(2.75 \AA\) to \(2.90 \pm 0.08 \AA\);
best-fit gave 2.87A = bcc Fe value); spacings varied: 'bulk' Fe-Fe, top Fe-Fe
QUALITY OF EXPERIMENT-THEORY FIT
\(\widehat{R V H T}=0.25, ~ R P E=0.39, ~ R Z J=0.10\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.870 & 0.000 & 0.000 & 2.870 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.870 & 0.000 & 0.000 & 2.870 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

\subsection*{1.48Á bulk spacing was fit}

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.870 & Fe1 & Fe1(1,0) & Fe2 & 55.2 \\
2.512 & Fe1 & Fe2 & Fe3 & 72.2 \\
2.512 & Fe2 & Fe3 & Fe4 & 72.2 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: P d(100)-c(2 \times 2)-M n / P d 3 M n(100)-(1 \times 1)\) & ILLUSTRATION: 134 \\
CLASSIFICATION & \(: 46.25 .5 b\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & D. Tian, R.F. Lin, F. Jona and P.M. Marcus \\
REFERENCE & : Solid State Commun. \(74,1017(1990)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Pd
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment: Mn deposited both at Rt and -120C, giving same LEED int.
Crystallinity: high LEED background
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : IV spectra for 3 beams (10),(11),(.5,.5) (in \(c(2 \times 2)\) notation) at normal incidence; \(\mathrm{E}<=360 \mathrm{eV}\)
```

Adsorbate: Mn
Coverage : 1.0 Mn/Pd
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Mixed top layer, with Mn buckled inward; presumed alloying to at least 4th layer as \(\operatorname{Pd3Mn}(100)\);
this tabulation uses \(\operatorname{Pd} 3 \mathrm{Mn}(100)\) as reference substrate (as used in LEED calculation): hence (1×1) surface lattice

\section*{COMMENTS}

Compare with unheated version of this structure (class. no. 46.25.5a), which has opposite buckling in top mixed layer, but no deeper alloying;
no evidence of magnetism, despite use of spin-resolved Mn scattering potential

\section*{THEORY/DATA TREATMENT}

Dyn. LEED (CHANGE): 69 beams, 8 ph shs from Moruzzi et al (Pd) and relat. pot (Mn); Vor \(=-10 \mathrm{eV}\), Voi=-4eV; rms=0.12A

STRUCTURES EXAMINED
Pd3Mn bulk terminating in mixed layer, with variable top layer buckling and spacing to next layer
QUALITY OF EXPERIMENT-THEORY FIT
Visual: 'moderately good fit'
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(\AA\) ) & \(B x(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.890 & 0.000 & 0.000 & 3.890 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.890 & 0.000 & 0.000 & 3.890 & 90.0 & ( 1.000, 0.000\()\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Mn1-Pd2: mixed buckled top layer; Pd3-Pd4: pure Pd 2nd layer;
Mn5-Pd6-Pd7-Pd8: period. repeating pair of bulk layers; \(0.05 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk \(2=1.945 A\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At . no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & Dx \(\pm \epsilon \mathrm{X}\) & Dy \(\pm \epsilon y\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 3.890 & \\
\hline intf & Pd & 1 & s1 & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 & 0.0 \\
\hline intf & Mn & 2 & s1 & 1.00 & 1 & -0.500 f & -0.500 f & \(0.200 \pm .050\) & \(10.3 \pm 2.6\) \\
\hline intf & Pd & 3 & s1 & 1.00 & 2 & 0.000 f & 0.500 f & \(1.645 \pm .050\) & \(84.6 \pm 2.6\) \\
\hline intf & Pd & 4 & s1 & 1.00 & 3 & 0.500 f & -0.500 f & 0.000 & 0.0 \\
\hline subl & Mn & 5 & b & 1.00 & 4 & -0.500 f & 0.000 f & 1.945 & 100.0 \\
\hline subl & Pd & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & 0.000 & 0.0 \\
\hline subl & Pd & 7 & b & 1.00 & 6 & -0.500 f & 0.000 f & 1.945 & 100.0 \\
\hline subl & Pd & 8 & b & 1.00 & 7 & 0.500 f & -0.500 f & 0.000 & 0.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.758 & Pd1 & Mn2 & \(\operatorname{Pd1}(-1,0)\) & 89.7 \\
\hline 2.758 & Pd1 & Mn2 & Pd3 & 60.6 \\
\hline 2.681 & Pd1 & Pd3 & Pd1 (-1,0) & 93.0 \\
\hline 2.681 & Pd1 & Pd3 & Mn2 & 63.6 \\
\hline 2.681 & Pd1 & Pd3 & Pd4 & 59.1 \\
\hline 2.547 & Mn2 & Pd3 & Pd4 & 57.3 \\
\hline
\end{tabular}

TECHNIQUE : LEED
AUTHORS : D. Tian, R.F. Lin, F. Jona and P.M. Marcus
REFERENCE : Solid State Commun., 74, 1017 (1990)

\section*{SURFACE TYPE}

Substrate : Pd
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: plm
SAMPLE PREPARATION ( 1 samole)
Treatment : Mn deposited both at Rt and -120C, giving same LEED int.
Crystallinity: high LEED background
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : IV spectra for 3 beams (10),(11), (.5,.5) at normal incidence; \(E<=360 \mathrm{eV}\)

Adsorbate: Mn
Coverage : \(1.0 \mathrm{Mn} / \mathrm{Pd}\)
Pattern : \(c(2 \times 2)\)
Matrix : ( 1.000,-1.000) ( \(1.000,1.000\) )

STRUCTURE TYPE
Mixed top layer, with Mn buckled outward

STRUCTURES EXAMINED
Magnetic full Mn monolayer on Pd(100); mixed \(50 / 50 \mathrm{Mn} / \mathrm{Pd}\) top layer on Pd(100) with variable top layer buckling and spacing to next layer

QUALITY OF EXPERIMENT-THEORY FIT
Visual: 'moderately good fit'
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.751 & 0.000 & 0.000 & 2.751 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.751 & -2.751 & 2.751 & 2.751 & 90.0 & \((1.000,-1.000)\) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & ( 1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Mn1-Pd2: mixed buckled top layer; 0.05 \(\AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=1.945 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.758 & \(M n 1\) & \(P d 2\) & \(M n 1(0,1)\) & 89.7 \\
2.758 & \(M n 1\) & \(P d 2\) & \(\operatorname{Pd3}\) & 60.6 \\
2.681 & \(M n 1\) & \(\operatorname{Pd3}\) & \(\operatorname{Mn1(-1,0)}\) & 93.0 \\
2.681 & \(M n 1\) & \(P d 3\) & \(P d 2\) & 63.6
\end{tabular}

Pd(100)-c(2x2)-Mn mixed top layer
46.25.5a

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom \(A\) & Atom B & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.681 & \(\mathrm{Mn1}\) & Pd 3 & \(\mathrm{Pd4}\) & 119.1 \\
2.547 & Pd 2 & Pd 3 & Pd 4 & 85.2 \\
\hline
\end{tabular}

COMMON NAME : Pd(100)-c(2x2)-S
ILLUSTRATION: 28,29
CLASSIFICATION : 46.16.1
TECHNIQUE

AUTHORS : W. Berndt, R. Hora and M. Scheffler
REFERENCE : Surf. Sci., 117, 188 (1982)

SURFACE TYPE
Substrate: Pd
Crystal face: 100
Temperature : RT*
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m
```

Adsorbate: S
Coverage : 0.5 (S/Pd)
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in hollow sites

SAMPLE PREPARATION ( 1 sample)
Treatment : O2 at 500c for 30 min , Ar ion bombardment for 10 min
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : I-V curves: 4, 14 non-equivalent beams at \(\Theta=0,5^{\circ}\), resp. along [100] azimuth; energy range 20-200 eV

STRUCTURES EXAMINED
Hollow, bridge and top sites with variable S/Pd spacing
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.3\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(A\) ) & By ( \({ }_{\text {( }}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matirix & Pattern & Cell type \\
\hline Bulk & 2.751 & 0.000 & 0.000 & 2.751 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.751 & 2.751 & \(-2.751\) & 2.751 & 90.0 & ( 1.000, 1.000) & \(c(2 \times 2)\) & s1: commens. \\
\hline & & & & & & \((-1.000,1.000)\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.940 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.339 & S1 & Pd2 & \(\operatorname{Pd2(1,0)}\) & 126.0 \\
2.339 & S1 & Pd2 & \(\operatorname{Pd3}\) & 78.7 \\
2.747 & Pd2 & & & \\
\hline
\end{tabular}

COMMON NAME : Pd(111)-( \(\sqrt{3} \times \sqrt{3}\) )R30 \(0^{\circ}-S\)
ILLUSTRATION: 22,24
CLASSIFICATION : 46.16.2
TECHNIQUE : LEED
AUTHORS : F. Maca, M. Scheffler and W. Berndt
REFERENCE : Surf. Sci., 160, 467 (1985)

SURFACE TYPE
Substrate : Pd
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to H2S
Crystallinity:
Anal. methods:
Contamination: AES: no \(C, 0\) and \(S\) detected
DATA COLLECTION
Technique: LEED
Dataset : \(1-V\) curves: 25 non equivalent beams at \(\theta=0^{\circ}\) and \(5^{\circ}\); energy range \(30-200 \mathrm{eV}\)

Adsorbate: S
Coverage : 0.33 S/Pd
Pattern : \((\sqrt{3} \times \sqrt{3})\) R \(30^{\circ}\)
Matrix : (1.000, 1.000) \((-2.000,1.000)\)

STRUCTURE TYPE
Atomic adsorption in fec hollow sites

\section*{COMMENTS}

Temperature effects were neglected

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 5 phase shifts (Pd Moruzzi et al pot, S potential for SPd3 crystal); Voi=-4 eV
fcc and hep hollow and top sites; s-Pd spacing varied from 1.1 to 1.8 A
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.245\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & AY ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.748 & 0.000 & 1.374 & 2.380 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
\hline Surface 1 & 4.122 & 2.380 & -4.122 & 2.380 & 120.0 & \((0.000\),
\((1.000\),
\((1.000)\) & \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

S1: overlayer in fcc hollow sites
Dx/Dy in \(\AA_{\text {, }}\) or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.204 & S 1 & Pd2 & Pd2(1,0) & 128.6 \\
2.204 & S 1 \\
2.753 & Pd2 & Pd2 & Pd3 & 169.2 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : Pt \((100)-(1 \times 1)\) \\
CLASSIFICATION: & 78.16 \\
TECHNIQUE & : HEIS \\
AUTHORS & J.A. Davies, T.E. Jackman, D.P. Jackson and P.R. Norton \\
REFERENCE & : Surf. Sci., 109, \(20(1981)\)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|}
\hline Substrate : Pt & Adsorbate: & \\
\hline Crystal face: 100 & Coverage : & \\
\hline Temperature : 175 K & Pattern & (1x1) \\
\hline Bulk lattice: fcc & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Unreconstructed metastable structure with slight top spacing expansion

\section*{COMMENTS}

Unreconstructed Pt(100) stable only in presence of 0.05-
0.1 ML H 2 ; complete removal of H resulted in reconstruction;
top layer spacing varies from 1.960 to \(1.965 \AA\) with
different impurities

\section*{THEORY/DATA TREATMENT}

Simulation of channeling/blocking: \(\Theta D=115 \mathrm{~K}\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.770 & 0.000 & 0.000 & 2.770 & 90.0 & ( 1.000, 0.000\()\) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.770 & 0.000 & 0.000 & 2.770 & 90.0 & \[
\begin{array}{ll}
(1.000, & 0.000) \\
(0.000, & 1.000)
\end{array}
\] & (1x1) & s1: commens. superlattice \\
\hline
\end{tabular}

30 COORDINATES
\(0.05 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = \(1.960 ~ \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.770 & Pt1
\end{tabular}

CLASSIFICATION : 78.16a
TECHNIQUE : LEED
AUTHORS : E. Lang, W. Grimm and K. Heinz
REFERENCE : Surf. Sci., 117, 169 (1982)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|}
\hline Substrate : Pt & Adsorbate: \\
\hline Crystal face: 100 & Coverage : \\
\hline Temperature : 100 K & Pattern : (1x1) \\
\hline Bulk lattice: fcc & Matrix : ( \(1.000,0.000\) ) \\
\hline 2D bulk symm: p4m & ( 0.000, 1.000) \\
\hline
\end{tabular}

2D bulk symm: p4m
2D surf symm: P4m
SAMPLE PREPARATION ( 1 sample)
Treatment : ion bombardment and 1000 K heating in 02, then 1300K flashes
Crystallinity:
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : IV curves obtained for many beams at normal incidence, energy range 200-600 eV

STRUCTURES EXAMINED
Contractions and expansions of top interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.127

STRUCTURE TYPE
Unreconstructed unrelaxed metastable surface

COMMENTS

\section*{THEORY/DATA TREATMENT}

Quasidynamical LEED (RFS, no intralayer mult. scattering, additional damping for convergence): \(\Theta D=240 \mathrm{~K}\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(0.1 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\footnotetext{
BOND DISTANCES AND ANGLES
}

Bond distances are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{l|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom \(C\) & \begin{tabular}{l} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.770 & Pt1 & Pt1(1,0) & & \\
2.771 & \(P+1\) & \(P t 2\)
\end{tabular}
```

COMMON NAME: $\operatorname{Pt}(100)-(1 \times 1)$
CLASSIFICATION : 78.6
TECHNIQUE : SPLEED
AUTHORS : R. Feder
REFERENCE : Surf. Sci., 68, 229 (1977)

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SURFACE TYPE} \\
\hline Substrate : Pt & Adsorbate: & \\
\hline Crystal face: 100 & Coverage : & \\
\hline Temperature : 300 K & Pattern & (1x1) \\
\hline Bulk lattice: fcc & Matrix & ( 1.000, 0.000) \\
\hline 2 D bulk symm: p4m & & ( 0.000, 1.000) \\
\hline
\end{tabular}

STRUCTURE TYPE
Unreconstructed metastable surface (assumed unrelaxed)

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical SPLEED: 8 relat. phase shifts from relat. atomic charge densities; Voi=-4 eV; \(6 D=178\) K

\section*{STRUCTURES EXAMINED}

Bulk termination assumed

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & \(B x(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{90.0} & ( \(1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: cormmens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
bulk structure assumed
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{BOND DISTANCES AND ANGLES}

Bond distances are derived from coordinates
No. of distances/angles:
1
\begin{tabular}{c|l|c|c|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 2.770 & \(\mathrm{Pt1}\) & Pt1(1,0) & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) Pt \((110)-(1 \times 2)\) & \\
CLASSIFICATION \(: 78.19\) \\
TECHNIQUE & \(:\) ALICISS & \\
AUTHORS & H. Niehus \\
REFERENCE & Surf. Sci., 145, \(407(1984)\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SURFACE TYPE} \\
\hline Substrate : Pt & Adsorbate: & \\
\hline Crystal face: 110 & Coverage : & \\
\hline Temperature : 300 K & Pattern & (1x2) \\
\hline Bulk lattice: fcc & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: pmm & & ( 0.000, 2.000) \\
\hline 2D surf symm: pmm & & \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ bombardment, annealing in 02
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES: no contaminants

DATA COLLECTION
Technique: ALICISS; scattering cross-section for 2 keV
Dataset : 7 azimuthal incident directions at polar incidence angles in range \(0-90^{\circ}\); scattering angle \(145^{\circ}\)

STRUCTURE TYPE
Missing-row model (bulk atom positions assumed)

\section*{COMMENTS}

THEORY/DATA TREATMENT
Low-energy alkali impact collision ion scattering spectr.:
exp. determined shadow cone used to locate surface atoms

STRUCTURES EXAMINED
Missing-row, buckled-row, paired-rows and sawtooth models; unrelaxed bulk atomic positions assumed
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.770 & 0.000 & 0.000 & 3.917 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.770 & 0.000 & 0.000 & 7.835 & 90.0 & \((1.000,0.000)\) & \((1 \times 2)\) & \((0.000,2.000)\)
\end{tabular}

3D COORDINATES
Pt1: remaining row of missing-row model
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.385\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & Dx & EX & Dy & & Dz & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & & f & & f & & A & \\
\hline subr & & -1 & & & & 1.385 & A & 1.959 & A & 1.385 & \(\AA\) & \\
\hline intf & Pt & 1 & s1 & . 50 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Pt & 2 & \(b\) & 1.00 & 1 & 0.500 & \(f\) & 0.500 & f & 1.385 & \(\AA\) & 100.0 \\
\hline subl & Pt & 3 & b & 1.00 & 2 & -0.500 & f & -0.500 & f & 1.385 & \(\AA\) & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distance is derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & Atom B & Atom \(C\) & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.770 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & & \\
\hline
\end{tabular}

CLASSIFICATION : 78.32
TECHNIQUE : LEED
AUTHORS : E.C. Sowa, M.A. Van Hove and D.L. Adams
REFERENCE : Surf. Sci., 199, 174 (1988)

\section*{SURFACE TYPE}

Substrate : Pt
Adsorbate:
Coverage :
Pattern : (1x2)
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm
Matrix \(:(1.000,0.000)\)

\section*{STRUCTURE TYPE}

Missing-row reconstruction with multilayer relaxation, including 2 nd- and 4 th-layer pairing and 3 rd-layer buckling ( \(0.000,2.000\) )

SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of \(A r^{+}\)bombardnent and annealing at 1273 K
Crystallinity: no facetting in LEED pattern
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION

\section*{THEORY/DATA TREATMENT}

Technique: LEED
Dataset : I-V curves for 6 half-order and 4 integral-order beams

STRUCTURES EXAMINED
Missing-row model: top 4 interlayer spacings varied; row- pairing in layers 2 and 4, vertical buckling in layer 3
QUALITY OF EXPERIMENT-THEORY FIT
Average of RRZJ,RPE,ROS,R1,R2=0.239
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(A\) ) & \(B \times(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.775 & 0.000 & 0.000 & 3.924 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.775 & 0.000 & 0.000 & 7.848 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,2.000)
\end{aligned}
\] & (1x2) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Pt1: remaining row; Pt2-Pt3, Pt6-Pt7: row-paired 2nd, 4 th layers;
Pt4-Pt5: buckled 3rd layer; 0.1\& lateral error bars assumed for tabulation
Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(D X \pm \in X\) & \(D Y \pm \epsilon y\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 1.388 A & 1.962 A & 1.387 A & \\
\hline intf & Pt & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Pt & 2 & s 1 & . 50 & 1 & 0.500 f & \(0.742 \pm .013 \mathrm{f}\) & \(1.131 \pm .030 \AA\) & \(81.5 \pm 2.2\) \\
\hline intf & Pt & 3 & s 1 & . 50 & 2 & 0.000 f & \(-0.484 \pm .013 \mathrm{f}\) & 0.000 A & 0.0 \\
\hline intf & Pt & 4 & s1 & . 50 & 3 & -0.500 f & \(0.242 \pm .013 \mathrm{f}\) & \(1.052 \pm .060 \AA\) & \(75.8 \pm 4.3\) \\
\hline intf & Pt & 5 & s 1 & . 50 & 4 & 0.000 f & -0.500 f & \(0.320 \pm .060 ~ A\) & \(23.1 \pm 4.3\) \\
\hline intf & Pt & 6 & s1 & . 50 & 5 & 0.500 f & \(0.735 \pm .013 \mathrm{f}\) & \(1.106 \pm .060\) A & \(79.7 \pm 4.3\) \\
\hline intf & Pt & 7 & s 1 & . 50 & 6 & 0.000 f & -0.470 \(\pm .013 \mathrm{f}\) & 0.000 A & 0.0 \\
\hline intf & Pt & 8 & b & 1.00 & 7 & -0.500 f & \(-0.530 \pm .026 f\) & \(1.375 \pm .060 \AA\) & \(99.1 \pm 4.3\) \\
\hline subl & Pt & 9 & b & 1.00 & 8 & 0.500 f & 0.500 f & 1.387 A & 100.0 \\
\hline
\end{tabular}

Pt(110)-(1x2)
78.32

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.775 & Pt1 & Pt1 (1,0) & & \\
\hline 2.577 & Pt2 & Pt4 & Pt6 & 55.8 \\
\hline 2.703 & Pt1 & Pt2 \((0,-1)\) & \(\operatorname{Pt3}(0,-1)\) & 41.5 \\
\hline 2.703 & Pt1 & \(\operatorname{Pt2}(0,-1)\) & \(\operatorname{Pt} 4(0,-1)\) & 47.9 \\
\hline 2.703 & Pt1 & Pt2 \(0,-1)\) & Pt5 & 53.9 \\
\hline 2.703 & Pt1 & Pt3 & Pt4 & 116.5 \\
\hline 2.703 & Pt1 & Pt3 & Pt5 & 53.9 \\
\hline 2.703 & Pt1 & Pt3 & Pt6 \((0,-1)\) & 111.3 \\
\hline 2.703 & Pt1 & Pt3 & Pt7 & 115.8 \\
\hline 2.503 & Pt1 & Pt5 & Pt6 \(0,-1)\) & 115.6 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Pt
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm
```

Adsorbate:
Coverage :
Pattern : (1x2)
Matrix : (1.000, 0.000)
(0.000, 2.000)

```

STRUCTURE TYPE
Missing-row reconstruction with multilayer relaxation, including 2nd- and 4th-layer pairing, and 3rd- and 5th-layer buckling

\section*{COMMENTS}

9 structural parameters were optimised by a block refinement procedure

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling, matrix inversion): Voi \(\alpha E^{* * 1 / 3 ; ~ V o r ~} \alpha E^{* * 1 / 2 ~(f i t) ; ~} \Theta D=270 \mathrm{~K}\)

STRUCTURES EXAMINED
Missing row: variations of first 5 interlayer spacings, 2nd- and 4 th-layer row pairing, 3rd- and 5 th-layer buckling
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.36, \mathrm{RZJ}=0.26\)
2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & Ay (A) & \(B x\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.770 & 0.000 & 0.000 & 3.920 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.770 & 0.000 & 0.000 & 7.840 & 90.0 & \((1.000,0.000)\) & (1x2) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000\()\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Pt1: remaining row; Pt2-Pt3, Pt6-Pt7: row-paired 2nd, 4th layers;
Pt4-Pt5, Pt8-Pt9: buckled 3rd, 5th layers; 0.05A/0.1A perp/lateral error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 11
Bulk z \(=1.390 \AA\)


Pt(110)-(1x2)
78.33a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.770 & Pt1 & Pt1 \((1,0)\) & & \\
\hline 2.675 & Pt1 & & Pt3 \((0,-1)\) & 41.4 \\
\hline 2.675 & Pt1 & Pt2 & Pt4 & 117.6 \\
\hline 2.675 & Pt1 & Pt2 & Pt5 & 55.2 \\
\hline 2.560 & Pt1 & Pt5 & Pt6 & 117.9 \\
\hline 2.560 & Pt 1 & Pt5 & Pt7 \((0,-1)\) & 118.6 \\
\hline 2.691 & Pt2 & Pt 4 & Pt5 \((0,1)\) & 118.6 \\
\hline 2.691 & Pt2 & Pt4 & Pt6 & 60.4 \\
\hline
\end{tabular}
```

COMMON NAME : Pt(110)-(1x2) ILLUSTRATION: 5

```
CLASSIFICATION : 78.34
TECHNIQUE : MEIS
AUTHORS : P. Fenter and T. Gustafsson
REFERENCE : Phys. Rev., 38, 10197 (1988)

\section*{SURFACE TYPE}

Substrate: Pt
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pmm

\section*{Adsorbate:}

Coverage :
Pattern : (1x2)
Matrix \(:(1.000,0.000)\)

\section*{STRUCTURE TYPE}

Missing-row reconstruction with multilayer relaxation, including 3rd-layer buckling

COMMENTS

THEORY/DATA TREATMENT
Monte-Carlo simulation of channeling and blocking data

STRUCTURES EXAMINED
Top two interlayer spacings; 2nd-layer row-pairing and 3rd-layer, all within missing-row model

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.780 & 0.000 & 0.000 & 3.925 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.780 & 0.000 & 0.000 & 7.850 & 90.0 & \((1.000,0.000)\) & \((1 \times 2)\) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Pt1: remaining ridge row; Pt2-Pt3: bulk-like 2nd layer;
Pt4-Pt5: buckled 3rd layer; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 7
Bulk z \(=1.390 ~ \&\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel. to & Dx & \(\epsilon \mathrm{X}\) & Dy & \(\pm \epsilon Y\) & & Dz & \(\pm \epsilon Z\) & & Dz/Bz(\%) & \(\pm\) & \(\epsilon z / B z\) \\
\hline epir & & -2 & & & & & \(f\) & & & f & & & A & & & \\
\hline subr & & -1 & & & & -1.390 & A & -1.963 & & \(\AA\) & 1.390 & & \(\AA\) & & & \\
\hline intf & Pt & 1 & s1 & . 50 & 0 & 0.000 & f & 0.000 & & f & 0.000 & & A & 0.0 & & \\
\hline intf & Pt & 2 & s1 & . 50 & 1 & 0.500 & \(f\) & 0.250 & \(\pm .013\) & f & 1.168 & \(\pm .100\) & A & \(84.0 \pm\) & \(\pm\) & 7.2 \\
\hline intf & Pt & 3 & s1 & . 50 & 2 & 0.000 & f & 0.500 & \(\pm .013\) & \(f\) & 0.000 & & A & 0.0 & & \\
\hline intf & Pt & 4 & s1 & . 50 & 3 & -0.500 & f & -0.250 & \(\pm .013\) & f & 1.396 & \(\pm .100\) & A & \(100.4 \pm\) & \(\pm\) & 7.2 \\
\hline intf & Pt & 5 & s1 & . 50 & 4 & 0.000 & \(f\) & -0.500 & & \(f\) & 0.100 & \(\pm .100\) & A & \(7.2 \pm\) & \(\pm\) & 7.2 \\
\hline intf & Pt & 6 & b & 1.00 & 5 & 0.500 & \(f\) & 0.500 & & \(f\) & 1.340 & \(\pm .100\) & A & \(96.4 \pm\) & \(\pm\) & 7.2 \\
\hline subl & Pt & 7 & b & 1.00 & 6 & -0.500 & \(f\) & -0.500 & & f & 1.390 & & A & 100.0 & & \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.780 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1(1,0)}\) & & \\
2.674 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt3(1,-1)}\) & 121.3 \\
2.674 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & 118.5 \\
2.674 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt5}\) & 57.7 \\
2.660 & \(\mathrm{Pt1}\) & \(\mathrm{Pt5}\) & \(\mathrm{Pt6}\) & 119.1
\end{tabular}

\title{
ATLAS OF SURFACE STRUCTURES
}

Pt(110)-(1x2)
78.34

Bond Distances and Angles - Continued
\begin{tabular}{c|c|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.778 & \(\mathrm{Pt2}\) & Pt 4 & \(\mathrm{Pt6}\) & 60.9 \\
\hline
\end{tabular}

CLASSIFICATION : 78.41
TECHNIQUE : XRD
AUTHORS : E. Vlieg, I.K. Robinson and K. Kern
REFERENCE : Surf. Sci., 233, 248 (1990)

\section*{SURFACE TYPE}

\section*{Substrate : Pt}

Adsorbate:
Coverage :
Pattern : (1x2)
Matrix: \(:\left(\begin{array}{l}1.000,0.000) \\ (0.000,2.000)\end{array}\right.\)
Temperature : RT
Bulk lattice: fcc
20 bulk symm: pmm

STRUCTURE TYPE
Missing-row reconstruction, with multilayer relaxations down to 4th layer

2D surf symm: pmm
SAMPLE PREPARATION ( 1 sample)
Treatment : extensive anneals and sputterings, then 900C anneals
Crystallinity:
Anal. methods: AES
Contamination: AES: no contaminants

DATA COLLECTION
Technique: XRD; synchrotron radiation (NSLS)
Dataset : 88 reflections from 23 (hk) rods; lambda=1.09A

\section*{COMMENTS}

Rms vibration amplitudes of topmost layers are found enhanced by a factor of nearly 2 over bulk values

STRUCTURES EXAMINED
Missing-row model with perpendicular relaxations of atoms in layers 1 and 2, pairing of layers 2 and 4
QUALITY OF EXPERIMENT-THEORY FIT
Chi**2=2.1
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.775 & 0.000 & 0.000 & 3.924 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.775 & 0.000 & 0.000 & 7.848 & 90.0 & \((1.000,1.000)\) & \((1 \times 2)\) \\
\hline
\end{tabular}

3D COORDINATES
Pt1: ridge atoms; Pt2-Pt3: paired 2nd layer;
Pt4-Pt5: planar 3rd layer; Pt6-Pt7: paired 4th layer
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z \(=1.387 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D x \pm \in X\) & Dy \(\pm \in y\) & \(D \mathbf{Z} \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & & \\
\hline subr & & -1 & & & & 1.387 A & 1.962 A & 1.387 & \\
\hline intf & Pt & 1 & s 1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 & 0.0 \\
\hline intf & Pt & 2 & s1 & . 50 & 1 & 0.500 f & \(-0.256 \pm .001 \mathrm{f}\) & \(1.117 \pm .100\) & \(80.5 \pm 7.2\) \\
\hline intf & Pt & 3 & s1 & . 50 & 2 & 0.000 f & \(0.513 \pm .001 \mathrm{f}\) & 0.000 & 0.0 \\
\hline intf & Pt & 4 & s1 & . 50 & 3 & -0.500 f & \(-0.756 \pm .001 \mathrm{f}\) & \(1.277 \pm .080\) & \(92.1 \pm 5.8\) \\
\hline intf & Pt & 5 & s1 & . 50 & 4 & 0.000 f & 0.500 f & 0.000 & 0.0 \\
\hline intf & Pt & 6 & s1 & . 50 & 5 & 0.500 f & \(0.255 \pm .001 \mathrm{f}\) & 1.387 & 100.0 \\
\hline intf & Pt & 7 & s1 & . 50 & 6 & 0.000 f & \(-0.510 \pm .001 \mathrm{f}\) & 0.000 & 0.0 \\
\hline subl & Pt & 8 & b & 1.00 & 7 & -0.500 f & \(-0.490 \pm .003 \mathrm{f}\) & 1.387 & 100.0 \\
\hline
\end{tabular}

Pt(110)-(1x2)
78.41

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.775 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1}(1,0)\) & \(\mathrm{Pt2}(1,0)\) & 121.1 \\
2.687 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt2}(1,0)\) & 121.1 \\
2.687 & Pt 1 & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & 117.7 \\
2.685 & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & \(\mathrm{Pt4(1,0)}\) & 58.9 \\
2.685 & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & \(\mathrm{Pt6}(0,-1)\) & 118.5 \\
2.685 & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & \(\mathrm{Pt7}\) & 58.7 \\
2.685 & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & \(\mathrm{Pt8}\) & 118.4 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Pt
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: pmm
20 surf symm: pmm
```

Adsorbate:
Coverage :
Pattern : (1x2)
Matrix:(1.000, 0.000)

```

\section*{STRUCTURE TYPE}

Missing-row reconstruction, with multilayer relaxations down to 3rd layer

SAMPLE PREPARATION ( 1 sample)
Treatment: long 1300C anneal, cycles of 02, Ar sputt., 1000C anneals
Crystallinity:
Anal. methods: AES, XPS
Contamination: no \(H, C, O\) in recoil spectra

\section*{DATA COLLECTION}

Technique: TOF-SARS; 2 keV Ne ion beam
Dataset : time-of-flight scattering and recoiling spectra as fct. of incident and scattering angle in back and forward scattering

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Comparison with trajectory calcs with Ziegler-BiersackLittmark pot., using experimentally determined shadow cone

STRUCTURES EXAMINED
Missing-row model with perpendicular relaxation in top layer, pairing in \(2 n d\) layer and buckling in 3rd layer
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.775} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.924} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline \multirow[t]{2}{*}{Surface 1} & \multirow[t]{2}{*}{2.775} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{7.848} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{\((1 \times 2)\)} & \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Pt1: ridge atoms; Pt2-Pt3: paired 2nd layer;
Pt4-Pt5: buckled 3rd layer
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(\mathrm{Dx} \pm \epsilon \mathrm{X}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & \(\lambda\) & \\
\hline subr & & -1 & & & & -1.387 \& & -1.962 A & 1.387 A & \\
\hline intf & Pt & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Pt & 2 & s1 & . 50 & 1 & 0.500 f & \(0.259 \pm .009 \mathrm{f}\) & \(0.980 \pm .070 \AA\) & \(70.6 \pm 5.1\) \\
\hline intf & Pt & 3 & s1 & . 50 & 2 & 0.000 f & \(0.482 \pm .009 \mathrm{f}\) & 0.000 A & 0.0 \\
\hline intf & Pt & 4 & s1 & . 50 & 3 & -0.500 f & -0.241 \(\pm .009 \mathrm{f}\) & \(1.292 \pm .130 \AA\) & \(93.2 \pm 9.4\) \\
\hline intf & Pt & 5 & s1 & . 50 & 4 & 0.000 f & -0.500 f & \(0.190 \pm .130 \AA\) & \(13.7 \pm 9.4\) \\
\hline subl & Pt & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & \(1.292 \pm .130\) \& & \(93.2 \pm 9.4\) \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.775 & Pt1 & Pt1(1,0) & Pt2 1,0\()\) & 121.6 \\
\hline 2.648 & Pt1 & Pt2 & Pt2 1,0\()\) & 121.6 \\
\hline 2.648 & Pt1 & Pt2 & Pt4 & 116.7 \\
\hline
\end{tabular}

Pt(110)-(1x2)
78.47

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.678 & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & \(\mathrm{Pt} 4(1,0)\) & 58.8 \\
2.678 & \(\mathrm{Pt2}\) & Pt 4 & \(\mathrm{Pt} 6(0,1)\) & 119.3 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Pt & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature: RT* & Pattern : (1x2) \\
Bulk lattice: fcc & Matrix : (1.000, 0.000) \\
2D bulk symm: pmm &
\end{tabular}

2D bulk symm: pmm
2D surf symm: pmm
SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of Ar sputtering and 1000C anneals
Crystallinity: sharp LEED pattern
Anal. methods: XPS, LEED
Contamination: XPS: no contamination

\section*{DATA COLLECTION}

Technique: PED; forward focusing of photoelectrons
Dataset : azimuthal and polar distributions of photoyield from Pt 4p3/2 core level

STRUCTURE TYPE
Missing-row reconstruction, with top spacing contraction

\section*{COMMENTS}

Two other structures (with top layer buckling and with top layer pairing) gave only slightly worse R-factors ( 0.38 for both vs. 0.36 for missing-row model)

THEORY/DATA TREATMENT
Quasi-dynamical theory: all multiple scatt. between layers, none within layers

STRUCTURES EXAMINED
Missing-row, top-layer buckling and top-layer pairing models with relaxation of topmost spacing (and buckling)
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.36\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.775 & 0.000 & 0.000 & 3.924 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.775 & 0.000 & 0.000 & 7.848 & 90.0 & \((0.000,1.000)\) & (1x2) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Pt1: ridge atoms; Pt2: planar 2nd layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.775 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1(1,0)}\) & \(\mathrm{Pt2(1,1)}\) & 57.6 \\
2.592 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2(0,1)}\) & \(\mathrm{Pt} 1(-1,0)\) & 64.7 \\
2.592 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2(0,1)}\) & \(\mathrm{Pt} 2(1,2)\) & 57.6 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: P t(110)-(1 \times 3)\) & ILLUSTRATION: 7 \\
CLASSIFICATION & \(: 78.33 b\) \\
TECHNIQUE & : LEED \\
AUTHORS & : P. Fery, W. Moritz and D. Wolf \\
REFERENCE & : Phys. Rev., B38, 7275 (1988)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SURFACE TYPE} \\
\hline Substrate : Pt & Adsorbate: & \\
\hline Crystal face: 110 & Coverage : & \\
\hline Temperature : RT* & Pattern & (1x3) \\
\hline Bulk lattice: fcc & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: prmm & & ( 0.000, 3.000) \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}
(1x3) reconstruction, probably impurity-stabilized;
(111)-facetted missing-row reconstruction with multilayer relaxation, including 2nd-layer pairing, and 3rdand 4th-layer buckling

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling, matrix inversion): Voi \(\alpha E^{* * 1 / 3 ; ~ V o r ~} \alpha E^{* * 1 / 2 ~(f i t) ; ~} \Theta D=270 \mathrm{~K}\)

STRUCTURES EXAMINED
Facetted missing rows: variations of first 5 interlayer spacings, 2nd-row pairing, 3rd- and 4 th-layer buckling
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.35, R Z J=0.28\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline Cell & Ax (A) & Ay (A) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.770 & 0.000 & 0.000 & 3.920 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.770 & 0.000 & 0.000 & 11.760 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 3)\) \\
& & & & & & \begin{tabular}{l} 
si: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
Pt1: remaining top row; Pt2-Pt3: row-paired 2nd layer;
Pt4-Pt5-Pt6, Pt7-Pt8-Pt9: buckled 3rd, 4th layers; 0.05\&/0.1\& perp/lateral error bars assumed for tabulation
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Pt(110)-(1x3)
78.33b

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C \(\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.770 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1}(1,0)\) & & \\
2.669 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & 117.9 \\
2.669 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt6}\) & 56.0 \\
2.600 & \(\mathrm{Pt1}\) & \(\mathrm{Pt6}\) & \(\mathrm{Pt7} 7(0,-1)\) & 119.5 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: P t(110)-(1 \times 3)\) & ILLUSTRATION: 6 \\
CLASSIFICATION & \(: 78.48\) \\
TECHNIQUE & \(:\) TOF-SARS & \\
AUTHORS & : F. Masson and J.W. Rabalais \\
REFERENCE & Surf. Sci., \(253,258(1991)\)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Pt & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : RT & Pattern : \(1 \times 3\) ) \\
Bulk lattice: fcc & Matrix \(:(1.000,0.000)\) \\
20 bulk sym: pmm & \\
\hline
\end{tabular}

2D surf symm: pmm

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : prolonged 1300C annealing
Crystallinity:
Anal. methods: AES, XPS
Contamination: several \%ML of \(\mathrm{Ca}, \mathrm{K}\) and perhaps P

\section*{DATA COLLECTION}

Technique: TOF-SARS; 2 keV Ne ion beam
Dataset : time-of-flight scattering and recoiling spectra as fct. of incident and scattering angle in back and forward scattering

\section*{STRUCTURE TYPE}

2-missing-rows reconstruction, leaving partial low 2nd-layer ridge within 3 -wide trough; this structure is thought to be impurity-stabilized

\section*{COMMENTS}

Ridge within trough distinguishes this structure from the ( \(1 \times 3\) ) 'facetted' reconstruction, in which the trough penetrates the 2nd layer as a missing row;
authors suggest that this ridge within trough is only \(40 \pm\) 20\% complete, i.e. coexists with facetted reconstruction

\section*{THEORY/DATA TREATMENT}

Comparison with trajectory calcs with Ziegler-Biersack-
Littmark pot., using experimentally determined shadow cone

STRUCTURES EXAMINED
4 models differing in number and depth of missing rows; for preferred 2-missing-row model, variation of first two interlayer spacings and 2nd layer buckling

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.775} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.924} & \multirow[t]{2}{*}{90.0} & ( \(1.000,0.000)\) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.775} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{11.772} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1)3)} & s1: commens. \\
\hline & & & & & & ( 0.000, 3.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Pt1: upper ridge atom; Pt2-Pt3: 2nd layer atoms below upper ridge Pt1;
Pt4: ridge in trough, buckled down wrt Pt2-Pt3
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z \(=1.387 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.775 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1(1,0)}\) & \(\mathrm{Pt2(1,0)}\) & 121.4 \\
2.664 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt} 1(1,0)\) & 62.8 \\
2.664 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt5}(0,1)\) & 118.3
\end{tabular}

Pt(110)-(1x3)
78.48

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.664 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt5}\) & 54.9 \\
2.500 & \(\mathrm{Pt1}\) & \(\mathrm{Pt5}\) & \(\mathrm{Pt2}\) & 60.7 \\
2.756 & \(\mathrm{Pt2}\) & \(\mathrm{Pt5}\) & \(\mathrm{Pt5}(1,0)\) & 59.8 \\
2.562 & \(\mathrm{Pt5}\) & \(\mathrm{Pt} 4(0,-1)\) & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: \operatorname{Pt}(111)-(1 \times 1)\) & ILLUSTRATION: 1 \\
CLASSIFICATION & \(: 78.12\) & \\
TECHNIQUE & \(:\) LEED & \\
AUTHORS & D.L. Adams, H.B. Nielsen and M.A. Van Hove \\
REFERENCE & : Phys. Rev., B20, 4789 (1979)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate \(: P t\) & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature : 85 K & Pattern \(:(1 \times 1)\) \\
Bulk lattice: fcc & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2D surf symm: p3m1 & \\
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : heated at 1100C in 10E-7 torr 02, then at 1250 C in vacuum
Crystallinity:
Anal. methods:
Contamination: AES: \(<1 \%\) ML of impurities

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V curves: total of 49 non-degenerate beams at \(\Theta=0, \pm 4, \pm 10, \pm 16^{\circ}\left(\phi=0^{\circ}\right)\); cumulative E range: 6822 eV

\section*{STRUCTURE TYPE}

Bulk termination with top spacing expansion by \(1.1 \%\)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 8 ph shs, different non-rel. and rel. potentials used; Vor=-5.42 eV, Voi=-5.18eV; \(\Theta 0=302 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

Top layer spacing varied from 1.9 to \(3.6 \AA\) in \(0.05 \AA\) steps
QUALITY OF EXPERIMENT-THEORY FIT
R1=0.40
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & AY ( \(\AA\) ) & BX (A) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.775 & 0.000 & 1.388 & 2.403 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.775 & 0.000 & 1.388 & 2.403 & 60.0 & \((1.000,0.000)\) & (1×1) & s1: commens. \\
\hline & & & & & & (0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C} & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.775 & \(\mathrm{Pt1}\) & \(\mathrm{Pt} 1(1,0)\) & \(\mathrm{Pt2}\) & 60.2 \\
2.795 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & Pt 3 & 180.0 \\
2.774 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & & \\
\hline
\end{tabular}
AUTHORS : R. Feder, H. Pleyer, P. Bauer and N. Mueller
REFERENCE : Surf. Sci., 109, 419 (1981)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Pt & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature: RT* & Pattern : (1x1) \\
Bulk lattice: fcc & Matrix : \(\quad(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2D surf symm: p3m1 & \\
&
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of 1100 K heating in 10E-6 torr 02 and \(A r+\) sputtering
Crystallinity:
Anal. methods:
Contamination: checked with AES

DATA COLLECTION
Technique: SPLEED
Dataset : transverse and longitudinal spin polarization spectra with incident energies of 60,80 and 95 eV for \(00,10,-1\)

STRUCTURE TYPE
Bulk termination with top spacing expansion by \(0.5 \%\)

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical spin polarized LEED (layer doubling): 8 ph shs from 3 relativistic scattering potentials; \(\Theta 0=230 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of topmost interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\chi^{\text {a }}\) ) & Ay ( \({ }^{(1)}\) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.775} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.388} & \multirow[t]{2}{*}{2.403} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000\()\) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.775} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.388} & \multirow[t]{2}{*}{2.403} & \multirow[t]{2}{*}{60.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1×1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z = \(2.265 ~ \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.775 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1(1,0)}\) & \(\mathrm{Pt2}\) & 60.1 \\
2.783 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & 180.0 \\
2.774 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & & \\
\hline
\end{tabular}


\section*{SURFACE TYPE}

Substrate
Crystal face: 11
Temperature : 293 K
Bulk lattice: fcc
20 bulk symm: p3m1
2D surf symm: p3mi
SAMPLE PREPARATION ( 1 sample)
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

\section*{STRUCTURE TYPE}

Unrelaxed bulk termination

\section*{COMMENTS}

Treatment :
Crystallinity:
Anal. methods:
Contamination: monitored by AES

DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (CAVLEED program): 8 phase shifts (HermanSkillman superposition potential); Voi=-5 eV

STRUCTURES EXAMINED
Top layer relaxations

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RPE \(=0.43\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X(\AA)\) & Ay ( \(\AA\) ) & Bx ( \({ }_{\text {A }}\) ) & By ( \(\AA\) ) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.770 & 0.000 & 1.385 & 2.399 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.770 & 0.000 & 1.385 & 2.399 & 60.0 & \[
\begin{array}{ll}
(1.000, & 0.000) \\
(0.000, & 1.000
\end{array}
\] & (1x1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.265\) A


Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{l|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B ( A\()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.770 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1(1,0)}\) & \(\mathrm{Pt2}\) & 60.0 \\
2.773 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & 180.0 \\
2.773 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & & \\
\hline
\end{tabular}
AUTHORS : J.F. Van Der Veen, R.G. Smeenk, R.M. Tromp and F.W. Saris
REFERENCE : Surf. Sci., 79, 219 (1979)

SURFACE TYPE
Substrate : Pt
Adsorbate:
STRUCTURE TYPE
Crystal face: 111
Temperature : 420 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : sputtering with \(2.8 \mathrm{k} \mathrm{eV} \mathrm{Ar}+\) followed by annealing at 500C
Crystallinity:
Anal. methods:
Contamination: MEIS: <10\% ML C and <5\% ML O

DATA COLLECTION
Technique: MEIS; MEIS using 173 keV protons
Dataset : blocking spectra along [11-6] and [001] axes, with angular detection from 60 to \(90^{\circ}\)

Coverage :
Pattern : (1×1)
Matrix: \(\begin{array}{r}(1.000,0.000) \\ (0.000,1.000)\end{array}\)

Bulk termination with top spacing expansion by \(1.5 \%\)

COMMENTS

STRUCTURES EXAMINED
Variations in top layer spacing
QUALITY OF EXPERIMENT-THEORY FIT
visual

\section*{THEORY/DATA TREATMENT}

Theoretical simulation of channeling and blocking; rms ampls \(=0.16 \AA\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.778 & 0.000 & 1.389 & 2.406 & 60.0 & \[
\begin{aligned}
& (1.000, \\
& (0.000, \\
& (1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 2.778 & 0.000 & 1.389 & 2.406 & 60.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1×1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.778 & \(\mathrm{Pt1}\) & \(\mathrm{Pt1}(1,0)\) & \(\mathrm{Pt2}\) & 60.3 \\
2.804 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & 180.0 \\
2.778 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & & \\
\hline
\end{tabular}

COMMON NAME : Pt(210)-(1x1)
ILLUSTRATION: 9
CLASSIFICATION : 78.43
TECHNIQUE : LEED
AUTHORS : X.G. Zhang, M.A. Van Hove, G.A. Somorjai, P.J. Rous, D. Tobin, A. Gonis, J.M. MacLaren, K.Heinz, M.Michl, et al
REFERENCE : Phys. Rev. Lett., 67, 1298 (1991)

\section*{SURFACE TYPE}

2D surf symm: cm
SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ sputtering, 1200 K anneal, 02 treatment, 1000 K anneal
Crystallinity: surface <0.5 from (210) plane
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED; no impurities by AES
Dataset : I-V curves for 11 symmetry inequivalent beams; E range 15-120 eV

\section*{STRUCTURE TYPE}

Bulk termination with multilayer relaxations by \(-23 \%,-12 \%\), \(+4 \%\), and \(-3 \%\) in 4 top interlayer spacings

\section*{COMMENTS}

Et al = H. Lindner, K. Mueller, M. Ehsasi and J.H. Block

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (real-space ms, automated tensor LEED):
7 phase shifts from relat pot, Vor=-10 eV, \(00=230 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of top 4 interlayer spacings and registries, keeping mirror plane
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.218\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.920 & 0.000 & 1.960 & 4.383 & 65.9 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.920 & 0.000 & 1.960 & 4.383 & 65.9 & \((1.000,1.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

30 COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 12
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{l} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.702 & \(\mathrm{Pt1}\) & \(\mathrm{Pt2}\) & & \\
2.708 & \(\mathrm{Pt3}\) & \(\mathrm{Pt4}\) & & \\
2.834 & \(\mathrm{Pt3}\) & \(\mathrm{Pt4(-1,1)}\) & & \\
2.750 & \(\mathrm{Pt3}\) & \(\mathrm{Pt5}\) \\
2.585 & \(\mathrm{Pt1}\) & \(\mathrm{Pt3}\) & & \\
\end{tabular}

Pt(210)-(1x1)
78.43

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.548 & \(\mathrm{Pt1}\) & \(\mathrm{Pt4}\) & & \\
2.760 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & & \\
2.712 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}(0,-1)\) & & \\
2.760 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}(-1,0)\) & & \\
2.695 & \(\mathrm{Pt2}\) & \(\mathrm{Pt4}\) & & \\
2.722 & \(\mathrm{Pt2}\) & \(\mathrm{Pt5}\) & & \\
2.834 & \(\mathrm{Pt3}\) & \(\mathrm{Pt4}(0,1)\) & & \\
\hline
\end{tabular}

CLASSIFICATION 78.1.7
techilque
Transm. Channel ing
AUTHORS : K. Mortensen, F. Besenbacher, I. Stensgaard and C. Klink
REFERENCE : Surf. Sci., 211/212, 813 (1989)

SURFACE TYPE
Substrate : Pt
Crystal face: 111
Temperature : 110 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1

SAMPLE PREPARATION ( 1 sample)
Treatment : thin Pt crystals grown on NaCl ; cleaned, exposed to D
Crystallinity: good quality LEED pattern
Anal. methods: forward recoil detection
Contamination:
DATA COLLECTION
Technique: Transm. Channeling
Dataset : 0-40 angular scans in [111], [011] and [001] directions

STRUCTURES EXAMINED
Top, hep- and fec-hollow and bridge sites
QUALITY OF EXPERIMENT-THEORY FIT Visual

STRUCTURE TYPE
Atomic overlayer in 3-fold hollow site (no occupation of sub-surface octahedral sites)

\section*{COMMENTS}

RMS surface displacement parallel to the surface determined to be 0.29A

\section*{THEORY/DATA TREATMENT}

Transmission channeling: multi-row continuum model

2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\chi^{\prime}\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.775 & 0.000 & 1.388 & 2.403 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.775 & 0.000 & 1.388 & 2.403 & 60.0 & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3C COORDINATES}

H1: D overlayer in fcc hollows
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.260 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.704 & 01 & Pt2 & & \\
\hline
\end{tabular}

CLASSIFICATION : 78.6.1.5
TECHNIQUE : LEED
AUTHORS : L.L. Kesmodel, L.H. Dubois and G.A. Somorjai
REfERENCE : J. Chem. Phys., 70, 2180 (1979)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Pt & Adsorbate: ethylidyne CCH3 \\
Crystal face: 111 & Coverage : \(0.25(\mathrm{C} 2 \mathrm{H} 3 / \mathrm{Pt})\) \\
Temperature: 300 K & Pattern : (2x2) \\
Bulk lattice: fcc & Matrix \(:(2.000,0.000)\) \\
2D bulk symm: p3m1 & \\
\hline
\end{tabular}

20 surf sym: p3m1

> Adsorbate: ethylidyne CCH3 Coverage : 0.25 (C2H3/Pt) Pattern : \((2 \times 2)\) Matrix \(:(2.000,0.000)\)    \((0.000,2.000)\)

\section*{STRUCTURE TYPE}

Ethylidyne species ( \(\mathrm{CCH} 3=\mathrm{C} 2 \mathrm{H} 3\) ) formed from ethylene ( C 2 H 4 )
with upright \(C-C\) axis: lower \(C\) in fcc hollow site, upper \(C\)
forms methyl group (H positions not determined, but presence derived from HREELS data)

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : adsorption of \(\approx 1 \mathrm{~L}\) ethylene
Crystallinity:
Anal. methods:
Contamination: AES: no impurities

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV curves at \(\theta=0,4,8^{\circ}, \phi=0^{\circ}\) and \(\theta=30^{\circ}\), \(\phi=30^{\circ}\); energy range \(10-100 \mathrm{eV}\)

\section*{COMMENTS}

Methyl group may rotate freely about \(C-C\) axis

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling, combined space method): Andersen Pt pot, Pt-C superpos pot for C

STRUCTURES EXAMINED
Top, bridge, hcp, and fcc hollow sites; C-C length varied 1.20-1.54\&, Pt-C length varied 1.94-2.30
C-C axis tilted \(0-55^{\circ}\) from normal and parallel to surface (for tilt angles \(>0^{\circ} \mathrm{C}-\mathrm{C}\) length fixed at 1.34 or \(1.54 \AA\) );
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B x\) ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.770} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.385} & \multirow[t]{2}{*}{2.399} & 120.0 & ( 1.000, 0.000\()\) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{5.540} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-2.770} & \multirow[t]{2}{*}{4.798} & \multirow[t]{2}{*}{120.0} & \((2.000,0.000)\) & \multirow[t]{2}{*}{(2x2)} & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
H1-H2-H3-C4: methyl group, C4 pointing down to C5; H 1 through C 5 : ethylidyne species adsorbed in fcc hollow (H positions assumed to form ideal methyl group)

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\[
\text { No. of atoms: } 7
\]

Bulk z \(=2.260 \AA\)


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & Atom \(A\) & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C()^{\circ}\)
\end{tabular} \\
\hline 1.500 & \(C 4\) & \(C 5\) & Pt6 & 126.9
\end{tabular}

Pt(111)-(2x2)-C2H3
78.6.1.5

Bond Distances and Angles - Continued
\begin{tabular}{c|c|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.999 & \(\mathrm{C5}\) & \(\mathrm{Pt6}\) & \(\mathrm{Pt6(1,0)}\) & 133.8 \\
1.999 & \(\mathrm{C5}\) & \(\mathrm{Pt6}\) & \(\mathrm{Pt7}\) & 162.2 \\
\hline
\end{tabular}

COMMON NAME : Pt(111)-C6H6 disordered
CLASSIFICATION : 78.6.1.18
TECHNIQUE : DLEED
AUTHORS : A. Wander, G. Held, R.Q. Hwang, G.S. Blackman, M.L. Xu, P. de Andres, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 249, 21 (1991)

SURFACE TYPE
Substrate : Pt
Crystal face: 111
Temperature : 170 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: none
```

Adsorbate: C6H6 (benzene)
Coverage : 0.15 ML
Pattern : disordered
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

\section*{STRUCTURE TYPE}

Intact benzene overlayer centered over bridge site and buckled with parallel distortions

\section*{COMMENTS}

Benzene rotated \(30^{\circ}\) with respect to the site found for the ordered phase in the presence of coadsorbed co coverage assuming a saturated overlayer

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (extension of beam set neglect, \(H\) ignored): \(11 \times 11\) grid of exit directions used to generate \(Y\) functions

STRUCTURES EXAMINED
8 different sites (2 C2v sites, \(4 \mathrm{C} 3 v\) and 2 C 6 sites): distortion of benzene ring consistent with local symmetry

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RPE \(=0.049\)
2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.774 & 0.000 & -1.387 & 2.402 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.774 & 0.000 & -1.387 & 2.402 & 120.0 & \((2.000,0.000)\) & disordered & \((0.000,2.000)\)
\end{tabular}

3D COORDINATES
C1-C6: distorted, buckled benzene centered over bridge site
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z = \(2.265 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{X} \pm \pm \mathrm{x}\) & Dy \(\pm \epsilon \boldsymbol{y}\) & Dz \(\pm \in \mathbf{Z}\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & & A & \\
\hline subr & & -1 & & & & 1.387 \& & 0.801 A & 2.265 & A & \\
\hline ovrl & C & 1 & nd1 & . 15 & 0 & -0.063 A & 0.000 A & 0.000 & \(\AA\) & 0.0 \\
\hline ovrl & C & 2 & nd1 & . 15 & 0 & 2.900 A & 0.000 A & \(0.000 \pm .020\) & \(\AA\) & \(0.0 \pm 4.5\) \\
\hline ovrl & c & 3 & nd1 & . 15 & 0 & 0.566 A & 1.315 A & \(-0.160 \pm .020\) & A & \(7.1 \pm 4.5\) \\
\hline ovrl & C & 4 & nd1 & . 15 & 0 & 0.566 A & -1.315 A & \(-0.160 \pm .020\) & A & \(7.1 \pm 4.5\) \\
\hline ovrl & C & 5 & nd1 & . 15 & 0 & 2.208 A & 1.315 A & \(-0.160 \pm .020\) & A & \(7.1 \pm 4.5\) \\
\hline ovrl & C & 6 & nd1 & . 15 & 0 & 2.208 A & -1.315 A & \(-0.160 \pm .020\) & \(\AA\) & \(7.1 \pm 4.5\) \\
\hline intf & Pt & 7 & b & 1.00 & 0 & 0.000 A & 0.000 A & 2.020 & A & 89.2 \\
\hline subl & Pt & 8 & b & 1.00 & 0 & 1.387 A & 0.801 A & 4.285 & A & 189.2 \\
\hline
\end{tabular}

Pt(111)-C6H6 disordered
78.6.1.18

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.466 & C 1 & \(\mathrm{C3}\) & & \\
1.643 & CS & \(\mathrm{C5}\) & & \\
2.021 & C 1 & \(\mathrm{Pt7}\) \\
2.571 & \(\mathrm{C3}\) & \(\mathrm{Pt}(1,1)\) & \(\mathrm{C3}\) & 97.0 \\
2.608 & \(\mathrm{C3}\) & \(\mathrm{Pt7}\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : \(\operatorname{Pt}(111)-(2 \sqrt{3} \times 4)\) rect \(-2 C 6 H 6+4 C O\) \\
CLASSIFICATION & \(: 78.6 .1 .8 .1\) \\
TECHNIQUE & : LEED \\
AUTHORS & : D.F. Ogletree, M.A. Van Hove and G.A. Somorjai \\
REFERENCE & Surf. Sci., 183, \(1(1987)\)
\end{tabular}

CLASSIFICATION : 78.6.1.8.1

AUTHORS : D.F. Ogletree, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 183, 1 (1987)

\section*{SURFACE TYPE}

Substrate : Pt
Crystal face: 111
Temperature : 150 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: pg

SAMPLE PREPARATION ( 1 sample)
Treatment : sputter, react with oxygen and anneal
Crystallinity:
Anal. methods:
Contamination: AES: no imourities
DATA COLLECTION
Technique: LEED
Dataset : IV curves at \(\Theta=0^{\circ}\) for 3 substrate and 8 overlayer beams; energy range 20-150 eV

\section*{STRUCTURE TYPE}

Molecular C6H6 (benzene) and CO coadsorption: C6H6 parallel to surface, strongly expanded, centered over bridge sites; CO over bridge sites (site somewhat uncertain); 2 C6H6 and 4 CO molecules per unit cell

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (BSN, matrix inversion, KSLA, CSM, RFS): 5 ph shs (pot: Wang Pt, Li CO, Kesmodel C): Voi \(\alpha \mathrm{E}^{* * 1 / 3 ; ~ \Theta 0=300 \mathrm{~K}}\)

STRUCTURES EXAMINED
C6H6 in top, hollow, bridge sites; in bridge site: boat, Kekule, ring distortions (H ignored); 2 and 4 CO's per cell in top, bridge, and hollow sites

QUALITY OF EXPERIMENT - THEORY FIT
\(R V H=0.28, R P E=0.54, R Z J=0.42\)
20 UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.773 & 0.000 & -1.386 & 2.401 & 120.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 11.090 & 0.000 & 0.000 & 9.602 & 90.0 & \((4.000,0.000)\) & ( \(2 \sqrt{3} \times 4\) )rect & s1: commens. \\
\hline & & & & & & ( 2.000, 4.000\()\) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01-C17, 02-C18, 03-C19, 04-C20: 4 identical upright \(C 0\) molecules in bridge sites;
C5--C10, C11--C16: 2 identical C6H6 molecules centered on bridge sites (each molecule has 2 normal mirror planes)
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 22
Bulk z = \(2.260 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{X} \pm \mathrm{EX}\) & \(D y \pm \epsilon y\) & \(\mathrm{Dz} \pm \boldsymbol{E z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 0.000 A & 1.600 A & 2.260 A & \\
\hline ovrl & 0 & 1 & s 1 & . 13 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & 0 & 2 & s1 & . 13 & 1 & 0.250 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & 0 & 3 & s1 & . 13 & 1 & 0.625 t & 0.500 f & 0.000 A & 0.0 \\
\hline ovrl & 0 & 4 & s1 & . 13 & 3 & 0.250 t & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & C & 5 & s1 & . 13 & 3 & \(-0.005 \pm .009 \mathrm{f}\) & \(-0.321 \pm .010 \mathrm{f}\) & \(0.500 \pm .100 \AA\) & \(22.1 \pm 4.4\) \\
\hline ovrl & C & 6 & s1 & . 13 & 5 & \(0.139 \pm .009 \mathrm{f}\) & \(-0.090 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \mathrm{~A}\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 7 & s1 & . 13 & 6 & -0.002 \(\pm .009 \mathrm{f}\) & \(0.817 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 8 & s1 & . 13 & 7 & -0.128 \(\pm .009 \mathrm{f}\) & \(-0.085 \pm .010\) f & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 9 & s1 & . 13 & 8 & \(-0.139 \pm .009 \mathrm{f}\) & \(0.090 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 10 & s1 & . 13 & 9 & \(0.002 \pm .009 \mathrm{f}\) & \(-0.817 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 11 & s1 & . 13 & 3 & \(-0.371 \pm .009 f\) & \(0.179 \pm .010 \mathrm{f}\) & \(0.500 \pm .100 \AA\) & \(22.1 \pm 4.4\) \\
\hline ovrl & C & 12 & s1 & . 13 & 11 & \(0.128 \pm .009 \mathrm{f}\) & \(-0.090 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 13 & s 1 & . 13 & 12 & \(0.002 \pm .009 \mathrm{f}\) & \(-0.183 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 14 & s1 & . 13 & 13 & \(-0.139 \pm .009 \mathrm{f}\) & -0.085 \(\pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 15 & s1 & . 13 & 14 & -0.128 \(\pm .009 \mathrm{f}\) & \(0.090 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 16 & s1 & . 13 & 15 & -0.002 \(\pm .009 \mathrm{f}\) & \(0.183 \pm .010 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.4\) \\
\hline ovrl & C & 17 & s1 & . 13 & 1 & 0.000 f & 0.000 f & \(1.150 \pm .100 \AA\) & \(50.9 \pm 4.4\) \\
\hline ovrl & C & 18 & s1 & . 13 & 2 & 0.000 f & 0.000 f & \(1.150 \pm .100 \AA\) & \(50.9 \pm 4.4\) \\
\hline ovrl & C & 19 & s1 & . 13 & 3 & 0.000 f & 0.000 f & \(1.150 \pm .100 \AA\) & \(50.9 \pm 4.4\) \\
\hline ovrl & C & 20 & s1 & .13 & 4 & 0.000 f & 0.000 f & \(1.150 \pm .100 \AA\) & \(50.9 \pm 4.4\) \\
\hline
\end{tabular}

Pt(111)-(2 \(3 \times 4\) )rect \(-2 \mathrm{C} 6 \mathrm{H} 6+4 \mathrm{CO}\)
78.6.1.8.1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.150 & 01 & c17 & Pt21 & 136.3 \\
\hline 1.764 & C5 & C6 & C7(0,-1) & 118.5 \\
\hline 1.640 & C5 & C10 & C9(0,-1) & 120.6 \\
\hline 1.760 & C6 & C7(0,-1) & C8(0,-1) & 120.6 \\
\hline 1.640 & C7 & C8 & C9 & 120.9 \\
\hline 1.764 & C8 & C9 & C \(10(0,1)\) & 118.5 \\
\hline 1.760 & C9 & C10(0,1) & C5 (0,1) & 120.6 \\
\hline 2.006 & C17 & Pt21 & Pt21(1,1) & 133.7 \\
\hline 2.769 & Pt 21 & Pt22 & & \\
\hline
\end{tabular}
TECHNIQUE : DLEED

AUTHORS : G.S. Blackman, M.-L. Xu, M.A. Van Hove and G.A. Somorjai
REFERENCE : Phys. Rev. Lett., 61, 2352 (1988)

SURFACE TYPE
Substrate : Pt
Crystal face: 111
Temperature : 160 K
Bulk lattice: fec
20 bulk symm: p3m1
2D surf symm: none
SAMPLE PREPARATION ( 1 sample)
Treatment : dosing with \(5 \mathrm{E}-8\) torr CO at 150 K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

\section*{DATA COLLECTION}

Technique: DLEED
Dataset : diffuse patterns at 80 and \(130 \mathrm{eV}(256 \times 256\) grid) for all angles up to \(50^{\circ}\) off-normal; normal incidence

Adsorbate: CO
Coverage : \(0.33 \mathrm{CO} / \mathrm{Pt}\)
Pattern : disordered
Matrix : ( \(1.000,0.000\) )
( \(0.000,1.000\) )

STRUCTURE TYPE
Disordered molecular adsorption, \(\approx 88 \%\) in top sites and \(\approx 12 \%\) in bridge sites: upright \(C O\) molecules ( \(C\) down); unrelaxed substrate

\section*{THEORY/DATA TREATMENT}

Dynamical diffuse LEED (BSN)

STRUCTURES EXAMINED
CO molecules perp. to surface with bond length of 1.15A; independent variations of C-Pt spacings at top and bridge sites as a function of relative occupancy; bulk Pt termination

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RPE \(=0.55\)
20 UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(A^{\prime}\) ) & Bx ( A ) & By ( \({ }_{\text {A }}\) ) & \(\alpha\) ( \({ }^{\circ}\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.775 & 0.000 & 1.388 & 2.403 & 60.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.775 & 0.000 & 1.388 & 2.403 & 60.0 & ( 1.000, 0.000) & disordered & nd1: non-recon. \\
\hline & & & & & & ( 0.000, 1.000) & & lattice-gas dis \\
\hline
\end{tabular}

3D COORDINATES
01-C3: disordered top-site upright CO ( \(88 \%\) of 1/3ML); 02-C4: disordered bridge-site upright CO (12\% of 1/3ML); \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 1.150 & 01 & c3 & Pt5 & 180.0 \\
\hline 1.150 & 02 & C4 & Pt5 \((1,0)\) & 138.2 \\
\hline 1.850 & C3 & Pt5 & Pt6 & 144.7 \\
\hline
\end{tabular}

Pt(111)+CO 1/3ML disordered 78.6.8.7

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B \((A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C \(\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.080 & C 4 & \(\mathrm{Pt5}(1,0)\) & \(\mathrm{Pt6}\) & 105.9 \\
2.770 & \(\mathrm{Pt5}\) & \(\mathrm{Pt6}\) & & \\
\hline
\end{tabular}
TECHNIQUE: LEED
AUTHORS : D.F. Ogletree, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 173, 351 (1986)

SURFACE TYPE

\section*{Substrate: Pt}

Crystal face: 111
Temperature : 150 K
Bulk lattice: fcc
2D bulk symm: p3m1
20 surf symm: pm
Adsorbate: CO
Coverage \(: 0.5(\mathrm{CO} / \mathrm{Pt})\)
Pattern \(: c(4 \times 2)\)
Matrix \(:(2.000,0.000)\)

STRUCTURE TYPE
Molecular CO adsorption in both top and bridge sites
(one each per unit cell), perpendicular to surface

SAMPLE PREPARATION ( 1 sample)
Treatment : sputter, react with oxygen, and anneal
Crystallinity:
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : IV curves at \(\Theta=0,5,15^{\circ}, \phi=0^{\circ}\) from 20-200 eV : 9 beams at \(\Theta=0^{\circ}\) and 14 beams at the other angles

\section*{STRUCTURES EXAMINED}

Inequivalent molecules in following sites: top/bridge, top/hollow (fcc and hcp), top/disordered; all for intact co perpendicular to surface, bonded through carbon atom on ideally terminated bulk structure.

