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Executive Summary 
 
The goal of simulating the Earth’s climate with mathematical models, using the most powerful 

computers available, is valid scientifically and fully consistent with the approaches being taken in 

many other fields of science dealing with very complex systems.  These climate simulations provide 

the frame within which improved understanding of climate-relevant processes and improved 

observations are naturally merged into coherent projections of future climate change. 

 

The science of climate models has matured to the point that many aspects of current climate models 

and simulations are very convincing.   These form a growing set that intersects significantly with, 

but does not completely cover, the set of processes that are centrally important for the attribution of 

past climate changes and the projection of future climate. 

 

The set of the most recent climate simulations, referred to as the CMIP3 models and utilized heavily 

in the Working Group 1 and 2 reports of the 4th IPCC Assessment, have received unprecedented 

scrutiny by hundreds of investigators with differing areas of expertise.  While there are a number of 

systematic biases across the set of models, more generally the strengths and weaknesses of the 

simulations, when compared against the current climate, vary substantially from model to model.  It 

is clear from many perspectives that an average over the set of models provides a superior climate 

simulation than any individual model, justifying the multi-model approach taken in many recent 

attribution and climate projection studies. 

 

The pace of climate model improvement has been steady over the past several decades, but the 

improvement has understandably been uneven, because several important aspects of the climate 

system present especially severe challenges to the goal of simulation.   

 

Climate models are compared to observations of the mean climate in a multitude of ways, and their 

ability to simulate observed climate changes, particularly those of the past century, have been 

examined extensively.  However, it has proven difficult to measure the quality of climate models in 

such a way that the metric used is directly relevant to our confidence in the models’ projections of 
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future climate.   The most appropriate ways of translating the strengths and weaknesses of the 

simulations into confidence in climate projections remains a subject of active research. 

 

The climate models developed in the US and around the world show many consistent features in 

their simulations and projections for the future.  However, they have not fully converged, since 

different groups approach uncertain aspects of the models in distinctive ways. This absence of 

convergence is one useful measure of the state of the science of climate simulation; convergence is 

to be expected once all climate-relevant processes are simulated in a convincing physically-based 

manner.   

 

.  

 

 

Climate Sensitivity  

 

The response of global mean temperature to a doubling of carbon dioxide remains a useful measure 

of climate sensitivity.  The equilibrium response, the response expected if one waits long enough 

(many hundreds of years) for the system to re-equilibrate, is the most commonly quoted measure.  

The range of equilibrium climate sensitivity obtained from models has remained robust for three 

decades,  and roughly consistent with estimates from the observations of recent climates and those 

from the more distant past.  The canonical three-fold range of uncertainty, 1.5-4.5 degrees 

Centigrade, has evolved very slowly.  The lower limit has been particularly robust over time, with 

very few recent models below 2 degrees.  The difficulty in simulating the Earth’s clouds and their 

response to climate change are the fundamental reason why it has proven difficult to reduce the 

range of uncertainty in model-generated climate sensitivity. 

 

Other common measures of climate sensitivity are of more relevance to the response on time scales 

shorter than 100 years.  By these measures there is considerably less spread among the models -- 

roughly a factor of two rather than three.  Uncertainty still remains considerable and is not 

decreasing rapidly, due in part to the difficulty of cloud simulation but also to uncertainty in the rate 
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of heat uptake by the oceans which rises in importance when considering the responses on these 

shorter time scales. 

 

Improvements in our confidence in estimates of the sensitivity of climate are most likely to arise 

from new data streams, such as satellite platforms that are now providing a first look at the 3-

dimensional  global distributions of clouds, and new, very computationally intensive, climate 

modeling strategies that explicitly resolve some of the smaller scales of motion that help control 

cloud cover and cloud radiative properties.   

 

 

Regional modeling and downscaling 

 

Simulations by limited-area models, stretched grid models and uniformly high-resolution 

atmospheric models forced by specified oceanic and sea ice conditions are all capable of resolving 

phenomena too fine for standard atmosphere-ocean GCMs, such as precipitation influenced  by 

mountains and ocean-land interaction in coastal zones.  These dynamical downscaling strategies are 

beneficial when supplied with appropriate sea-surface and atmospheric boundary conditions, but 

their value is limited by uncertainties in the information supplied by the global models.  Given the 

value of multi-model ensembles for larger-scale climate prediction, it is clear that downscaling must 

presently be performed in a coordinated fashion with a representative set of global model 

simulations as input, rather than focusing on the results from one or two models.  Relatively few 

such multi-model dynamical downscaling studies have been performed to date.   

 

Statistical techniques to produce appropriate small-scale structures from climate simulations, 

referred to as “statistical downscaling”, can be as effective as high-resolution numerical simulations 

in providing climate change information to regions unresolved by most current global models, and 

because of their computational efficiency they can much more easily utilize a full suite of multi-

model ensembles.  However, the statistical methods are completely dependent on the accuracy of 

the regional circulation patterns produced by the global models,  whereas regional models, through 

higher resolution and/or better representation of important physical processes, can often improve the 
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physical realism of the simulated regional circulation.  Thus, the strengths and weaknesses of the 

regional modeling  and statistical methods are often complimentary.   

 

 

The quality of climate simulations 

 

Accurate simulation of the present-day climatology for near-surface temperature and precipitation is 

necessary for most practical applications of climate modeling. The seasonal cycle and large-scale 

geographical variations of near-surface temperature are indeed well simulated in recent models, 

with typical correlations between models and observations of 95% or better. 

 

AOGCM simulation of precipitation has improved over time but is still problematic. The correlation 

between models and observations is 50-60% for seasonal means on scales of a  few hundred 

kilometers. Comparing simulated and observed latitude-longitude maps of precipitation reveals 

similarity of magnitudes and patterns in most regions of the globe with the most striking 

disagreements occurring in the tropics. In most models, the appearance of the Inter-tropical 

Convergence Zone of cloudiness and rainfall in the equatorial Pacific is distorted, and rainfall in the 

Amazon Basin is substantially underestimated. These errors may prove consequential for a number 

of model predictions, such as forest uptake of atmospheric CO2. 

 

 

The simulation of the storms and jet streams in middle latitudes are considered one of the strengths 

of atmospheric models because the dominant scales involved are reasonably well-resolved.  As a 

consequence, there is relatively high confidence in models’ ability to simulate the changes in these 

extratropical storms and jet streams as the climate changes.  The deficiencies that still exist  may be 

partly due to insufficient resolution to resolve features such as fronts or to inadequacies in the 

simulated interactions between the tropics and midlatitudes or between the stratosphere and the 

troposphere.  These deficiencies are still large enough to impact the ocean circulation and some 

regional climate simulations and projections. 
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A dominant mode of low-frequency variability in the atmosphere known as the northern and 

southern annular modes, are very well captured in current models.  These modes involve 

north/south displacements of the extratropical storm track and dominate the observed trends in 

atmospheric circulation in recent decades.Because of their ability to simulate the annular modes, 

global climate models simulate fairly well the interannual variability in the polar regions of both 

hemispheres.  They are less successful at simulating daily polar-weather variability, though finer 

scale regional simulations do simulate polar weather well, thus showing promise for improved 

global-model simulations as their resolution increases. 