QUALITY OF EXPERIMENT-THEORY FIT
RVH \(=0.29, ~ R Z J=0.50, ~\) RPE \(=0.61\)
20 UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.770 & 0.000 & -1.385 & 2.400 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.540 & 0.000 & 0.000 & 4.800 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \(c(4 \times 2)\) \\
\hline
\end{tabular}

3D COORDINATES
01-C3: bridge-site CO molecules; 02-: top-site CO molecules;
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & site occ. & Rel. to & DX \(\pm \epsilon \mathrm{X}\) & DY \(\pm E Y\) & \(D z \pm \epsilon Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.385 \& & 0.800 \& & 2.260 A & \\
\hline ovrl & 0 & 1 & s1 & . 25 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & 0 & 2 & s1 & . 25 & 1 & 0.500 f & 0.500 f & \(0.300 \pm .100 \AA\) & \(13.3 \pm 4.4\) \\
\hline ovrl & C & 3 & s 1 & . 25 & 1 & 0.000 f & 0.000 f & \(1.150 \pm .050 \AA\) & \(50.9 \pm 2.2\) \\
\hline ovrl & C & 4 & s1 & . 25 & 2 & 0.000 f & 0.000 f & \(1.150 \pm .050 \AA\) & \(50.9 \pm 2.2\) \\
\hline intf & Pt & 5 & b & 1.00 & 3 & 0.000 f & 0.000 f & \(1.850 \pm .025 \AA\) & \(81.9 \pm 1.1\) \\
\hline subl & Pt & 6 & b & 1.00 & 5 & 0.667 f & 0.333 f & 2.260 \& & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.150 & 01 & C3 & Pt5 & 180.0 \\
\hline 1.150 & 02 & C4 & \(\operatorname{Pt5}(1,1)\) & 138.2 \\
\hline 2.769 & Pt5 & Pt6 & & \\
\hline
\end{tabular}
```

COMMON NAME : Pt(100)-(1x1)-Cu multilayer
CLASSIFICATION : 78.29.2
TECHNIQUE : LEED
AUTHORS : Y.S. Li, J. Quinn, H. Li, D. Tian, F. Jona and P.M. Marcus
REFERENCE : Phys. Rev., B44, 8261 (1991)
CLASSIFICATION : 78.29.2
TECHNIQUE : LEED
D. Tian, F. Jona and P.M. Marcus
Phys. Rev., B44, 8261 (1991)

```

SURFACE TYPE
Substrate : Pt
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p4m
2D surf symm: p4m

\section*{SAMPLE PREPARATION ( 3 sample)}
: Cu deposited from Cu single crystal onto RT substrate
Crystallinity: LEED: increased background
Anal. methods: coverage from AES
Contamination: AES: 2.5at\% 0, 11at\% C
DATA COLLECTION
Technique: LEED; video LEED
\(\begin{aligned} \text { Dataset : } & \text { IV spectra at normal incidence: } \\ & (10),(11),(20) ; 40<E<320 \mathrm{eV} ; 3 \mathrm{film}\end{aligned}\)
\(\begin{aligned} \text { Dataset: }: & \text { IV spectra at normal incidence: } \\ & (10),(11),(20) ; 40<E<320 \mathrm{eV} ; 3 \mathrm{film}\end{aligned}\) thicknesses: 4, 5, 6 layers

\section*{STRUCTURE TYPE}

About 10 epitaxial (1x1) monolayers, forming strained fec Cu
```

Adsorbate: Cu
Coverage : }10\textrm{Cu}/\textrm{Pd
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED (CHANGE code): Moruzzi et al pot, 8 ph shs; Vor \(=-8 \pm 2 \mathrm{eV}\) (fit), Voi=-4eV; rms vibs \(0.12 \AA\)

\section*{STRUCTURES EXAMINED}

Semi-infinite Cu(100) with lateral Pd(100) lattice constant;
spacings varied: 'bulk' Cu-Cu, top two Cu-Cu
QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.35, ~ R P E=0.58, R Z J=0.13\)
2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.750 & 0.000 & 0.000 & 2.750 & 90.0 & \((1.000,1.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES
\(1.62 \AA\) bulk spacing was fit, keeping lateral Pd distance
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & Dx \(\pm\) & \(\epsilon \mathrm{X}\) & Dy \(\pm\) & \(\epsilon Y\) & Dz & \(\pm \boldsymbol{E}\) & & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm\) & \(\epsilon z / B z\) \\
\hline epir & & -2 & & & & & \(f\) & & f & & & A & & \\
\hline subr & & -1 & & & & -1.375 & \(\AA\) & -1.375 & A & 1.620 & & A & & \\
\hline intf & Cu & 1 & b & 1.00 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 & \\
\hline intf & Cu & 2 & b & 1.00 & 1 & 0.500 & \(f\) & 0.500 & f & 1.570 & \(\pm .030\) & A & \(96.9 \pm\) & 1.9 \\
\hline intf & Cu & 3 & b & 1.00 & 2 & -0.500 & \(f\) & -0.500 & \(f\) & 1.620 & \(\pm .030\) & A & \(100.0 \pm\) & 1.9 \\
\hline subl & Cu & 4 & b & 1.00 & 3 & 0.500 & \(f\) & 0.500 & \(f\) & 1.620 & \(\pm .030\) & A & \(100.0 \pm\) & 1.9 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.750 & Cu1 & Cu1 (1,0) & Cu2 & 56.6 \\
2.499 & Cu1 & Cu2 & Cu3 & 78.7 \\
2.531 & Cu2 & Cu3 & Cu4 & 79.6 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: P t(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{S}\) \\
CLASSIFICATION & \(: 78.16 .1\) & \\
TECHNIQUE & \(:\) LEED & \\
AUTHORS & K. Hayek, H. Glassl, A. Gutmann, H. Leonhard, M. Prutton, \\
& S.P. Tear and M.R. Welton-Cook \\
REFERENCE & \(:\) Surf. Sci., \(152,419(1985)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Pt
Crystal face: 111
Temperature : 293 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
\[
\begin{aligned}
& \text { Adsorbate: } \mathrm{S} \\
& \text { Coverage }: 0.33 \mathrm{~S} / \mathrm{Pt}_{\mathrm{t}} \\
& \text { Pattern }:(\sqrt{3} \times \sqrt{ } 3) R 30^{\circ} \\
& \text { Matrix }:(1.000,1.000) \\
&(-2.000,1.000)
\end{aligned}
\]

STRUCTURE TYPE
Atomic adorption in fec hollow site

SAMPLE PREPARATION ( 1 sample)

\section*{COMMENTS}

Treatment : exposure at 293 K to \(\mathbf{S 2}\) then brief heating to 653 K
Crystallinity:
Anal. methods:
Contamination: AES and radiotracer to check \(S\) coverage
DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (CAVLEED): 8 phase shifts (Pt Herman-Skillman
superpos pot, \(s\) Clementi-Roetti pot); Voi=-4 eV; ©0 234 K

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.771 & 0.000 & 1.386 & 2.400 & 60.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.157 & 2.400 & -4.157 & 2.400 & 120.0 & \((1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}
\(3 D\) COORDINATES
s1: overlayer in fcc hollow sites

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.260 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{l|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.277 & S 1 & \(\mathrm{Pt2}\) & \(\mathrm{Pt2(1,0)}\) & 127.5 \\
2.277 & S 1 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & 170.7 \\
2.769 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & & \\
\hline
\end{tabular}
```

COMMON NAME : Pt(111)-(2x2)-Sn
CLASSIFICATION : 78.50.1a
TECHNIQUE: ALICISS
AUTHORS : S.H. Overbury, D.R. Mullins, M.F. Paffett and B.E. Koel
REFERENCE : Surf. Sci., 254, 45 (1991)

```
ILLUSTRATION: 27

SURFACE TYPE
Substrate : Pt
Crystal face: 111
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
```

Adsorbate: Sn
Coverage : $0.25 \mathrm{Sn} / \mathrm{Pt}$
Pattern : (2x2)
Matrix $:(2.000,0.000)$

```

\section*{STRUCTURE TYPE}

Atomic substitutional adsorption in fec hollow site, approximating \(\mathrm{Pt} 3 \mathrm{Sn}(111)\) termination

SAMPLE PREPARATION ( 1 sample)
Treatment : Sn deposited at RT using 2 diff. evaporators, then annealed
Crystallinity:
Anal. methods: LEED, AES
Contamination:
DATA COLLECTION
Technique: ALICISS; spherical sector electrostatic ana Dataset : Li+ ion scattering yield as fct. of polar and azimuthal angles

\section*{THEORY/OATA TREATMENT}

Shadowing and blocking simulation; distances from critical angles; Thomas-Fermi-Moliere potential

STRUCTURES EXAMINED
Overlayer model; substitutional (in top Pt layer) model: variation of Sn-Pt buckling in top layer

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.771 & 0.000 & 1.386 & 2.400 & 60.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.543 & 0.000 & 2.771 & 4.800 & 60.0 & \((2.000,0.000)\) & (2x2) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk \(2=2.260 \mathrm{~A}\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.780 & Sn 1 & \(\mathrm{Pt2}\) & Sn1(1,0) & 170.9 \\
2.780 & Sn 1 & \(\mathrm{Pt2}\) & \(\mathrm{Pt3}\) & 119.9 \\
\hline
\end{tabular}
```

COMMON NAME : Pt(111)-(\sqrt{}{3}x\sqrt{}{3})R3\mp@subsup{0}{}{\circ}-\textrm{Sn}
CLASSIFICATION : 78.50.1b
TECHNIQUE : ALICISS
AUTHORS : S.H. Overbury, D.R. Mullins, M.F. Paffett and B.E. Koel
REFERENCE : Surf. Sci., 254, 45 (1991)

```

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Pt & Adsorbate: Sn \\
Crystal face: 111 & Coverage : \(0.33 \mathrm{Sn} / \mathrm{Pt}\) \\
Temperature: RT* & Pattern \(:\left(\sqrt{3 x \sqrt{3}) R 30^{\circ}}\right.\) \\
Bulk lattice: fcc & Matrix \(:(1.000,1.000)\) \\
2D bulk symm: p3m1 &
\end{tabular}

Substrate : Pt
Temperature : RT* Bulk lattice: fcc 2D bulk symm: p3m1 20 surf symm: p31m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : Sn deposited at RT using 2 diff. evaporators, then annealed
Crystallinity:
Anal. methods: LEED, AES
Contamination:

\section*{DATA COLLECTION}

Technique: ALICISS; spherical sector electrostatic ana Dataset : Li+ ion scattering yield as fct. of polar and azimuthal angles

\section*{STRUCTURE TYPE}

Atomic substitutional adsorption in fec hollow site, approximating \(\mathrm{pt} 3 \mathrm{Sn}(111)\) termination

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Shadowing and blocking simulation; distances from critical angles; Thomas-Fermi-Moliere potential

STRUCTURES EXAMINED
Overlayer model; substitutional (in top Pt layer) model: variation of Sn-Pt buckling in top layer

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(A\) ) & Ay ( \(\AA\) ) & \(B X(A)\) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.771 & 0.000 & 1.386 & 2.400 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.157 & 2.400 & \(-4.157\) & 2.400 & 120.0 & \[
\begin{aligned}
& (1.000, \\
& (-2.000, \\
& (.000)
\end{aligned}
\] & \((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Sn1: substitutional in top Pt layer
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4 Bulk z = \(2.260 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{DX} \pm \boldsymbol{x}\) & Dy \(\pm \epsilon y\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm E z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & \(\AA\) & \\
\hline subr & & -1 & & & & 1.386 & 0.800 A & 2.260 A & \\
\hline intf & Sn & 1 & s1 & . 33 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Pt & 2 & s1 & . 33 & 1 & 0.667 f & 0.333 f & \(0.220 \pm .050 \AA\) & \(9.7 \pm 2.2\) \\
\hline intf & Pt & 3 & s1 & . 33 & 2 & -0.333 f & 0.333 f & 0.000 A & 0.0 \\
\hline subl & Pt & 4 & \(b\) & 1.00 & 3 & 0.333 f & 0.333 f & 2.260 A & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.780 & Sn1 & Pt2 & \(\operatorname{sn} 1(1,0)\) & 170.9 \\
\hline 2.780 & Sn1 & Pt2 & Pt3 & 119.9 \\
\hline
\end{tabular}
```

COMMON NAME : Pt0.8Fe0.2(110)-(1x2) ILLUSTRATION: 140

```
CLASSIFICATION : 78.26.2

TECHNIQUE : LEED
AUTHORS : R. Baudoing-Savois, Y. Gauthier and W. Moritz
REFERENCE : Phys. Rev., B38, 12977 (1991)

\section*{SURFACE TYPE}

Substrate: Pt0.8Fe0.2
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: none
2D surf symm: none

Adsorbate:
Coverage :

Pattern : (1×2) and disorderbuckling similar to \(\mathrm{Pt}(110)-(1 \times 2)\); Pt concentrations in
Matrix : ( \(1.000,0.000\) ) layer 1 to 5 are: \(82 \%, 84 \%, 68 \%, 81 \%\) and \(44 \%\), respectively;
( \(0.000,2.000\) ) chemical ordering is described by \((2 \times 2)\) superstructure celi

\section*{STRUCTURE TYPE}

Missing-row reconstruction with multilayer relaxation
including 2nd- and 4th-layer pairing, and 3rd- and 5th-layer

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : repeated cycles of Ar+ sputtering and annealing above 1000 K
Crystallinity:
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : IV spectra for \(26 / 21\) beams at normal/off-normal incidence; \(30<E<280 \mathrm{eV}\); cumul. E range 5000/4640eV

\section*{COMMENTS}

Bulk structure is chemically ordered and can be described as alternating (110) layers with \(100 \% \mathrm{Pt}\) and \(60 \% \mathrm{Pt} / 40 \% \mathrm{Fe}\); the bulk mixed layers are also simulated here with a (2x2) superstructure cell; chemical ordering is absent in external layers but gradually recovers over five to six layers deep

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling, matrix inversion): up to 10 phase shifts, ATA approximation to model composition

\section*{STRUCTURES EXAMINED}

Only the missing row model of \(\mathrm{Pt}(110)\) has been considered. varied were: top 4 interlayer spacings, row pairing in layers 2 and 4, buckling in all odd layers; compositions of the first 5 layers were optimized

\section*{QUALITY OF EXPERIMENT-THEORY FIT \\ RDE \(=0.36, \operatorname{RPE}=0.34, \operatorname{RZJ}=0.14\)}

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.760 & 0.000 & 0.000 & 3.900 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.520 & 0.000 & 0.000 & 7.800 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 \times 2)\) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Fe1-Pt2: disordered remaining row in top layer, \(82 \% \mathrm{Pt} / 18 \% \mathrm{Fe}\); Fe3-Pt6: row-paired 2 nd layer, chem. disord., \(84 \% \mathrm{Pt} / 16 \% \mathrm{Fe}\); Pt7-Pt10, Fe15-Pt18: buckled 3rd layer ( \(68 \% \mathrm{Pt}\) ), 5th ( \(44 \% \mathrm{Pt}\) ); Fe11-Pt14: row-paired 4th layer, chem. disord., 81\%Pt/19\%Fe

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Pt0.8FeO.2(110)-(1x2)
78.26 .2

3D Coordinates - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Celt type & site occ. & Rel. to & \multicolumn{2}{|l|}{\(D \mathrm{X} \cdot \pm \epsilon \mathrm{X}\)} & \multicolumn{2}{|l|}{Dy \(\pm \in \boldsymbol{y}\)} & \multicolumn{2}{|l|}{Dz \(\pm \in \boldsymbol{z}\)} & \(D z / B z(\%) \pm \in z / B z\) \\
\hline subl & Fe & 20 & s 1 & . 20 & 1 & 0.000 & \(f\) & 0.000 & f & 8.180 & A & 592.8 \\
\hline subl & Pt & 21 & s 1 & .30 & 20 & 0.500 & \(f\) & 0.000 & \(f\) & 0.000 & A & 0.0 \\
\hline subl & Fe & 22 & s1 & . 20 & 20 & 0.000 & \(f\) & 0.500 & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline subl & Pt & 23 & s1 & .30 & 20 & 0.500 & f & 0.500 & f & 0.000 & \(\AA\) & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angl
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.760 & Fe1 & Pt2 & Fe1(1,0) & 180.0 \\
\hline 2.760 & Fe1 & Pt2 & Fe3 & 59.2 \\
\hline 2.760 & Fe1 & Pt2 & Pt4 & 120.8 \\
\hline 2.695 & Fe1 & Fe3 & Pt 2 & 61.6 \\
\hline 2.696 & Fe1 & Pt5 \((0,-1)\) & Pt2 & 61.6 \\
\hline 2.680 & Fe1 & Pt9 & Fe3 & 58.5 \\
\hline 2.760 & Fe3 & Pt4 & Fe1 1 1,0) & 120.8 \\
\hline 2.760 & Fe3 & Pt4 & Pt2 & 59.2 \\
\hline 2.708 & Fe3 & Pt7 & Pt4 & 61.3 \\
\hline
\end{tabular}

COMMON NAME : Pt0.8Fe0.2(111)-(1x1)
ILLUSTRATION: 132
CLASSIFICATION : 78.26.1
TECHNIQUE : LEED
AUTHORS : P. Beccat, Y. Gauthier, R. Baudoing-Savois and J.C.
Bertolini
REFERENCE : Surf. Sci., 238, 105 (1990)

SURFACE TYPE
\begin{tabular}{|c|c|c|c|c|}
\hline FACE & & & & STRUCTURE TYPE \\
\hline Substrate : & Pt0.8Fe0. 2 & Adsorbate: & & Unreconstructed, relaxed, segregated bulk termination: \\
\hline Crystal face: & 111 & Coverage & & top layer buckled by 0.09\&, where every Pt atom with 3 \\
\hline Temperature : & RT & Pattern & (1×1) and disorder & underlying Pt atoms moves outward; Pt concentrations in \\
\hline Bulk lattice: & fcc & Matrix & ( 1.000, 0.000) & top 3 layers: 96\%, 88\%, 84\%; top 2 spacings expanded 0.3\% \\
\hline 2D bulk symm: & none & & ( 0.000, 1.000) & and contracted \(0.6 \%\); the bulk is chemically ordered. \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar-ion bombardment and annealing to 1200 K
Crystallinity:
Anal. methods: AES
Contamination: AES: no impurities

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra for 12 non-equivalent beams at normal incidence; cumulative energy range 1612 eV

\section*{COMMENTS}

The chemically ordered bulk structure is approximately described with a \((2 \times 2)\) supercell, corresponding to Pt75Fe25, and the chemically disordered surface region is also described approximately with a (2x2) supercell

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: averaged-t-matrix approximation (ATA), 10 phase shifts

STRUCTURES EXAMINED
Varied were: first two interlayer spacings, buckling in top layer; compositions of first three layers; only the (111)(1×1) structure was considered

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & Ay ( \(A\) ) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.772 & 0.000 & 1.386 & 2.401 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.544 & 0.000 & 2.772 & 4.801 & 60.0 & \((2.000,0.000)\) & ( \(2 \times 2\) ) & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Pt1-Pt4: top layer, Pt1 buckled outward; Fe5-Pt8: planar 2nd layer;
Fe9-Pt12: set of periodically repeating bulk layers
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(12 \quad\) Bulk \(2=2.260 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D x \pm \epsilon x\) & \(D Y \pm E y\) & \(D z \pm E Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 2.770 A & 1.600 A & 2.260 A & \\
\hline intf & Pt & 1 & s1 & . 25 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Pt & 2 & s1 & . 25 & 1 & 0.500 f & 0.000 f & \(0.090 \pm .020 \AA\) & \(4.0 \pm .9\) \\
\hline intf & Pt & 3 & s1 & . 25 & 2 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Pt & 4 & s1 & . 25 & 3 & -0.500 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Fe & 5 & s1 & . 25 & 4 & 0.333 f & -0.167 f & \(2.267 \pm .025\) A & \(100.3 \pm 1.1\) \\
\hline intf & Pt & 6 & s1 & . 25 & 5 & 0.500 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Pt & 7 & s1 & . 25 & 6 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Pt & 8 & s1 & . 25 & 7 & -0.500 f & 0.000 f & 0.000 \& & 0.0 \\
\hline suol & Fe & 9 & s1 & . 25 & 8 & 0.333 f & -0.167 f & \(2.246 \pm .041\) A & \(99.4 \pm 1.8\) \\
\hline subl & Pt & 10 & s1 & . 25 & 9 & -0.500 f & 0.000 f & 0.000 A & 0.0 \\
\hline subl & Pt & 11 & s1 & . 25 & 10 & 0.000 f & -0.500 f & 0.000 A & 0.0 \\
\hline subl & Pt & 12 & s1 & . 25 & 11 & 0.500 f & 0.000 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

Pt0.8Fe0.2(111)-(1x1)
78.26 .1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-8 (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.773 & Pt1 & Pt2 & Pt1 (1,0) & 176.3 \\
\hline 2.773 & Pt1 & Pt2 & Pt3 & 120.0 \\
\hline 2.849 & Pt1 & Pt6(-1,0) & Pt3(-1,0) & 59.1 \\
\hline 2.772 & Pt2 & Pt3 & Pt1 1,0\()\) & 60.0 \\
\hline 2.775 & Pt2 & Fe5 & Pt 3 & 59.9 \\
\hline
\end{tabular}

COMMON NAME : PtO.1Ni0.9(100)-(1x1)
ILLUSTRATION: 136
CLASSIFICATION : 78.28.8
TECHNIQUE : LEED
AUTHORS : Y. Gauthier, W. Hoffmann and M. Wuttig
REFERENCE : Surf. Sci., 233, 239 (1990)

SURFACE TYPE
Substrate : Pt0.1Ni0.9
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
2D bulk symm: none
2D surf symm: none
\[
\begin{aligned}
& \text { Adsorbate: } \\
& \text { Coverage : } \\
& \text { Pattern : (1x1) and disor } \\
& \text { Matrix }:(1.000,0.000) \\
&
\end{aligned}
\]

\section*{STRUCTURE TYPE}

Relaxed bulk termination with 24.3at.\% Pt in the first layer
and 6.4at.\% Pt in the second layer; first, second and third
\[
\text { Pattern : (1x1) and disorderinterlayer spacings are relaxed by }+2.0 \%,-1.2 \% \text { and }+1.6 \% \text {, }
\]
\[
\text { Matrix }:(1.000,0.000) \text { respectively; layer compositions are here simulated }
\]
approximately with an ordered (3x2) superstructure cell

SAMPLE PREPARATION ( 1 sample)
Treatment: repeated cycles of Ar-ion bombardment and annealing to 1100 K
Crystallinity:
Anal. methods: AES, EDX and Laue \(x\)-ray diffraction
Contamination: AES: no impurities

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra for 4 non-equivalent beams at normal incidence, E range \(80-330 \mathrm{eV}\).

\section*{COMMENTS}

Bulk and surface are substitutionally disordered

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: averaged-t-matrix approximation (ATA)

STRUCTURES EXAMINED
Only the (100)-( \(\{\times 1)\) structure was considered; varied were: first 3 interlayer spacings and the compositions of the first 2 layers

20 UNIT CELLS ( 1 domain observed)


\section*{3D COORDINATES}

Pt1-Ni6: 1st layer containing 24.3at.\% Pt; Pt7-Ni12: 2nd layer containing 6.4at.\% Pt;
Pt13-Ni18: 3rd layer containing 10at.\% Pt (bulk value); Pt19-Ni24: repeating set of bulk layers
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \[
\begin{aligned}
& \text { Cell } \\
& \text { type }
\end{aligned}
\] & Site occ. & Rel. to & \(D \mathrm{X} \pm \pm \mathrm{x}\) & DY \(\pm \in \boldsymbol{y}\) & \(D z \pm E z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.261 A & 1.261 A & 1.784 A & \\
\hline intf & Pt & 1 & m1 & . 12 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 2 & m1 & . 19 & 1 & 0.333 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 3 & m1 & . 19 & 1 & 0.667 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 4 & m1 & . 19 & 1 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Pt & 5 & m1 & . 12 & 1 & 0.333 f & 0.500 f & 0.000 A & 0.0 \\
\hline int \(f\) & Ni & 6 & m1 & . 19 & 1 & 0.667 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Pt & 7 & m1 & . 06 & 1 & 0.167 , ff & 0.250 f & \(1.819 \pm .005\) A & \(102.0 \pm .3\) \\
\hline intf & Ni & 8 & m1 & . 19 & 7 & 0.333 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 9 & m1 & . 19 & 7 & 0.667 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 10 & m1 & . 19 & 7 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 11 & m1 & . 19 & 7 & 0.333 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 12 & m1 & . 19 & 7 & 0.667 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Pt & 13 & m1 & . 10 & 7 & 0.167 f & 0.250 f & \(1.762 \pm .007 \mathrm{~A}\) & \(98.8 \pm .4\) \\
\hline intf & Ni & 14 & m1 & . 18 & 13 & 0.333 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 15 & m1 & . 18 & 13 & 0.667 f & 0.000 f & 0.000 A & 0.0 \\
\hline int \(f\) & Ni & 16 & m1 & . 18 & 13 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 17 & m1 & . 18 & 13 & 0.333 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 18 & m1 & . 18 & 13 & 0.667 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Pt & 19 & m1 & . 10 & 13 & 0.167 f & 0.250 f & \(1.812 \pm .016 \AA\) & \(101.6 \pm .9\) \\
\hline subl & Ni & 20 & m1 & . 18 & 19 & 0.333 f & 0.000 f & 0.000 \& & 0.0 \\
\hline
\end{tabular}

Pt0.1Ni0.9(100)-(1x1)
78.28 .8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \multicolumn{2}{|l|}{Dx \(\pm\) ¢ \(\mathbf{X}\)} & \multicolumn{2}{|l|}{Dy \(\pm \boldsymbol{\pm}\)} & \multicolumn{2}{|l|}{\(D z \pm \in z\)} & \(D z / B z(\%) \pm \in Z / B z\) \\
\hline subl & Ni & 21 & m1 & . 18 & 19 & 0.667 & f & 0.000 & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline subl & Ni & 22 & m1 & . 18 & 19 & 0.000 & \(f\) & 0.500 & f & 0.000 & A & 0.0 \\
\hline subl & Ni & 23 & m1 & . 18 & 19 & 0.333 & \(f\) & 0.500 & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline subl & Ni & 24 & m1 & . 18 & 19 & 0.667 & \(f\) & 0.500 & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C} \mathrm{( } \mathrm{\%)}\)
\end{tabular} \\
\hline 2.522 & \(\mathrm{Pt1}\) & \(\mathrm{Ni2}\) & \(\mathrm{Pt7}\) & 60.3 \\
2.522 & \(\mathrm{Ni3}\) & \(\mathrm{Ni2}\) & \(\mathrm{Pt1}\) & 180.0 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) Pto. \(1 \mathrm{Ni0.9(110)-(1} \mathrm{\times 1)}\) & ILLUSTRATION: 138 \\
CLASSIFICATION & \(: 78.28 .7\) & \\
TECHNIQUE & LEED & \\
AUTHORS & Y. Gauthier, R. Baudoing and J. Jupille & \\
REFERENCE & : Phys. Rev., B40, \(1500(1989)\)
\end{tabular}

SURFACE TYPE
Substrate: Pt0.1Ni0.9
Crystal face: 110
Temperature : RT
Bulk lattice: fec
20 bulk symm: none
2D surf symm: none
SAMPLE PREPARATION ( 1 sample)
Treatment : repeated argon bombardment and annealing up to 1200 K
Crystallinity: x-ray diffraction pattern
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 6 and 12 nonequivalent beams at normal and \(20^{\circ}\) off-normal incidence, E range 30-280 eV

STRUCTURES EXAMINED
Only the (111)-(1x1) structure was considered; varied were first 3 interlayer spacings and compositions of the first 3 layers

2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.526 & 0.000 & 0.000 & 3.572 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 10.103 & 0.000 & 0.000 & 7.144 & 90.0 & \((4.000,0.000)\) & disordered & \begin{tabular}{l} 
m1: randomly mixed \\
layer \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

Pt1-Ni8: top layer with 6.4at.\% Pt; Pt9-Pt16: second layer with 52.3at.\% Pt;
Pt17-Ni24: third bulklike layer with 10at.\% Pt
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 24
Bulk z \(=1.263 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & \[
\begin{aligned}
& \text { site } \\
& \text { occ. }
\end{aligned}
\] & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{X} \quad \pm \boldsymbol{x}\) & Dy \(\pm\) ey & \(D z \pm \epsilon z\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & & \(\AA\) & \\
\hline subr & & -1 & & & & 1.263 A & 1.786 & 1.263 & \(\pm\) & \\
\hline intf & Pt & 1 & m1 & . 06 & 0 & 0.000 f & 0.000 f & 0.000 & \(\pm\) & 0.0 \\
\hline int f & Ni & 2 & m1 & . 13 & 1 & 0.250 f & 0.000 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 3 & m1 & . 13 & 1 & 0.500 f & 0.000 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 4 & m1 & . 13 & 1 & 0.750 f & 0.000 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 5 & m? & .13 & 1 & 0.000 f & 0.500 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 6 & m1 & .13 & 1 & 0.250 f & 0.500 f & 0.000 & \& & 0.0 \\
\hline intf & Ni & 7 & m1 & . 13 & 1 & 0.500 f & 0.500 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 8 & m1 & . 13 & 1 & 0.750 f & 0.500 f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Pt & 9 & m1 & . 13 & 1 & 0.125 f & 0.250 f & \(1.206 \pm .090\) & \(A\) & \(95.5 \pm 7.1\) \\
\hline intf & Ni & 10 & m1 & . 12 & 9 & 0.250 f & 0.000 f & 0.000 & A & 0.0 \\
\hline intf & Pt & 11 & m1 & . 13 & 9 & 0.500 f & 0.000 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 12 & m1 & . 12 & 9 & 0.750 f & 0.000 f & 0.000 & \(\AA\) & 0.0 \\
\hline intf & Ni & 13 & m1 & . 12 & 9 & 0.000 f & 0.500 f & 0.000 & A & 0.0 \\
\hline intf & Pt & 14 & m1 & . 13 & 9 & 0.250 f & 0.500 f & 0.000 & A & 0.0 \\
\hline intf & Ni & 15 & m1 & . 12 & 9 & 0.500 f & 0.500 f & 0.000 & A & 0.0 \\
\hline intf & Pt & 16 & m1 & . 13 & 9 & 0.750 f & 0.500 f & 0.000 & A & 0.0 \\
\hline subl & Pt & 17 & m1 & . 10 & 9 & 0.125 f & 0.250 f & \(1.308 \pm .140\) & A & \(103.6 \pm 11.1\) \\
\hline subl & Ni & 18 & m1 & .13 & 17 & 0.250 f & 0.000 f & 0.000 & \(\star\) & 0.0 \\
\hline subl & Ni & 19 & m1 & . 13 & 17 & 0.500 f & 0.000 f & 0.000 & A & 0.0 \\
\hline subl & Ni & 20 & m1 & . 13 & 17 & 0.750 f & 0.000 f & 0.000 & A & 0.0 \\
\hline subl & Ni & 21 & m1 & . 13 & 17 & 0.000 f & \(0.500 \quad f\) & 0.000 & A & 0.0 \\
\hline
\end{tabular}

Pt0.1Ni0.9(110)-(1×1)
78.28 .7

3D Coordinates - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \[
\begin{aligned}
& \text { Cell } \\
& \text { type }
\end{aligned}
\] & Site occ. & Rel.
to & \multicolumn{2}{|l|}{\(D \mathrm{X} \pm \in \mathrm{X}\)} & \multicolumn{2}{|l|}{\(D Y \pm \in Y\)} & & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline subl & Ni & 22 & m1 & . 13 & 17 & 0.250 & \(f\) & 0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline subl & Ni & 23 & m1 & . 13 & 17 & 0.500 & f & 0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline subl & Ni & 24 & m1 & .13 & 17 & 0.750 & \(f\) & 0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES ANO ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.526 & Pt1 & Ni2 & Pt9 & 59.6 \\
\hline 2.526 & Pt1 & Ni2 & Ni10 & 120.4 \\
\hline 2.498 & Pt1 & Pt9 & Ni2 & 60.7 \\
\hline 2.498 & Pt1 & Pt9 & Ni5 & 91.3 \\
\hline 2.514 & Pt1 & Ni23 & Pt9 & 59.1 \\
\hline 2.514 & Pt1 & Ni23 & Ni12(-1,0) & 59.1 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Pto.1Ni0.9(111)-(1×1) \\
CLASSIFICATION & \(: 78.28 .2\) \\
TECHNIQUE & : LEED \\
AUTHORS & : R. Baudoing, Y. Gauthier, M. Lundberg and J. Rundgren \\
REFERENCE & : J. Phys., ci9, 2825 (1986)
\end{tabular}

SURFACE TYPE
Substrate: Pt0.1Ni0.9
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: none
2D surf symm: none
SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of argon-ion bombardment and annealing to 1200 K
Crystallinity:
Anal. methods: AES
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : \(1-V\) spectra for 27 non-equivalent beams at
\(\begin{aligned} & \text { Dataset : } \\ & \text { normal and non-normal incidence; } E \text { ranges }\end{aligned}\) \(30-250 \mathrm{eV}\) and \(30-230 \mathrm{eV}\), resp.

\section*{STRUCTURE TYPE}

Relaxed bulk termination with 30at. \% Pt in first layer
and \(5 \mathrm{at} . \% \mathrm{Pt}\) in the second; second interlayer spacing
Adsorbate:
Coverage :
Pattern : (1x1) and disordercontracted by \(0.8 \%\);
Matrix : ( \(1.000,0.000\) ) layer compositions are here simulated approximately with ( \(0.000,1.000\) ) an ordered ( \(3 \times 2\) ) superstructure cell

CLASSIFICATION : 78.28.2
TECHNIQUE : LEED
AUTHORS : R. Baudoing, Y. Gauthier, M. Lundberg and J. Rundgren
REFERENCE : J. Phys., C19, 2825 (1986)

\section*{COMMENTS}

Bulk and surface are substitutionally disordered

THEORY/DATA TREATMENT
Dynamical LEED: averaged-t-matrix approximation (ATA)

\section*{STRUCTURES EXAMINED}

Only the (111)-(1x1) structure was considered; varied were: first 2 interlayer distances and the compositions of the first 2 layers

2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(A^{\text {) }}\) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.526} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.263} & \multirow[t]{2}{*}{2.187} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{7.577} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{2.526} & \multirow[t]{2}{*}{4.375} & \multirow[t]{2}{*}{60.0} & ( 3.000, 0.000) & \multirow[t]{2}{*}{disordered} & \multirow[t]{2}{*}{m1: randomly mixed layer} \\
\hline & & & & & & ( 0.000, 2.000) & & \\
\hline
\end{tabular}

30 COORDINATES
Pt1-Ni6: top layer with 30at.\% Pt; Pt7-Ni12: second layer with 5at.\% Pt;
Pt13-Ni18: repeating bulk layers with 10at.\% Pt
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(18 \quad\) Bulk \(2=2.062 \AA\)


Bond distance derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.525 & Ni 1 & Ni 2 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
CLASSIFICATION & \(: 78.28 .3\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & : Y. Gauthier, R. Baudoing, M. Lundberg and J. Rundgren \\
REFERENCE & : Phys. Rev., B35, 7867 (1987)
\end{tabular}

SURFACE TYPE
Substrate Pr0.5Ni0.5 Adsorbate:
Crystal face: 110
Temperature : RT
Bulk lattice: fcc
2D bulk symm: none
20 surf symm: none
SAMPLE PREPARATION ( 1 sample)
Treatment: repeated argon bombardment and annealing up to 1200 K

Coverage :
Pattern : ( \(1 \times 1\) ) and disordercomposition in top 3 layers: 100at \(\%\) Matrix \(:(1.000,0.000) 83 a t . \% \mathrm{Ni}\), resp.

\section*{STRUCTURE TYPE}

Bulk termination with relaxations of top 3 interlayer
spacings of \(-19 \%,+11 \%\) and \(-1 \%\), respectively; oscillatory

\section*{COMMENTS}

Bulk is substitutionally disordered, which is simulated with an ordered ( \(2 \times 2\) ) structure here

Crystallinity: x-ray diffraction pattern
Anal. methods:
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for (10), (13), (11) and (12) beams at four angles of incidence; \(E\) range \(30-250 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling, averaged t-matrix approx.); Vor and Voi optimized

STRUCTURES EXAMINED
Only (110)-(1x1) structure was considered; first 3 interlayer spacings and the vacancy
concentration in the top layer were varied, as well as the compositions of the first four layers

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.652 & 0.000 & 0.000 & 3.750 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.303 & 0.000 & 0.000 & 7.500 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & disordered \\
\hline
\end{tabular}

\section*{3D COORDINATES}
\(\mathrm{Ni} 1:\) topmost Ni -enriched layer with \(100 \mathrm{at} . \% \mathrm{Ni} . \mathrm{Pt2}\) : 95at.\% Pt-enriched second layer
Pt3-Ni6: third layer with 83at.\% Ni. Pt7-Pt10: bulklike substitutionally disordered layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 10
Bulk z \(=1.325 \quad \mathrm{~A}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & Dx & \(\pm \epsilon \mathrm{X}\) & Dy & & Dz & \(\pm \boldsymbol{Z}\) & & Dz/Bz(\%) & \(\pm \in Z / B z\) \\
\hline epir & & -2 & & & & & f & & f & & & A & & \\
\hline subr & & -1 & & & & 1.32 & A & 1.875 & A & 1.325 & & A & & \\
\hline intf & Ni & 1 & \(b\) & 1.00 & 0 & 0.00 & f & 0.000 & \(f\) & 0.000 & & A & 0.0 & \\
\hline intf & Pt & 2 & b & . 95 & 1 & 0.50 & \(f\) & 0.500 & \(f\) & 1.070 & \(\pm .010\) & A & \(80.8 \pm\) & \(\pm .8\) \\
\hline intf & Pt & 3 & m1 & . 17 & 2 & 0.25 & \(f\) & 0.250 & \(f\) & 1.470 & \(\pm .020\) & A & \(110.9 \pm\) & \(\pm 1.5\) \\
\hline intf & Ni & 4 & m1 & . 27 & 3 & 0.50 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 & \\
\hline intf & Ni & 5 & m1 & . 27 & 3 & 0.00 & \(f\) & 0.500 & \(f\) & 0.000 & & A & 0.0 & \\
\hline intf & Ni & 6 & m1 & . 27 & 3 & 0.50 & \(f\) & 0.500 & \(f\) & 0.000 & & A & 0.0 & \\
\hline subl & Pt & 7 & m1 & . 24 & 3 & 0.25 & \(f\) & 0.250 & \(f\) & 1.310 & \(\pm .020\) & A & \(98.9 \pm\) & \(\pm 1.5\) \\
\hline subl & Ni & 8 & m1 & . 26 & 7 & 0.50 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 & \\
\hline subl & Ni & 9 & m1 & . 26 & 7 & 0.000 & \(f\) & 0.500 & \(f\) & 0.000 & & A & 0.0 & \\
\hline subl & Pt & 10 & m1 & . 24 & 7 & 0.50 & \(f\) & 0.500 & \(f\) & 0.000 & & A & 0.0 & \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.652 & Ni1 & Ni1(1,0) & Pt5 (1,-1) & 121.6 \\
\hline 2.652 & Nil & Ni1 (1,0) & Pt5 \((0,-2)\) & 58.4 \\
\hline 2.533 & Nil & Pt5 \(0,-1)\) & Ni 1 (1,1) & 130.0 \\
\hline 2.533 & Ni1 & \(\mathrm{Pt5}(0,-1)\) & Ni1 (1,0) & 63.1 \\
\hline 2.533 & Nil & \(\mathrm{Pt5}(0,-1)\) & Ni \(1(0,1)\) & 95.5 \\
\hline
\end{tabular}

COMMON NAME : PtO.5NiO.5(111)-(1x1)
ILLUSTRATION: 130
CLASSIFICATION : 78.28.1b
TECHNIQUE : LEED
AUTHORS : Y. Gauthier, R. Baudoing, Y. Joly, J. Rundgren, J.C
Bertolini and J. Massardier
REFERENCE : Surf. Sci., 162, 342 (1985)

SURFACE TYPE
Substrate: Pt0.5Ni0.5
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2 bulk symm: none
2D surf symm: none

Adsorbate:
Coverage :
Pattern : (1×1) and disorderlayer compositions are here simulated approximately with
Matrix \(:(1.000,0.000)\) an ordered ( \(3 \times 2\) ) superstructure cell
( \(0.000,1.000\) )

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of Ar-ion bombardment and annealing to 1200 K
Crystallinity:
Anal. methods: AES
Contamination: AES: no impurities
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 21 non-equivalent beams at normal incidence and at 10 and \(20^{\circ}\) off-normal incidence

COMMENTS
Bulk and surface are substitutionally disordered

THEORY/DATA TREATMENT
Dynamical LEED: averaged-t-matrix approximation (ATA)

STRUCTURES EXAMINED
Only the (111)-(1x1) structure was considered; varied were: first 3 interlayer distances and the compositions of the first 2 layers

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.650 & 0.000 & 1.325 & 2.295 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 7.950 & 0.000 & 2.650 & 4.590 & 60.0 & \((0.000,1.000)\) & \((3.000,0.000)\) & disordered \\
\hline
\end{tabular}

3D COORDINATES

Pt1-Pt6: top layer with 88at.\% Pt; Pt7-Ni12: second layer with 9at.\% Pt;
Pt13-Ni18: third layer with 65at.\% Pt; Pt19-Ni24: repeating bulk layers with 50 at. \(\% \mathrm{Pt}\)
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Pto.5Ni0.5(111)-(1x1)

\subsection*{78.28.1b}

3D Coordinates - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel.
to & \multicolumn{2}{|l|}{\(\mathrm{Dx} \pm \boldsymbol{\pm}\)} & \multicolumn{2}{|l|}{Dy \(\pm \in \boldsymbol{y}\)} & \multicolumn{2}{|l|}{\(D z \pm \boldsymbol{Z}\)} & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline subl & Pt & 21 & m1 & .17 & 19 & 0.667 & f & 0.000 & f & 0.000 & \(\AA\) & 0.0 \\
\hline subl & Ni & 22 & m1 & .17 & 19 & 0.000 & f & 0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline subl & Pt & 23 & m1 & .17 & 19 & 0.333 & f & 0.500 & \(f\) & 0.000 & A & 0.0 \\
\hline subl & Ni & 24 & m1 & .17 & 19 & 0.667 & \(f\) & 0.500 & \(f\) & 0.000 & \(\AA\) & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.650 & Ni1 & Pt2 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) PtO.5Ni0.5(111)-(1x1) \\
CLASSIFICATION \(:\) & 78.28 .9 \\
TECHNIQUE & \(:\) MEIS-SB \\
AUTHORS & S. Deckers, F.H.P.M. Habraken, W.F. van der Weg, A.W. \\
& \\
& Denier van der Gon, B. Pluis, J.F. van der Veen and R. Baudo \\
REFERENCE & \(:\) Phys. Rev., B42, 3253 (1990)
\end{tabular}

SURFACE TYPE
Substrate : Pt0.5NiO.5 Adsorbate:

\section*{Coverage :}

27at.\% Pt in the second and 53at.\% Pt in the third;
Pattern : (1×1) and disordercontraction of first and second interlayer spacings by \(2 \%\);
Matrix \(:(1.000,0.000)\) layer compositions are here simulated approximately with ( \(0.000,1.000\) ) an ordered ( \(3 \times 2\) ) superstructure cell
Crystal face: 111
Temperature : RT
Bulk lattice: fcc
2D bulk symm: none

20 surf symm: none
SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of Ar -ion bombardment and annealing to 1270 K
Crystallinity:
Anal. methods: AES, LEED
Contamination: AES: no impurities

\section*{DATA COLLECTION}

Technique: MEIS-SB; MEIS with shadowing and blocking
Dataset : 64 angular yield spectra covering \(20^{\circ}\) exit angle range

\section*{COMMENTS}

Bulk and surface are substitutionally disordered

\section*{THEORY/DATA TREATMENT}

Pt- and Ni -surface peak areas extracted from spectra and converted into number of visible Pt and Ni

\section*{STRUCTURES EXAMINED}

Only the (111)-(1x1) structure was considered; varied were: first 2 interlayer distances and the compositions of the first 3 layers; thermal vibration amplitudes of the first 3
layer atoms were optimized.

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.650 & 0.000 & 1.325 & 2.295 & 60.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 7.950 & 0.000 & 2.650 & 4.590 & 60.0 & \[
(3.000,0.000)
\] & disordered & m1: randomly mixed layer \\
\hline
\end{tabular}

3D COORDINATES
Pt1-Pt6: top layer with 75at.\% Pt; Ni7-Ni12: second layer with 27at.\% Pt;
Pti3-Ni18: third layer with 53at.\% Pt
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(D \mathrm{D} \quad \pm \epsilon \mathrm{X}\) & DY \(\pm\) Ey & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 2.650 A & 1.530 A & 2.164 A & \\
\hline intf & Pt & 1 & m1 & .19 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 2 & m1 & .13 & 1 & 0.333 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Pt & 3 & m1 & . 19 & 1 & 0.667 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 4 & m1 & .13 & 1 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Pt & 5 & m1 & .19 & 1 & 0.333 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Pt & 6 & m1 & . 19 & 1 & 0.667 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 7 & m1 & . 18 & 1 & 0.222 f & 0.333 f & \(2.120 \pm .011\) A & \(98.0 \pm .5\) \\
\hline intf & Pt & 8 & m1 & . 14 & 7 & 0.333 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ni & 9 & m1 & . 18 & 7 & 0.667 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Pt & 10 & m1 & . 14 & 7 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 11 & m1 & . 18 & 7 & 0.333 f & 0.500 f & 0.000 A & 0.0 \\
\hline intf & Ni & 12 & m1 & . 18 & 7 & 0.667 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Pt & 13 & m1 & . 18 & 7 & 0.222 f & 0.333 f & \(2.120 \pm .011\) A & \(98.0 \pm .5\) \\
\hline subl & Ni & 14 & m1 & . 16 & 13 & 0.333 f & 0.000 f & 0.000 A & 0.0 \\
\hline subl & Pt & 15 & m1 & . 18 & 13 & 0.667 f & 0.000 f & 0.000 A & 0.0 \\
\hline subl & Ni & 16 & m1 & . 16 & 13 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Pt & 17 & m1 & . 18 & 13 & 0.333 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Ni & 18 & m1 & .16 & 13 & 0.667 f & 0.500 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

Pt0.5NiO.5(111)-(1×1)
78.28.9

BOND DISTANCES AND ANGLES
Bond distance derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.650 & \(\mathrm{Pt1}\) & Ni 2 & & \\
\hline
\end{tabular}
```

COMMON NAME : Pt0.78Ni0.22(111)-(1x1) ILLUSTRATION: 131
CLASSIFICATION : 78.28.1a
TECHNIQUE : LEED
AUTHORS : Y. Gauthier, R. Baudoing, Y. Joly, J. Rundgren, J.C.
Bertolini and J. Massardier
REFERENCE : Surf. Sci., 162, 342 (1985)

```
\begin{tabular}{|c|c|c|c|}
\hline SURFACE TYPE & & & STRUCTURE TYPE \\
\hline Substrate : Pt0.78Ni0.22 & Adsorbate: & & Unrelaxed bulk termination with 99at.\% Pt in first layer \\
\hline Crystal face: 111 & Coverage : & & 30at.\% Pt in the second and 87at.\% Pt in the third; \\
\hline Temperature : RT & Pattern & (1x1) and disorder & layer compositions are here simulated approximately with \\
\hline Bulk lattice: fcc & Matrix & ( 1.000, 0.000) & an ordered (3x2) superstructure cell \\
\hline 2D bulk symm: none & & ( 0.000, 1.000) & \\
\hline
\end{tabular}
20 surf sym: none

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of Ar-ion bombardment and annealing to 1200 K
Crystallinity:
Anal. methods: AES
Contamination: AES: no impurities

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra for 25 non-equivalent beams at normal incidence and at 10 and \(20^{\circ}\) off-normal incidence

COMMENTS
Bulk and surface are substitutionally disordered

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: averaged-t-matrix approximation (ATA)

STRUCTURES EXAMINED
Only the (111)-(1x9) structure was considered; varied were: first 3 interlayer spacings and the compositions of the first 2 layers

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.720 & 0.000 & 1.360 & 2.356 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 8.160 & 0.000 & 2.720 & 4.711 & 60.0 & \(\left(\begin{array}{l}0.000,1.000) \\
(0.000,0.000)\end{array}\right.\) & disordered & \begin{tabular}{l} 
m1: random(y mixed \\
layer
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

Pt1: top layer with 99at.\% Pt; Pt2-Ni7: second layer with 30at.\% Pt;
Pt8-Pt13: third layer with 87at.\% Pt; Pt14-Pt19: repeating bulk layers with 78 l at.\% Pt
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{Bond distances and angles are derived from coordinates}

No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom \(A\) & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.720 & \(\mathrm{Pt1}\) & \(\mathrm{Pt} 1(1,0)\) & & \\
\hline
\end{tabular}

COMMON NAME : \(\operatorname{Re}(10-10)-(1 \times 1)\)
CLASSIFICATION : 75.2
TECHNIQUE : LEED
AUTHORS : H.L. Davis and D.M. Zehner
REFERENCE : J. Vac. Sci. Technol., 17, 190 (1980)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Re & Adsorbate: & \\
\hline Crystal face: & 10-10 & Coverage : & \\
\hline Temperature : & RT & Pattern & (1x1) \\
\hline Bulk lattice: & hcp & Matrix & ( 1.000, 0.000) \\
\hline 2 D bulk symm: & prmm & & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination with top interlayer spacing contraction; second interlayer spacing may be expanded 1 to 2\%; termination between widely spaced layers

SAMPLE PREPARATION ( 1 sample)
Treatment : see Zehner and Farnsworth, Surf. Sci. 30, 335 (1972)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for (10) and (11) beams at normal incidence; energy range \(50-200 \mathrm{eV}\)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (giant matrix inversion for 8-layer slab):
8 phase shifts, free atom potential; Voi=-5 eV; \(\Theta 0=320 \mathrm{~K}\)

STRUCTURES EXAMINED
Two possible lattice terminations; variations of two topmost layer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.117\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & AY ( \(A\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.760} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{4.460} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.760} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{4.460} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3C COORDINATES}

Re1-Re2: narrowly spaced (contracted) pair of layers; Re3-Re4 and Re5-Re6: 2 pairs of narrowly spaced layers, together forming periodically repeating set of bulk layers; 0.14 error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.760 & Re1 & \(\operatorname{Re} 1(1,0)\) & Re2 & 59.4 \\
\hline 2.707 & Re1 & Re2 & Re3 & 58.3 \\
\hline 2.657 & Rel & Re3 & Re4 & 89.3 \\
\hline 2.745 & Re2 & Re3 & Re4 & 60.6 \\
\hline
\end{tabular}
75.2

> Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.769 & Re2 & Re4 & Re5 & 120.4 \\
\hline
\end{tabular}

CLASSIFICATION : 45.7 b
TECHNIQUE : LEED
AUTHORS : S. Hengrasmee, K.A.R. Mitchell, P.R. Watson and S.J. White
REFERENCE : Can. J. of Phys., 58, 200 (1980)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Rh & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT* & Pattern : (1×1) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p4m & \\
\hline
\end{tabular}

STRUCTURE TYPE
Unrelaxed bulk termination
Coverage :
Pattern : (1x1)
( \(0.000,1.000\) )

2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment: Ar sputtering at 1000 K followed by anneal ing to 1300K
Crystallinity:
Anal. methods:
Contamination: AES: no detectable imourities
```

DATA COLLECTION
Technique: LEED
Dataset : IV curves at normal incidence and
at }0=2\mp@subsup{0}{}{\circ},\phi=1\mp@subsup{0}{}{\circ}\mathrm{ in range 0<E<300 eV

```

COMMENTS

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 2 different pots: Moruzzi et al, and superposition pot; 8 phase shifts; \(\Theta D=402\) K; VoiaE**1/3

STRUCTURES EXAMINED
Variation in top layer spacing from \(-10 \%\) to \(10 \%\) from bulk spacing
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.09

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & \(A X(A)\) & \(A y(A)\) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 2.690 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 0.000 & 2.690 & 90.0 & \begin{tabular}{l} 
(1.000, 1.000) \\
\((10.000,0.000)\) \\
\((0.000,1.000)\)
\end{tabular} & \((1 \times 1)\) & \\
\hline
\end{tabular}

3D COORDINATES
first layer spacing shown is average of those obtained using two different potential models
Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\footnotetext{
BOND DISTANCES AND ANGLES
}

Bond distances are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{l} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.690 & Rh1 & \(R h 1(1,0)\) & & \\
2.696 & \(R h 1\) & \(R h 2\) & & \\
2.689 & Rh2 & \(R h 3\) & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Rh Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: prmm
2D surf symm: pmm
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Unrelaxed bulk termination

SAMPLE PREPARATION ( 1 sample)

\section*{COMMENTS}

Treatment : Ar sputtering at 1000 K followed by annealing to 1300 K
Crystallinity:
Anal. methods:
Contamination: AES: no detectable impurities

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV curves at normal incidence ( 5 beams) and at \(\theta=10^{\circ}, \phi=135^{\circ}\) ( 8 beams) in range \(50<E<250 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 2 different pots: Moruzzi et al, and superposition pot; 8 phase shifts; \(00=402 \mathrm{~K}\); Voi \(\alpha \mathrm{E}^{* * 1 / 3}\)

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\mathrm{A}^{\text {) }}\) & Bx ( \(\mathrm{A}^{\text {) }}\) & By ( A \(^{\text {) }}\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 3.800 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline Surface 1 & 2.690 & 0.000 & 0.000 & 3.800 & 90.0 & \(\left(\begin{array}{lll}(0.000, ~ 1.000) \\ (1.000, ~ & 0.000\end{array}\right)\) & & \\
\hline & & & & 3.800 & 90.0 & \(\left(\begin{array}{l}(1.000, \\ (0.000, \\ \hline\end{array}\right.\) & (1x1) & s1: cormmens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
first layer spacing shown is average of those obtained using two different potential models
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.340 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/ang!es: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.690 & Rh1 & Rh1 11,0\()\) & Rh2 & 59.9 \\
\hline 2.681 & Rh1 & Rh2 & Rh3 & 59.7 \\
\hline 2.670 & Rh1 & Rh3 & Rh2 & 60.1 \\
\hline 2.686 & Rh2 & Rh3 & & \\
\hline
\end{tabular}

TECHNIQUE : LEED
AUTHORS : W. Nichtl, N. Bickel, L. Hammer, K. Heinz and K. Mueller
REFERENCE : Surf. Sci., 188, L729 (1987)

SURFACE TYPE
Substrate: Rh
Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
20 bulk symm: prom
2D surf symm: pilm
SAMPLE PREPARATION ( 1 sample)
Treatment: Ar ion bombardment, then heating in 02 and H2
Crystallinity: sharp LEED pattern with poor background
Anal. methods:
Contamination: special attention to H
DATA COLLECTION
Technique: LEED
Dataset : IV curves for 11 non-equivatent beams: \(E\) range \(50-512 \mathrm{eV}\) cumulative E range 4400 eV

STRUCTURE TYPE
Unreconstructed surface with relaxations of top two interlayer spacings

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Oynamical LEED (RFS): 11 phase shifts; Vor \(=-12 \mathrm{eV}\) VoiaE**1/3; \(\Theta D=480 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of two topmost interlayer spacings from 1.22 to \(1.37 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.31
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 3.800 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 0.000 & 3.800 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{30 COORDINATES}

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.690 & \(R h 1\) & \(R h 1(1,0)\) & & \\
2.643 & \(R h 1\) & \(R h 2\) & \(R h 3\) & 58.8 \\
2.643 & \(R h 1\) & \(R h 2\) & \(R h 4\) & 118.3 \\
2.623 & \(R h 1\) & \(R h 3\) & \(R h 4\) & 120.0 \\
2.702 & \(R h 2\) & \(R h 3\) & \(R h 4\) & 60.5 \\
2.716 & \(R h 2\) & \(R h 4\) & & \\
2.689 & \(R h 3\) & \(R h 4\) & & \\
\hline
\end{tabular}
AUTHORS : W. Ded, B. Doetsch, L. Hammer, K. Heinz and K. Mueller
REFERENCE : Surf. Sci., 207, 55 (1988)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|}
\hline Substrate : Rh & Adsorbate: & \\
\hline Crystal face: 100 & Coverage : & \\
\hline Temperature : 130 K & Pattern & (1x1) \\
\hline Bulk lattice: fcc & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: p 4 m & & ( 0.000, 1.000) \\
\hline
\end{tabular}

2D surf symm: p4m

\section*{STRUCTURE TYPE}

Bulk termination with possible slight top interlayer expansion

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 11 relativistic phase shifts; Vor \(=-9 \mathrm{eV}, ~ \Theta D=480 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

Variation of top two interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.32\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 2.690 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 0.000 & 2.690 & 90.0 & \begin{tabular}{l}
\((0.000,1.000)\) \\
\((1.000,0.000)\) \\
\((0.000,1.000)\)
\end{tabular} & \((1 \times 1)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.690 & Rh1 & Rh1 \((1,0)\) & Rh2 & 60.1 \\
\hline 2.697 & Rh1 & Rh2 & Rh1 (1,0) & 59.8 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: \operatorname{Rh}(111)-(1 \times 1)\) \\
CLASSIFICATION & \(: 45.7 a\) \\
TECHNIQUE & LEED \\
AUTHORS & S. Hengrasmee, K.A.R. Mitchell, P.R. Watson and S.J. White \\
REFERENCE & Can. J. of Phys., 58, 200 (1980)
\end{tabular}

CLASSIFICATION : 45.7a
AUTHORS : S. Hengrasmee, K.A.R. Mitchell, P.R. Watson and S.J. White
REFERENCE : Can. J. of Phys., 58, 200 (1980)

SURFACE TYPE
\begin{tabular}{|c|c|c|c|c|}
\hline Substrate: & Rh & Adsorbate: & & \\
\hline Crystal face: & 111 & Coverage : & & \\
\hline Temperature : & RT* & Pattern & (1x1) & \\
\hline Bulk lattice: & fcc & Matrix & ( 1.000, & 0.000) \\
\hline 2 D bulk symm: & p3m1 & & ( 0.000, & 1.000) \\
\hline
\end{tabular}

Coverage :
Pattern : (1x1)
Matrix: \(\begin{array}{r}(1.000,0.000) \\ (0.000,1.000)\end{array}\)

STRUCTURE TYPE
Slightly relaxed bulk termination

SAMPLE PREPARATION ( 1 sample)
Treatment: Ar sputtering at 1000 K followed by annealing to 1300 K
Crystallinity:
Anal. methods:
Contamination: AES: no detectable impurities
DATA COLLECTION
Technique: LEED
Dataset : IV curves at normal incidence ( 5 beams) and at \(\theta=10, \phi=109^{\circ}\) in range \(0<E<250 \mathrm{eV}\)

\section*{COMMENTS}

This paper corrects an error in the first layer spacing previously reported in F.R. Shepherd, P.R. Watson, D.C. Frost and K.A.R. Mitchell, J. Phys. C11, 4591 (1978)

\section*{THEORY/DATA TREATMENT \\ Dynamical LEED (RFS): 2 different pots: Moruzzi et al, and superposition pot; 8 phase shifts; \(60=402 \mathrm{~K}\); VoiaE**1/3}

\section*{STRUCTURES EXAMINED}
-10\% to \(10 \%\) variation in top layer spacing in increments of \(\mathbf{2 . 5 \%}\)
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.12\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B x(\AA)\) & \(B y(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 1.345 & 2.330 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 1.345 & 2.330 & 60.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
first layer spacing shown is average of those obtained using two different potential models
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & site occ. & Rel. to & \(D \mathrm{X} \pm \in \mathrm{X}\) & Dy \(\pm\) ¢ 4 & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
intf \\
subl
\end{tabular} & Rh
Rh
Rh & -2
-1
1
2
3 & b
\(b\)
\(b\) & 1.00
1.00
1.00 & 0
1
2 & \(\begin{array}{ll} & \\ 1.345 & f \\ 0.000 & A \\ 0.333 & f \\ 0.333 & f \\ \end{array}\) & \begin{tabular}{ll} 
& \(f\) \\
0.777 & \(f\) \\
0.000 & \(f\) \\
0.333 & \(f\) \\
0.333 & \(f\)
\end{tabular} & \[
\begin{array}{ll} 
& A \\
2.190 & A \\
0.000 & A \\
2.160 \pm .020 & A \\
2.190 & A
\end{array}
\] & \[
\begin{array}{r}
0.0 \\
98.6 \pm .9 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-8 (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.690 & Rh1 & Rh1 (1,0) & Rh2 & 59.6 \\
\hline 2.660 & Rh1 & Rh2 & & \\
\hline 2.685 & Rh2 & Rh3 & & \\
\hline
\end{tabular}
TECHNIQUE : LEED

AUTHORS : M.A. Van Hove and R.J. Koestner
REFERENCE : Detn. Surf. Struc. by LEED; P(enum, , 357 (1984)

SURFACE TYPE


STRUCTURE TYPE
Unrelaxed bulk termination
Coverage :
Pattern : (1x1)
( \(0.000,1.000\) )

SAMPLE PREPARATION ( 1 sample)
COMMENTS
Treatment : weeks of \(\mathrm{Ar}+\) bomb., anneals and 02 treatments
Crystallinity:
Anal. methods:
Contamination: AES: small amounts of \(\mathrm{S}, \mathrm{B}, \mathrm{C}, \mathrm{Cl}\)

\section*{DATA COLLECTION}

Technique: LEED; photographic method
THEORY/DATA TREATMENT
Dataset : I-V curves: \((\Theta=0, \phi=0)\) : \(10,01,11,20\) beams;
Dynamical LEED (RFS): Moruzzi-Janak-Williams potential,
8 phase shifts; Vor=-10.0 eV, Voi \(\alpha E * * 1 / 3\); \(\Theta 0=406 \mathrm{~K}\)

STRUCTURES EXAMINED
FCc and hcp terminations on fec and hep bulk; top layer spacing varied
QUALITY OF EXPERIMENT-THEORY FIT
\(R P E=0.20, R Z J=0.15\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.680 & 0.000 & 1.340 & 2.321 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.680 & 0.000 & 1.340 & 2.321 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\)
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=2.192 \AA\)


BOND DISTANCES AND ANGLES
Bond distances are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{l|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{l} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.680 & Rh1 & \(R h 1(1,0)\) & & \\
2.683 & \(R h 1\) & \(R h 2\) & & \\
2.683 & Rh2 & \(R h 3\) & & \\
\hline
\end{tabular}

TECHNIQUE
LEED
AUTHORS: S. Liepold, N. Elbel, M. Michl, W. Nichtl-Pecher, K. Heinz and K. Mueller
REFERENCE : Surf. Sci., 240, 81 (1990)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: \(:\) Rh & Adsorbate: \\
Crystal face: 311 & Coverage: \\
Temperature: 85 K & Pattern: \((1 \times 1)\) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: cm &
\end{tabular}

\section*{STRUCTURE TYPE}

Unreconstructed surface with multilayer relaxations by \(-14.5 \%,+4.9 \%,-1.0 \%\) in top 3 interlayer spacings

\section*{COMMENTS}

Annealing to \(T>1100 \mathrm{~K}\) results in a partially disordered (1×2)

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ sputtering, 02 and H2 treatment Crystallinity:
Anal. methods:
Contamination: clean by AES
DATA COLLECTION
Technique: LEED
Dataset : \(1-V\) curves for 15 inequivalent beams; \(E\) range 50-230 eV

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): 10 relat. ph. shs. Vor \(=-7 \mathrm{eV}+0.03(E-150 \mathrm{eV})\), Voi \(\alpha E * * 1 / 3\); \(\Theta D(R h)=480 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of top 3 interlayer spacings and top 2 interlayer registries, keeping mirror plane
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.174\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & -1.345 & 4.460 & 106.8 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 1.345 & 4.460 & 106.8 & \((1.000,1.000)\) & \(0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.690 & Rh1 & Rh1 (1,0) & & \\
2.623 & Rh1 & \(R h 2\) & & \\
2.592 & Rh1 & Rh3 & & \\
2.737 & Rh2 & Rh3 & & \\
2.715 & Rh2 & Rh4 & & \\
2.681 & Rh3 & Rh4 & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Rh
Crystal face: 111
Temperature : 240 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : exposure to C 2 H 4
Crystallinity:
Anal. methods:
Contamination: monitored by AES

\section*{DATA COLLECTION}

Technique: LEED
Dataset : 8 and 11 independent I-V curves at normal and \(31^{\circ}\) incidence (total E ranges 732 and 1008 eV )

\section*{STRUCTURE TYPE}

Ethylidyne species (CCH3=C2H3) formed from ethylene ( C 2 H 4 ) with upright \(C-C\) axis: lower \(C\) in hcp hollow site, upper \(C\) forms methyl group (H positions not determined, but presence derived from HREELS data); buckling in top 2 Rh layers

\section*{COMMENTS}

Methyl group may rotate freely about C-C axis;
reanalysis of data of SSD 45.6.1.3 with tensor LEED: all coords of 2 C and 8 Rh atoms in top two metal layers left free in automated search, later symmetrized according to p3m1 symmetry; \(H\) ignored in LEED calculation

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 8 phase shifts, Moruzzi et al Rh pot, superposition pot for C

\section*{STRUCTURES EXAMINED}

Full relaxation of \(C-C\) and two layers of the substrate, starting from C-C axis perp. to surface in hep hollow site (30 struct. param. fitted; H ignored); final structure checked with off-normal incidence data

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RPE \(=0.32\)

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.680 & 0.000 & 1.340 & 2.321 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk Lattice \\
Surface 1 & 5.360 & 0.000 & 2.680 & 4.642 & 60.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 x 2)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
C1-C2: ethylidyne species adsorbed in hcp hollow; Rh3-Rh6: buckled 1st Rh layer; Rh7-Rh10: buckled 2nd Rh layer Error bars set to 0.1 A fitted coord.

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors


Rh(111)-(2x2)-C2H3
45.6.1.11

BOND DIStances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 1.480 & c1 & c2 & \(\operatorname{Rh3}(0,-1)\) & 129.1 \\
\hline 1.480 & C1 & c2 & Rh4 ( \(-1,-1\) ) & 129.1 \\
\hline 1.480 & C1 & C2 & Rh5 (-1,0) & 129.1 \\
\hline 2.059 & c2 & Rh3 (0,-1) & Rh4(0, -1) & 132.2 \\
\hline 2.593 & Rh3 & Rh4 & C2(1,1) & 132.2 \\
\hline 2.767 & Rh3 & Rh4(-1,0) & C2(0,1) & 47.8 \\
\hline 2.767 & Rh3 & Rh4(-1,0) & \(\operatorname{Rh} 5(-1,1)\) & 60.0 \\
\hline 2.767 & Rh3 & Rh4(-1,0) & Rh6 & 59.0 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Rh(111)-( \(2 \times 2)-\mathrm{C} 2 \mathrm{H} 3\) \\
CLASSIFICATION \(:\) & 45.6 .1 .3 \\
TECHNIQUE & LEED \\
AUTHORS & R.J. Koestner, M.A. Van Hove and G.A. Somorjai \\
REFERENCE & : Surf. Sci., 121, \(321(1982)\)
\end{tabular}

SURFACE TYPE
Substrate: Rh
Crystal face: 111
Temperature : 240 K
Bulk lattice: fcc
20 bulk symm: p3m?
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment: exposure to C 2 H 4
Crystallinity:
Anal. methods:
Contamination: monitored by AES

\section*{DATA COLLECTION}

\section*{Technique: LEED}

Dataset : total of 48 independent \(I-V\) curves at various angles of incidence

\section*{STRUCTURE TYPE}

Ethylidyne species ( \(\mathrm{CCH} 3=\mathrm{C} 2 \mathrm{H} 3\) ) formed from ethylene \((\mathrm{C} 2 \mathrm{H} 4)\) with upright \(C-C\) axis: lower \(C\) in hap hollow site, upper \(C\) forms methyl group (H positions not determined, but presence derived from HREELS data)

\section*{COMMENTS}

Methyl group may rotate freely about C-C axis

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 8 phase shifts, Moruzzi et al Rh pot, superposition pot for C (H ignored): VoiaE**1/3

\section*{STRUCTURES EXAMINED}

Unrelaxed substrate: top, bridge, fcc and hcp hollow sites with C-C axis perp. to surface (or also tilted over hephollow site); also single \(C\) atoms at 0.25 monolayer in hcp- hollow sites; total of 220 structures

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.52, \(R Z J=0.49\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.680 & 0.000 & 1.340 & 2.321 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 5.360 & 0.000 & 2.680 & 4.642 & 60.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & (2x2) \\
\hline
\end{tabular}

30 COORDINATES
H1-H2-H3-C4: methyl group, C4 pointing down to C5; H1 through C5: ethylidyne species adsorbed in hep hollow (H positions assumed to form ideal methyl group)

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C()^{\circ}\)
\end{tabular} \\
\hline 1.450 & \(C 4\) & \(C 5\) & Rh6 & 130.3
\end{tabular}

Rh(111)-(2x2)-C2H3
45.6.1.3

Bond Distances and Angles - Continued
\begin{tabular}{c|c|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.027 & \(C 5\) & \(R h 6\) & \(R h 6(1,0)\) & 131.4 \\
2.027 & C5 & Rh6 & Rh7 & 138.4 \\
\hline
\end{tabular}

COMMON NAME : Rh(111)-c(4×2)-C2H3+CO
CLASSIFICATION: 45.6.1.8.4a
TECHNIQUE : LEED
AUTHORS : G.S. Blackman, C.T. Kao, B.E. Bent, C.M. Mate, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 207, 66 (1988)

SURFACE TYPE
Substrate : Rh
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: pm

SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of heating in 02, Ar+ sputtering and annealing
Crystallinity
Anal. methods:
Contamination: checked by AES, HREELS and LEED
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 12 inequiv. beams at \(\Theta=0^{\circ}\), 25 at \(\theta=21^{\circ}, \phi=0^{\circ}\); cumul. E ranges 1134 eV and 1000 eV , resp.

\section*{STRUCTURE TYPE}

Adsorbate: \(\mathrm{C} 2 \mathrm{H} 3 ; \mathrm{CO} \quad\) Molecular coadsorption: CO over hcp, C 2 H 3 (ethylidyne) over
Coverage : \(1 / 4 \mathrm{C} 2 \mathrm{H} 3 / \mathrm{Rh}, 1 / 4 \mathrm{CO} / \mathrm{fcc}\) hollow site, both perpendicular to surface
Pattern : \(c(4 \times 2)\) (H positions guessed)
Matrix : ( 2.000, 0.000)
(-1.000, 2.000)

\section*{COMMENTS}

Other R-factors: RZJ=0.304 ( \(\theta=0^{\circ}\) ), \(0.348\left(\theta=21^{\circ}\right)\);
\(R P E=0.512\left(\theta=0^{\circ}\right), 0.517\left(\theta=21^{\circ}\right)\)

THEORY/DATA TREATMENT
Dynamical LEED (BSN, KSLA, RFS): 6 phase shifts (H ignored); Voi \(\alpha E^{* * 1 / 3 ; ~} 00=284 K\) (Rh), double rms ampls for all adatoms

STRUCTURES EXAMINED
396 structures: variation of adsorption sites of both molecules in the unit cell, and independently of the layer spacings of the overlayer; some tilting of both molecules explored

QUALITY OF EXPERIMENT-THEORY FIT
RVH=0.242 (average); see comments
20 UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & \(B \times\) (d) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 1.345 & 2.330 & 60.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.380 & 0.000 & 0.000 & 4.659 & 90.0 & ( 2.000, 0.000) & \(c(4 \times 2)\) & s1: commens. \\
\hline & & & & & & (-1.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
H1,2,3-C4-C6: ethylidyne (C2H3) perp. surf. in fcc site; 05-C7: CO perp. surf. in hcp site (C down)
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 9
Bulk z \(=2.196 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & \(D X \pm \in X\) & Dy \(\pm \in \boldsymbol{y}\) & Dz \(\pm \boldsymbol{E Z}\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \in \mathrm{Z} / \mathrm{BZ}\) \\
\hline epir subr & & \[
\begin{aligned}
& -2 \\
& -1
\end{aligned}
\] & & & & 1.345 ( f & 0.777 & 2.196 A & \\
\hline ovrl & H & 1 & s 1 & . 25 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline ovrl & H & 2 & s1 & . 25 & 1 & 0.168 f & 0.333 f & 0.000 A & 0.0 \\
\hline ovrl & H & 3 & s1 & . 25 & 2 & 0.168 f & -0.330 f & 0.000 A & 0.0 \\
\hline ovrl & C & 4 & s1 & . 25 & 3 & -0.168 f & 0.108 f & 0.369 A & 16.8 \\
\hline ovrl & 0 & 5 & s1 & . 25 & 4 & 0.500 f & 0.333 f & \(0.420 \pm .050 \AA\) & \(19.1 \pm 2.3\) \\
\hline ovrl & C & 6 & s1 & . 25 & 4 & 0.000 f & 0.000 f & \(1.450 \pm .050 \mathrm{~A}\) & \(66.0 \pm 2.3\) \\
\hline ovrl & C & 7 & s1 & . 25 & 5 & 0.000 f & 0.000 f & \(1.180 \pm .050\) A & \(53.7 \pm 2.3\) \\
\hline intf & Rh & 8 & b & 1.00 & 7 & -0.333 f & 0.667 f & \(1.300 \pm .050 \AA\) & \(59.2 \pm 2.3\) \\
\hline subl & Rh & 9 & \(b\) & 1.00 & 8 & 0.333 f & 0.333 f & 2.196 A & 100.0 \\
\hline
\end{tabular}
\(\mathrm{Rh}(111)-\mathrm{c}(4 \times 2)-\mathrm{C} 2 \mathrm{H} 3+\mathrm{CO}\)
45.6.1.8.4a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom \(B\) & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.106 & H1 & C4 & H2 & 109.3 \\
\hline 1.450 & C4 & C6 & Rh8(0,-1) & 133.0 \\
\hline 1.180 & 05 & C7 & Rh8 & 129.9 \\
\hline 2.025 & C7 & Rh8 & Rh9 & 138.2 \\
\hline 2.125 & Rh8 & C6(0, 1) & Rh8(-1,0) & 78.6 \\
\hline 2.690 & Rh8 & Rh8( 1,0 ) & & \\
\hline
\end{tabular}

CLASSIFICATION 45.6.7.8.1.1

TECHNIQUE LEED
AUTHORS : G.S. Blackman, C.T. Kao, B.E. Bent, C.M. Mate, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 207, 66 (1988)

\section*{SURFACE TYPE}

Substrate : Rh
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
20 bulk symm: p3m1
2D surf symm: pm

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of heating in 02, Ar+ sputtering and annealing
Crystallinity:
Anal. methods:
Contamination: checked by AES, HREELS and LEED

DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 13 inequiv. beams at \(\Theta=0^{\circ}\); cumul. E range 1068 eV

COMMENTS


STRUCTURE TYPE
Adsorbate: C2H3;NO Molecular coadsorption: NO over fcc, C2H3 (ethylidyne) over
Coverage : \(1 / 4 \mathrm{C} 2 \mathrm{H} 3 / \mathrm{Rh}, 1 / 4 \mathrm{NO} / \mathrm{hcp}\) hollow site, both perpendicular to surface
Pattern : \(c(4 \times 2)\) ( \(H\) positions guessed)
Matrix : ( 2.000, 0.000)
\((-1.000,2.000)\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (BSN, KSLA, RFS): 6 phase shifts (H ignored); Voi \(\alpha E^{* * 1 / 3 ; ~} \Theta 0=284 \mathrm{~K}\) (Rh), double rms ampls for all adatoms

STRUCTURES EXAMINED
576 structures: variation of adsorption sites of both molecules in the unit cell, and independently of the layer spacings of the overlayer; some tilting of NO explored

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.348, R P E=0.688\), \(\mathrm{RVH}=0.294\)
\(2 D\) UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 1.345 & 2.330 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.380 & 0.000 & 0.000 & 4.659 & 90.0 & \begin{tabular}{c}
\((2.000,0.000)\) \\
\((-1.000,2.000)\)
\end{tabular} & c(4x2) & \begin{tabular}{l} 
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

H1,2,3-C4-C6: ethylidyne (C2H3) perp. surf. in hep site; \(05-\mathrm{N} 7: \mathrm{NO}\) perp. surf. in fcc site (N down)
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 9
Bulk z \(=2.196 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{X} \pm \in \mathrm{X}\) & DY \(\pm \epsilon \boldsymbol{y}\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & f & A & \\
\hline subr & & -1 & & & & 1.345 A & 0.777 A & 2.196 A & \\
\hline ovrl & H & 1 & s1 & . 25 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & H & 2 & s1 & . 25 & 1 & -0.168 f & -0.333 f & 0.000 A & 0.0 \\
\hline ovrl & H & 3 & s 1 & . 25 & 2 & -0.168 f & 0.330 f & 0.000 A & 0.0 \\
\hline ovrl & C & 4 & s1 & . 25 & 3 & 0.168 f & -0.108 f & 0.369 A & 16.8 \\
\hline ovrl & 0 & 5 & s1 & . 25 & 4 & -0.500 f & -0.333 f & \(0.320 \pm .050 \AA\) & \(14.6 \pm 2.3\) \\
\hline ovrl & C & 6 & s1 & . 25 & 4 & 0.000 f & 0.000 f & \(1.450 \pm .050 \AA\) & \(66.0 \pm 2.3\) \\
\hline ovrl & N & 7 & s1 & . 25 & 5 & 0.000 f & 0.000 f & \(1.180 \pm .050 \AA\) & \(53.7 \pm 2.3\) \\
\hline intf & Rh & 8 & b & 1.00 & 6 & -0.333 f & 0.667 f & \(1.350 \pm .050\) A & \(61.5 \pm 2.3\) \\
\hline subl & Rh & 9 & \(b\) & 1.00 & 8 & 0.333 f & 0.333 f & 2.196 A & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.106 & H1 & C4 & H2 & 109.3 \\
\hline 1.450 & C4 & C6 & Rh8 & 131.0 \\
\hline 1.180 & 05 & N7 & Rh8(0,-1) & 129.9 \\
\hline 2.058 & C6 & Rh8 & Rh9 & 138.9 \\
\hline 2.025 & Rh8 & N7(0,1) & Rh8(0,-1) & 83.2 \\
\hline 2.690 & Rh8 & Rh8(1,0) & & \\
\hline
\end{tabular} LEED
AUTHORS : M.A. Van Hove, R.F. Lin, G.S. Blackman and G.A. Somorjai
REFERENCE : Acta. Crys., B43, 368 (1987)

SURFACE TYPE
Substrate: Rh
Crystal face: 111
Temperature : 300 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
```

Adsorbate: C6H6;CO
Coverage : 219 co/Rh
Matrix : (3.000, 0.000)
(0.000, 3.000)

```

Rh, 1/9 Bz/2 upright CO per cell, all centered over hcp hollow sites
Pattern : ( \(3 \times 3\) ) both with relaxed bonds (H ignored), on unrelaxed substrate
STRUCTURE TYPE
Molecular coadsorption of one flat-lying C6H6 (benzene) and

SAMPLE PREPARATION ( 1 sample)

\section*{COMMENTS}

Treatment : sputter with 500 eV Art, react with 0 , anneal at 1300 K
Crystallinity:
Anal. methods:
Contamination: clean by AES before adsorption

\section*{DATA COLLECTION}

Technique: LEED
Dataset : 14 inequivalent IV curves at normal incidence with \(E\) range of \(20-200 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (BSN, RFS, KSLA): 6 phase shifts (Moruzzi Rh pot, Li CO pot, Kesmodel C pot); VoiaE**1/3

STRUCTURES EXAMINED
Benzene in top, bridge, fcc, hcp sites with various high symmetry orientations and distortions including out of plane buckling, ring expansion and Kekule distortion; CO intact, stretched and normal to surface in same sites consistent with benzene orientations

QUALITY OF EXPERIMENT-THEORY FIT
RVH \(=0.21, ~ R Z J=0.34\), RPE \(=0.41\)
2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 1.345 & 2.330 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 8.070 & 0.000 & 4.035 & 6.989 & 60.0 & \((3.000,0.000)\) & (3x3) \\
\hline
\end{tabular}

3D COORDINATES

07-C15, 08-C16: 2 upright stretched COs in hcp hollows; H1-6, C9-14: Kekule-distorted flat benzene over hcp site; \(0.1 \AA\) lateral error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 18
Bulk z \(=2.200 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & site occ. & Rel. to & \(D x \pm \epsilon x\) & & Dy \(\pm\) Ey & & \(D z \pm \epsilon z\) & & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & & \(f\) & & \(f\) & & A & \\
\hline subr & & -1 & & & & -2.690 & A & -1.553 & A & 2.200 & A & \\
\hline ovrl & H & 1 & s1 & .11 & 0 & 0.642 & \(f\) & 0.327 & \(f\) & -0.280 & A & -12.7 \\
\hline ovrl & H & 2 & s1 & .11 & 1 & 0.000 & \(f\) & -0.294 & \(f\) & 0.000 & 1 & 0.0 \\
\hline ovrl & H & 3 & s1 & . 11 & 1 & -0.609 & \(f\) & 0.001 & \(f\) & 0.000 & 1 & 0.0 \\
\hline ovrl & H & 4 & s1 & .11 & 1 & -0.609 & \(f\) & 0.315 & \(f\) & 0.000 & A & 0.0 \\
\hline ovrl & H & 5 & s1 & .11 & 1 & -0.315 & \(f\) & 0.315 & \(f\) & 0.000 & A & 0.0 \\
\hline ovrl & H & 6 & s1 & .11 & 1 & -0.314 & \(f\) & -0.294 & f & 0.000 & A & 0.0 \\
\hline ovrl & 0 & 7 & s1 & .11 & 0 & 0.667 & \(f\) & 0.667 & \(f\) & 0.000 & A & 0.0 \\
\hline ovrl & 0 & 8 & s1 & .11 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & A & 0.0 \\
\hline ovrl & C & 9 & s1 & . 11 & 0 & \(0.522 \pm .005\) & \(f\) & \(0.329 \pm .014\) & f & \(0.270 \pm .050\) & \(\AA\) & \(12.3 \pm 2.3\) \\
\hline ovrl & C & 10 & s1 & .11 & 9 & \(-0.193 \pm .005\) & \(f\) & \(0.193 \pm .014\) & f & \(0.000 \pm .050\) & \(\AA\) & \(0.0 \pm 2.3\) \\
\hline ovrl & C & 11 & s1 & . 11 & 9 & \(-0.373 \pm .005\) & \(f\) & \(0.000 \pm .014\) & \(f\) & \(0.000 \pm .050\) & \(\AA\) & \(0.0 \pm 2.3\) \\
\hline ovrl & C & 12 & s1 & . 11 & 9 & \(-0.373 \pm .005\) & \(f\) & \(0.193 \pm .014\) & f & \(0.000 \pm .050\) & \(\AA\) & \(0.0 \pm 2.3\) \\
\hline ovrl & C & 13 & s1 & .11 & 9 & \(0.000 \pm .005\) & \(f\) & \(-0.180 \pm .014\) & \(f\) & \(0.000 \pm .050\) & A & \(0.0 \pm 2.3\) \\
\hline ovrl & C & 14 & s1 & . 11 & 9 & \(-0.193 \pm .005\) & \(f\) & \(-0.180 \pm .014\) & f & \(0.000 \pm .050\) & A & \(0.0 \pm 2.3\) \\
\hline ovrl & C & 15 & s1 & .11 & 7 & 0.000 & \(f\) & 0.000 & \(f\) & \(1.170 \pm .050\) & A & \(53.2 \pm 2.3\) \\
\hline ovrl & C & 16 & s1 & . 11 & 8 & 0.000 & \(f\) & 0.000 & \(f\) & \(1.170 \pm .050\) & A & \(53.2 \pm 2.3\) \\
\hline intf & Rh & 17 & b & 1.00 & 16 & 0.667 & \(f\) & 0.667 & \(f\) & \(1.300 \pm .050\) & A & \(59.1 \pm 2.3\) \\
\hline subl & Rh & 18 & b & 1.00 & 17 & -0.667 & \(f\) & -0.667 & \(f\) & 2.200 & \(\wedge\) & 100.0 \\
\hline
\end{tabular}
\(\operatorname{Rh}(111)-(3 \times 3)-\mathrm{C} 6 \mathrm{H} 6+2 \mathrm{CO}\)
45.6.1.8.3

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.556 & C9 & c10 & c12 & 120.1 \\
\hline 1.556 & C9 & c10 & Rh17(0,1) & 104.1 \\
\hline 1.453 & C9 & c13 & C14 & 119.9 \\
\hline 1.453 & C9 & c13 & Rh17 (1,0) & 71.9 \\
\hline 2.330 & C11 & Rh17 & c14 & 36.4 \\
\hline 2.025 & Rh17 & C15 (-1, -1) & & \\
\hline 2.690 & Rh17 & Rh17(1,0) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Rh(111)-c(2v3×4)rect-C6H6+CO \\
CLASSIFICATION & \(: 45.6 .1 .8 .2\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) M.A. Van Hove, R.F. Lin and G.A. Somorjai \\
REFERENCE & J. Am. Chem. Soc.. 108, 2532 (1986)
\end{tabular}


SAMPLE PREPARATION ( 1 sample)
Treatment :
Crystallinity: first benzene saturated, then co added
Anal. methods:
Contamination: clean by AES

\section*{DATA COLLECTION}

Technique: LEED
Dataset : IV curves for 13 nonequivalent beams at normal incidence: E range 20-150 eV, cumulative E range 1224 eV

Matrix : ( 3.000,-2.000)
( 1.000, 2.000) EXAMINED
STRUCTURES EXAMINED
1 upright CO (C end down) and one flat benzene in: top, fcc hcp, bridge sites; c-0 varied 1.15-1.25A; height of molecule varied independently; Rh(111) bulk-like; benzene: Kekule distortion and buckling, then heights and Rh-Rh spacing varied; 440 coadsorption and 960 co-free structures tested

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.40, ~ R P E=0.66, ~ R V H=0.31\)
Adsorbate: C6H6;CO Molecular coadsorption of flat-lying C6H6 (benzene) and
Coverage : \(1 / 8 \mathrm{Bz} / \mathrm{Rh}, 1 / 8 \mathrm{CO} / \mathrm{upright} \mathrm{CO}\), both centered over hcp hollow sites, both with

Pattern : \(c(2 \sqrt{3} \times 4) r e c t\) relaxed bonds ( \(H\)-ignored), on unrelaxed substrate

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED (BSN, RFS, KSLA): 5 then 6 phase shifts; H neglected

20 UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & \(A x(A)\) & \(A y(A)\) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 1.345 & 2.330 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.380 & -4.659 & 5.380 & 4.659 & 81.8 & \((0.000,1.000)\) & \((3.000,-2.000)\) & c(2V3x4)rect \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01-C14: upright stretched CO molecule in hcp hollows; H2-7, C8-13: Kekule-distorted flat benzene over hcp site; 0.1 lateral error bars assumed for tabulation

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(16 \quad\) Bulk \(2=2.196\) A

\(\operatorname{Rh}(111)-\mathrm{c}(2 \sqrt{3} \times 4)\) rect \(-\mathrm{C} 6 \mathrm{H} 6+\mathrm{CO}\)
45.6.1.8.2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 1.210 & 01 & C14 & Rh15 & 134.0 \\
\hline 1.812 & C8 & C11 & C9 & 120.0 \\
\hline 1.812 & C8 & c11 & Rh15 (1,0) & 100.8 \\
\hline 1.336 & C8 & c13 & C10 & 120.0 \\
\hline 1.336 & C8 & C13 & Rh15 11,1 ) & 73.5 \\
\hline 2.159 & C14 & Rh15 & Rh16 & 98.7 \\
\hline 2.350 & Rh15 & C9(-1,0) & & \\
\hline 2.159 & Rh15 & C14(1,0) & Rh15 (1,0) & 77.1 \\
\hline 2.690 & Rh15 & Rh15 \((1,0)\) & & \\
\hline
\end{tabular}

LEED
AUTHORS : M.A. Van Hove, R.J. Koestner, J.C. Frost and G.A. Somorjai
REFERENCE : Surf. Sci., 129, 482 (1983)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Rh & Adsorbate: CO \\
Crystal face: 111 & Coverage : \(3 / 4\) (CO/Rh) \\
Temperature : 240 K & Pattern : \(2 \times 2\) ) \\
Bulk lattice: fcc & Matrix : \(2.000,0.000)\) \\
20 bulk symm: p 3 m 1 &
\end{tabular}

Substrate: Rh
Crystal face: 111
Temperature : 240 K
2D bulk symm: p3m
20 surf symm: cm
```