 

In the tropics, simulations in current models are less credible.  The Madden-Julian oscillation, a 

feature of the tropics in which the precipitation is organized by large-scale eastward propagating 

features with periods of roughly 30-60 days, is a useful test of simulation credibility in the tropics.  

Model performance using this measure is still unsatisfactory.  The “double ITCZ-cold tongue bias”, 

in which water is excessively cold near the equator and precipitation splits artificially into two 

zones straddling the equator, remains as a persistent bias in current coupled atmosphere-ocean 

models.  Projections of tropical climate change are adversely affected by these deficiencies in 

simulations of the organization of tropical convection. Models typically overpredict light 

precipitation and underpredict heavy precipitation in both the tropics and middle latitudes, creating 

potential biases when studying extreme events. 

 

Tropical cyclones are poorly resolved by the present generation of global models, but recent results 

with high resolution atmosphere-only models and dynamical downscaling provide optimism that the 

simulation of tropical cyclone climatology will advance rapidly in the coming years, as will our 

understanding of observed variations and trends.    

 

Land surface modeling for climate simulation has increased markedly in sophistication over the past 

25 years, with increasing detail and range of processes included in the biological, chemical and 

physical behavior simulated in the terrestrial portion of the climate system. Systematic programs 

comparing land models have gradually led to greater agreement between land models and 

observations, in part because a greater variety of observations have been used to understand and 

constrain their behavior. 
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Land models that predict vegetation patterns are being actively developed, but the demands that 

these models make on the quality of the simulated precipitation patterns ensures that the their 

evolution will be gradual and tied to improvements in the regional climate simulations. 

 

The quality of ocean climate simulations has improved steadily in recent years, owing to improved 

numerical algorithms and more realistic assumptions concerning the mixing occurring on scales 

smaller than the models’ grid.  Many of the   CMIP3 class of models  are able to maintain an 

overturning circulation in the Atlantic with approximately the observed strength without the 

artificial correction to the air-sea fluxes commonly in use in previous generations of models, 

providing a much better foundation for analysis of the stability of this circulation.  

 

 The circulation in the Southern Oceans, thought to be of vital importance for the oceanic uptake of 

carbon dioxide from the atmosphere, is sensitive to deficiencies in the simulated winds and 

salinities, but a subset of the models are producing realistic circulation in the Southern Ocean as 

well 

 

Simulations of El Nino oscillations provide a significant success story for climate models, as these 

have improved substantially in recent years.  Most current models spontaneously generate El Nino-

Southern Oscillation variability, albeit with varying degrees of realism.  The spatial structure and 

period of the oscillations is impressive in a subset of the models, but with a tendency towards too 

short a period.  The bias in the intertropical convergence zone in the coupled models is a major 

factor preventing further improvement in these models.  Projections for the future of El-Nino 

variability and the state of the Pacific Ocean are of central importance for regional climate change 

projections throughout the tropics and in North America.   

 

The quality of simulations of low frequency variability on decadal to multi-decadal time scales 

varies regionally and also varies substantially from model to model.  On average, the models do 

reasonably well in the North Pacific and North Atlantic.  In other oceanic regions, data paucity 

contributes to the uncertainty in the estimation of the quality of the simulations at these low 

frequencies. 
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The ocean components of current climate models do not directly simulate the very energetic 

motions in the oceans referred to as “meso-scale eddies” .  The simulation of these small scale flow 

patterns requires horizontal grid sizes of 10km or smaller.  Current oceanic components of climate 

models are effectively laminar rather than turbulent, and the effects of these eddies must be 

approximated by imperfect theories.  As computer power increases, new models that resolve these 

eddies will be incorporated into climate models to explore their impact on decadal variability, as 

well as heat and carbon uptake. 

 

Models of glacial ice are in their infancy.  Glacial models directly coupled to atmosphere-ocean 

models typically only account for direct melting and accumulation at the surface of the ice-sheets 

and not the dynamic discharge due to glacial flow.  More detailed current models that incorporate 

this discharge typically generate discharges that change only over centuries and millennia.  Recent 

evidence for rapid variations in this glacial outflow indicates that more realistic glacial models are 

needed to estimate the evolution of future sea level.    

 

Simulation of 20th century trends 

 

Models forced by the observed well-mixed greenhouse gas concentrations, volcanic aerosols, as 

well as estimates of variations in the solar energy incident on the Earth and anthropogenic aerosol 

concentrations, are able to simulate the 20th century global mean temperature record in a plausible 

way.  Solar variations are known by direct satellite measurements for the last few decades and do 

not contribute significantly to the warming during that period.  Solar variations earlier in the 20th 

century are much less certain, but are thought to a potential contributor to the warming in the early 

part of the century, 

 

Uncertainties in the climatic effects of man-made aerosols (liquid and solid particles suspended in 

the atmosphere) are a major stumbling block in quantitative attribution studies and in attempts to 

use the observational record to constrain climate sensitivity.  We do not know how much warming 

due to greenhouse gases has been cancelled by cooling due to aerosols.  Uncertainties related to 

clouds increase the difficulty in simulating the climatic effects of aerosols, since these aerosols are 

known to interact with clouds and potentially change cloud radiative properties and cloud cover. 
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The possibility that natural variability has been a significant contributor to the detailed time 

evolution seen in the global temperature record is plausible, but still difficult to address with models 

given the large differences between models in the characteristics of the natural decadal variability 

that they generate. While natural variability may very well be relevant to observed variations on the 

scale of 10-30 years, no models show any hint of generating large enough natural, unforced 

variability on the 100 year time scale that would compete with explanations of the observed 

century-long warming trend as being predominantly forced.    

 

The observed southward displacement of the Southern hemisphere storm track and jet stream in 

recent decades is reasonably well simulated in current models, which show that it is partly due to 

greenhouse gases but also partly due to the presence of the ozone hole in the stratosphere. Northern 

Hemisphere circulation changes over the past decades have proven more difficult to capture in 

current models, perhaps due to the more complex interactions between the stratosphere and the 

troposphere in the Northern Hemisphere. 

 

Observations of ocean heat uptake are beginning to provide a direct test of aspects of the ocean 

circulation directly relevant to climate change simulations. Coupled models provide reasonable 

simulations of the observed heat uptake in the oceans, but underestimate the observed sea level rise 

over the past decades. 

 

Model simulations of trends in extreme weather typically produce global increases in extreme 

precipitation and severe drought, and decreases in extreme minimum temperatures and frost days, in 

general agreement with observations.   

 

Regional trends in extreme events are not always captured by current models , but it is difficult to 

assess the significance of these discrepancies, and to distinguish between model deficiencies and 

natural variability.  

 

The use of climate model results to assess economic, social, and environmental impacts is becoming 

more sophisticated, albeit slowly.  Simple methods requiring only mean changes in temperature and 

 9



1 

2 

3 

4 

precipitation to estimate impacts remain popular, but an increasing number of studies are utilizing 

more detailed information, such as the entire distribution of daily or monthly values and extreme 

outcomes.  The mismatch between the spatial resolution of models and the scale of impacts-relevant 

climate features and of impacts models remains an impediment for certain applications. 
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The use of computers to simulate complex systems has grown in the past few decades to play a 

central role in many areas of science. Climate modeling is one of the best examples of this trend and 

one of the great success stories of scientific simulation. It is impossible to build a laboratory analog 

of the Earth’s climate system with all of its complexity. The successes of climate modeling allow us 

to address many questions about the climate by experimenting instead with simulations —that is, 

with mathematical models of the climate system.  