Adsorbate: CO
: $3 / 4$ (CO/Rh $)$
Matrix : ($2.000,0.000$)
($0.000,2.000$)

```

\section*{STRUCTURE TYPE}

Densely packed molecular adsorption: 1 upright \(C O\) on bridge and 2 essentially upright COs near top sites per ( \(2 \times 2\) ) cell, forming nearly hexagonal buckled co lattice ( \(C\) down)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (combined space method): Moruzzi et al Rh pot, cluster CO pot, 5 phase shifts; VoiaE**1/3

STRUCTURES EXAMINED
Unrelaxed substrate: \(1 / 4 \mathrm{ML}\) CO in bridge sites (perpendicu- lar to surface), \(1 / 2 \mathrm{ML}\) CO near top sites (perpendicular to surface or tilted); 5 struc. variables: 2 Rh-C spacings, 1 c-0 spacing, variable near-top registry and variable CO tilt angle; total of about 250 structures

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.25\), \(\mathrm{RPE}=0.47\), \(\mathrm{RVH}=0.19\)
2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.680 & 0.000 & 1.340 & 2.321 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.360 & 0.000 & 2.680 & 4.642 & 60.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 \times 2)\) \\
\hline
\end{tabular}

3D COORDINATES
01-C4, 02-C5: 2 near-top-site upright COs; 03-C6: 1 bridge-site upright CO
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk \(2=2.188 \quad \AA\)

\(\operatorname{Rh}(111)-(2 \times 2)-3 \mathrm{CO}\)
45.6.8.4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.150 & 01 & \(C 4\) & \(R h 7(-1,-2)\) & 164.2 \\
1.150 & 02 & \(C 5\) & \(R h 7(0,-1)\) & 164.2 \\
1.150 & 03 & \(C 6\) & \(R h 7\) & 138.6 \\
2.026 & \(\mathrm{C6}\) & \(\mathrm{Rh7}\) & \(R h 8\) & 106.4 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Rh}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\) CO \\
CLASSIFICATION & \(: 45.6 .8 .1\) \\
TECHNIQUE & LEED \\
AUTHORS & R.J. Koestner, M.A. Van Hove and G.A. Somorjai \\
REFERENCE & : Surf. Sci., \(107,439(1981)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Rh
Crystal face: 111
Temperature : 240 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
```

Adsorbate: CO
Coverage : 1/3 (CO/Rh)
Pattern : (}\sqrt{3}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ
Matrix : (1.000, 1.000)
(-1.000, 2.000)

```

\section*{STRUCTURE TYPE}

Molecular adsorption at top sites: CO upright, \(C\) down

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED (RFS): Moruzzi Rh pot, X \(\alpha\), Jona and Pendry pots for CO; 8 ph shs; Vor \(=-10.0 \mathrm{eV}\), Voi \(\alpha E^{* * 1 / 3 ; ~} \Theta 0=284 \mathrm{~K}(\mathrm{Rh})\)

Technique: LEED
Dataset : \(1-V\) curves: 4 beams at \(\theta=0, \phi=0^{\circ}, 11\) beams at \(\Theta=10, \phi=0^{\circ} 7\) beams at \(\Theta=20, \phi=0^{\circ}\); cum \(E\) range 1880 eV (non-degenerate)
SAMPLE PREPARATION ( 1 sample)
Treatment : adsorption of CO or \(\mathrm{CO2}\), resulting in same CO adsorbate
Crystallinity:
Anal. methods:
Contamination: AES: small amounts of \(\mathrm{S}, \mathrm{B}, \mathrm{C}, \mathrm{Cl}\)

\section*{DATA COLLECTION}

STRUCTURES EXAMINED
CO perpendicular to surface in top, bridge and 2 hollow sites, with various \(R h-R h, R h-C\), and \(C-O\) spacings
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.50, ~ R Z J=0.40\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.679 & 0.000 & 1.340 & 2.320 & 60.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.018 & 2.320 & 0.000 & 4.640 & 60.0 & \[
\begin{array}{ll}
(1.000, & 1.000) \\
(-1.000, & 2.000)
\end{array}
\] & \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-C2: upright CO overlayer in top sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=2.192 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.070 & 01 & C 2 & \(\mathrm{Rh3}\) & 180.0 \\
1.950 & C 2 & \(R h 3\) & \(R h 4\) & 144.8 \\
\hline
\end{tabular}
```

Rh(100)-c(4×2)-Cs
CLASSIFICATION : 45.55.1
TECHNIQUE : LEED
AUTHORS : C. von Eggeling, G. Schmidt, G. Besold, L. Hammer, K. Heinz
and K. Mueller
REFERENCE : Surf. Sci., 221, 11 (1989)
Rh(100)-c(4×2)-Cs

```

SURFACE TYPE
\begin{tabular}{ll} 
SURFACE TYPE & \\
\hline Substrate \(: ~ R h\) & Adsorbate: Cs \\
Crystal face: 100 & Coverage : 0.25 ML \\
Temperature : 120 K & Pattern \(: c(4 \times 2)\) \\
Bulk lattice: fcc & Matrix \(:(2.000,-1.000)\) \\
2D bulk symm: p4m & \\
2D surf symm: cmm &
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
STRUCTURE TYPE
4-fold symmetric hollow site adsorption;

Treatment : sputtering and annealing in oxygen; exposure to Cs
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination:

\section*{DATA COLLECTION}

Technique: LEED: video LEED
Dataset : IV spectra for 4 integer and 3 fractional order beams

STRUCTURES EXAMINED
Bridge, top and hollow sites; variation of the 1st interlayer spacing; (use energy dependent inner potential

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.31\)
\(2 D\) UNIT CELLS ( 2 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay ( \(\AA\) ) & BX (A) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 2.690 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.380 & -2.690 & 0.000 & 5.380 & 116.6 & \[
\begin{aligned}
& (2.000,-1.000) \\
& (0.000,2.000)
\end{aligned}
\] & \(c(4 \times 2)\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Cs1: atomic overlayer in 4 -fold hollow site
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-8-C\left({ }^{\circ}\right)
\] \\
\hline 3.443 & Cs 1 & Rh2 & & \\
\hline 2.681 & Rh2 & Rh3 & & \\
\hline
\end{tabular}

CLASSIFICATION 45.1 .10
: LEED
REFERENCE \(\quad\) and K. Mueller

\section*{SURFACE TYPE}

Substrate : Rh
Adsorbate: H
Coverage : \(2 \mathrm{H} / \mathrm{Rh}\)
Pattern : (|x1)
Matrix : ( \(1.000,0.000)\) ( \(0.000,1.000\) )

Temperature : 90 K
Bulk lattice: fcc
2D bulk symm: pmom
2D surf symm: pmm

STRUCTURE TYPE
Atomic adsorption of hydrogen in 3-fold hollows on either
side of Rh ridges, reducing clean-surface relaxation

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ sputt.; 02 and H2 treatment; 1300 K anneal
Crystallinity:
Anal. methods:
Contamination: AES: clean

DATA COLLECTION
Technique: LEED
Dataset : 7 symmetry inequivalent beams; E range 50-206 eV

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling):
Vor \(=-12 \mathrm{eV}\); Voi=-5eV; \(\Theta D(R \mathrm{~h})=480 \mathrm{~K} ; \Theta(H)=3400 \mathrm{~K}\)

STRUCTURES EXAMINED
Variation of \(H\) positions near 3-fold hollows, keeping both mirror planes, and varying top 2 Rh-Rh interlayer spacing

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RPE \(=0.28\)
2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 3.804 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 0.000 & 3.804 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

H1-H2: adatoms in 3-fold sites on both sides of ridges 0.05A error bars assumed for tabulation Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 5
Bulk z \(=1.345 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & site occ. & Rel. to & \(D \mathrm{X} \pm \in \mathrm{X}\) & Dy \(\pm \in y\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.345 A & 1.902 A & 1.345 A & \\
\hline ovrl & H & 1 & s1 & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & H & 2 & s1 & 1.00 & 1 & 0.000 f & \(0.515 \pm .013 \mathrm{f}\) & 0.000 A & 0.0 \\
\hline intf & Rh & 3 & b & 1.00 & 2 & 0.500 f & -0.258 \(\pm .010 \mathrm{f}\) & \(0.780 \pm .050\) A & \(58.0 \pm 3.7\) \\
\hline intf & Rh & 4 & b & 1.00 & 3 & -0.500 f & -0.500 f & \(1.328 \pm .050\) A & \(98.7 \pm 3.7\) \\
\hline subl & Rh & 5 & \(b\) & 1.00 & 4 & 0.500 f & 0.500 f & 1.345 A & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates

No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
\text { A-8-C }\left({ }^{\circ}\right)
\] \\
\hline 1.838 & H1 & Rh3 & H1(1,0) & 94.1 \\
\hline 1.838 & H1 & Rh3 & H2(1,0) & 129.8 \\
\hline 1.838 & H1 & Rh3 & H2 & 64.4 \\
\hline 1.838 & H1 & Rh3 & Rh3 (1,0) & 137.0 \\
\hline
\end{tabular}

Rh(110)-(1x1)-2H
45.1.10

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 2.300 & H1 & \(R h 4(0,-1)\) & Rh5 & 100.1 \\
2.681 & \(R h 3\) & \(R h 4(1,0)\) & \(R h 5\) & 59.7 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
TECHNIQUE & : LEED \\
AUTHORS & : W. Oed, W. Puchta, N. Bickel, K. Heinz, W. Nichtl and K. \\
& \\
REFERENCE & Mueller \\
& J. Phys., C21, 237 (1988)
\end{tabular}

\section*{SURFACE TYPE}

\section*{Substrate: Rh}

Crystal face: 110
Temperature : RT*
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: pmm

\section*{Adsorbate: H}

Coverage : 2 H/Rh
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
( \(0.000,1.000\) )

STRUCTURE TYPE
Atomic adsorption over each outer 3-fold coordinated site on (111) facets of slightly relaxed substrate

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar ion bombardment, heating in 02 and H2, final 1330 K flash
Crystallinity: sharp LEED pattern with poor background
Anal. methods:
Contamination: special attention to \(H\) coverage

DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 7 non-equivalent beams; E range 50-206 eV

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (composite layer, layer doubling): 8 phase shifts; Voi=-7 eV; \(00=480 \mathrm{~K}(\mathrm{Rh}), 3400 \mathrm{~K}(\mathrm{H})\)

STRUCTURES EXAMINED
Variation of H-Rh and 1st Rh-Rh interlayer spacings; 2nd Rh-Rh spacing taken from earlier higher-energy analysis (see Nichtl et al, Surf. Sci. 188 L279 (1987)); H kept in mirror plane near 3-fold hollow site of (111) facets, varying spacing and position parallel to surface

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.28

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & AY (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 3.800 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.690 & 0.000 & 0.000 & 3.800 & 90.0 & ( 1.000, 0.000) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES
H1-H2: overlayer in 3-fold coord. hollows of (111) facets
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(6 \quad\) Bulk z = \(1.345 \AA\)

\(\operatorname{Rh}(110)-(1 \times 1)-2 H\)
45.1 .4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{l|l|l|l|r}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Aton \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom \(C\)} & \begin{tabular}{r} 
Bond angle \\
\(A-8-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.838 & \(H 1\) & \(R h 3(0,-1)\) & \(H 1(1,0)\) & 94.1 \\
1.838 & \(H 1\) & \(R h 3(0,-1)\) & \(\mathrm{H} 2(0,-1)\) & 64.5 \\
1.838 & \(H 1\) & \(R h 3(0,-1)\) & \(R h 4\) & 57.5 \\
2.293 & \(H 1\) & \(R h 4\) & \(R h 5\) & 137.9 \\
2.676 & \(R h 3\) & \(R h 4\) & \(R h 5\) & 59.6 \\
2.667 & \(R h 3\) & \(R h 5\) & \(R h 6\) & 120.0 \\
\hline
\end{tabular}

COMMON NAME : Rh(110)-(1x2)-H
\begin{tabular}{ll} 
CLASSIFICATION \(:\) & 45.1 .8 \\
TECHNIQUE & : LEED \\
AUTHORS & W. Puchta, W. Nichtl, W. Oed, N. Bickel, K. Heinz and K. \\
& Mueller \\
REFERENCE & : Phys. Rev., B39, 1020 (1989)
\end{tabular}

CLASSIFICATION : 45.1 .8
AUTHORS : W. Puchta, W. Nichtl, W. Oed, N. Bickel, K. Heinz and K.
REFERENCE : Phys. Rev., B39, 1020 (1989)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Rh & Adsorbate: H \\
Crystal face: 110 & Coverage : \(0.5 \mathrm{H} / \mathrm{Rh}\) \\
Temperature: 90 K & Pattern : \(1 \times 2)\) \\
Bulk lattice: fcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pmm & \\
2D surf symm: pm & \\
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment
: Art sputt, heating in 02 and \(\mathrm{H} 2,1300 \mathrm{~K}\) anneal, H2 dosed 90K
Crystallinity:
Anal. methods:
Contamination: AES: clean
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 8 independent beams: \(E\) range \(50-206 \mathrm{eV}\)

STRUCTURES EXAMINED
Examined symmetric row pairing and shift-buckling

\section*{STRUCTURE TYPE}

Atomic adsorption in nearly 3 -fold sites on (111) facets on side of troughs (with long H-Rh distance to 2nd-Rh-layer atoms); top-Rh-rows to which \(H\) is bonded are buckled out and laterally shifted towards H ('shift-buckling')

\section*{COMMENTS}

THEORY/DATA TREATMENI
Dynamical LEED (layer-doubling): \(\theta(\) Rh \()=480 \mathrm{~K},(H) 3400 \mathrm{~K}\)

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.44\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 3.804 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 0.000 & 7.608 & 90.0 & \((1.000,0.000)\) & (1x2) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(H\) in 3-fold site on side of trough; Rh2: ridge atoms displaced up and laterally toward \(H\), relative to Rh3

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk z = \(1.345 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.879 & H1 & \(\operatorname{Rh} 2(0,-1)\) & H1 \((1,0)\) & 91.4 \\
\hline 1.879 & H1 & \(\operatorname{Rh} 2(0,-1)\) & Rh2 \(1,-1)\) & 135.7 \\
\hline 2.279 & H1 & Rh4 & Rh2 \(0,-1)\) & 43.7 \\
\hline 2.279 & H1 & Rh4 & Rh3 & 80.0 \\
\hline 2.690 & Rh2 & Rh2 1 1,0) & H1 (1,1) & 44.3 \\
\hline
\end{tabular}

Rh(110)-(1×2)-H
45.1 .8

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.670 & Rh2 & \begin{tabular}{l} 
Rh4(1,1) \\
2.654
\end{tabular} & Rh3 & Rh4 1,1\()\) \\
\hline
\end{tabular}

CLASSIFICATION
technique 45.1 .6

AUTHORS LEED
M. Michl, W, Nichtl-Pecher, W. Oed, H. Landskron, K. Heinz and K. Mueller
REFERENCE : Surf. Sci., 220, 59 (1989)

\section*{SURFACE TYPE}

Substrate : Rh
Crystal face: 110
Temperature : 90 K
Bulk lattice: fcc
2D bulk symm: prm
2D surf symm: pm

Adsorbate: H
Coverage : \(1.5 \mathrm{H} / \mathrm{Rh}\)
Pattern : (1×2)
Matrix : ( \(1.000,0.000\) ) ( 0.000, 2.000)

\section*{STRUCTURE TYPE}

Atomic adsorption of hydrogen with top layer relaxation (slight buckling of doubly occupied Rh atoms), all H in 3 inequivalent quasi-3-fold sites in sides of troughs of unreconstructed substrate

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ sputter, ox/red cycles of 0 and \(H\), then anneal at 1300 K
Crystallinity:
Anal. methods:
Contamination: AES: clean
DATA COLLECTION

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (exc. no H-H scatt.): 8 phase shifts; Vor \(=-12 \mathrm{eV}\), Voi=-5eV

\section*{COMMENTS}

Technique: LEED
Dataset : I-V curves for 8 symmetry inequivalent beams: E range 50-350 eV

STRUCTURES EXAMINED
Quasi-3-fold H sites on relaxed, buckled substrate, varying H heights and tateral positions, keeping one mirror plane

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.33\)
2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 3.804 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 0.000 & 7.608 & 90.0 & \((1.000,1.000)\) & \((1 \times 2)\) \\
\hline
\end{tabular}

3D COORDINATES
all \(H\) in 3 -fold sites in sides of troughs with long bonds to 2nd Rh layer;
Rh4-Rh5: buckled top Rh layer
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Rh(110)-(1×2)-3H
45.1 .6

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 11
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 1.904 & H1 & Rh5 & H1 11,0 ) & 89.9 \\
\hline 2.669 & Rh4 & Rh7 & Rh7(1,0) & 90.0 \\
\hline 2.665 & Rh5 & Rh6 & Rh6 (1,0) & 59.7 \\
\hline 1.904 & H1 & Rh5 & Rh5 (1,0) & 135.0 \\
\hline 1.927 & H2 & Rh4 & H2 (1,0) & 88.6 \\
\hline 1.927 & H2 & Rh4 & Rh4 \((1,0)\) & 134.3 \\
\hline 1.871 & H3 & Rh4 & H3(1,0) & 91.9 \\
\hline 1.871 & H3 & Rh4 & Rhis (1,0) & 136.0 \\
\hline 2.190 & H3 & Rh6 & Rh6 (1,0) & 90.0 \\
\hline 2.690 & Rh4 & Rh4 (1,0) & Rh6 (1,0) & 59.9 \\
\hline 2.680 & Rh4 & Rh6 & Rh6 \((1,0)\) & 59.9 \\
\hline
\end{tabular}

COMMON NAME : Rh(110)-(1x3)-H
CLASSIFICATION : 45.1 .5
TECHNIQUE : LEED
AUTHORS : K. Lehnberger, W. Nichtl-Pecher, W. Oed, K. Heinz and K. Mueller
REFERENCE : Surf. Sci., 217, 511 (1989)

\section*{SURFACE TYPE}

Substrate: Rh
Crystal face: 110
Temperature : 90 K
Bulk lattice: fcc
2D bulk symm: pmm
2D surf symm: pm
```

Adsorbate: H
Coverage : 0.33 H/Rh
Pattern : (1x3)
Matrix : (1.000, 0.000)
(0.000, 3.000)

```

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ sputtering, heating in O 2 and H 2 , then flashing to 1300 K
Crystallinity:
Anal. methods:
Contamination: clean as determined by AES
OATA COLLECTION
Technique: LEED
Dataset : \(1-V\) curves for 9 symmetry inequivalent beams; E range \(50-200 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

Atomic adsorption of \(H\) in 3-fold sites on side of troughs, slight buckling of top layer

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (comp. layer, lay. dblg): 8 phase shifts

\section*{STRUCTURES EXAMINED}

Top and bridge sites over ridge, top and bridge sites over trough, 3-fold hollow on side of trough; \(H\) height variation; for 3-fold site: Rh 2-row-pairing and 1-row-shift-buckling tried (latter is best); then, keeping one mirror plane: H, near Rh ridge varied in 2D, and var. of top 2 Rh-Rh spacings

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.25\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 3.804 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.690 & 0.000 & 0.000 & 11.413 & 90.0 & \((1.000,0.000)\) & \((1 \times 3)\) & \begin{tabular}{l} 
(1.0) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

H: atomic adsorption in 3 -fold site in side of trough with long bonds to 2 nd Rh layer:
Rh2-4: buckled top metal layer (Rh2 out and shifted);
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Rh(110)-(1x3)-H
45.1 .5
bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 1.848 & H1 & Rh2 (0, -1) & H1 (1,0) & 93.4 \\
\hline 1.848 & H1 & Rh2 (0, -1) & Rh2(1, -1) & 136.7 \\
\hline 2.690 & Rh2 & Rh2 (1,0) & \(\mathrm{Rh} 5(1,2)\) & 59.3 \\
\hline 2.648 & Rh3 & Rh5 & Rh5 (1,0) & 59.5 \\
\hline 1.932 & Rh5 & H1(0,1) & Rh3 & 88.0 \\
\hline
\end{tabular}

TECHNIQUE LEED
AUTHORS \(:\) C.T. Kao, G.S. Blackman, M.A. Van Hove, G.A. Somorjai and C.-M. Chan

REFERENCE : Surf. Sci., 224, 77 (1989)

\section*{SURFACE TYPE}

Substrate :
Crystal face: 111
Temperature : 40 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: pm
SAMPLE PREPARATION ( 1 sample)
Treatment: dosing of 2.2 L of NO at 40 K , followed by annealing to 220K
Crystallinity:
Anal. methods:
Contamination: AES: no detectable \(C, S, O\) or \(B\)
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 15 independent beams at normal incidence: E range 20-200 eV

\section*{STRUCTURE TYPE}

Densely packed molecular adsorption: 1 upright NO on bridge and 2 upright NOs near top sites per ( \(2 \times 2\) ) cell, forming roughly hexagonal buckled NO lattice (N down)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS, BSN, KSLA): 5 ph shs (Moruzzi Rh pot cluster NO pot); Voi \(\alpha E^{* * 1 / 3 ; ~} \Theta D=406 \mathrm{~K}(R \mathrm{~h}), 920 \mathrm{~K}(\mathrm{~N}), 861 \mathrm{~K}(0)\)

\section*{STRUCTURES EXAMINED}
1. 1 NO on bridge, 2 near top sites, varying Rh-N and \(\mathrm{N}-\mathrm{O}\) spacings and lateral NO-NO distance; some tilting allowed; 2. same with 1 NO on top and 2 near bridge sites; 3. 1 NO on top, bridge or hol low sites, using Rh-N-O spacings

QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.28\), RZJ \(=0.26\), \(\mathrm{RPE}=0.67\)
2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.680 & 0.000 & 1.340 & 2.321 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.360 & 0.000 & 2.680 & 4.642 & 60.0 & \((2.000,0.000)\) & \((2 \times 2)\) & \begin{tabular}{l} 
(2) \\
s1: conmens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
01-N4, 02-N5: 2 near-top-site upright NOs; 03-N6: 1 bridge-site upright NO
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk \(z=2.188 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{t}\) ¢ EX & Dy \(\pm \in y\) & Dz \(\pm \boldsymbol{E z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.340 A & -0.774 \& & 2.188 A & \\
\hline ovrl & 0 & 1 & s1 & . 25 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline ovrl & 0 & 2 & s1 & . 25 & 1 & \(0.445 \pm .008 \mathrm{f}\) & \(0.445 \pm .022 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 4.6\) \\
\hline ovrl & 0 & 3 & s1 & . 25 & 2 & 0.278 f & 0.278 f & \(0.500 \pm .100 \AA\) & \(22.9 \pm 4.6\) \\
\hline ovrl & N & 4 & s1 & . 25 & 1 & \(0.000 \pm .008 \mathrm{f}\) & \(0.000 \pm .022 \mathrm{f}\) & \(1.150 \pm .100 \AA\) & \(52.6 \pm 4.6\) \\
\hline ovrl & \(N\) & 5 & s1 & . 25 & 2 & \(0.000 \pm .008 \mathrm{f}\) & \(0.000 \pm .022 f\) & \(1.150 \pm .100 \AA\) & \(52.6 \pm 4.6\) \\
\hline ovrl & N & 6 & s1 & . 25 & 3 & 0.000 f & 0.000 f & \(1.150 \pm .100 \AA\) & \(52.6 \pm 4.6\) \\
\hline intf & Rh & 7 & b & 1.00 & 6 & -0.500 f & 0.500 f & \(1.550 \pm .100 \AA\) & \(70.8 \pm 4.6\) \\
\hline subl & Rh & 8 & b & 1.00 & 7 & 0.667 f & -0.333 f & 2.188 A & 100.0 \\
\hline
\end{tabular}

Rh(111)-(2x2)-3NO
45.7.8.1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.150 & 01 & \(N 4\) & \(R h 7(-1,-2)\) & 172.9 \\
1.150 & 02 & \(N 5\) & \(R h 7(0,-1)\) & 172.9 \\
1.150 & 03 & N6 & \(R h 7\) & 139.2 \\
2.049 & N6 & \(R h 7\) & \(R h 8\) & 106.9 \\
\hline
\end{tabular}

COMMON NAME: \(\operatorname{Rh}(100)-(2 \times 2)-0\)
CLASSIFICATION : 45.8 .2
TECHNIQUE : LEED
AUTHORS : W. Ded, B. Doetsch, L. Hammer, K. Heinz and K. Mueller
REFERENCE : Surf. Sci., 207, 55 (1988)

\section*{SURFACE TYPE}

Substrate : Rh
Crystal face: 100
Temperature : 130 K
Bulk lattice: fcc
20 bulk symm: \(p 4 m\)
2D surf symm: p4m
SAMPLE PREPARATION ( 1 sample)
Treatment : Art sputtering with ox/red cycles, then 1400 K anneal
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
```

Adsorbate: 0
Coverage : 0.25 0/Rh
Pattern : (2x2)
Matrix : (2.000, 0.000)

```

STRUCTURE TYPE
Hollow site adsorption with slight top Rh-Rh interlayer contraction

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Quasi-dyn. then dynamical LEED (lay. dblg): \(<=14\) relat.
phase shifts; Vor \(=-9 \mathrm{eV}, \mathrm{Voi}=-5 \mathrm{eV} ; \Theta 0=480 \mathrm{~K}(\mathrm{Rh}), 843 \mathrm{~K}(0)\)

STRUCTURES EXAMINED
Variation of top two interlayer spacings for hollow, bridge and top adsorption sites
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.27\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.690 & 0.000 & 0.000 & 2.690 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.380 & 0.000 & 0.000 & 5.380 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & \((2 x 2)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(D X / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \(\left.\begin{array}{r}\text { Bond angle } \\
A-B-C ~(~\end{array}\right)\) \\
\hline 2.126 & 01 & \(R h 2\) & \(R h 2(1,0)\) & 129.2 \\
2.126 & 01 & \(R h 2\) & \(R h 3\) & 71.4 \\
2.690 & \(R h 2\) & \(R h 2(1,0)\) & \(R h 3(1,0)\) & 59.9 \\
2.681 & \(R h 2\) & \(R h 3\) & \(R h 3(1,0)\) & 59.9 \\
\hline
\end{tabular}

COMMON NAME
CLASSIFICATION :
\(\operatorname{Rh}(111)-(2 \times 2)-0\)

AUTHOR
P.C. Wong, K.C. Hui, M.Y. Zhou and K.A.R. Mitchell

REFERENCE : Surf. Sci., 165, L21 (1986)

\section*{SURFACE TYPE}

Substrate: Rh
Crystal face: 111
Temperature : 215 K
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment: exposure to 6 L 0 at room temperature
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (RFS): 7 phase shifts, Rh band structure pot, 0 pot from Demuth et al; \(\Theta 0=480 \mathrm{~K}(\mathrm{Rh}), 843 \mathrm{~K}(0)\)

STRUCTURES EXAMINED
1) fac hollow site; 2) hep hollow site;
3) fec and hep hollow sites ('graphitic' model); 0-Rh spacing varied, substrate bulk-like

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.394\)

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx ( \(\AA)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.685 & 0.000 & -1.343 & 2.325 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.370 & 0.000 & -2.685 & 4.651 & 120.0 & \begin{tabular}{l}
\((0.000,1.000)\) \\
\((2.000,0.000)\) \\
\((0.000,2.000)\)
\end{tabular} & \((2 \times 2)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

30 COORDINATES
01: overlayer in fcc hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.979 & 01 & Rh2 & Rh2 1 (1,0) & 132.7 \\
\hline 1.979 & 01 & Rh2 & Rh3 & 163.7 \\
\hline 2.685 & Rh2 & Rh2 21,0\()\) & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Rh
Crystal face: 100
Temperature : RT
Bulk lattice: fcc
20 bulk symm: p4m
2D surf symm: p4m

Adsorbate: S
Coverage : \(1 / 4\) ( \(\mathrm{S} / \mathrm{Rh}\) )
Pattern : (2x2)
Matrix : ( 2.000, 0.000)
( 0.000, 2.000)

STRUCTURE TYPE
Atomic adsorption in hollow sites

SAMPLE PREPARATION ( 2 sample)
Treatment : exposure to 1E-8 torr H2S and anneal (same from \(S\) segreg.)
Crystallinity:
Anal. methods:
Contamination: no impurities by AES
DATA COLLECTION
Technique: LEED; photographic vidicon method
Dataset : I-V curves: 4 integral-order and 5 fractional-order beams at normal incidence; energy range 40-200 eV

COMMENTS

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): 8 ph shs (Rh band struc. pot, S superpos pot); VoiaE**1/3; \(60=406\) K(Rh), 236K(S)

STRUCTURES EXAMINED
Unrelaxed substrate: \(S\) in top, bridge and hollow sites with variable S-Rh layer spacing
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.33
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.680 & 0.000 & 0.000 & 2.680 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk (attice \\
Surface 1 & 5.360 & 0.000 & 0.000 & 5.360 & 90.0 & \((2.000,0.000)\) & \((2 \times 2)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
S1: overlayer in 4-fold hollow sites; 0.1 error bar assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3
Bulk z \(=1.902 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \[
\begin{aligned}
& \text { Cell } \\
& \text { type }
\end{aligned}
\] & Site occ. & Rel. to & \(\mathrm{DX} \quad \pm \boldsymbol{X}\) & DY \(\pm \in \boldsymbol{y}\) & \(D z \pm E \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
ovrl \\
intf \\
subl
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& \mathrm{Rh} \\
& \mathrm{Rh}
\end{aligned}
\] & -2
-1
1
2
3 & s 1
\(b\)
\(b\) & .25
1.00
1.00 & 0
1
2 & \(\begin{array}{rr} & f \\ -1.340 & \AA \\ 0.000 & f \\ 0.500 & f \\ -0.500 & f\end{array}\) & \begin{tabular}{rr} 
& \(f\) \\
-1.340 & \(A\) \\
0.000 & \(f\) \\
0.500 & \(f\) \\
-0.500 & \(f\)
\end{tabular} & \[
\begin{array}{ll} 
& A \\
1.902 & A \\
0.000 & A \\
1.290 \pm .100 & \AA \\
1.902 & \\
\AA
\end{array}
\] & \[
\begin{array}{cc}
0.0 \\
67.8 \pm & \\
100.0 &
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom \(B\) & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.292 & S1 & Rh2 & Rh3 & 79.4 \\
\hline 2.680 & Rh2 & Rh2 11,0\()\) & & \\
\hline 2.685 & Rh2 & & & \\
\hline
\end{tabular}
```

COMMON NAME : Rh(110)-c(2\times2)-S
CLASSIFICATION : 45.16.2
TECHNIQUE : LEED
AUTHORS : S. Hengrasmee, P.R. Watson, D.C. Frost and K.A.R. Mitchell
REFERENCE : Surf. Sci., 92, 71 (1980)

```

SURFACE TYPE
Substrate: Rh
Crystal face: 110
Temperature : RT
Bulk lattice: fec
2D bulk symm: pmm
2D surf symm: cmm

\section*{Adsorbate: S}

Coverage : \(1 / 2\) (S/Rh)
Pattern : \(c(2 \times 2)\)
Matrix \(:(1.000,1.000)\)

STRUCTURE TYPE
Atomic adsorption in center site, on top of 2nd layer Rh

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 8 phase shifts (Rh band structure pot, S superpos pot); VoiaE**1/3; \(\Theta D=406 \mathrm{~K}(\mathrm{Rh}), 236 \mathrm{~K}(\mathrm{~S})\)

Technique: LEED; photographic vidicon method
\(\begin{aligned} \text { Dataset } & \text { I }-V \text { curves: } 9 \text { integral-order and } 5 \\ & \text { half-order beams at normal incidence; }\end{aligned}\)
\(\begin{aligned} \text { Dataset } & \text { : I-V curves: } 9 \text { integral-order and } 5 \\ & \text { half-order beams at normal incidence; }\end{aligned}\) energy range \(40-220 \mathrm{eV}\)

SAMPLE PREPARATION ( 1 sample)
Treatment: exposure to \(5 E-7\) torr H 2 S for 3 min at 300C
Crystallinity:
Anal. methods:
Contamination: no impurities by AES
DATA COLLECTION EXAMINED
STRUCTURES EXAMINED
Unrelaxed substrate: \(S\) in top, hollow, long- and short-bridge sites with variable S-Rh layer spacing
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.165\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B \times(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.679 & 0.000 & 0.000 & 3.789 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.679 & 3.789 & -2.679 & 3.789 & 70.5 & \((1.000,1.000)\) & \(c(2 \times 2)\) & si: commens. \\
\hline & & & & & & (-1.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

S1: overlayer in center site, on top above 2nd Rh layer; 0.14 error bar assumed for tabulation Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: \(3 \quad B u l k=1.345 \&\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.444 & S1 & Rh2 & \(R 2(1,0)\) & 123.2 \\
2.444 & S1 & Rh2 & \(R h 3\) & 48.5 \\
2.115 & \(S 1\) & \(R h 3\) & \(R h 2\) & 59.9 \\
\hline
\end{tabular}
```

COMMON NAME : Rh(111)-(\sqrt{}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ}-S
CLASSIFICATION : 45.16.3

| TECHNIQUE | : LEED |
| :--- | :--- | :--- |
| AUTHORS | : P.C. Wong, M.Y. Zhou, K.C. Hui and K.A.R. Mitchell |
| REFERENCE | : Surf. Sci. 163, 172 (1985) |

```
ILLUSTRATION: 22,24

STRUCTURE TYPE
Atomic adsorption in fec hollow sites

\section*{COMMENTS \\ TS}

THEORY/DATA TREATMENT
Dynamical LEED (RFS): 8 phase shifts, Rh band structure pot, S Demuth superpos. pot.; VoiaE**1/3; \(60=480 \mathrm{~K}(R \mathrm{R}), 335 \mathrm{~K}(\mathrm{~S})\)

\section*{Substra TYPE}

Temperature : RT
Temperature : RT
Bulk lattice: fcc
2D bulk symm: p3m1
2D surf symm: p31m
```

Adsorbate: S
Coverage : 0.33 S/Rh
Pattern : (}\sqrt{}{3}x\sqrt{}{3})R3\mp@subsup{0}{}{\circ
Matrix : (1.000, 1.000)
(-2.000, 1.000)

```

SAMPLE PREPARATION ( 1 sample)
Treatment : RT exposure to about 25 L of H 2 S and annealed to 200C
Crystallinity:
Anal. methods:
Contamination: AES: \(S(151 \mathrm{eV}) / R h(304 \mathrm{eV}) \approx 0.75\)
DATA COLLECTION
Technique: LEED
Dataset : normal incidence \(I-V\) curves for 9 beams, \(E\) range 50-250 eV; symm. equivalent beams averaged with equal weights

COMMON NAME : Ru(0001)-(1×1)
ILLUSTRATION: 19
CLASSIFICATION : 44.1
TECHNIQUE : LEED
AUTHORS : G. Michalk, W. Moritz, H. Pfnur and D. Menzel
REFERENCE : Surf. Sci., 129, 92 (1983)
\begin{tabular}{lll} 
SURFACE TYPE & & STRUCTURE TYPE \\
Substrate : Ru & Adsorbate: & Bulk termination with \(2 \%\) top spacing contraction \\
Crystal face: 0001 & Coverage : & \\
Temperature: RT* & Pattern : \(1 \times 1)\) \\
Bulk lattice: hcp & Matrix \(:(1.000,0.000)\) & \\
2D bulk symm: p3m1 & & \((0.000,1.000)\)
\end{tabular}

\section*{SAMPLE PREPARATION ( 1 sample)}

COMMENTS
Crystallinity:
Anal. methods:
Contamination: monitored by AES and vibrating capacitor
DATA COLLECTION
THEORY/DATA TREATMENT
Technique: LEED
Dynamical LEED (RFS, layer doubling): 8 phase shifts;
Vor=-12 eV (fit), Voi=-0.85*E**1/3 eV; \(60=410 \mathrm{~K}\)
Dataset : I-V curves: 5 non-degenerate beams at normal incidence: 10, 11, 20, 21 and 30 beams

\section*{STRUCTURES EXAMINED}

Variation of top spacing; intensities averaged over ABAB.. and BABA.. terminations
QUALITY OF EXPERIMENT - THEORY FIT
\(R Z J=0.041\), RPE \(=0.16\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.700 & 0.000 & -1.350 & 2.338 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.700 & 0.000 & -1.350 & 2.338 & 120.0 & \((1.000,1.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
(1) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(D X \pm E X\) & Dy \(\pm \in y\) & \(D z \pm E Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 4.280 A & \\
\hline intf & Ru & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Ru & 2 & b & 1.00 & 1 & 0.333 f & 0.667 f & \(2.100 \pm .020 \AA\) & \(98.1 \pm .9\) \\
\hline subl & Ru & 3 & b & 1.00 & 2 & -0.333 f & -0.667 f & 2.140 A & 100.0 \\
\hline subl & Ru & 4 & b & 1.00 & 3 & 0.333 f & 0.667 f & 2.140 A & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C \quad\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.700 & Ru1 & \(R u 1(1,0)\) & \(R u 2(1,-1)\) & 121.1 \\
2.615 & \(R u 1\) & \(R u 2\) & \(R u 3\) & 107.3 \\
2.648 & \(R u 2\) & \(R u 3\) & \(R u 4\) & 107.9 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & : Ru(0001)-(1×1)-H \\
CLASSIFICATION & \(: 44.1 .1\) \\
TECHNIQUE & : LEED \\
AUTHORS & : M. Lindroos, H. Pfnur, P. Feulner and D. Menzel \\
REFERENCE & : Surf. Sci., 180, 237 (1987)
\end{tabular}


2D surf symm: p3m1

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment: cleaned by cycles of 0 at \(500-1550 \mathrm{~K}\), heated in UHV to 1570K
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; VLEED (very low energies)
Dataset : E range 7-32 eV: normal and off-normal incidence beams used (up to 300 beams used)

\section*{STRUCTURE TYPE}

Atomic adsorption in fec hollow sites, with slight contraction of topmost Ru-Ru interlayer spacing

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: Moruzzi pot for Ru, Mattheiss pot for \(\mathrm{H}_{;}\) Vor \(=-14 \mathrm{eV}\), Voi=-0.6eV below plasmon energy, Voi=-2eV above

\section*{STRUCTURES EXAMINED}
1) bridge sites; 2) 3-fold hep sites; 3) 3-fold fcc sites; 4) top sites;
5) both hcp and fcc sites with independent \(H\) heights; 6) underlayer positions;

H-Ru and first Ru-Ru spacings varied
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.710 & 0.000 & -1.355 & 2.347 & 120.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.710 & 0.000 & -1.355 & 2.347 & 120.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

H1: overlayer in fec hollow sites; Ru4-Ru5: periodically repeating set of bulk layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(D x \pm \epsilon x\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \in \boldsymbol{z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & \(A\) & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 4.360 A & \\
\hline ovrl & H & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ru & 2 & b & 1.00 & 1 & 0.667 f & 0.333 f & \(1.100 \pm .060\) A & \(50.5 \pm 2.8\) \\
\hline intf & Ru & 3 & b & 1.00 & 2 & -0.333 & 0.333 f & \(2.140 \pm .030\) A & \(98.2 \pm 1.4\) \\
\hline subl & Ru & 4 & b & 1.00 & 3 & 0.333 f & -0.333 f & 2.180 A & 100.0 \\
\hline subl & Ru & 5 & \(b\) & 1.00 & 4 & -0.333 f & 0.333 f & 2.180 & 100.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 1.913 & H1 & Ru2 & Ru3 & 102.9 \\
2.651 & Ru2 & Ru3 & Ru4 & 108.2 \\
2.683 & Ru3 & Ru4 & & \\
\hline
\end{tabular}

COMMON NAME: \(\operatorname{Ru}(0001)-(\sqrt{3} x \sqrt{3}) R 30^{\circ}-C O\)
ILLUSTRATION: 80
CLASSIFICATION : 44.6.8.1
TECHNIQUE : LEED
AUTHORS : G. Michalk, W. Moritz, H. Pfnur and D. Menzel
REFERENCE : Surf. Sci., 129, 92 (1983)

SURFACE TYPE
Substrate : Ru
Crystal face: 0001
Temperature : 150
Bulk lattice: hcp
2D bulk symm: p3m1
2D surf symm: p31m

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment: CO dosed at \(2 \mathrm{E}-8\) mbar to maximize \(1 / 3,1 / 3\) spot int. at 360 K
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

\section*{DATA COLLECTION}

\section*{Technique: LEED}

Dataset : I-V curves: 7 orders of non-equivalent beams; E range \(40-400 \mathrm{ev}\); normal incidence

STRUCTURE TYPE
Molecular adsorption perp. to surface over top sites, \(C\) end bonded to Ru

\section*{COMMENTS}

The Ru-C and C-O distances were correlated for the on top site, their sum having a much higher accuracy ( \(3.12 \pm 0.02 \AA\) )

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS, layer doubling): 8 phase shifts; Vor=-12 eV, Voi=-0.85*E**1/3 eV; \(\Theta D=410 \mathrm{~K}\)

STRUCTURES EXAMINED
Top, bridge, hcp and fec 3-fold hollow sites; \(C O\) assumed normal to surface, \(C\) atom down;
C-Ru spacing varied from 1.65 to \(2.25 \AA\) (top), from 0.95 to \(2.10 \AA\) (hollows), from 1.10 to \(1.7 \AA\) (bridge site); CO bond length varied from 0.9 to \(1.2 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.51\), RZJ \(=0.21\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A \times(A)\) & Ay ( \(A\) ) & 8x (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.700 & 0.000 & 1.350 & 2.338 & 60.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.050 & 2.338 & -4.050 & 2.338 & 120.0 & \((1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01-C2: upright CO molecular overlayer; Ru4-Ru5: periodically repeating set of bulk layers
\(D x / D y\) in \(\&\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reg } \\
& \text { ion }
\end{aligned}
\] & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & Dx \(\pm\) & & Dy & & Dz & \(\pm \boldsymbol{E L}\) & & \(D z / B z(\%) \pm\) & \(\epsilon \mathrm{Z} / \mathrm{Bz}\) \\
\hline epir & & -2 & & & & & \(f\) & & \(f\) & & & A & & \\
\hline subr & & -1 & & & & 0.000 & A & 0.000 & A & 4.280 & & A & & \\
\hline ovrl & 0 & 1 & s1 & . 33 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 & \\
\hline ovrl & C & 2 & s1 & . 33 & 1 & 0.000 & \(f\) & 0.000 & \(f\) & 1.090 & \(\pm .100\) & A & \(50.9 \pm\) & 4.7 \\
\hline intf & Ru & 3 & \(b\) & 1.00 & 2 & 0.000 & \(f\) & 0.000 & \(f\) & 2.000 & \(\pm .100\) & A & \(93.5 \pm\) & 4.7 \\
\hline subl & Ru & 4 & b & 1.00 & 3 & 0.333 & \(f\) & 0.333 & \(f\) & 2.140 & & A & 100.0 & \\
\hline subl & Ru & 5 & \(b\) & 1.00 & 4 & -0.333 & \(f\) & -0.333 & \(f\) & 2.140 & & A & 100.0 & \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{c}
1.090 \\
2.000
\end{tabular} & 01 & \(C 2\) & \(R u 4\) & 143.9
\end{tabular}
\(\operatorname{Ru}(0001)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{CO}\)
44.6.8.1

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|r}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.700 & Ru3 & Ru3(1,0) & Ru4 & 59.3 \\
2.648 & Ru3 & Ru4 & Ru5 & 107.9 \\
\hline
\end{tabular} Ru(0001)-CO disordered

ILLUSTRATION: 80
COMMON NAME 44.6.8.2

TECHNIQUE
DLEED
AUTHORS
P. Piercy, P.A. Heimann, G. Michalk, D. Menzel

REFERENCE : Surf. Sci., 219, 189 (1989)

SURFACE TYPE
Substrate: Ru
Crystal face: 0001
Temperature : 120 K
Bulk lattice: hcp
20 bulk symm: p3m1
2D surf symm: none
SAMPLE PREPARATION ( 2 sample)
Treatment : heating and cooling cycles in 02
Crystallinity: LEED pattern
Anal. methods: AES, LEED
Contamination:

DATA COLLECTION
Technique: DLEED; multichannel electron analyzer
Dataset : 11 azimuthal angles between the ( 1,1 ) and \((1,0)\) directions at 4 energies

STRUCTURE TYPE
Disordered CO linearly bonded at top site
Coverage : 0.10 ML
Pattern : disordered
Matrix : ( \(1.000,0.000\) )
( \(0.000,1.000\) )

\section*{COMMENTS}

Same result obtained at \(0.05,0.10,0.20 \mathrm{ML}\)
same result obtained at 120K and 330K
close agreement with the ordered \((\sqrt{3} x \sqrt{3})\) R30 \(0^{\circ}\)
structure at 0.33ML
THEORY/DATA TREATMENT
DLEED and TAUMOL programs

STRUCTURES EXAMINED
Top, bridge, fcc, hcp sites
QUALITY OF EXPERIMENT-THEORY FII
RPE \(=0.18\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & \(A x(A)\) & \(A y(A)\) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.706 & 0.000 & 1.353 & 2.343 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.706 & 0.000 & 1.353 & 2.343 & 60.0 & \((1.000,1.000)\) & ndi:000) non-recon. & disordered \\
\hline
\end{tabular}

3D COORDINATES
01-C2: disordered CO linearly bonded at top site
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z = \(2.141 ~ \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 1.100 & \(C 2\) & 01 & & \\
2.000 & \(C 2\) & Ru3 & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Ru
Crystal face: 0001
Temperature : RT
Bulk lattice: hcp
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of Ar+ bomb., 1400C anneals, Fe from vapor
Crystallinity: Fe increases LEED background slightly
Anal. methods: AE
Contamination: AES: no C,N,O,S before Fe adsorption
DATA COLLECTION
Technique: LEED
Dataset : IV spectra for \(10,11,20\) beams at normal incidence;
```

Adsorbate: Fe
Coverage : 1.0 Fe/Ru
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Epitaxial monolayer continuing hep lattice

COMMENTS
Exp. Fe coverage is \(\approx 4 \mathrm{ML}\) : the excess of \(\approx 3 \mathrm{ML}\) is supposed to form small islands that do not contribute to the LEED

THEORY/DATA TREATMENT
Dyn. LEED (program CHANGE

STRUCTURES EXAMINED
1-, 2-, 3- and 4-layer films with ABAB... or ABCABC... stacking in thicker films, with interlayer spacing relaxations

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.11\), RPE \(=0.29\), \(\mathrm{RVHT}=0.18\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.706 & 0.000 & 1.353 & 2.344 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.706 & 0.000 & 1.353 & 2.344 & 60.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

30 COORDINATES

Fe1: epitaxial layer continuing hcp lattice of Ru \(0.05 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.706 & Fe1 & Fe1(1,0) & Ru2(0,-1) & 58.3 \\
2.578 & Fe1 & \(R u 2(0,-1)\) & \(R u 3\) & 106.6 \\
2.650 & \(R u 2\) & \(R u 3(1,0)\) & \(R u 4\) & 107.7 \\
\hline
\end{tabular}

CLASSIFICATION : 44.8 .1
TECHNIQUE : LEED
AUTHORS : H. Pfnur, G. Held, M. Lindroos and D. Menzel
REFERENCE : Surf. Sci., 220, 43 (1989)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|c|}
\hline Substrate : & Ru & Adsorbate: & 0 & \\
\hline Crystal face: & 0001 & Coverage : & \(0.50 / \mathrm{Ru}\) & \\
\hline Temperature : & 200 K & Pattern & \(p(2 \times 1)\) & \\
\hline Bulk lattice: & hcp & Matrix : & ( 1.000, & 0.000) \\
\hline 20 bulk symm: & p3m1 & & ( 0.000, & 2.000) \\
\hline
\end{tabular} Bulk lattice: hcp 20 bulk symm: p3m1 2D surf symm: pm

SAMPLE PREPARATION ( 1 sample)
Treatment : cleaned by cycles at \(400-1550 \mathrm{~K}\) in 0 , heated in UHV
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; 4-grid LEED system with Faraday cup
Dataset : IV curves for 84 beams: E range \(26-300 \mathrm{eV}\), normal incidence, average over symm. equiv. beams

STRUCTURE TYPE
Atomic adsorption in hep hollow sites; top 2 Ru layers
buckled; bulk-like first and second Ru-Ru interlayer spacings (measured wrt center of mass of the layers)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: Moruzzi pot for Ru, Tong pot for \(O(C O)\), Vor \(=-14 \mathrm{eV}\), Voi \(=-4 \mathrm{eV}, 00=410 \mathrm{~K}(\mathrm{Ru}), 843 \mathrm{~K}(0)\)

STRUCTURES EXAMINED
1) \(p(2 \times 1)\) hcp site; 2) \(p(2 \times 1)\) fcc site; 3) \(p(2 \times 1)\) top site; 4) \(p(2 \times 1)\) bridge; 5)honeycomb top/fcc; 6)honeycomb top/hcp; 7)honeycomb fcc/hcp; \(0-\mathrm{Ru}\) spacing varied to choose site; relaxation of top two Ru layers compatible with pm symm. allowed for \(p(2 \times 1)\) hcp site

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.185 for 1)
2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.706 & 0.000 & -1.353 & 2.343 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.706 & 0.000 & -2.706 & 4.687 & 120.0 & \((1.000,0.000)\) & p(2x1) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: atomic overlayer in hep hollow sites; Ru2-3, Ru4-5: two buckled substrate layers;
Ru6-7: bulk hep layers
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(7 \quad 8 u l k z=2.141\) A


Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.016 & 01 & Ru2 1.1 ) & 01(1,0) & 84.3 \\
\hline 2.016 & 01 & \(\operatorname{Ru}(1,1)\) & Ru2 \((0,1)\) & 47.9 \\
\hline 2.016 & 01 & Ru2 \((1,1)\) & Ru3 \((1,1)\) & 92.6 \\
\hline 2.021 & 01 & Ru3 & Ru2(1,1) & 45.8 \\
\hline 2.706 & Ru2 & Ru2 (1,0) & 01(1,-1) & 132.2 \\
\hline 2.706 & Ru2 & Ru2 (1,0) & \(01(0,-1)\) & 47.9 \\
\hline 2.604 & Ru2 & Ru3 (1,0) & \(01(1,0)\) & 130.4 \\
\hline 2.604 & Ru2 & Ru3 (1,0) & Ru2(1,1) & 119.8 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) Ru(0001)-p(2×2)-0 \\
CLASSIFICATION & \(: 44.8 .2\) \\
TECHNIQUE & : LEED \\
AUTHORS & : M. Lindroos, H. Pfnur, G. Held, and D. Menzel \\
REFERENCE & : Surf. Sci., 222,451 (1989)
\end{tabular}

CLASSIFICATION : 44.8 .2
: M. Linoroos, H. Pfnur, G. Held, and D. Menzel
REFERENCE : Surf. Sci., 222, 451 (1989)

\section*{SURFACE TYPE}

Substrate: Ru
Crystal face: 0001
Temperature : 200 K
Bulk lattice: hcp
2D bulk symm: p3m1
2D surf symm: p3m1
```

Adsorbate: 0
Coverage : 0.25 0/Ru
Pattern : p(2x2)
Matrix : (2.000, 0.000)
(0.000, 2.000)

```

SAMPLE PREPARATION ( 1 sample)
Treatment : cleaned by cycles at \(400-1550 \mathrm{~K}\) in 0 heated in UHV
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED; 4-grid LEED system with Faraday cup
Dataset : IV curves for 78 beams: E range 26-300 eV, normal incidence, average over symm. equiv. beams
\(0-R u\) spacing varied to choose the site; relaxation of top two Ru layers compatible with
p3m1 symmetry allowed for hop site
QUALITY OF EXPERIMENT-THEORY FIT
\(R(P e)=0.20\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.706} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.353} & \multirow[t]{2}{*}{2.343} & \multirow[t]{2}{*}{120.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{5.412} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-2.706} & \multirow[t]{2}{*}{4.687} & \multirow[t]{2}{*}{120.0} & ( 2.000, 0.000) & \multirow[t]{2}{*}{\(p(2 \times 2)\)} & s1: commens. \\
\hline & & & & & & ( 0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

01: overlayer in hcp hollow sites; Ru2-5, Ru6-9: two buckled substate layers;
Ru10-11: bulk hcp layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Ru(0001)-p(2x2)-0
44.8 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C ~\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.025 & 01 & \(R u 2\) & \(R u 3\) & 45.3 \\
2.561 & \(R u 2\) & \(R u 3\) & \(R u 4\) & 60.0 \\
\hline
\end{tabular}
```

COMMON NAME : Sc(0001)-(1\times1)
CLASSIFICATION : 21.2
TECHNIQUE : LEED
AUTHORS : S. Tougaard, A. Ignatiev and D.L. Adams
REFERENCE : Surf. Sci., 115, 270 (1982)

```

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Sc & Adsorbate: \\
Crystal face: 0001 & Coverage : \\
Temperature: RT* & Pattern : \(1 \times 1\) ) \\
Bulk lattice: hcp & Matrix \(:(1.000,0.000)\) \\
20 bulk symm: p3m1 & \\
&
\end{tabular}

> Adsorbate:
> Coverage :
> Pattern \(:(1 \times 1)\)
> Matrix \(:\left(\begin{array}{l}1.000,0.000) \\ \\ \end{array} \quad(0.000,1.000)\right.\)

STRUCTURE TYPE
Bulk-like termination with contraction of top interlayer spacing

\section*{COMMENTS}

Shallow R-factor minimum as a function of vertical displacement; possibility of some \(H\) contamination on the surface

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: Moruzzi et al potential; Vor \(=-9.5 \mathrm{eV}\), Voi=-3eV

STRUCTURES EXAMINED
Top layer spacing varied from 2.44 to \(2.74 \AA\) in steps of \(0.1 \AA\);
hcp termination yields lowest R-factor
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.23\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.310 & 0.000 & -1.655 & 2.867 & 120.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.310 & 0.000 & -1.655 & 2.867 & 120.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

Sc2-Sc3: repeating bulk pair of layers
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 3
Bulk z \(=2.640 \AA\)


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( A\()\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.310 & Sc 1 & \(\mathrm{Sc} 1(1,1)\) & Sc 2 & 59.1 \\
3.219 & Sc 1 & Sc 2 & \(\mathrm{Sc}(0,1)\) & 61.9 \\
3.219 & Sc 1 & Sc 2 & \(\mathrm{Sc} 2(0,-1)\) & 59.1 \\
3.219 & Sc 1 & Sc 2 & 107.7 \\
3.310 & Sc 2 & \(\mathrm{Sc} 2(1,1)\) & \(\mathrm{Sc} 3(1,1)\) & 59.5
\end{tabular}

Sc(0001)-(1x1)
21.2

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.259 & Sc 2 & Sc 3 & \(\mathrm{Sc} 2(0,-1)\) & 61.0 \\
3.259 & Sc 2 & Sc 3 & \(\mathrm{Sc} 3(0,1)\) & 59.5 \\
\hline
\end{tabular}

COMMON NAME : Si(100)-(2×1)
CLASSIFICATION : 14.170
TECHNIQUE : GIXD
AUTHORS : N. Jedrecy, M. Sauvage-Simkin, R. Pinchaux, J. Massies, N. Greiser and V. H. Etgens
REFERENCE : Surf. Sci., 230, 197 (1990)
\begin{tabular}{lll} 
SURFACE TYPE & & STRUCTURE TYPE \\
Substrate \(: ~ S i\) & Adsorbate: & Clean surface with buckled dimers \\
Crystal face: 100 & Coverage : & \\
Temperature: RT & Pattern \(:(2 \times 1)\) & \\
Bulk lattice: diamond & Matrix \(:(1.000,0.000)\) & \\
2D bulk symm: prmm & & \((0.000,2.000)\) \\
2D surf symm: pm & &
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
COMMENTS
\(\begin{aligned} & \text { Treatment } \text { : Si cut within } 0.2 \\ & \text { etched, annealed }\end{aligned}\)
Crystallinity: (2x1) LEED pattern
Anal. methods:
Contamination:
\(\begin{array}{ll}\text { DATA COLLECTION } \\ \text { Technique: GIXD } & \text { THEORY/DATA TREATMENT } \\ X \text {-ray diffraction }\end{array}\)
Dataset : X-ray diffraction peaks at grazing incidence (3.8E-3 rad); wavelength 1.488\&

STRUCTURES EXAMINED
Symmetric dimer model; buckled dimer model;
relaxations in 1 st 2 layers
QUALITY OF EXPERIMENT-THEORY FIT
Chi \({ }^{2}\) (2 models) \(=5.10,1.79\)
2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline Cell & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.840 & 0.000 & 0.000 & 7.680 & 90.0 & \((0.000,1.000)\) & \((2 \times 1)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

D COORDINATES
Si1-Si2: buckled dimer; si3-si4: relaxed 2nd layer;
\(0.1 \AA\) error bars assumed for tabutation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Si(100)-(2x1)
14.170

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.321 & Si1 & Si2 & Si4 & 116.4 \\
2.356 & Si1 & Si3 & Si5(0,2) & 117.6 \\
2.356 & Si1 & Si3 & Si5(0,1) & 100.1 \\
2.321 & Si2 & Si1 & Si3 & 95.9 \\
2.347 & Si2 & Si4 & Si5(0,1) & 87.3 \\
2.347 & Si2 & Si4 & Si5 & 123.9 \\
2.347 & Si2 & Si4(-1,0) & Si2(-1,0) & 109.8 \\
2.356 & Si3 & Sil(1,0) & Si3(1,0) & 109.2 \\
\hline
\end{tabular}

COMMON NAME : Si(100)-(2x1)
ILLUSTRATION: 94
CLASSIFICATION: 14.182a
TECHNIQUE : KLEED
AUTHORS : R.G. Zhao, Jinfeng Jia, Yanfang Li and W. S. Yang
REFERENCE : Springer Series in Surface Sciences, 24, 517 (1991)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
SURSACE TYPE \(: ~ S i\) & \\
Crystal face: 100 & Adsorbate: \\
Temperature : RT & Coverage : \\
Bulk lattice: diamond & Pattern \(:(2 \times 1)\) \\
2D bulk symm: prmm & Matrix \(:(2.000,0.000)\) \\
& \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

2 coexisting phases: \(75 \%\) ( \(2 \times 1\) ) and \(25 \% \mathrm{c}(4 \times 2)\);
( \(2 \times 1\) ) has weakly buckled dimers;
\(c(4 \times 2)\) has strongly buckled dimers: see
structure \(14.182 b\)

SAMPLE PREPARATION ( 1 sample)

\section*{Treatment :}

Crystallinity: (2x1) LEED pattern
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

THEORY/DATA TREATMENT
Kinematic LEED: Vor=-12.5 eV (fit); mfp=4A

COMMENTS

Technique: KLEED
Dataset : constant-momentum-transfer averaging over E-range 30-250 eV

STRUCTURES EXAMINED
(2x1) buckled dimers; \(c(4 \times 2)\) buckled dimers;
\(75 \% / 25 \%\) mixture of \((2 \times 1)\) and \(c(4 \times 2) ; x\) and \(z\) relaxations down to 6 th 5 layer
QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.22\) (incl. \(c(4 \times 2)\) )
2D UNIT CELLS ( 2 domains observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & \(B \times(\AA)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 7.679 & 0.000 & 0.000 & 3.840 & 90.0 & \((2.000,0.000)\) & (2×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2: weakly buckled dimer; Si3-si12: relaxed layers;
Si14-si15: form periodically repeating pair of bulk layers; 0.1A error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Si(100)-(2×1)
14.182a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 15
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.385 & Si1 & Si2 & Si4 & 106.9 \\
\hline 2.399 & Si3 & Si5 & Si7 & 107.1 \\
\hline 2.375 & Si3 & Si6 & Si4 & 96.4 \\
\hline 2.375 & Si3 & Si6 & Si8 & 113.3 \\
\hline 2.408 & Si4 & Si5 (-1,0) & Si3 (-1,0) & 121.1 \\
\hline 2.408 & Si4 & Si5 (-1,0) & Si7(-1,0) & 106.4 \\
\hline 2.313 & Si4 & Si6 & Si8 & 113.1 \\
\hline 2.387 & Si1 & Si3 & Si1(0,1) & 107.1 \\
\hline 2.387 & si1 & Si3 & Si5 & 117.4 \\
\hline 2.387 & Sil & Si3 & Si6 & 102.5 \\
\hline 2.385 & Si2 & Si1 & Si3 & 100.1 \\
\hline 2.365 & Si2 & Si4 & Si2(0,1) & 108.5 \\
\hline 2.365 & Si2 & Si4 & Si5 \((-1,0)\) & 118.6 \\
\hline 2.365 & Si2 & Si4 & & 98.9 \\
\hline 2.399 & Si3 & Si5 & Si4 (1,0) & 121.1 \\
\hline
\end{tabular}

COMMON NAME : Si(100)-(2x1)

\section*{ILLUSTRATION: 94}

CLASSIFICATION : 14.75
TECHNIQUE : MEIS
AUTHORS : R.M. Tromp, R.G. Smeenk, F.W. Saris and D.J. Chadi
REFERENCE : Surf. Sci., 133,'137 (1983)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Si & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature : RT & Pattern : (2x1) \\
Bulk lattice: diamond & Matrix : \(2.000,0.000)\) \\
20 bulk symm: prm & \\
\hline
\end{tabular}

2D surf symm: pm

SAMPLE PREPARATION ( 1 sample)
Treatment : cleaned by direct current heating to 1250c for 30 s
Crystallinity: sharp ( \(2 \times 1\) ) LEED patterns down to 10 eV Anal. methods:
Contamination: monitored by AES and ISS

\section*{DATA COLLECTION}

\section*{Technique: MEIS}

Dataset : MEIS channeling and blocking, with 50, 100 and 150 k eV protons in 3 scattering geometries

STRUCTURE TYPE
Buckled dimer with multilayer relaxations

\section*{COMMENTS}

Authors conclude that although ( \(2 \times 1\) ) buckled dimer yields
best agreement with MEIS data, the ( \(2 \times 1\) ), ( \(2 \times 2\) ) and \(c(4 \times 2\) ) geometries probably coexist on the clean Si(100) surface; energy minimisation calculations used for all coordinates (Hellman-Feymman forces in tight binding calculations)

\section*{THEORY/DATA TREATMENT}

Monte Carlo simulations of surface blocking minima and total energy minimisation calculations; vibs=0.14\& top 2 layers

\section*{STRUCTURES EXAMINED}
(2×1) buckled dimer models of Appelbaum/Hamann (Surf. Sci. 74 21(1978)), Chadi (Phys. Rev. Lett. 43 43(1979)) and Yin/ Cohen (Phys. Rev. B24 2303 (1981)); dimer models with ( \(2 \times 1\) ), \(p(2 \times 2), c(2 \times 2)\) and \(c(4 \times 2)\) symmetries calculated by total \(E\) minimisation of TB model (Chadi, JVST 16 1290(1979)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
20 UNIT CELLS ( 2 domains observed)


3D COORDINATES
Si1-si2: tilted dimerized top layer; si3-12: relaxed subsurface layers;
Si13-14: bulk pair of repeating layers; \(0.1 \AA\) error bars assumed for tabulation (not determined)
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

si(100)-(2x1)
14.75
bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 12
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.363 & Si1 & si2 & \(\sin (1,0)\) & 146.4 \\
\hline 2.338 & Si4 & Si2 & Si1 & 119.8 \\
\hline 2.338 & Si4 & Si2 & Si3(-1,-1) & 108.9 \\
\hline 2.338 & Si4 & Si2 & Si4(0,-1) & 110.4 \\
\hline 2.363 & Si 1 & Si2 & Si3(-1,0) & 123.6 \\
\hline 2.363 & Si1 & Si2 & Si4 & 119.8 \\
\hline 2.397 & Si1 & Si3(-1,0) & \(\operatorname{si1}(0,1)\) & 106.4 \\
\hline 2.397 & Si1 & Si3(-1,0) & Si2(-1,1) & 121.5 \\
\hline 2.397 & Si1 & Si3(-1,0) & Si4(-1,0) & 112.9 \\
\hline 2.338 & si2 & Si4 & sil(1,1) & 120.0 \\
\hline 2.338 & Si2 & Si4 & Si2(0,1) & 110.4 \\
\hline 2.338 & si2 & Si4 & Si3(-1,0) & 102.3 \\
\hline
\end{tabular}

CLASSIFICATION : 14.85
TECHNIQUE : LEED
AUTHORS : B.W. Holland, C.b. Duke and A. Paton
REFERENCE : Surf. Sci., 140, L269 (1984)

SURFACE TYPE
Substrate : S
Crystal face: 100
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: pmm
2D surf symm: pm
SAMPLE PREPARATION ( 2 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : LEED I-V curves measured by (1) Yang et al, Phys. Rev. B28, 2049(1983) and (2) Ignatiev et al, J. Phys. C10, 1109(1977)
SAMPLE PREPARATION ( 2 sample)

Crystallini
Anal. methods:
Contamination:
```

Adsorbate:
Coverage :
Pattern : (2x1)
Matrix : (2.000, 0.000)
(0.000, 1.000)

```

\section*{Coverage :}
```

Matrix : $\begin{array}{r}(2.000,0.000) \\ (0.000,1.000)\end{array}$

```

\section*{STRUCTURE TYPE}

Buckled dimer with multilayer relaxations

STRUCTURES EXAMINED
Starting from average between Chadi and Yin-Cohen models and keeping 1 mirror plane: 2D displacements of dimer atoms; displacements normal to the surface of the atoms in the 2 nd and 3 rd layers

\section*{QUALITY OF EXPERIMENT-THEORY FIT \\ RX=0.13}

2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 7.680 & 0.000 & 0.000 & 3.840 & 90.0 & \((0.000,1.000)\) & \((2.000,0.000)\) & (2x1) \\
\hline
\end{tabular}

30 COORDINATES

Sil-si2: tilted dimerized top layer; si3-8: relaxed subsurface layers; Si9-10: periodically repeating pair of bulk layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(10 \quad\) Bulk \(z=1.358 \quad \&\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & \(D \mathrm{D} \quad \pm \mathrm{x}\) & DY \(\pm \in Y\) & \(D z \pm \epsilon z\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \epsilon \mathrm{z} / \mathrm{Bz}\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & & \\
\hline subr & & -1 & & & & 1.920 A & 1.920 A & 2.715 & \\
\hline intf & Si & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 & 0.0 \\
\hline intf & Si & 2 & s1 & . 50 & 1 & 0.318 f & 0.000 f & \(0.364 \pm .200\) & \(26.8 \pm 14.7\) \\
\hline intf & Si & 3 & s1 & . 50 & 2 & 0.103 f & 0.500 f & 0.691 & 50.9 \\
\hline int f & Si & 4 & s1 & . 50 & 3 & 0.526 f & 0.000 f & 0.077 & 5.7 \\
\hline intf & Si & 5 & s1 & . 50 & 4 & -0.262 f & 0.000 f & 1.207 & 88.9 \\
\hline intf & Si & 6 & s1 & . 50 & 5 & -0.502 f & 0.000 f & 0.277 & 20.4 \\
\hline intf & Si & 7 & s 1 & . 50 & 6 & 0.498 f & -0.500 f & 1.114 & 82.1 \\
\hline intf & Si & 8 & s1 & . 50 & 7 & -0.493 f & 0.000 f & 0.212 & 15.6 \\
\hline subl & Si & 9 & \(b\) & 1.00 & 8 & -0.500 f & 0.000 f & 1.358 & 100.0 \\
\hline subl & Si & 10 & b & 1.00 & 9 & 0.000 f & -0.500 f & 1.358 & 100.0 \\
\hline
\end{tabular}

Si(100)-(2x1)
14.85

8OND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 12
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.469 & sil & Si2 & Si1(1,0) & 156.9 \\
\hline 2.189 & Si2 & Si3 & Si4 (-1,0) & 116.8 \\
\hline 2.189 & Si3 & Si2 & Si3(0,-1) & 122.6 \\
\hline 2.189 & Si3 & Si2 & Si4(-1,-1) & 118.2 \\
\hline 2.469 & Sil & Si2 & Si3 & 113.8 \\
\hline 2.469 & Sil & Si2 & Si4(-1,0) & 118.5 \\
\hline 2.266 & Si1 & si4 (-1,0) & Si1(0,1) & 115.9 \\
\hline 2.266 & Si1 & Si4(-1,0) & Si2(-1,1) & 128.3 \\
\hline 2.469 & Si2 & Si1 & Si2(-1,0) & 156.9 \\
\hline 2.469 & Si2 & Sil & Si3(-1, 0) & 101.3 \\
\hline 2.189 & Si2 & Si3 & Si1(1,1) & 133.7 \\
\hline 2.189 & Si2 & Si3 & Si2(0,1) & 122.6 \\
\hline
\end{tabular}

COMMON NAME : Si(100)-c(4×2)
ILLUSTRATION: 95
CLASSIFICATION : 14.182b
TECHNIQUE : KLEED
AUTHORS : R.G. Zhao, Jinfeng Jia, Yanfang Li and W. S. Yang
REFERENCE : Springer Series in Surface Sciences, 24, 517 (1991)

SURFACE TYPE
Substrate : si
Crystal face: 100
Temperature : RT
Bulk lattice: diamond
2D bulk symm: pmm
2D surf symm: cm

\section*{SAMPLE PREPARATION ( 1 sample)}

\section*{Treatment}

Crystallinity: (2x1) LEED pattern
Anal. methods:
Contamination

\section*{data collection}

Technique: KLEED
Dataset : constant-momentum-transfer averaging over E -range 30-250 eV

Adsorbate:
Coverage
Pattern : c(4x2)
Matrix : ( \(4.000,0.000\) )
( \(2.000,1.000\) )

\section*{STRUCTURE TYPE}

2 coexisting phases, 75\% (2×1) and 25\% c(4x2);
\(\mathrm{c}(4 \times 2)\) has strongly buckled dimers;
(2x1) has weakly buckled dimers: see
structure 14.182a

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Kinematic LEED: Vor=-12.5 eV (fit); mfp=4A

STRUCTURES EXAMINED
(2x1) buckled dimers; c(4x2) buckled dimers, pairwise symmetrical;
\(\mathbf{7 5 \%} / 25 \%\) mixture of ( \(2 \times 1\) ) and \(c(4 \times 2)\); \(x\) and \(z\) relaxations down to 6 th si layer
QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.22\) (incl. ( \(2 \times 1\) ))
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \({ }_{\text {A }}\) ) & Ay (A) & Bx (A) & 8y ( A \(^{\text {) }}\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & ( 1.000, 0.000 ) & (1x1) & b: bulk lattice \\
\hline Surface 1 & 15.358 & 0.000 & 7.679 & 3.840 & 21.6 & \((0.000,1.000)\)
\((4.000,0.000)\) & & s1: commens. \\
\hline & & & & & & ( 2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}
si1-si4: 2 strongly buckled dimers; si5-si24: relaxed layers;
si26-Si27: form periodically repeating pair of bulk layers; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & DX \(\pm \in X\) & Dy \(\pm \in y\) & \(D z \pm \epsilon z\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & & A & \\
\hline subr & & -1 & & & & 1.920 A & 1.920 A & 2.715 & A & \\
\hline intf & Si & 1 & s 1 & . 25 & 0 & \(0.000 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & \(\AA\) & \(0.0 \pm 7.4\) \\
\hline intf & Si & 2 & s1 & . 25 & 1 & \(0.313 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline intf & Si & 3 & s1 & . 25 & 2 & \(0.542 \pm .007 \mathrm{f}\) & 0.000 f & \(0.560 \pm .100\) & \(A\) & \(41.3 \pm 7.4\) \\
\hline intf & Si & 4 & s1 & . 25 & 3 & \(-0.396 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline intf & Si & 5 & s1 & . 25 & 4 & \(0.311 \pm .007 \mathrm{f}\) & 0.500 f & \(0.818 \pm .100\) & A & \(60.2 \pm 7.4\) \\
\hline intf & Si & 6 & s1 & . 25 & 5 & \(-0.725 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline intf & Si & 7 & s 1 & . 25 & 6 & \(0.500 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline intf & Si & 8 & s1 & . 25 & 7 & \(-0.275 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline intf & Si & 9 & s1 & . 25 & 8 & \(0.637 \pm .007 \mathrm{f}\) & 0.000 f & \(1.288 \pm .100\) & A & \(94.8 \pm 7.4\) \\
\hline intf & Si & 10 & s1 & . 25 & 9 & \(-0.500 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline intf & Si & 11 & s1 & . 25 & 10 & \(0.250 \pm .007 \mathrm{f}\) & 0.000 f & \(0.460 \pm .100\) & \(\AA\) & \(33.9 \pm 7.4\) \\
\hline intf & Si & 12 & s1 & . 25 & 11 & \(-0.500 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & \(\AA\) & \(0.0 \pm 7.4\) \\
\hline intf & Si & 13 & s1 & . 25 & 12 & \(0.000 \pm .007 \mathrm{f}\) & -0.500 f & \(1.168 \pm .100\) & A & \(86.0 \pm 7.4\) \\
\hline intf & Si & 14 & s1 & . 25 & 13 & \(0.500 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline intf & Si & 15 & s1 & . 25 & 14 & \(0.250 \pm .007 \mathrm{f}\) & 0.000 f & \(0.360 \pm .100\) & \(\AA\) & \(26.5 \pm 7.4\) \\
\hline intf & Si & 16 & s1 & . 25 & 15 & \(-0.500 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & \(\AA\) & \(0.0 \pm 7.4\) \\
\hline intf & Si & 17 & s1 & . 25 & 16 & \(-0.368 \pm .007 \mathrm{f}\) & 0.000 f & \(1.148 \pm .100\) & \(\stackrel{\text { A }}{ }\) & \(84.5 \pm 7.4\) \\
\hline intf & Si & 18 & s1 & . 25 & 17 & \(0.236 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & \(\AA\) & \(0.0 \pm 7.4\) \\
\hline intf & Si & 19 & s 1 & . 25 & 18 & \(0.500 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & A & \(0.0 \pm 7.4\) \\
\hline int \(f\) & si & 20 & s1 & . 25 & 19 & \(-0.236 \pm .007 \mathrm{f}\) & 0.000 f & \(0.000 \pm .100\) & \(\AA\) & \(0.0 \pm 7.4\) \\
\hline int f & Si & 21 & s1 & . 25 & 20 & \(0.246 \pm .007 \mathrm{f}\) & \(0.500 \quad f\) & \(1.368 \pm .100\) & \(\AA\) & \(100.7 \pm 7.4\) \\
\hline
\end{tabular}

Si(100)-c(4×2)
14.182b

3D Coordinates - Continued

bOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom \(B\) & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.308 & Si1 & Si3(-1,0) & Si6 \(0,-1)\) & 118.8 \\
\hline 2.381 & Sil & Si5 (-1,0) & Si4(-1,1) & 114.9 \\
\hline 2.381 & Sil & Si5 (-1,0) & si9 (-1,0) & 113.9 \\
\hline 2.284 & si3 & Si6(1,-1) & Si2(1,-1) & 114.9 \\
\hline 2.472 & Si5 & si9 & Si6(1,0) & 117.2 \\
\hline 2.459 & Si5 & Si11 & & \\
\hline
\end{tabular}

COMMON NAME : si(111)-(2x1)
ILLUSTRATION: 89
CLASSIFICATION : 14.120
TECHNIQUE : LEED
AUTHORS : H. Sakama, A. Kawazu and K. Ueda
REFERENCE : Phys. Rev., B34, 1367 (1986)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Si & Adsorbate: & \\
\hline Crystal face: & 111 & Coverage & \\
\hline Temperature : & RT* & Pattern & (2x1) \\
\hline Bulk lattice: & diamond & Matrix & ( 1.000, 1.000) \\
\hline 2D bulk symm: & p3m1 & & (-1.000, 1.000) \\
\hline
\end{tabular}

STRUCTURE TYPE
Tilted r-bonded chain model with relaxations down to 4th

\section*{SAMPLE PREPARATION ( 1 sample)}

\section*{Treatment :}

Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra at 3 incidence angles; \(40<E<160 \mathrm{eV}\); 13 integral- and fractional-order beams
bilayer

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED

STRUCTURES EXAMINED
Variations in 7 geometrical parameters concerning atomic positions down to 4 th atomic layer
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.40\)
2 UNIT CELLS ( 3 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & 1.919 & 3.324 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.757 & 3.324 & -1.919 & 3.324 & 90.0 & \((1.000,1.000)\) & \((2 \times 1)\) & s1: commens. \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2: tilted \(\pi\)-bonded chain; Si3-Si4, Si5-Si6, Si7-Si8: relaxed bilayers;
Si9-si10: repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(10 \quad\) Bulk \(2=3.060\) A


Bond distances and angles are derived from coordinates

No. of distances/angles:
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.248 & Si1 & Si2 & Si3 & 121.3 \\
2.356 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & Si4 & 123.0 \\
2.350 & \(\mathrm{Si3}\) & \(\mathrm{Si4}\) & Si6 & 101.5 \\
2.315 & \(\mathrm{Si4}\) & Si 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline COMMON NAME & : Si(111)-(2x1) & ILLUSTRATION: - \\
\hline CLASSIFICATION & : 14.25 & \\
\hline TECHNIQUE & : LEED & \\
\hline AUTHORS & : R. Feder, W. Monch and P.P. Auer & \\
\hline REFERENCE & : J. Phys., C12, L179 (1979) & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: S
```

Adsorbate:
Coverage :
Pattern : (2x1)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

STRUCTURE TYPE
Buckled top layer

\section*{COMMENTS}

This model is no longer accepted as correct

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer KKR); at. pot. from at. charge density superpos. (7 ph. sh.); Voi=3 eV; \(\Theta 0=625 \mathrm{~K}\) (bulk), 300K(surf)

STRUCTURES EXAMINED
1) pairing models; 2) buckling models with variable buckling of first two planes of atoms, variable first-to-second and second-to-third interplanar distances and variable lateral shift in second atomic plane

QUALITY OF EXPERIMENT-THEORY FII
Visual
2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX (A) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & 1.919 & 3.324 & 60.0 & ( 1.000, 0.000) & ( \(1 \times 1\) ) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.757 & 3.324 & -1.919 & 3.324 & 90.0 & \[
\begin{gathered}
(1.000,1.000) \\
(-1.000,1.000)
\end{gathered}
\] & (2x1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2: buckled top half bilayer; buckling of \(2 x 0.08 \mathrm{~A}\); Si3-Si4: next half bilayer, with lateral shifts of 0.10 A ; si7-si8: periodically repeating bulk bilayer

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.377 & Sil & Si3 & Si1(0,1) & 102.4 \\
\hline 2.443 & Si3 & Si2 & Si4 & 114.2 \\
\hline 2.377 & Sil & Si3 & Si2 & 106.0 \\
\hline 2.377 & Sil & Si3 & Si4(-1,0) & 114.5 \\
\hline 2.321 & Si1 & Si4(-1,0) & sil( \(-1,0\) ) & 105.8 \\
\hline 2.321 & Sil & Si4(-1,0) & Si2(0,-2) & 109.8 \\
\hline 2.443 & Si2 & Si3 & Sil & 106.0 \\
\hline 2.443 & Si2 & Si3 & Si2(-1,0) & 109.1 \\
\hline 2.384 & Si2 & Si4 & Si1(1,0) & 104.3 \\
\hline 2.384 & Si2 & Si4 & Si2(1,0) & 113.3 \\
\hline
\end{tabular}
```

COMMON NAME : Si(111)-(2\times1)
CLASSIFICATION : 14.89
TECHNIQUE : LEED
AUTHORS : F.J. Himpsel, P.M. Marcus, R. Tromp, I.P. Batra, M.R. Cook,
F. Jona and H. Liu
REFERENCE : Phys. Rev., B30, 2257 (1984)

```

\section*{SURFACE TYPE}

Substrate : S
Crystal face: 111
Temperature : RT
Bulk lattice: diamond 2D bulk symm: p3m1 2D surf symm: pm

SAMPLE PREPARATION ( 1 sample)
Adsorbate:
STRUCTURE TYPE
Tilted \(\pi\)-bonded chain model with overall compression
Coverage
\begin{tabular}{ll} 
Pattern \(:(2 \times 1)\) \\
Matrix \(:(1.000,1.000)\) \\
& \((-1.000,1.000)\)
\end{tabular}

COMMENTS

\section*{Treatment :}

Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : \(1-V\) curves for 12 beams at normal incidence

THEORY/DATA TREATMENT
Dynamical LEED with Keating-type strain energy minimisation; Vor \(=-10\) eV, Voi \(=-3.5 \mathrm{eV}\); rms \(0.3 \AA\) outermost chain \(0.1 \AA\) rest

STRUCTURES EXAMINED
Chain structures of Pandey and Northrup and Cohen; the 8 z -coords of all atoms down to the 4 th layer were optimised; 5 th and 6th layers and all coords parallel to mirror plane determined by Keating like strain energy minimisation; one mirror plane maintained

QUALITY OF EXPERIMENT -THEORY FIT
\(R Z J=0.42\)

2D UNIT CELLS ( 3 domains observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 1.920 & 3.326 & 60.0 & ( 1.000, 0.000) & \multirow[t]{4}{*}{\[
\begin{aligned}
& (1 \times 1) \\
& (2 \times 1)
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
b: bulk lattice \\
s1: commens. superlattice
\end{tabular}} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.760 & 3.326 & -1.920 & 3.326 & 90.0 & ( \(1.000,1.000)\) & & \\
\hline & & & & & & (-1.000, 1.000) & & \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2: tilted \(\pi\)-bonded chain; si3-si4: tilted lower chain;
si13-si14: periodically repeating bulk bilayer
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.

No. of atoms: 14
Bulk z \(=3.130 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{D} \pm \in \mathrm{X}\) & Dy \(\pm \boldsymbol{E} \boldsymbol{y}\) & \(D z \pm \in \mathcal{L}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & & \\
\hline subr & & -1 & & & & 1.920 A & 1.108 A & 3.130 & \\
\hline intf & Si & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 & 0.0 \\
\hline intf & Si & 2 & s1 & . 50 & 1 & 0.168 f & 0.500 f & \(0.380 \pm .080\) & \(12.1 \pm 2.6\) \\
\hline intf & Si & 3 & s1 & . 50 & 2 & 0.322 f & 0.000 f & 0.810 & 25.9 \\
\hline intf & Si & 4 & s1 & . 50 & 3 & 0.209 f & -0.500 f & 0.070 & 2.2 \\
\hline intf & Si & 5 & s1 & . 50 & 4 & -0.338 f & 0.500 f & 2.130 & 68.1 \\
\hline intf & Si & 6 & s1 & . 50 & 5 & 0.474 f & -0.500 f & 0.070 & 2.2 \\
\hline intf & Si & 7 & s1 & . 50 & 6 & -0.654 f & 0.000 f & 0.600 & 19.2 \\
\hline intf & Si & 8 & s1 & . 50 & 7 & 0.501 f & 0.500 f & 0.200 & 6.4 \\
\hline intf & Si & 9 & s1 & . 50 & 8 & -0.501 f & -0.500 f & 2.190 & 70.0 \\
\hline intf & Si & 10 & s1 & . 50 & 9 & 0.499 f & 0.500 f & 0.130 & 4.2 \\
\hline intf & Si & 11 & s 1 & . 50 & 10 & -0.168 f & -0.500 f & 0.690 & 22.0 \\
\hline intf & Si & 12 & s1 & . 50 & 11 & -0.495 f & 0.500 f & 0.030 & 1.0 \\
\hline subl & Si & 13 & \(b\) & 1.00 & 12 & 0.000 f & 0.000 f & 2.348 & 75.0 \\
\hline subl & Si & 14 & b & 1.00 & 13 & -0.333 f & -0.333 f & 0.783 & 25.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 2.255 & Sil & si2 & si1(0,1) & 117.4 \\
\hline 2.255 & Si1 & Si2 & Si3 & 121.6 \\
\hline 2.255 & Sil & Si2 & Si4( \(-1,0\) ) & 106.1 \\
\hline 2.364 & Si1 & si4(-1,0) & si3 \((0,-2)\) & 118.7 \\
\hline 2.289 & si2 & Si3 & si2(1,0) & 110.0 \\
\hline 2.289 & Si 2 & Si3 & Si4 & 124.0 \\
\hline 2.289 & Si3 & Si2 & si3( \(-1,0\) ) & 110.0 \\
\hline 2.371 & Si3 & Si4 & Si1(1,0) & 106.2 \\
\hline 2.371 & si3 & Si4 & Si3 \((1,0)\) & 125.8 \\
\hline
\end{tabular}

CLASSIFICATION: 14.96
TECHNIQUE : MEIS
AUTHORS : L. Smit, R.M. Tromp and J.F. van der veen
REFERENCE : Surf. Sci., 163, 315 (1985)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: \(:\) si & Adsorbate: \\
Crystal face: 111 & Coverage : \\
Temperature: RT* & Pattern : (2x1) \\
Bulk lattice: diamond & Matrix : \(1.000,1.000)\) \\
2D bulk symm: p3m1 &
\end{tabular}

2D surf symm: pm
SAMPLE PREPARATION ( 4 sample)
Treatment : in-situ cleavage, ion-beam dose restricted
Crystallinity: single-domain pattern checked with LEED
Anal. methods:
Contamination:

DATA COLLECTION
Technique: MEIS
Dataset : MEIS with shadowing and blocking; surface blocking patterns from 4 cleaves

STRUCTURE TYPE
Tilted \(\pi\)-bonded chain model, with tilt in lower chain in same direction as tilt in upper chain;

COMMENTS

\section*{THEORY/DATA TREATMENT}

Monte Carlo simulations of Rutherford backscattering, Moliere approximation to Thomas-Fermi potential

STRUCTURES EXAMINED
Bulk-terminated surface; buckling model; m-bonded chain model with Keating relaxations and fit of tilt of first two chains and of height of first chain, keeping bond in upper chain to 2.25A; m-bonded molecule model

QUALITY OF EXPERIMENT-THEORY FIT
visual
2D UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.841 & 0.000 & 1.920 & 3.326 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.761 & 3.326 & -1.921 & 3.326 & 90.0 & \[
(1.000,1.000)
\] & (2x1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2: tilted m-bonded chain; Si3-Si4: tilted lower chain;
si13-Si14: periodically repeating bulk bilayer; \(0.1 A\) error bars assumed for tabulation (not determined)
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & \(D X \pm \epsilon x\) & DY \(\pm \in Y\) & \(D Z \pm \in \mathcal{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.920 A & 1.109 A & 3.130 A & \\
\hline intf & Si & 1 & s1 & . 50 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & Si & 2 & s 1 & . 50 & 1 & \(0.169 \pm .015 \mathrm{f}\) & \(0.500 \pm .026 \mathrm{f}\) & \(0.300 \pm .100 ~ A\) & \(9.6 \pm 3.2\) \\
\hline intf & Si & 3 & s1 & . 50 & 2 & \(0.322 \pm .015 \mathrm{f}\) & \(0.000 \pm .026 \mathrm{f}\) & \(0.980 \pm .100\) A & \(31.3 \pm 3.2\) \\
\hline intf & Si & 4 & s1 & . 50 & 3 & \(0.215 \pm .015 \mathrm{f}\) & \(-0.500 \pm .026 f\) & \(0.150 \pm .100\) A & \(4.8 \pm 3.2\) \\
\hline intf & Si & 5 & s1 & . 50 & 4 & -0.340 \(\pm .015 \mathrm{f}\) & \(0.500 \pm .026 \mathrm{f}\) & \(2.080 \pm .100 \AA\) & \(66.5 \pm 3.2\) \\
\hline intf & Si & 6 & s1 & . 50 & 5 & \(0.475 \pm .015 \mathrm{f}\) & \(-0.500 \pm .026\) f & \(0.100 \pm .100\) A & \(3.2 \pm 3.2\) \\
\hline intf & Si & 7 & s 1 & . 50 & 6 & \(-0.654 \pm .015 f\) & \(0.000 \pm .026 \mathrm{f}\) & \(0.600 \pm .100 ~ A\) & \(19.2 \pm 3.2\) \\
\hline intf & Si & 8 & s1 & . 50 & 7 & \(0.499 \pm .015 \mathrm{f}\) & \(0.500 \pm .026 \mathrm{f}\) & \(0.270 \pm .100 \AA\) & \(8.6 \pm 3.2\) \\
\hline intf & Si & 9 & s 1 & . 50 & 8 & \(-0.499 \pm .015 \mathrm{f}\) & \(-0.500 \pm .026 f\) & \(2.140 \pm .100\) A & \(68.4 \pm 3.2\) \\
\hline intf & Si & 10 & s1 & . 50 & 9 & \(0.499 \pm .015 \mathrm{f}\) & \(0.500 \pm .026 \mathrm{f}\) & \(0.140 \pm .100 \mathrm{~A}\) & \(4.5 \pm 3.2\) \\
\hline intf & Si & 11 & s 1 & . 50 & 10 & \(-0.665 \pm .015 f\) & \(0.000 \pm .026 \mathrm{f}\) & \(0.710 \pm .100 \AA\) & \(22.7 \pm 3.2\) \\
\hline intf & Si & 12 & s1 & . 50 & 11 & \(0.498 \pm .015 \mathrm{f}\) & \(-0.500 \pm .026 \mathrm{f}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 3.2\) \\
\hline subl & Si & 13 & b & 1.00 & 12 & 0.000 f & 0.000 f & 2.348 A & 75.0 \\
\hline subl & Si & 14 & b & 1.00 & 13 & -0.333 f & -0.333 f & 0.783 \& & 25.0 \\
\hline
\end{tabular}

Si(111)-(2x1)
14.96

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.246 & si1 & Si2 & si1(0,1) & 118.6 \\
\hline 2.246 & Sil & Si2 & Si3 & 120.7 \\
\hline 2.246 & Si1 & Si2 & Si4(-1,0) & 103.7 \\
\hline 2.423 & si1 & Si4(-1,0) & si3(0,-2) & 116.4 \\
\hline 2.246 & Si2 & Si1 & \(\operatorname{si4}(0,-1)\) & 106.1 \\
\hline 2.356 & Si2 & Si3 & Si2(1,0) & 105.8 \\
\hline 2.356 & Si2 & Si3 & si4 & 124.6 \\
\hline 2.399 & Si3 & Si4 & Sill(1,0) & 103.2 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) & Si(111) laser annealed \\
CLASSIFICATION & : 14.108 & \\
TECHNIQUE & LEED \\
AUTHORS & F. Jona, P.M. Marcus, H.L. Davis and J.R. Noonan \\
REFERENCE & : Phys. Rev., B33, 4005 (1986)
\end{tabular}

SURFACE TYPE


2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : see Zehner et al, J. Vac. Sci. Technol. 18, 852 (1981)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V curves for 6 normal incidence beams from 6-240 eV

\section*{STRUCTURE TYPE}

Unreconstructed bulk termination with multilayer relaxations perpendicular to surface

\section*{COMMENTS}

Note: LEED spectra for models RB and GL are very similar; model GL gives: RZJ=0.1514, RPE=0.4959

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 10 layer slab; 8 phase shifts; \(60<E<240 \mathrm{eV}\) Voi=-4.25 eV (also mfp=8A tested)

STRUCTURES EXAMINED
Relaxed bulk (RB): \(25.5 \%\) contraction of 1 st interlayer spacing, \(3.2 \%\) expansion of \(2 \mathrm{nd}, 5 \%\) expansion of 3 rd; graphite-like reconstruction (GL) of Jones and Holland (Sol. St. Commun. 53, 45 (1985), class. no. 14.99)

QUALITY OF EXPERIMENT-THEORY FIT
RZJ \(=0.1134\), RPE \(=0.4187\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & AY ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2 and Si3-Si4: top 2 bilayers; si5-Si6: repeating bulk bilayer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(6 \quad\) Bulk z = \(3.130 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.292 & Si1 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & 104.7 \\
2.470 & Si2 & \(\mathrm{Si3}\) & \(\mathrm{Si4}\) & 110.3
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. A-B \((A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.364 & \(\mathrm{Si3}\) & \(\mathrm{Si4}\) & Si5 & 110.3 \\
2.350 & \(\mathrm{Si4}\) & \(\mathrm{Si5}\) & \(\mathrm{Si6}\) & 109.4 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-(1x1) laser-annealed
ILLUSTRATION: 88
CLASSIFICATION : 14.99
TECHNIQUE : LEED
AUTHORS : G.J.R. Jones and B.W. Holland
REFERENCE : Solid State Commun., 53, 45 (1985)

SURFACE TYPE
Substrate : S
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1

> Adsorbate: Coverage : Pattern : (1x1) Matrix : \((1.000,0.000)\)

\section*{STRUCTURE TYPE}

Unreconstructed bulk termination with relaxations perpendicular to surface

\section*{COMMENTS}

Best structure has nearly coplanar top bilayer with 1st inter-bilayer bond lengths of 2.22A and 2nd one of 2.95A (bulk value 2.35A):
model of Zehner et al (J. Vac. Sci. Technol. 18, 852 (1981)) gives RPE=0.40

THEORY/DATA TREATMENT
Dynamical LEED (reverse scattering perturbation):
8 -layer slab, 6 phase shifts, \(m f p=8 \AA\)

STRUCTURES EXAMINED
20 combinations of relaxations of first and second interlayer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.38\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & 1.919 & 3.324 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk (attice \\
Surface 1 & 3.838 & 0.000 & 1.919 & 3.324 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & (1.00) \\
\hline
\end{tabular}

3D COORDINATES
sil-si2: nearly coplanar topmost bilayer; Si5-Si6: bulk bilayer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.217 & Si1 & Si2 & Si1(1,0) & 119.9 \\
2.217 & Si1 & Si2 & Si3 & 92.1 \\
2.950 & Si2 & Si3 & Si4 & 109.4 \\
2.349 & \(\mathrm{Si3}\) & \(\mathrm{Si4}\) & Si3(1,0) & 109.6 \\
\hline
\end{tabular}


\section*{SURFACE TYPE}

Substrate:
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond 2D bulk symm: p3m1
20 surf symm: p3m1

\section*{SAMPLE PREPARATION ( 1 sample)}
```

Adsorbate:
Coverage :
Pattern : (7x7)
Matrix : $(7.000,0.000)$

```

STRUCTURE TYPE

\section*{Treatment}

Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : 3 integer-order and 17 fractional-order non-equivalent beams at normal incidence; \(E\) range 30-250 eV

Optimized DAS (dimer-adatom-stacking fault) model

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (full symm. in both direct and recipr. space)
5 phase shifts; Vor=-10 eV, Voi \(=-4.24 \mathrm{eV}\)

STRUCTURES EXAMINED
Over 100 variations of following 7 models: DAS, DAS + (1x1) faulted layer, DPCS, DPCS+(1x1) faulted layer, symmetric trimer, Yang + Zhao, relaxed Yang + Zhao

QUALITY OF EXPERIMENT-THEORY FIT

\section*{RVHT=0.34}

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(\AA\) ) & Ay (A) & \(B \times\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.840} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.920} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{4}{*}{(1x1)} & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{26.878} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{13.439} & \multirow[t]{2}{*}{23.277} & \multirow[t]{2}{*}{60.0} & ( 7.000, 0.000\()\) & & s1: commens. \\
\hline & & & & & & ( 0.000, 7.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Si1-12=adatoms; 13-18=restatoms; 19-54=top 1/2 top bilayer; 55-72891-102=10wer 1/2 top bilayer; 73-90 =dimer atoms; 103-151=top 1/2 2nd bilayer; 140-200=lower 1/2 2nd bilay; 201-202=bulk; 0.1\& error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 202
Bulk z \(=3.130 \quad \AA\)


\footnotetext{
J. Phys. Chem. Ref. Data, Monograph No. 5
}


3D Coordinates - Continued

si(111)-(7x7)
14.132

Reg Chem At

TECHNIQUE : LEED

AUTHORS : W.C. Fan, A. Ignatiev, H. Huang and S.Y. Tong
REFERENCE : Phys. Rev. Lett., 62, 1516 (1989)

SURFACE TYPE
Substrate:
Crystal face: 111
Temperature : RT
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p31m
```

Adsorbate:
Coverage :
Pattern : (}\sqrt{}{3}x\sqrt{}{3})R3\mp@subsup{0}{}{\circ
Matrix : (1.000, 1.000)
(-2.000, 1.000)

```

\section*{STRUCTURE TYPE}

A first layer si atom in each ( \(\sqrt{3} \times \sqrt{3}\) ) unit cell missing;
interlayer spacings: 1st-2nd layer 0.28A; 2nd-3rd layer
2.28A; 3rd-4th layer 0.64A; 2nd layer Si atoms relax
towards the vacancy by \(0.65 \AA\); similar relaxation in
3rd layer by \(0.24 \AA\)

SAMPLE PREPARATION ( 1 sample)
Treatment : 1k eV Ar bombardment followed by annealing at 1000 C
Crystallinity: ( \(\sqrt{3} \times \sqrt{3}\) ) R \(30^{\circ}\) after annealing
Anal. methods:
Contamination: \(<1 \%\) of Ar

\section*{DATA COLLECTION}

Technique: LEED; four-grid LEED optics, video camera Dataset : IV spectra: \(30<E<215 \mathrm{eV}\);
(01),(10),(1/3,1/3),(2/3,2/3)

\section*{COMMENTS}

See C.T. Chang and K.M. Ho, Phys. Rev. Lett. 64, 491
(1990) for the result of a first-principles total-energy calculation on this system: they find a larger
compression of the first double layer and a smaller lateral displacement for the 2nd layer atoms

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (incl. symmetries in real and reciprocal spaces): 7 phase shifts; Vor \(=-12 \mathrm{eV}\)

STRUCTURES EXAMINED
Tested previously suggested models and new models: vacancy model provided the best fit; all previously suggested models are ruled out

QUALITY OF EXPERIMENT-THEORY FIT
RVHT \(=0.29\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \({ }^{(1)}\) & Bx (A) & By ( \({ }^{\text {a }}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.839 & 0.000 & 1.920 & 3.325 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.759 & 3.325 & -5.759 & 3.325 & 120.0 & \[
\begin{array}{ll}
(1.000, & 1.000) \\
(-2.000, & 1.000)
\end{array}
\] & ( \(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
si1-si2: remainder of top layer (top half of top bilayer); si3-si8: bulk-like substrate layers; Si9-Si10: periodic bulk layers; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.618 & Si1 & Si3 & Si2 & 94.3 \\
2.618 & Si1 & Si3 & Si6 & 89.2 \\
2.317 & Si3 & Si6 & Si10(-1,0) & 114.8 \\
\hline
\end{tabular}

COMMON NAME
```

 Si(111)-(\sqrt{}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ}-\textrm{Al}
    ```

ILLUSTRATION: 96,97
\begin{tabular}{lll} 
CLASSIFICATION & \(: 14.13 .12\) \\
TECHNIQUE & : LEED \\
AUTHORS & : H. Huang, S.Y. Tong, W.S. Yang, H.D. Shih and F. Jona \\
REFERENCE & : Phys. Rev., B42, \(7483(1990)\)
\end{tabular}

SURFACE TYPE
Substrate: Si
Crystal face: 111
Temperature : RT
Bulk lattice: diamond 2D bulk symm: p3m1 2D surf symm: p31m

SAMPLE PREPARATION ( 1 sample)
Treatment: \(\begin{aligned} \mathrm{Ag} & \text { evaporation on } \mathrm{Si}(111) \text {; heat to } \\ & 1000 \mathrm{c} \text { for } 30 \mathrm{~min}\end{aligned}\)
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED; TV camera
Dataset : IV spectra for 8 beams ( 5 integer, 3
fractional) at normal incidence: \(25<E<225\) eV

\section*{Adsorbate: Al}

Coverage : \(0.333 \mathrm{Al} / 1 \times 1\)
Pattern : \((\sqrt{3} \times \sqrt{3})\) R30 \(0^{\circ}\)
Matrix : \((1.000,1.000)\) (-2.000, 1.000)

\section*{STRUCTURE TYPE}

Al adsorbed at \(T 4\) site; the three first-layer si atoms are moved radially inwards and up; the Si below the 14 site is moved down pushing the si right below it downwards; other \(2 n d\)-and 3 rd-layer si atoms below them are moved upwards

\section*{COMMENTS}

Photoelectron diffraction confirms the T4 site (Daimon et al., Surf. Sci. 221, 244 (1989)); PEXAFS results agree with some bond lengths (Mangat et al., Phys. Rev. B44, 6284 (1991))

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (incl. symmetries in real and reciprocal spaces): 7 phase shifts; Vor \(=-12 \mathrm{eV}\)

STRUCTURES EXAMINED
Two overlayer models with Al at the \(T 4\) and \(H 3\) sites; substitutional model with \(1 / 3\) of surface Si atoms replaced by Al; R-factors optimized for each model; model with Al at \(T 4\) site gave best fit

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

\section*{RVHT=0.177}

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\mathrm{A}^{\text {) }}\) & BX ( \(A^{\prime}\) ) & By ( \(\AA\) ) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.839} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.920} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{60.0} & ( \(1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{5.759} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{-5.759} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{120.0} & \((1.000,1.000)\) & \multirow[t]{2}{*}{\((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\)} & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Al1: adsorbate layer at T4 site; si2-si4: first si layer (half bilayer); si5-si7: second si layer; si8-10: third si layer; sil1-si12: repeating bulk layers; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(12 \quad\) Bulk \(2=3.130 \quad \AA\)


Si(111)-( \(\sqrt{3} \times \sqrt{3})\) R30 \(0^{\circ}-\mathrm{Al}\)
14.13.12
bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.490 & si2 & Al1 & Si3(0,1) & 91.9 \\
\hline 2.630 & Al1 & Si5 & si2 & 59.0 \\
\hline 2.380 & si2 & Si6 & Si9 & 105.6 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-(1×1)-As
AUTHORS : M. Copel and R.M. Tromp

REFERENCE : Phys. Rev., B37, 2766 (1987)

SURFACE TYPE
Substrate: Si
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1
```

SAMPLE PREPARATION (1 sample)
Treatment : exposure to high As flux, flash to }132
K, cool to 623k
Crystallinity: sharp LEED pattern
Anal. methods: STM
Contamination: AES: C/Si < 1E-3
DATA COLLECTION
Technique: MEIS
Dataset : 94-101k eV protons in [00-1] direction: comparison with theory at scattering angle of $45^{\circ}-65^{\circ} \approx[11-1]$ direction

```
```

Adsorbate: As
Coverage : 0.92\pm0.05 As/Si
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

\section*{STRUCTURE TYPE}

Atomic substitutional replacement of top half of top \(S\) bilayer: otherwise unreconstructed, unrelaxed substrate

\section*{COMMENTS}

Alternative phase was also found with different preparation procedure: authors conclude that the ordered (1x1) surface includes \(20 \%\) of second phase; this allows a smaller As vibrational amplitude in their models; STM suggests that Headrick et al As deficiency model is incorrect

\section*{IHEORY/DATA TREATMENT}

Comparison to Monte Carlo channeling and blocking calculations; As rms vibs \(=0.109 \AA\)

\section*{STRUCTURES EXAMINED}

As in perfect bulk termination with variable As-Si layer spacing; best match for \(80 \%\) of perfect termination mixed with \(20 \%\) of the exp. results for the alternative phase (see comment)

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

As1 substitutionally replaces top half of 1 st bilayer of si lattice
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk \(z=3.130 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Reg } \\
& \text { ion }
\end{aligned}
\] & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel.
to & \(D \mathrm{D} \pm \boldsymbol{\pm}\) & Dy \(\pm \in y\) & Dz \(\pm \boldsymbol{E z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & -1.920 A & 1.109 A & 3.130 A & \\
\hline ovrl & As & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Si & 2 & b & 1.00 & 1 & 0.667 f & 0.333 f & \(0.990 \pm .100\) A & \(31.6 \pm 3.2\) \\
\hline subl & Si & 3 & \(b\) & 1.00 & 2 & 0.000 f & 0.000 f & 2.350 A & 75.1 \\
\hline subl & Si & 4 & b & 1.00 & 3 & -0.333 f & 0.333 f & 0.780 A & 24.9 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.428 & As 1 & Si2 & si3 & 114.1 \\
\hline 2.350 & Si2 & Si3 & Si4 & 109.4 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-(1×1)-As
ILLUSTRATION: 102
CLASSIFICATION : 14.33 .7
TECHNIQUE : XSW
AUTHORS : J.R. Patel, J.A. Golovchenko, P.E. Freeland and H.J. Grossman
REFERENCE : Phys. Rev., B36, 7715 (1987)

\section*{SURFACE TYPE}

Substrate : Si
Crystal face: 111
Temperature : RT
Bulk lattice: diamond 2D bulk symm: p3m1 2D surf symm: p3m1

Adsorbate: As
Coverage : 0.93 As/Si
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)

\section*{STRUCTURE TYPE}

Atomic substitutional replacement of top half of top Si bilayer: otherwise unreconstructed, unrelaxed substrate

SAMPLE PREPARATION ( 1 sample)
COMMENTS
Treatment : exposure to precleaned As effusion cell at 533 K
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES: trace of \(C\), no 0

DATA COLLECTION
Technique: XSW; x-ray standing wave method
Dataset : fluorescence yield from As K \(\alpha\) line: angle of incidence varied from \(-3^{\circ}\) to \(+3^{\circ}\)

STRUCTURES EXAMINED
As position found directly from peak position in As \(K \alpha\) fluorescence
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|r|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

As1 substitutionally replaces top half of 1 st bilayer of si lattice
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=3.130 \quad \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.416 & As1 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & 113.4 \\
2.350 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & \(\mathrm{Si4}\) & 109.4 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-(1x1)-As
CLASSIFICATION : 14.33.8
TECHNIQUE : MEIS
AUTHORS : R.L. Headrik and W.R. Graham
REFERENCE : J. Vac. Sci. Technol., A6, 637 (1987)

SURFACE TYPE
Substrate: Si
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : (7x7) exposed for 1min to As 4 beam at 1123 K and 10E-6 torr
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination: AES: C/Si ratio < 5E-3; no 0 found
DATA COLLECTION
Technique: MEIS
Dataset : 60, 100, 140, 180k eV protons at normal incidence

\section*{Adsorbate: As}

Coverage : \(0.93 \pm 0.04 \mathrm{As} / \mathrm{Si}\)
Pattern : (1x1)
Matrix: \(\begin{array}{r}(1.000,0.000) \\ (0.000,1.000)\end{array}\)

\section*{STRUCTURE TYPE}

Atomic substitutional replacement of top half of top Si
bilayer: otherwise unreconstructed, unrelaxed substrate

\section*{COMMENTS \\ A better \(R\)-factor was found \((R=0.51)\) if \(7-14 \%\) of the surface As is deficient; \\ the sample properties, especially resistance to \\ contamination, were found to be highly dependent on surface preparation \\ THEORY/DATA TREATMENT \\ Comparison to Monte Carlo channeling and blocking calculations; As rms vibs \(=0.14 \pm 0.02 \AA\)}

STRUCTURES EXAMINED
As in perfect bulk termination with variable As-si layer spacing; various defect structures to account for the <1ML coverage

QUALITY OF EXPERIMENT-THEORY FIT
\(R=0.59\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & \(B \times(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.840} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.920} & \multirow[t]{2}{*}{3.326} & \multirow[t]{2}{*}{120.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.840} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.920} & \multirow[t]{2}{*}{3.326} & \multirow[t]{2}{*}{120.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
As1 substitutionally replaces top half of 1st bilayer of si lattice
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=3.130 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B \((\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.440 & As1 & Si2 & Si3 & 114.7 \\
2.350 & Si2 & Si3 & Si4 & 109.4 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Si
Adsorbate: B
Crystal face: 111
Temperature : RT
Bulk lattice: diamond
20 bulk symm: p3m1
2D surf symm: p31m

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar bombardment of B-doped Si wafers followed by annealing
Crystallinity: excellent ( \(\sqrt{3} \times \sqrt{3}\) ) R \(30^{\circ}\) LEED pattern
Anal. methods: AES for contamination
Contamination: AES: C, O near noise level

DATA COLLECTION
Technique: LEED; video camera
Dataset : IV spectra for 18 (9 integral, 9 fractional) beams at normal incidence: \(30<\mathrm{E}<260 \mathrm{eV}\)

\section*{STRUCTURE TYPE}
\(B\) atom replaces a second layer si atom, which becones an adatom at the T 4 site over the B atom; this B position is the B5 site; first-layer si atoms moved towards the B atom and downwards; second Si layer moved up, \(B\) moved down, and third Si layer also moved down

\section*{COMMENTS}

The same structure with different parameters was proposed previously by R.L. Headrick, I.K. Robinson, E. Vlieg and L.C. Feldman, Phys. Rev. Lett. 63, 1253 (1989), but the structure reported here has more parameters experimentally determined

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (incl. symmetries in real and reciprocal spaces): 6 phase shifts; Vor=-6 eV

STRUCTURES EXAMINED
Surface models in which B atom was placed as an adatom at H3, T1 and T4 sites, plus the 85 site; all others gave modified Pendry \(R\) factors at least \(25 \%\) larger compared to that for 85 site

QUALITY OF EXPERIMENT-THEORY FIT
Modified RPE \(=0.244\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & AX ( \(\AA\) ) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.839 & 0.000 & 1.920 & 3.325 & 60.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.759 & 3.325 & -5.759 & 3.325 & 120.0 & \[
\begin{array}{cc}
(1.000, & 1.000) \\
(-2.000, & 1.000)
\end{array}
\] & \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1: adatom layer; Si2-si4: 1st si layer (half bilayer); si6-si7: 2nd Si layer; B5: B layer in B5 sites; si8-10: 3rd Si layer; Si11-si12: repeating bulk layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(12 \quad\) Bulk \(2=3.130 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(D \mathrm{DX} \pm \boldsymbol{\mathrm { X }}\) & DY \(\pm \in Y\) & \(D z \pm \epsilon Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & \& & \\
\hline subr & & -1 & & & & 1.920 A & 1.108 A & 3.130 A & \\
\hline intf & Si & 1 & s 1 & . 33 & 0 & \(0.000 \pm .200 \mathrm{~A}\) & \(0.000 \pm .200 \AA\) & \(0.000 \pm .100\) A & \(0.0 \pm 3.2\) \\
\hline intf & Si & 2 & s1 & . 33 & 1 & \(1.660 \pm .200\) A & \(-0.958 \pm .200 \AA\) & \(1.340 \pm .100\) A & \(42.8 \pm 3.2\) \\
\hline intf & Si & 3 & s1 & . 33 & 2 & \(4.099 \pm .200 \AA\) & \(-0.450 \pm .200\) A & \(0.000 \pm .100 \AA\) & \(0.0 \pm 3.2\) \\
\hline intf & Si & 4 & s1 & . 33 & 3 & \(4.099 \pm .200\) A & \(0.450 \pm .200 \mathrm{~A}\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 3.2\) \\
\hline intf & B & 5 & s1 & . 33 & 1 & \(0.000 \pm .200 \AA\) & \(0.000 \pm .200\) A & \(2.320 \pm .100 \AA\) & \(74.1 \pm 3.2\) \\
\hline intf & Si & 6 & s1 & . 33 & 5 & \(3.839 \pm .200 \AA\) & \(0.000 \pm .200 \AA\) & \(-0.550 \pm .100 \AA\) & \(-17.6 \pm 3.2\) \\
\hline intf & Si & 7 & s1 & . 33 & 6 & \(3.839 \pm .200\) A & \(0.000 \pm .200\) A & \(0.000 \pm .100 \AA\) & \(0.0 \pm 3.2\) \\
\hline intf & Si & 8 & s1 & . 33 & 5 & \(0.000 \pm .200 \AA\) & \(0.000 \pm .200\) A & \(2.190 \pm .100\) A & \(70.0 \pm 3.2\) \\
\hline intf & Si & 9 & s1 & . 33 & 6 & \(0.000 \pm .200 ~ A\) & \(0.000 \pm .200 \AA\) & \(2.400 \pm .100 \AA\) & \(76.8 \pm 3.2\) \\
\hline intf & Si & 10 & s1 & . 33 & 7 & \(0.000 \pm .200 \AA\) & \(0.000 \pm .200 \mathrm{~A}\) & \(2.400 \pm .100 \AA\) & \(76.8 \pm 3.2\) \\
\hline subl & Si & 11 & b & 1.00 & 8 & 1.920 A & 1.108 A & 0.440 A & 14.1 \\
\hline subl & Si & 12 & b & 1.00 & 11 & 0.000 A & 0.000 A & 2.350 A & 75.1 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.320 & si1 & B5 & si2 & 62.9 \\
\hline 2.190 & Si8 & B5 & Si1 & 180.0 \\
\hline 2.154 & Si2 & B5 & si2(0,1) & 100.9 \\
\hline
\end{tabular}
AUTHORS : T. Takahashi, S. Nakatani, T. Ishikawa and S. Kikuta
REFERENCE : Surf. Sci.. 191, L825 (1987)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate \(: ~ S i\) & Adsorbate: Bi \\
Crystal face: 111 & Coverage : \(1 \mathrm{Bi} / \mathrm{Si}\) \\
Temperature : RT* & Pattern : \(\left(\sqrt{3 \times \sqrt{3}) R 30^{\circ}}\right.\) \\
Bulk lattice: diamond & Matrix \(:(1.000,1.000)\) \\
20 bulk symm: p3m1 & \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)
Treatment : Bi evaporated from Xnudsen cell at RT, annealing at 613 K
Crystallinity: etched wafer had good (7x7) LEED pattern
Anal. methods:
Contamination:
DATA COLLECTION
Technique: XRD
Dataset : x-ray \(I(E)\) curves: \(1.0 \AA<l a m b d a<2.5 \AA\); (00),(10), (-10),(02) rods

STRUCTURE TYPE
Triangles of 3 bi replace every third Si in top layer, which is lower half of a bilayer

\section*{COMMENTS}

Good fit was also obtained with si \(0.8 \AA\) below Bi, but the bond angles suggest that the reported structure is preferred

STRUCTURES EXAMINED
Bi to next layer spacing found from (00) beam, then 6 models studied: Tij denotes Bi atom above ith si layer with lateral displacement to j th Si layer; \(\mathrm{Tij}=\mathrm{T} 12, \mathrm{~T} 14, \mathrm{~T} 21, \mathrm{~T} 24, \mathrm{~T} 41, \mathrm{~T} 42\); substrate reconstruction examined with \(<=6 \mathrm{Si}\) atoms; relaxation of 1 st and 2 nd substrate si layers \(<0.15 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
\(\mathrm{RX}=0.12\)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & 1.919 & 3.324 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline Surface 1 & 5.757 & 3.324 & & 3.324 & 120.0 & \(\left(\begin{array}{lll}(0.000, & 1.000 \\ (1.000, & 1.000\end{array}\right.\) & & \\
\hline & 5.75 & 3.324 & -5.757 & 3.324 & 120.0 & (-2.000, 1.000 ) & R30 & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2: remainder of top 1/2 of a bilayer; Bi3-Bi4-Bi5: triangles substituting in top 1/2 of bilayer; si6-si7: bulk-like bilayer; si8-si9: periodically repeating bulk bilayer

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(9 \quad\) Bulk \(2=3.130\) A

\(\operatorname{Si}(111)-(\sqrt{3} x \sqrt{3}) R 30^{\circ}-8 i\)
14.83.2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.589 & \(\mathrm{si2}\) & \(\mathrm{Bi3}\) & \(\mathrm{Si1}(1,1)\) & 95.7 \\
2.589 & \(\mathrm{Si2}\) & \(\mathrm{Bi3}\) & \(\mathrm{Bi5}\) & 98.4 \\
3.086 & Bi 3 & Bi & \(\mathrm{Si6}(-2,1)\) & 98.0 \\
2.349 & \(\mathrm{Si6}\) & \(\mathrm{Si7}\) & \(\mathrm{Si8}\) & 109.4 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: \operatorname{si}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{Bi}(1 / 3 \mathrm{ML})\) \\
CLASSIFICATION & \(: 14.83 .3 \mathrm{a}\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & K.J. Wan, T. Guo, W.K. Ford and J.C. Hermanson \\
REFERENCE & \(:\) Phys. Rev., B44, 3471 (1991)
\end{tabular}

REFERENCE : Phys. Rev., B44, 3471 (1991)

SURFACE TYPE
Substrate : si
Crystal face: 111
Temperature : RT
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p31m
```

Adsorbate: Bi
Coverage : 0.333 Bi/1x
Pattern : (}\sqrt{}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ
Matrix : (1.000, 1.000)
(-2.000, 1.000)

```

\section*{STRUCTURE TYPE}

Bi atoms are at T4 site; nearest Si neighbors squeezed together; si atom directly below Bi and third layer Si atom directly below are pushed downwards; second-layer si atoms surrounding the hollow H3 site are moved upwards

\section*{COMMENTS}

AES used to monitor the Bi coverage.

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (matrix inversion): 6 phase shifts

Technique: LEED; video optics
Dataset : IV spectra for 9 ( 5 -integer, 4-fractional) beams at normal incidence; \(30<E<280 \mathrm{eV}\)

SAMPLE PREPARATION ( 1 sample)
Treatment : deposit 3ML of Bi on Si(111)-(7x7), then anneal
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination: AES: no inpurity signal

\section*{DATA COLLECTION}

STRUCTURES EXAMINED
T4, H3 and top-tayer models; latter two models were excluded based on x-ray R-factors
QUALITY OF EXPERIMENT-THEORY FIT
Average RX=0.233
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & Ay (A) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.839 & 0.000 & 1.920 & 3.325 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & \((0.000,1.000)\) & & \\
\hline Surface 1 & 5.759 & 3.325 & -5.759 & 3.325 & 120.0 & \[
(1.000,1.000)
\] & \((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Bil: at T4 site; Si2-Si4: top layer Si (half bilayer); Si5-si7: second layer; Si8-Si10: third layer; si11-si12: repeating bulk layers; \(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Si(111)-( \(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{Bi}(1 / 3 \mathrm{ML})\)
14.83.3a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B \((A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Aton C } & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.388 & Si2 & Bi1 & Si3(-1,0) & 100.3 \\
2.388 & Bi1 & Si2 & Si3 & 69.8 \\
2.239 & Si5 & Si8 & Si11(-1,0) & 98.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{si}(111)-(\sqrt{3} \times \sqrt{3})\) R \(30^{\circ}-\mathrm{Bi}(1 \mathrm{ML})\) \\
CLASSIFICATION \(: 14.83 .3 \mathrm{~b}\) \\
TECHNIQUE & : LEED \\
AUTHORS & : K.J. Wan, T. Guo, W.K. Ford and J.C. Hermanson \\
REFERENCE & : Phys. Rev., B44, \(3471(1991)\)
\end{tabular}

ILLUSTRATION: 100

SURFACE TYPE
Substrate: S
Crystal face: 111
Temperature : RT
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p31m
\[
\begin{aligned}
& \text { Adsorbate: } \mathrm{Bi} \\
& \text { Coverage }: 1.0 \mathrm{Bi} / 1 \times 1 \\
& \text { Pattern }:(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ} \\
& \text { Matrix }:(1.000,1.000) \\
& \\
& \\
& \\
& (-2.000,1.000)
\end{aligned}
\]

\section*{STRUCTURE TYPE}

Bi trimers centered at 14 site; nearest Si neighbors squeezed together; Si atom directly below Bi and third layer si atom directly below pushed downwards; second-layer Si atoms surrounding the hollow H3 site are moved upwards

SAMPLE PREPARATION ( 1 sample)
Treatment : deposit 3ML of Bi on Si(111)-(7x7), then anneal
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination: AES: no inpurity signal
DATA COLLECTION
Technique: LEED; video optics
Dataset : IV spectra for 9 (5-integer, 4-fractional) beams at normal incidence: \(30<E<280 \mathrm{eV}\)

\section*{COMMENTS}

AES used to monitor the Bi coverage.

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (matrix inversion): 6 phase shifts

\section*{STRUCTURES EXAMINED}

Takahashi model (Surf. Sci. 191, L825 (1987)): center of trimer was placed on both the T4 and the H3 sites; \(T 4\) site produced the best fit

QUALITY OF EXPERIMENT-THEORY FIT
Average RX=0.225
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.839 & 0.000 & 1.920 & 3.325 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 5.759 & 3.325 & -5.759 & 3.325 & 120.0 & ( 1.000, 1.000) & \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Bi1-Bi3: trimer centered at T4 site; si4-si6: top si layer (half bilayer); si7-si9: second si layer; si10-si12: third Si layer; si13-si14: periodic bulk layers; 0.1\& error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(14 \quad\) Bulk z = 3.130 A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & \[
\begin{aligned}
& \text { Cell } \\
& \text { type }
\end{aligned}
\] & Site occ. & Rel.
to & \(D \mathrm{X} \pm \boldsymbol{\mathrm { x }}\) & Dy \(\pm \in y\) & \(D z \pm \in \mathcal{Z}\) & \(D z / B z(\%) \pm \epsilon z / 8 z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 1.920 A & 1.108 A & 3.130 A & \\
\hline intf & Bi & 1 & s1 & . 33 & 0 & \(1.464 \pm .100 \AA\) & \(-0.845 \pm .100\) A & \(0.000 \pm .100 \mathrm{~A}\) & \(0.0 \pm 3.2\) \\
\hline intf & Bi & 2 & s1 & . 33 & 0 & \(-1.464 \pm .100 \AA\) & \(-0.845 \pm .100 \AA\) & \(0.000 \pm .100\) A & \(0.0 \pm 3.2\) \\
\hline intf & Bi & 3 & s1 & . 33 & 0 & \(0.000 \pm .100\) A & \(1.691 \pm .100\) A & \(0.000 \pm .100 \mathrm{~A}\) & \(0.0 \pm 3.2\) \\
\hline intf & Si & 4 & s1 & . 33 & 0 & \(1.818 \pm .100\) A & \(-1.049 \pm .100 \AA\) & \(2.210 \pm .100\) A & \(70.6 \pm 3.2\) \\
\hline intf & Si & 5 & s1 & . 33 & 4 & \(3.941 \pm .100 \AA\) & \(-0.118 \pm .100 \AA\) & \(0.000 \pm .100\) A & \(0.0 \pm 3.2\) \\
\hline intf & Si & 6 & s1 & . 33 & 5 & \(3.941 \pm .100\) A & \(0.118 \pm .100 \AA\) & \(0.000 \pm .100\) A & \(0.0 \pm 3.2\) \\
\hline intf & Si & 7 & s1 & . 33 & 0 & \(0.000 \pm .100 \AA\) & \(0.000 \pm .100 \AA\) & \(3.326 \pm .100\) A & \(106.3 \pm 3.2\) \\
\hline intf & Si & 8 & s 1 & . 33 & 7 & \(3.839 \pm .100\) A & \(0.000 \pm .100 \AA\) & \(-0.343 \pm .100\) A & \(-11.0 \pm 3.2\) \\
\hline intf & Si & 9 & s 1 & . 33 & 8 & \(3.839 \pm .100\) A & \(0.000 \pm .100 \AA\) & \(0.000 \pm .100 \AA\) & \(0.0 \pm 3.2\) \\
\hline intf & Si & 10 & s1 & . 33 & 7 & \(0.000 \pm .100 \AA\) & \(0.000 \pm .100 \AA\) & \(2.239 \pm .100\) Å & \(71.5 \pm 3.2\) \\
\hline intf & Si & 11 & s1 & . 33 & 8 & \(0.000 \pm .100 \AA\) & \(0.000 \pm .100\) A & \(2.357 \pm .100\) A & \(75.3 \pm 3.2\) \\
\hline intf & Si & 12 & s1 & . 33 & 9 & \(0.000 \pm .100 \AA\) & \(0.000 \pm .100\) A & \(2.357 \pm .100\) A & \(75.3 \pm 3.2\) \\
\hline subl & Si & 13 & \(b\) & 1.00 & 11 & 1.920 \& & 1.108 A & 0.780 A & 24.9 \\
\hline subl & Si & 14 & b & 1.00 & 13 & 0.000 A & \(0.000 \quad A\) & 2.350 A & 75.1 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C } & \begin{tabular}{r} 
Bond ang(e \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.928 & Bi1 & Bi2 & Bi3 & 60.0 \\
2.247 & Bi1 & Si4 & Si7 & 107.5 \\
2.377 & Si4 & Si7 & Si10 & 92.0 \\
2.322 & Si4 & Si8 & Si11 & 109.5 \\
2.239 & Si7 & Si10 & Si13(-1,0) & 101.6 \\
\hline
\end{tabular}
```

COMMON NAME : Si(111)-Br 0.25ML ILLUSTRATION: 96,99
CLASSIFICATION : 14.35.2
TECHNIQUE : fluorescence XRD
AUTHORS : G. Materlik, A. Frohm and M.J. Bedzyk
REFERENCE : Phys. Rev. Lett., 52, 441 (1984)
ILLUSTRATION: 96,99

```

SURFACE TYPE
\begin{tabular}{|c|c|}
\hline Substrate : Si & Adsorbate: Br \\
\hline Crystal face: 111 & Coverage : 0.25 ML \\
\hline Temperature : RT* & Pattern : (1x1) \\
\hline Bulk lattice: diamond & Matrix : ( \(1.000,0.000)\) \\
\hline 2D bulk symm: p3m1 & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Atomic adsorption on top sites;
modeled here as ( \(1 \times 1\) ) despite 0.25 ML

\section*{COMMENTS}

Data recorded in air: state of surface poorly determined; Laue case geometry (entrance and exit surfaces of incident and diffracted beams are different) allows direct determination of atomic positions in a plane parallel to the surface, although only the local geometry is determined here

\section*{THEORY/DATA TREATMENT}

Dynamical X-ray diffraction

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : chemical cleaning
Crystallinity:
Anal. methods:
Contamination: not checked (in-air experiment)

DATA COLLECTION
Technique: fluorescence XRD; Br fluorescence
Dataset : fluorescent signals from x-ray standing
waves from (220) reflections
DATA COLLECTION
Technique: fluorescence XRD; Br fluorescence
Dataset : fluorescent signals from x-ray standing
waves from (220) reflections
DATA COLLECTION
Technique: fluorescence XRD; Br fluorescence
Dataset : fluorescent signals from x-ray standing
waves from (220) reflections
STRUCTURES EXAMINED
Top and 3-fold adsorption sites of Br

QUALITY OF EXPERIMENT-THEORY FIT
visual

2D UNIT CELLS ( 1 domain obseryed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
s1: conmens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Br1: top-site overlayer; si2-si3: repeating bulk bilayer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.180 & Br 1 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & 109.4 \\
2.350 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & \(\mathrm{Si} 2(0,1)\) & 109.6 \\
\hline
\end{tabular}
TECHNIQUE : fluorescence XRD
AUTHORS : J.A. Golovchenko, J.R. Patel, D.R. Kaplan, P.L. Cowan and

REFERENCE : Phys. Rev. Lett., 49, 1560 (1982)

\section*{SURFACE TYPE}

Substrate : S
Crystal face: 111
Temperature : 300 K
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment: chemical cleaning
Crystallinity:
Anal. methods:
Contamination: not checked (in-air experiment)

DATA COLLECTION
Technique: fluorescence XRD ; Br fluorescence
Dataset : reflectivity for (111) and (220) Bragg diffraction of Si(111) over rocking curve widths of \(2^{\circ}\)

Adsorbate: Br
Coverage : 0.67 ML
Pattern : (1x1)
Matrix : ( \(1.000,0.000\) )
( 0.000, 1.000)

\section*{STRUCTURE TYPE}

Atomic adsorption on top sites;
modeled here as ( \(1 \times 1\) ) despite 0.67 ML

\section*{COMMENTS}

Data recorded in air: state of surface poorly determined; sample and results stable for days;
substrate relaxation found to be \(<0.03 \AA\)

\section*{THEORY/DATA TREATMENT}

Minimum of fluorescence signal vs. theory gives
interplanar spacing for that Bragg direction

STRUCTURES EXAMINED
The (111) and (220) reflections uniquely determine the local top site
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & ( \(1.000,0.000\) ) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Br1: top-site overlayer; si2-si3: repeating bulk bilayer
Dx/Dy in \(\&\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3


BOND DISTANCES AND ANGLES

No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.140 & Br 1 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & 109.4 \\
2.350 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & \(\mathrm{Si} 2(0,1)\) & 109.6 \\
\hline
\end{tabular}

COMMON NAME : si(111)-(1x1)-Cl
ILLUSTRATION: 96,99
CLASSIFICATION : 14.17.4b
TECHNIQUE : SEXAFS
AUTHORS : P.H. Citrin, J.E. Rowe and P. Eisenberger
REFERENCE : Phys. Rev., B28, 2299 (1983)

SURFACE TYPE
Substrate: Si
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
20 bulk symm: p3m1
2D surf symm: p3mi
SAMPLE PREPARATION ( 1 sample)
Treatment : Si(111)-(7x7) exposed to Cl 2 , but not reannealed
Crystallinity: (1x1) pattern observed in LEED
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: SEXAFS; polarisation dependent SEXAFS
Dataset : filtered SEXAFS data in the range 1.0 to \(2.5 \AA\); incidence at \(\theta=10^{\circ}\) and \(90^{\circ}\)

\section*{STRUCTURE TYPE}

Atomic on-top adsorption;
(1x1) structure inferred from LEED before annealing
Cl -covered (7x7); see structure 14.17.4a obtained with
final annealing; coverage uncertain (assumed 1.0 ML here)

\section*{THEORY/DATA TREATMENT}

Standard SEXAFS for \(n\) and \(n n\) neighbor distances; top site deduced from polarisation dependence of 1st neighbor signal

STRUCTURES EXAMINED
Only the top site is consistent with the polarisation dependence of the nearest neighbour peak in the fourier transformed spectrum

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\) \\
s1: conmens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

Cl1: top-site overlayer; Si2-si3: repeating bulk bilayer (assumed structure); coordinates are derived from bond lengths

Dx/Dy in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.980 & \(\mathrm{Cl1}\) & \(\mathrm{Si2}\) & Si3 & 109.4 \\
2.350 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & Si2(0,1) & 109.6 \\
\hline
\end{tabular}
TECHNIQUE : SEXAFS

AUTHORS : P.H. Citrin, J.E. Rowe and P. Eisenberger
REFERENCE : Phys. Rev., B28, 2299 (1983)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : Si & Adsorbate: Cl \\
Crystal face: 111 & Coverage : uncertain \\
Temperature: RT* & Pattern \(:(1 \times 1)\) \\
Bulk lattice: diamond & Matrix \(:(1.000,0.000)\) \\
20 bulk symm: p3m1 & \\
\hline
\end{tabular}

20 bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment: Si(111)-(7×7) exposed to Cl2,
Crystallinity: (7x7) pattern observed in LEED
Anal. methods:
Contamination: (7x7) pattern unaffected by Cl \& anneal

\section*{DATA COLLECTION}

Technique: SEXAFS; polarisation dependent SEXAFS
Dataset : filtered SEXAFS data in the range 1.0 to
2.5A; incidence at \(\Theta=10^{\circ}\) and \(90^{\circ}\)

\section*{STRUCTURE TYPE}

Atomic on-top adsorption;
(7x7) structure inferred from LEED, results from annealing Cl -covered ( \(7 \times 7\) ); see structure 14.17 .4 b obtained without final annealing; coverage uncertain (assumed 1.0 ML here); relationship with ( \(7 \times 7\) ) structure unknown; only local

\section*{COMMENTS}

Geometry near adsorbate determined
adsorption site geometry in excellent agreement with
parameter-free total-energy calculations of Bachelet and Schluter, Phys. Rev. B20, 2302 (1983)

\section*{THEORY/DATA TREATMENT}

Standard SEXAFS for \(n\) and \(n n\) neighbor distances; top site deduced from polarisation dependence of 1st neighbor signal

STRUCTURES EXAMINED
Only the top site is consistent with the polarisation dependence of the nearest neighbour peak in the fourier transformed spectrum

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
b: bulk lattice \\
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
Cl1: top-site overlayer; si2-si3: repeating bulk bilayer (assumed structure);
coordinates are derived from bond lengths
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.030 & Cli & Si 2 & Si3 & 109.4 \\
2.350 & Si2 & Si3 & Si2(0,1) & 109.6 \\
\hline
\end{tabular}

AUTHORS : H.L. Meyerheim, U. Dobler and A. Puschmann
REFERENCE : Phys. Rev., B44, 5738 (1991)

\section*{SURFACE TYPE}

Substrate: Si
Crystal face: 100
Temperature : RT*
Bulk lattice: diamond 2D bulk symm: prm 2D surf symm: none

SAMPLE PREPARATION ( 1 sample)
Treatment : Co dep. by resist. heating of Co wire onto si(100)-(2×1)
Crystallinity: reduced brightness of ( \(2 \times 1\) ) LEED spots
Anal. methods: coverage determined by RBS, AES and
Contamination: AES

\section*{DATA COLLECTION}

Technique: SEXAFS; polariz.-dep. SEXAFS at BESSY
Dataset : SEXAFS spectra for \(k\) range \(30-120 \mathrm{~nm}-1\)
```

Adsorbate: Co
Coverage : 0.4 Co/1x1
Pattern : (2x1)
Matrix : (2.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Atomic adsorption in-plane with top layer of unreconstructed Si(100), at center of square of top-layer Si atoms

\section*{COMMENTS}
slight relaxations \(<0.1 \AA\) of substrate expected, but not determined

\section*{THEORY/DATA TREATMENT}

Fourier transform and simulations with single-scattering plane-wave formalism

\section*{STRUCTURES EXAMINED}

Adsorption at various sites on unreconstructed \(\operatorname{si}(100)\), and interstitial and substitutional sites
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & 0.000 & 3.838 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 7.675 & 0.000 & 0.000 & 3.838 & 90.0 & \begin{tabular}{l} 
( \(0.000,1.000)\) \\
\((2.000,0.000)\) \\
\((0.000,1.000)\)
\end{tabular} & \((2 \times 1)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Co1: adatom in 14 -fold' sites coplanar with si2;
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z \(=1.357 \AA\)


BOND DISTANCES AND ANGLES
Measured Co-Si distances are \(2.80 \pm 0.03\) and \(2.30 \pm 0.05 \AA\)
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\AA)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.714 & \(\mathrm{Co1}\) & Si 2 & \(\mathrm{si3}\) & 54.7 \\
2.350 & \(\mathrm{Co1}\) & \(\mathrm{Si3}\) & Si 2 & 70.5 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-(1x1)-CoSi2(111) interface
CLASSIFICATION : 14.27.2
TECHNIQUE : XSW
AUTHORS : A.E.M.J. Fischer, E. VIieg, J.F. van der Veen, M. Clausnitzer and G. Materlik
REFERENCE : Phys. Rev., B36, 4769 (1987)

\section*{SURFACE TYPE}

Substrate: S
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1

> Adsorbate: CoSi2 Coverage : \(9-28 \AA\) Pattern \(:(1 \times 1)\) Matrix \(:(1.000,0.000)\)   \((0.000,1.000)\)

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : Co deposited at RT, then same thickness of Si and annealing
Crystallinity: sharp (1x1) RHEED pattern
Anal. methods: composition of CoSi2 layers checked by Ion Back Scatt., TEM
Contamination:

\section*{DATA COLLECTION}

Technique: XSW; fluorescence detected by scint. counte
Dataset : fluorescence from (111) Bragg refl. with 14.2 k eV x-rays: rocking curve scanned by varying beam \(E\) with fixed sample

\section*{STRUCTURE TYPE}

B-type epitaxial (1x1) growth, with 5-fold coordinated
Co atoms at interface (same as obtained by MEIS: class. no. 14.27.3; see other comments there); bulk CoSi2=fluorite

\section*{COMMENTS}

B-type epitaxy \(=\) (111) orientation with \(180^{\circ}\) rotation about substrate normal; silicide films are unstrained (lattice mismatch strain accommodated by defects: TEM image showed defects at interface); for thick films annealing may have been insufficient to order lattice completely

\section*{THEORY/DATA TREATMENT}

X-ray standing wave analysis with Rutherford back scattering to determine number of Co layers

STRUCTURES EXAMINED
Either 5-fold or 7 -fold coordinated \(C o\) atoms at interface
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

Si1-Co2-Si3: periodically repeating bulk CoSi2 trilayer; Si4-CoS: 2/3 of CoSi2 trilayer;
Co5-Si6: interface plane; si10-si11: periodically repeating bulk substrate
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & Dx & & Dy & & Dz & \(\pm \boldsymbol{E Z}\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & 1.919 & A & -1.108 & A & 3.092 & & \(\AA\) & \\
\hline subr & & -1 & & & & 1.919 & A & 1.108 & A & 3.130 & & \(\AA\) & \\
\hline epil & Si & 1 & \(b\) & 1.00 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 \\
\hline epil & Co & 2 & b & 1.00 & 1 & 0.333 & \(f\) & 0.667 & f & 0.773 & & \(\AA\) & 24.7 \\
\hline epil & Si & 3 & \(b\) & 1.00 & 2 & 0.333 & \(f\) & -0.333 & f & 0.773 & & \(\AA\) & 24.7 \\
\hline intf & Si & 4 & \(b\) & 1.00 & 3 & -0.333 & \(f\) & 0.333 & \(f\) & 1.546 & & A & 49.4 \\
\hline intf & Co & 5 & b & 1.00 & 4 & 0.333 & f & -0.333 & f & 0.773 & & A & 24.7 \\
\hline intf & Si & 6 & \(b\) & 1.00 & 5 & 0.000 & \(f\) & 0.000 & f & 2.370 & \(\pm .030\) & A & \(75.7 \pm 1.0\) \\
\hline intf & Si & 7 & \(b\) & 1.00 & 6 & -0.333 & \(f\) & 0.333 & \(f\) & 0.820 & & \(\AA\) & 26.2 \\
\hline intf & Si & 8 & \(b\) & 1.00 & 7 & 0.000 & \(f\) & 0.000 & \(f\) & 2.350 & & A & 75.1 \\
\hline intf & Si & 9 & \(b\) & 1.00 & 8 & -0.333 & \(f\) & -0.667 & \(f\) & 0.780 & & \(\AA\) & 24.9 \\
\hline subl & Si & 10 & \(b\) & 1.00 & 9 & 0.000 & \(f\) & 0.000 & f & 2.350 & & \(\AA\) & 75.1 \\
\hline subl & Si & 11 & b & 1.00 & 10 & 0.667 & f & 0.333 & f & 0.780 & & \(\AA\) & 24.9 \\
\hline
\end{tabular}

Si(111)-(1x1)-Cosi2(111) interface
14.27 .2
bond distances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.347 & Si1 & \(\mathrm{Co2}\) & \(\mathrm{si3}\) & \begin{tabular}{c}
70.3 \\
2.347
\end{tabular} \\
\hline
\end{tabular}

COMMON NAME : si(111)-(1×1)-CoSi2(111) interface
CLASSIFICATION: 14.27.3
TECHNIQUE : MEIS
AUTHORS : A.E.M.J. Fischer, T. Gustafsson and J.F. van der Veen
REFERENCE : Phys. Rev., B37, 6305 (1988)

\section*{SURFACE TYPE}

Substrate : Si
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : Co deposited at RT, then same thickness of Si and annealing
Crystallinity:
Anal. methods: composition of CoSi2 layers checked by ion back scatt., TEM
Contamination: AES and ISS: substrate pure
DATA COLLECTION
Technique: MEIS; RBS with 98 keV protons collimated to
Dataset : incidence along [00-1] channels; detection along [110]; 7A depth resolution; 3 incidence angles: \(34.8^{\circ}, 35.2^{\circ}, 35.5^{\circ}\)

\section*{STRUCTURE TYPE}

B-type epitaxial (1x1) growth, with 5-fold coordinated
Co atoms at interface (same as obtained by XSW: class.
no. 14.27.2; see other comments there); bulk CoSi2=fluorite

\section*{COMMENTS}

Co-Si distance taken from Phys. Rev. B36, 4769 (1987) (14.27.2); exp. data were mult. by 2 for comparison with Monte Carlo simulations: discrepancy may be due to defects; 8 -fold coord. Co at interface possible: not distinguished from 5-fold; Nisi2 epilayer has 7-fold coord. Ni: 14.28.8

\section*{THEORY/DATA TREATMENT}

High resolution RBS compared with Monte Carlo simulations with Moliere potential; vib amps as for NiSi2

\section*{STRUCTURES EXAMINED}

Interfacial Co atoms either 5-fold or 7-fold coordinated; lateral displacements of interface atoms along [11-2] wrt substrate considered for the 5 -fold coordination but best fit was for no translation

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
Si1-Co2-si3: periodically repeating bulk Cosi2 trilayer; si4-Co5: 2/3 of Cosi2 trilayer;
Co5-Si6: interface plane; Si10-Si11: periodically repeating bulk substrate
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(11 \quad\) Bulk \(2=3.130 \quad \AA\)

si(111)-(1x1)-Cosi2(111) interface 14.27 .3

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.347 & \(\mathrm{Si1}\) & \(\mathrm{Co2}\) & \(\mathrm{Si3}\) & \begin{tabular}{c}
70.3 \\
2.347
\end{tabular} \\
\(\mathrm{Si1}\) & \(\mathrm{Co2}\) & \(\mathrm{Si4}\) & 109.2 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) Si(111)-(1x1)-CoSi2(111) interface & \\
CLASSIFICATION & \(: 14.27 .8\) \\
TECHNIQUE & : SEXAFS \\
AUTHORS & G. Rossi, X. Jin, A. Santinello, P. DePadova and D. \\
Chandesris \\
REFERENCE & : Phys. Rev. Lett., \(62,191(1989)\)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|}
\hline Substrate : Si & Adsorbate: & Cosi2 \\
\hline Crystal face: 111 & Coverage : & \\
\hline Temperature : RT* & Pattern & (1x1) \\
\hline Bulk lattice: diamond & Matrix & ( 1.000, \\
\hline 20 bulk symm: p3m1 & & ( 0.000, \\
\hline
\end{tabular}

20 bulk symm: p3m1 20 surf symm: p3m1

SAMPLE PREPARATION ( 1 sample)
```

Treatment : Co deposited on (7\times7) and annealed at
630C
Crystallinity:
Anal. methods: characterization of CoSi2 layers by Auger, LEED, SEXAFS
Contamination:

```

DATA COLLECTION
Technique: SEXAFS; pol.-dep. SEXAFS on Co K edge (7707 Dataset :

\section*{STRUCTURE TYPE}

B-type interface (assumed, referring to layer stacking across interface), with Co 8-fold coordinated;
note discrepancy with 14.27.1-2; bulk CoSi2=fluorite

\section*{COMMENTS}

B or A type could not be discriminated in this experiment; B type is assumed; structure determination done on an ultra thin layer (2 to 3 full layers of silicide); 2.5\% reduction of silicide layer spacing is possibly related to thinness of the Cosi2 layer

\section*{THEORY/DATA TREATMENT}
1) fivefold Co, 2) sevenfold Co, 3) eightfold Co

STRUCTURES EXAMINED
3) is preferred structure, 1) and 2) ruled out

2 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & ( 1.000, 0.000) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Co2-Si3: periodically repeating bulk Cosi2 trilayer; Si4-Co5-Si6: last Cosi2 trilayer;
Co5-Si6-Si7: interface plane; si11-Si12: periodically repeating bulk substrate bilayer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(12 \quad\) Bulk z = \(3.130 \quad \AA\)


Si(111)-(1×1)-Cosi2(111) interface
14.27 .8

No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.347 & si1 & Co2 & si1(1,1) & 109.7 \\
\hline 2.668 & Si3 & Si4 & & 56.1 \\
\hline 2.668 & Si3 & Si4 & Si3 \((0,1)\) & 92.0 \\
\hline 2.668 & Si3 & Si4 & \(\operatorname{Cos}(0,1)\) & 125.1 \\
\hline 2.347 & Si4 & \(\cos (0,1)\) & si3(0,1) & 70.8 \\
\hline 2.347 & Si4 & \(\cos (0,1)\) & Si4(1,1) & 109.7 \\
\hline 2.347 & Si4 & \(\cos (0,1)\) & Si6(1,1) & 70.3 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: \operatorname{Si}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-\mathrm{Ga}\) & \\
CLASSIFICATION & \(: 14.31 .4\) & \\
TECHNIQUE & LEED \\
AUTHORS & A. Kawazu and H. Sakama \\
REFERENCE & : Phys. Rev., B37, 2704 (1988)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate : Si & Adsorbate: Ga \\
Crystal face: 111 & Coverage \(: 0.3 \mathrm{Ga} / \mathrm{Si}\) \\
Temperature : RT* & Pattern : \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) \\
Bulk lattice: diamond & Matrix \(:(1.000,1.000)\) \\
2D bulk symm: p3m1 & \\
20 surf sym: p31m & \\
\hline
\end{tabular}

2D surf symm: p31m
SAMPLE PREPARATION ( 1 sample)
Treatment : Ga molecular beam from Knudsen cell at 740 K
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: 9 beams at normal incidence, \(30<E<190 \mathrm{eV}\)

STRUCTURE TYPE
Atomic adsorption in 4 -fold coordinated T4 'top' site over top bilayer, with relaxations down into 2nd bilayer

\section*{COMMENTS}

R-factors for the structures examined were, respectively: \(0.34,0.45,0.45,0.25,0.15\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED

STRUCTURES EXAMINED
Ga atoms in hollow site above the 4 th layer Si; Ga atoms on 3 atom \(\operatorname{si}\) clusters centered above 2nd layer si; clusters centered above 4 th layer Si ; Ga substituted for \(1 / 3\) of top layer Si; T4 'top' site; in each case structural parameters were varied (see comments)

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.15\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(A\) ) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.839} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.920} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{5.759} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{-5.759} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{120.0} & \((1.000,1.000)\) & \multirow[t]{2}{*}{\((\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\)} & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Gal: in T4 'top' site over Si7; Si2-Si7 and Si8-si13: relaxed top 2 bilayers;
Si14-Si15: repeating bulk substrate tayers; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(15 \quad\) Bulk z \(=3.130 \AA\)


Si(111)-( \(\sqrt{3} \times \sqrt{3}\) ) \(R 30^{\circ}-G a\)
14.31 .4

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.497 & Ga1 & si2 & si5 & 124.9 \\
\hline 2.570 & Ga1 & Si7 & Si2 & 59.9 \\
\hline 2.350 & Si2 & Si5 & Si3 & 114.1 \\
\hline 2.350 & si2 & Si6 & Si9 & 104.3 \\
\hline 2.429 & si2 & si7 & Si10 & 120.2 \\
\hline
\end{tabular}
TECHNIQUE : SEXAFS

AUTHORS : P.H. Citrin, P. Eisenberger and J.E. Rowe
REFERENCE : Phys. Rev. Lett., 48, 802 (1982)

\section*{SURFACE TYPE}

Substrate: S
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond 20 bulk symm: p3m1 2D surf symm: p3m1

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar \({ }^{+}\)bomb. and annealed, exposed to 12 , annealed at 773 K
Crystallinity: LEED showed a (7x7) pattern
Anal. methods: AES determined 1 ML 1 coverage
Contamination:
DATA COLLECTION
Technique: SEXAFS; total yield SEXAFS
Dataset : SEXAFS from I LIII edge vs polar angle and polarisation

\section*{Adsorbate: 1}

Coverage : 1 ML
Pattern : ( \(1 \times 1\) )
Matrix \(:\left(\begin{array}{ll}1.000, & 0.000) \\ 0.000, & 1.000\end{array}\right)\)

\section*{STRUCTURE TYPE}

\section*{Atomic on-top adsorption;}
(7x7) structure inferred from LEED; modeled as (1x1) here; relationship with (7x7) structure unknown; only local
geometry near adsorbate determined

\section*{THEORY/DATA TREATMENT}

Fourier transform analysis of SEXAFS data with Sil(CH3)3 standard combined with analysis of amplitude ratios

STRUCTURES EXAMINED
Structure determined directly from first neighbor bond lengths and amplitude ratios
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & bulk lattice \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

11: top-site overlayer; si2-si3: expanded bilayer;
si4-Si5: repeating bulk bilayer (assumed structure); coordinates are derived from bond lengths
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z \(=3.130 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel. to & DX \(\pm \in \boldsymbol{X}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & f & A & \\
\hline subr & & -1 & & & & 0.000 A & 2.217 A & 3.130 A & \\
\hline ovrl & I & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Si & 2 & b & 1.00 & 1 & 0.000 f & 0.000 f & \(2.440 \pm .030\) A & \(78.0 \pm 1.0\) \\
\hline intf & Si & 3 & b & 1.00 & 2 & 0.333 f & 0.667 f & \(0.900 \pm .050\) A & \(28.8 \pm 1.6\) \\
\hline subl & Si & 4 & b & 1.00 & 3 & 0.000 f & 0.000 f & 2.350 A & 75.1 \\
\hline subl & Si & 5 & b & 1.00 & 4 & 0.333 f & -0.333 f & 0.780 A & 24.9 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES

No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.440 & 11 & Si2 & Si3 & 112.1 \\
\hline 2.393 & Si2 & Si3 & Si2(0,1) & 106.7 \\
\hline 2.393 & Si2 & Si3 & Si4 & 112.1 \\
\hline 2.350 & Si3 & Si4 & Si5 & 109.4 \\
\hline 2.350 & Si4 & Si5 & Si4(1,0) & 109.6 \\
\hline
\end{tabular}

COMMON NAME : Si(100)-(2x1)-2K
ILLUSTRATION: 108
CLASSIFICATION 14.19 .9

TECHNIQUE LEED
AUTHORS : T. Urano, Y. Uchida, S. Hongo and T. Kanaji
REFERENCE : Surf. Scí., 242, 39 (1991)

SURFACE TYPE
Substrate: Si
Crystal face: 100
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: pmm
2D surf symm: pmin