 

Despite the success of the climate modeling enterprise, the complexity of our Earth imposes 

important limitations on existing climate models. It is the purpose of this report to help the reader 

understand the valid uses, as well as the limitations, of current climate models. 

 

Climate modeling and forecasting grew out of the desire to predict weather. The distinction between 

climate and weather is not sharp. Operational weather forecasting has historically focused on times 

scales of a few days but has more recently been extended to monthly and seasonal time scales, for 

example, in attempts to predict the evolution of El Niño episodes.  The goal of climate modeling 

can be thought of as the extension of forecasting to longer and longer time scales, with a focus not 

on individual weather events, which are unpredictable on these long time scales, but on the statistics 

of these events as well as on the slow evolution of the oceans and ice sheets. Whether one considers 

the forecasting of individual El Niño episodes as weather or climate forecasting is a matter of 

convention. For the purpose of this report, we will consider El Nino forecasting  with weather, and 

will not address it directly. On the climate side we are concerned, for example, with the ability of 

models to simulate the statistical characteristics of El Niño variability, or extratropical storms, or 

Atlantic hurricanes, with an eye toward assessing the ability of these models to predict how this 

variability might change as the climate evolves in the coming decades and centuries.   

 

An important constraint required of climate models that is not imposed on weather forecast models 

is the requirement that the global system precisely and accurately maintain the global energy 

balance over very long time periods. Energy balance (or “budget”) is defined as the difference 

between absorbed solar energy and emitted infrared radiation. It is affected by a number of things 

including human production of greenhouse gases like carbon dioxide. The decadal to century-scale 
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changes in the Earth’s energy budget that are manifested as climate change are just a few per cent of 

the average values of the largest terms in that budget. Many of the decisions about model 

construction described in Chapter II are based on the need to properly and accurately simulate the 

long term energy balance. 

 

This report will focus primarily on the most advanced physical climate models that were used for 

the most recent international Coupled Model Intercomparison Project’s (CMIP) coordinated 

experiments (Meehl, et al., 2006), sponsored by the World Climate Research Programme (WCRP). 

These coupled Atmosphere–Ocean General Circulation Models (AOGCMs) incorporate detailed 

representations of the atmosphere, land surface, oceans, and sea ice. Where practical, we will 

emphasize and highlight the results from the three US modeling projects that participated in the 

CMIP experiments. Additionally, this report examines the use of Regional Climate Models used for 

obtaining higher resolution details from AOGCM simulations over smaller regions. Nevertheless, it 

must be noted that there are other types of climate models being developed and applied to climate 

simulation. More complete Earth systems models build carbon cycle and ecosystems processes on 

top of the AOGCMs, but are employed more for studies of future climate change and 

paleoclimatology, neither of which is directly relevant to this report. Another class of models not 

discussed here, but used extensively, particularly when computer resources are limited, are Earth-

system Models of Intermediate Complexity (EMICs). Although these models have many more 

assumptions and simplifications than are found in the CMIP models (Claussen et al., 2002), they are 

particularly useful in exploring a wide range of mechanisms and obtaining broad estimates of future 

climate change projections that can be further refined with AOGCM experiments.  

 

Brief History of Climate Model Development 

 

As the possibility of numerical weather prediction developed in the 1950’s as one of the first 

applications of computers, it became evident almost immediately that the numerical simulation 

approach could also be used to study the climate. In 1955, Joseph Smagorinsky started a program in 

climate modeling that ultimately became one of the most vigorous and longest-lived General 

Circulation Model (GCM) development programs at NOAA’s Geophysical Fluid Dynamics 

Laboratory (GFDL) at Princeton University. The feasibility of generating stable integrations of the 
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atmospheric equations for arbitrarily long time periods was demonstrated by Norman Phillips in 

1956. The University of California at Los Angeles began producing Atmospheric General 

Circulation Models (AGCMs) beginning in 1961 under the leadership of Yale Mintz and Akio 

Arakawa. This program influenced others in the 1960’s and 1970’s, leading to modeling programs 

found today at NASA laboratories and several universities. At Lawrence Livermore National 

Laboratory, Cecil E. Leith developed an AGCM in the early and mid-1960's. The U.S. National 

Center for Atmospheric Research (NCAR) initiated AGCM development in 1964 under Akira 

Kasahara and Warren Washington, an effort that ultimately evolved into the construction of the 

Community Climate Model, a predecessor to the present Community Climate System Model. Also 

in the 1960’s and 70’s, efforts in climate simulations developed throughout the world, with major 

centers emerging in Europe and Asia.   

 

Additions to the original atmospheric general circulation models used for weather analysis and 

prediction were needed to improve weather simulations and forecasts as well as to make climate 

simulations possible. The early weather models focused on fluid dynamics rather than on radiative 

transfer and the atmosphere’s energy budget, which are of central importance for climate 

simulations. Furthermore, as one focuses on time scales longer than a season, the oceans and sea ice 

must be coupled to the more rapidly evolving atmosphere. Thus, ocean and ice models have been 

coupled with atmospheric models. The first ocean general circulation models were developed at 

GFDL by Bryan and Cox in the 1960’s, and then coupled with the atmosphere by Manabe and 

Bryan in the 1970’s.  

 

Climate models began to be used in research on carbon dioxide and climate in the mid-1970’s. Two 

important studies, the Study of Critical Environmental Problems and the Study of Man’s Impact on 

Climate, both endorsed the use of GCM-based climate models to study the possibility of 

anthropogenic climate change. Beginning in the late 1980’s, several national and international 

organizations were formed with the purpose of assessing and expanding scientific research related 

to global climate change. These developments spurred interest in developing and improving climate 

models. The work of the Intergovernmental Panel on Climate Change (IPCC), beginning in 1987, 

had as a primary focus of Working Group 1 scientific inquiry into atmospheric processes governing 

climate change. The IPCC,1990: Scientific Assessment (Houghton et al., 1990) stated, “Improved 
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prediction of climate change depends on the development of climate models, which is the objective 

of the climate modeling programme of the World Climate Research Programme (WCRP).” The 

United States Global Change Research Program (USGCRP), established in 1989, designated 

Climate Modeling and Prediction as one of the four high-priority integrating themes of the program 

(CEES, 1991). The combination of steadily increasing computer power and research spurred by the 

WCRP and USGCRP has led to a steady improvement in the completeness, accuracy and resolution 

of AOGCMS used for climate simulation and prediction. A classic figure from the Third IPCC 

Working Group I Scientific Assessment of Climate Change in 2001 depicts this evolution in Figure 

I.A.  The comprehensive climate models that contributed results to the Third Climate Model 

Intercomparison Project (CMIP3) that was utilized by the Fourth IPCC Assessment were generated 

by 3 groups in the US (GFDL, NCAR, and the NASA Goddard  Institute for Space Studies (GISS)), 

and groups in the U.K., Germany, France, Japan, Australia, Canada, Russia, China, Korea, and 

Norway.   
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Figure.I.A   Historical development of climate models (From IPCC, 2001).  