\section*{Adsorbate: K}

Coverage : \(1 \mathrm{~K} / 1 \mathrm{x} 1\)
Pattern : (2x1)
Matrix : (2.000, 0.000)
( \(0.000,1.000\) )

\section*{STRUCTURE TYPE}

Atomic adsorption as 'double layer' model, with K at both the pedestal and cave sites on a dimerized Si(100)-(2×1) substrate

\section*{COMMENTS}

The two other models tested produced similarly poor Rfactors: RZJ=0.54, 0.56 for pedestal and cave sites, vs. 0.51 for double layer model; since only 4 phase shifts were used and no substrate relaxations below the si dimers were allowed, this result must be considered uncertain

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (CSM, RFS): 4 phase shifts from HermanSkillman wave functions

STRUCTURES EXAMINED
Adsorption on symmetrically dimerized \(\operatorname{si}(100)-(2 \times 1)\) in pedestal and cave sites, and as double layer (both pedestal and cave sites); relaxation of \(K\) heights, and dimer length and height

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.51\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay (A) & \(B \mathrm{~B}\) ( \(A\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & 0.000 & 3.838 & 90.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 7.675 & 0.000 & 0.000 & 3.838 & 90.0 & \[
\begin{aligned}
& (2.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & ( \(2 \times 1\) ) & s1: commens. superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

K1-K2: adatoms in pedestal and cave sites; si3-si4: symmetric si dimer;
Si5-Si6: periodically repeating bulk pair of layers; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6

si(100)-(2×1)-2K
14.19 .9

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 16
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.838 & K1 & K1 (0,1) & si3 \((0,1)\) & 132.4 \\
\hline 3.553 & K2 & Si4 & Si3 & 138.7 \\
\hline 3.553 & K2 & Si4 & Si5 & 60.6 \\
\hline 3.157 & K2 & Si5 & Si4 & 78.7 \\
\hline 3.157 & K2 & Si5 & Si6 & 87.8 \\
\hline 2.338 & Si3 & Si4 & K1 & 65.8 \\
\hline 2.338 & Si3 & Si4 & K2 & 138.7 \\
\hline 2.338 & Si3 & Si4 & Si5 & 108.5 \\
\hline 3.838 & K1 & K1 (0,1) & Si3 & 47.6 \\
\hline 3.858 & K1 & K2 & K1(-1,0) & 168.1 \\
\hline 3.858 & K1 & K2 & Si3(-1,0) & 141.9 \\
\hline 2.848 & K1 & Si3 & Si4 & 65.8 \\
\hline 2.848 & K1 & Si3 & Si5 (1,0) & 83.3 \\
\hline 2.848 & K1 & Si4 & K1(0,1) & 84.7 \\
\hline 2.848 & K1 & Si4 & K2 & 73.2 \\
\hline 3.553 & K2 & Si4 & K1 & 73.2 \\
\hline
\end{tabular}
AUTHORS : C.M. Wei, H. Huang, S.Y. Tong, G.S. Glander and M.B. Webb

REFERENCE : Phys. Rev., B42, 11284 (1990)

\section*{SURFACE TYPE}

Substrate: Si
Crystal face: 100
Temperature : 165C
Bulk lattice: diamond
2D bulk symm: pmm
2D surf symm: pimm
SAMPLE PREPARATION ( 1 sample)
Treatment : Na dosing at 60-170C onto clean (2×1); AES calibrated cov.
Crystallinity:
Anal. methods: AES
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; Faraday cup
Dataset : I-V curves at normal incidence for 2 integer-order and 3 fractional-order beams

Coverage : \(1 / 2 \mathrm{Na} / 1 \mathrm{x} 1\)
Pattern : (2x1)
Matrix : (2.000, 0.000)
( 0.000, 1.000)

\section*{STRUCTURE TYPE}

Atomic adsorption in 'pedestal site', bridging pairs of adjacent Si dimers, which are stretched wrt clean si(100)(2x1)

\section*{COMMENTS}

2nd model could be ruled out (except its 1ML coverage is double the measured amount): it has, in addition to 0.5 ML Na in the pedestal sites, also 0.5ML Na in the 'valley bridge sites'; both models have equal best R -factor

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (fully symm.): 7 phase shifts from bulk si superpos. pot.; Voi=-4.25 eV

STRUCTURES EXAMINED
6 models (all with distorted symm. Si dimers): Na on top, bridge, pedestal, cave or valley bridge sites (0.5ML), or both on pedestal and valley bridge sites (double layer model) (1ML); substrate relaxations down to 4 th Si layer

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.253\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & 0.000 & 3.840 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 7.680 & 0.000 & 0.000 & 3.840 & 90.0 & \((0.000,1.000)\) & \((2 \times 1)\) & \begin{tabular}{l} 
(2.000, 0.000\()\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
Na1: overlayer on pedestal site. bonding to 4 atoms si2-si3; si2-si3: stretched si dimers; si4-Si9: relaxed substrate; si10-si11: periodically repeating bulk pair of layers; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.975 & Na 1 & si2 & \(\operatorname{Na}(0,-1)\) & 80.4 \\
\hline 2.975 & Na 1 & Si2 & Si3 & 63.7 \\
\hline 2.975 & Na 1 & Si2 & Si4 & 84.2 \\
\hline 2.640 & Si2 & si3 & Si5 & 98.5 \\
\hline 2.640 & si2 & si3 & Si5 (0, -1) & 98.5 \\
\hline 2.377 & si3 & Si5 & Si6( 1,0 ) & 114.2 \\
\hline 2.377 & si3 & Si5 & Si7 & 105.6 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-(1x1)-NiSi2(111) interface
ILLUSTRATION: 114
CLASSIFICATION : 14.28.12a
TECHNIQUE : XSW
AUTHORS : J. Zegenhagen, K.G. Huang, and W. M. Gibson
REFERENCE : Phys. Rev., B39, 10254 (1989)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Si & Adsorbate: NiSi2 \\
Crystal face: 111 & Coverage : \\
Temperature: RT* & Pattern \(:(1 \times 1)\) \\
Bulk lattice: diamond & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: p3m1 &
\end{tabular}

D

SAMPLE PREPARATION ( 3 sample)
Treatment : NiSi2 epitaxially grown on
Crystallinity:
Anal. methods: thickness (5\% accuracy) by X-ray induced fluorescence
Contamination: see Appl. Phys. Lett. 51, 1176 (1987)

DATA COLLECTION
Technique: XSW
Dataset : Ni K fluorescence and reflectivity as a function of reflection angle \(\Theta\) ( 32 angular intervals)

\section*{STRUCTURE TYPE}

B-type, Ni at interface 7 -fold coordinated;
note difference with 14.27.2; bulk NiSi2=fluorite;
A-type grows with substrate orientation, B-type is rotated \(180^{\circ}\) with respect to substrate

\section*{COMMENTS}

A-type could also be grown: see 14.28.12b;
XSW measured Zd, the distance between Ni layer at interface and the average position of the first si layer; reasonable geometrical models permit to exclude 5-, 8-fold coordination of the Ni atom at the interface

\section*{THEORY/DATA TREATMENT}
1) fivefold \(N i, 2\) ) sevenfold \(N i, 3\) ) eightfold \(N i\)

STRUCTURES EXAMINED
2) is preferred structure, 1) and 3) ruled out; Zd constant with thickness

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & AY (A) & BX ( \({ }_{\text {A }}\) ) & By (A) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \[
\begin{aligned}
& (1.000, \\
& (0.000) \\
& 0.000, \\
& 1.000)
\end{aligned}
\] & (1×1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Ni2-Si3: periodically repeating bulk NiSi2 trilayer; Si4-Ni5-Si6: last NiSi2 trilayer;
Ni5-Si6-Si7: interface plane; 225A sample used for data; si11-si12: periodically repeating bulk substrate bilayer
Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(12 \quad\) Bulk \(z=3.130 \quad \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \[
\begin{aligned}
& \text { Cell } \\
& \text { type }
\end{aligned}
\] & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & Dx & \(\epsilon \mathrm{X}\) & Dy & & Dz \(\pm\) & & & Dz/Bz(\%) & \(\epsilon \mathrm{F} / \mathrm{Bz}\) \\
\hline epir & & -2 & & & & 1.919 & A. & -1.108 & A & 3.130 & & A & & \\
\hline subr & & -1 & & & & 1.919 & \(A\) & 1.108 & A & 3.130 & & A & & \\
\hline epil & Si & 1 & b & 1.00 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & & A & 0.0 & \\
\hline epil & Ni & 2 & \(b\) & 1.00 & 1 & 0.333 & \(f\) & 0.667 & \(f\) & 0.783 & & A & 25.0 & \\
\hline epil & Si & 3 & b & 1.00 & 2 & 0.333 & \(f\) & -0.333 & \(f\) & 0.783 & & A & 25.0 & \\
\hline intf & Si & 4 & b & 1.00 & 3 & -0.333 & \(f\) & 0.333 & f & 1.565 & & A & 50.0 & \\
\hline intf & Ni & 5 & \(b\) & 1.00 & 4 & 0.333 & \(f\) & -0.333 & \(f\) & 0.783 & & A & 25.0 & \\
\hline intf & Si & 6 & \(b\) & 1.00 & 5 & -0.667 & \(f\) & -0.333 & \(f\) & 0.783 & & A & 25.0 & \\
\hline intf & Si & 7 & \(b\) & 1.00 & 6 & 0.000 & \(f\) & 0.000 & \(f\) & \(2.300 \pm\) & . 040 & \(\lambda\) & \(73.5 \pm\) & 1.3 \\
\hline intf & Si & 8 & b & 1.00 & 7 & -0.333 & \(f\) & 0.333 & \(f\) & 0.783 & & A & 25.0 & \\
\hline intf & Si & 9 & \(b\) & 1.00 & 8 & 0.000 & \(f\) & 0.000 & \(f\) & 2.350 & & A & 75.1 & \\
\hline intf & Si & 10 & \(b\) & 1.00 & 9 & -0.333 & \(f\) & -0.667 & \(f\) & 0.783 & & A & 25.0 & \\
\hline subl & Si & 11 & b & 1.00 & 10 & 0.000 & \(f\) & 0.000 & \(f\) & 2.350 & & A & 75.1 & \\
\hline subl & Si & 12 & b & 1.00 & 11 & 0.667 & \(f\) & 0.333 & \(f\) & 0.783 & & A & 25.0 & \\
\hline
\end{tabular}

Si(111)-(1x1)-NiSi2(111) interface

No. of distances/angles: 5
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.350 & Si1 & Ni2 & Sil(1,1) & 109.5 \\
\hline 2.350 & Sil & Ni2 & Si3(0,1) & 180.0 \\
\hline 2.350 & Sil & Ni 2 & si3 & 70.5 \\
\hline 2.350 & Si4 & Ni5(0,1) & Si3(0,1) & 70.6 \\
\hline 2.350 & Si4 & Ni5 (0,1) & Si4(1,1) & 109.5 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-(1x1)-NiSi2(111) interface
ILLUSTRATION: 113
CLASSIFICATION: 14.28.12b
TECHNIQUE : XSW
AUTHORS : J. Zegenhagen, K.G. Huang and W. M. Gibson
REFERENCE : Phys. Rev., B39, 10254 (1989)

\section*{SURFACE TYPE}

Substrate: S
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 3 sample)
Treatment : NiSi2 epitaxially grown on Si(111), thickness 230-220-530A
Crystallinity:
Anal. methods: thickness (5\% accuracy) by X-ray induced fluorescence
Contamination: see Appl. Phys. Lett. 51, 1176 (1987)
DATA COLLECTION
Technique: XSW
Dataset : Ni K fluorescence and reflectivity as a function of reflection angle \(\Theta\) (32 angular intervals)

\section*{STRUCTURE TYPE}

A-type, Ni at interface 7-fold coordinated
note difference with 14.27.2; bulk Nisi2=fluorite;
A-type grows with substrate orientation, B-type is rotated
\(180^{\circ}\) with respect to substrate

\section*{COMMENTS}

B-type could also be grown: see 14.28.12a;
XSW measured Zd, the distance between Ni layer at interface and the average position of the first si layer; reasonable geometrical models permit to exclude \(5-, 8\)-fold coordination of the Ni atom at the interface

\section*{THEORY/DATA TREATMENT}
1) fivefold \(N i, 2\) ) sevenfold \(N i, 3\) ) eightfold \(N i\)

STRUCTURES EXAMINED
2) is preferred structure, 1) and 3) ruled out; Zd constant with thickness

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay ( \(A\) ) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \((1.000,0.000)\) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Sil-Ni2-Si3: periodically repeating bulk Nisi2 trilayer; Si4-Ni5-si6: last Nisi2 trilayer:
Ni5-Si6-Si7: interface plane; 530A sample used for data; si11-Si12: periodically repeating bulk substrate bilayer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 12
Bulk z \(=3.130 \AA\)


No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.350 & si1 & Ni2 & sil(1,1) & 109.5 \\
\hline 2.350 & Si1 & Ni2 & Si3 \((0,1)\) & 180.0 \\
\hline 2.350 & Si1 & Ni2 & si3 & 70.5 \\
\hline 2.713 & Si3 & Si4 (1,0) & Ni2(1,0) & 54.8 \\
\hline 2.713 & si3 & Si4(1,0) & si3(1,1) & 90.0 \\
\hline 2.350 & Si4 & Ni5 & si3 & 70.6 \\
\hline 2.350 & Si4 & Ni5 & Si4(1,0) & 109.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline COMMON NAME & Si(111)-(1x1)-Nisi2(111) interface \\
\hline CLASSIFICATION & : 14.28 .2 \\
\hline TECHNIQUE & : HEIS \\
\hline AUTHORS & : E.J. van Loenen, J.W.M. Frenken, J.F. van der Veen and S. Valeri \\
\hline REFERENCE & Phys. Rev. Lett., 54, 827 (1985) \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : Si
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment: 25\& epilayer from Ni deposition on (7x7), then annealed
Crystallinity:
Anal. methods:
Contamination: si(111)(7×7) clean by AES and ISS

\section*{DATA COLLECTION}

Technique: HEIS; RBS of 100 keV He ions with channeling
Dataset : energy- and angle-dependent yield around two off-normal channel directions

\section*{STRUCTURE TYPE}

Epitaxial (1×1) multilayer; ideal 3D fit of top si bilayer against bottom NiSi2 trilayer with Si-Si bonds perpendicular to interface

\section*{COMMENTS}

Only the interfacial separation \(0.75+2.31=3.06 \pm 0.08 \AA\) was measured; the sum is here decomposed in proportion to the ideal values of \(0.77+2.35=3.12 \AA\)

STRUCTURES EXAMINED
Interface between ideal bulk-like lattices with two possible registries and variable interfacial layer spacing

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & 1.919 & 3.324 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.838 & 0.000 & 1.919 & 3.324 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

30 COORDINATES
Si1-Ni2-Si3: repeating bulk Nisi2 epilayer; Si4-Ni5-Si6: bottom NiSi2 trilayer;
si7-si8: top si bilayer; si9-si10: repeating bulk si bilayer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(10 \quad\) Bulk \(2=3.130 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & Dx & EX & Dy & & \(D 2 \pm \epsilon z\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & 3.838 & \(\AA\) & 2.216 & \(\AA\) & 3.080 & A & \\
\hline subr & & -1 & & & & 1.919 & \(\AA\) & 1.108 & \(\AA\) & 3.130 & A & \\
\hline epil & Si & 1 & \(b\) & 1.00 & 0 & 0.000 & \(f\) & 0.000 & \(f\) & 0.000 & \(\pm\) & 0.0 \\
\hline epil & Ni & 2 & \(b\) & 1.00 & 1 & 0.667 & \(f\) & 0.667 & \(f\) & 0.770 & A & 24.6 \\
\hline epil & Si & 3 & \(b\) & 1.00 & 2 & -0.333 & \(f\) & -0.333 & \(f\) & 0.770 & A & 24.6 \\
\hline intf & Si & 4 & b & 1.00 & 3 & 0.333 & \(f\) & 0.333 & \(f\) & 1.540 & A & 49.2 \\
\hline intf & Ni & 5 & \(b\) & 1.00 & 4 & -0.333 & f & -0.333 & \(f\) & 0.770 & A & 24.6 \\
\hline intf & Si & 6 & b & 1.00 & 5 & -0.333 & \(f\) & -0.333 & \(f\) & \(0.750 \pm .080\) & A & \(24.0 \pm 2.6\) \\
\hline intf & Si & 7 & \(b\) & 1.00 & 6 & 0.000 & \(f\) & 0.000 & \(f\) & \(2.310 \pm .080\) & A & \(73.8 \pm 2.6\) \\
\hline intf & Si & 8 & b & 1.00 & 7 & 0.333 & \(f\) & 0.333 & \(f\) & 0.780 & A & 24.9 \\
\hline subl & Si & 9 & \(b\) & 1.00 & 8 & 0.000 & \(f\) & 0.000 & f & 2.350 & \(\AA\) & 75.1 \\
\hline subl & Si & 10 & b & 1.00 & 9 & 0.333 & \(f\) & 0.333 & f & 0.780 & \(\AA\) & 24.9 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.346 & Ni2 & Si3(1,0) & Si4 & 54.0 \\
\hline 2.310 & Si3 & Ni5 & Si6 & 108.7 \\
\hline 2.340 & Ni5 & Si6 & & \\
\hline 2.310 & Si6 & Si7 & & \\
\hline 2.346 & Ni2 & Si3 1,0\()\) & Ni5 (1,0) & 109.2 \\
\hline 2.310 & Ni2 & Si4 & Si3 & 55.2 \\
\hline 2.310 & Ni 2 & Si4 & Nis & 109.2 \\
\hline 2.310 & Ni2 & Si4 & Si6(1,0) & 124.5 \\
\hline 2.699 & Si3 & Si4 & Si3(1,0) & 90.7 \\
\hline 2.699 & Si3 & Si4 & Ni5 & 54.0 \\
\hline 2.699 & Si3 & Si4 & Si6(1,0) & 89.1 \\
\hline 2.310 & Si3 & Nis & Si4 & 70.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline COMMON NAME & Si(111)-(1x1)-Nisi2(111) interface \\
\hline CLASSIFICATION & : 14.28 .8 \\
\hline TECHNIQUE & XSW \\
\hline AUTHORS & \begin{tabular}{l}
: E. Vlieg, A.E.M.J. Fischer, J.F. van der Veen, B.N. Dev and \\
G. Materlik
\end{tabular} \\
\hline REFERENCE & : Surf. Sci., 178, 36 (1986) \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate: Si
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p 3 m 1
```

Adsorbate: NiSi2
Coverage : multilayers
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

SAMPLE PREPARATION ( 1 sample)
Treatment : cycles of Ni evap. and 5 min 823 K anneals to req. thickness
Crystallinity:
Anal. methods: MEIS monitors thickness; HEIS determines number of Ni planes
Contamination: AES: \(<5 \%\) contamination before Ni depos.

\section*{DATA COLLECTION}

Technique: XSW; fluorescence measurement
Dataset : 12.4k eV x-rays for thin B-type sample, 14 k eV otherwise; fluorescence measured about (111) Bragg reflection

\section*{STRUCTURE TYPE}

Epitaxial bulk Nisi2 growth forming (1x1) interface;
tabulated is B-type silicide orientation (same as in Van
Loenen et al, PRL 54, 827 (1985), class. no. 14.28.2)

\section*{COMMENTS}

A-type growth also produced experimentally (for A-type swap fractional coordinates of the epilayer atoms); measured spacings between 1st Ni plane and (111) Bragg planes of Si: 3.41 \(\pm 0.03 A\) for \(8,3.48 \pm 0.05 A\) for \(A\); measured NiSi2(111) interplanar spacing: \(3.108 \pm 0.004 A\) for \(B\) ( \(0.4 \%\) contraction)

THEORY/DATA TREATMENT
\(\overline{X-r a y}\) standing wave analysis

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 3.838 & 0.000 & -1.919 & 3.324 & 120.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

30 COORDINATES

Si1-Ni2-Si3: periodically repeating bulk silicide epilayer;
si7-Si8: bulk-like bilayer; si11-si12: periodically repeating bulk substrate
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel.
to & Dx \(\pm\) & EX & Dy & & Dz & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & 1.919 & A & -1.108 & \(A\) & 3.108 & A & \\
\hline subr & & -1 & & & & -1.919 & A & 1.108 & A & 3.170 & A & \\
\hline epil & Si & 1 & \(b\) & 1.00 & 0 & 0.000 & f & 0.000 & \(f\) & 0.000 & A & 0.0 \\
\hline epil & Ni & 2 & b & 1.00 & 1 & 0.333 & \(f\) & 0.667 & \(f\) & 0.778 & A & 24.5 \\
\hline epil & Si & 3 & b & 1.00 & 2 & 0.333 & \(f\) & -0.333 & \(f\) & 0.778 & A & 24.5 \\
\hline intf & Si & 4 & \(b\) & 1.00 & 3 & -0.333 & \(f\) & 0.333 & \(f\) & 1.552 & A & 49.0 \\
\hline intf & Ni & 5 & b & 1.00 & 4 & 0.333 & \(f\) & -0.333 & \(f\) & 0.778 & A & 24.5 \\
\hline intf & Si & 6 & b & 1.00 & 5 & -0.667 & \(f\) & -0.333 & \(f\) & 0.754 & A & 23.8 \\
\hline intf & Si & 7 & b & 1.00 & 6 & 0.000 & \(f\) & 0.000 & \(f\) & 2.259 & A & 71.3 \\
\hline intf & Si & 8 & b & 1.00 & 7 & 0.667 & f & 0.333 & \(f\) & 0.807 & A & 25.5 \\
\hline intf & Si & 9 & b & 1.00 & 8 & 0.000 & \(f\) & 0.000 & \(f\) & 2.350 & \(\wedge\) & 74.1 \\
\hline intf & Si & 10 & b & 1.00 & 9 & -0.333 & \(f\) & 0.333 & f & 0.820 & A & 25.9 \\
\hline subl & Si & 11 & b & 1.00 & 10 & 0.000 & \(f\) & 0.000 & \(f\) & 2.350 & A & 74.1 \\
\hline subl & Si & 12 & b & 1.00 & 11 & -0.333 & \(f\) & -0.667 & f & 0.780 & A & 24.6 \\
\hline
\end{tabular}

COMMON NAME : Si(111)-( \(\sqrt{3} x \sqrt{3}) R 30^{\circ}-\mathrm{Pb}\)
ILLUSTRATION: 96
CLASSIFICATION : 14.82.1
\begin{tabular}{lll} 
TECHNIQUE & : XSW \\
AUTHORS & : B.N. Dev, G. Materlik, F. Grey and R.L. Johnson \\
REFERENCE & : Springer Series in Surface Sciences, 11, 340 (198
\end{tabular}

SURFACE TYPE
Substrate:
Crystal face: 111
Temperature : RT
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: p31m

> Adsorbate: Pb
> Coverage : \(1 / 3 \mathrm{~Pb} / \mathrm{Si}\)
> Pattern \(:(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\)
> Matrix \(:(1.000,1.000)\)

\section*{STRUCTURE TYPE}

Atomic adsorption in 1-fold coordinated top sites over unreconstructed, unrelaxed substrate terminated between bilayers

\section*{COMMENTS}

Multisite adsorption proposed if Pb evaporated onto sample at 523 K ; the small coherent fraction noted by the authors may also indicate that more than one site have nearly equal binding energies

Anal. methods:
Contamination: no impurities detected by photoemission
dATA COLLECTION

\section*{THEORY/DATA TREATMENT}
\(X\)-ray standing wave analysis

STRUCTURES EXAMINED
Some surface relaxations and different sites could fit the (111) data, but could not simultaneously fit the (220) data
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.839} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.920} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{5.759} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{-5.759} & \multirow[t]{2}{*}{3.325} & \multirow[t]{2}{*}{120.0} & ( 1.000, 1.000) & \multirow[t]{2}{*}{\((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\)} & s1: commens. \\
\hline & & & & & & (-2.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Pb1: overlayer, 1-fold coordinated to si2; si2-si3: bulk-like bilayer;
si4-Si5: periodically repeating bulk bilayer; \(0.1 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk \(2=3.130 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.560 & \(\mathrm{Pb1}\) & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & 109.4 \\
2.350 & \(\mathrm{Si2}\) & \(\mathrm{Si3}\) & \(\mathrm{Si4}\) & 109.4 \\
\hline
\end{tabular}

SURFACE TYPE

Substrate
Crystal face: 111
Temperature : RT
Bulk lattice: diamond
20 bulk symm: p3m1
2D surf symm: p31m

> Adsorbate: Pb Coverage : \(0.333 \mathrm{~Pb} / 1 \times 1\) Pattern \(:(\sqrt{3 x} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) Matrix \(:(1.000,1.000)\)     \((-2.000,1.000)\)

\section*{STRUCTURE TYPE}

Atomic adsorption above \(T 4\) site; the three first-layer Si atoms are moved in as well as up; the Si right below Pb is moved down together with the si atom below it; all the other Si's in the 2nd, 3rd, and 4th Si layers are moved upwards; the 5th Si layer and below are in bulk positions

SAMPLE PREPARATION ( 1 sample)
Treatment : annealed the \(\mathrm{Pb} / \mathrm{Si}\) above 350 C
Crystallinity: good LEED pattern
Anal. methods: AES
Contamination
DATA COLLECTION
Technique: LEED; computer-controlled LEED diffractomet
Dataset : IV spectra measured for 223 beams; only 4 used in analysis; \(40<E<200 \mathrm{eV}\)

\section*{COMMENTS}

There exist two ( \(\sqrt{3} \times \sqrt{3}\) ) phases of Pb on Si(111): the first (a) appears if the annealing temperature is below 350C; the other, irreversible, phase (B) appears if annealed above 350 C ; the structure given here is for this \(B\) phase

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (tensor LEED): 9 phase shifts; Vor=-5 \(\ddagger 1 \mathrm{eV}\)

STRUCTURES EXAMINED
Four adatom adsorption models: T4 site with 0.33 ML and 1 ML coverages, and H 3 site for the same two cases
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.32\)
2 D UNIT CELLS ( 1 domain observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.839 & 0.000 & 1.920 & 3.325 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.759 & 3.325 & -5.759 & 3.325 & 120.0 & \((1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3})\) R300 & s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Pb1: adatom Pb layer; si2-si4 : top Si layer (half bilayer); si5-si7: 2nd si layer; Si14-Si15: repeating bulk layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates

No. of distances/angles:
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.400 & Pb1 & Si5 & Si2 & 65.3 \\
2.960 & Si5 & Si8 & Si11 & 105.6 \\
2.400 & Si1 & Si6 & Si9 & 104.2 \\
\hline
\end{tabular}


SAMPLE PREPARATION ( 1 sample)
Treatment : Ar bombardment; annealing at 1080C; Sn from Knudsen cell
Crystallinity: Sharp \(7 \times 7\) RHEED pattern
Anal. methods: RHEED
Contamination:

DATA COLLECTION
Technique: XRD; sync. rad., 5-circle diffractometer Dataset : 32 in-plane reflections and 10 fractional order rods

\section*{COMMENTS}

RHEED used to check the crystallinity

\section*{THEORY/DATA TREATMENT}

Least-square fitting together with the Keating model for strain energy

STRUCTURES EXAMINED
T4 and H3 sites; same with topmost si bilayer rotated by \(180^{\circ}\)
QUALITY OF EXPERIMENT-THEORY FIT
Chi**2=1.26
2 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.839 & 0.000 & 1.920 & 3.325 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.759 & 3.325 & -5.759 & 3.325 & 120.0 & \((1.000,1.000)\) & \((\sqrt{3} \times \sqrt{3}) R 30^{\circ}\) & s1: commens. \\
& & & & & \((-2.000,1.000)\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Sn1: adsorbate layer at T4 site; si2-si7: 1st si bilayer; si8-si13: 2nd si bilayer; si14-si19: 3rd si bilayer; si20-Si21: periodic bulk layers

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(21 \quad\) Bulk z = \(3.130 \quad \AA\)


Si(111)-( \(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-S n\)
14.50 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(\AA)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.560 & Si2 & Sn 1 & si5 & 51.6 \\
\hline 2.181 & Si2 & Si6 & Si9 & 105.4 \\
\hline 2.355 & Si5 & Si8 & Sil1 & 100.3 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Si}(100)-(2 \times 1)-2 S b\) \\
CLASSIFICATION & \(: 14.51 .7\) \\
TECHNIQUE & \(:\) SEXAFS \\
AUTHORS & : M. Richter, J.C. Hoicik, P. Pianetta, K.E. Miyano, \\
& \\
T.Kendelewicz, C.E. Bouldin, H.E. Spicer and I. Lindau \\
REFERENCE & J. Vac. Sci. Technol., A9, 1951 (1991)
\end{tabular}

CLASSIFICATION : 14.51.7
AUTHORS : M. Richter, J.C. Woicik, P. Pianetta, K.E. Miyano,
T.Kendelewicz, C.E. Bouldin, W.E. Spicer and I. Lindau

REFERENCE : J. Vac. Sci. Technol., A9, 1951 (1991)

\section*{SURFACE TYPE}

Substrate: S
Crystal face: 100
Temperature : RT*
Bulk lattice: diamond
20 bulk symm: prmm
2D surf symm: pmim
```

Adsorbate: Sb
Coverage : 1 Sb/1x1
Pattern : (2x1)
Matrix : (2.000, 0.000)

```

\section*{STRUCTURE TYPE}

Sb dimer on unreconstructed substrate (dimer orientation perp. to that of the Si dimer formed after removal of the Sb layer, i.e. parallel to si dimer formed by substitution of si for Sb )

\section*{COMMENTS}

SAMPLE PREPARATION ( 1 sample)
Treatment : Sb depos. on clean Si at RT , then annealed to 375C and 550C
Crystallinity: LEED: (1x1) with diffuse ( \(2 \times 1\) ) spots
Anal. methods: AES, LEED
Contamination: AES: no \(C, 0\)
dATA COLLECTION
Technique: SEXAFS; polariz.-dep. SEXAFS at SSRL
Dataset : SEXAFS above Sb L3M45M45 edge at 3 angles: \(k\) range 2.5-8A-1

\section*{THEORY/DATA TREATMENT}

Fourier transform, backtransform and 2-shell fit, using bulk AlSb and Sb as standards

STRUCTURES EXAMINED
3 models with 1ML coverage: 4-fold hollow, bridge, and 'modified bridge' (the preferred model); substrate unrelaxed
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)


3D COORDINATES
Sb1-Sb2: dimer overlayer (similar to clean-surface dimer); si3-Si4: periodically repeating bulk pair of layers; coordinates are derived from bond distances and angles, assuming unrelaxed bulk

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk \(z=1.358 ~ \AA\)


BOND DISTANCES AND ANGLES

No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(A-B-C\left({ }^{\circ}\right)\) \\
\hline 2.910 & Sb1 & Sb2 1,0 ) & si3(2,0) & 100.2 \\
\hline 2.633 & Sb2 & Si3 & Sb2 \((0,-1)\) & 93.7 \\
\hline 2.633 & Sb2 & Si3 & Si4 & 103.7 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(:\) Si(111)-(7x7)-Te & ILLUSTRATION: 96 \\
CLASSIFICATION & : 14.52 .1 \\
TECHNIQUE & SEXAFS \\
AUTHORS & P.H. Citrin, P. Eisenberger and J.E. Rowe \\
REFERENCE & : Phys. Rev. Lett., 48, \(802(1982)\)
\end{tabular}

\section*{SURFACE TYPE}

Substrate : S
Crystal face: 111
Temperature : RT*
Bulk lattice: diamond
2D bulk symm: p3m1
2D surf symm: cm

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : Ar+ bomb. and annealed, exposed to Te, annealed at 773 K
Crystallinity: LEED showed a (7x7) pattern
Anal. methods: AES determined 1 ML Te coverage
Contamination:

\section*{DATA COLLECTION}

Technique: SEXAFS; total yield SEXAFS
Dataset : SEXAFS from Te LIII edge vs polar angle and polarisation

\section*{STRUCTURE TYPE}

Atomic on-bridge adsorption;
(7×7) structure inferred from LEED; modeled as (1×1) here
relationship with (7x7) structure unknown; only local
geometry near adsorbate determined

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Fourier transform analysis of SEXAFS data with Sil(CH3)3
standard combined with analysis of amplitude ratios

STRUCTURES EXAMINED
Structure determined directly from first neighbor bond lengths and amplitude ratios
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 3 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(1)\) & Ay (A) & \(B \times\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.840 & 0.000 & -1.920 & 3.326 & 120.0 & \((1.000,0.000)\) & ( \(1 \times 1\) ) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Te1: bridge-site overlayer; si2-Si3: repeating bulk bilayer (assumed structure);
coordinates are derived from bond lengths; \(0.1 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.



BOND DISTANCES AND ANGLES

No. of distances/angles: 11
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.440 & Te1 & Si2 & Te1(1,0) & 103.8 \\
\hline 2.350 & Si2 & Si3(0,-1) & Si2(1,0) & 109.6 \\
\hline 2.541 & Si3 & Te1(1,1) & Si2(0,1) & 56.3 \\
\hline 2.440 & Te1 & Si2 & Si3 & 101.8 \\
\hline 2.440 & Te1 & Si2 & Si3(0,-1) & 148.0 \\
\hline 2.440 & Te1 & Si2 & Si3(-1,-1) & 64.0 \\
\hline 2.541 & Te1 & si3(-1,-1) & Si2 & 59.7 \\
\hline 2.541 & Te1 & Si3(-1,-1) & Si2(-1,-1) & 96.5 \\
\hline
\end{tabular}

Si(111)-(7x7)-Te
14.52 .1

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.440 & si2 & Te1 & si3(-1,-1) & 56.3 \\
\hline 2.350 & si2 & Si3 & Te1(1,1) & 96.5 \\
\hline 2.350 & si2 & Si3(0, -1) & Te1(1,0) & 59.7 \\
\hline
\end{tabular}

\begin{tabular}{lll} 
SURFACE TYPE & & \\
\hline Substrate: Sic & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT & Pattern : \(2 \times 2)\) \\
Bulk lattice: zincblende & Matrix: \((1.000,-1.000)\) \\
2D bulk symm: pmm & & \((1.000,1.000)\) \\
2D surf symm: cmm & &
\end{tabular}

\section*{STRUCTURE TYPE}

C-rich C-terminated reconstruction with symmetric C pairs bridging Si pairs; slight relaxations in second layer; this structure possibly contains hydrogen (see structure 14.6.7b for a presumably H -free version)

\section*{COMMENTS}

B-SiC prepared as \(4-6 \mu\) thick film on si(100) wafer by chemical vapor deposition; single-domain SiC obtained by cutting si wafer \(0.5^{\circ}\) off (100)
Crystallinity: slightly diffuse LEED pattern
Anal. methods: AES
Contamination: reduced by Si dep.; AES Si/C=1.0
DATA COLLECTION
Technique: LEED; video camera
Dataset : IV curves for
\[
\begin{aligned}
& (01),(10),(11),(20),(02),(0.5,0.5),(1.5,0.5 \\
& (01),(10),(11),(20),(02),(0.5,0.5),(1.5,0.5
\end{aligned}
\]

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (autom. search, tensor LEED, lay dblg): pots
from H-S w. fcts; Vor=-9 \(\pm 1 \mathrm{eV}\) (fit), Voi=-6eV; \(\Theta 0=1430 \mathrm{~K}\)

STRUCTURES EXAMINED
7 different models with \(C\) pairs, dimers and monomers, si dimers and monomers were examined with conventional dyn. LEED, optimizing only top layer; 2 best models were subject of automated optimization of 12 coordinates (for 4 atoms in 2 top layers)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

\section*{RPE \(=0.24\)}

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.090 & 0.000 & 0.000 & 3.090 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.090 & -3.090 & 3.090 & 3.090 & 90.0 & \((1.000,1.000)\) & \((1.000)\) & c(2x2) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

C1-C2: symmetric bonded C pair bridging si3-Si4 pair; si3-Si4: slightly relaxed substrate atoms; c5-si6: periodically repeating bulk pair of layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors


SiC(100)-c(2x2) (C2H4 exposed)
14.6.7a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.250 & Cl & \(\mathrm{C2}\) & \(\mathrm{si3}(-1,-1)\) & 119.6 \\
1.863 & Cl & \(\mathrm{Si4}\) & \(\mathrm{C5}\) & 119.7 \\
1.879 & \(\mathrm{Si4}\) & \(\mathrm{C5}\) & Si6 & 109.2 \\
1.879 & \(\mathrm{Si4}\) & \(\mathrm{C5}\) & \(\mathrm{si} 6(-1,0)\) & 109.2 \\
\hline
\end{tabular}


\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: SiC & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT & Pattern : \(2(2 \times 2)\) \\
Bulk lattice: zincblende & Matrix \(:(1.000,-1.000)\) \\
2D bulk symm: pmm & \\
\hline
\end{tabular}

2D surf symm: cmm

STRUCTURE TYPE
C-rich C-terminated reconstruction with symmetric C pairs bridging si pairs; marked relaxations in second layer; this structure is presumably hydrogen-free (see structure 14.6.7a for a possibly \(H\)-containing version)

SAMPLE PREPARATION ( sample)
Treatment : heat cleaned (1175 K), si removed by 1300K anneal
Crystallinity: moderately sharp LEED pattern
Anal. methods: AES
Contamination: reduced by Si dep.; AES Si/C=1.0

\section*{DATA COLLECTION}

Technique: LEED; video camera
Dataset : IV curves for
(01),(10),(11),(20),(0.5,0.5),(1.5,0.5),
( \(0.5,1.5\) ) beams at normal incidence; cumul.

\section*{COMMENTS}

B-SiC prepared as \(4-6 \mu\) thick film on Si(100) wafer by chemical vapor deposition; single-domain sic obtained by cutting Si wafer \(0.5^{\circ}\) off (100)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (autom. search, tensor LEED, lay dblg): pots from H-S w. fcts; Vor=-9 \(\pm 1 \mathrm{eV}\) (fit), Voi=-6eV; \(\Theta D=1430 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

7 different models with \(C\) pairs, dimers and monomers, si dimers and monomers were examined with conventional dyn. LEED, optimizing only top layer; 2 best models were subject of automated optimization of 12 coordinates (for 4 atoms in 2 top layers)

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.22\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.090 & 0.000 & 0.000 & 3.090 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
surface 1 & 3.090 & -3.090 & 3.090 & 3.090 & 90.0 & \((1.000,-1.000)\) & c(2x2) & si: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

C1-C2: symmetric bonded \(C\) pair bridging si3-Si4 pair; si3-si4: markedly relaxed substrate atoms; C5-Si6: periodically repeating bulk pair of layers

Dx/Dy in A, or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\[
\text { No. of atoms: } 6 \quad \text { Bulk } z=1.093 \mathrm{~A}
\]


SiC(100)-c(2x2) (Si sublimation)
14.6.7b

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C} & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left(\mathrm{C}^{\circ}\right)\)
\end{tabular} \\
\hline 1.310 & C 1 & C & & \(\mathrm{Si3}(-1,-1)\) \\
1.930 & C 1 & \(\mathrm{Si4}\) & \(\mathrm{C5}\) & 124.0 \\
1.889 & \(\mathrm{Si4}\) & \(\mathrm{C5}\) & \(\mathrm{Si6}\) & 114.4 \\
1.889 & \(\mathrm{Si4}\) & C 5 & \(\mathrm{Si} 6(-1,0)\) & 104.2 \\
\hline
\end{tabular}

CLASSIFICATION : 14.6 .8
TECHNIQUE : LEED
AUTHORS : J.M. Powers, A. Wander, M.A. Van Hove and G.A. Somorjai
REFERENCE : Surf. Sci., 260, L7 (1992)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|}
\hline Substrate : SiC & Adsorbate: & \\
\hline Crystal face: 100 & Coverage : & \\
\hline Temperature : RT & Pattern & (2×1) \\
\hline Bulk lattice: zincblende & Matrix & ( 2.000, 0.000) \\
\hline 2D bulk symm: pmm & & ( 0.000, 1.000) \\
\hline
\end{tabular}

2D surf sym

SAMPLE PREPARATION ( sample)
Treatment : heat cleaned at 1175 K , Si deposition and further annealing
Crystallinity: moderately sharp LEED spots
Anal. methods: AES
Contamination: reduced by Si dep.; AES Si/C=1.8

\section*{DATA COLLECTION}

Technique: LEED; video camera
Dataset : IV curves for
(01),(10),(11),(1,0.5),(0,0.5) beams at normal incidence; cumul. E range 920 eV

STRUCTURE TYPE
Si-rich si-terminated reconstruction with asymmetric buckled Si dimers; small relaxations in deeper layers

\section*{COMMENTS}

B-SiC prepared as \(4-6 \mu\) thick film on si(100) wafer by chemical vapor deposition

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (autom. search w. tensor LEED, RFS): pots
from H-S W. fcts; Vor=-10 \(\pm 1 \mathrm{eV}\) (fit), Voi=-6eV; \(\Theta 0=1430 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

3 different symmetric and buckled si dimer models, with automated optimization of 18 coordinates (for 6 atoms in 3 top layers)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RPE \(=0.27\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay (A) & \(B \times(A)\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.090 & 0.000 & 0.000 & 3.090 & 90.0 & \((1.000,0.000)\) & (1×1) & b: bulk lattice \\
\hline Surface 1 & 6.180 & 0.000 & 0.000 & 3.090 & 90.0 & \[
\begin{aligned}
& (0.000,1.000) \\
& (2.000, \\
& (0.000) \\
& 0.000, \\
& 1.000)
\end{aligned}
\] & (2x1) & s1: conmens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Si1-Si2: buckled asymmetric dimer; C3-C4-Si5-Si6: slightly relaxed substrate atoms;
C7-Si8: periodically repeating bulk pair of layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk z \(=1.093 \AA\)


Sic(100)-p(2x1)
14.6 .8

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 14
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 1.976 & Si 1 & C4 & si1(0,1) & 102.9 \\
\hline 1.820 & C3 & Si6 & C7 & 109.5 \\
\hline 1.911 & C4 & Si5 (1, 0) & C3 \((1,0)\) & 114.3 \\
\hline 1.911 & C4 & Si5(1,0) & C7(1,0) & 108.1 \\
\hline 1.809 & C4 & Si6 & C3 & 109.3 \\
\hline 1.809 & C4 & Si6 & c7 & 109.2 \\
\hline 1.976 & Sil & C4 & Si5 (1,0) & 115.4 \\
\hline 1.976 & Si1 & C4 & Si6 & 104.9 \\
\hline 1.885 & Si2 & C3 & Si2(0,1) & 110.1 \\
\hline 1.885 & Si2 & C3 & si5 & 118.6 \\
\hline 1.885 & Si2 & C3 & Si6 & 96.9 \\
\hline 1.922 & C3 & Si5 & C4(-1,0) & 114.3 \\
\hline 1.922 & C3 & Si5 & C7(-1,0) & 108.4 \\
\hline 1.820 & C3 & si6 & c4 & 109.3 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) SrTiO3(100)-( \(1 \times 1\) ) 0-Ti-O termination \\
CLASSIFICATION \(: ~ 38.22 .8 .1 b ~\) \\
TECHNIQUE & LEED \\
AUTHORS & : N. Bickel, G. Schmidt, K. Heinz and K. Mueller \\
REFERENCE & Phys. Rev. Lett., 62,2009 (1989)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate : SrTi03 & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: 120 K & Pattern : \((1 \times 1)\) \\
Bulk lattice: perovskite & Matrix \(:(1.000,0.000)\) \\
\(2 D\) bulk symm: p4m & \\
&
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination with 4.1\% buckled top O-Ti-O compound layer ( O outward), spacing between 1st \(\mathrm{O}-\mathrm{Ti}-\mathrm{O}\) and 2 nd \(\mathrm{Sr}-\mathrm{O}\) layers expanded \(2 \%\), spacing between \(2 \mathrm{nd} \mathrm{Sr}-\mathrm{O}\) and \(3 \mathrm{rd} 0-\mathrm{Ti}-\mathrm{O}\) layers contracted \(2 \%\)

\section*{COMMENTS}

Best fit for the SrTiO3(100) surface was obtained with 2 domains with different layer terminations, coexisting with 1:1 ratio; RPE for either one termination was above 0.63, for a 1:1 mixture of the two terminations 0.529 ; 0-Ti-0 term. given here: see 38.22.8.1a for Sr-0 term.

THEORY/DATA TREATMENT
Dynamical LEED (combined space method and renormalized forward scattering)

STRUCTURES EXAMINED
Varied were: spacing between Ti-subplane in top layer and Sr-O second layer, second interlayer spacing, buckling between the Ti - and O -subplanes in top layer

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.529\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) ( \(A\) ) & AY (A) & \(B x\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.900 & 0.000 & 0.000 & 3.900 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.900 & 0.000 & 0.000 & 3.900 & 90.0 & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ti1-02-03: buckled top compound 0-Ti-0 layer, 0 outermost; Sr4-05: 2nd relaxed Sr-0 compound layer; Ti6-07-08: 3rd relaxed 0-Ti-0 compound layer; Ti6-010: repeating set of substrate layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 10
Bulk z \(=1.950 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel. to & \(D \mathrm{E}\) ¢ EX & Dy \(\pm\) Ey & Dz \(\pm \boldsymbol{E Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 3.900 A & 3.900 A & 3.900 A & \\
\hline intf & Ti & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & 0 & 2 & b & 1.00 & 1 & 0.500 f & 0.000 f & \(-0.080 \pm .080\) A & \(-4.1 \pm 4.1\) \\
\hline intf & 0 & 3 & \(b\) & 1.00 & 1 & 0.000 f & \(0.500 \quad f\) & \(-0.080 \pm .080 \AA\) & \(-4.1 \pm 4.1\) \\
\hline intf & Sr & 4 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(1.989 \pm .039 \AA\) & \(102.0 \pm 2.0\) \\
\hline intf & 0 & 5 & b & 1.00 & 4 & -0.500 f & -0.500 f & 0.000 A & 0.0 \\
\hline subl & Ti & 6 & \(b\) & 1.00 & 5 & 0.000 f & 0.000 f & \(1.911 \pm .039\) A & \(98.0 \pm 2.0\) \\
\hline subl & 0 & 7 & b & 1.00 & 6 & 0.500 f & 0.000 f & 0.000 A & 0.0 \\
\hline subl & 0 & 8 & b & 1.00 & 6 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Sr & 9 & b & 1.00 & 6 & 0.500 f & 0.500 f & 1.950 A & 100.0 \\
\hline subl & 0 & 10 & b & 1.00 & 9 & -0.500 f & -0.500 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

SrTiO3(100)-(1x1) 0-Ti-O termination
38.22.8.1b

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles:
10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 1.952 & 01 & Ti3(0,1) & 01(0,1) & 175.3 \\
\hline 2.843 & 02 & Sr 4 & 02(0,1) & 86.6 \\
\hline 1.952 & 01 & ti3(0,1) & 02(0,1) & 89.9 \\
\hline 2.843 & 01 & Sr \({ }^{\text {c }}\) & 01(1,0) & 86.6 \\
\hline 2.843 & 01 & Sr 4 & 02(0,1) & 58.0 \\
\hline 2.843 & 01 & Sr 4 & \(\mathrm{ri3}(0,1)\) & 35.0 \\
\hline 1.952 & 02 & Ti3(1,0) & 01(1,0) & 89.9 \\
\hline 1.952 & 02 & Ti3(1,0) & 02(1,0) & 175.3 \\
\hline 1.952 & 02 & Ti3(1,0) & Sr4(1,0) & 126.7 \\
\hline 2.843 & 02 & Sr 4 & 01(1,0) & 58.0 \\
\hline
\end{tabular}
AUTHORS : N. Bickel, G. Schmidt, K. Heinz and K. Mueller

REFERENCE : Phys. Rev. Lett., 62, 2009 (1989)

\section*{SURFACE TYPE}
\begin{tabular}{lll} 
Substrate \(: ~ S r T i 03\) & Adsorbate: & \\
Crystal face: 100 & Coverage : & \\
Temperature : 120 K & Pattern \(:(1 \times 1)\) \\
Bulk lattice: perovskite & Matrix \(:(1.000,0.000)\) \\
2D bulk symm: P4m & & \((0.000,1.000)\) \\
2D surf symm: 04 m & &
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination with \(8.2 \%\) buckled top Sr-0 compound layer ( 0 outward), spacing between 1 st \(\mathrm{Sr}-\mathrm{O}\) and 2nd \(\mathrm{O}-\mathrm{Ti}-\mathrm{O}\) layers contracted \(10 \%\), spacing between 2 nd \(\mathrm{O}-\mathrm{Ti}-\mathrm{O}\) and \(3 \mathrm{rd} \mathrm{Sr}-\mathrm{O}\)
layers expanded 4\%

\section*{COMMENTS}

Best fit for the SrTi03(100) surface was obtained with 2 domains with different layer terminations, coexisting with 1:1 ratio; RPE for either one termination was above 0.63, for a 1:1 mixture of the two terminations 0.529 ;
Sr - O term. given here: see 38.22.8.1b for \(0-\mathrm{Ti}-\mathrm{O}\) term.

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (combined space method and renormalized forward scattering)

STRUCTURES EXAMINED
Varied were: spacing between Sr-subplane in top layer and 0-Ti-O second layer, second interlayer spacing, buckling between the Sr - and 0 -subplanes in top layer

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.529\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & Ay ( \(A\) ) & \(B x\) (A) & By ( \({ }^{(1)}\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.900 & 0.000 & 0.000 & 3.900 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.900 & 0.000 & 0.000 & 3.900 & 90.0 & ( 1.000, 0.000) & (1×1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01-Sr2: buckled top compound Sr-0 layer, 0 outermost; Ti3-04-05: 2nd relaxed 0-Ti-0 compound layer;
Sr6-07: 3rd relaxed Sr -0 compound layer; Sr6-010: repeating set of substrate layers
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(10 \quad\) Bulk z = \(1.950 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At . no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{D}=\mathrm{Ex}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \epsilon Z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & \(\AA\) & \\
\hline subr & & -1 & & & & 3.900 A & 3.900 \& & 3.900 A & \\
\hline intf & Sr & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & 0 & 2 & \(b\) & 1.00 & 1 & 0.500 f & 0.500 f & \(-0.160 \pm .080 \AA\) & \(-8.2 \pm 4.1\) \\
\hline intf & Ti & 3 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(1.755 \pm .039 \AA\) & \(90.0 \pm 2.0\) \\
\hline intf & 0 & 4 & b & 1.00 & 3 & 0.500 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & 0 & 5 & b & 1.00 & 3 & 0.000 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Sr & 6 & b & 1.00 & 3 & -0.500 fif & -0.500 f & \(2.028 \pm .039 \AA\) & \(104.0 \pm 2.0\) \\
\hline subl & 0 & 7 & b & 1.00 & 6 & 0.500 f & 0.500 f & 0.000 A & 0.0 \\
\hline subl & Ti & 8 & b & 1.00 & 7 & 0.000 f & 0.000 f & 1.950 A & 100.0 \\
\hline subl & 0 & 9 & b & 1.00 & 8 & 0.500 f & 0.000 f & 0.000 A & 0.0 \\
\hline subl & 0 & 10 & b & 1.00 & 8 & 0.000 f & \(0.500 \quad f\) & 0.000 \& & 0.0 \\
\hline
\end{tabular}

SrTiO3(100)-(1x1) Sr-O termination
38.22.8.1a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 13
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.762 & 01 & Sr2(1,1) & 01(1,1) & 173.4 \\
\hline 2.762 & Sr2 & 01 & Sr2(1,1) & 173.4 \\
\hline 3.269 & Sr2 & Ti3 & 01 & 57.5 \\
\hline 3.269 & Sr2 & Ti3 & 07 & 122.5 \\
\hline 2.624 & Sr2 & 04(0,-1) & Sr6 & 88.1 \\
\hline 2.762 & 01 & \(\operatorname{Sr} 2(1,1)\) & 01(1,0) & 89.8 \\
\hline 2.762 & 01 & Sr2(1,1) & Sr2(1,0) & 45.1 \\
\hline 2.762 & 01 & \(\operatorname{sr} 2(1,1)\) & Ti3(1, 1) & 150.9 \\
\hline 2.762 & 01 & Sr2(1,1) & Ti3(1,0) & 91.8 \\
\hline 2.762 & 01 & Sr2(1,1) & O4(1,1) & 124.3 \\
\hline 2.762 & 01 & Sr2(1,1) & O4(1,0) & 60.9 \\
\hline 1.915 & 01 & Ti3 & Sr2(1,1) & 57.5 \\
\hline 1.915 & 01 & Ti3 & O4(1,0) & 90.0 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
TECHNIQUE & LEED \\
AUTHORS & : A. Titov and W. Moritz \\
REFERENCE & : Surf. Sci., 123, L709 (1982)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Ta & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: 260 K & Pattern : (1xi) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
20 bulk sym: p4m & \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination with multilayer relaxation

SAMPLE PREPARATION ( 1 sample)
Treatment : electropolished, flashed to 2800 K for 30-60 sec
Crystallinity:
Anal. methods:
Contamination: AES: clean, but H2 may be problem
DATA COLLECTION
THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): up to 12 phase shifts, \(\alpha\) optimized modified Slater exchange; VoiaE**1/3; \(00=200 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}

Varied top two interlaying spacings
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.21
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & AY (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.300 & 0.000 & 0.000 & 3.300 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.300 & 0.000 & 0.000 & 3.300 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.650 \quad \AA\)


Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \(\left.{ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.300 & Ta1 & Ta1(0,1) & \(\mathrm{Ta2}\) & 53.3 \\
2.758 & Ta 1 & \(\mathrm{Ta2}\) & \(\mathrm{Ta3}\) & 67.8 \\
2.870 & \(\mathrm{Ta2}\) & \(\mathrm{Ta3}\) & Ta4 & 70.9 \\
\hline
\end{tabular}
```

COMMON NAME : $\mathrm{Ta}(100)-(1 \times 1)$
ILLUSTRATION: 1
CLASSIFICATION : 73.4
TECHNIQUE : PED
AUTHORS : R.A. Bartynski, D. Heskett, K. Garrison, G.M. Watson, D.M.
Zehner, W.N. Mei, S.Y. Tong and X. Pan
REFERENCE : Phys. Rev., B40, 5340 (1989)

```

\section*{SURFACE TYPE}

Substrate: T
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc 20 bulk symm: p4m 2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( \(0.000,1.000\) )

STRUCTURE TYPE
Contraction of the first interlayer spacing

COMMENTS
In agreement with LEED results

Crystaltinity:
Anal. methods:
Contamination:
DATA COLLECTION
THEORY/DATA TREATMENT
Technique: PED; hemispherical electron-energy analyzer
Dataset : 4 f levels from \(50-150 \mathrm{eV}\) and at 65 eV from -20 to 80 degrees

Multiple scattering formalism

STRUCTURES EXAMINED
Variation of 1st interlayer spacing

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.298 & 0.000 & 0.000 & 3.298 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.298 & 0.000 & 0.000 & 3.298 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

30 COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 2
Bulk z \(=1.649 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.856 & Ta1 & Ta & & \\
\hline
\end{tabular}

COMMON NAME : \(\operatorname{Ta}(100)-(1 \times 3)-0\)
ILLUSTRATION:
CLASSIFICATION : 73.8.1
TECHNIQUE : LEED
AUTHORS : A. Titov and H. Jagodzinski
REFERENCE : Surf. Sci., 152/153, 409 (1985)

SURFACE TYPE
Substrate : Ta
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: pmm

Adsorbate: 0
Coverage : 0.333 ( \(0 / \mathrm{Ta}\) )
Pattern : (1x3)
Matrix \(:\left(\begin{array}{l}1.000,0.000) \\ 0.000,3.000)\end{array}\right.\)

\section*{STRUCTURE TYPE}

Atomic 0 adsorption under bridge in top Ta layer and above bridge in second Ta layer ( 4 -fold coordinated interstitial site): top Ta layer buckled

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: phase shifts for free neutral atoms with radii of \(1.43 \AA\) (Ta) and \(0.85 \AA\) (0)

STRUCTURES EXAMINED
1 or 20 per unit cell allowed to induce Ta reconstruction; 9 basic (1x3) models examined for top Ta layer structure; assumed energetically equivalent 0 sites; bad agreement without Ta reconstruction; hence, first reconstruction optimized, then 0 added

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.39\)
2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|r|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(A\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.300 & 0.000 & 0.000 & 3.300 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 3.300 & 0.000 & 0.000 & 9.900 & 90.0 & \((1.000,0.000)\) & (1x3) \\
\hline
\end{tabular}

3D COORDINATES
Ta1-Ta2-Ta3: buckled, laterally relaxed top layer; 04 : interstitial underlayer; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\mathbb{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Ta(100)-(1x3)-0
73.8 .1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 3.051 & Ta1 & Ta3 & Ta2(1,1) & 85.6 \\
\hline 1.949 & Ta1 & 04(0,1) & Ta1 (0,1) & 150.2 \\
\hline 1.949 & Ta1 & 04(0,1) & Ta3(0,2) & 155.9 \\
\hline 3.010 & Ta1 & Ta5 \((0,1)\) & Ta1(1,1) & 109.0 \\
\hline
\end{tabular}

\section*{SURFACE TYPE}


\section*{STRUCTURE TYPE}

Bulk termination with buckled top mixed layer (C outward, Ta inward)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: up to 10 phase shi.fts, bulk TaC potentials; Voi \(=-5.5 \mathrm{eV}\); \(60=350 \mathrm{~K}(\mathrm{Ta})\), \(1600 \mathrm{~K}(\mathrm{C})\)

STRUCTURES EXAMINED
Variations in spacing between C and Ta in 1st and 2nd mixed layers
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.068\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & AY (A) & \(B X\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.150 & 0.000 & 0.000 & 3.150 & 90.0 & ( 1.000, 0.000) & \multirow[t]{4}{*}{\begin{tabular}{l}
(1×1) \\
(1×1)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
b: bulk lattice \\
s1: commens. superlattice
\end{tabular}} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.150 & 0.000 & 0.000 & 3.150 & 90.0 & ( 1.000, 0.000\()\) & & \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline
\end{tabular}

\section*{3D COORDINATES}

C1-Ta2: buckled top mixed layer; c3-Ta4: planar 2nd mixed layer;
C5-Ta6: periodically repeating mixed bulk layer
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.236 & \(C 1\) & \(\mathrm{Ta2}\) & \(\mathrm{C1}(1,1)\) & 169.7 \\
2.236 & Cl & \(\mathrm{Ta2}\) & \(\mathrm{C1(1,0)}\) & 89.5 \\
2.236 & Cl & \(\mathrm{Ta2}\) & \(\mathrm{C3}\) & 95.1
\end{tabular}
\(\mathrm{TaC}(100)-(1 \times 1)\)
73.6 .2

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.236 & c1 & ta2 & Ta4(1,0) & 93.5 \\
\hline 2.320 & c1 & Ta4 & C3 & 90.0 \\
\hline 2.120 & Ta2 & c3 & Ta4 & 90.0 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & : TaC \((100)-(1 \times 1)\) & \\
CLASSIFICATION \(:\) & 73.6 .4 & \\
TECHNIQUE & LEED \\
AUTHORS & G.R. Gruzalski, D.M. Zehner, J.R. Noonan, H.L. Davis, R.A. \\
& DiDio and K. Mueller \\
REFERENCE & J. Vac. Sci. Technol., A7, 2054 (1989)
\end{tabular}

SURFACE TYPE
Substrate: TaC Crystal face: 100 Temperature : RT*
Bulk lattice: NaCl 20 bulk symm: p4m 2D surf symm: p4m
```

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

\section*{STRUCTURE TYPE}

Bulk termination with buckled top two mixed layers (C moves outward, Ta inward) and contraction of first interlayer spacing

SAMPLE PREPARATION ( 1 sample)
Treatment : Ar-ion bombardment and annealing to 2900 K
Crystallinity: sharp (1x1) LEED pattern
Anal. methods: ARUPS, XPS and AES
Contamination:

OATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 7 non-degenerate beams at normal incidence; 20<E<350 eV

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS): 10 phase shifts, different \(\Theta O\) for Ta and \(C\)

STRUCTURES EXAMINED
Variations in spacing between \(C\) and \(T a\) in 1 st and \(2 n d\) mixed layers

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RZJ=0.068
2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA)\) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.150 & 0.000 & 0.000 & 3.150 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.150 & 0.000 & 0.000 & 3.150 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

C1-Ta2: buckled top mixed layer; C3-Ta4: buckled 2nd mixed layer;
C5-Ta6: periodically repeating mixed bulk layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=2.230 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(\mathrm{Dx} \pm \boldsymbol{\pm}\) & Dy \(\pm \in y\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & f & \(\AA\) & \\
\hline subr & & -1 & & & & 1.575 A & 1.575 A & 2.230 A & \\
\hline intf & C & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ta & 2 & b & 1.00 & 1 & 0.500 f & 0.500 f & \(0.200 \pm .100 \AA\) & \(9.0 \pm 4.5\) \\
\hline intf & C & 3 & \(b\) & 1.00 & 2 & 0.000 f & 0.000 f & \(2.080 \pm .100\) A & \(93.3 \pm 4.5\) \\
\hline intf & Ta & 4 & b & 1.00 & 3 & -0.500 f & -0.500 f & \(0.040 \pm .100\) A & \(1.8 \pm 4.5\) \\
\hline subl & c & 5 & b & 1.00 & 4 & 0.000 f & 0.000 f & 2.230 A & 100.0 \\
\hline subl & Ta & 6 & b & 1.00 & 5 & 0.500 f & 0.500 f & 0.000 A & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.236 & C 1 & Ta2 & C1(1,0) & 89.5 \\
2.320 & Cl & Ta4 & Ta2 & 46.4 \\
2.080 & \(\mathrm{Ta2}\) & C 3 & Ta4(1,1) & 91.0
\end{tabular}

TaC(100)-(1x1)
73.6.4

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & \multicolumn{1}{|c|}{ Atom C} & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.080 & \(\mathrm{C3}\) & Ta 2 & \(\mathrm{C1}(1,1)\) & 95.1 \\
2.080 & \(\mathrm{C3}\) & \(\mathrm{Ta2}\) & \(\mathrm{C1}(1,0)\) & 95.1 \\
2.120 & Ta 2 & \(\mathrm{C3}\) & Ta 4 & 90.0 \\
\hline
\end{tabular}
COMMON NAME : \(\operatorname{Tb}(0001)-(1 \times 1)\)
AUTHORS : J. Quinn, J.S. Li, F. Jona and D. Fort
REFERENCE : Surf. Sci., 257, L647 (1991)

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: \(:\) Tb & Adsorbate: \\
Crystal face: 0001 & Coverage : \\
Temperature: RT* & Pattern : (1x1) \\
Bulk lattice: hcp & Matrix : \(1.000,0.000)\) \\
2D bulk symm: p3m1 & \\
2D surf &
\end{tabular}

Crystal face: 0001
Coverage
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( 0.000, 1.000)

STRUCTURE TYPE
Multilayer relaxation

\section*{COMMENTS}

THEORY/DATA TREATMENT
Dynamical LEED: RSS and layer doubling (VHT programs)

DATA COLLECTION
Technique: LEED: video LEED
Dataset : IV spectra for 3 non-equivalent beams at
Dataset : IV spectra for 3 non-equivalent beams
normal incidence and 7 non-equivalent beams at \(8.5^{\circ}\) off normal

SAMPLE PREPARATION ( 1 sample)
Treatment : ion bombardment followed by annealing
Crystallinity: sharp LEED pattern
Anal. methods: AES
Contamination: AES C ratio of \(0.1, \mathrm{Cl}\) ratio of 0.03

STRUCTURES EXAMINED
Variation of 1st and 2nd interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.515, \mathrm{RVHT}=0.248, \mathrm{RZJ}=0.31\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(A)\) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.601 & 0.000 & 1.801 & 3.119 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.601 & 0.000 & 1.801 & 3.119 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(A\), or as fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{D} \pm \in \mathrm{X}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 5.694 A & \\
\hline intf & Tb & 1 & s1 & 1.00 & 0 & 0.000 A & 0.000 A & 0.000 A & 0.0 \\
\hline intf & Tb & 2 & s1 & 1.00 & 0 & 1.801 A & 1.040 A & \(2.736 \pm .030\) A & \(96.1 \pm 1.1\) \\
\hline intf & Tb & 3 & s1 & 1.00 & 0 & 0.000 A & 0.000 A & \(5.623 \pm .030\) A & \(197.5 \pm 1.1\) \\
\hline subl & Tb & 4 & b & 1.00 & 0 & 1.801 A & 1.040 A & 8.469 A & 297.5 \\
\hline subl & Tb & 5 & b & 1.00 & 0 & 0.000 A & 0.000 A & 11.316 A & 397.5 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{r} 
Interatomic \\
dist. A-B ( \(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.436 & Tb1 & Tb2 & & \\
3.557 & Tb2 & Tb3 & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & : \(\operatorname{Te}(10-10)-(1 \times 1)\) \\
CLASSIFICATION & \(: 52.1\) \\
TECHNIQUE & LEED \\
AUTHORS & : R.J. Meyer, W.R. Salaneck, C.B. Duke, A. Paton, C.H. \\
& Griffiths, L. Kovnat and L.E. Meyer \\
REFERENCE & : Phys. Rev., B21, 4542 (1980)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Te & Adsorbate: \\
Crystal face: \(10-10\) & Coverage : \\
Temperature: 55 K & Pattern : \(1 \times 1)\) \\
Bulk lattice: hexagonal & Matrix : \((1.000,0.000)\) \\
20 bulk symm: p1 & \\
&
\end{tabular}

20 bulk sym: pl

SAMPLE PREPARATION ( 1 sample)
Treatment: air cleavage, then Ar+ sputtering and annealing at 478 K
Crystallinity:
Anal. methods:
Contamination: monitored by LEED, AES and EELS
DATA COLLECTION
Technique: LEED
Dataset : J-V spectra: 9 inequivalent beams, \(30<E<220\) eV

STRUCTURE TYPE
Bulk termination with upper chain distortion, approximately conserving strong intrachain bonds cbulk consists of loosely-interconnected helical Te chains with 3-fold screw axis // c-axis, i.e. // (10-10) surface)

COMMENTS
'pseudo-dynamical' LEED = diffraction from topmost layers evaluated exactly, that from deeper layers kinematically

\section*{THEORY/DATA TREATMENT}

Pseudo-dynamical (see comm.), with kinematic initial search:
5 phase shifts, \(m f p=8 A\); Vor \(=-13 \mathrm{eV}\); \(\Theta D\) : bulk=160 K, surf \(=80 \mathrm{~K}\)

STRUCTURES EXAMINED
Kinematic search for rigid movements of polymeric chains and intrachain relaxations, and rigid bond rotations of top-layer atoms; best-fit structures were refined with pseudo-dynamical search

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \({ }^{\text {a }}\) ) & 8x (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.457 & 0.000 & 0.000 & 5.927 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.457 & 0.000 & 0.000 & 5.927 & 90.0 & \((1.000\),
\((0.000\), & (1×1) & s1: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Te1-Te2-Te3: distorted outermost helical chain; Te4-Te5-Te6 and Te7-Te8-Te9: 2 bulk chains; 0.14 lateral error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 9
Bulk z \(=3.860 \quad \mathrm{~A}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & \(D \mathrm{X} \pm \mathrm{EX}\) & & Dy \(\pm \in \boldsymbol{y}\) & & \(D z \pm \epsilon z\) & & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & & f & & \(f\) & & \(\lambda\) & \\
\hline subr & & -1 & & & & 2.228 & A & 0.000 & \(A\) & 3.860 & A & \\
\hline intf & Te & 1 & \(b\) & 1.00 & 0 & 0.000 & f & 0.000 & \(f\) & 0.000 & A & 0.0 \\
\hline intf & Te & 2 & \(b\) & 1.00 & 1 & \(0.543 \pm .022\) & \(f\) & \(0.665 \pm .017\) & \(f\) & \(0.368 \pm .100\) & A & \(9.5 \pm 2.6\) \\
\hline int f & Te & 3 & \(b\) & 1.00 & 2 & \(0.368 \pm .022\) & \(f\) & \(-0.305 \pm .017\) & \(f\) & \(1.498 \pm .100\) & A & \(38.8 \pm 2.6\) \\
\hline intf & Te & 4 & \(b\) & 1.00 & 3 & -0.500 & \(f\) & -0.333 & f & 1.783 & A & 46.2 \\
\hline intf & Te & 5 & \(b\) & 1.00 & 4 & -0.404 & f & 0.667 & \(f\) & 1.038 & A & 26.9 \\
\hline intf & Te & 6 & b & 1.00 & 5 & 0.404 & f & -0.333 & f & 1.038 & A & 26.9 \\
\hline subl & Te & 7 & \(b\) & 1.00 & 6 & 0.500 & \(f\) & -0.333 & \(f\) & 1.783 & \(\AA\) & 46.2 \\
\hline subl & Te & 8 & b & 1.00 & 7 & -0.404 & \(f\) & 0.667 & \(f\) & 1.038 & \(\AA\) & 26.9 \\
\hline subl & Te & 9 & b & 1.00 & 8 & 0.404 & f & -0.333 & f & 1.038 & A & 26.9 \\
\hline
\end{tabular}

Te(10-10)-(1×1)
52.1

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.869 & Te1 & Te2(-1,-1) & \(\operatorname{Te} 3(-1,-1)\) & 96.0 \\
\hline 2.864 & Te1 & \(\mathrm{Te} 3(-1,0)\) & Te ( \(-1,0\) ) & 102.1 \\
\hline 2.862 & Te2(-1,0) & Te3(-1,0) & Te1 & 102.1 \\
\hline 2.866 & Te4 & Te6 & Te5 & 102.3 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: T i(0001)-(1 \times 1)\) \\
CLASSIFICATION & \(: 22.1\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & \(:\) H.D. Shih, F. Jona, D.W. Jepsen and P.M. Marcus \\
REFERENCE & \(:\) J. Phys., C9, \(1405(1976)\)
\end{tabular}

CLASSIFICATION : 22.1

AUTHORS : H.D. Shih, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : J. Phys., C9, 1405 (1976)

\section*{SURFACE TYPE}

Substrate.
Crystal face: 0001
Temperature : 300 K
Bulk lattice: hcp
20 bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : cleaned with very long cycles of ion bomb. \& anneal at 750 K
Crystallinity:
Anal. methods:
Contamination: AES: \(<2 \%\) monolayer of 0
DATA COLLECTION
Technique: LEED
Dataset : 25 I-V spectra at 4 different angles of incidence; energy range 20-300 eV

STRUCTURE TYPE
Bulk-like termination with contraction of top interlayer spacing

\section*{COMMENTS}

Ti(0001) clean surface difficult to prepare because at T>700-800 K S and Cl tend to segregate to surface; because of its reactivity, the surface could only be made atomically clean at \(\mathrm{T}>700 \mathrm{~K}\);
best structure insensitive to nonstructural parameters
THEORY/DATA TREATMENT
Dynamical LEED (layer KKR): 8 phase shifts (Moruzzi et al); domain-averaging over steps; Vor=-10 eV; Voi \(=-3 \mathrm{eV}\); \(00=342 \mathrm{~K}\)

STRUCTURES EXAMINED
ABAB hcp termination with the spacing between the first 2 planes varied in the range 2.39-2.31\& in steps of \(0.053 \AA\); ABABC stacking fault

\section*{QUALITY OF EXPERIMENT - THEORY FIT \\ Visual}

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
Ti2-Ti3: repeating bulk pair of layers
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk \(2=2.340 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.950 & Ti1 & Ti1(1, 1) & Ti2 & 58.9 \\
\hline 2.854 & Ti1 & Ti2 & Ti1(0, 1) & 62.2 \\
\hline 2.854 & Til & Ti2 & Ti3 0,1\()\) & 145.5 \\
\hline 2.854 & Ti1 & Ti2 & Ti3 & 107.3 \\
\hline 2.950 & Ti2 & Ti2(1,0) & Ti3(1,1) & 59.4 \\
\hline
\end{tabular}

Ti(0001)-(1x1)
22.1

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.894 & \(\mathrm{Ti2}\) & Ti (1,1) & \(\mathrm{Ti} 2(1,0)\) & 61.3 \\
2.894 & \(\mathrm{Ti2}\) & \(\mathrm{Ti} 3(1,1)\) & \(\mathrm{Ti3}\) & 59.4 \\
\hline
\end{tabular}

COMMON NAME : Ti(10-10)-(1x1) ILLUSTRATION: 20
CLASSIFICATION : 22.3
TECHNIQUE : LEED
AUTHORS : P.R. Watson and J.M. Mischenko III
REFERENCE : Phys. Rev., B42, 3415 (1990)

SURFACE TYPE
Substrate : Ti

Temperature : RT
Bulk lattice: hcp
2D bulk symm: prm
2D surf symm: pmm
```

```
Adsorbate:
```

```
Adsorbate:
Coverage :
Coverage :
Pattern : (1x1)
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
Matrix : ( 1.000, 0.000)
( 0.000, 1.000)
```

(0.000, 1.000)

```
```

Coverage

```
```

Coverage

```

\section*{STRUCTURE TYPE}
\(70 \%\) of surface bulk terminated with narrow top interlayer spacing (d1) contracted about 5\%; second interlayer spacing (d2) expanded about 1-2\%;
\(30 \%\) of surface bulk terminated with expanded (+6\%) large (d2) interlayer spacing

SAMPLE PREPARATION ( 1 sample)
Treatment : extensive 650C Ar+ sputtering with 600C anneal (1972)
Crystallinity: high
Anal. methods: AES
Contamination: \(<5 \% \mathrm{C}, \mathrm{O}\)

DATA COLLECTION
Technique: LEED; photo/video
Dataset : \(1-V\) spectra for 11 beams at normal incidence and 13 at \(\Theta=10^{\circ}, \pi=270^{\circ}\); energy range \(50-260 \mathrm{eV}\) (total 3580 )

\section*{COMMENTS}

Bulk consists of pairs of narrowly-spaced (d1) layers separated by spacing \(d 2=2 \times d 1\);
non-unique surface; can terminate with domains of small or large interlayer spacing;
supercedes Surf. Sci. 220, L667 (1989)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 8 phase shifts from free atom potential; E-dependent Voi; \(\Theta 0=342 \mathrm{~K}\)

STRUCTURES EXAMINED
Mixtures of the two possible lattice terminations; variations of two topmost layer spacings
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.25, R Z J=0.12, ~ R 2=0.19\)
2D UNIT CELLS ( 2 domains observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA)\) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.950 & 0.000 & 0.000 & 4.683 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 2.950 & 0.000 & 0.000 & 4.683 & 90.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{30 COORDINATES}

Ti1-Ti2: narrowly spaced (contracted) pair of layers; Ti3-Ti4 and Ti5-Ti6: 2 pairs of narrowly spaced layers, together forming periodically repeating set of bulk layers; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 6
Bulk z \(=2.555 \AA\)


\footnotetext{
BOND DISTANCES AND ANGLES
}

Bond distances and angles are derived from coordinates
No. of distances/angles: 6
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.480 & Ti1 & \(\mathrm{Ti2}\) & \(\mathrm{Ti3}\) & 60.4 \\
2.636 & Ti 2 & \(\mathrm{Ti4}\) & \(\mathrm{Ti5}\) & 126.0 \\
2.896 & \(\mathrm{Ti3}\) & \(\mathrm{Ti4}\) & \(\mathrm{Ti5}\) & 61.2
\end{tabular}

Ti(10-10)-(1x1)
22.3

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. A-B \((\AA)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.950 & \(\mathrm{Ti})\) & \(\mathrm{Ti} 1(-1,0)\) & Ti 3 & 60.4 \\
2.988 & Ti 1 & \(\mathrm{Ti3}\) & Ti 4 & 90.3 \\
3.293 & Ti 2 & \(\mathrm{Ti3}\) & \(\mathrm{Ti4}\) & 49.9 \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: T i(0001)-(1 \times 1)-2 C d\) & \\
CLASSIFICATION & \(: 22.48 .3 a\) & ILLUSTRATION: 87 \\
TECHNIQUE & LEED \\
AUTHORS & H.D. Shih, F. Jona, D.H. Jepsen and P.M. Marcus \\
REFERENCE & : Phys. Rev., B15, \(5561(1977)\)
\end{tabular}

SURFACE TYPE
Substrate: T
Crystal face: 0001
Temperature : 300 K
Bulk lattice: hcp
2D bulk symm: p3m1
20 surf symm: p3m1

> Adsorbate: Cd Coverage : \(2(\mathrm{Cd} / \mathrm{Ti})\) Pattern \(:(1 \times 1)\) Matrix \(:(1.000,0.000)\)     ( \(0.000,1.000)\)