 
Climate model construction 
 

Comprehensive climate models are constructed using expert judgments to satisfy many constraints 

and requirements. The overarching considerations are the determination of the most important 

climate features that should be accurately simulated and the scientific understanding of these 

features that guide one towards the most powerful simulation strategies and algorithms. Typically, 

the basic requirement is that models should simulate features that are important to humans, 

particularly surface variables, such as temperature, precipitation, windiness, and storminess. This is 

a less straightforward requirement than it seems, since a physically-based climate model must also 

simulate all of the complex interactions in the coupled atmosphere–ocean–land surface–ice system 

that are manifested as the climate variables of interest. For example, jet streams at altitudes of 10 

kilometers above the surface must be accurately simulated if the models are to generate midlatitude 

weather with realistic characteristics, since the midlatitude highs and lows that we see on surface 
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weather maps are intimately associated with these high-altitude wind patterns.  As another example, 

one cannot simulate the basic temperature decrease from the equator to the poles without taking into 

account the poleward transport of heat in the oceans, some of this heat being carried by currents 2 or 

3 kms deep in the oceanic interior.  Our models should correctly produce not just the means of 

variables of interest, but also extremes and other measures of natural variability.  Finally, they 

should be capable of simulating the changes in those statistics that result from the relatively small 

changes in the Earth’s energy budget that result from natural and human actions.   

 

Climate processes operate on time scales ranging from several hours to millennia, and spatial scales 

ranging from a few centimeters to thousands of kilometers. Principles of scale analysis, fluid 

dynamical filtering, and numerical analysis are used to make intelligent compromises and 

approximations to simplify the system sufficiently to make it tractable to formulate mathematical 

representations of the processes and their interactions. These mathematical models are then 

translated into computer codes, which are executed on some of the most powerful computers in the 

world. Available computer power helps determine the types of approximations required; as a 

general rule, increasing computational resources allows modelers to formulate algorithms that are 

less dependent on relatively uncertain methods (referred to as “closure” or “parameterization” 

schemes) for taking into account unresolved motions and processes, thereby producing simulations 

that are more solidly founded on established physical principles. Climate simulations must always 

be designed so that they can be completed and analyzed by scientists in a timely manner.  

 

Climate models have shown steady improvement over time as computer power has increased, as our 

understanding of physical processes of climatic relevance has increased, as data sets useful for 

model evaluation have been developed, and as our computational algorithms have improved.  

Figure I.B shows one attempt at quantifying this improvement.  It compares a particular metric of 

climate model performance among the CMIP1 (1995), CMIP2 (1997) and CMIP3 (2004) ensembles 

of AOGCMs.  This particular metric assesses the performance of the models in simulating the mean 

climate of the late 20th century as measured by a basket of indicators, focusing on aspects of the 

atmospheric climate for which observational counterparts are deemed adequate for this purpose. 

The ranking of models according to individual members of this basket of indicators varies greatly, 

so this aggregate ranking is dependent on how one weights the relative importance of different 
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indicators.  But the general conclusion of an improvement in climate simulation quality is robust to 

these changes in weighting factors.  The construction of metrics for evaluating climate models is 

itself a subject of intensive research and will be covered in more detail in Chapter II.   
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Figure.I.B   One possible composite metric for the evaluation of climate models, focusing primarily on the 

atmospheric circulation (Kim and Riechler, 2007,, baased on PCMDI CMIP-1, CMIP-2, and CMIP-3 archives  

Each oval corresponds to a single model, with model quality improving towards the left.  Yellow ovals mark 

the quality of the climate obtained by averaging all of the available models. The CMIP-1 model archive was 

generated from models available around1995, the CMIP-2 models around 2000, and the CMIP-3 models 

around 2005.   
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Also, shown in Figure I.B is the same metric evaluated from the climate obtained by averaging 

over all of the AOGCMs in the CMIP1, CMIP2, and CMIP3 archives.  The CMIP3 “ensemble-

mean” model performs better than any individual model by this metric, and by many others.  This 

kind of result has convinced the community of the value, at this point in time, of a multi-model 

approach to climate change projection, in which a number of modeling centers work on their own 

distinctive approaches to the fundamental fluid dynamical simulation problem as well as the many 

issues related to the parameterization of unresolved processes.  Our understanding of climate is still 

insufficient to justify the construction or identification of a single model that we can confidently 

judge to be the best possible model.  It is generally felt to be more appropriate, in any assessments 

focusing on adaptation or mitigation strategies, to take into account, in an appropriately informed 

manner, the attempts at climate simulation underway around the world.   

 

The remaining sections of this report describe climate model development, evaluation and 

applications in more detail. Chapter II describe the development and construction of models and 

how they are employed for climate research. Chapter III discusses Regional Climate Models and 

their use in “downscaling” global model results to specific geographic regions, particularly North 

America. The concept of climate sensitivity, which is the response of a surface temperature to a 

specified change in the energy budget at the top of the model’s atmosphere, is described in Chapter 

IV. A survey of how well important climate features are simulated by modern models is found in 

Chapter V, while Chapter VI depicts the near-term development priorities for future model 

development. Finally, Chapter VII illustrates a few examples of how climate model simulations are 

used for practical applications. A detailed References section follows Chapter VII.  
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Modern climate models are comprised of a system of model components, each of which simulates a 

different part of the climate system, and usually can be run independently for certain applications.  

Nearly all of the CMIP3 class of models are  composed of four primary components, the 

atmosphere, land surface, the ocean and sea ice. The atmospheric and ocean components are known 

as “general circulation models” or GCMs, because they explicitly simulate the large scale global 

circulation of the atmodphere and ocean.  Sometimes, climate models are referred to as coupled 

atmosphere-ocean GCMs, which may be misleading, because a coupled GCM model can be 

employed to simulate aspects of weather and ocean dynamics, without being a climate model.  What 

follows in this chapter  is a description of the major components of a modern climate model, and 

how they are coupled together and tested for climate simulation. 

 

Atmospheric General Circulation Models  

 

Atmospheric general circulation models (AGCMs) are numerical programs that calculate the state 

variables of the atmosphere, such as temperature, pressure, humidity, kinetic energy, etc, as a 

function of space and time. . The set of model equations  is formulated by using geophysical fluid 

dynamics theory and physical laws governing the exchanges of the mass and energy. because of the 

various assumptions and approximations that are made to more complete equations of classical fluid 

dynamics.  The atmosphere can be thought of as a thin spherical shell of air that envelopes the earth.  

For climate simulation, typically only the lowest 20-30 km or so of the atmosphere, the troposphere 

and part of the stratosphere, are explicitly simulated.  Within this volume all weather occurs because 

it contains over 95 % of the mass and virtually all of the water vapor.  Because of disparity between 

the scales of the horizontal and vertical motions resolved in tyrpical global models, the horizontal 

motions are treated differently than vertical motions.by the model algorithms.  The resulting basic 

set of equations is often referred to collectively as the primitive equations (Haltiner and Williams, 

1980), 
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Although nearly all AGCMs use the same primitive dynamical equations, they use different 

numerical algorithms to solve.them. In all cases, the atmosphere is divided  into discrete vertical 

layers, which are then overlaid with a two dimensional horizontal grid, producing a three 

dimensional mesh of grid elements.  The set of primitive equations is then solved as a function of 

space and time on this mesh.  The portion of the model code governing the fluid dynamics explicitly 

simulated on this mesh is often referred to as the model’s “dynamics.” Computational solutions of 

the model dynamics can be grouped into four categories: spectral methods, finite difference 

methods, semi-Lagrangian methods, (Washington and Parkinson, 2005) and finite volume methods 

(Lin and Rood, 1996). The majority of the climate models use the first two approaches, Even with 

the same numerical approach, AGCMs differ in spatial resolutions and configuration of model 

grids.  Some models have few layers above the troposphere (the moving boundary between the 

troposphere and stratosphere),  while others could have as many layers above the troposphere as in 

it. AGCMs all use transformed equations to treat the Earth’s surface as a constant coordinate 

surface so that the specification of heat, moistrure, trace substances and momentum  exchanges 

between the earth’s surface and the atmosphere can be simplified. Numerical algorithms of AGCMs 

should preserve the basic conservation of mass and energy of the atmosphere. Typical AGCMs have 

spatial resolution of 200 kilometers in the horizontal and 20 levels below the altitude of 15 km. 

Because numerical errors often depend on flow patterns, there are no simple ways to assess the 

accuracy of numerical discretization of AGCMs.  Therefore, AGCMs are tested using a series of 

both idealized and realistic test cases (e.g. Held and Suarez ,1994) before being included in a 

climate model.   Table 1 lists the specifications of numerical approaches and resolutions of some 

AGCMs. 

 

All GCMs use parameterizations, or approximate sub-models, to simulate many processes that are 

too small, or operate on time scales too fast, to be resolved on the grid of the model dynamics.   

Some of the most important parameterizations are those that calculate radiant energy (or 

“radiative”) transfer, cloud formation and dissipation, the vertical motions on small scales caused by 

thunderstorm clouds (cumulus convection), and turbulence and subgrid scale mixing. The radiative 

transfer code computes the absorption and emission of electrcomagnetic waves by air molecules and 

atmospheric particles. Most atmospheric gases absorb and emit radiation at discrete wavelengths, 

but the computational costs are too high to perform this calculation at individual  wavelengths.   
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AGCMs use approximations, which differ among models, to group bands of wavelengths together 

in a single calculation. Most models have separate radiation codes to treat solar or visible, radiation 

differently from the much longer wavelength  terrestrial, or infrared,  radiation.  The radiation 

calculation includes the effects of water vapor, carbon dioxide, ozone, and clouds.  Many models 

also include aerosols and trace gases such as methane. Validation of the AGCM radiation codes is 

often done offline against resolved wavelength model calculations which, in turn, are compared 

against laboratory and field observations 

 

For cloud calculations, AGCMs  treat ice and liquid water as part of the atmospheric state variables. 

Some models also separate cloud particles into ice crystals, snow, graupel, cloud water, and 

rainwater. Empirical relationships are used to calculate conversions between different particle types. 

The representation of these processes on the scale of model grids is particularly difficult. It relies 

heavily on empirical formulations because of the lack of sub-grid scale information. This includes 

the calculation of cloud amount, which greatly affects radiative transfer and model sensitivity. 

Current models use one of the following two methods to calculate cloud amount: statistical 

distribution of thermodynamic and hydrological variables within a grid box, or prognostic cloud 

amount calculation. The statistical method may use simple model diagnostics, such as relative 

humidity, or more sophisticated calculations with higher order of moments of moisture contents. A 

sample of cloud schemes used in AGCMs is listed in Table II 1. None of the current AGCMs 

calculates size-resolved cloud particles nor do they treat the effects of and non-spherical ice 

particles.  

 

Cumulus convective transports, which are important in the atmosphere but cannot be explicitly 

resolved at GCM scale, are calculated using convective parameterization algorithms. Most current 

models utilze a cumulus mass flux scheme patterned after that proposed by Arakawa and Schubert 

(1974), in which the upward motion is the convection is envisioned as occurring in very narrow 

plumes that takes up a negligible fraction of the area of a grid box.  Schemes differ in the techniques 

used to determined the amount of mass flowing through these plumes, and the manner in which air 

is entrained and detrained by the plume as it rises.   Most models do not separately calculate the 

area and vertical velocity of convection, but try to predict  only the product of the mass and the area, 

or the covnective mass flux. Most current schemes do not account for the differences of convection 
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between organized mesoscale systems and simple plumes. The turbulent mixing rate of updrafts and 

downdrafts with the environments, and the phase changes of water vapor within the convective 

systems with a mix of empiricism and constraints due to the moist thermodynamics of rising air 

parcels.. Some models also include a separate calculation of shallow, non-preciiptiating convection 

(or “fair-weather cumulus cloud) with different assumptions from those for deep convections.  . 

Cloud genrated by  cumulus convection should therefore be thought as based in large-part on 

empirical relationships. Convection schemes used in AGCMs are listed in Table II 1.  

 

All AGCMs compute turbulent transport of momentum, moisture, and energy in the atmospheric 

boundary layer (ABL) near the surface. A long-standing theoretical framework, “Monin-Obukhov 

Similarity theory” is used to calculate the vertical distribution of turbulent fluxes and state variables 

in a thin air layer of tens of meters adjacent to the surface.  Above that, turbulent fluxes are 

calculated based on covariances and closure assumptions for the ABL which differ among AGCMs. 

Some models use high order closures in which the fluxes or second order moments are 

prognostically calculated. Other models calculate the fluxes diagnostically. Turbulent ABL fluxes 

heavily depend on surface conditions such as roughness, soil moisture, and vegetation. Besides 

explicit calculation of boundary layer turbulence, all models use additional diffusion schemes to 

either calculate the impact of “clear air turbulence”, or to damp artificial numerical modes 

introduced in the discretization of the model. Table II.A lists turbulent schemes in AGCMs. 
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Table II. 1. Physical parameterization schemes in a sample of AGCMs. 
 
  

Resolution 

 
Convection 

 
ABL 

Stratiform 
Clouds  

Convective 
Clouds 

Cloud 
Microphysics 

CAM3 T85L26 

(1.4ox1.4o) 

Spectral 

Mass Flux 

[Hack 1994;  

Zhang and 

McFarlane, 

1995] 

1st order non-

local 

[Holtslag and 

Boville, 

1993] 

Diagnostic 

(RH based) 

[Kiehl et al., 

1996]  

Diagnostic  

[Rasch and 

Kristjansson, 

1998] 

Rasch and 

Kristjánsson 

[1998] 

GFDL 2.5ox2.0oL24 

Finite 

Difference 

Mass flux 

(RAS) 

[Moorthi and 

Suarez, 1992] 

Cloud 

entrainments 

[Lock et al., 

2000; GFDL 

GAMDT, 

2004] 

Prognostic 

[Tiedtke, 

1993; GFDL 

GAMDT, 

2004]  

Prognostic 

[Tiedtke, 

1993; GFDL 

GAMDT, 

2004] 

Rotstayn [1997], 

GFDL GAMDT 

[2004] 

GISS 4ox5o L12 

Finite 

Difference 

 

Mass flux 

[Del Genio 

and Yao, 

1993] 

2nd order 

[Cheng et al., 

2002] 

Diagnostic 

(RH based) 

[Del Genio et 

al., 2004] 

 

Diagnostic 

[Del Genio et 

al., 2004] 

Del Genio et al. 