SAMPLE PREPARATION ( 1 sample)
Treatment : see Shih, Jona, Jepsen and Marcus, Phys
Rev. B15, 5550(1977)
Crystallinity: thickness monitored by LEED
Anal. methods:
Contamination: AES: no C, O

DATA COLLECTION
STRUCTURE TYPE
Adsorbed Cd bilayer with hep structure:
acABAB... layer stacking (ac=Cd, ABAB...=Ti)

\section*{COMMENTS}

Cd bilayer has lattice constants within \(1 \%\) of bulk Cd parallel and perpendicular to surface

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 8 phase shifts; 31 beams; self-consistent potentials for Cd, Ti; Vor=-6 eV, Voi=-3eV; vib amps=0.198\&

STRUCTURES EXAMINED
Truncated Ti bulk structure with 2 complete close-packed atomic layers of cd; 4 stacking sequences examined: cbABAB..., abABAB..., bcABAB..., acABAB... ( \(a b c=C d, A B C=T i)\); top two interlayer spacings varied

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & \(A x(A)\) & \(A y(A)\) & \(B x(A)\) & \(B y(A)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & \((1.000,0.000)\) & (1x1) \\
& & & & & \((0.000,1.000)\) & & s1: commens. \\
superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Cd1-Cd2: (1x1) bilayer: Ti4-Ti5: periodically repeating bulk layers;
\(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.950 & Cd1 & Cd1 (1,0) & Cd2 & 63.3 \\
\hline 3.286 & Cdi & Cd2 & Ti3 & 115.9 \\
\hline 2.950 & Ti3 & Ti3(1,0) & Ti4(0, -1) & 59.4 \\
\hline
\end{tabular}

\section*{TECHNIQUE \\ : LEED}

AUTHORS : H.D. Shih, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev., B15, 5561 (1977)

\section*{SURFACE TYPE}

Substrate: Ti
Crystal face: 0001
Temperature : 300 K
Bulk lattice: hcp
2D bulk symm: p3m1
20 surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : see Shih, Jona, Jepsen and Marcus, Phys Rev. B15, 5550(1977)
Crystallinity: thickness monitored by LEED
Anal. methods:
Contamination: AES: no C, O

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra for several beams at 2 angles of incidence, \(E<=145 \mathrm{eV}\)

Adsorbate: Cd
Coverage : 4 (Cd/Ti)
Pattern : (1x1)
Matrix \(:(1.000,0.000)\) ( \(0.000,1.000\) )

STRUCTURE TYPE
4 adsorbed Cd layers with hcp structure: acac
(registry wrt Ti substrate not determined, but here
assumed equal to Cd bilayer case, cf. class. no. 22.48.3a)

\section*{COMMENTS}

Cd layer has lattice constants within \(1 \%\) of bulk Cd parallel and perpendicular to surface

STRUCTURES EXAMINED
Relaxation of top interlayer spacing of semi-infinite bulk-like Cd(0001) surface
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A \times(A)\) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline Surface 1 & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & \[
\begin{aligned}
& (0.000, \\
& (1.000) \\
& (0.000, \\
& (0.000) \\
& \hline
\end{aligned}
\] & (1×1) & si: commens. superlattice \\
\hline
\end{tabular}

3D COORDINATES
Cd1-Cd4: 4 layers with hcp structure; relationship to Ti5 assumed like that of cd bilayer structure determination; Ti6-Ti7: periodically repeating bulk layers; \(0.1 A\) error bar assumed for tabulation
\(D x / D y\) in \(\mathcal{A}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(7 \quad\) Bulk \(2=2.340 \quad A\)


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.950 & Cd1 & Cd1 \((0,1)\) & \(C d 2\) & 63.3 \\
3.286 & Cd1 & \(C d 2\)
\end{tabular}

COMMON NAME : Ti(0001)-(1×1)-Cd
ILLUSTRATION: 87
CLASSIFICATION : 22.48.2
TECHNIQUE : LEED
AUTHORS : H.D. Shih, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Phys. Rev., B15, 5550 (1977)

SURFACE TYPE
Substrate : Ti
Crystal face: 0001
Temperature : 300 K
Bulk lattice: hcp
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION (>2 sample)
Treatment: Cd exposure by heating \(99.9999 \%\) pure Cd capsule
Crystallinity:
Anal. methods:
Contamination: by AES and LEED: no increase in \(C\) and 0
DATA COLLECTION
Technique: LEED
Dataset : 1-V curves for 7 beams and 2 angles of incidence; \(E<=145 \mathrm{eV}\)

STRUCTURE TYPE
Atomic overlayer in 3-fold fcc hollow sites

\section*{COMMENTS}

Growth of Cd layers reproduced more than twice with the same Ti sample and Cd source

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 8 phase shifts; 31 beams; self consistent potentials for Cd and Ti ; Vor=-8 eV , Voi=-3 eV

STRUCTURES EXAMINED
Truncated Ti bulk with Cd at a) top sites (dz=3.0 C ), b) 1 of 3 bridge sites ( \(d z=2.9 \AA\) ), c) hep 3 -fold hollow sites ( \(d z=2.57 \AA\) ), d) fcc 3 -fold hollow sites ( \(1.4<d z<2.8 \AA\) ); all calculations step-averaged (for 2 hcp terminations)

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 2.950 & 0.000 & -1.475 & 2.555 & 120.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \((0.000,1.000)\)
\end{tabular}

30 COORDINATES
Cd1: overlayer in fec 3-fold hollow sites; Ti1-Ti2: repeating bulk pair of layers;
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( \(\AA\) ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.950 & Cd1 & cdi(1,1) & Ti2 & 61.4 \\
\hline 3.083 & Cd1 & Ti2 & Cd1 \((0,1)\) & 57.2 \\
\hline 3.083 & Cd1 & Ti2 & Ti2(0,1) & 118.6 \\
\hline 3.083 & Cd1 & Ti2 & Ti3 & 120.8 \\
\hline 2.950 & Ti2 & Ti2(1,0) & Ti3 & 59.4 \\
\hline
\end{tabular}

Ti(0001)-(1x1)-Cd
22.48.2

> Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom \(A\) & Atom B & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.894 & \(\mathrm{Ti2}\) & \(\mathrm{Ti3}\) & \(\mathrm{Ti} 2(1,0)\) & \begin{tabular}{c}
61.3 \\
2.894
\end{tabular} \\
Ti 2 & Ti 3 & \(\mathrm{Ti} 3(1,0)\) & 120.6 \\
\hline
\end{tabular}

\section*{CLASSIFICATION} 22.7 .2

TECHNIQUE : LEED
AUTHORS : H.D. Shih, F. Jona, D.W. Jepsen and P.M. Marcus
REFERENCE : Surf. Sci., 60, 445 (1976)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Ti & Adsorbate: & N \\
\hline Crystal face: & 0001 & Coverage & \(1.0 \mathrm{~N} / \mathrm{Ti}\) \\
\hline Temperature : & 300 K & Pattern & (1x1) \\
\hline Bulk lattice: & hcp & Matrix & ( 1.000, 0.000) \\
\hline 20 bulk symm: & p3m1 & & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Atomic interstitial in octahedral sites between first and
second Ti layers; slight expansion of \(\mathrm{Ti}-\mathrm{Ti}\) spacing;
forms trilayer of TiN compound exposing (111) face

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer KKR): 8 phase shifts (Moruzzi et al); domain-averaging over steps; Vor=-10 eV; Voi=-3eV; \(00=342 \mathrm{~K}\)

COMMENTS
\(\frac{\text { DATA COLLECTION }}{\text { Technique: LEED }}\)
Dataset : LEED I-V spectra: 3 beams at normal inc., 5 beams at \(\theta=8^{\circ}, \phi=-30^{\circ}\); (00) beam at \(\Theta=20^{\circ}, \phi=-30^{\circ} ; 20<E<250 \mathrm{eV}\)
Treatment : cleaned, then \(N\) introduced at \(1.5 \mathrm{E}-8\)
Crystallinity:
Anal. methods:
Contamination: monitored by AES and LEED

\section*{STRUCTURES EXAMINED}
1. atomic or molecular ( \(N-N=1.098 \AA\) ) adsorption in top, bridge and either one or both 3-fold hollow sites; 2. one of the 2 types of tetrahedral or octahedral interstitial sites between the 1 st and 2nd Ti layers (Ti-N spacings varied in range 0.9-2.8A); step-averaged

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & BX ( \(\AA\) ) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.950} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.475} & \multirow[t]{2}{*}{2.555} & \multirow[t]{2}{*}{120.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{2.950} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{-1.475} & \multirow[t]{2}{*}{2.555} & \multirow[t]{2}{*}{120.0} & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

N2: underlayer in octahedral site of slightly expanded Ti(0001) lattice;
Til-N2-Ti3: trilayer of TiN; Ti4-Ti5: repeating bulk pair of layers
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site oce. & Rel.
to & \(D \mathrm{D} \pm \pm \mathrm{x}\) & Dy \(\pm \in \boldsymbol{y}\) & \(D 2 \pm \epsilon 2\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & A & \\
\hline subr & & -1 & & & & 0.000 A & 0.000 A & 4.680 A & \\
\hline intf & Ti & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & \(N\) & 2 & \(b\) & 1.00 & 1 & 0.667 f & 0.333 f & \(1.220 \pm .050\) A & \(52.1 \pm 2.1\) \\
\hline intf & Ti & 3 & \(b\) & 1.00 & 2 & -0.333 f & 0.333 f & \(1.220 \pm .050 \AA\) & \(52.1 \pm 2.1\) \\
\hline subl & Ti & 4 & \(b\) & 1.00 & 3 & -0.333 f & -0.667 f & 2.340 A & 100.0 \\
\hline subl & Ti & 5 & b & 1.00 & 4 & 0.333 f & 0.667 f & 2.340 A & 100.0 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom 8 & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.950 & Ti1 & Ti1(1,1) & N2 & 45.3 \\
\hline 2.950 & Ti1 & Ti1(1,1) & Ti3 & 60.3 \\
\hline 2.095 & Ti1 & N2 & Til(1,0) & 89.5 \\
\hline 2.095 & Ti1 & N2 & Ti3 & 90.5 \\
\hline 2.976 & Ti1 & Ti3 & tif(0,1) & 59.4 \\
\hline 2.976 & Ti1 & Ti3 & N2 & 44.8 \\
\hline 2.976 & Ti1 & Ti3 & Ti3 \((0,1)\) & 119.7 \\
\hline 2.095 & N2 & Ti3 & Ti3(0,1) & 134.8 \\
\hline
\end{tabular}

COMMON NAME : \(\operatorname{TiC}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-0\)
ILLUSTRATION: 156
CLASSIFICATION : 22.6.8.3
technique : iciss
AUTHORS : R. Souda, C. Oshima, S. Otani and Y. Ishizawa
REFERENCE : Surf. Sci., 199, 154 (1987)

SURFACE TYPE

\section*{Substrate : TiC}

Crystal face: 111
Temperature : RT*
Bulk lattice: NaCl
2D bulk symm: p3m1
2D surf symm: p31m

STRUCTURE TYPE
Atomic adsorption in 'fcc' 3-fold hollow site on
Ti-terminated unreconstructed, unrelaxed Tic substrate

SAMPLE PREPARATION ( 1 sample)
Treatment : TiC single xtal polished, annealed, and flashed at \(\approx 2073 \mathrm{~K}\)
Crystallinity: clear LEED pattern
Anal. methods:
Contamination:
DATA COLLECTION
Technique: ICISS; 1 keV He+ beam
Dataset : scattering angle of \(163^{\circ}\)
```

Adsorbate: 0
Coverage : 1/3
Pattern : (\sqrt{}{3}\times\sqrt{}{3})R3\mp@subsup{0}{}{\circ}
Matrix : (1.000, 1.000)
(-2.000, 1.000)

```

COMMENTS
A (1x1) structure occurring at higher temperatures was also studied: here all 'fcc' 3-fold hollows are occupied, but authors suggest that the \(T i\) pinch towards or away from 0 in a random manner

\section*{THEORY/DATA TREATMENT}

Impact collision ion scattering spectroscopy: intensity analyzed as function of angles of incidence

STRUCTURES EXAMINED
Suggestion that Ti atoms pinch towards 0 in 3-fold hollows
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & Bx (A) & By ( \({ }^{\text {a }}\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.060 & 0.000 & 1.530 & 2.650 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.590 & 2.650 & -4.590 & 2.650 & 120.0 & \[
\begin{array}{cc}
(1.000, & 1.000) \\
(-2.000, & 1.000)
\end{array}
\] & \((\sqrt{3} \times \sqrt{3}) \mathrm{R}^{3} 0^{\circ}\) & s1: commens. superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

01: overlayer in 'fec' 3-fold hollow sites of bulk-like ti2 layer;
C3-Ti4: periodically repeating bulk layers
Dx/Dy in \(\mathbb{\AA}\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{l|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B \((A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c}{ Atom C} & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.030 & 01 & \(\mathrm{Ti2}\) & \(\mathrm{Ti} 2(0,1)\) & 138.9 \\
2.030 & 01 & \(\mathrm{Ti2}\) & C & \\
2.030 & 01 & \(\mathrm{Ti2}\) & \(\mathrm{C} 3(0,-1)\) & 174.2 \\
2.030 & 01 & \(\mathrm{Ti2}\) & \(\mathrm{Ti4}\) & 86.0 \\
2.030 & 01 & \(\mathrm{Ti2}\) & \(\mathrm{Ti4}(0,-1)\) & 130.8 \\
3.060 & \(\mathrm{Ti2}\) & \(\mathrm{Ti} 2(1,0)\) & \(\mathrm{C} 3(1,0)\) & 84.3 \\
& & & & 90.0
\end{tabular}
\(\operatorname{TiC}(111)-(\sqrt{3} \times \sqrt{3}) R 30^{\circ}-0\)
22.6.8.3

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.164 & Ti2 & C3 & Ti4 & 90.0 \\
\hline
\end{tabular}

COMMON NAME : TiO2(100)-(3x1)
ILLUSTRATION: 153
CLASSIFICATION : 22.8.1
TECHNIQUE : LEED
AUTHORS: P. Zschack
REFERENCE : Springer Series in Surface Sciences, 24, 646 (1991)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: Ti02 & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT & Pattern : (3×1) \\
Bulk lattice: rutile & Matrix \(:(3.000,0.000)\) \\
20 bulk symm: pmm & \\
\hline
\end{tabular}
do surf sym

SAMPLE PREPARATION ( 1 sample)
Treatment: Ar-ion sputtering and annealing to 875 K
Crystallinity:
Anal. methods: GIXD
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; LEED: pulse counting data acquisition Dataset : I-V curves for 7 symm. inequivalent beams at normal incidence, E-range 20-100 eV

\section*{STRUCTURE TYPE}

Strongly corrugated surface with alternating (110) and (-110) microfacets, due to missing rows along [001]:

1st three interlayer spacings expanded \(5.4 \%, 5.4 \%\) and \(10 \%\), 4 th contracted \(21 \%\)

\section*{COMMENTS}

There are also lateral displacements of the atoms, which were refined by grazing incidence \(x\)-ray diffraction; an alternate simple missing-row model, compatible with GIXD, was rejected by LEED analysis

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (Tong/Van Hove package: composite layers; RFS)

STRUCTURES EXAMINED
GIXD Patterson fct. determined lateral \(T i\) positions and integrated 20 electron density map, implying facetted missing row reconstruction; GIXD fit of lateral positions gives \(R X=0.079\); in LEED, variation of top 5 interlayer spacings

QUALITY OF EXPERIMENT - THEORY FIT
\(R Z J=0.34\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.715 & 0.000 & 0.000 & 3.036 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 14.145 & 0.000 & 0.000 & 3.036 & 90.0 & \((3.000,0.000)\) & \((3 \times 1)\) & \((0.000,1.000)\)
\end{tabular}

3D COORDINATES
01 through 09: reconstructed region, forming (110) and (-110) microfacets;
Ti14-019: set of layers forming bulk rutile lattice; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(19 \quad\) Bulk \(z=.918 \quad \&\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & site occ. & Rel. to & \(D \mathrm{C} \pm \pm \mathbf{x}\) & Dy \(\pm \epsilon y\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & \(f\) & A & \\
\hline subr & & -1 & & & & 4.715 A & 3.036 A & 4.715 A & \\
\hline intf & 0 & 1 & s 1 & . 33 & 0 & \(0.239 \pm .007 \mathrm{f}\) & 0.000 f & \(-3.275 \pm .100\) A & \(-356.8 \pm 10.8\) \\
\hline intf & Ti & 2 & s 1 & . 33 & 0 & \(0.184 \pm .002 \mathrm{f}\) & 0.500 f & \(-2.307 \pm .100\) A & \(-251.4 \pm 10.8\) \\
\hline intf & 0 & 3 & s1 & . 33 & 0 & \(0.144 \pm .010 \mathrm{f}\) & 0.000 f & -1.339 A & -145.9 \\
\hline intf & 0 & 4 & s1 & . 33 & 0 & \(0.275 \pm .008 \mathrm{f}\) & 0.500 f & \(-1.018 \pm .100 \AA\) & \(-110.8 \pm 10.8\) \\
\hline intf & 0 & 5 & s1 & . 33 & 0 & \(-0.021 \pm .012 \mathrm{f}\) & 0.500 f & \(-1.018 \pm .100 \AA\) & \(-110.8 \pm 10.8\) \\
\hline intf & Ti & 6 & s1 & . 67 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Ti & 7 & s1 & . 67 & 6 & \(0.331 \pm .002 \mathrm{f}\) & 0.000 f & 0.000 A & 0.0 \\
\hline intf & 0 & 8 & s1 & 1.00 & 6 & 0.065 f & 0.500 f & \(0.718 \pm .100\) A & \(78.2 \pm 10.8\) \\
\hline intf & 0 & 9 & s1 & 1.00 & 6 & \(0.410 \pm .010 \mathrm{f}\) & 0.500 f & \(0.718 \pm .100\) A & \(78.2 \pm 10.8\) \\
\hline intf & 0 & 10 & b & 1.00 & 6 & 0.695 f & 0.000 f & 1.239 A & 135.0 \\
\hline intf & Ti & 11 & \(b\) & 1.00 & 6 & 0.500 f & 0.500 f & 2.157 A & 235.0 \\
\hline intf & 0 & 12 & b & 1.00 & 6 & 0.305 f & 0.000 f & 3.075 A & 335.0 \\
\hline intf & 0 & 13 & b & 1.00 & 6 & 0.805 f & 0.500 f & 3.597 A & 391.8 \\
\hline subl & Ti & 14 & b & 1.00 & 6 & 0.000 f & 0.000 f & 4.514 A & 491.7 \\
\hline subl & 0 & 15 & b & 1.00 & 14 & 0.195 f & 0.500 f & 0.918 A & 100.0 \\
\hline subl & 0 & 16 & b & 1.00 & 14 & 0.695 f & 0.000 f & 1.439 A & 156.8 \\
\hline subl & Ti & 17 & b & 1.00 & 14 & 0.500 f & 0.500 f & 2.357 A & 256.8 \\
\hline subl & 0 & 18 & b & 1.00 & 14 & 0.305 f & 0.000 f & 3.275 A & 356.8 \\
\hline subl & 0 & 19 & \(b\) & 1.00 & 14 & 0.805 f & 0.500 f & 3.797 A & 413.6 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 9
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C \\
\hline 1.961 & 01 & Ti2 & 01(0,1) & 101.4 \\
\hline 1.961 & 01 & ri2 & Ti2(0,1) & 140.7 \\
\hline 1.961 & 01 & Ti2 & Ti2(0,-1) & 39.3 \\
\hline 1.997 & ti2 & 03(0,1) & Ti2(0,1) & 98.9 \\
\hline 1.997 & Ti2 & 03(0,1) & Ti6(0, \()\) & 123.9 \\
\hline 1.997 & 03 & Ti2 & 01(0,1) & 171.6 \\
\hline 1.969 & 04 & Ti2 & \(01(0,1)\) & 96.6 \\
\hline 1.992 & 04 & Ti7(0,1) & Ti2(0,1) & 74.7 \\
\hline 1.852 & 05 & Ti6(1,1) & 03(1,1) & 80.3 \\
\hline
\end{tabular}

COMMON NAME : TiSe2(0001)-(1x1)
CLASSIFICATION : 22.34.2
TECHNIQUE
AUTHORS
: LEED
Barnscheidt, R. Manze and M. Skibowski
REFERENCE : Surf. Sci., 214, 436 (1989)

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate & TiSe2 & Adsorbate & \\
\hline Crystal face: & : 0001 & Coverage & \\
\hline Temperature : & : RT & Pattern & : (1x1) \\
\hline Bulk lattice: & : CdI2 & Matrix & : ( 1.000, 0.000) \\
\hline 2 b bulk symm: & : p3m1 & & ( 0.000, 1.000) \\
\hline
\end{tabular}

2D surf symm: p3m1
SAMPLE PREPARATION ( 2 sample)
Treatment : cleavage in ultra high vacuum
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED; movable electron energy analyzer
Dataset : I-V curves for 6 beams, E range 50-150 eV

STRUCTURE TYPE
Bulk termination with complete Se-Ti-Se sandwich and bulk
layer stacking; slight interlayer spacing relaxations: top
two Ti-Se spacings expanded \(3.5 \%\), and 1 st sandwich-to-
sandwich repeat distance c contracted by \(1 \%\)

\section*{COMMENTS}

Bulk structure consists of \(\mathrm{Se}-\mathrm{Ti}\)-Se sandwiches in which the spacing between the Ti and Se layers is \(0.255 c\), where \(c\) is the spacing between two sandwich center planes ( \(c=6.004 \AA\) )

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (Van Hove/Tong package): Vor \(=-9 \mathrm{eV}\), Voi=-2.7eV

\section*{STRUCTURES EXAMINED}

Varied were: lattice constant \(c\) at the surface (distance between adjacent Ti-layers) and spacing between top and third Se layers

QUALITY OF EXPERIMENT-THEQRY FIT
\(R Z J=0.49\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A \times(A)\) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.535 & 0.000 & 1.768 & 3.061 & 60.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.535 & 0.000 & 1.768 & 3.061 & 60.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Se1-Ti2-Se3: top sandwich with 3.5\% expanded spacings; Se4-Ti5-Se6: 2nd sandwich with bulk spacings between the Se4-Ti5 and Ti5-Se6 layers and with a \(1 \%\) contracted distance to the top sandwich

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 10
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.579 & Se1 & Ti2(0, -1) & Se1 (1,0) & 86.5 \\
\hline 2.580 & Se3 & Ti2 & Se1 \((1,0)\) & 93.5 \\
\hline 2.579 & Se 1 & Ti2(0, -1) & Ti2(1,-1) & 133.3 \\
\hline
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom \(B\) & Atom \(\mathbf{C}\) & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.579 & Se1 & Ti2(0,-1) & ri2 & 90.0 \\
\hline 3.535 & Ti2 & Ti2(1,0) & Se1(1,1) & 46.7 \\
\hline 3.535 & Ti2 & Ti2(1,0) & Ti2(1,1) & 120.0 \\
\hline 3.535 & Ti2 & Ti2(1,0) & Ti2(1,-1) & 60.0 \\
\hline 2.580 & Ti2 & Se3 & Ti2(0,-1) & 86.5 \\
\hline 2.580 & Ti2 & Se3 & Ti2 \((-1,0)\) & 86.5 \\
\hline 2.580 & Se3 & Ti2 & Se1(1,1) & 180.0 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: V(100)-(1 \times 1)\) \\
CLASSIFICATION & \(: 23.4\) \\
TECHNIQUE & LEED \\
AUTHORS & : V. Jensen, J.N. Andersen, H.B. Nielsen and D.L. Adams \\
REFERENCE & Surf. Sci, \(116,66(1982)\)
\end{tabular}
REFERENCE : Surf. Sci., 116, 66 (1982)

SURFACE TYPE
Substrate : V
Crystal face: 100
Temperature : RT*
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m
```

Adsorbate:
Coverage
Pattern : (1x1)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Bulk termination with 2-layer relaxation

SAMPLE PREPARATION ( 1 sample)
Treatment : very long anneals and sputtering to remove \(H, S, P, C\) and \(O\)
Crystallinity: sharp (1x1) LEED pattern
Anal. methods:
Contamination: AES: <0.01ML S, P, C and <0.05ML 0

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 5 inequivalent beams at normal incidence, \(50<E<350 \mathrm{eV}\)

\section*{STRUCTURES EXAMINED}

Truncated bulk structure with relaxations of first interlayer spacing from 1.3 to \(1.7 \AA\) in \(0.025 \AA\) steps, and subsequent relaxation of second interlayer spacing

QUALITY OF EXPERIMENT-THEORY FIT
R2<0.074
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.028 & 0.000 & 0.000 & 3.028 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.028 & 0.000 & 0.000 & 3.028 & 90.0 & \((1.000,1.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3

\section*{COMMENTS}

R-factor defined by Adams et al, Phys. Rev. B20, 4789 (1979) previously reported reconstructed \(V(100)-(5 \times 1)\) is shown to result from 0.2 monolayer of 0

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 10 phase shifts (Moruzzi et al);
Vor \(=-9.2 \pm 0.2 \mathrm{eV}\), Voi \(=-4.0 \pm 0.1 \mathrm{eV}, ~ \Theta D=510 \pm 10 \mathrm{~K}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & site occ. & Rel.
to & Dx & \(\epsilon X\) & Dy & & Dz & \(\pm \boldsymbol{E Z}\) & & \multicolumn{2}{|l|}{\(D z / B z(\%) \pm \epsilon z / B z\)} \\
\hline epir & & -2 & & & & & \(f\) & & \(f\) & & & A & & \\
\hline subr & & -1 & & & & 1.514 & A & 1.514 & A & 1.514 & & A & & \\
\hline intf & \(V\) & 1 & b & 1.00 & 0 & 0.000 & \(f\) & 0.000 & f & 0.000 & & A & 0.0 & \\
\hline intf & V & 2 & b & 1.00 & 1 & 0.500 & \(f\) & 0.500 & \(f\) & 1.410 & \(\pm .010\) & A & \(93.1 \pm\) & . 7 \\
\hline subl & V & 3 & \(b\) & 1.00 & 2 & -0.500 & \(f\) & -0.500 & \(f\) & 1.530 & \(\pm .010\) & \(\AA\) & \(101.1 \pm\) & . 7 \\
\hline
\end{tabular}

Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( A ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.564 & v1 & v2 & V1(1,0) & 72.4 \\
\hline 2.564 & V1 & v2 & V2 11,0 ) & 126.2 \\
\hline 2.564 & V1 & V2 & v3 & 68.9 \\
\hline 2.632 & V2 & V3(1,1) & V1(1,1) & 54.5 \\
\hline 2.632 & v2 & V3(1,1) & v2(1,0) & 70.2 \\
\hline 2.632 & v2 & V3(1,0) & v3 & 54.9 \\
\hline
\end{tabular}

V(100)-(1x1)
23.4

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.632 & V 2 & V & V 1 & 54.5 \\
2.632 & V 2 & V 3 & \(\mathrm{~V} 2(0,-1)\) & 70.2 \\
\hline
\end{tabular}
REFERENCE : Surf. Sci., 107, 305 (1981)

\section*{SURFACE TYPE}

Substrate: V
Adsorbate:
Coverage
Pattern : (1x1)
Matrix \(:\left(\begin{array}{l}1.000,0.000) \\ (0.000, \\ 1.000\end{array}\right)\)

STRUCTURE TYPE
Slightly contracted bulk termination

\section*{COMMENTS}

R2 = intensity R-factor (Adams et al, Phys. Rev. B20, 4789 (1979))

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: RFS; 10 ph shs; 20 beams (symm.-reduced); Vor \(=-9.2 \pm 0.3 \mathrm{eV}\), Voi \(=-4.7 \pm 0.3 \mathrm{eV}, \Theta 0=512 \pm 36 \mathrm{~K}\) (all fit)

STRUCTURES EXAMINED
Variations in the first layer spacing only, in the range 1.90-2.40\& in \(0.05 \AA\) steps (bulk value is \(2.141 \AA\) )
QUALITY OF EXPERIMENT-THEORY FIT
R2=0.03 (see comment)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay (A) & Bx (A) & By (A) & \(a\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.622 & 0.000 & . 874 & 2.472 & 70.5 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & b: bulk lattice \\
\hline Surface 1 & 2.622 & 0.000 & . 874 & 2.472 & 70.5 & \[
\begin{aligned}
& (1.000,0.000) \\
& (0.000,1.000)
\end{aligned}
\] & (1x1) & s1: commens. superlattice \\
\hline
\end{tabular}

30 COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.622 & V1 & V1(1,0) & V1(1,1) & 109.5 \\
\hline 2.622 & V1 & V1(1,0) & V1(0,1) & 54.7 \\
\hline 2.622 & V1 & V1 \((1,0)\) & V2 & 70.5 \\
\hline 2.613 & V1 & v2 (-1,0) & V1(0,1) & 54.9 \\
\hline 2.613 & V1 & V2(-1,0) & V2 & 70.5 \\
\hline 2.613 & V1 & V2(-1,0) & V3 & 109.3 \\
\hline 2.622 & V2 & v2 \((1,0)\) & v3 (1, 0) & 54.7 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) VNO. \(89(100)-(1 \times 1)\) \\
CLASSIFICATION & \(: 23.7 .1\) \\
TECHNIQUE & LEED \\
AUTHORS & : Y. Gauthier, Y. Joly, J. Rundgren, L.I. Johansson and P. \\
& Wincott \\
REFERENCE & : Phys. Rev., B42, \(9328(1990)\)
\end{tabular}

\section*{STRUCTURE TYPE}

VNO. 89 is a substoichiometric compound with \(N\) vacancies; bulk termination with a \(8 \%\) buckled top VN compound layer, N moving outward, \(7 \%\) contracted first interlayer spacing, planar second VN compound layer, \(1 \%\) expanded 2nd interlayer spacing

\section*{COMMENTS}

LEED analysis shows that there are no \(N\) vacancies in the surface region, so that the stoichiometry is VN there; here this structure is modeled as VN by neglecting \(N\) vacancies also in the bulk, where they in fact form disordered mixed layers with the bulk stoichiometry

THEORY/DATA TREATMENT
Dynamical LEED: 10 phase shifts

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: VN0.89 & Adsorbate: \\
Crystal face: 100 & Coverage : \\
Temperature: RT & Pattern : (1x1) \\
Bulk lattice: NaCl & Matrix \(:(1.000,0.000)\) \\
2D bulk sym: none & \\
20 &
\end{tabular}

Treatment: cycles of Ar-ion bombardment and annealing to 1350 K
Crystallinity:
Anal. methods: AES
Contamination: AES: \(<1 \%\) ML 02 and other contaminants
DATA COLLECTION
Technique: LEED; movable spot photometer
Dataset : I-V spectra from 30 to 280 eV , 5 beams at
normal incidence, 13 beams at \(20^{\circ}\)
off-normal incidence, cumul. E range 2550 e

STRUCTURES EXAMINED
Variation of top-layer buckling, first and second interlayer spacings; it was also checked that the vacancy concentration had no effect

QUALITY OF EXPERIMENT-THEORY FIT
D1=10.69
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.910 & 0.000 & 0.000 & 2.910 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: butk lattice \\
Surface 1 & 2.910 & 0.000 & 0.000 & 2.910 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
N1-V2: buckled top compound VN layer, \(N\) outermost; V3-N4: bulk repeat compound VN layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=2.058 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & site occ. & Rel. to & \(D X \pm \epsilon x\) & Dy \(\pm \in y\) & \(D z \pm \epsilon z\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 1.455 A & 1.455 A & 2.058 A & \\
\hline intf & N & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & V & 2 & \(b\) & 1.00 & 1 & 0.500 f & 0.500 f & \(0.170 \pm .008\) \& & \(8.3 \pm .4\) \\
\hline subl & V & 3 & b & 1.00 & 2 & -0.500 f & -0.500 f & \(1.920 \pm .006 \AA\) & \(93.3 \pm .3\) \\
\hline subl & N & 4 & b & 1.00 & 3 & 0.500 f & 0.500 f & 0.000 \& & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C (
\end{tabular} \\
\hline 2.065 & N1 & V2 & N1 \((1,1)\) & 170.6 \\
2.065 & N1 & V2 & N1 1,0\()\) & 89.6 \\
2.090 & N1 & V3 & V2 & 47.0 \\
2.065 & V2 & N1(1,1) & V2(1,1) & 170.6
\end{tabular}

VNO.89(100)-(1×1)
23.7 .1

\section*{Bond Distances and Angles - Continued}
\begin{tabular}{c|c|c|c|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.090 & V3 & N1 & V2 & 85.3 \\
\hline
\end{tabular}
AUTHORS : J.B. Pendry, K. Heinz and W. Oed
REFERENCE : Phys. Rev. Lett., 61, 2953 (1988)

\section*{SURFACE TYPE}

Substrate: W
Adsorbate

\section*{STRUCTURE TYPE}

Crystal face: 100
Temperature : 400
Bulk lattice: bcc 2D bulk symm: p4m 2D surf symm: p4m

Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( 0.000, 1.000)

SAMPLE PREPARATION ( 1 sample)
Treatment - standard methods indirect heating
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION THEORY/DATA TREATMENT
Technique: LEED; video LEED
Dataset : IV spectra for 4 symmetrical inequivalent beams, 20-500 eV

STRUCTURES EXAMINED
Fitting of 1 st and 2 nd interlayer spacing

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay (A) & Bx (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.168 & 0.000 & 0.000 & 3.168 & 90.0 & \((1.000,0.000)\) & (1x1) \\
Surface 1 & 3.168 & 0.000 & 0.000 & 3.168 & 90.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & \begin{tabular}{l}
Rel. \\
to
\end{tabular} & \(D \mathrm{D} \quad \pm \epsilon \mathrm{x}\) & DY \(\pm \in \boldsymbol{y}\) & \(D z \pm \boldsymbol{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
intf \\
subl
\end{tabular} & \(W\)
\(W\)
\(W\) & -2
-1
1
2
3 & s1
s1
b & .10
.10
.10 & 0
0
0 & \(\begin{array}{ll} & \\ 1.584 & \AA \\ 0.000 & \AA \\ 1.584 & \AA \\ 0.000 & \AA\end{array}\) & \begin{tabular}{ll} 
& \(f\) \\
1.584 & \(\AA\) \\
0.000 & \(\AA\) \\
1.584 & \(\AA\) \\
0.000 & \(\AA\)
\end{tabular} & \begin{tabular}{ll} 
& \(\AA\) \\
1.580 & \(\AA\) \\
0.000 & \(\AA\) \\
1.481 & \(\AA\) \\
3.091 & \(\AA\)
\end{tabular} & \[
\begin{array}{r}
0.0 \\
93.7 \\
195.6
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.685 & \(W 1\) & \(W 2\) & & \\
2.759 & \(W 2\) & \(W 3\) & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
COMMON NAME & \(: W(100)-(1 \times 1)\) & ILLUSTRATION: 12 \\
CLASSIFICATION & \(: 74.21\) \\
TECHNIQUE & LEED \\
AUTHORS & F.S. Marsh, M.K. Debe and D.A. King \\
REFERENCE & J. Phys., C13, \(2799(1980)\)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|}
\hline Substrate : W & Adsorbate: & \\
\hline Crystal face: 100 & Coverage : & \\
\hline Temperature : 470 K & Pattern & ( \(1 \times 1\) ) \\
\hline Bulk lattice: bce & Matrix : & ( \(1.000,0.000\) ) \\
\hline 2 D bulk symm: 04 m & & ( 0.000, 1.000) \\
\hline
\end{tabular}
```

Adsorbate:
Coverage :
Pattern : (1x|)
Matrix : (1.000, 0.000)
(0.000, 1.000)

```

STRUCTURE TYPE
Bulk termination with top layer spacing contraction by \(7.6 \%\)

\section*{COMMENTS}

This high-temperature structure later believed to be disordered version of the \(c(2 \times 2)\) reconstruction (eds.)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 10 pseudo-rel. ph shs (also non-rel. tested); E-dep Vor, Voi; \(\Theta 0=318 \mathrm{~K}\) (surf), 450K(bulk)

STRUCTURES EXAMINED
Relaxation of top interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.30\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & Ay (A) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.160} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.160} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.160} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.160} & \multirow[t]{2}{*}{90.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1×1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{X} \pm \pm \mathrm{X}\) & \(D Y \pm \epsilon Y\) & \(D z \pm \epsilon z\) & Dz/Bz(\%) \(\pm \in \mathbf{z / B z}\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
intf \\
subl
\end{tabular} & \(W\)
\(W\)
\(W\) & -2
-1
1
2
3 & b
b
b & \[
\begin{aligned}
& 1.00 \\
& 1.00 \\
& 1.00
\end{aligned}
\] & 0
1
2 & \(\begin{array}{rr} \\ -1.580 & f \\ 0.000 & \& \\ 0.500 & f \\ -0.500 & f\end{array}\) & \[
\begin{array}{rr|}
\hline & f .580 \\
0.000 & f \\
0.500 & f \\
-0.500 & f
\end{array}
\] & \[
\begin{array}{ll}
\hline & A \\
1.580 & A \\
0.000 & A \\
1.460 \pm .030 & A \\
1.580 & A
\end{array}
\] & \[
\begin{array}{r}
0.0 \\
92.4 \pm 1.9 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.669 & \(W 1\) & \(W 2\) & \(W 1(1,0)\) & 72.6 \\
2.669 & \(W 1\) & \(W 2\) & \(W 3\) & 68.4 \\
2.737 & \(W 2\) & & & \\
\hline
\end{tabular}

COMMON NAME : \(W(100)-(1 \times 1)\)
CLASSIFICATION : 74.2a
TECHNIQUE : LEED
AUTHORS : M.A. Van Hove and S.Y. Tong
REFERENCE : Surf. Sci., 54, 91 (1976)

\section*{SURFACE TYPE}

Substrate : W
Crystal face: 100
Temperature : 300 K
Bulk lattice: bcc 20 bulk symm: \(p 4 m\) 2D surf symm: p4m

SAMPLE PREPARATION ( 1 sample)
Treatment :
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : data of P.P. Wei, J. Chem. Phys. 53, 2939 (1970): examined (10),(20),(21) beams; E range \(20-200 \mathrm{eV}\)

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix \(:(1.000,0.000)\)
( 0.000, 1.000)

STRUCTURE TYPE
Bulk termination with top layer spacing contraction by \(6.3 \%\)

\section*{COMMENTS}

This high-temperature structure later believed to be disordered version of the \(c(2 \times 2)\) reconstruction (eds.)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): 8 phase shifts, superpos. pot of charge densities; Voi=-5 eV; \(\Theta 0=380 \mathrm{~K}\) (bulk), 550 K (surf)

STRUCTURES EXAMINED
Relaxation of top interlayer spacing
QUALITY OF EXPERIMENT-THEORY FIT
Visual

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & ( 1.000, 0.000) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{l|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.160 & \(W 1\) & \(W 1(1,0)\) & \(W 2(1,0)\) & 126.1 \\
2.680 & \(W 1\) & \(W 2\) & \(W 3\) & 68.8 \\
2.737 & \(W 2\) & \(W 3\) & & \\
\hline
\end{tabular}

CLASSIFICATION : 74.47
TECHNIQUE
LEED
AUTHORS : J.B. Pendry, K. Heinz, W. Oed, H. Landskron, K. Mueller and G. Schmidtlein

REFERENCE : Surf. Sci., 193, L1 (1988)

SURFACE TYPE
Substrate : W
Crystal face: 100
Temperature : 450 K
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: none
Adsorbate:
Coverage:
Pattern : disordered
Matrix : \((1.000,0.000)\)

Adsorbate:
Pattern : disordered
Matrix : ( \(1.000,0.000)\)

\section*{STRUCTURE TYPE}

Disordered version of W(100)-c(2x2) reconstruction, with top-layer \(W\) atoms randomly displaced laterally by \(0.16 \AA\) in 4 equivalent [011] directions; disorder is here modeled as rigid shift of complete top layer in one direction

SAMPLE PREPARATION ( 1 sample)
Treatment : 'standard methods'
Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : normal incidence IV curves for 4 beams: 10, 11, 20, 21; E range 20-500 eV

\section*{COMMENTS}

The ordered surface with relaxation gives RPE=0.28 if the highest energy is restricted to 250 eV ;
variance in the \(R\)-factor \(=0.06\), greater than the reduction achieved by including disorder

\section*{THEORY/DATA TREATMENT}

Oynamical diffuse tensor LEED as it influences integer order beams: 10 phase shifts; \(60=400 \mathrm{~K}\)

STRUCTURES EXAMINED
Ordered and disordered surface with varying degrees of disorder, in conjunction with relaxed top layer: the displacement and relaxation were determined simultaneaously from the \(R\)-factor map

QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.24 (see comment)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & \((1.000,0.000)\) & disordered \\
\hline
\end{tabular}

3D COORDINATES
W1: displaced top layer, here modeled as rigid ( \(1 \times 1\) ); \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & Rel. to & DX \(\pm\) EX & \(D Y \pm E Y\) & \(\mathrm{Dz} \pm \boldsymbol{\epsilon Z}\) & \(\mathrm{Dz} / \mathrm{Bz}(\%) \pm \in \mathrm{z} / \mathrm{Bz}\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
intf \\
subl
\end{tabular} & \(W\)
\(W\)
\(W\) & \[
\begin{array}{r}
-2 \\
-1 \\
1 \\
2 \\
3
\end{array}
\] & b & 1.00
1.00
1.00 & 0
1
2 & \(\begin{array}{ll} \\ 1.580 & f \\ 0.000 & A \\ 0.464 \pm .032 & f \\ 0.500 & f\end{array}\) & \[
\begin{array}{ll} 
& f \\
1.580 & \\
0.000 & A \\
0.464 \pm .032 & f \\
0.500 & f
\end{array}
\] & \[
\begin{array}{ll} 
& \AA \\
1.580 & \AA \\
0.000 & \AA \\
1.450 \pm .100 & \AA \\
1.580 & \AA
\end{array}
\] & \[
\begin{gathered}
0.0 \\
91.8 \pm 6.3 \\
100.0
\end{gathered}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 2
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B ( \(\AA\) )
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.531 & \(W 1\) & \(W 2\) & \(W 1(1,0)\) & 74.8 \\
2.737 & \(W 2\) & \(W 3\) & & \\
\hline
\end{tabular}
TECHNIQUE : LEED

AUTHORS : M.A. Van Hove and S.Y. Tong
REFERENCE : Surf. Sci., 54, 91 (1976)

\section*{SURFACE TYPE}

Substrate : W
Crystal face: 110
Temperature : 300 K
Bulk lattice: bcc
20 bulk symm: cmm
2D surf symm: cmm
```

Adsorbate:
Coverage
Pattern : (1x1)
Matrix: (1.000, 0.000)

```

STRUCTURE TYPE
Unrelaxed bulk termination

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer doubling): Moruzzi, et al potential, 8 phase shifts; Vor=-10.0 eV, Voi=-5.0eV; \(00=318 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}
1. bulk termination with top layer spacing variation; 2. same with top layer atoms in 3 -fold coordinated sites of the 2 nd tayer.

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

Visual
2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.740 & 0.000 & -.914 & 2.583 & 109.5 & \((1.000,0.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
b: bulk lattice \\
s1: commens. \\
surface 1
\end{tabular} \\
Superlattice
\end{tabular}

3D COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulkz \(=2.230 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(\AA)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.740 & \(W 1\) & \(W 1(1,0)\) & \(W 1(1,1)\) & \begin{tabular}{c}
70.5 \\
2.734 \\
2.734
\end{tabular} \\
\hline
\end{tabular}

COMMON NAME : W(110)-(1x1)
ILLUSTRATION: 11
CLASSIFICATION : 74.45
TECHNIQUE : HEIS
AUTHORS : R.J. Smith, C. Hennessy, M.W. Kim, C.N. Whang, M. Worthington and M. Xu
Reference : Phys. Rev. Lett., 58, 702 (1987)

\section*{SURFACE TYPE}

Substrate: W
Crystal face: 110
Temperature : 300 K
Bulk lattice: bcc
2D bulk symm: cmm
```

Adsorbate:

```
Adsorbate:
Coverage :
Coverage :
Pattern : (1x1)
Pattern : (1x1)
Matrix : ( 1.000, 0.000)
Matrix : ( 1.000, 0.000)
( 0.000, 1.000)
```

(0.000, 1.000)

```

\section*{STRUCTURE TYPE}

Bulk-like termination

2D surf symm: cmm

SAMPLE PREPARATION ( 1 sample)
Treatment: cycles of heating in 0 , then \(f\) lashes to 2200 K
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: HEIS; 0.5 to \(2.0 \mathrm{MeV} \mathrm{He}+\) ions
Dataset : E scan for scattering along \([-1,-1,0]\),
\([0,-1,0]\), \([-1,-1,1]\) directions, and angular scan in (001) plane about \([0,-1,0]\)

\section*{COMMENTS}

Normal component of the rms surface-atom vibration amplitude is 2.6 times larger than in the bulk ( \(0.05 \AA\) ), while parallel component is not significantly enhanced

THEORY/DATA TREATMENT
Monte Carlo computer simulations

STRUCTURES EXAMINED
Various model structures: 1. relaxations of first and second interlayer distances
2. variations of the bulk rms thermal vibration amplitude and anisotropic enhancement of the surface vibration ampl.

20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x\) (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.740 & 0.000 & -. 913 & 2.583 & 109.5 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 2.740 & 0.000 & -. 913 & 2.583 & 109.5 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(D x / D y\) in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 1
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.740 & \(W 1\) & \(W 1(1,0)\) & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: W(100)-c(2 \times 2)\) \\
CLASSIFICATION & \(: 74.14\) \\
TECHNIQUE & : \\
AUED \\
AUTHORS & : R.A. Barker, P.J. Estrup, F. Jona and P.M. Marcus \\
REFERENCE & : Solid State Commun., 25,375 (1978)
\end{tabular}

\section*{SURFACE TYPE}

Substrate :
Crystal face: 100
Temperature : 120 K
Bulk lattice: bcc
2D bulk symm: phm
2D surf symm: pmg
```

Adsorbate:
Coverage
Pattern : c(2x2)
Matrix : (1.000, 1.000)
(-1.000, 1.000)

```

STRUCTURE TYPE
Zig-zag displacive reconstruction of top layer

SAMPLE PREPARATION ( 1 sample)
Treatment : see Felter et al, Phys. Rev. Lett. 38 , 1138 (1977)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for ( 1,0 ), ( 1,1 ), ( \(1 / 2,1 / 2\) ), \((3 / 2,1 / 2)\) beams at \(\theta=0^{\circ}\); \((0,0)\) beam at \(\Theta=5^{\circ}, \phi=0^{\circ} ; 30 \mathrm{eV}<\mathrm{E}<150 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer-KKR): 8 phase shifts (Kohn-Sham local density self-consistent potential); Voi=-4 eV; rms amps \(=0.7 \AA\)

STRUCTURES EXAMINED
1. perpendicular-shift buckled-top-layer model; 2. parallel-shift model with pmg symmetry; amount of shift and top layer spacings were varied

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay (A) & 8x ( \({ }^{\text {( }}\) ) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.168} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{3.168} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000\()\) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.168} & \multirow[t]{2}{*}{3.168} & \multirow[t]{2}{*}{-3.168} & \multirow[t]{2}{*}{3.168} & \multirow[t]{2}{*}{90.0} & ( \(1.000,1.000)\) & \multirow[t]{2}{*}{\(c(2 \times 2)\)} & \\
\hline & & & & & & \((-1.000,1.000)\) & & superlattice \\
\hline
\end{tabular}

W1-W2: reconstructed top layer
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.580 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.869 & \(W 1\) & \(W 2(0,-1)\) & \(W 1(1,1)\) & 102.7 \\
2.900 & \(W 1\) & \(W 3\) & \(W 1(0,1)\) & 68.5 \\
2.900 & \(W 1\) & \(W 3\) & \(W 2\) & 76.9 \\
2.900 & \(W 1\) & \(W 3\) & 67.0 \\
\hline
\end{tabular}

COMMON NAME : \(W(100)-c(2 \times 2)\)
ILLUSTRATION: 13
CLASSIFICATION : 74.53
TECHNIQUE : XRD
AUTHORS : M.S. Altman, P.J. Estrup and I.K. Robinson
REFERENCE : Phys. Rev., B38, 5211 (1988)

\section*{SURFACE TYPE}

Substrate :
Crystal face: 100
Temperature : 175 K
Bulk lattice: bcc
20 bulk symm: p4m
20 surf symm: pmg
SAMPLE PREPARATION ( 1 sample)
Treatment: flash to 2300 K and anneals at 1400 K in 1E-7 torr 02
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: XRD
Dataset : integrated intensities for 4 half-order Bragg spots

STRUCTURE TYPE
Zig-zag chain reconstruction with lateral relaxations in 1st and 2nd layers

\section*{COMMENTS}

THEORY/DATA TREATMENT
Kinematic calculations; thermal vibrations fitted to measured intensities: rms ampls=0.05

STRUCTURES EXAMINED
Lateral distortions of top and second layers and buckling of top layer

2D UNIT CELLS ( 2 domains observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.168 & 0.000 & 0.000 & 3.168 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.168 & 3.168 & -3.168 & 3.168 & 90.0 & \((1.000,1.000)\) & \((2 \times 2)\) \\
\hline
\end{tabular}

3D COORDINATES
W1-W2: planar top layer with zig-zag chains; W3-W4: planar second layer with smaller lateral relaxations; \(0.1 \AA\) lateral error bars assumed for tabulation

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|r}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.846 & \(W 1\) & \(W 2(0,-1)\) & \(W 1(1,0)\) & 128.1 \\
2.846 & \(W 1\) & \(W 2(0,-1)\) & \(W 3(1,0)\) & 60.3 \\
2.949 & \(W 1\) & \(W 3\) & \(W 4\) & 51.9 \\
2.475 & \(W 1\) & \(W 3(0,-1)\) & \(W 1(1,0)\) & 74.9 \\
2.714 & \(W 1\) & \(W 4\) & 65 & 69.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(:\) W(100)-c(2x2) \\
CLASSIFICATION & \(: 74.59\) \\
TECHNIGUE & \(:\) LEED \\
AUTHORS & H. Landskron, N. Bickel, K. Heinz, G. Schmidtlein and K. \\
& Mueller \\
REFERENCE & \(:\)\begin{tabular}{l} 
J. Phys. CM, 1, 1 (1989)
\end{tabular}
\end{tabular}

\section*{SURFACE TYPE}

Substrate :
Crystal face: 100
Temperature : 140 K
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: pmg
SAMPLE PREPARATION ( 1 sample)
Treatment : heating in oxygen followed by flashing to 2200 K
Crystallinity: sharp LEED pattern
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; video LEED
Dataset : IV spectra for 4 fract.-order beams at normal and \(14^{\circ}\) off normal incidence; cumulative E range 1079 eV

\section*{STRUCTURE TYPE}

Reconstructed zigzag, reconstruction with lateral
displacements; dimer model has only slightly worse fit;
dimer model is not consistant with the glide-plane symmetry

\section*{Coverage :}

Adsorbate:
Pattern : c(2x2)
Matrix : ( \(1.000,1.000)\)
(-1.000, 1.000 )

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Quasi-dynamical and full dynamical LEED

STRUCTURES EXAMINED
Zig-zag, dimer model and vertical shift model
QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.26\)
2D UNIT CELLS ( 2 domains observed )
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & \multicolumn{1}{c|}{ Pattern } & Cell type \\
\hline Bulk & 3.168 & 0.000 & 0.000 & 3.168 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.168 & 3.168 & -3.168 & 3.168 & 90.0 & \begin{tabular}{c}
\((1.000,1.000)\) \\
\((-1.000,1.000)\)
\end{tabular} & c(2x2) & \begin{tabular}{l} 
s1:000) conmens. \\
superlattice \\
\hline
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
W1-W2 form planer top layer with zigzag chains W3-W4 form planer 2nd layer with zigzag chains
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B\) ( \(A\) ) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline \[
\begin{aligned}
& 3.524 \\
& 3.196
\end{aligned}
\] & \[
\begin{aligned}
& W 1 \\
& W 1 \\
& W 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { W2 } \\
& \text { W4 }
\end{aligned}
\] & & \\
\hline
\end{tabular}
\(W(100)-c(2 \times 2)\)
74.59

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|l}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.866 & \(W 1\) & \(W 3\) & & \\
2.737 & \(W 3\) & \(W 5\) & & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate:
Crystal face: 211
Temperature : RT*
Bulk lattice: bcc
2 D bulk symm: pm
2D surf symm: pm

Adsorbate:
Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( 0.000, 1.000)

\section*{STRUCTURE TYPE}

Bulk termination with relaxation of top interlayer spacing by \(\mathbf{- 9 . 3 \%}\) and registry shift by \(6.0 \%\), relative to bulk

\section*{COMMENTS}

Treatment : cleaned by annealing to 2300 K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: TOF-SARS; 2-5keV He+, Ne+ or Ar+ pulsed bea
Dataset : measurements made as a function of incident and azimuthal scans

\section*{THEORY/DATA TREATMENT}

Classical trajectory simulations for back scattering, forward scattering, and direct recoiling

STRUCTURES EXAMINED
Relaxation of top interlayer spacing and registry

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.741 & 0.000 & 0.000 & 4.480 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & \begin{tabular}{l} 
b: bulk lattice \\
s1: commens. \\
surface 1
\end{tabular} \\
& 2.741 & 0.000 & 0.000 & 4.480 & 90.0 & \((0.000,1.000)\) & \((1 \times 1)\) & \((0.000,0.000)\) \\
\hline
\end{tabular}

3D COORDINATES

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(3 \quad\) Bulk z = \(1.292 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & Site occ. & \[
\begin{aligned}
& \text { Rel. } \\
& \text { to }
\end{aligned}
\] & \(D \mathrm{D} \quad \pm \epsilon \mathrm{X}\) & Dy \(\pm \epsilon \boldsymbol{y}\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \in z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
int f \\
subl
\end{tabular} & \(W\)
\(W\)
\(W\) & -2
-1
1
2
3 & \(b\)
\(b\)
\(b\) & 1.00
1.00
1.00 & 0
1
2 & \[
\begin{array}{ll|}
\hline & f \\
1.830 & \& \\
0.000 & f \\
0.628 \pm .026 & f \\
0.668 & f
\end{array}
\] & \begin{tabular}{ll} 
& \(f\) \\
2.238 & \(\&\) \\
0.000 & \(f\) \\
0.500 & \(f\) \\
0.500 & \(f\)
\end{tabular} & \[
\begin{array}{ll}
\hline & A \\
1.290 & A \\
0.000 & A \\
1.170 \pm .070 & \AA \\
1.290 & A
\end{array}
\] & \[
\begin{array}{r}
0.0 \\
90.7 \pm 5.4 \\
100.0
\end{array}
\] \\
\hline
\end{tabular}

BOND DIStances and angles
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.741 & \(W 1\) & \(W 1(1,0)\) & & \\
2.726 & \(W 1\) & \(W 3(-1,0)\) & & \\
2.590 & \(W 1\) & & & \\
\hline
\end{tabular}

CLASSIFICATION : 74.63
TECHNIQUE : LEED
AUTHORS : D.L. Adams and S.P. Andersen
REFERENCE : Springer Series in Surface Sciences, 24, 395 (1991)

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate \(: W\) & Adsorbate: \\
Crystal face: 310 & Coverage : \\
Temperature : 300 K & Pattern : (1x1) \\
Bulk lattice: bcc & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf symm: pm & \\
\end{tabular}

\section*{STRUCTURE TYPE}

Unreconstructed surface with multilayer relaxations
perpendicular to the surface by ( \(-18.3,-0.7,-0.6,-1.7 \%\) )
and registry shifts by ( \(-1.8,-1.3,+2.3,-0.8 \%\) ), relative to bulk

\section*{COMMENTS}

\section*{SAMPLE PREPARATION ( 1 sample)}

\section*{Treatment :}

Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED; Omicron rear-view LEED
Dataset : 15 symmetry inequivalent beams; E range \(50-375 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (layer-doubling): 14 phase shifts from Mattheis potential

\section*{STRUCTURES EXAMINED}

Varied top 5 interlayer spacings and registries minimization carried out via customized R-factor

\section*{QUALITY OF EXPERIMENT-THEORY FIT}
\(R=0.185\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A X(\AA)\) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.165 & 0.000 & \multirow[t]{2}{*}{1.583} & \multirow[t]{2}{*}{5.004} & \multirow[t]{2}{*}{72.5} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.165} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.583} & \multirow[t]{2}{*}{5.004} & \multirow[t]{2}{*}{72.5} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000\()\) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(0.1 \AA\) error bars assumed for tabulation
\(D x / D y\) in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk \(2=1.001 \&\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg
ion & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel.
to & \(D X \pm \epsilon x\) & DY \(\pm \epsilon y\) & \(D z \pm \epsilon \boldsymbol{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & & \\
\hline subr & & -1 & & & & 1.583 \& & \(2.002 \AA\) & 1.001 & \\
\hline intf & W & 1 & \(b\) & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 & 0.0 \\
\hline intf & W & 2 & b & 1.00 & 1 & \(-0.709 \pm .022 f\) & \(0.400 \pm .020 \mathrm{f}\) & \(0.818 \pm .100\) & \(81.7 \pm 10.0\) \\
\hline intf & W & 3 & b & 1.00 & 2 & \(0.294 \pm .022 f\) & \(-0.600 \pm .020 \mathrm{f}\) & \(0.994 \pm .100\) & \(99.3 \pm 10.0\) \\
\hline intf & W & 4 & b & 1.00 & 3 & \(0.312 \pm .022 \mathrm{f}\) & \(0.400 \pm .020 \mathrm{f}\) & \(0.995 \pm .100\) & \(99.4 \pm 10.0\) \\
\hline subl & W & 5 & b & 1.00 & 4 & -0.704 f & -0.600 f & 0.984 & 98.3 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 4
\begin{tabular}{c|l|l|l|l}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 2.663 & \(W 1\) & \(W 2(1,0)\) & & \\
2.636 & \(W 1\) & \(W 3\) & & \\
2.576 & \(W 1\) & \(W 3(0,-1)\) & & \\
2.727 & \(W 2(0,1)\) & & \\
\hline
\end{tabular}

COMMON NAME : W(100)-(1x1)-2H
ILLUSTRATION: 48,50
CLASSIFICATION : 74.1.10
TECHNIGUE : LEED
AUTHORS : M.A. Passler, B.W. Lee and A. Ignatiev
REFERENCE : Surf. Sci., 150, 263 (1985)

SURFACE TYPE
Substrate: \(W\)
Crystal face: 100
Temperature : 300 K
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: H
Coverage : 2.0 (H/W)
Pattern : (1×1)
Matrix \(:(1.000,0.000)\) ( 0.000, 1.000)

STRUCTURE TYPE
Atomic adsorption in bridge sites of both azimuthal orientations (2H per unit cell)

\section*{COMMENTS}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RSP, RFS): 8 phase shifts (Mattheiss W potential, Moruzzi et al \(H\) potential)

STRUCTURES EXAMINED
Assumed \(2 H\) atoms per unit cell, centered over bridge sites; \(H\)-W layer spacing and first \(W\)-W layer spacing were varied
QUALITY OF EXPERIMENT-THEORY FIT
RZJ=0.21
2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

\section*{3D COORDINATES}

H1-H2 form overlayer in bridge sites with 2 azimuthal orientations
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 5
Bulk z \(=1.580 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 5
\begin{tabular}{c|l|l|l|c}
\hline \hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 1.966 & H 1 & W 3 & \(\mathrm{H} 1(1,0)\) & 107.0 \\
1.966 & H 1 & W 3 & H 2 & 69.3 \\
1.966 & H 1 & W 3 & 82.8
\end{tabular}
\(W(100)-(1 \times 1)-2 H\)
74.1.10

Bond Distances and Angles - Continued
\begin{tabular}{c|l|l|l|c}
\begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.160 & \(W 3\) & \(W 3(1,0)\) & \(W 4(1,0)\) & 54.6 \\
2.725 & \(W 3\) & \(W 4\) & \(W 5\) & 70.2 \\
\hline
\end{tabular}
TECHNIQUE : LEED
AUTHORS : K. Griffiths, D.A. King, G.C. Aers and J.B. Pendry
REFERENCE : J. Phys., C15, 4921 (1982)

\section*{SURFACE TYPE}

Substrate : W Crystal face: 100
Temperature : 300 K
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: p4m

Adsorbate: \(\mathrm{N} \quad \frac{\text { STRUCTURE TYPE }}{\text { AtOic }}\)
Adsorbate: N
Coverage : \(0.5 \mathrm{~N} / \mathrm{W}\)
Pattern : c(2x2)
Matrix : ( \(1.000,1.000\) )
( \(-1.000,1.000\) )

Atomic adsorption in hollow site, with shorter bond to 2ndlayer \(W\) atoms than to 1 st-layer \(W\) atoms

\section*{COMMENTS}

SAMPLE PREPARATION ( 1 sample)
Treatment \(: 2000 \mathrm{~K}\) anneal in 1.0E-6 torr 02 , then flash to 2500 K in vacuo
Crystallinity:
Anal. methods: coverage determined by use of molecular Contamination: monitored by AES

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra: 5 integer, 5 fractional order beams at \(\theta=0 ; 11\) integer, 10 fractional order beams at \(\Theta=9, \phi=0^{\circ}\)

THEORY/DATA TREATMENT
Dynamical LEED (CAVLEED): 37 integer, 36 fractional order beams; Voi=-5.0ev; Vor=-12.5 eV (fit)

STRUCTURES EXAMINED
Hollow adsorption site assumed; \(N-W\) interlayer spacing varied \(0.46-0.64 A\);
spacing between 1 st two \(W\) layers varied 1.44-1.63
QUALITY OF EXPERIMENT-THEORY FIT
RPE=0.55 ( \(R R=0.2\) )
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx \((\AA)\) & By \((\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.168 & 0.000 & 0.000 & 3.168 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.168 & 3.168 & -3.168 & 3.168 & 90.0 & \begin{tabular}{l}
\((0.000,1.000)\) \\
\((1.000,1.000)\) \\
\((-1.000,1.000)\)
\end{tabular} & \(c(2 x 2)\) & \begin{tabular}{l} 
s1: commens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
N1: overlayer in hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors. .


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{r} 
Bond angle \\
A-B-C ( \()\)
\end{tabular} \\
\hline 2.293 & N1 & \(W 2\) & \(W 3\) & 47.9 \\
2.090 & N1 & \(W 3\) & \(W 4\) & 125.2 \\
2.090 & N1 & \(W 3\) & \(W 4(0,-1)\) & 125.2 \\
2.090 & N1 & N3 & \(W 3(-1,0)\) & 125.2 \\
2.090 & & \(W 4(-1,-1)\) & 125.2
\end{tabular}

Bond Distances and Angles - Continued
\begin{tabular}{c|c|l|c|c}
\begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.168 & W 2 & \(\mathrm{~W} 2(1,0)\) & & \\
2.753 & H 2 & W 3 & H & \\
\hline
\end{tabular}

\section*{SURFACE TYPE}

Substrate : W
Adsorbate: 0
Crystal face: 100
Temperature : 120 K
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: none
SAMPLE PREPARATION ( 1 sample)
Treatment : O added until low-T reconstruction of W(100) disappeared
Crystallinity:
Anal. methods:
Contamination: AES: no detectable impurities
DATA COLLECTION
Technique: DLEED
Dataset : diffuse LEED intensities at \(400 \mathrm{k} / /\) points at 46 and 48 eV and normal incidence

\section*{STRUCTURE TYPE}

Atomic adsorption in hollow sites with lateral W
relaxations towards 0 position;
disordered structure modeled as (2x2) structure here

\section*{COMMENTS}

This structure is refinement of that reported by Heinz et al, Phys. Rev. Lett. 55, 2312 (1985) in which substrate atom displacements were not considered

\section*{THEORY/DATA TREATMENT}

Dynamical diffuse LEED, with tensor LEED applied to substrate atom displacements

\section*{STRUCTURES EXAMINED}

0 in hollow sites (random occupation) 0.45-0.85A above top \(W\) layer; relaxations of top \(W\) layer: buckling <=0.4A; zigzag disps as in \(W(100)-c(2 \times 2)\); rotations around adsorption site; all cases tested for displacements of \(W\) atoms perpendicular to surface between \(\pm 0.2 \AA\)

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.05\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(\AA)\) & Ay ( \(A\) ) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 6.320 & 0.000 & 0.000 & 6.320 & 90.0 & ( 2.000, 0.000) & disordered & rd1: reconstr. \\
\hline & & & & & & ( 0.000, 2.000) & & lattice-gas dis \\
\hline
\end{tabular}

30 COORDINATES
01: overlayer over relaxed hollows; W2-W3-W4-W5: relaxed top \(W\) layer, contracted toward 0 site
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Reg ion & Chem el. & At. no. & Cell type & site occ. & Rel.
to & \(D \mathrm{D} \quad \pm \boldsymbol{x}\) & Dy \(\pm \in y\) & \(D z \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir subr & & -2
-1 & & & & 1.580 & 1.580 f & 1.580 A & \\
\hline ovrl & 0 & 1 & rdi & 1.00 & 0 & \(0.000 \pm .016 \mathrm{f}\) & \(0.000 \pm .016 \mathrm{f}\) & \(0.000 \pm .100 ~ A\) & \(0.0 \pm 6.3\) \\
\hline intf & W & 2 & rd1 & 1.00 & 1 & \(0.774 \pm .016 \mathrm{f}\) & \(0.774 \pm .016 \mathrm{f}\) & \(0.590 \pm .100 \AA\) & \(37.3 \pm 6.3\) \\
\hline intf & H & 3 & rdi & 1.00 & 1 & \(0.226 \pm .016 \mathrm{f}\) & \(0.774 \pm .016 \mathrm{f}\) & \(0.590 \pm .100 ~ A\) & \(37.3 \pm 6.3\) \\
\hline intf & H & 4 & rd1 & 1.00 & 1 & \(0.774 \pm .016 \mathrm{f}\) & \(0.226 \pm .016 \mathrm{f}\) & \(0.590 \pm .100\) A & \(37.3 \pm 6.3\) \\
\hline intf & W & 5 & rdi & 1.00 & 1 & \(0.226 \pm .016 \mathrm{f}\) & \(0.226 \pm .016\) f & \(0.590 \pm .100 \AA\) & \(37.3 \pm 6.3\) \\
\hline intf & W & 6 & \(b\) & 1.00 & 5 & -0.452 \(\pm .032 \mathrm{f}\) & \(-0.452 \pm .032 \mathrm{f}\) & \(1.580 \pm .100\) A & \(100.0 \pm 6.3\) \\
\hline subl & W & 7 & b & 1.00 & 6 & \(0.500 \pm .032 \mathrm{f}\) & \(0.500 \pm .032 \mathrm{f}\) & \(1.580 \pm .100 ~ A\) & \(100.0 \pm 6.3\) \\
\hline
\end{tabular}

W(100)-0 disordered
74.8.8

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.104 & 01 & \(W 5\) & & \\
2.170 & 01 & \(W 6\) \\
2.857 & \(W 2\) & \(W 3(1,0)\) & \(W 2(1,1)\) & 95.5 \\
\hline
\end{tabular}

CLASSIFICATION
AUTHORS : D.R. Mullins and S.H. Overbury
REFERENCE : Surf. Sci., 210, 481 (1989)

SURFACE TYPE
Substrate: W
Crystal face: 100
Temperature : RT
Bulk lattice: bcc
2D bulk symm: p4m
2D surf symm: none

\section*{Adsorbate: 0}

Coverage : 0.5 ML
Pattern : disordered
Matrix \(:(1.000,0.000)\)
( \(0.000,1.000\) )

STRUCTURE TYPE
Missing-row reconstruction of substrate
oxygen is disordered in 2nd layer top sites

SAMPLE PREPARATION ( 1 sample)
Treatment: exposed to oxygen; annealed to 1300 K
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEIS; rotatable spherical analyzer
Dataset : \(0-70^{\circ}\) scans along the [011] direction at 3 total scattering angles

\section*{THEORY/DATA TREATMENT}

Shadow-cone geometry computation

2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay \((\AA)\) & BX (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.160 & 0.000 & 0.000 & 3.160 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 6.320 & 0.000 & 0.000 & 3.160 & 90.0 & \((0.000,1.000)\) & \((2 \times 1)\) & \begin{tabular}{l} 
s1: comens. \\
superlattice
\end{tabular} \\
\hline
\end{tabular}

3D COORDINATES
01: disordered oxygen in top site on 2 nd \(W\) layer \(W 1:\) remaining row of missing-row reconstruction
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 4
Bulk z \(=1.580 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|c|c|c|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. A-B (A)
\end{tabular} & Atom A & Atom B & Atom C & \begin{tabular}{r} 
Bond angle \\
\(\left.A-B-C()^{\circ}\right)\)
\end{tabular} \\
\hline 2.000 & 01 & \(W 3\) & & \\
2.235 & 01 & \(W 2\) & & \\
2.959 & \(W 1\) & \(W 2\) & & \\
\hline
\end{tabular}

CLASSIFICATION
74.8 .1

TECHNIQUE
AUTHORS
LEED
REFERENCE : Phys. Rev. Lett., 35, 1092 (1975)

\section*{SURFACE TYPE}

Substrate: \(W\)
Crystal face: 110
Temperature : 300 K
Bulk lattice: bcc
2D bulk symm: cmm
2D surf symm: p2

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : see Buchholz, Wang and Lagally, Surf. Sci. 49, 568 (1975)
Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V curves for 5 non-degenerate beams at normal incidence

\section*{STRUCTURE TYPE}

Atomic adsorption in 3-fold coordinated hollow sites
Adsorbate: 0
Coverage : 1/2 (0/W)
Pattern : (2x1)
Matrix : ( 2.000, 0.000)
( \(0.000,1.000\) )

\section*{COMMENTS}

0 in 2-fold coord. long-bridge ('center') site not excluded (with same \(0-1\) spacing);
later R-factor comparison (Van Hove, Tong and Elconin, Surf. Sci. 64, 75 (1979)) confirms this structure, with first spacing of \(1.25 \pm 0.03 \&\) and \(R 2=0.17\)

THEORY/DATA TREATMENT
Dynamical LEED (layer doubling): 8 ph shs (W: Moruzzi et al 0 : overl. at. ch. dens.; Vor=-10.0 eV, Voi=-5.0eV; \(\Theta 0=318 \mathrm{~K}(\mathrm{~W})\)

\section*{STRUCTURES EXAMINED}
1. top sites: \((0,0)\) registry; 2. 2 types of short bridge sites: \((0,1 / 2),(1 / 4,1 / 2)\);
3. center of diamond sites (=long bridge sites): (1/4,0); 4. 3-fold coordinated hollow sites: (0.188,0.354);
5. halfway between sites 3 and 4: ( \(0.219,0.177\) )

QUALITY OF EXPERIMENT-THEORY FIT
Visual (see comments)
20 UNIT CELLS ( 4 domains observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{2.737} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{. 912} & \multirow[t]{2}{*}{2.580} & \multirow[t]{2}{*}{70.5} & ( 1.000, 0.000) & (1x1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{5.473} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{. 912} & \multirow[t]{2}{*}{2.580} & \multirow[t]{2}{*}{70.5} & \((2.000,0.000)\) & \multirow[t]{2}{*}{(2x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
01: overlayer in 3-fold coord. hollow sites
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 3


BOND DISTANCES AND ANGLES

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom A & \multicolumn{1}{|c|}{ Atom B } & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.080 & 01 & \(W 2(0,-1)\) & \(W 2\) & 76.4 \\
2.080 & 01 & \(W 2(0,-1)\) & \(W 3\) & 93.0 \\
3.160 & \(W 2\) & \(W 3\) & & \\
\hline
\end{tabular}

CLASSIFICATION : 30.1
TECHNIQUE : LEED
AUTHORS : W.N. Unertl and H.V. Thapliyal
REFERENCE : J. Vac. Sci. Technol., 12, 263 (1975)

SURFACE TYPE
Substrate: Zn
Crystal face: 0001
Temperature : 70 K Bulk lattice: hcp 2D bulk symm: p3m1 2D surf symm: p3m1

SAMPLE PREPARATION ( sample)
Treatment : see Baker and Blakely, Surf. Sci. 32, 45 (1972)

STRUCTURE TYPE
Bulk termination with \(2 \%\) top spacing contraction
rbate:
Coverage :
Pattern : (1x1)
Matrix : ( \(1.000,0.000)\)
( \(0.000,1.000\) )

Crystallinity:
Anal. methods:
Contamination:

DATA COLLECTION
Technique: LEED
Dataset : I-V spectra: (00) beam at \(70 \mathrm{~K}, 10<E<300 \mathrm{eV}\)

\section*{THEORY/DATA TREATMENT}

Kinematic LEED theory with constant-momentum transfer averaging: \(6 D=220 \mathrm{~K}\)

STRUCTURES EXAMINED
Top layer spacing variations
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & BX ( \({ }^{(1)}\) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 2.660 & 0.000 & \(-1.330\) & 2.304 & 120.0 & \[
\begin{aligned}
& (1.000, \\
& (0.000) \\
& (0.000, \\
& 1.000)
\end{aligned}
\] & (1x1) & \\
\hline Surface 1 & 2.660 & 0.000 & -1.330 & 2.304 & 120.0 & \[
\begin{aligned}
& (1.000, \\
& (0.000) \\
& (0.000, \\
& 1.000)
\end{aligned}
\] & (1x1) & si: commens. superlattice \\
\hline
\end{tabular}

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A } & \multicolumn{1}{|c|}{ Atom B } & Atom C & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 2.660 & Zn 1 & \(\mathrm{Zn} 1(0,1)\) & & \\
2.841 & Zn 1 & \(\mathrm{Zn2}\) & \(\mathrm{Zn} 1(0,1)\) & 55.8 \\
2.883 & \(\mathrm{Zn2}\) & \(\mathrm{Zn3}\) & \(\mathrm{Zn} 2(0,-1)\) & 54.9 \\
\hline
\end{tabular}
```