[2004] 

GSFC 2.5ox2o L40 

Finite 

Volume 

Mass flux 

(RAS) 

[Moorthi and 

Suarez, 1992] 

2.5 order  

[Helfand and 

Labraga, 

1988] 

Diagnostic 

(RH based) 

[Del Genio et 

al., 2004] 

 

Diagnostic 

[Del Genio et 

al., 1996] 

Del Genio et al. 

[1996], Sud and 

Walker [1999] 

 

HadAM4 

 

3.75ox2.5oL30 

Finite 

Difference 

Mass flux 

[Gregory and 

Rowntree, 

1990; Gregory 

and Allen, 

1991] 

1st order with 

cloud 

entrainment 

[Lock et al., 

2000; Martin 

et al., 2000] 

Diagnostic 

statistical 

[Smith, 1990; 

Pope et al.]. 

Diagnostic 

[Gregory and 

Rowntree, 

1990] 

Wilson and 

Ballard [1999] 

ECHAM5 T63L31 

(1.9ox1.9o) 

Spectral 

Mass flux 

[Tiedtke, 

1989; 

Nordeng, 

1994]  

1st order, 

[Brinkop and 

Roeckner, 

1995] 

Prognostic 

statistical 

[Tompkins, 

2002],  

Diagnostic 

 [Roeckner et 

al., 1996] 

Lohmann and 

Roeckner [1996] 

LMD 3.75ox2.5oL19 Emanuel 1st order [Li, Statistical Statistical Le Treut and Li 
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Finite 

Difference 

[1991] 1999] [Le Treut and 

Li, 1991] 

[Bony and 

Emanuel, 

2001] 

[1991] 

1  
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Ocean General Circulation Models 

 

General overview: The ocean (Ocean General Circulation Models: OGCM) component of the 

current generation of climate models  can be placed into one of two general categories. All the 

models are fully four dimensional primitive equation models and are coupled to the atmosphere and 

ice models through the exchange of fluxes of heat, temperature, and momentum at the boundary 

between components.. TableII  2 gives a brief summary of the major differences between the 

models described in the next paragraphs.  Like the atmosphere, the horizontal dimensions of the 

ocean are much larger than the vertical dimension, again resulting in separating the processes that 

occur in the vertical from those that occur in the horizontal.  Unlike the atmosphere, which only has 

to deal with terrain differences at the lower boundary, the ocean has a much more complex, three-

dimensional boundary, with continents and submarine basins and ridges. Further, the fluid behavior 

of sea water is very different than that of air, resulting in a slightly different set of equations 

controlling ocean fluid dynamics.   
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The models utilized by the three US climate modeling groups that contributed models to the CMIP3 

archive are used here to illustrate some of the choices made by ocean modelers. 

 

An important category of OGCMs are referred to as Z-level models in which the model’s vertical 

levels are calculated at fixed distances below the surface.  (Many of these models are based on the 

early efforts of Bryan and Cox (1967) and Bryan (1969a, b).   The GFDL and CCSM ocean 

components fall into this category (Griffies et al., 2005, Smith and Gent, 2002The models are 

similar in that the fundamental physical quantities advancing in time are the same. These quantities 

are velocity, potential temperature, salinity, sea surface height, and any number of specific passive 

tracers that maybe included for a given simulation. The two modeling efforts use similar horizontal 

resolution at about the same order: 1 degree or 110 km for most of the Earth and about 1/3 of a 

degree at the equator.  Usually the models have increasing resolution between 5°N and 5°S to 

increase their ability to simulate important equatorial processes.   
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The vertical and horizontal structure of the models can also differ and are listed in TableII  2. The 

CCSM OGCM’s horizontal grid has its north pole displaced onto a land coordinate (a so-called 

stretched grid) and the GFDL models use a grid that has three poles (Murray, 1996). There is an 

explicit treatment of the bottom boundary and overflow regions in the GFDL models (Beckman and 

Doscher, 1997) to improve the down-slope flow of water. Such treatment of the overflows should 

improve the representation of deep ocean waters (Roberts and Wood, 1997), but problems remain 

(Griffies  et al., 2005).  

 

The second category of OGCMs includes those developed by GISS.   There are two different ocean 

models that are used in the GISS simulations: the "Russell Ocean" (GISS-ModelE-R and GISS-

AOM: Russell  et al., 1995, Russell  et al., 2000) and the "HYCOM Ocean" (GISS-ModelE-H: Sun 

and Bleck, 2001; Bleck 2002; Sun and Hansen, 2003; Hybrid Coordinate Ocean Model).  The 

fundamental (prognostic) variables for the E-R and AOM simulations are potential enthalpy (rather 

than potential temperature), salt, mass, vertical gradients of potential enthalpy and salt, in addition 

to velocity. At this time, these models are run at a resolution much lower than the models of the first 

category (see Table 2 The vertical coordinate is defined in units of mass/unit area (while in category 

1, the unit is meters).  

 

The HYCOM OGCM (GISS-EH) fundamental variables include temperature, salinity, layer 

thickness, and velocity,. The horizontal grid is different from the others described. It is two grids, 

with one a Mercator grid to 60°N with a resolution of 2°and it is patched (i.e. boundary values 

exchanged at each time step) to a North Pole grid defined as 1° at 60°N to 0.5° at the North Pole.  

The vertical grid is a complex or "hybrid" with a z-level grid (units meters) to represent the mixed 

upper ocean and layers below represented as density layers (Bleck, 2002).  

 

The analyses of the simulations, in most cases, are performed on the model fields that are 

interpolated to a common grid. This interpolation may introduce small inaccuracies (AchutaRao et 

al., 2006) in the results of analyses of a model, but is not considered significant. For example, no 

more than 3% of heat content change can be associated with regridding errors at the end of a 

simulation. 
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Table II 2 Ocean CGM Characteristics 1 

 

Model 

Resolution 

Long x Lat 

L = Levels 

Diabatic  

Mixing 

Adiabatic 

 Mixing 

Primary  

Variables 

Other 

 Comments 

CCSM3 POP  320x395 L40 

 

KPP GM Velocity,  

T, S, SSH, 

 ideal age 

z-level vertical 

 coordinate 

GFDL: 

CM2: OM3 

360x200 L50 

 

KPP GM Velocity,  

T, S, SSH, 

 ideal age 

z-level vertical 

 coordinate 

GISS:  

AOM 

90x60 L16 

 

KPP none Potential  

Enthalpy,  

velocity, 

 salt, mass 

z*vertical  

coordinate 

GISS: ER 72x46 L16  KPP GM See AOM See AOM 

GISS EH: 

 

180x90  Kraus- 

Turner 

No special 

 treatment 

T, S, SSH, 

 mass flux, 

 velocity 

Isopycnal 

Vertical 

 coordinate 

2  
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Ocean Mixing: At the interface of the atmosphere and the ocean, the sea surface temperature plays a 

critical role in the climate problem. Processes that control mixing in the ocean are complicated and 

take place on small scales (order of centimeters) in the turbulent regime near the surface (the mixed 

layer). Within the stratified, adiabatic interior of the ocean, mixing is influenced by the exchange of 

water on scales on the order of meters to kilometers (Figure II.A). The current ocean components 

of climate models are at resolutions that are greater than either of these scales. The mixing of the 

ocean contributes to the ocean’s stratification and heat uptake. This stratification, in turn, affects the 

circulation patterns on temporal scales of decades and longer. It is also generally felt (Schopf  et al., 

2003) that the mixing schemes in the ocean modeling components contribute significantly to the 

uncertainty in the estimates of the ocean's contribution to the predictions of climate change. 
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Figure II.A.  Schematic showing the interaction of a mixed layer (low Potential Vorticity: PV) with the 

stratified interior (high PV) in a strong frontal region with outcropping isopycnal surfaces, , undergoing 

cooling, “B” indicates where eddies forming along the front play a central role in controlling horizontal fluxes 

through the mixed layer and quasi-adiabatic exchange between the mixed layer and the interior. This 

process is poorly observed, understood and modeled and must be parameterized in large-scale models. 

(from Coupling Process and Model Studies of Ocean Mixing to Improve Climate Models - A Pilot Climate 

Process Modeling and Science Team, a US CLIVAR white paper by Schopf, Gregg, Ferrari, et al., (2003). 
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For turbulent mixing of the upper ocean at the boundary with the atmosphere, the current generation 

of climate models (resolutions on the order of degrees) parameterizes the processes primarily 

through the use of several different approaches. Large et al., (1994) also provides a more complete 

comparison of these mixing schemes. While not all international AOGCMs use the K-profile 

Parameterization (KPP; Large et al., 1994) scheme, most of the major US climate models 

incorporate a version of the scheme. Li et al., (2001) showed that in the tropical Pacific, the use of 

the KPP scheme for handling the mixed layer of the upper ocean reduced the error in the simulation 

as compared to observations over a simulation that used a more simplified method (Pacanowski and 

Philander, 1981).  

 

The adiabatic mixing, related to the interactions of eddy motions, generally is handled through the 

incorporation of the methods of Gent and McWilliams (GM) (1990) and Griffies (1998). Eddies 

will generally mix the ocean on constant density surface. The GM method incorporates various 

separate parameters that include the scale of the process to be considered and a parameter related to 

the ability of a parcel to move up and down. For any model the parameters are set so that coefficient 

related to diffusivity is high in the boundary currents and low in the interior of the ocean (Griffies et 

al., 2006). The ocean's flow is effected by the eddies, leading to adjustments in how much heat is 

moved through the oceans, and thus impacts the climate characteristics of the ocean.  

 

To accurately represent ocean mixing at scales important to climate, other processes may need to be 

represented explicitly or parameterized in the model. These include incorporation of tidal mixing 

and more accurate representation of interactions with the ocean's bottom.  Some of the models also 

include a scheme for handling tidal mixing (Lee et al., 2005). The limited study of Lee et al. (2005) 

shows that the tidal mixing enhanced the ventilation of the surface waters and increased the 

formation of deep water in the Labrador Sea by homogenizing the salinity distribution but did not 

have a major effect on the overturning circulation. It is still an open discussion on the importance of 

tidal mixing in ocean in relationship other larger scale changes occurring in the ocean related to 

climate. A few OGCMs also explicitly treat the bottom boundary and sill overflows (Beckman and 

Dosher, 1997).  
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Other parameterizations: Another aspect of the model that is available to climate modelers when 

running the simulations is the explicit treatment for handling the penetration of sunlight (and thus, 

affecting chlorophyll distributions) into the upper ocean (e.g.. Paulson and Simpson, 1977: Morel 

and Antoine, 1994: Ohlmann, 2003). All of the US models include such capability.  The inclusion 

of river input (which, in turn, effects ocean mixing locally) in OGCMs is also handled by the 

models in a variety of ways. The models' low resolution results in the smaller seas of the Earth 

being isolated from the large ocean basins. This requires that there be a method to exchange water 

between an isolated sea and the ocean to simulate what in nature involves a channel or strait. The 

various modeling groups have chosen different methods to handle the mixing of the water between 

these seas and the larger ocean basins, and is one potential source of model differences in climate 

simulations.   

 

 

Evaluation of OGCMs: Like  the atmosphere,  ocean components of climate models are separately 

evaluated, in addition to the evaluation of coupled ocean-atmosphere GCMs discussed in Chapter V 

below. Ocean model evaluation requires specification (as input to the computer models) of 

boundary conditions at the air-sea interface. Typically, these are specified to match observations of 

the recent decades, and the OGCM simulation is then evaluated by comparison with observations of 

the ocean from the same time period. OGCM experiments with specified sea surface boundary 

conditions are at present less robost and generally exhibit more uncertainty in model performance 

than similar experiments for the atmosphere. 
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The interaction of the Earth’s surface with the atmosphere is an integral aspect of the climate 

system. At the interface, there are exchanges (fluxes) of mass and energy, notably heat, water vapor, 

and momentum. Feedbacks between the atmosphere and the surface affecting these fluxes have 

important effects on the climate system (Seneviratne  et al., 2006). Modeling the processes over 

land is particularly challenging because the land surface is very heterogeneous and biological 

mechanisms in plants are important. Climate model simulations are very sensitive to the choice of 

land parameterizations (Irannejad et al., 2003). 

 

In the earliest global climate models, the land surface modeling occurred in large measure to 

provide a lower boundary to the atmosphere that was consistent with energy, momentum and 

moisture balances (e.g., Manabe 1969). The land surface was represented by a balance among 

incoming and outgoing energy fluxes and a “bucket” that received precipitation from the 

atmosphere and evaporated moisture into the atmosphere, with a portion of the bucket’s water 

draining away from the model as a type of runoff. The bucket’s depth equaled soil field capacity. 

There was little attention given to the detailed set of biological, chemical and physical processes 

linked together in the terrestrial portion of the climate system.  From this simple starting point, land 

surface modeling for climate simulation has increased markedly in sophistication, with increasing 

realism and inclusiveness of terrestrial surface and subsurface processes.  

 

Although these developments have increased the physical basis of land modeling, the greater 

complexity has at times contributed to greater differences between climate models (Gates  et al., 

1995). However, the advent of systematic programs comparing land models, such as the Project for 

Intercomparison of Land Surface Parameterization Schemes (PILPS; Henderson-Sellers  et al., 

1995; Henderson-Sellers, 2006) has gradually led to greater agreement with observations and 

among land models (Overgaard  et al. 2006), in part because more observations have been used to 

constrain their behavior. However, choices for adding processes and increasing realism have varied 

between land-surface models (e.g., Randall et al. 2007), so convergence of simulations by current 

models should not be expected.  This section reviews the range of developments that have led to 

contemporary simulation of land processes in climate models. 
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Figure II. B shows schematically the types of physical processes included in typical land models. It 

is noteworthy that the schematic in  Figure II. B describes a land model used for both weather 

forecasting and climate simulation, an indication of the increasing sophistication demanded by both.  