COMMON NAME : ZnO(0001)-(1\times1)
CLASSIFICATION : 30.8.2
technique : LEED
AUTHORS : A.R. Lubinsky, C.B. Duke, S.C. Chang, B.W. Lee and P. Mark
REFERENCE : J. Vac. Sci. Technol., 13, 189 (1976)

```

\section*{SURFACE TYPE}
\begin{tabular}{|c|c|c|c|}
\hline Substrate & Zno & Adsorbate: & \\
\hline Crystal face: & 0001 & Coverage & \\
\hline Temperature & RT & Pattern & (1x1) \\
\hline Bulk lattice: & wurtzite & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: & p3m1 & & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Bulk termination ( Zn at top) with contraction of top \(\mathrm{Zn}-\mathrm{O}\)
spacing

COMMENTS
Data due to Chang and Mark, Surf. Sci. 46, 293 (1974); these results supercede those reported by Duke and Lubinsky, Surf. Sci. 50, 605 (1975); analysis of the non-specular beams was unsuccessful because of an unknown domain structure which made (10) and (01) spectra equal

THEORY/DATA TREATMENT
Dynamical LEED: 4 phase shifts, both neutral-atom and singly ionic models; Vor \(=-10 \mathrm{eV}\); mfp=8-12A; \(\Theta 0=920 \mathrm{~K}\)

Technique:
Dataset : I-V spectra: (00) beam at \(\theta=7^{\circ}, \phi=30^{\circ}\), \(20<E<200 \mathrm{eV}\)

STRUCTURES EXAMINED
Top layer spacing varied between 0 and \(0.907 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.250 & 0.000 & 1.625 & 2.814 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.250 & 0.000 & 1.625 & 2.814 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES

Zn1-02: topmost bilayer (contracted spacing); 2n3-04 and Zn5-06: 2 bulk bilayers, together forming repeating bulk set of layers

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C } & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.972 & \(\mathrm{Zn1}\) & 02 & \(\mathrm{Zn} 1(1,0)\) & 111.0 \\
1.972 & \(\mathrm{Zn1}\) & 02 & \(\mathrm{Zn3}\) & 107.9 \\
1.796 & 02 & \(\mathrm{Zn3}\) & 04 & 113.3 \\
\hline
\end{tabular}

CLASSIFICATION : 30.8.2a
TECHNIQUE : LEED
AUTHORS : C.B. Duke, A.R. Lubinsky, B.W. Lee and P. Mark
REFERENCE : J. Vac. Sci. Technol., 13, 761 (1976)

\section*{SURFACE TYPE}

Substrate : Zno Adsorbate
Crystal face: 10-10
Temperature : RT
Bulk lattice: wurtzite
2D bulk symm: pm
2D surf symm: pm
SAMPLE PREPARATION ( 1 sample)
Treatment : Ar+ bombardment and thermal annealing
Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES

\section*{DATA COLLECTION}

Technique: LEED
Dataset : I-V spectra: \(30<E<112 \mathrm{eV}\)

\section*{STRUCTURE TYPE}

Relaxed bulk termination: top \(2 n-0\) layer buckles (O outward, Zn inward)

\section*{COMMENTS}

Lateral relaxations of top bilayer could not be determined by this analysis; top Zn and 0 were moved in 2 different directions: a) towards midpoint of their 2nd-layer
neighbors; b) perpendicular to plane of their 3 neighbors

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 4 phase shifts, both neutral-atom and singly ionic models; Vor=-10 eV; mfp \(=8-12 \AA\); \(\Theta 0=920 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}
1) covalent bond length conserving rotations of top layer \(2 n 0\) bond between \(0^{\circ}\) and \(21.1^{\circ}\), with \(0^{\circ}\) clearly preferred; 2) ionic reconstructions in which top Zn and 0 layers are expanded and contracted wrt other bulk layers; preferred structure has top Zn and 0 move in by 0.3 and \(0.1 \AA\), resp.

QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern \\
\hline Bulk & 3.250 & 0.000 & 0.000 & 5.207 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) \\
Surface 1 & 3.250 & 0.000 & 0.000 & 5.207 & 90.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES

01-2n2: buckled top bilayer, 0 outward \(2 n 5-06\) and \(2 n 7-08: 2\) bulk bilayers, together forming repeating bulk set of layers; \(0.1 \AA\) error bars assumed for tabulation

Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(8 \quad\) Bulk \(2=2.814 \quad \AA\)


Bond distances and angles are derived from coordinates
No. of distances/angles: 7
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(\mathrm{A}-\mathrm{B}(\mathrm{A})\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom A} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom C} & \begin{tabular}{c} 
Bond angle \\
\(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 1.983 & 01 & \(\mathrm{Zn} 2(0,-1)\) & \(04(0,-1)\) & 121.4 \\
2.341 & 01 & \(\mathrm{Zn3}\) & 04 & 110.2 \\
2.341 & 01 & \(\mathrm{Zn3}\) & 06 & 116.4 \\
1.924 & \(\mathrm{Zn2}\) & 04 & \(\mathrm{Zn2(1,0)}\) & 115.3 \\
1.924 & \(\mathrm{Zn2}\) & 04 & \(\mathrm{Zn3}\) & 114.8 \\
1.796 & \(\mathrm{Zn3}\) & 04 & \(\mathrm{Zn2}\) & 114.8 \\
1.796 & \(\mathrm{Zn3}\) & 04 & \(\mathrm{Zn5}\) & 113.3 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \mathrm{ZnO}(11-20)-(1 \times 1)\) \\
CLASSIFICATION & \(: 30.8 .2 b\) \\
TECHNIQUE & : LEED \\
AUTHORS & C.B. Duke, A.R. Lubinsky, B.H. Lee and P. Mark \\
REFERENCE & J. Vac. Sci. Technol., 13,761 (1976)
\end{tabular}

Unrelaxed bulk termination
\begin{tabular}{|c|c|c|c|}
\hline Substrate : & Zno & Adsorbate: & \\
\hline Crystal face: & 11-20 & Coverage : & \\
\hline Temperature : & RT & Pattern & (1x1) \\
\hline Bulk lattice: & wurtzite & Matrix & ( 1.000, 0.000) \\
\hline 2D bulk symm: & p1 & & ( 0.000, 1.000) \\
\hline
\end{tabular}

SAMPLE PREPARATION ( 1 sample)

\section*{COMMENTS}

Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES

\author{
DATA COLLECTION \\ Technique: LEED \\ Dataset : I-V curves: (10) and (11) beams, \(30<E<180\) eV
}

\section*{THEORY/DATA TREATMENT}

Dynamical LEED: 4 phase shifts, singly ionic bulk potential Vor \(=-10 \mathrm{eV}\); \(m f p=8-12 \AA\)

STRUCTURES EXAMINED
Top layer spacing varied from 1.525 to \(1.725 \AA\)
QUALITY OF EXPERIMENT-THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & Bx ( \(\AA\) ) & By ( \(\AA\) ) & \(\alpha\left(^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 5.207 & 0.000 & 0.000 & 5.628 & 90.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 5.207 & 0.000 & 0.000 & 5.628 & 90.0 & \((1.000,1.000)\) & \((1 \times 1)\) \\
s1: commens. \\
superlattice \\
\hline
\end{tabular}

3D COORDINATES
\(\mathrm{Zni} \mathrm{Zn} 2-03-04:\) planar top layer; \(\mathrm{Zn} 5-\mathrm{Zn} 6-07-08\) : periodically repeating planar bulk layer;
\(0.1 \AA\) error bar assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel. to & \(D X \pm E X\) & Dy \(\pm \boldsymbol{\epsilon} \boldsymbol{y}\) & \(\mathrm{Dz} \pm \boldsymbol{Z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & f & \(f\) & A & \\
\hline subr & & -1 & & & & 0.000 A & 2.814 A & 1.625 A & \\
\hline intf & Zn & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 \& & 0.0 \\
\hline intf & 2n & 2 & b & 1.00 & 1 & 0.500 f & 0.333 f & 0.000 A & 0.0 \\
\hline intf & 0 & 3 & b & 1.00 & 2 & -0.155 f & -0.333 f & 0.000 A & 0.0 \\
\hline intf & 0 & 4 & b & 1.00 & 3 & 0.500 & 0.333 f & 0.000 A & 0.0 \\
\hline subl & 2n & 5 & b & 1.00 & 4 & -0.845 f & 0.167 f & \(1.625 \pm .100 \AA\) & \(100.0 \pm 6.2\) \\
\hline subl & Zn & 6 & \(b\) & 1.00 & 5 & 0.500 f & 0.333 f & 0.000 A & 0.0 \\
\hline subl & 0 & 7 & b & 1.00 & 6 & -0.155 f & -0.333 f & 0.000 A & 0.0 \\
\hline subl & 0 & 8 & b & 1.00 & 7 & 0.500 f & 0.333 f & \(0.000 \quad \AA\) & 0.0 \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 12
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B ( A ) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 1.796 & Zn1 & 03 & 2n2 & 113.3 \\
\hline 1.796 & Zn2 & 04 & Zn5 (1,0) & 113.3 \\
\hline 2.042 & Zn2 & 07 & Zn5 & 113.3 \\
\hline
\end{tabular}

Zno(11-20)-(1×1)
30.8.2b

Bond Distances and Angles - Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.042 & Zn2 & 07 & Zn6 & 105.4 \\
\hline 1.796 & Zn1 & 03 & Zn6(0,-1) & 113.3 \\
\hline 2.042 & 2n1 & 04(-1,0) & Zn2(-1,0) & 113.3 \\
\hline 2.042 & Zn1 & 04(-1,0) & Zn5 & 105.4 \\
\hline 2.042 & 2n1 & 08( \(-1,-1\) ) & Zn5 (0, -1) & 105.4 \\
\hline 2.042 & 2 n 1 & 08(-1,-1) & Zn (-1,-1) & 113.3 \\
\hline 2.042 & 2n2 & 03 & Zn1 & 113.3 \\
\hline 2.042 & 2n2 & 03 & Zn6(0,-1) & 105.4 \\
\hline 1.796 & Zn2 & 04 & Zn1 1 1,0) & 113.3 \\
\hline
\end{tabular}

COMMON NAME : \(2 n S(110)-(1 \times 1)\)
CLASSIFICATION : 30.16.2
TECHNIQUE : LEED
AUTHORS : C.B. Duke, A. Paton and A. Kahn
REFERENCE : J. Vac. Sci. Technol., A2, 515 (1984)

SURFACE TYPE
Substrate : ZnS
Adsorbate:
Coverage
Pattern : (1x1)
Temperature : RT
Bulk lattice: zincblende
2D bulk symm: pn
2D surf symm: pm
Matrix : ( \(1.000,0.000)\)

STRUCTURE TYPE
Relaxed bulk termination with \(26^{\circ}\) tilt in top layer
( \(0.000,1.000\) )

SAMPLE PREPARATION ( sample)
Treatment : see Duke et al, J. Vac. Sci. Technol. 18, 866 (1981)

\section*{COMMENTS}

X-ray R-factor showed two minima corresponding to tilts of \(2.5^{\circ}\) and \(26^{\circ}\); integrated R-factor RI clearly distinguishes in favor of \(26^{\circ}\)

Crystallinity:
Anal. methods:
Contamination:

\section*{DATA COLLECTION}

THEORY/DATA TREATMENT
Technique: LEED
Dynamical LEED: see Meyer et al, Phys. Rev. B19, 5194 (1979) charge overlap potentials; \(m f p=6 \AA\)

\section*{STRUCTURES EXAMINED}

Bond-length conserving rotation of top bilayer was used to determine vertical spacing between Zn and S in top layer; spacing between top 2 layers was varied; spacing between Zn and S in second layer was varied; registry of Zn and S in top layer was varied

\section*{QUALITY OF EXPERIMENT-THEORY FIT}

RX=0.18, RI=0.09
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A \times(\AA)\) & Ay (A) & \(B \times\) (A) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.825 & 0.000 & 0.000 & 5.409 & 90.0 & ( 1.000, 0.000) & (1x1) & b : bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 3.825 & 0.000 & 0.000 & 5.409 & 90.0 & ( \(1.000,0.000\) ) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

30 COORDINATES

S1-Zn2: top bilayer with tilted Zn-S chain; Zn3-S4, Zn5-S6: bulk bilayers;
Zn7-S8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


2ns(110)-(1x1)
30.16 .2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle A-B-C \\
\hline 2.291 & S1 & zn2 & S1(1,0) & 113.2 \\
\hline 2.342 & 2n3 & S6(0,1) & 2n7 & 109.5 \\
\hline 2.342 & S4 & Zn5 & S6(1,0) & 109.5 \\
\hline 2.342 & S4 & Zn5 & S6 & 109.5 \\
\hline 2.342 & S4 & 2n5 & S8 & 109.5 \\
\hline 2.291 & S1 & Zn2 & S4 & 122.8 \\
\hline 2.299 & S1 & Zn3 \((0,-1)\) & S4(0,-1) & 106.7 \\
\hline 2.299 & S1 & 2 n (0, -1) & S6 & 114.8 \\
\hline 2.342 & 2n3 & S4 & 2 n 2 & 117.1 \\
\hline 2.342 & 2 n 3 & S4 & \(2 \mathrm{n} 3(1,0)\) & 109.5 \\
\hline 2.342 & 2n3 & S4 & 2n5 & 109.5 \\
\hline 2.342 & 2 n 3 & S6(0,1) & 2n5(0,1) & 109.5 \\
\hline 2.342 & 2n3 & S6(0,1) & 2n5 (-1, 1 ) & 109.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: Z n S e(110)-(1 \times 1)\) \\
CLASSIFICATION & \(: 30.34 .2 a\) \\
TECHNIQUE & \(:\) LEED \\
AUTHORS & C.B. Duke, A. Paton, A. Kahn and D.W. Tu \\
REFERENCE & : J. Vac. Sci. Technol., B2, \(366(1984)\)
\end{tabular}

\section*{SURFACE TYPE}
\begin{tabular}{ll} 
Substrate: \(2 n S e\) & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature: 200 K & Pattern : (1x1) \\
Bulk lattice: zincblende & Matrix : \(1.000,0.000)\) \\
2D bulk symm: pm & \\
2D surf symm: pm & \\
\end{tabular}

SAMPLE PREPARATION ( 2 sample)
Treatment : 1. single xtal: Art and annealing; 2. thin film on GaAs(110)
Crystallinity: I-Vs identical for two samples
Anal. methods:
Contamination: AES: equal Zn and Se in thin film
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 14 inequivalent beams at normal incidence

\section*{STRUCTURE TYPE}

Relaxed bulk termination with \(4^{\circ}\) tilt in top layer;
analysis could not distinguish this result from \(29^{\circ}-\mathrm{tilt}\)
model (see class. no. 30.34.2b); \(29^{\circ}\) tilt is more likely

\section*{COMMENTS}

Scattering amplitudes of top 4 bilayers were calculated dynamically, but superposed kinematically ('quasi-dynamical LEED ')

\section*{IHEORY/DATA TREATMENT}

Quasi-dynamical LEED: mfp=8A; Vor optimised

\section*{STRUCTURES EXAMINED}

Bond length conserving rotations in top bilayer up to \(35^{\circ}\); perpendicular and lateral displacements in first bilayer; smaller displacements in second layer

QUALITY OF EXPERIMENT - THEORY FIT
Visual
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & AY (A) & \(B \times(A)\) & By ( \(A\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.010 & 0.000 & 0.000 & 5.670 & 90.0 & ( 1.000, 0.000) & (1x1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 4.010 & 0.000 & 0.000 & 5.670 & 90.0 & \((1.000,0.000)\) & (1x1) & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Se1-Zn2, Zn 3 -Se4: 2 bilayers with tilted Zn -Se chains; Zn 5 -Se6: bulk bilayer;
\(\mathrm{Zn} 7-\mathrm{Se} 8\) : periodically repeating bulk bilayer; 0.1 A error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: 8
Bulk z \(=2.004 \AA\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & Cell type & Site occ. & Rel. to & \(D \mathrm{D} \pm \in \mathrm{X}\) & Dy \(\pm \boldsymbol{\pm}\) & \(\mathrm{Dz} \pm \boldsymbol{E z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline epir & & -2 & & & & \(f\) & f & \(\AA\) & \\
\hline subr & & -1 & & & & 2.005 A & 2.835 A & 2.004 A & \\
\hline intf & Se & 1 & b & 1.00 & 0 & 0.000 f & 0.000 f & 0.000 A & 0.0 \\
\hline intf & Zn & 2 & b & 1.00 & 1 & \(0.500 \pm .025 \mathrm{f}\) & \(0.250 \pm .018 \mathrm{f}\) & \(0.098 \pm .100\) A & \(4.9 \pm 5.0\) \\
\hline intf & 2 n & 3 & b & 1.00 & 2 & \(-0.500 \pm .025 f\) & \(0.512 \pm .018 \mathrm{f}\) & \(1.927 \pm .100 ~ A\) & \(96.2 \pm 5.0\) \\
\hline intf & Se & 4 & b & 1.00 & 3 & \(0.500 \pm .025 \mathrm{f}\) & -0.250 \(\pm .018 \mathrm{f}\) & \(0.050 \pm .100 ~ A\) & \(2.5 \pm 5.0\) \\
\hline intf & Zn & 5 & \(b\) & 1.00 & 4 & \(0.000 \pm .025 \mathrm{f}\) & \(-0.250 \pm .018 \mathrm{f}\) & \(1.979 \pm .100 \AA\) & \(98.8 \pm 5.0\) \\
\hline intf & Se & 6 & b & 1.00 & 5 & -0.500 f & -0.250 f & 0.000 A & 0.0 \\
\hline subl & Zn & 7 & b & 1.00 & 6 & 0.000 f & 0.750 f & 2.004 \& & 100.0 \\
\hline subl & Se & 8 & b & 1.00 & 7 & 0.500 f & -0.250 f & 0.000 & 0.0 \\
\hline
\end{tabular}

ZnSe(110)-(1x1)
30.34.2a

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
\text { A-B-C }\left({ }^{\circ}\right)
\] \\
\hline 2.457 & Se1 & Zn2 & Se1 (1,0) & 109.4 \\
\hline 2.457 & Se1 & Zn2 & Se4 & 112.2 \\
\hline 2.433 & Se1 & \(2 \mathrm{n} 3(0,-1)\) & \(\operatorname{se4}(0,-1)\) & 109.7 \\
\hline 2.433 & Se1 & \(\mathrm{Zn} 3(0,-1)\) & Se6 & 111.4 \\
\hline 2.457 & Zn2 & Se1 & \(2 \mathrm{n} 2(-1,0)\) & 109.4 \\
\hline 2.457 & Zn2 & Se1 & \(2 \mathrm{n} 3(0,-1)\) & 106.7 \\
\hline 2.473 & 2n2 & Se4 & 2n3 & 109.3 \\
\hline 2.473 & Zn2 & Se 4 & 2n5 & 107.5 \\
\hline
\end{tabular}

SURFACE TYPE
\begin{tabular}{lll} 
Substrate \(: ~ 2 n S e\) & Adsorbate: & \\
Crystal face: 110 & Coverage : \\
Temperature : 200 K & Pattern \(:(1 \times 1)\) \\
Bulk lattice: 2 zincblende & Matrix \(:(1.000,0.000)\) \\
20 bulk symm: pm & & \((0.000,1.000)\) \\
20 surf symm: pm & &
\end{tabular}

SAMPLE PREPARATION ( 2 sample)
Treatment : 1. single xtal: Art and annealing; 2. thin film on GaAs(110)
Crystallinity: I-Vs identical for two samples
Anal. methods:
Contamination: AES: equal Zn and Se in thin film
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 14 inequivalent beams at normal incidence

\section*{STRUCTURE TYPE}

Relaxed bulk termination with \(29^{\circ}\) tilt in top layer; analysis could not distinguish this result from \(4^{\circ}\)-tilt model (see class. no. 30.34.2a); \(29^{\circ}\) tilt is more likely

\section*{COMMENTS}

Scattering amplitudes of top 4 bilayers were calculated dynamically, but superposed kinematically ('quasi-dynamical LEED')

\section*{THEORY/DATA TREATMENT}

Quasi-dynamical LEED: \(m f p=8 A\); Vor optimised

STRUCTURES EXAMINED
Bondlength conserving rotations in top bilayer up to \(35^{\circ}\); perpendicular and lateral displacements in first bilayer; smaller displacements in second layer

QUALITY OF EXPERIMENT-THEORY FIT
Visual
2 D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax ( \(\AA\) ) & Ay (A) & \(B x\) (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{4.010} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{5.670} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1x1)} & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{4.010} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{5.670} & \multirow[t]{2}{*}{90.0} & ( 1.000, 0.000) & \multirow[t]{2}{*}{(1×1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Se1-Zn2: top bilayer with tilted Zn -Se chains; \(\mathrm{Zn} 3-\mathrm{Se} 4, \mathrm{Zn5-Se}\) : 2 bulk bilayers;
Zn7-Se8: periodically repeating bulk bilayer; \(0.1 \AA\) error bars assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


Bond distances and angles are derived from coordinates
No. of distances/angles: 11
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 2.244 & Se1 & Zn2 & Se1(1,0) & 126.6 \\
\hline 2.455 & Zn3 & Se6 (0, 1) & Zn7 & 109.5 \\
\hline 2.455 & Se4 & Zn5 & Se6 & 109.5 \\
\hline 2.244 & Se1 & Zn2 & Se4 & 116.3 \\
\hline 2.517 & Se1 & \(2 \mathrm{n} 3(0,-1)\) & Se4(0,-1) & 108.5 \\
\hline 2.517 & Se1 & \(\mathrm{Zn} 3(0,-1)\) & Se6 & 111.4 \\
\hline 2.559 & Zn2 & Se4 & 2n3 & 118.7 \\
\hline 2.559 & Zn2 & Se4 & Zn5 & 88.3 \\
\hline 2.456 & 2n3 & Se4 & 2n3(1,0) & 109.5 \\
\hline 2.456 & 2 n 3 & Se4 & Zn5 & 109.5 \\
\hline 2.455 & Zn3 & Se6 (0,1) & Zn5 (0,1) & 109.5 \\
\hline
\end{tabular}

\section*{CLASSIFICATION : 30.52.2}

TECHNIQUE LEED
AUTHORS : C.B. Duke, A. Paton and A. Kahn
REFERENCE : J. Vac. Sci. Technol., A1, 672 (1983)

SURFACE TYPE
\begin{tabular}{lll} 
Substrate: \(:\) Znte & Adsorbate: \\
Crystal face: 110 & Coverage : \\
Temperature : 425 K & Pattern : (1x1) \\
Bulk lattice: zincblende & Matrix \(:(1.000,0.000)\) \\
20 bulk symm: pm & & \((0.000,1.000)\) \\
20 surf symm: pm & &
\end{tabular}

20 surf symm: pm
SAMPLE PREPARATION ( 1 sample)
Treatment : chemical polishing, ion bombardment and annealing
Crystallinity:
Anal. methods:
Contamination: monitored by LEED and AES
DATA COLLECTION
Technique: LEED
Dataset : I-V curves: 14 beams in range \(30<E<210 \mathrm{eV}\)

STRUCTURE TYPE
Relaxed bulk termination with \(28^{\circ}\) tilt in top layer

\section*{STRUCTURES EXAMINED}

Following quantities were varied in order: 1) angle between plane of top ZnTe chains and surface;
2) spacings of two outermost layers; 3) displacements in second layer normal to surface;
4) reduced relaxations of anion parallel to surface

QUALITY OF EXPERIMENT-THEORY FIT
\(R X=0.26\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax ( \(\AA\) ) & Ay ( \(\AA\) ) & \(B x(\AA)\) & \(B y(\AA)\) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 4.306 & 0.000 & 0.000 & 6.089 & 90.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 4.306 & 0.000 & 0.000 & 6.089 & 90.0 & \((1.000,0.000)\) & (1x1) \\
\hline
\end{tabular}

3D COORDINATES

Tei-Zn2, \(2 n 3\)-Te4: top 2 bilayers with tilted Zn -Te chains; Zn 5 -Te6: bulk bilayer;
Zn7-Te8: periodically repeating bulk bilayer; \(0.1 \AA\) lateral error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


ZnTe(110)-(1x1)
30.52.2

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 14
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. \(A-B(A)\) & Atom A & Atom B & Atom C & Bond angle A-B-C ( \({ }^{\circ}\) ) \\
\hline 2.638 & Te1 & Zn2 & Te1(1,0) & 109.4 \\
\hline 2.637 & 2 n 3 & Te4 & 2 n 5 & 110.6 \\
\hline 2.657 & 2n3 & Te6(0,1) & 2n5 0,1\()\) & 109.3 \\
\hline 2.657 & 2 n 3 & Teb(0,1) & 2n7 & 109.8 \\
\hline 2.616 & Te4 & Zn5 & Te6 & 109.6 \\
\hline 2.616 & Te4 & 2n5 & Te8 & 109.2 \\
\hline 2.638 & Te1 & 2 n 2 & Te4 & 124.6 \\
\hline 2.568 & Te1 & 2n3 \((0,-1)\) & Te4(0, -1) & 106.2 \\
\hline 2.568 & Te1 & Zn3 \((0,-1)\) & Te6 & 118.1 \\
\hline 2.638 & 2n2 & Te1 & 2n2(-1,0) & 109.4 \\
\hline 2.638 & 2 n 2 & Te1 & 2n3(0,-1) & 89.4 \\
\hline 2.622 & 2n2 & Te4 & Zn3 & 116.2 \\
\hline 2.622 & 2n2 & Te4 & Zn5 & 92.7 \\
\hline 2.637 & 2 n 3 & Te4 & Zn3 \((1,0)\) & 109.5 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Zr}(0001)-(1 \times 1)\) \\
CLASSIFICATION & \(: 40.1\) \\
TECHNIQUE & LEED \\
AUTHORS & : W.T. Moore, P.R. Watson, D.C. Frost and K.A.R. Mitchell \\
REFERENCE & : J. Phys., C 12, L887 (1979)
\end{tabular}

SURFACE TYPE
\begin{tabular}{ll} 
Substrate: Zr & Adsorbate: \\
Crystal face: 0001 & Coverage : \\
Temperature: RT* & Pattern: (1×1) \\
Bulk lattice: hcp & Matrix : \(1.000,0.000)\) \\
20 bulk sym: p3m1 & \\
\hline
\end{tabular}

Bulk lattice: hcp
20 bulk symm: p3m
20 surf symm: p3m1

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment : Ar+ bombardment and annealing
Crystallinity:
Anal. methods:
Contamination: AES: only C detected

\section*{data collection}

Technique: LEED
Dataset : I-V spectra: 4 inequivalent beams for \(\theta=9^{\circ}, \phi=13^{\circ}\) and \(\theta=\phi=0^{\circ} ; 30<E<230 \mathrm{eV}\)

STRUCTURE TYPE
Bulk hcp termination with \(1 \% \pm 2 \%\) top spacing contraction

\section*{COMMENTS}

HEORY/DATA TREATMENT
Dynamical LEED: 7 phase shifts, 61 beams; Vor=-10 eV, Voi=-1.32 E**1/3; \(60=270 \mathrm{~K}\)

\section*{STRUCTURES EXAMINED}
1. unreconstructed hcp with equal numbers of 2 domains; 2. hep but with the last 3 layers in fcc configuration; 3. variations in top layer spacing up to \(\pm 7.5 \%\) for both models

QUALITY OF EXPERIMENT-THEORY FIT
\(R Z J=0.12\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & Ax (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.220 & 0.000 & 1.610 & 2.789 & 60.0 & \((1.000,0.000)\) & (1x1) & b: bulk lattice \\
Surface 1 & 3.220 & 0.000 & 1.610 & 2.789 & 60.0 & \((1.000,1.000)\) & \((1 \times 1)\) & s1: commens. \\
superlattice \\
\hline
\end{tabular}

30 COORDINATES

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(4 \quad\) Bulk \(2=2.570 \AA\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates

No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{c} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & Atom \(A\) & Atom \(B\) & Atom \(C\) & \begin{tabular}{c} 
Bond angle \\
\(A-B-C\left({ }^{\circ}\right)\)
\end{tabular} \\
\hline 3.220 & Zr 1 & \(\mathrm{Zr1}(1,0)\) & \(\mathrm{Zr2}\) & 59.2 \\
3.148 & Zr & Zr 2 & \(\mathrm{Zr3}\) & 107.9 \\
3.172 & Zr 2 & Zr 3 & Zr 4 & 108.2 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{zr}(0001)-(1 \times 1)-\mathrm{C}\) \\
CLASSIFICATION: & 40.6 .1 \\
TECHNIQUE & LEED \\
AUTHORS & Le.C. WOng, J.R. Lou, and K.A.R. Mitchell \\
REFERENCE & \(:\) Surf. Sci., 206, L913 (1988)
\end{tabular}

SURFACE TYPE
Substrate : Zr
Crystal face: 0001
Temperature : RT*
Bulk lattice: hcp
20 bulk symm: p3mq
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment : see W.T. Moore et al. J. Phys. C12, L887 (1979)
Crystallinity:
Anal. methods:
Contamination:
DATA COLLECTION
Technique: LEED
Dataset : I-V spectra for 12 independent beams: (10)(11)(20) at \(\theta=0^{\circ} 9\) beams at \(\theta=14^{\circ}\); \(50<\mathrm{E}<230 \mathrm{eV}\)

STRUCTURE TYPE
Atomic adsorption in octahedral interstitial sites between
1st and 2nd Zr layers, inducing slight expansion between these Zr layers

COMMENTS
Analysis could not distinguish whether C is adsorbed in deeper layers also

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS and layer doubling): 8 phase shifts

STRUCTURES EXAMINED
1) overlayer models: ( \(B\) ) \(A B A B,(C) A B\), etc.; 2) underlayer in octahedral sites: \(A(C) A B . ., C(B) A B, A(C) B(C) A B, C(B) A B\), etc.; 3) under layer in tetrahedral sites: \(A(A) B A, A(B) B A\) and many others ( 23 total); \(A, B, C\) denote \(Z r\) layers, () \(C\) layer; C-Zr layer distances were fit

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.63\) for \(A(C) B A . .\), (BA repeated)
\(2 D\) UNIT CELLS ( 1 domain observed)
\begin{tabular}{l|c|c|c|c|c|c|c|c}
\hline \multicolumn{1}{c|}{ Cell } & AX (A) & Ay (A) & Bx (A) & By (A) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.230 & 0.000 & 1.615 & 2.797 & 60.0 & \((1.000,0.000)\) & \((1 \times 1)\) & b: bulk lattice \\
Surface 1 & 3.230 & 0.000 & 1.615 & 2.797 & 60.0 & \((0.000,1.000)\) & \((1.000,0.000)\) & \((1 \times 1)\) \\
\hline
\end{tabular}

3D COORDINATES
C2: interstitial layer in octahedral sites between Zri-Zr3; Zr4-Zr5: hcp substrate; \(0.10 \AA\) error bars set for fitted coord.

Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
No. of atoms: \(5 \quad\) Bulk z \(=5.280 \quad A\)


BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 8
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle \(\mathrm{A}-\mathrm{B}-\mathrm{C}\left({ }^{\circ}\right)\) \\
\hline 3.230 & Zr1 & Zr1(1,0) & 2r1(1,1) & 120.0 \\
\hline 3.230 & Zr1 & Zr1(1,0) &  & 60.0 \\
\hline 3.230 & 2r1 & 2r1(1,0) & zr1 \((0,1)\) & 60.0 \\
\hline 3.230 & 2r1 & 2r1(1,0) & c2 & 45.2 \\
\hline 2.290 & 2 r 1 & C2 & Zr1(1,0) & 89.7 \\
\hline 2.290 & 2 C 1 & c2 & 2 r 3 & 180.0 \\
\hline 2.290 & C2 & 2 r 3 & zr1(1,1) & 89.5 \\
\hline 2.290 & C2 & 2 r 3 & 2r1(1,0) & 44.8 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
COMMON NAME & \(: \operatorname{Zr}(0001)-(1 \times 1)-N\) \\
CLASSIFICATION & \(: 40.7 .1\) \\
TECHNIQUE & : LEED \\
AUTHORS & : P.C. Wong and K.A.R. Mitchell \\
REFERENCE & Surf. Sci.. 187, L599 (1987)
\end{tabular}

SURFACE TYPE
\begin{tabular}{|c|c|}
\hline Substrate : Zr & Adsorbate: N \\
\hline Crystal face: 0001 & Coverage : \(1 \mathrm{~N} / 2 \mathrm{r}\) \\
\hline Temperature : RT* & Pattern : (1x1) \\
\hline Bulk lattice: hcp & Matrix : ( \(1.000,0.000)\) \\
\hline 2D bulk symm: p3m1 & ( 0.000, 1.000) \\
\hline
\end{tabular}

\section*{STRUCTURE TYPE}

Atomic adsorption in octahedral interstitial sites between
1 st and 2 nd Zr layers, inducing slight contraction between
these \(\mathbf{Z r}\) layers

\section*{COMMENTS}

Analysis could not distinguish between bulk Zr stacking and other (non-hcp) stackings starting in 4 th Zr layer

\section*{THEORY/DATA TREATMENT}

Dynamical LEED (RFS and layer doubling): 8 phase shifts
\(\frac{\text { DATA COLLECTION }}{\text { Technique: LEED }}\)
Dataset : I-V spectra for 9 independent beams: (10)(11)(20) at \(\theta=0^{\circ}\), (00)(10)(20)(2-1)(3-1)(3-2) at \(\Theta=18^{\circ} ; 50<E<\)

\section*{SAMPLE PREPARATION ( 1 sample)}

Treatment :
Crystallinity:
Anal. methods:
Contamination: checked by AES

\section*{STRUCTURES EXAMINED}
1) overlayer models; 2) underlayer structures, hcp substrate;
3) underlayer structures, non-hcp substrate; 4) overlayer plus single underlayer models

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.22\)
20 UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & \(A x(A)\) & Ay (A) & BX (A) & By ( \(\AA\) ) & \(\alpha\left({ }^{\circ}\right)\) & Matrix & Pattern & Cell type \\
\hline \multirow[t]{2}{*}{Bulk} & \multirow[t]{2}{*}{3.230} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.615} & \multirow[t]{2}{*}{2.797} & \multirow[t]{2}{*}{60.0} & ( 1.000, 0.000) & (1×1) & \multirow[t]{2}{*}{b: bulk lattice} \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & \multirow[t]{2}{*}{3.230} & \multirow[t]{2}{*}{0.000} & \multirow[t]{2}{*}{1.615} & \multirow[t]{2}{*}{2.797} & \multirow[t]{2}{*}{60.0} & \((1.000,0.000)\) & \multirow[t]{2}{*}{(1x1)} & s1: commens. \\
\hline & & & & & & ( 0.000, 1.000) & & superlattice \\
\hline
\end{tabular}

\section*{3D COORDINATES}

Zr1-Zr3-Zr4-Zr5: hcp substrate; N2: interstitial layer in octahedral sites;
\(0.05 \AA\) error bars assumed for tabulation
Dx/Dy in \(\AA\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg \\
ion
\end{tabular} & Chem el. & At. no. & \begin{tabular}{l}
Cell \\
type
\end{tabular} & Site occ. & Rel. to & \(D \mathrm{X} \quad \pm \epsilon \mathrm{X}\) & Dy \(\pm\) Ey & Dz \(\pm \boldsymbol{\chi} \mathbf{z}\) & \(D z / B z(\%) \pm \epsilon z / B z\) \\
\hline \begin{tabular}{l}
epir \\
subr \\
intf \\
intf \\
int \(f\) \\
subl \\
subl
\end{tabular} & Zr
N
Zr
Zr
Zr & \[
\begin{array}{r}
-2 \\
-1 \\
1 \\
2 \\
3 \\
4 \\
5
\end{array}
\] & \[
\begin{aligned}
& b \\
& b \\
& b \\
& b \\
& b
\end{aligned}
\] & \[
\begin{aligned}
& 1.00 \\
& 1.00 \\
& 1.00 \\
& 1.00 \\
& 1.00
\end{aligned}
\] & 0
1
2
3
4 & \[
\begin{array}{rr} 
& f \\
0.000 & \& \\
0.000 & f \\
0.333 & f \\
0.333 & f \\
-0.667 & f \\
0.667 & f
\end{array}
\] & \[
\begin{array}{rr} 
& f \\
0.000 & A \\
0.000 & f \\
0.333 & f \\
0.333 & f \\
-0.667 & f \\
0.667 & f
\end{array}
\] & \[
\begin{array}{lll} 
& & \AA \\
5.280 & & \AA \\
0.000 & & \AA \\
1.300 \\
1.300 & \pm .050 & \AA \\
2.640 & .050 & \AA \\
2.640 & A
\end{array}
\] & \[
\begin{array}{cc}
0.0 \\
24.6 \pm 1.0 \\
24.6 \pm 1.0 \\
50.0 & \\
50.0 &
\end{array}
\] \\
\hline
\end{tabular}

BOND DISTANCES AND ANGLES
Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{|c|c|c|c|c|}
\hline Interatomic dist. A-B (A) & Atom A & Atom B & Atom C & Bond angle
\[
A-B-C\left({ }^{\circ}\right)
\] \\
\hline 3.230 & Zr1 & Zr1(1,0) & N2 & 44.7 \\
\hline 2.273 & Zr1 & N2 & 2r3 & 180.0 \\
\hline 2.273 & N2 & 2r3 & 2r4(1,0) & 103.3 \\
\hline
\end{tabular}

COMMON NAME : \(\operatorname{Zr}(0001)-(2 \times 2)-0\)
CLASSIFICATION : 40.8.1
TECHNIQUE : LEED
AUTHORS : K.C. Hui, R.H. Milne, K.A.R. Mitchell, W.T. Moore and M.Y.
Zhou
REFERENCE : Solid State Commun., 56, 83 (1985)

\section*{SURFACE TYPE}

Substrate: Zr
Crystal face: 0001
Temperature : RT*
Bulk lattice: hcp
2D bulk symm: p3m1
2D surf symm: p3m1
SAMPLE PREPARATION ( 1 sample)
Treatment: exposure to 1 L oxygen and anneal at 250C Crystallinity:
Anal. methods:
Contamination: AES: \(\mathrm{C}(274) / \operatorname{Zr}(170)=0.05-0.1\)
DATA COLLECTION
Technique: LEED
Dataset : IV curves for 6 beams at normal incidence

Adsorbate: 0
Coverage :
Pattern : \(p(2 \times 2)\)
Matrix : ( 2.000, 0.000)
( 0.000, 2.000)

\section*{STRUCTURE TYPE}

0 atoms in octahedral holes within fcc reconstructed \(Z r\), with layer stacking AcBaCb... ( 0 atoms in lower case);
0 atoms form ( \(2 \times 2\) ) 0.25 ML interstitial layers

\section*{COMMENTS}

0 intercalation expands bulk \(\mathrm{Zr}-\mathrm{Zr}\) spacing from 2.57 to \(2.74 \AA\)

THEORY/DATA TREATMENT
Dynamical LEED: 8 phase shifts (band structure potential for Zr , Demuth superposition potential for 0 ); Voi=-5 eV

STRUCTURES EXAMINED
Zr Zr spacing fixed at 2.57 A ; \(\mathrm{Zr}-\mathrm{O}\) spacing varied; 0 atoms located above surface, between 1 st and \(2 n d\) layers, and in octahedral interstitial sites; hcp and fcc \(2 r\) both tried

QUALITY OF EXPERIMENT-THEORY FIT
RPE \(=0.305\)
2D UNIT CELLS ( 1 domain observed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cell & Ax (A) & Ay (A) & \(B \times\) (A) & By (A) & \(\alpha\) ( \({ }^{\circ}\) ) & Matrix & Pattern & Cell type \\
\hline Bulk & 3.230 & 0.000 & 1.615 & 2.797 & 60.0 & ( 1.000, 0.000) & (1×1) & b: bulk lattice \\
\hline & & & & & & ( 0.000, 1.000) & & \\
\hline Surface 1 & 6.460 & 0.000 & 3.230 & 5.595 & 60.0 & \((2.000,0.000)\) & \(p(2 \times 2)\) & s1: commens. \\
\hline & & & & & & (0.000, 2.000) & & superlattice \\
\hline
\end{tabular}

3D COORDINATES
Zr1: (1x1) top layer; 02 forms ( \(2 \times 2\) ) underlayer between Zr 1 and Zr 3 (also 1×1);
Zr3-04: repeating bulk set of layers ( Zr : \(1 \times 1 ; 0: 2 \times 2\) ); \(0.05 \AA\) error bars assumed for tabulation
Dx/Dy in \(A\), or as a fraction of layer's unit cell vectors; atom 0 at the origin. Epir/subr are bulk repeat vectors.


\section*{BOND DISTANCES AND ANGLES}

Bond distances and angles are derived from coordinates
No. of distances/angles: 3
\begin{tabular}{c|l|l|l|c}
\hline \begin{tabular}{r} 
Interatomic \\
dist. \(A-B(A)\)
\end{tabular} & \multicolumn{1}{|c|}{ Atom \(A\)} & \multicolumn{1}{|c|}{ Atom B } & \multicolumn{1}{|c|}{ Atom \(C\)} & \(\left.\begin{array}{c}\text { Bond angle } \\
A-B-C ~( \end{array}\right)\) \\
\hline 3.230 & \(Z r 1\) & \(Z r 1(1,0)\) & \(02(0,-1)\) & 134.3 \\
2.314 & \(Z r 1\) & \(02(-1,-1)\) & \(Z r 3(-2,0)\) & 91.5 \\
2.314 & 02 & \(Z r 3\) & \(04(1,1)\) & 91.5 \\
\hline
\end{tabular}

\section*{3. Acknowledgements}

The authors are grateful to the National Institute of Standards and Technology, particularly to the Standard Reference Data Program, for undertaking the support of the electronic Surface Structure Database and of this atlas, which is its printed version. We are also much indebted to our consultants, Prof. J.B. Pendry and Prof. G.A. Somorjai, for helpful advice and much needed organizational support.

Much of the hard work of collecting data and putting them into the required format was accomplished by the individuals shown as "major contributors".

A considerable amount of compiling was also accomplished by the following persons, whose contributions were absolutely essential to the success of this task:

At Imperial College (London):
James MacLaren, Philip Rous, Dilano Saldin and Dimitri Vvedensky;
At Lawrence Berkeley Laboratory:
Simon Bare, Brian Bent, Gregory Blackman, Istvan Böszörmenyi, Mark Bussell, José Carrazza, Peter Ditlevsen, Morgan Edwards, Sabrina Fu, David Godbey, Brian Hadden, Ian Harrison, Michael Hilton, David Jentz, Chi-Tzu Kao, David Kelly, Colette Knight, Mark Levin, Kenneth Lewis, Bruno Marchon, Mathew Mate, Peter McAnally, Brian Naasz, Pedro Nascente, Roger Nix, Frank Ogletree, Hiroko Ohtani, Pedro Pereira, Jim Powers, Philip Rous, Thomas Rucker, Erik Sowa, Daniel Strongin, Gil Vandentop, Gerard Vurens, Kevin Williams and Mu-Liang Xu.

\section*{4. Bibliography and Related Software 4.1. References}
J.M. MacLaren, J.B. Pendry, P.J. Rous, D.K. Saldin, G.A. Somorjai, M.A. Van Hove and D.D. Vvedensky, "Surface Crystallographic Information Service, A Handbook of Surface Structures, Software and User's Manual' (D. Reidel, Dordrecht) 1987.
J.F. Nicholas, "An Atlas of Models of Crystal Surfaces" (Gordon and Breach, New York) 1965.
H. Ohtani, C.-T. Kao, M.A. Van Hove and G.A. Somorjai, "A Tabulation and Classification of Clean Solid Surfaces and of Adsorbed Atomic and Molecular Monolayers as Determined from Low-Energy Electron Diffraction", Progr. Surf. Sci. 23, 155 (1986).
P.R. Watson, M.A. Van Hove and K. Hermann, SSD electronic database: "NIST Surface Structure Database - Ver. l", NIST Standard Reference Data Program, Gaithersburg, Maryland (1993).
P.R. Watson, "Critical Compilation of Surface Structures Determined By LEED Crystallography" J. Phys. Chem. Ref. Data 16, 953 (1987).
P.R. Watson, "Critical Compilation of Surface Structures Determined By Ion Scattering Compared with Those from LEED Crystallography" J. Phys. Chem. Ref. Data 19, 85 (1990).
P.R. Watson, "Critical Compilation of Surface Structures Determined By SEXAFS Compared with Those from LEED and Ion Scattering' J. Phys. Chem. Ref. Data 21, 123 (1992).
E.A. Wood, "The 80 Diperiodic Groups in Three Dimensions", Bell System Techn. Journ. 43 (Part 2), 541 (1964).

\subsection*{4.2. Software}

SCIS (Surface Crystallographic Information Service) marketed by Reidel Publishing (Dordrecht 1987, The Netherlands, or Kluwer Academic Publishers Group, USA).

SARCH/LATUSE/PLOT3D (Surface ARCHitect / LATtice USEr / PLOT 3 Dimensional systems) to obtain copies contact either M.A. Van Hove or K. Hermann (see Appendix G).

BALSAC (Build and Analyze Lattices, Surfaces, and Clusters)
to obtain copies contact K. Hermann (see Appendix G).

\section*{5. Appendices}

\section*{Appendix A: Entering New Structural Data into SSD}

\section*{A.1. Submitting New Structures for Inclusion in SSD}

\section*{Procedure}

You may submit a new structure for inclusion in the next update of SSD. Any structure should satisfy the criteria spelled out in the Introduction (Sec. 1.2), but may have been published at any time.

The first step is to contact us, the database authors, for a decision on inclusion. You should send us a copy of a refereed and published paper that describes the structure determination and the result. Once accepted, the preferred form of submission is as an ASCII file, described in this Appendix. Such a structure should be sent in an electronic file, either on diskette or by electronic mail, to one of the authors' addresses shown in Appendix G.

\section*{Electronic submission}

New structures for SSD are first entered into a file with the ASCII format. Then we, the database authors, translate this file into files with a non-ASCII Paradox format for general distribution and for publication in book form.

An ASCII file can be created and modified with any text editor or word processor. Thus, the data can be manually put in the desired form and entered into a file. The ASCII files used for SSD can also be written to (and read by) the independently marketed PC-based program SARCH (described in Sec. 1.5). This allows structures to be generated or modified interactively. Note that SARCH can only generate the structural data items (coordinates, etc.), but not the textual data items; these must be subsequently input manually with a text editor or word processor.

In Appendix A. 2 we give a detailed definition of the ASCII file format used for SSD. Appendix A. 3 shows a generic ASCII file for reference, while A. 4 gives actual sample ASCII files. In A. 5 we describe a utility program, called SSDCHK, available from us, with which you can test such an ASCII file for correct formatting and structural content.

\section*{A.2. Format of ASCII Files for SSD}

This appendix specifies the detailed format of the ASCII files used to enter structures into SSD. The detailed rules for the file format are specified first. They are followed by a generic example in A.3, which serves as a guide when entering data items and which also indicates the length limits on each data item. Several actual examples are shown in A.4. The meanings of the individual data items are defined in 1.4.

\section*{Rules For ASCII File Format:}
a. All data items must appear in the order given by the generic format given in A.3;
b. Each data item must appear either as a "free format" textual item or as a "fixed format" tabular item, as detailed in the generic format shown in A.3;
c. No line of information may exceed 80 characters in total, including all SSD-specific characters;
d. A blank line in the free format sections is ignored (it is not ignored in the fixed format tabular data sections);
e. A line can start with a command (\#\#, \#c, \#tx or \#fx, where \(\mathrm{x}=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\) or f ); all characters following such a command on the same line are ignored;
f. Lines without commands can contain either one free format item, or only fixed format items: no mixing of free and fixed format items is allowed on the same line;
g. The characters \#\# are mandatory and signal the beginning of a new structure: it must appear at the beginning of a new line;
h. The characters \#ff are mandatory and signal the last line of a structure (see also \#fx below). It must appear at the beginning of a new line;
i. The characters \#c, at the beginning of a line, signal a comment line in a free format section (but a comment line may not appear between the blocks of data \#tc \#fc and \#td - \#fd ); the line is ignored. A comment line may NOT be embedded in tabular data;
j. The characters \#tx (where \(x=a, b, c, d, e\) or \(f\) ), at the beginning of a line, signal the beginning of a section of tabular data, using fixed formats; \#tx must be paired with a subsequent \#fx (with the same value of \(x\) : see next); characters following \#tx on the same line are ignored, i.e. the actual data must start on the next line;
k. The characters \(\# \mathrm{fx}\) (where \(\mathrm{x}=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\) or f ), at the beginning of a line, signal the end of a section of tabular data, and the return to free format items. Characters following \#fx on the same line are ignored, i.e. a free format item must start on a subsequent line;
1. Tabular data have a fixed format, i.e. each data item must fit within a specific range of columns, as displayed in the generic format in A.3:
- the six blocks of tabular data (\#ta-\#fa through \#tf\#ff) are mandatory; none may be left out;
- numerical values in tabular data may be integer or real, but may NOT have exponential form; the number of digits after the decimal point is free;
- in alphanumeric fields leading and trailing blanks will be ignored;
- a blank numerical field means no number (rather than a zero number), while a blank alphanumeric field will be ignored;
- tabs may not be used (since tab positions vary among word processors and text editors);
- reminder: a group of lines containing tabular data must be preceded by a line starting with \#tx ( \(\mathrm{x}=\mathrm{a}, \mathrm{b}, \ldots\) or f ), and must be terminated by a line starting with \#fx (with the same value of x );
m. The entry "xn:aaa" in "free format" data is one item containing one field of data aaa; only one item is allowed per line; no item may be split over more than one line (except s 5 , see below):
aaa can be any string of characters (excepting the double quote " and special ASCII characters, see below); the string may have any length up to the limit given below in the generic format; aaa can be null, i.e. "xn:" is allowed (or preferably omitted) and implies an empty field, meaning no character or no number (SSD will show a blank);
n. the labels xn must always be included in alphanumeric fields and must take on the exact values shown in the generic form below (e.g., s1 for the Name of the structure): the data will otherwise not be recognized; x in xn can only have the values: s (= Outline section), t (= Technique section), 2d ( \(=2 \mathrm{D}\) sections), 3d ( \(=3 \mathrm{D}\) section), b (= Bond distances and angles section); n in xn takes the values \(1,2,3, \ldots\);
- the free format data "xn:aaa" must appear in the order shown in the generic format below: e.g., s5 cannot precede s4, and \(\mathbf{t} 2\) cannot precede s 7 ;
- items may be omitted: e.g., t6 may immediately follow \(t 4\), if \(t 5\) is omitted; if the item "xn:aaa" is absent, aaa is assumed null;
- in the generic format given in Appendix A.3, Ann and Nnn show the maximum allowed length of each field: up to nn characters are allowed; Ann allows alphanumeric characters and the special characters given below; Nnn represents a numeric field for real numbers or integers, i.e. digits with or without a decimal point (no exponent is allowed);
o. Item s5 (Authors) allows up to 120 characters by splitting it into two smaller items on successive lines, each limited to 60 characters: it is then composed of two items "s5:first authors" and "s5:more authors", with the same s5 label; the two fields will be joined by SSD and a blank space inserted between them (so a name should not be split among the two fields); if even more authors exist than will fit in 120 characters, they are inserted in the comments items [s28-s32]; however, these author names will not be searchable;
p. Authors' names may not include accents of any kind: accents should be omitted;

Note: the umlaut (double dotted vowel) in German names may also be replaced by an extra letter e: thus, Muller and Mueller are both acceptable (with the umlaut omitted in the first form): to search for such names in the SSD database, it is best to try both spellings;
q. Special characters: some special ASCII characters may be used in free-format items, but only as coded in the table below; special ASCII characters may NOT be entered as 3 digits while keeping the ALT key pressed simultaneously, as such characters may be corrupted or lost in file conversion and transmission, e.g., in electronic mail;
powers of 10 should be denoted as, for example: 1.5 E 10;
the following special characters should be represented either by the corresponding fully-spelled-out 6 -character sequence Altnnn, or preferably by the 2 -character symbol of type \(\backslash x\) (the latter requires less space):
```

Alt247 \= (approximate)
Alt224 \a (i.e. same as \alpha)
\pm ~ A l t 2 4 1 ~ \ + ~
Alt236 \
2 Alt253 \2
V Alt251 \R
Alt248 \0 (0 = zero)
A Alt143 \A
A Alt224 \a (l.c. = lower case)
\beta Alt225 b b
C Alt226 \G (u.c. = upper case = capital)
f Alt235 \d
\epsilon Alt238 \e
\eta Alt252 \E
\& Alt237 f
A Alt232 F
\mu Alt230 \m

Alt227 \P (l.c. is not available: use u.c. pi)

\sigma Alt229 \s
E Alt228 \S
T Alt231 \T
A Alt233 \t
\Omega Alt234 \O (O= u.c. letter O)

```
r. The minimum content for a meaningful structure is: \#\#
field "s1:structure name"
all data blocks (\#ta-\#fa through \#tf-\#ff)
items [2d8], [2d14]

\section*{A.3. Generic ASCII File}

The following pages list an ASCII file in which items have been inserted that describe the expected type of entries. These items also give the maximum field lengths in the forms Ann for alphanumeric items, and Nnn for numerical items. (Here, the numbers nn give the allowed number of characters for each item). The comment lines preceded by \#c are used to provide additional information; this includes the last allowed column for the last character of subsequent textual items, marked by the symbol " \(=\) ", and definitions of subsequent tabular items.

This user data submission file format can be downloaded from the NIST Standard Reference Data anonymous ftp site as follows:
ftp srd.nist.gov
login: anonymous
password: guest
cd forms
get format.SSD

Questions can be e-mailed to srdp@enh.nist.gov.

Generic ascii file:
```

\#c--
\#c this is a comment line for file identification and date of
\#c last change

this command marks the beginning of a new structure

\#c this bar shows allowed length 40: >=
"si:Name A40"
\#c allowed length 20 >=
"s2:Class. No. A20"
\#c >=
"s3:Status A40"
\#c >=
"s4:Technique A20"
\#C >=
"s5:Authors A60"
\#c >=
"s5:Authors A60"
\#C
\#c >=
"s7:Vol A8"
\#c >=
"s8:Page A5"
\#c >=
"s9:Year N10"
\#c >=
"s10:Substrate A20"
\#c >=
"s11:Bulk lattice A20"
\#C >=
"s12:Cryst. face A10"
\#c >=
"s13:2D bulk symm. A4"
\#C >=
"s14:2D surf. symm. A4"
\#C >=
"s15:Adsorbate A20"
\#c >=
"s16:Coverage A20"
\#C
>=
"s17:Pattern A20"
\#c s18:Matrix M11 N10, s19:M12 N10, s20:M21 N10, s21:M22 N10
\#ta
nn nn nn nn
\#fa
\#c >=
"s22:Temp. A5"
\#c
"s23:Struct. type-1 A60"
"s24:-2 A60","s25:-3 A60","s26:-4 A60"
"s27:-5 A60"
\#C
"s28:Comments-1 A60"
"s29:Comments-2 A60"
"s30:Comments-3 A60"
"s31:Comments-4 A60"

```
```

"s32:Comments-5 A60"
\#c >=
"s33:Illustration A8" not used

```
```

\#c >=

```
#c >=
"t1:No. samples A2"
"t1:No. samples A2"
#c >=
#c >=
"t2:Treatment A60"
"t2:Treatment A60"
#c >=
#c >=
"t3:Crystallinity A40"
"t3:Crystallinity A40"
#c
#c
    >=
    >=
"t4:Analyt. methods A60"
"t4:Analyt. methods A60"
#c >=
#c >=
"t5:Contamination A40"
"t5:Contamination A40"
#c
#c
"t6:Data colln. method A40"
"t6:Data colln. method A40"
#c
#c
    >=
    >=
"t7:Data set-1 A60"
"t7:Data set-1 A60"
"t8:Data set-2 A60"
"t8:Data set-2 A60"
#c >=
#c >=
"t9:Theory-1 A60"
"t9:Theory-1 A60"
#c
#c
"t10:Theory-2 A60"
"t10:Theory-2 A60"
#c
#c
                                    >=
                                    >=
"t11:Structs. examined-1 A60"
"t11:Structs. examined-1 A60"
"t12:Structs. examined-2 A60"
"t12:Structs. examined-2 A60"
"t13:Structs. examined-3 A60"
"t13:Structs. examined-3 A60"
"t14:Structs. examined-4 A60"
"t14:Structs. examined-4 A60"
"t15:Structs. examined-5 A60"
"t15:Structs. examined-5 A60"
#c
#c
>=
>=
"t16:Fit A40"
```

"t16:Fit A40"

```
\#c 2d1:Bulk Ax N10, 2d2:Ay N10, 2d3:Bx N10, 2d4:By N10, 2d5:alpha N10
\#c 2d6:No. domains N4, 2d7:No. cells (<=4) N4"
\#tb
    nnn.nnnn nnn.nnnn nnn.nnnn nnn.nnnn nnn.nnnn
    nn nn
\#fb
\#c
"2d8:Cell-i (i=1, 2, ...) A40"
\#c 2d9:C1 Ax N10, 2d10:C1 Ay N10, 2d11:C1 Bx N10, 2d12:C1 By N10"
\#c 2d13:C1 alpha N10"
\#tc
    nnn.nnnn nnn.nnnn nnn.nnnn nnn.nnnn nnn.nnnn
\#fc
\#C >=
"2d14:Ci pattern A20"
\#c 2d15:Ci matrix M11 N10, 2d16:M12 N10, 2d17:M21 N10, 2d18:M22 N10
\#td
    nn nn nn nn
\#fd
\#c repeat \(2 \mathrm{~d} 8-2 \mathrm{~d} 18\) as many times as No. of cells for Cell-2 etc.
(see 2d7)
\#c
\(>=\)
```

"3d1:3D notes-1 A60"
"3d2:3D notes-2 A60"
"3d3:3D notes-3 A60"
"3d4:3D notes-4 A60"
\#c 3d5: not used
\#c 3d6:Bulk z N10
\#c 3d7:No. of atoms (excl. epir and subr entries) N4
\#c 3d8:Region A4, 3d9:Chem. el. A3, 3d10:Atom \# N5, 3d11:Cell type A4
\#c 3d12:Site occ. N6, 3d13:Rel. to N4, 3d14:Dx N10, 3d15:Units Dx A1
\#c 3d17:Dy N10, 3d18:Units Dy A1, 3d20:Dz N10, 3d22:Dz/Bz N10
\#c 3d16:Err. Dx N10, 3d19:Err. DY N10
\#C 3d21:Err. Dz N10, 3d23:Err. Dz/Bz N10
\#te
nnn.nnnn
nn
epir -2 nnn.nnnnA nnn.nnnnA nnn.nnnn
subr -1 nnn.nnnnA nnn.nnnnA nnn.nnnn
regnel nn cel n.nnn nn nnn.nnnna nnn.nnnna nnn.nnnn nnn.nnnn
nnn.nnnna nnn.nnnna nnn.nnnn nnn.nnnn
\#c repeat 3d8-3d23 (last two lines) as many times as 3d7 indicates
\#fe
\#c
>=
"b1:Dist/angles notes A60"
\#c b2:No. of dist \& angl N4
\#c b3:Dist.A-B N10
\#c b4:Atom-A A12, b5:-B A12, b6:-C A12
\#c b7:Angle A-B-C N10
\#tf
nn
nnn.nnnn aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa nnn.nnnn
\#c repeat b3-b7 (last line) as many times as b2 indicates
\#ff this marks the end of a structure

this marks the beginning of a new structure

"s1:Other name" starts next structure
\#c etc.
\#c---

```

\section*{A.4. Sample ASCII Files}

The following five structures are put in the form of ASCII files for SSD and serve to illustrate the format and the style
of data inclusion. They are included with the SSD softwae in file TEST.ASD.

Sample ASCII files
```

\#\#--
"s1:A1 (311)-(1x1)"
"s2:13.30"
"s4:LEED"
"s5:J.R. Noonan, H.I. Davis, W. Erley"
"s6:Surf. Sci."
"s7:152/153"
"s8:142"
"s9:1985"
"s10:Al"
"s11:fcc"
"s12:(311)"
"s13:cm"
"s14:cm"
"s17:(1x1)"
\#ta
1.0000 0.0000 0.0000 1.0000
\#fa
"s22:298K"
"s23:bulk termination with multilayer relaxation;"
"s24:no detectable lateral relaxation"
"t1:1"
"t2:electropolish in H2SO4/H3PO4; Ar+ sputter; 500C anneal"
"t5:AES: <0.05% ML Si"
"t6: Faraday cup"
"t7:34 LEED beams (21 symmetry-inequivalent); energy range"
"t8:50-300eV; normal incidence within 0.5\0"
"t9:dynamical LEED (Reverse Scattering Perturbation): Moruzzi-"
"t10:Janak-Williams potential; Voi=4.75eV; \tD=550K"
"t11:relaxation of top two interlayer spacings and lateral"
"t12:displacement of top layer"
"t16:RZJ=0.07, R2=0.083"
\#tb
2.8600 0.0000 -1.4319 4.7488 106.7800
1 1
\#fb
"2d8:s1"
\#tc
2.8600 0.0000 -1.4319 4.7488 106.7800
\#fc
"2d14:(1x1)"
\#td
1.0000 0.0000 0.0000 1.0000
\#fd
"3d1:0.05\A error bars assumed for tabulation of lateral"
"3d2:relaxation"

```

```

"s25:forms trilayer of TiN compound exposing (111) face"
"七1:2"
"t2:cleaned, then N introduced at 1.5E-8 torr"
"t5:monitored by AES and LEED"
"t7:LEED I-V spectra: 3 beams at normal inc., 5 beams at $\backslash t=8 \backslash 0, "$
"t8: \f=-30\0; (00) beam at \t=20\0, \f=-30\0; 20<E<250eV"
"t9:dynamical LEED (layer KKR): 8 phase shifts (Moruzzi et al);"
"t10:domain-averaging over steps; Vor=-10eV; Voi=-3eV; \tD=342K"
"t11:1. atomic or molecular ($\mathrm{N}-\mathrm{N}=1.098 \backslash \mathrm{~A}$) adsorption in top,"
"t12:bridge and either one or both 3-fold hollow sites;"
"t13:2. one of the 2 types of tetrahedral or octahedral"
"t14:interstitial sites between the 1st and 2nd Ti layers"
"t15: (Ti-N spacings varied in range 0.9-2.8\A); step-averaged"
"t16:visual"
\#tb
$\begin{array}{lllll}2.9500 & 0.0000 & -1.4750 & 2.5548 & 120.0000\end{array}$
11
\#fb
"2d8:s1"
\#tc
$2.9500 \quad 0.0000 \quad-1.4750 \quad 2.5548 \quad 120.0000$
\#fc
"2d14:(1x1)"
\#td
$1.0000 \quad 0.0000 \quad 0.0000 \quad 1.0000$
\#fd
"3d1:N2: underlayer in octahedral site of slightly expanded"
"3d2: Ti(0001) lattice;"
"3d3:Ti1-N2-Ti3: trilayer of TiN;"
"3d4:Ti4-Ti5: repeating bulk pair of layers"
\#te
2.3400
5
epir -2

| subr | -1 | | | 0.0000 A | 0.0000 A | 4.6800 | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| intf Ti | 1 b | 1.0000 | 0 | 0.0000 f | 0.0000 f | 0.0000 | 0.00 |
| intf N | 2 b | 1.0000 | 1 | 0.6667 f | 0.3333 f | 1.2200 | 52.14 |
| intf Ti | 3 b | 1.0000 | 2 | -0.3333 f | 0.3333 f | 1.2200 | 52.14 |
| subl Ti | 4 b | 1.0000 | 3 | -0.3333 f | -0.6667 f | 2.3400 | 100.00 |
| subl Ti | 5 b | 1.0000 | 4 | 0.3333 f | 0.6667 f | 2.3400 | 100.00 |

\#fe
"b1:bond distances and angles are derived from coordinates"
\#tf

| 8 | | | |
| :--- | :--- | :--- | :--- |
| 2.9500 Ti1 | Ti1 $(1,1)$ | N2 | 45.25 |
| 2.9500 Ti1 | Ti1 $(1,1)$ | Ti3 | 60.28 |
| 2.0951 Ti1 | N2 | Ti1 $(1,0)$ | 89.50 |
| 2.0951 Ti1 | N2 | Ti3 | 90.50 |

```
```

| 2.9756 | Ti1 | Ti3 | Ti1 $(0,1)$ |
| :--- | :--- | :--- | ---: |
| 2.9756 | Ti1 | Ti3 | N2 |
| 2.9756 | Ti1 | Ti3 | Ti3 $(0,1)$ |
| 2.0951 N2 | Ti3 | Ti3 $(0,1)$ | 119.75 |
| | | | 134.75 |

\#ff

```
```



```
##
"s1:Ni(100)-c(2x2)-CO"
"s1:Ni(100)-c(2x2)-CO"
"s2:28.6.8.6"
"s2:28.6.8.6"
"s4:PED"
"s4:PED"
"s5:L.G. Petersson, S. Kono, N.F.T. Hall, C.S. Fadley and"
"s5:L.G. Petersson, S. Kono, N.F.T. Hall, C.S. Fadley and"
"s5:J.B. Pendry"
"s5:J.B. Pendry"
"s6:Phys. Rev. Lett."
"s6:Phys. Rev. Lett."
"s7:42"
"s7:42"
"s8:1545"
"s8:1545"
"s9:1979"
"s9:1979"
"s10:Ni"
"s10:Ni"
"s11:fcc"
"s11:fcc"
"s12:(100)"
"s12:(100)"
"s13:p4m"
"s13:p4m"
"s14:p4m"
"s14:p4m"
"s15:CO"
"s15:CO"
"s16:1/2 CO/Ni"
"s16:1/2 CO/Ni"
"s17:c(2x2)"
"s17:c(2x2)"
#ta
#ta
    1.0000 1.0000 -1.0000 1.0000
    1.0000 1.0000 -1.0000 1.0000
#fa
#fa
"s23:molecular on-top adsorption, C bonding to Ni"
"s23:molecular on-top adsorption, C bonding to Ni"
"s28:average orientation of CO is determined to be within 12\0 of"
"s28:average orientation of CO is determined to be within 12\0 of"
"s29:normal"
"s29:normal"
"t1:1"
"t1:1"
"t2:CO adsorbed to 2.0L (see PRL 41, 117 & 41, 1831 (1978))"
"t2:CO adsorbed to 2.0L (see PRL 41, 117 & 41, 1831 (1978))"
"t5:checked by ARXPS: <3%ML C"
"t5:checked by ARXPS: <3%ML C"
"t6:angle resolved x-ray photoemission"
"t6:angle resolved x-ray photoemission"
"t7:polar-angle scans of C(1s) and O(1s) intensities"
"t7:polar-angle scans of C(1s) and O(1s) intensities"
"t9:single-scattering calculations for both a single co molecule"
"t9:single-scattering calculations for both a single co molecule"
"t10:and a finite cluster"
"t10:and a finite cluster"
"t11:C-O and Ni-C distance were assumed 1.15\A and 1.8\A, resp.;"
"t11:C-O and Ni-C distance were assumed 1.15\A and 1.8\A, resp.;"
"t12:various C-O tilt angles tested;"
"t12:various C-O tilt angles tested;"
"t13:bulk Ni layer spacings assumed"
"t13:bulk Ni layer spacings assumed"
"t16:visual"
"t16:visual"
#tb
#tb
    2.4890 0.0000 0.0000 2.4890 90.0000
    2.4890 0.0000 0.0000 2.4890 90.0000
        1 1
        1 1
#fb
#fb
"2d8:s1"
"2d8:s1"
#tc
#tc
    2.4890 2.4890 -2.4890 2.4890 90.0000
    2.4890 2.4890 -2.4890 2.4890 90.0000
#fc
#fc
"2d14:c(2x2)"
"2d14:c(2x2)"
#td
#td
    1.0000 1.0000 -1.0000 1.0000
    1.0000 1.0000 -1.0000 1.0000
#fd
#fd
"3d1:O1-C2: upright on-top molecule (C bonded to Ni3)"
```

"3d1:O1-C2: upright on-top molecule (C bonded to Ni3)"

```
```

\#te
1.7600
4
epir -2

| subr | -1 | | | 1.2445 A | 1.2445 A | 1.7600 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| ovrl 0 | 1 | s 1 | 0.5000 | 0 | 0.0000 f | 0.0000 f | 0.0000 | 0.00 |
| ovrl C | 2 s 1 | 0.5000 | 1 | 0.0000 f | 0.0000 f | 1.1500 | 65.34 | |
| intf Ni | 3 b | 1.0000 | 2 | 0.0000 f | 0.0875 f | | 0.00 f | 1.8000 |
| subl Ni | 4 b | 1.0000 | 3 | 0.5000 f | 0.5000 f | 1.7600 | 100.00 | |

\#fe
"b1:bond distances and angles are derived from coordinates"
\#tf
4
1.1500 01 C2 Ni3 180.00
1.8000 C2
Ni3
2.4890 Ni3 Ni3(1,0)
2.4890 Ni3 Ni4
\#ff
\#\#---
"s1:Si(111)-(\R3x\R3)R30\0-Ga"
"s2:14.31.4"
"s4:LEED"
"s5:A. Kawazu and H. Sakama"
"s6:Phys. Rev."
"s7:B37"
"s8:2704"
"s9:1988"
"s10:Si"
"s11:diamond"
"s12:(111)"
"s13:p3m1"
"s14:p31m"
"s15:Ga"
"s16:0.3 Ga/Si"
"s17:(\R3x\R3)R30\0"
\#ta
1.0000 1.0000 -2.0000 1.0000
\#fa
"s23:atomic adsorption in 4-fold coordinated T4 'top' site over"
"s24:top bilayer, with relaxations down into 2nd bilayer"
"s28:R-factors for the structures examined were, respectively:"
"s29:0.34, 0.45, 0.45, 0.25, 0.15"
"t1:1"
"t2:Ga molecular beam from Knudsen cell at 740K"
"t3:sharp LEED pattern"
"t7:I-V spectra: 9 beams at normal incidence, 30<E<190eV"
"t9:dynamical LEED"
"t11:Ga atoms in hollow site above the 4th layer Si; Ga atoms on"
"t12:3 atom Si clusters centered above 2nd layer Si; clusters"

```
"t13:centered above 4th layer Si; Ga substituted for \(1 / 3\) of top"
"t14:layer Si; T4 'top' site; in each case structural parameters"
"t15:were varied (see comments)"
"t16:RZJ=0.15"
\#tb
3.8394
0.0000
1.9197
3.3250
60.0000

11
\#fb
"2d8:s1"
\#tc
\(\begin{array}{llllll}5.7591 & 3.3250 & -5.7591 & 3.3250 & 120.0000\end{array}\)
\#fc
"2d14: (\R3x\R3)R30\0"
\#td
\(1.0000 \quad 1.0000 \quad-2.0000 \quad 1.0000\)
\#fd
"3d1:Ga1: in T4 'top' site over Si7;"
"3d2:Si2-Si7 and Si8-Si13: relaxed top 2 bilayers;"
"3d3:Si14-Si15: repeating bulk substrate layers;"
"3d4:0.1\A error bars assumed for tabulation"
\#te
3.1300

15
epir -2
subr -
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ovrl Ga} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{0} & \multicolumn{4}{|l|}{\(0.0000 \mathrm{f} \quad 0.0000 \mathrm{f} \quad 0.0000\) 0.00} \\
\hline & & & & & \multicolumn{4}{|l|}{\(0.0237 \mathrm{f} \quad 0.0174 \mathrm{f} \quad 0.1000 \quad 3.19\)} \\
\hline \multirow[t]{2}{*}{intf} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{s 1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{1} & \[
0.3158 f
\] & \multirow[t]{2}{*}{0.3158f} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1.3500 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
43.13 \\
3.19
\end{array}
\]} \\
\hline & & & & & 0.0237 f & & & \\
\hline \multirow[t]{2}{*}{intf} & \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{s 1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{2} & 0.3684 f & -0.3158f & 0.0000 & 0.00 \\
\hline & & & & & 0.0237 f & 0.0174 f & 0.1000 & 3.19 \\
\hline \multirow[t]{2}{*}{intf S} & \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.6842 \mathrm{f} \\
0.0237 \mathrm{f}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.6842 f \\
& 0.0174 \mathrm{f}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0000 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.00 \\
& 3.19
\end{aligned}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf Si} & \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.6667 f \\
& 0.0237 f
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.3509 f \\
0.0174 f
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.5800 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
18.53 \\
3.19
\end{array}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf Si} & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.3333 f \\
0.0237 f
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3333 \mathrm{f} \\
& 0.0174 \mathrm{f}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0000 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.00 \\
& 3.19
\end{aligned}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf Si} & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.3333 f \\
0.0237 f
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.6667 f \\
0.0174 f
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.6400 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
20.45 \\
3.19
\end{array}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf S} & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{s 1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.6667 f \\
& 0.0237 f
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3333 f \\
& 0.0174 f
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1.8000 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
57.51 \\
3.19
\end{array}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf S} & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{s 1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.3333 f \\
0.0237 f
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3333 f \\
& 0.0174 f
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0000 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.00 \\
& 3.19
\end{aligned}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf Si} & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.3333 \mathrm{f} \\
0.0237 \mathrm{f}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.6667 f \\
0.0174 f
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3400 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
10.86 \\
3.19
\end{array}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf Si} & \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{s 1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3414 f \\
& 0.0237 f
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0000 f \\
& 0.0174 \mathrm{f}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.5100 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
16.29 \\
3.19
\end{array}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf Si} & \multirow[t]{2}{*}{12} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.3414 f \\
0.0237 f
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3414 f \\
& 0.0174 \mathrm{f}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0000 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{0.00
3.19} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{intf Si} & \multirow[t]{2}{*}{13} & \multirow[t]{2}{*}{s1} & \multirow[t]{2}{*}{0.3333} & \multirow[t]{2}{*}{12} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.6586 \mathrm{f} \\
& 0.0237 \mathrm{f}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3172 f \\
& 0.0174 f
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0000 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.00 \\
& 3.19
\end{aligned}
\]} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{subl Si} & \multirow[t]{2}{*}{14} & \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{1.0000} & \multirow[t]{2}{*}{\[
10
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3333 \mathrm{f} \\
& 0.0110 \mathrm{f}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.3333 \mathrm{f} \\
& 0.0301 \mathrm{f}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2.8600 \\
& 0.1000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
91.37 \\
3.19
\end{array}
\]} \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlllrrr} 
subl Si & 15 b & 1.0000 & 14 & 0.3333 f & -0.6667 f & 0.7800 & 24.92 \\
& & & & 0.0110 f & 0.0301 f & 0.1000 & 3.19
\end{tabular}
\#fe
"bl:bond distances and angles are derived from coordinates"
\#tf
5
\begin{tabular}{lllr}
2.4966 & Ga1 & Si2 & Si5 \\
2.5700 & Ga1 & Si7 & Si2 \\
2.3499 & Si2 & Si5 & Si3 \\
2.3499 & Si2 & Si6 & Si9 \\
2.4287 & Si2 & Si7 & Si10
\end{tabular}
\#ff

"s1:Si(111)-(1x1)-NiSi2(111) interface"
"s2:14.28.2"
"s4:HEIS"
"s5:E.J. van Loenen, J.W.M. Frenken, J.F. van der Veen and"
"s5:S. Valeri"
"s6:Phys. Rev. Lett."
"s7:54"
"s8:827"
"s9:1985"
"s10:Si"
"s11:diamond"
"s12:(111)"
"s13:p3m1"
"s14:p3m1"
"s15:NiSi2"
"s16:epilayer"
"s17:(1x1)"
\#ta
\(\begin{array}{llll}1.0000 & 0.0000 & 0.0000 & 1.0000\end{array}\)
\#fa
"s23:epitaxial (1x1) multilayer; ideal 3D fit of top si bilayer" "s24:against bottom NiSi2 trilayer with Si-Si bonds perpendicular" "s25:to interface"
"s28:only the interfacial separation \(0.75+2.31=3.06 \backslash+0.08 \backslash \mathrm{~A}\) was"
"s29:measured; the sum is here decomposed in proportion to the"
"s30:ideal values of \(0.77+2.35=3.12 \backslash \mathrm{~A}\) "
"七1:1"
"t2:25\A epilayer from Ni deposition on ( \(7 \times 7\) ), then annealed"
"t5:Si (111) (7x7) clean by AES and ISS"
"t6:RBS of 100 keV He ions with channeling"
"t7:energy- and angle-dependent yield around two off-normal"
"t8:channel directions"
"t9:Monte Carlo simulation"
"t11:interface between ideal bulk-like lattices with two"
"t12:possible registries and variable interfacial layer"
"t13:spacing"
"t16:visual"
\#tb
3.8380
0.0000
1.9190
3.3238
60.0000
\#fb

\#fe
"b1:bond distances and angles are derived from coordinates"
\#tf
    12
2.3458 Ni 2
2.3458 Ni 2
2.3100 Ni2
2.3100 Ni2
2.3100 Ni 2
2.6985 Si 3
2.6985 Si 3
2.6985 Si3
2.3100 Si3
2.3100 Si3
2.3400 Ni 5
2.3100 Si 6
\#ff
I
\begin{tabular}{llr} 
Si3 \((1,0)\) & Si4 & 53.96 \\
Si3 \((1,0)\) & Ni5 \((1,0)\) & 109.16 \\
Si4 & Si3 & 55.20 \\
Si4 & Ni5 & 109.16 \\
Si4 & Si6 \((1,0)\) & 124.45 \\
Si4 & Si3(1,0) & 90.66 \\
Si4 & Ni5 & 53.96 \\
Si4 & Si6(1,0) & 89.10 \\
Ni5 & Si4 & 70.84 \\
Ni5 & Si6 & 108.70
\end{tabular}

\section*{A.5. Utiility Program SSDCHK}

Available from the authors is a utility program, called SSDCHK, with which you can test an ASCII file into which you have entered one or more new structures, using the format described earlier in this Appendix.

To run this program, make sure that the ASCII file to be checked is in the same subdirectory as SSDCHK and type:

\section*{SSDCHK}

SSDCHK first asks for the name of the ASCII file containing the new structure(s). As an example you may use the TEST.ASD (TEST.ASD is supplied with the SSD software), even though it contains no errors to be detected. We recommend using file names ending in .ASD for such ASCII files. SSDCHK then tests the ASCII file for conformance with the file format rules given in Appendix A.2: item length limits, order of items, inclusion of mandatory items, presence and
position of tabular blocks, etc. However, SSDCHK does not check the tabular formatting (like column positions). Nor does it check the contents of tabular blocks for geometrical consistency. The graphical presentation of the structures should be used for this purpose.

If SSDCHK finds errors, these are output to and described in file SSDCHK.ERR, which can be viewed interactively. (SSDCHK.ERR can also be printed after termination of SSDCHK to help find and correct the errors in the ASCII file). If SSDCHK finds at least one satisfactory structure in the ASCII file, it asks you whether to visualize those structures on the screen. Visualizing allows you to use the various viewing and analysis features of the SSD graphics program SURVIS to check symmetry, atomic sites, bonding neighbors, bond lengths, bond angles, etc.

After SSDCHK is terminated, one should correct any errors in the ASCII file with a word processor or text editor. Then SSDCHK should be used again to check the corrected file.

\section*{Appendix B: List of Symbols and Abbreviations}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{General:} \\
\hline ** & power (e.g., \(E^{* * 2}\) is \(E\) squared) \\
\hline // & parallel (to surface) \\
\hline \(\alpha\) & exchange parameter ( \(\mathrm{X} \alpha\) Slater local exchange potential) \\
\hline \(\theta\) & polar incidence angle (of electron, photon) \\
\hline \(\theta_{\text {D }}\) & Debye temperature \\
\hline \(\lambda\) & wavelength \\
\hline \(\phi\) & azimuthal incidence angle \\
\hline \(\Omega\) & ohm \\
\hline at. & atomic \\
\hline AV & (spin-polarized) asymmetry vs. \(E\) (voltage) curve \\
\hline bcc & body-centered cubic \\
\hline bct & body-centered tetragonal \\
\hline class. no. & SSD structure classification number \\
\hline cov. & coverage \\
\hline cum. & cumulative \\
\hline \(E\) & energy \\
\hline (eds.) & editors' comment \\
\hline Enn (nn=signed digits) & 10 to the power nn \\
\hline eV & electron volt \\
\hline fcc & face-centered cubic \\
\hline H & Hartree (atomic energy unit; \(1 \mathrm{H}=27.21161 \mathrm{eV}\) ) \\
\hline hcp & hexagonal close-packed \\
\hline H-S & Herman-Skillman (wavefunction tabulation) \\
\hline inv. & inversion \\
\hline IV, I-V & intensity vs. energy (voltage) curve \\
\hline KKR & Korringa-Kohn-Rostoker method \\
\hline L & Langmuir \\
\hline mfp & mean free path \\
\hline ML & monolayer \\
\hline m.s. & mean square, multiple scattering \\
\hline para. & parallel (to surface) \\
\hline perp. & perpendicular (to surface) \\
\hline ph. shs. & phase shifts \\
\hline pot. & potential \\
\hline PRB & Phys. Rev. B journal \\
\hline PRL & Phys. Rev. Lett. journal \\
\hline PV & (spin-)polarization vs. \(E\) (voltage) curve \\
\hline R & R-factor \\
\hline R2 & x-ray R-factor \\
\hline rel., relat. & relativistic \\
\hline rf & radio frequency \\
\hline RI & x-ray R-factor \\
\hline rms & root mean square \\
\hline
\end{tabular}
rms ampl, rms vibr. ampl. RPE
RR
RT
RT*
RVH, RVHT
Ryd
RZJ
SS
UHV
<u*u>
vibr. ampl.
Voi
Vor
w.f.
w.r.t.

\section*{Techniques}

AED
AFM
ALICISS
At. diffr.
At. scatt.
ARAES
ARPES, ARUPS,
ARXPD, ARPEFS
BSN
CMA
CMTA
CSM
CWMS
DLEED
EAPFS
EELS
EH
EM
ESDIAD
EXAFS
EXELFS
EXFAS

FIM
FYNES
GIXD
GIXS
He diffr.
HEIS
HREELS
root mean square vibration amplitude
Pendry R-factor
Pendry RR-factor (relative R-factor)
room temperature assumed room temperature
Van Hove/Tong R-factor
Rydberg (atomic energy unit; \(1 \mathrm{Ryd}=13.59 \mathrm{eV}\) )
Zanazzi-Jona R-factor
Surface Science journal
ultra-high vacuum
mean square vibration amplitude
vibration amplitude
imaginary part of inner potential (optical potential)
real part of inner potential (muffin-tin zero)
wave function
with respect to

Auger Electron Diffraction
Atomic Force Microscopy
Alkali ICISS
Atom Diffraction
Atom Scattering
Angular Resolved Auger Electron Spectroscopy
Angular Resolved (Ultraviolet / X-ray) Photoelectron
Spectroscopy / Fine Structure
Beam-Set Neglect
Cylindrical Mirror Analyzer
Constant-Momentum Transfer Averaging
Combined Space Method
Curved-Wave Multiple Scattering
Diffuse LEED
Electron Appearance Potential Fine Structure
Electron Energy Loss Spectroscopy
Electron Holography
Electron Microscopy
Electron Stimulated Desorption Ion Angular Distribution
Extended X-ray Absorption Fine Structure
Extended Electron Energy Loss Fine Structure
Extended Fine Auger Structure
Field Ion Microscopy
Fluorescence-Yield Near-Edge Structure
Grazing-Incidence X-Ray Diffraction
Grazing-Incidence X-Ray Scattering
Helium Diffraction
High-Energy Ion Scattering
High-Resolution Electron Energy Loss Spectroscopy

ICISS
INS
Ion scatt. IRS, IRAS ISS

KSLA
LEED
LEIS
LEPD
MEED
MEIS
Neutr. diffr.
NEXAFS
NMR
NPD
OPD Off-normal Photoelectron Diffraction
PED
PES
PEXAFS
PLEED
RAIRS
RBS
RHEED
RFS
RSP
SEELFS
SEM
SEXAFS
SIMS
SPLEED
SSRL
STM
TDS
TEAS
TED
TEM
TLEED
TOF-SARS
TPD
UPS
WF(C)
XANES
XAS
XPS
XRD
XSW

Impact Collision Ion Scattering Spectroscopy
Ion Neutralization Spectroscopy
Ion Scattering
Infrared (Reflection-Absorption) Spectroscopy
Ion Scattering Spectroscopy
Kinematic Sublayer Addition
Low-Energy Electron Diffraction
Low-Energy Ion Scattering
Low-Energy Positron Diffraction
Medium-Energy Electron Diffraction
Medium-Energy Ion Scattering
Neutron Diffraction
Near-Edge X-ray Absorption Fine Structure
Nuclear Magnetic Resonance
Normal Photoelectron Diffraction

Photoelectron Diffraction
Photoelectron Spectroscopy
Photoemission Extended X-ray Absorption Fine Structure
(Spin-) Polarized LEED
Reflection-Absorption Infrared Spectroscopy
Rutherford Backscattering
Reflection High-Energy Electron Diffraction
Renormalized Forward Scattering
Reverse Scattering Perturbation
Surface Electron Energy Loss Fine Structure
Scanning Electron Microscopy
Surface Extended X-ray Absorption Fine Structure
Secondary Ion Mass Spectroscopy
Spin-Polarized LEED
Stanford Synchrotron Radiation Laboratory
Scanning Tunneling Microscopy
Thermal Desorption Spectroscopy
Thermal Energy Atomic Scattering
Transmission Electron Diffraction
Transmission Electron Microscopy
Tensor LEED
Time-of-Flight Scattering and Recoiling Spectroscopy
Temperature Programmed Desorption
Ultraviolet Photoelectron Spectroscopy
Work Function (Change)
X-ray Absorption Near-Edge Structure
X-ray Absorption Spectroscopy
X-ray Photoelectron Spectroscopy
X-Ray Diffraction
X-Ray Standing Wave

\section*{Journal Names}

Acta Crys. Acta Crystallographica

Appl. Phys.
Appl. Surf. Sci.
Can. J. Chem.
Can. J. Phys.
Chem. Phys. Lett.
Europhysics Lett.
J. Am. Chem. Soc. Journal of the American Chemical Society

Jap. J. Appl. Phys. Japanese Journal of Applied Physics
J. Chem. Phys.
J. Phys. Chem.
J. Phys.
J. Vac. Sci. Technol.

Phys. Lett.
Phys. Stat. Sol.
Phys. Rev.
Phys. Rev. Lett.
S. Afr. J. Phys. South African Journal of Physics

Surf. Sci.
Sol. St. Commun.
Z. Phys.
Z. Naturf.

Applied Physics
Applications of Surface Science
Canadian Journal of Chemistry
Canadian Journal of Physics
Chemical Physics Letters
Europhysics Letters

Journal of Chemical Physics
Journal of Physical Chemistry
Journal of Physics (London)
Journal of Vacuum Science and Technology
Physics Letters
Physica Status Solidi
Physical Review
Physical Review Letters

Surface Science
Solid State Communications
ciences (not abbreviated)

Zeitschrift für Physik
Zeitschrift für Naturforschung

\section*{Appendix C: Major Surface Structure Techniques}

This database reports surface structural data from a wide variety of techniques. The most prominent techniques and their basic principles are the following, in alphabetical order (a more complete list is given in Appendix B):
a. angle-resolved photoelectron diffraction (ARPD): also labelled ARPED, ARXPD, ARPEFS, NPD, OPD, etc., depending on author and mode of operation): photons cause the emission of photoelectrons in the energy range of \(100-2000 \mathrm{eV}\), which are diffracted by the near-surface atoms before being detected as a function of emission angle and/or energy; the diffraction is simulated theoretically to obtain the structure that produces the best fit to the measured data; multiple scattering in the forward scattering direction must generally be included in such simulations; see C.S. Fadley, in "Synchrotron Radiation Research: Advances in Surface Science," edited by R.Z. Bachrach (Plenum, New York, 1992), pp 421-517.
b. ion scattering:
at low, medium or high energies (called LEIS below about 2 keV : MEIS at intermediate energies and HEIS above about 500 keV ; one also uses the name Rutherford backscattering at energies above about 2 keV ): ions are scattered by surface atoms, following classical trajectories that create shadow cones, thereby yielding atomic alignment information as a function of angular detection; theoretical simulations, which must include vibrational effects, are used to optimize corresponding structural models; see M. Aono, Y. Hou, C. Oshima and Y Ishizawa, Phys. Rev. Lett. 49, 567 (1982), H. Niehus and G. Comsa, Surf. Sci. 140, 18 (1984), J.F. van der Veen, Surf. Sci. Rep. 5, 199 (1985).
c. low-energy electron diffraction (LEED): electrons in the range \(20-300 \mathrm{eV}\) are elastically diffracted by a surface into sharp beams (for ordered surfaces) or diffuse angular distributions (for disordered layers); the intensities are generally measured as a function of energy and the resulting I-V curves simulated theoretically using a surface geometry that is made to
vary until the fit with experiment is optimized; multiple scattering must generally be included in such simulations; see J.B. Pendry, 'Low-Energy Electron Diffraction'", Academic Press (London) 1974, M.A. Van Hove, W.H. Weinberg and C.-M. Chan, 'Low-Energy Electron Diffraction', Springer-Verlag (Heidelberg) 1986.
d. surface extended x-ray absorption fine structure (SEXAFS):
photons are absorbed by surface atoms, which emit electrons that scatter back from nearby atoms and modulate the absorption probability as a function of the photon energy (and thereby of the electron energy in the range \(100-1000 \mathrm{eV}\) ); surface sensitivity is obtained by detecting emitted electrons or ions; directional information can be obtained by using variable incident polarization; Fourier transformation, after correction for phase shifts, gives approximate interatomic distances, while a full theoretical simulation of the process allows more reliable fitting of the experimental data; see P.H. Citrin, J. Phys. (Paris), Colloque C8, 437 (1986), J.E. Rowe, in "Synchrotron Radiation Research: Advances in Surface Science,' edited by R.Z. Bachrach (Plenum, New York, 1992).
e. x-ray diffraction (XRD):
\(x\)-rays are diffracted from surfaces by choosing grazing incidence and/or grazing emergence and/or fractionalorder diffraction conditions; intensities are measured as a function of scattering angles and/or energy; direct theoretical simulation, as in bulk x-ray diffraction, may be preceded by a Patterson function interpretation; see R. Feidenhans'l, Surf. Sci. Rep. 10, 105 (1989).
f. x-ray standing waves (XSW):
bulk-reflected waves interfering with the incident x-ray wave create standing waves, which can be phase shifted across surface atoms, yielding their positions with respect to the bulk crystal structure; surface sensitivity is obtained by monitoring element-specific emission from foreign adsorbates, e.g. fluorescence; see P.L. Cowan, J.A. Golovchenko and M.F. Robbins, Phys. Rev. Lett. 44, 1680 (1980).

\section*{WATSON, VAN HOVE, AND HERMANN}

\section*{Appendix D: List of Covalent Radii}

This list of covalent radii is mainly provided as a guide for estimating bond lengths. The radii have been compiled from a variety of sources. All values are in Ångströms.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Element} & Radius & \multicolumn{2}{|l|}{Element} & \multirow[t]{2}{*}{Radius
\[
1.2248
\]} & \multicolumn{2}{|l|}{Element} & Radius \\
\hline 1 & (H) & 0.4350 & 32 & (Ge) & & 63 & (Eu) & 1.9840 \\
\hline 2 & (He) & 0.9300 & 33 & (As) & 1.2000 & 64 & (Gd) & 1.8180 \\
\hline 3 & (Li) & 1.5199 & 34 & (Se) & 1.1600 & 65 & (Tb) & 1.8005 \\
\hline 4 & (Be) & 1.1430 & 35 & (Br) & 1.1400 & 66 & (Dy) & 1.7951 \\
\hline 5 & (B) & 0.9750 & 36 & (Kr) & 1.1200 & 67 & (Ho) & 1.7886 \\
\hline 6 & (C) & 0.6550 & 37 & (Rb) & 2.4700 & 68 & (Er) & 1.7794 \\
\hline 7 & ( N ) & 0.7500 & 38 & (Sr) & 2.1513 & 69 & (Tm) & 1.7687 \\
\hline 8 & (O) & 0.7300 & 39 & (Y) & 1.8237 & 70 & (Yb) & 1.9396 \\
\hline 9 & (F) & 0.7200 & 40 & (Zr) & 1.6156 & 71 & (Lu) & 1.7515 \\
\hline 1 & (H) & 0.4350 & 32 & (Ge) & 1.2248 & 63 & (Eu) & 1.9840 \\
\hline 2 & (He) & 0.9300 & 33 & (As) & 1.2000 & 64 & (Gd) & 1.8180 \\
\hline 3 & (Li) & 1.5199 & 34 & (Se) & 1.1600 & 65 & (Tb) & 1.8005 \\
\hline 4 & (Be) & 1.1430 & 35 & (Br) & 1.1400 & 66 & (Dy) & 1.7951 \\
\hline 5 & (B) & 0.9750 & 36 & (Kr) & 1.1200 & 67 & (Ho) & 1.7886 \\
\hline 6 & (C) & 0.6550 & 37 & (Rb) & 2.4700 & 68 & (Er) & 1.7794 \\
\hline 7 & (N) & 0.7500 & 38 & (Sr) & 2.1513 & 69 & (Tm) & 1.7687 \\
\hline 8 & (O) & 0.7300 & 39 & (Y) & 1.8237 & 70 & (Yb) & 1.9396 \\
\hline 9 & (F) & 0.7200 & 40 & (Zr) & 1.6156 & 71 & (Lu) & 1.7515 \\
\hline 10 & ( Ne ) & 0.7100 & 41 & ( Nb ) & 1.4318 & 72 & (Hf) & 1.5973 \\
\hline 11 & ( Na ) & 1.8579 & 42 & (Mo) & 1.3626 & 73 & (Ta) & 1.4280 \\
\hline 12 & (Mg) & 1.6047 & 43 & (Tc) & 1.3675 & 74 & (W) & 1.3705 \\
\hline 13 & (Al) & 1.4318 & 44 & (Ru) & 1.3529 & 75 & (Re) & 1.3800 \\
\hline 14 & (Si) & 1.1758 & 45 & (Rh) & 1.3450 & 76 & (Os) & 1.3676 \\
\hline 15 & (P) & 1.0600 & 46 & (Pd) & 1.3755 & 77 & (Ir) & 1.3573 \\
\hline 16 & (S) & 1.0200 & 47 & ( Ag ) & 1.4447 & 78 & (Pt) & 1.3873 \\
\hline 17 & (Cl) & 0.9900 & 48 & (Cd) & 1.4894 & 79 & ( Au ) & 1.4419 \\
\hline 18 & (Ar) & 0.9800 & 49 & (In) & 1.6662 & 80 & (Hg) & 1.5025 \\
\hline 19 & (K) & 2.2620 & 50 & (Sn) & 1.5375 & 81 & (Tl) & 1.7283 \\
\hline 20 & (Ca) & 1.9758 & 51 & (Sb) & 1.4000 & 82 & (Pb) & 1.7501 \\
\hline 21 & (Sc) & 1.6545 & 52 & (Te) & 1.3600 & 83 & (Bi) & 1.4600 \\
\hline 22 & (Ti) & 1.4755 & 53 & (I) & 1.3300 & 84 & (Po) & 1.4600 \\
\hline 23 & (V) & 1.3090 & 54 & (Xe) & 1.3100 & 85 & (At) & 1.4500 \\
\hline 24 & (Cr) & 1.2490 & 55 & (Cs) & 2.6325 & 86 & (Rn) & 1.4300 \\
\hline 25 & (Mn) & 1.3500 & 56 & (Ba) & 2.1705 & 87 & (Fr) & 2.5000 \\
\hline 26 & (Fe) & 1.2411 & 57 & (La) & 1.8725 & 88 & (Ra) & 2.1400 \\
\hline 27 & (Co) & 1.2535 & 58 & (Ce) & 1.8243 & 89 & (Ac) & 1.8775 \\
\hline 28 & ( Ni ) & 1.2460 & 59 & (Pr) & 1.8362 & 90 & (Th) & 1.7975 \\
\hline 29 & (Cu) & 1.2780 & 60 & (Nd) & 1.8295 & 91 & (Pa) & 1.6086 \\
\hline 30 & (Zn) & 1.3325 & 61 & (Pm) & 1.8090 & 92 & (U) & 1.5683 \\
\hline 31 & (Ga) & 1.3501 & 62 & (Sm) & 1.8040 & & & \\
\hline
\end{tabular}

\section*{Appendix E: The 17 2D Space Groups}

This appendix illustrates the 17 two-dimensional space groups that exist for surfaces and interfaces in strictly two dimensions. SSD characterizes both ideal substrate terminations and actual surfaces by their respective space groups.

Additional space groups are possible if one allows symmetry operations across the interface, e.g., mirror symmetry about the interface, as may happen in twinning of two crystals. Then, 80 space groups exist; they have been tabulated by Wood (1964). However, situations where any of these additional space groups might be useful are probably rare in surface science. The 17 2D space groups always remain applicable, even if they do not convey all the useful information in those rare cases.

The following diagrams show, for each of the 172 D space groups:
- one unit cell outlined in heavy lines (where not overdrawn by thin symmetry lines);
- all applicable symmetry elements: 2-, 3-, 4- and 6fold rotation axes (perpendicular to the surface), drawn as black ovals, triangles, squares and hexagons; mirror lines (planes perpendicular to the surface) drawn as thin lines, glide lines (planes perpendicular to the surface) as dashed lines;
- a general point in the unit cell, symbolized by a yin-and-yang figure, together with all other points equivalent to it by symmetry; the left-handed and right-handed yin-and-yang symbols show how orientations are mirrored and rotated into each other.

The 17 two-dimensional space groups


\section*{Appendix F: Examples of Superlattice Cells and Notations}

This appendix illustrates many common 2-dimensional superlattices and their notations. In each case one common unit cell of the superlattice is drawn; occasionally, another equivalent unit cell is also included. The Wood, matrix and Bibérian (rect) notations are given wherever they apply. For centered unit cells, a non-centered cell is also shown outlined with thinner lines.

The illustrations assume either a hexagonal substrate lattice or a square substrate lattice. Lattice vectors of the \((1 \times 1)\) substrate unit cell are shown. The superlattice notation assumes this choice. This unit cell choice is non-unique, e.g., an angle of \(60^{\circ}\) could have been chosen instead of \(120^{\circ}\) for the hexagonal lattice; a different \((1 \times 1)\) unit cell can change the
superlattice notation, especially the matrix notation. Therefore, the superlattice notation is also non-unique, i.e. other notations may also apply.

The Bibérian (rect) notation is only valid for a hexagonal substrate lattice and it is only used for rectangular or centered rectangular superlattice cells.

Other types of substrate lattices (rectangular or oblique) can be obtained by simple one-dimensional stretching or shearing of the illustrated lattices. The matrix notation remains valid under these modifications. However, some of the Wood notations are then no longer applicable. The Wood notation assumes that the two lattice vectors of the superlattice unit cell have the same angle between them as those of the substrate. This angle in general is not preserved in going to rectangular or oblique lattices.

\section*{Superlattices on hexagonal substrate lattice}



\section*{Superlattices on square substrate lattice}

\((1 \times 2),\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\)

\(c(2 \times 2),(\sqrt{2} \times \sqrt{2}) R 45^{\circ},\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\)

\((2 \times 2),\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\)

\((2 \sqrt{2} \times \sqrt{2}) R 45^{\circ},\left(\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right)\)

\((1 \times 3),\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)\)

\(c(4 \times 2),\left(\begin{array}{cc}2 & 1 \\ -2 & 1\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)\)

\section*{Appendix G: Contacts}

If you have questions or comments about the Surface Science Database, please contact:

\section*{Joan Sauerwein}

National Institute of Standards and Technology
Standard Reference Data
Building 221, Room A320
Gaithersburg, MD 20899-0001
Internet: srdata@enh.nist.gov
Phone: (301) 975-2208
FAX: (301) 926-0416

If you have technical questions relating to the data, contact:

\author{
P.R. Watson \\ Department of Chemistry \\ Oregon State University \\ Corvallis, OR 97331, USA \\ e-mail: watsonp@ccmail.orst.edu
}
M.A. Van Hove

Materials Sciences Division
Lawrence Berkeley Laboratory
Berkeley, CA 94720, USA
e-mail: vanhove@lbl.bitnet or vanhove@lbl.gov
K. Hermann

Abteilung Theorie
Fritz-Haber-Institut
Faradayweg 4-6
D-14195 Berlin
Germany
e-mail: hermann@FHI-Berlin.MPG.DE
\begin{tabular}{ccc} 
6. Index & Lattice & \\
This refers to section, subsection and appendix numbers. & Bulk & Super-
\end{tabular}

2D Bulk Symmetry
2D Surface Symmetry
Abbreviations
Adsorbate
Analytical Methods
ASCII Files for SSD
Authors
BALSAC
Bibérian Notation
Bibliography
Bond Distances and Angles
Bulk Lattice
Repeat Vectors
Substrate Unit Cell
Cell Type
Chemical Element
Classification Number
Coadsorbates
Commensurate Superlattice
Comments
Common Name
Contamination
Coordinates
Coverage
Criteria for Inclusion In SSD
Crystal Face
Crystallinity
Data Item
Definition
Format
Data Set, Experimental
Disordered Lattice
Distance, Interatomic
Domain Orientations
Electronic Version of SSD
Epilayer
Error Bars
Files
ASCII
Paradox
Incommensurate Superlattice
Interatomic Distance
Interface
Interface Layer
Interlayer Spacing
Journal
Abbreviations
Data Item
1.4

App. A
1.4.6
1.4.11
1.4.13
1.4.10
1.2
1.4.12
1.4.12
1.4.2
1.4.2

App. B
1.4.2
1.4.5

App. A
1.4.1
1.5

App. F 4
1.4.13
1.4.2
1.4.12
1.4.10
1.4.12
1.4.12
1.4.1
1.4.2
1.4.11
1.4.4
1.4.1
1.4.5
1.4.12
1.4.2
1.2
1.4.2
1.4.5

App. A
App. A. 1
1.4.11
1.4.13
1.4.12
1.4.12
1.4.12

App. B
1.4.1

LATUSE
Matrix Notation
Method, Experimental
1.5
1.4.2, App. F
1.4.6

Non-reconstructive Lattice-gas Disorder 1.4.11
Notation, Superlattice
Number of Samples
App. F
1.4.5

Occupancy 1.4.12
Overlayer
1.4.12

Pattern, LEED 1.4.2
Quality of Experiment-theory Fit 1.4.9
Radii, Covalent App. D
Randomly Mixed Layer 1.4.11
Reconstructive Lattice-gas Disorder 1.4.11
Rect Notation App. F
Region 1.4.12
Repeat Vectors, Bulk 1.4.12
SARCH 1.5
SCIS 1.5
Site
Occupancy 1.4.12
Orientations 1.4.10
Software, Related \(\quad 1.5,4\)
Space Groups 14.2, App.E
SSDCHK
Structures Examined
App. A. 5
1.4.8

Structure Type 1.4.3
Submission of New Structures App. A
Substrate 1.4.2
Superlattice
Cells
Commensurate 1.4.11
Disordered
Examples
Incommensurate
Notations
Surface 2D Unit Cells
Symbols, List
Technique
Data Item
List of Abbreviations App. B
Temperature 1.4.2
Treatment
Data 1.4.7
Sample \(\quad 1.4 .5\)
Use of SSD 1.2
Utility SSDCHK App. A. 5

American Institute of Physics
500 Sunnyside Boulevard Woodbury, NY 11797-2999

\author{
Roland W. Schmitt \\ Marc H. Brodsky \\ Roderick M. Grant \\ Arthur T. Bent \\ John S. Rigden \\ Darlene Carlin-Walters \\ Chair, Governing Board \\ Executive Director and CEO Secretary \\ Treasurer and CFO \\ Director of Physics Programs \\ Vice President, Publishing
}

The American Institute of Physics was founded in 1931; it is chartered as a membership corporation with leading societies in the fields of physics and astronomy as members. The Institute combines into one operating agency those functions which can best be done by the societies jointly. Its purpose is the advancement and diffusion of the knowledge of physics and its application to human welfare. About 100000 physicists belong to its ten member societies: The American Physical Society, Optical Society of America, Acoustical Society of America, Society of Rheology, American Association of Physics Teach-
ers, American Crystallographic Association, American Astronomical Society, American Association of Physicists in Medicine, American Vacuum Society, American Geophysical Union. In addition, there are 20 Affiliated Societies, 84 Corporate Associates, and 6500 members of the Society of Physics Students.

For itself and its member societies, AIP publishes 20 archival journals, 17 translated Soviet journals, a general interest journal, conference proceedings, handbooks, and bulletin-programs, as well as an integrated package of current awareness journals, magnetic tapes, and microfilm. AIP also serves the public by making available to the press and other channels of public information reliable communications on physics and astronomy and their progress; carries on extensive career planning and placement activities; encourages and assists in the documentation and study of the history and philosophy of recent physics; cooperates with local, national, and international organizations devoted to physics and the related sciences; and fosters the relations of the science of physics to other sciences and to the arts and industries.

\section*{American Chemical Society}

1155 Sixteenth Street, NW
Washington, DC 20036-9976

\author{
Paul H. L. Walter Chairman of the Board \\ Ned D. Heindel \\ John K. Crum \\ Brian A. Bernstein \\ D.H. Michael Bowen \\ Robert J. Massie Director, Chemical \\ Robert H. Marks \\ Halley A. Merrell \\ Sylvia A. Ware \\ President \\ Executive Director \\ Treasurer \\ Deputy Executive Director and Secretary Abstracts Service \\ Director, Publications Division* \\ Director, Membership Division \\ Director, Education Division
}

The American Chemical Society was founded in 1876 as a scientific and educational society, and in 1937 was granted a national charter by an act of Congress. Its objectives include the advancement of chemistry, the promotion of research in science and industry, improvement of qualifications and usefulness of chemists, increased diffusion of chemical knowledge, and the promotion of scientific interest and inquiry.
ACS publishes 26 magazines, journals, and other scientific periodicals in addition to its participation in publication of the Journal of Physical and Chemical Reference Data. It also publishes books and other nonperiodical reports and operates the Chemical Abstracts Service, the key to the world's chemical literature. It pursues its objectives through its services to chemists and chemical engineers and to education, industry, and government.
*Inquiries regarding ACS participation in JPCRD should be directed to this division.

\section*{National Institute of Standards and Technology}

\section*{U.S. Department of Commerce Gaithersburg, MD 20899-0001}
U.S. Department of Commerce
Technology Administration
National Institute of Standards
and Technology

Ronald H. Brown, Secretary
Mary L. Good, Under Secretary for Technology
Arati Prabhakar, Director

The National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards, was established by an act of Congress 3 March 1901. NIST works to strengthen U.S. industry's international competitiveness, advance science and engineering, and improve public health, safety, and the environment. With an annual budget of more than \(\$ 350\) million and about 3100 staff members, NIST conducts science and engineering research in commercially important fields such as advanced materials, information systems, biotechnol-
ogy, optoelectronics, computer-integrated manufacturing, and sensor technology.

NIST's laboratory research is designed to support development of critical emerging technologies and the new measurement methods and standards necessary to make them commercially viable. The ability of U.S.based industries to exploit these new technologies determines in large part the health of the U.S. economy.

Several new NIST programs are designed to help spur innovation at U.S. businesses through seed money for development of generic technologies; grants to states for support of technology transfer programs; and financial and technical assistance to help small and mid-sized companies adopt more efficient manufacturing methods.

Throughout its history, NIST has helped industry to develop high-quality products and processes by supplying standard reference materials and data; by continuously improving technologies for precision measurements of mass, time, length, voltage, radiation, and other units; and through active participation in voluntary standardssetting bodies.

Journal of Physical and Chemical Reference Data

Monograph No. 5

\title{
Atlas of Surface Structures: Volume 18 (1994) Based on the NIST Surface Structure Database (SSD)
}

\author{
P. R. Watson \\ Department of Chemistry \\ Oregon State University \\ Corvallis, Oregon 97331
}
M. A. Van Hove

Materials Sciences Division
Lawrence Berkeley Laboratory
University of Calfornia
Berkeley, California 94720
K. Hermann

Abteilung Theorie
Fritz-Haber-Institut
Faradayweg 4-6
D-14195 Berlin, Germany

Major Contributors:
S. Crampin, G. Darling, P. Pinkava, A. Barbieri, J. Batteas,
A. Kaduwela, N. Materer, U. Starke, W. Weiss

\section*{Consultants:}
G. A. Somorjai and J. B. Pendry

\(\overline{\text { AIP }}\)
Published by the American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology

\title{
Atlas of Surface Structures: Volume 1B (1994) Based on the NIST Surface Structure Database (SSD)
}

\author{
P.R. Watson \\ Department of Chemistry, Oregon State University, Corvallis, OR 97331
}

\section*{M.A. Van Hove}

Materials Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
and
K. Hermann

Abteilung Theorie, Fritz-Haber-Institu, Faradayweg 4-6, D-14195 Berlin, Germany

Major Contributors:
S. Crampin, G. Darling, P. Pinkava, A. Barbieri, J. Batteas, A. Kaduwela, N. Matexer, U. Starke, W. Weiss

Consultants:
G. A. Somorjai and J. B. Pendry

These volumes contain listings of crystallographic information on almost 600 surface structures contained in the NIST Surface Structure Database (SSD). These are prefaced by explanatory text and are combined with high quality computer-generated views of the surface. The listings include full literature references, statements on experimental and theoretical methods used, bulk and surface unit cells, a complete list of atomic coordinates for overlayer, epilayer, interfacial and bulk atoms and selected bond lengths and angles.

Key words: electron diffraction; ion scattering; LEED; NEXAFS; photoelectron diffraction; SEXAFS; surface crystalography; surface structure; surface structure database; X-ray diffraction.

\section*{Foreword}

The Journal of Physical and Chemical Reference Data is published jointly by the American Institute of Physics and the American Chemical Society for the National Institute of Standards and Technology (NIST). Its objective is to provide critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation. One of the principal sources of material for the journal is the NIST Standard Reference Data Program, a program promoting the compilation and critical evaluation of property data.

The regular issues of the Journal of Physical and Chemical Reference Data are published bimonthly and contain compilations and critical data reviews of moderate length. Longer works, volumes of collected tables, and other material unsuited to a periodical format have previously been published as Supplements to the Journal. Beginning in 1989 the generic title of these works has been changed to Monograph, which reflects their character as independent publications. This volume, "Atlas of Surface Structures: Volume 1B (1994)' by P.R. Watson, M.A. Van Hove, and K. Hermann is the second part of Monograph No. 5 of the Journal of Physical and Chemical Reference Data.

Jean W. Gallagher, Editor
Journal of Physical and Chemical Reference Data

\title{
Atlas of Surface Structures: Volume 1B (1994) Based on the NIST Surface Structure Database (SSD)
}

\author{
P.R. Watson \\ Department of Chemistry, Oregon State University, Corvallis, OR 97331
}

\section*{M.A. Van Hove}

Materials Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
and
K. Hermann

Abteilung Theorie, Fritz-Haber-Institu, Faradayweg 4-6, D-14195 Berlin, Germany

Major Contributors:
S. Crampin, G. Darling, P. Pinkava, A. Barbieri, J. Batteas, A. Kaduwela, N. Matexer, U. Starke, W. Weiss

Consultants:
G. A. Somorjai and J. B. Pendry

These volumes contain listings of crystallographic information on almost 600 surface structures contained in the NIST Surface Structure Database (SSD). These are prefaced by explanatory text and are combined with high quality computer-generated views of the surface. The listings include full literature references, statements on experimental and theoretical methods used, bulk and surface unit cells, a complete list of atomic coordinates for overlayer, epilayer, interfacial and bulk atoms and selected bond lengths and angles.

Key words: electron diffraction; ion scattering; LEED; NEXAFS; photoelectron diffraction; SEXAFS; surface crystalography; surface structure; surface structure database; X-ray diffraction.

\section*{Contents}

\section*{Volume 1A}
1. Introduction ..... 5
1.1. Background. ..... 5
1.2. Purpose of This Atlas ..... 5
1.3. How to use This Atlas ..... 6
1.4. Information Content of This Atlas ..... 6
1.4.1. General Information ..... 7
1.4.2. Surface Type ..... 7
1.4.3. Structure Type ..... 9
1.4.4. Comments ..... 9
1.4.5. Sample Preparation ..... 9
1.4.6. Data Collection ..... 9
1.4.7. Theory/Data Treatment ..... 9
1.4.8. Structures Examined. ..... 9
1.4.9. Quality of Experiment-Theory Fit ..... 9
1.4.10. 2D Unit Cells ..... 10
1.4.11. Lattice Definitions. ..... 10
1.4.12. 3D Coordinates ..... 11
1.4.13. Bond Distances and Angles ..... 13
1.5. Relation of this Atlas to Other Databases and Graphics Software ..... 13
2. Catalog of Structures ..... 14
2.1. Alphanumerical Index of Structures ..... 14
2.2. Main Table of Structures ..... 19
3. Acknowledgments ..... 879
4. Bibliography and Related Software ..... 879
4.1. References ..... 879
4.2. Software ..... 879
5. Appendices ..... 880
A. Entering New Structural Data into SSD ..... 880
A.1. Submitting New Structures for Inclusion in SSD ..... 880
A.2. Format of ASCII Files for SSD ..... 880
A.3. Generic ASCII File ..... 882
A.4. Sample ASCI Files ..... 886
A.5. Utility Program SSDCHK ..... 894
B. List of Symbols and Abbreviations ..... 895
C. Major Surface Structure Techniques ..... 899
D. List of Covalent Radi ..... 900
E. The 172 D Space Groups ..... 901
F. Examples of Superlattice Cells and Notations ..... 903
G. Contacts ..... 906
6. Index ..... 907
Volume 18
1. Introduction ..... 5
2. Structural Figures ..... 5
2.1. Categorized Index of Figures ..... 5
2.2. Figures ..... 11
3. Acknowledgments ..... 343
4. Bibliography and Related Software ..... 343
4.1. References ..... 343
4.2. Software ..... 343

\section*{1. Introduction}

This atlas of surface structures is aimed at scientists and students in physics, chemistry and materials sciences who wish to know and compare the detailed atomic-scale structures of surfaces obtained from experiment. It is a printed version of the Surface Structure Database (SSD) created, with partial NIST support, and published in 1993 in an electronic form for PCs and compatible computers. This printed version contains the same information (save for the correction of a few typographical errors).

The first edition attempts to cover all known surface structures since the inception of surface crystallography in the early 1970s through the end of 1991. The number of included
structures is 597 . Volume 1 A provides extensive structural information about surface structures determined from experiment. A unified format is used to allow convenient direct comparisons of related but different structures, or of results obtained with different techniques for the same structure. Details of the format of these tables is provided in Sec. 1.4 of that volume.

The second volume of this atlas shows carefully selected views of the surface structures that complement the extensive numerical data tabulated in Volume 1A. These illustrations use a logical categorization scheme described in Sec. 2.1. In this way the reader can directly compare the illustration with the accompanying numerical data.

\section*{2. Structural Figures}

The figures are ordered in a systematic manner starting with elemental metals, clean and with adsorbates or epitaxial layers, and then progressing to elemental and compound
semiconductors, alloys and complex substrates. The figure numbers and most indented labels (e.g. 1a.1a.1) refer to figures shown in 2.2 , which are ordered as in this index.

\subsection*{2.1. Categorized Index of Figures}
\begin{tabular}{|c|c|c|c|c|}
\hline Category & Figure no. & Category no. & Structure & Page no. \\
\hline \multicolumn{5}{|l|}{1 elemental metal substrates la clean} \\
\hline \multicolumn{5}{|l|}{1a.1 fec} \\
\hline \multicolumn{5}{|l|}{la.1a fec(111)} \\
\hline & 1 & 1a.1a. 1 & umreconstructed & 11 \\
\hline \multicolumn{5}{|l|}{\(1 \mathrm{a} .16 \mathrm{fcc}(100)\)} \\
\hline & 2 & 1a.1b.1 & unreconstructed & 13 \\
\hline & 3 & 1a.1b.2a,b & reconstructed quasihexagonal & 15 \\
\hline \multicolumn{5}{|c|}{la.lc fce(110)} \\
\hline & 4 & 1a.lc. 1 & unreconstructed & 17 \\
\hline & 5 & 1a.1c. 2 & reconstructed ( \(1 \times 2\) ) missing/added rows & 19 \\
\hline & 6 & 1a.1c. 3 & reconstructed ( \(1 \times 3\) ) 2 missing/added rows & 21 \\
\hline & 7 & 12.1c. 4 & reconstructed ( \(1 \times 3\) ) 3 misstrg/added rows & 23 \\
\hline \multicolumn{5}{|r|}{la.d fec(3!d)} \\
\hline & 8 & 1a.1d.1 & uareconstructed & 25 \\
\hline \multicolumn{5}{|l|}{la.le fcc(210)} \\
\hline & 9 & la.1e. 1 & urreconstructed & 27 \\
\hline \multicolumn{5}{|l|}{1a.1f fcc(310)} \\
\hline & - & 1a.1f. 1 & unreconstructed & \\
\hline \multicolumn{5}{|l|}{\(12.1 \mathrm{~g} \mathrm{fcc}(33 \mathrm{l})\)} \\
\hline & 10 & 1a.1g.1 & unreconstructed & 29 \\
\hline \multicolumn{5}{|r|}{\(1 \mathrm{~s} .1 \mathrm{lf} \mathrm{foc}(410)\)} \\
\hline & - & 1a.1b.1 & unreconstructed & \\
\hline \multicolumn{5}{|l|}{12.2 bce} \\
\hline \multicolumn{5}{|l|}{la 2 a bce(110)} \\
\hline & 11 & 1a.2a. 1 & unreconstructed & 31 \\
\hline \multicolumn{5}{|r|}{\(1 \mathrm{a} 2 \mathrm{bocc}(100)\)} \\
\hline & 12 & 1 a .2 b .1 & unreconstructed & 33 \\
\hline & 13 & 1a.2b. 2 & reconstucted \(\mathrm{c}(2 \times 2)\) & 35 \\
\hline & 14 & 1a.2b. 3 & reconstructed disordered & 37 \\
\hline \multicolumn{5}{|l|}{13.2c bce(111)} \\
\hline & 15 & 1a.2c. 1 & unreconstructed & 39 \\
\hline \multicolumn{5}{|l|}{1a.2d bcec(210)} \\
\hline & 16 & 1a.2d.1 & unreconstructed & 41 \\
\hline \multicolumn{5}{|l|}{1a.2e bcc(211)} \\
\hline & 17 & 1a.2e. 1 & unreconstructed & 43 \\
\hline \multicolumn{5}{|l|}{\(1 \mathrm{a} .2 \mathrm{f} \operatorname{bcc}(310)\)} \\
\hline & 18 & 1 a .2 f .1 & unreconstructed & 45 \\
\hline
\end{tabular}
2.1. Catagorized Index of Figures - Continued

2.1. Catagorized Index of Figures - Continued


\subsection*{2.2. Figures}


Fig. 1a: fcc(111)-(1x1) (top view)


Fig. 1b: fcc(111)-(1x1) (perspective)


Fig. 2a: fcc(100)-(1x1) (top view)


Fig. 2 b : \(\mathrm{fcc}(100)-(1 \times 1)\) (perspective)


Fig. 3a: \(\operatorname{Ir}(100)\)-(1x5) (top view)


Fig. \(3 \mathrm{~b}: \operatorname{Ir}(100)-(1 \times 5)\) (perspective)


Fig. 4a: \(\mathrm{fcc}(110)-(1 \times 1)\) (top view)


Fig. 4b: fcc(110)-(1x1) (perspective)


Fig. 5a: fcc(110)-(1x2) missing row (top view)


Fig. 5 b : fcc(110)-(1x2) missing row (perspective)


Fig. 6a: fcc(110)-(1×3) facets I (top view)


Fig. 6b: fcc(110)-(1x3) facets I (perspective)


Fig. 7a: fcc(110)-(1x3) facets II (top view)


Fig. 7b: fcc(110)-(1x3) facets II (perspective)


Fig. 8a: \(\mathrm{fcc}(311)-(1 \times 1)\) (top view)


Fig. 8 b : \(\mathrm{fcc}(311)-(1 \times 1)\) (perspective)


Fig. 9a: fcc(210)-(1x1) (top view)


Fig. 9b: fcc(210)-(1x1) (perspective)


Fig. 10a: \(\mathrm{fcc}(331)-(1 \mathrm{x} 1)\) (top view)


Fig. 10b: fcc(331)-(1x1) (perspective)


Fig. 11a: bcc(110)-(1x1) (top view)


Fig. 11b: bcc(110)-(1x1) (perspective)


Fig. 12a: bcc(100)-(1x1) (top view)


Fig. 12b : bcc(100)-(1x1) (perspective)


Fig. 13a: W(100)-c(2×2) (top view)


Fig. 13b: \(W(100)-c(2 \times 2)\) (perspective)


Fig. 14a: bce(100)-(1×1) disordered (top view)


Fig. 14b: fcc(100)-(1x1) disordered (perspective)


Rig. 15a: bcc(111)-(1x1) (top view)


Fig. 15b: bcc(111)-(1x1) (perspective)


Fig. 16a: bcc(210)-(1x1) (top view)


Fig. 16b: bcc(210)-(1x1) (perspective)


Fig. 17a: bcc(211)-(1x1) (top view)


Fig. 17b: bcc(211)-(1x1) (perspective)


Fig. 18a: bcc(310)-(1x1) (top view)


Fig. 18b : bce(310)-(1x1) (perspective)


Fig. 19a: hcp(0001)-(1x1) (top view)


Fig. 19b: hcp(0001)-(1x1) (perspective)


Fig. 20a: hcp(10-10)-(1x1) (top view)


Fig. 20b: hcp(10-10)-(1x1) (perspective)


Fig. 2la: hcp(11-20)-(1x1) (top view)


Fig. 21b: hcp(11-20)-(1×1) (perspective)


Fig. 22a: fcc(111) high symmetry adsorbate sites (top view)


Fig. 22b: fce(111) high symmetry adsorbate sites (perspective)


Fig. 23a: fcc(111)-(1x1)Ad (top view)


Fig. 23b: fcc(111)-(1x1)Ad (perspective)


Fig. 24a: fcc(111)-( \(\sqrt{3 x} \sqrt{3}\) )R \(30^{\circ}\)-Ad; \(\sim 2 A d\) (top view)


Fig. 24b: fcc \((111)-(\sqrt{3 x} \sqrt{3})\) R \(30^{\circ}-\mathrm{Ad} ; \sim 2 \mathrm{Ad}\) (perspective)


Fig. 25a: fcc(111)-p(2x2)-Ad; ~-2Ad (top view)


Fig. 25b: fcc(111)-p(2x2)-Ad; ~-2Ad (perspective)


Fig. 26a: Al(111)-(1x1)-O (subsurface) (top view)


Fig. 26b: Al(111)-(1x1)-O (subsurface) (perspective)


Fig. 27a: fcc(111)-( \(\sqrt{3} \mathrm{x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Ad} ; \sim(2 \times 2)\) Ad (substitutional) (top view)


Fig. 27b: fcc(111) \(-(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Ad} ; \sim \sim(2 \times 2) \mathrm{Ad}\) (substitutional) (perspective)


Fig. 28a: fcc(100) adsorbate sites (top view)


Fig. 28b: fcc(100) adsorbate sites (perspective)


Fig. 29a: fcc(100)-c(2×2)-Ad (top view)


Fig. 29b: fcc(100)-c(2x2)-Ad (perspective)


Fig. 30a: fcc(100)-p(2x2)-Ad; \(\sim-c(4 \times 2)\)-Ad (top view)


Fig. 30b: fcc(100)-p(2x2)-Ad; ~-c(4x2)-Ad (perspective)


Fig. 31a: \(\mathrm{Cu}(100) \mathrm{c}(5 \sqrt{2} \mathrm{x} \sqrt{2}) \mathrm{R} 45^{\circ}-3 \mathrm{~Pb}\) (top view)


Fig. \(31 \mathrm{~b}: \mathrm{Cu}(100)-\mathrm{c}(5 \sqrt{2} \mathrm{x} \sqrt{2}) \mathrm{R} 45^{\circ}-3 \mathrm{~Pb}\) (perspective)


Fig. 32a: fcc(100)-p4g(2x2)-2Ad (top view)


Fig. 32b: fcc(100)-p4g(2x2)-2Ad (perspective)


Fig. 33a: fcc(100)-c(2x2)-Ad (substitutional) (top view)


Fig. 33b: fcc(100)-c(2x2)-Ad (substitutional) (perspective)


Fig. 34a: \(\mathrm{Cu}(100)-(2 \sqrt{2} \mathrm{x} \sqrt{2}) \mathrm{R} 45^{\circ}-2 \mathrm{O}\) (top view)


Fig. \(34 \mathrm{~b}: \mathrm{Cu}(100)-(2 \sqrt{2} \mathrm{x} \sqrt{2}) \mathrm{R} 45^{\circ}-2 \mathrm{O}\) (perspective)


Fig. 35a: fcc(110) high symmetry adsorbate sites (top view)


Fig. 35b: fcc(110) high symmetry adsorbate sites (perspective)


Fig. 36a: fcc(110)-c(2x2)-Ad (top view)


Fig. 36b: fcc(110)-c(2×2)-Ad (perspective)


Fig. \(37 \mathrm{a}: \mathrm{Rh}(110)-(1 \times 1)-2 \mathrm{H} ; \operatorname{Pd}(110)-(2 \times 1)-2 \mathrm{H}\) (top view)


Fig. \(37 \mathrm{~b}: \mathrm{Rh}(110)-(1 \times 1)-2 \mathrm{H} ; \mathrm{Pd}(110)-(2 \times 1)-2 \mathrm{H}\) (perspective)


Fig. \(38 \mathrm{a}: \mathrm{Rh}(110)-(1 \times 3)-\mathrm{H} ; \sim(1 \times 2)-3 \mathrm{H}\) (top view)


Fig. 38b: \(\mathrm{Rh}(110)-(1 \times 3)-\mathrm{H} ; \sim(1 \times 2)-3 \mathrm{H}\) (perspective)


Fig. 39a: fcc(110)-(2×1)-O missing/added row (top view)


Fig. 39b: fce(110)-(2×1)-O missing/added row (perspective)


Fig. 40a: \(\operatorname{Ir}(110)-(2 \times 2)-2 S\) (top view)


Fig. 40b: \(\operatorname{Ir}(110)-(2 \times 2)-2 \mathrm{~S}\) (perspective)


Fig. 41a: \(\mathrm{Au}(110) \mathrm{c}(2 \times 2) \mathrm{K}\) (substitutional) (top view)


Fig. 41b: Au(110)-c( \(2 \times 2\) ) -K (substitutional) (perspective)


Fig. 42a: \(\mathrm{Cu}(410)-(1 \times 1)-\mathrm{O}\) (top view)


Fig. 42b: \(\mathrm{Cu}(410)-(1 \times 1)-\mathrm{O}\) (perspective)


Fig. 43a: \(\mathrm{Cu}(410)-(1 \times 1)-2 \mathrm{O}\) (top view)


Fig. \(43 \mathrm{~b}: \mathrm{Cu}(410)-(1 \times 1)-2 \mathrm{O}\) (perspective)


Fig. 44a: bcc(110) high symmetry adsorbate sites (top view)


Fig. 44b : bcc(110) high symmetry adsorbate sites (perspective)


Fig. 45a: bcc(110)-(2x1)-Ad (top view)


Fig. 45b: bcc(110)-(2x1)-Ad (perspective)


Fig. 46a: \(\mathrm{Fe}(110)-(3 \times 1)-2 \mathrm{H}\) (top view)



Fig. 47a: \(\mathrm{Fe}(110)-\mathrm{p}(2 \times 2)-\mathrm{S}\) (top view)


Fig. 47b: \(\mathrm{Fe}(110)-\mathrm{p}(2 \times 2)-\mathbb{S}\) (perspective)


Fig. 48a: bcc(100) high symmetry adsorbate sites (top view)


Fig. 48b: bcc(100) high symmetry adsorbate sites (perspective)


Fig. 49a: bcc(100)-(1x1)-Ad (top view)


Fig. 49b: bcc(100)-(1x1)-Ad (perspective)


Fig. 50a: bcc(100)-c(2x2)-Ad; \(\sim(1 \times 1)-2 A d\) (top view)


Fig. 50b: bcc(100)-c(2x2)-Ad; ~-(1x1)-2Ad (perspective)


Fig. 51a: W(100)-O disordered (simulated as \(2 \times 2\) ) (top view)


Fig. 51 b : W(100)-O disordered (simulated as \(2 \times 2\) ) (perspective)


Fig. 52a: \(\mathrm{W}(100)\)-p(2x1)-disordered O (top view)


Fig. 52b: W(100)-p(2×1)-disordered O (perspective)


Fig. 53a: \(\mathrm{Ta}(100)-(1 \times 3)-\mathrm{O}\) (top view)


Fig. 53b: \(\mathrm{Ta}(100)-(1 \times 3)-\mathrm{O}\) (perspective)


Fig. 54a: \(\mathrm{Fe}(211)-(2 \times 1)-\mathrm{O}\) (top view)


Fig. \(54 \mathrm{~b}: \mathrm{Fe}(211)-(2 \times 1)-\mathrm{O}\) (perspective)


Fig. 55a: hcp(0001) high symmetry adsorbate sites (top view)


Fig. 55b: hcp(0001) high symmetry adsorbate sites (perspective)


Fig. 56a: \(\mathrm{Ru}(0001)-(1 \times 1)-\mathrm{H}\) (top view)


Fig. 56b: Ru(0001)-(1x1)-H (perspective)


Fig. 57a: \(\mathrm{Ru}(0001)-\mathrm{p}(2 \times 1)-\mathrm{O} ; \sim \mathrm{p}(2 \times 2)-\mathrm{O}\) (top view)


Fig. \(57 \mathrm{~b}: \mathrm{Ru}(0001)-\mathrm{p}(2 \times 1)-\mathrm{O} ; \sim \mathrm{p}(2 \times 2)-\mathrm{O}\) (perspective)


Fig. 58a: hcp(0001)-(1x1)-Ad (interstitial) (top view)


Fig. 58b: hcp(0001)-(1x1)-Ad (interstitial) (perspective)


Fig. 59a: \(\mathrm{Zr}(0001)-(2 \times 2)-\mathrm{O}\) (fcc, interstitial) (top view)


Fig. 59b: \(\mathrm{Zr}(0001)-(2 \times 2)-\mathrm{O}\) (fcc, interstitial) (perspective)


Fig. 60a: \(\mathrm{Co}(10-10)-\mathrm{c}(2 \times 2)-\mathrm{K}\) (top view)


Fig. 60b: \(\mathrm{Co}(10-10)-\mathrm{c}(2 \times 2)-\mathrm{K}\) (perspective)


Fig. 61a: fcc(111)-CO high symmetry sites (top view)


Fig. 61b: fcc(111)-CO high symmetry sites (perspective)


Fig. 62a: \(\mathrm{Pt}(111)-\mathrm{c}(4 \times 2)-2 \mathrm{CO}\) (top view)


Fig. 62b: \(\operatorname{Pt}(111)-\mathrm{c}(4 \times 2)-2 \mathrm{CO}\) (perspective)


Fig. 63a: Rh(111)-(2×2)-3CO (top view)


Fig. 63b: Rh(111)-(2×2)-3CO (perspective)


Fig. 64a: \(\mathrm{Ni}(111)-(2 \times 2)-\mathrm{C} 2 \mathrm{H} 2\) (top view)


Fig. 64 b : \(\mathrm{Ni}(111)-(2 \times 2)-\mathrm{C} 2 \mathrm{H} 2\) (perspective)


Fig. 65a: fcc(111)-C2H3 high symmetry sites (top view)


Fig. 65b : fcc(111)-C2H3 high symmetry sites (perspective)


Fig. 66a: Rh(111)-c(4x2)-C2H3+CO (top view)


Fig. \(66 \mathrm{~b}: \mathrm{Rh}(111)-\mathrm{c}(4 \times 2)-\mathrm{C} 2 \mathrm{H} 3+\mathrm{CO}\) (perspective)


Fig. 67a: \(\mathrm{Pt}(111)\)-C6H6 disordered (top view)


Fig. 67b : Pt(111)-C6H6 disordered (perspective)


Fig. 68a: \(\operatorname{Pt}(111)-(2 \sqrt{3 \times 4})\) rect-2C6H6+4CO (top view)


Fig. 68b: \(\mathrm{Pt}(111)-(2 \sqrt{3 \times} 4)\) rect \(-2 \mathrm{C} 6 \mathrm{H} 6+4 \mathrm{CO}\) (perspective)


Fig. 69a: \(\mathrm{Rh}(111)-\mathrm{c}(2 \sqrt{3 \times 4})\) rect- \(\mathrm{C} 6 \mathrm{H} 6+\mathrm{CO}\) (top view)


Fig. 69b: \(\mathrm{Rh}(111)-\mathrm{c}(2 \sqrt{ } 3 \times 4)\) rect- \(\mathrm{C} 6 \mathrm{H} 6+\mathrm{CO}\) (perspective)


Fig. 70a: fcc(111)-(3x3)-C6H6+2CO (top view)


Fig. 70b: fcc(111)-(3×3)-C6H6+2CO (perspective)


Fig. 71a: fcc(100)-CO high symmetry sites (top view)


Fig. 71b: fcc(100)-CO high symmetry sites (perspective)


Fig. \(72 \mathrm{a}: \operatorname{Pd}(100)-(2 \sqrt{ } 2 \mathrm{x} \sqrt{2}) \mathrm{R} 45^{\circ}-2 \mathrm{CO}\) (top view)


Fig. \(72 \mathrm{~b}: \operatorname{Pd}(100)-(2 \sqrt{2} \mathrm{x} \sqrt{ } 2) \mathrm{R} 45^{\circ}-2 \mathrm{CO}\) (perspective)


Fig. 73a: \(\mathrm{Cu}(100)-\mathrm{C} 2 \mathrm{H} 2\) disordered (top view)


Fig. 73b : \(\mathrm{Cu}(100)-\mathrm{C} 2 \mathrm{H} 2\) disordered (perspective)


Fig. 74a: \(\mathrm{Cu}(100)-\mathrm{C} 2 \mathrm{H} 4\) disordered (top view)


Fig. 74b: \(\mathrm{Cu}(100)\)-C2H4 disordered (perspective)


Fig. 75a: \(\mathrm{Cu}(100)-\mathrm{HCO} 2\) disordered (top view)


Fig. 75b: \(\mathrm{Cu}(100)-\mathrm{HCO} 2\) disordered (perspective)


Fig. 76a: \(\mathrm{Cu}(100)-\mathrm{CH} 3 \mathrm{O}\) disordered (top view)


Fig. 76b: \(\mathrm{Cu}(100)-\mathrm{CH} 3 \mathrm{O}\) disordered (perspective)


Fig. 77a: Ni(100)-C6SH5 disordered (top view)


Fig. 77b: Ni(100)-C6SH5 disordered (perspective)


Fig. 78a: \(\mathrm{Ni}(110)-\mathrm{p}(2 \times 1)-2 \mathrm{CO}\) (top view)


Fig. 78b : Ni(110)-p(2×1)-2CO (perspective)


Fig. 79a: \(\mathrm{Cu}(110)-\mathrm{HCO} 2\) disordered (top view)


Fig. 79b: \(\mathrm{Cu}(110)\) - HCO 2 disordered (perspective)


Fig. 80a: \(\mathrm{Ru}(0001)-(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{CO}\) (top view)


Fig. 80b: \(\mathrm{Ru}(0001)-(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{CO}\) (perspective)


Fig. 81a: fcc(111)-(1x1)-1Me (top view)


Fig. 81b: fcc(111)-(1x1)-1Me (perspective)


Fig. 82a: \(\mathrm{Ag}(111\)-Xe incommensurate (top view)


Fig. 82b: Ag(111)-Xe incommensurate (perspective)


Fig. 83a : fcc(100)-(1x1)-nMe (e.g. \(n=3\) ) (top view)


Fig. \(83 \mathrm{~b}: \mathrm{fcc}(100)-(1 \times 1)-\mathrm{nMe}(\mathrm{e} . \mathrm{g} . \mathrm{n}=3)\) (perspective)


Fig. \(84 a: \mathrm{Ni}(100)-\mathrm{Ag}(111)\) multilayers (top view)


Fig. 84b: \(\mathrm{Ni}(100)-\mathrm{Ag}(111)\) multilayers (perspective)


Fig. 85a: \(\mathrm{fcc}(110)-(1 \times 1)-1 \mathrm{Me}\) (top view)


Fig. 85b: fcc(110)-(1x1)-1Me (perspective)


Fig. 86a: bcc(100)-(1x1)-nMe (e.g. \(\mathrm{n}=3\) ) (top view)


Fig. 86b: bcc(100)-(1x1)-nMe (e.g. \(n=3\) ) (perspective)


Fig. 87a: hcp(0001)-(1x1)-nMe (e.g. \(\mathrm{n}=3\) ) (top view)


Fig. 87 b : hcp(0001)-(1x1)-nMe (e.g. \(\mathrm{n}=3\) ) (perspective)


Fig. 88a: \(\operatorname{Si}(111)-(1 \times 1)\) (top view)


Fig. 88 b : \(\mathrm{Si}(111)-(1 \times 1)\) (perspective)


Fig. 89a: Si(111)-(2x1) (top view)


Fig. 89b: Si(111)-(2×1) (perspective)


Fig. 90a: \(\operatorname{Si}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) (top view)


Fig. \(90 \mathrm{~b}: \mathrm{Si}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}\) (perspective)


Fig. 91a: Si(111)-(7x7) (top view)


Fig. 91b: \(\mathrm{Si}(111)-(7 \times 7)\) (perspective)


Fig. 92a: Ge(111)-c(2x8) (top view)



Fig. 93a: Si(100)-(1x1) (top view)


Fig. 93b: Si(100)-(1x1) (perspective)


Fig. 94a: \(\operatorname{Si}(100)-(2 \times 1)\) (top view)


Fig. 94b: \(\mathrm{Si}(100)\)-( \(2 \times 1\) ) (perspective)


Fig. 95a: Si(100)-c(4x2) (top view)


Fig. 95b: Si(100)-c(4×2) (perspective)


Fig. 96a: diamond(111) high symmetry adsorbate sites (top view)


Fig. 96b: diamond(111) high symmetry adsorbate sites (perspective)


Fig. 97a: Si(111)-( \(\sqrt{3} \mathrm{x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Al}\) (top view)


Fig. \(97 \mathrm{~b}: \operatorname{Si}(111)-(\sqrt{3} \times \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Al}\) (perspective)


Fig. 98a: Ge(111)-(2×2)-S (top view)


Fig. 98b: Ge(111)-(2x2)-S (perspective)


Fig. 99a: \(\mathrm{Si}(111)-(1 \mathrm{x} 1)-\mathrm{Cl}\) (top view)


Fig. 99b: Si(111)-(1x1)-Cl (perspective)


Fig. 100a: \(\operatorname{Si}(111)-(\sqrt{3} \times \sqrt{3})\) R30 \(0^{\circ}-\mathrm{Bi}(1 \mathrm{ML})\) (top view)


Fig. 100b: \(\operatorname{Si}(111)-(\sqrt{3} \mathrm{x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Bi}(1 \mathrm{ML})\) (perspective)


Fig. 101a: \(\operatorname{Si}(111)-(\sqrt{3 x} \sqrt{3}) R 30^{\circ}-B\) (top view)


Fig. 101b: \(\operatorname{Si}(111)-(\sqrt{3 x} \sqrt{3}) R 30^{\circ}-B\) (perspective)


Fig. 102a: \(\mathrm{Si}(111)\)-(1x1)-As (top view)



Fig. 103a: \(\operatorname{Si}(111)-(\sqrt{3} x \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Bi}\) (top view)


Fig. \(103 \mathrm{~b}: \operatorname{Si}(111)-(\sqrt{3} \mathrm{x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Bi}\) (perspective)


Fig. 104a: diamond(100) high symmetry adsorbate sites (top view)


Fig. 104b: diamond(100) high symmetry adsorbate sites (perspective)


Fig. 105a: Si(100)-Co (0.4ML) (top view)


Fig. 105b: Si(100)-Co (0.4ML) (perspective)


Fig. 106a: Ge(100)-(2x1)-S (top view)


Fig. 106b: \(\mathrm{Ge}(100)-(2 \mathrm{x} 1)-\mathrm{S}\) (perspective)


Fig. 107a: \(\mathrm{Si}(100)-(2 \times 1)-\mathrm{Na}\) (top view)


Fig. 107b: Si(100)-(2x1)-Na (perspective)


Fig. 108a: \(\mathrm{Si}(100)-(2 \times 1)-2 \mathrm{~K}\) (top view)


Fig. 108b: \(\operatorname{Si}(100)-(2 \times 1)-2 K\) (perspective)


Fig. 109a: \(\mathrm{Si}(100)-(2 \times 1)-2 \mathrm{Sb}\) (top view)


Fig. 109b: \(\operatorname{Si}(100)-(2 \times 1)-2 \mathrm{Sb}\) (perspective)


Fig. 110a: \(\mathrm{Ge}(111)-(1 \mathrm{x} 1)-\mathrm{PHx}\) (top view)


Fig. 110b: Ge(111)-(1x1)-PHx (perspective)


Fig. 111a: \(\operatorname{Si}(111)-(1 \times 1)-\operatorname{CoSi} 2(111)\) interface I (top view)


Fig. 111b: Si(111)-(1x1)-CoSi2(111) interface 1 (perspective)


Fig. 112a: Si(111)-(1x1)-CoSi2(111) interface II (top view)


Fig. 112b: \(\operatorname{Si}(111)-(1 \times 1)-\operatorname{CoSi2}(111)\) interface \(I I\) (perspective)


Fig. 113a: \(\operatorname{Si}(111)-(1 \times 1)-\mathrm{NiSi} 2(111)\) interface I (top view)


Fig. 113b: \(\mathrm{Si}(111)-(1 \times 1)-\mathrm{NiSi} 2(111)\) interface I (perspective)


Fig. 114a: Si(111)-(1x1)-NiSi2(111) interface II (top view)


Fig. \(114 \mathrm{~b}: \mathrm{Si}(111)-(1 \times 1)-\mathrm{NiSi2}(111)\) interface II (perspective)


Fig. \(115 \mathrm{a}: \operatorname{Ge}(111)-(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}-4 \mathrm{~Pb}(4 / 3 \mathrm{ML})\) (top view)


Fig. \(115 \mathrm{~b}: \operatorname{Ge}(111)-(\sqrt{3} \mathrm{x} \sqrt{3}) \mathrm{R} 30^{\circ}-4 \mathrm{~Pb}(4 / 3 \mathrm{ML})\) (perspective)


Fig. 116a: GaAs(110)-(1x1) (top view)


Fig. 116b: GaAs(110)-(1x1) (perspective)


Fig. 117a: GaAs(111)-(2x2) (top view)


Fig. 117b: GaAs(111)-(2x2) (perspective)


Fig. 118a: \(\mathrm{SiC}(100)-\mathrm{c}(2 \times 2)\) (C2H4 exposed) (top view)


Fig. 118b: \(\mathrm{SiC}(100)-\mathrm{c}(2 \times 2)\) (C2H4 exposed) (perspective)


Fig. 119a: \(\mathrm{SiC}(100)-\mathrm{c}(2 \times 2)\) (Si sublimation) (top view)


Fig. 119b: SiC(100)-c(2x2) (Si sublimation) (perspective)


Fig. 120a: SiC(100)-p(2×1) (top view)


Fig. 120b: \(\operatorname{SiC}(100)-\mathrm{p}(2 \times 1)\) (perspective)


Fig. 121a: GaAs(311)-(1x1) As termination (top view)


Fig. 121b: GaAs(311)-(1x1) As termination (perspective)


Fig. 122a: GaAs(311)-(1x1) Ga termination (top view)


Fig. 122b: GaAs(311)-(1x1) Ga termination (perspective)


Fig. 123a: \(\mathrm{ZnO}(0001)-(1 \times 1)\) (top view)


Fig. 123b: \(\mathrm{ZnO}(0001)-(1 \times 1)\) (perspective)


Fig. 124a: \(\mathrm{ZnO}(10-10)-(1 \times 1)\) (top view)


Fig. 124b: \(\mathrm{ZnO}(10-10)-(1 \times 1)\) (perspective)


Fig. 125a: \(\mathrm{ZnO}(11-20)\)-(1x1) (top view)


Fig. 125b: \(\mathrm{ZnO}(11-20)-(1 \mathrm{x1})\) (perspective)


Fig. 126a: GaAs(110)-(1x1)-2Sb (top view)


Fig. 126b: GaAs(110)-(1x1)-2Sb (perspective)


Fig. 127a: GaAs(110)-(1x1)-Al/2Al (low/medium coverage) (top view)


Fig. 127b: GaAs(110)-(1x1)-Al/2Al (low/medium coverage) (perspective)


Fig. 128a: Ni3Al(111)-(1x1) (top view)


Fig. 128b: Ni3Al(111)-(1x1) (perspective)


Fig. 129a: P10.1Ni0.9(111) (1x1) (top view)


Fig. 129b : Pt0.1Ni0.9(111)-(1x1) (perspective)


Fig. 130a : Pt0.5NiO.5(111)-(1x1) (top view)


Fig. 130b: Pt0.5Ni0.5(111)-(1x1) (perspective)


Fig. 131a: Pto.78Ni0.22(111)-(1x1) (top view)


Fig. 131b: Pt0.78Ni0.22(111)-(1x1) (perspective)


Fig. 132a: Pr0.8Fe0.2(111)-(1x1) (top view)


Fig. 132b: Pt0.8Fe0.2(111)-(1x1) (perspective)


Fig. 133a: \(\alpha-\mathrm{Cu}(111)-16 \% \mathrm{Al}-(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}\) (top view)


Fig. 133b: \(\alpha-\mathrm{Cu}(111)-16 \% \mathrm{Al}-(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}\) (perspective)


Fig. 134a: Ni3Al(100)-(1x1) (top view)


Fig. 134b: Ni3Al(100)-(1×1) (perspective)


Fig. 135a: AuCu3(100) disordered (top view)


Fig. 135b: AuCu3(100) disordered (perspective)


Fig. 136a: Pt0.1NiO.9(100)-(1x1) (top view)


Fig. 136b: Pt0.1Ni0.9(100)-(1x1) (perspective)


Fig. 137a: Ni3Al(110)-(1x1) (top view)


Fig. 137b: Ni3Al(110)-(1x1) (perspective)


Fig. 138a: Pt0.1Ni0.9(110)-(1x1) (top view)


Fig. 138b : Pt0.1Ni0.9(110)-(1x1) (perspective)


Fig. 139a: Pt0.5Ni0.5(110)-(1x1) (top view)


Fig. 139b: Pt0.5Ni0.5(110)-(1x1) (perspective)


Fig. 140a: Pt0.8Fe0.2(110)-(1×2) (top view)


Fig. 140b: Pt0.8Fe0.2(110)-(1×2) (perspective)


Fig. 141a: Cu0.85Pd0.15(110)-(2x1) (top view)


Fig. 141b: Cu0.85Pd0.15(110)-(2x1) (perspective)


Fig. 142a: NiAl(110)-(1x1) (top view)


Fig. 142b: \(\operatorname{NiAl(110)-(1x1)~(perspective)~}\)


Fig. 143a: NiAl(100)-(1x1) (top view)


Fig. 143b: NiAl(100)-(1x1) (perspective)


Fig. 144a: NiAl(111)-(1x1) Al/Ni terminated (top view)


Fig. 144b: NiAl(111)-(1x1) A/Ni terminated (perspective)


Fig. 145a: \(\operatorname{CoSi2(111)-(1x1)~(top~view)~}\)


Fig. 145b: CoSi2(111)-(1x1) (perspective)


Fig. 146a: \(\operatorname{CoSi2}(111)\)-(1x1) Si-rich (top view)


Fig. 146b: CoSi2(111)-(1x1) Si-rich (perspective)


Fig. 147a: NiSi2(100)-(1x1) (top view)


Fig. 147b: NiSi2(100)-(1x1) (perspective)


Fig. 148a: NiSi2(100)-(1x1) Si-rich (top view)


Fig. 148b: NiSi2(100)-(1x1) Si-rich (perspective)


Fig. 149a: \(\operatorname{CoO}(100)-(1 \times 1)\) (top view)


Fig. 149b: \(\mathrm{CoO}(100)-(1 \times 1)\) (perspective)


Fig. 150a: \(\mathrm{CoO}(111)-(1 \times 1)\) (top view)


Fig. 150b: \(\mathrm{CoO}(111)-(1 \times 1)\) (perspective)


Fig. 151a: \(\mathrm{AgBr}(111)-(2 \times 1)\) (top view)


Fig. 151b: AgBr(111)-(2x1) (perspective)


Fig. 152a: \(\mathrm{Na} 2 \mathrm{O}(111)-(1 \mathrm{x} 1)\) (top view)


Fig. 152b: Na2O(111)-(1×1) (perspective)


Fig. 153a: T1O2(100)-(3x1) (top view)


Fig. 153b: TO2(100)-(3×1) (perspective)


Fig. 154a: SrTiO3(100)-(1x1) O-Ti-O termination (top view)


Fig. 154b : SrTiO3(100)-( \(1 \times 1\) ) O-Ti-O termination (perspective)


Fig. 155a: SrTiO3(100)-(1x1) Sr-O termination (top view)


Fig. 155b : SrTiO3(100)-(1x1) Sr-O termination (perspective)


Fig. 156a: TiC(111)-( \(\sqrt{3} \mathrm{x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{O}\) (top view)


Fig. 156b: TiC(111)-( \(\sqrt{3 x} \sqrt{3})\) R \(30^{\circ}-\mathrm{O}\) (perspective)


Fig. 157a: C(0001)-(1x1) graphite (top view)


Fig. 157b: C(0001)-(1x1) graphite (perspective)


Fig. 158a: \(\mathrm{Te}(10-10)-(1 \times 1)\) (top view)


Fig. 158b: \(\operatorname{Te}(10-10)-(1 \times 1)\) (perspective)


Fig. 159a: \(\operatorname{MoS} 2(0001)-(1 \times 1)\) (top view)


Fig. 159b: MoS2(0001)-(1x1) (perspective)


Fig. 160a: NbSe2(0001)-(1x1) (top view)


Fig. 160b: NbSe2(0001)-(1x1) (perspective)


Fig. 161a: TiSe2(0001)-(1x1) (top view)


Fig. 161b: TiSe2(0001)-(1x1) (perspective)


Fig. 162a: \(\mathrm{C}(0001)-(2 \times 2)-\mathrm{Cs}\) (top view)


Fig. 162b: C(0001)-(2×2)-Cs (perspective)


Fig. 163a: \(\mathrm{C}(0001)-(\sqrt{3 x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Cs}\) (top view)


Fig. 163b: C(0001)-( \(\sqrt{3} \mathrm{x} \sqrt{3}) \mathrm{R} 30^{\circ}-\mathrm{Cs}\) (perspective)


Fig. 164a: C(0001)-1K disordered underlayer (top view)


Fig. 164b: C(0001)-1K disordered underlayer (perspective)


Fig. 165a: C(0001)-2K disordered underlayers (top view)


Fig. 165b : C(0001)-2K disordered underlayers (perspective)


Fig. 166a: \(\mathrm{C}(111)-(1 \times 1)-\mathrm{H}\) diamond (top view)


Fig. 166b: \(\mathrm{C}(111)-(1 \times 1)-\mathrm{H}\) diamond (perspective)

\section*{3. Acknowledgements}

The authors are grateful to the National Institute of Standards and Technology, particularly to the Standard Reference Data Program, for undertaking the support of the electronic Surface Structure Database and of this atlas, which is its printed version. We are also much indebted to our consultants, Prof. J.B. Pendry and Prof. G.A. Somorjai, for helpful advice and much needed organizational support.

Much of the hard work of collecting data and putting them into the required format was accomplished by the individuals shown as "major contributors".

A considerable amount of compiling was also accomplished by the following persons, whose contributions were absolutely essential to the success of this task:

At Imperial College (London):
James MacLaren, Philip Rous, Dilano Saldin and Dimieri Vvedensky;
At Lawrence Berkeley Laboratory:
Simon Bare, Brian Bent, Gregory Blackman, Istvan Böszömenyi, Mark Bussell, José Carrazza, Peter Ditlevsen, Morgan Edwards, Sabrina Fu, David Godbey, Brian Hadden, Lan Harrison, Michael Hilton, David Jentz, Chi-Tzu Kao, David Kelly, Colette Knight, Mark Levin, Kenneth Lewis, Bruno Marchon, Mathew Mate, Peter McAnally, Brian Naasz, Pedro Nascente, Roger Nix, Frank Ogletree, Hiroko Ohtani, Pedro Pereira, Jim Powers, Philip Rous, Thomas Rucker, Erik Sowa, Daniel Strongin, Gil Vandentop, Gerard Vurens, Kevin Williams and Mu-Liang Xu.

\section*{4. Bibliography and Related Software}

\subsection*{4.1. References}
1.M. MacLaren, J.B. Pendry, PI. Rous, D.K. Saldin, G.A. Somorjai, M.A. Van Kove and D.D. Vvedensky, "Surface Crystallographic Information Ser" vice, A Handbook of Sarface Structures, Sotware and User's Manual" (D. Reidel, Dordrecht) 1987.
J.F. Nicholas, "An Atlas of Models of Crystal Surfaces" (Gordon and Breach, New York) 1965.
H. Ohtani, C.-T. Kao, M.A. Van Hove and G.A. Somorjai, "A Tabulation and Classification of Clean Solid Surfaces and of Adsorbed Atomic and Molecular Monolayers as Determined from Low-Energy Electron Diffraction'", Progr. Surf. Sci. 23, 155 (1986).
P.R. Watson, M.A. Van Hove and K. Hermann, SSD electronic database: "NIST Surface Structure Databose - Ver. I", NIST Standard Reference Data Program, Gaithersburg, Maryland (1993).
P.R. Watson, "Critical Compilation of Surface Structures Determined By LEED Crystallography" J. Puys. Chem. Ref. Data 16, 953 (1987).
P.R. Watson, "Critical Compilation of Surface Structures Determined By Ion Scattering Compared with Those from LEED Crystallography" J. Phys. Chem. Ref. Data 19, 85 (1990).
P.R. Watson, "Critical Compilation of Surface Structures Determined By SEXAFS Compared with Those from LEED and lon Scattering". J. Phys. Chem. Ref. Data 21, 123 (1992).
E.A. Wood, "The 80 Diperiodic Groups in Three Dimensions", Bell System Techn. Journ. 43 (Part 2), 541 (1964).

\subsection*{4.2. Software}

SCIS (Surface Crystallographic Information Service) marketed by Reidel Publishing (Dordrecht 1987, The Netherlands, or Kluwer Academic Publishers Group, USA).

SARCH/LATUSE/PLOT3D (Surface ARCHitect / LATtice USEr / PLOT 3 Dimensional systems)
to obtain copies contact either M.A. Van Hove or K. Hermann (see Appendix G).

BALSAC (Build and Analyze Lattices, Surfaces, and Clusters)
to obtain copies contact K. Hermann (see Appendix G).```