The figure also hints at important biophysical and biogeochemical processes that have gradually 

been added to land models used for climate simulation (and continue to be added), such as 

biophysical controls on transpiration and carbon uptake. 
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Figure II. B.  Schematic of physical processes in a contemporary land model (from Chen and Dudhia, 2001). 
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Vegetation: Some of the most extensive increases in complexity and sophistication have occurred 

with vegetation modeling in land models. An early generation of land models (Wilson et al., 1987; 

Sellers et al., 1986) introduced biophysical controls on plant transpiration by adding a vegetation 

canopy over the surface, thereby implementing vegetative control on the terrestrial water cycle. 

These models included exchanges of energy and moisture between the surface, canopy and 

atmosphere, along with momentum loss to the surface. Further developments included improved 

plant physiology that allowed simulation of carbon dioxide fluxes (e.g., Bonan 1995; Sellers  et al., 

1996), which lets the model treat the flow of water and carbon dioxide as an optimization problem 

balancing carbon uptake for photosynthesis against water loss through transpiration. Improvements 

also included implementation of model parameters that could be calibrated with satellite 

observation (Sellers et al., 1996), thereby allowing global-scale calibration.  
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Continued development has included more realistic parameterization of roots (Arora and Boer, 

2003; Kleidon, 2004) and adding multiple canopy layers (e.g., Gu  et al., 1999; Baldocchi and 

Harley, 1995; Wilson et al., 2003). However, the latter has not been used in climate models as the 

added complexity of multi-canopy models renders unambiguous calibration very difficult.  An 

important ongoing advance is the incorporation of biological processes that produce carbon sources 

and sinks through vegetation growth and decay and cycling of carbon in the soil (e.g., Li et al., 

2006), although considerable work is needed to determine observed magnitudes of carbon uptake 

and depletion. 

 

Soils: The spatial distribution of soils, at least for the contiguous U.S. appears to be fairly well 

mapped (Miller and White 1998). Most land models include only inorganic soils, generally 

composed of mixtures of loam, sand and clay. However, high-latitude regions may have extensive 

zones of organic soils (peat bogs), and some models have included organic soils topped by mosses, 

which has led to decreased soil heat flux and increased surface sensible and latent heat fluxes 

(Berringer et al., 2001).  
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Snow and ice: Climate models initially treated snow as a single layer that could grow through snow 

fall or deplete though melt (e.g., Dickinson et al., 1993). More recent land models for climate 
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simulation include sub-grid distributions of snow depth (Liston, 2004) and blowing of snow (Essery 

and Pomeroy, 2004). Snow models now may use multiple layers to represent fluxes through the 

snow (Oleson et al., 2004). Effort has also gone into including and improving effects of soil 

freezing and thawing (Koren et al., 1999; Boone et al, 2000; Warrach et al., 2001; Li and Koike, 

2003; Boisserie et al., 2006) though permafrost modeling is more limited (Malevsky-Malevich et 

al., 1999; Yamaguchi et al., 2005). 

 Vegetation interacts with snow by covering it, thereby masking snow’s higher albedo (Betts 

and Ball, 1997) and retarding spring snowmelt (Sturm et al., 2005).   The net effect is to maintain 

warmer temperatures than would occur without vegetation masking (Bonan et al., 1992). Vegetation 

also traps drifting snow (Sturm et al., 2001), insulating the soil from subfreezing winter air 

temperatures and potentially increasing nutrient release and enhancing vegetation growth (Sturm et 

al., 2001).  The albedo masking is included in some land surface models, but it requires accurate 

simulations of snow depth to produce accurate simulation of surface-atmosphere energy exchanges 

(Strack et al., 2003).  

 

Ice Sheets  Global sea level is rising at a rate of 30 cm/century, thanks to a combination of ocean 

thermal expansion, melting of mountain glaciers and small ice caps, and retreat of the large ice 

sheets of Greenland and Antarctica (Cazenave and Nerem, 2004; Church and White 2006). The rise 

in sea level provides a common disruption and challenge to nearly every country, and the 400 

million  inhabitants who live within roughly 20 meters of elevation above sea level (Small et al., 

2000).  By far the greatest uncertainty in sea level rise is associated with ice sheets.  Complete 

melting of the Greenland and West Antarctic ice sheets, which are believed vulnerable to climate 

warming, would raise sea level by about 7 m and 5 m, respectively.  During the last interglacial 

period, roughly 125,000 years ago, these ice sheets were smaller and sea level was a few meters 

higher than its present-day value (McCulloch and Ezat 2000, Siddall et al. 2003).  Given the 

potentially catastrophic impacts of sea level rise, it is essential to be able to predict how fast ice 

sheets will melt and whether that melting, once begun, can be reversed.  This is not yet possible 

because key ice sheet dynamical processes are poorly understood and are not included in current 

climate models. The recent IPCC assessment report (IPCC, 2007) underscores the need for 

improved ice sheet models, but because of the early stage of model development, specifically 

excluded rapid changes in ice flow from its 21st century sea level projections.   
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Ice sheets were once thought to be too sluggish to respond to climate change on time scales of less 

than a century.  However, analysis of coral reefs at several locations indicate periods, including 

around 14,000 years ago, when sea level rose by as much as a few meters per century (Bard et al., 

1990).  Recent observations suggest that ice sheets are already responding to warming.  Outlet 

glaciers in Greenland have accelerated and thinned (Rignot and Kanagaratnam, 2006), driven by 

ocean warming and possibly by increased basal sliding.   Ice shelves in the Amundsen Sea 

embayment of West Antarctica have thinned and retreated, giving rise to acceleration of glaciers 

tens of km upstream (Payne et al., 2004).  Satellites provide near-complete spatial coverage and 

recent instruments have measured changes in total ice volume with precision that is unprecedented.  

Surface altimetry and synthetic aperture radar interferometry measure the height of the ice surface, 

and can be used to estimate changes in ice volume with additional information or assumptions about 

depth (Rignot and Kanagaratnam, 2006).  Surveys of the changing gravitational field provide direct 

measurements of ice mass (Velicogna and Wahr 2006).  Both indicate that the Greenland and 

Antarctic ice sheets are losing mass.  Shepherd and Wingham (2007) estimate a net loss of about 

125 Gt/yr (which includes losses of 100 Gt/yr for Greenland and 50 Gy/yr for West Antarctica, 

offset by a gain of 25 Gt/yr from increased snowfall in East Antarctica).  The resulting contribution 

to sea level rise is currently a modest 3.5 cm/century, but this contribution will likely increase in a 

warming climate. 

 

Most global climate models to date have been run with prescribed, immovable ice sheets, but 

several modeling groups are now incorporating dynamic ice sheet models.  Scientists are coupling 

GLIMMER, an ice sheet model originally developed at the University of Bristol, to the Community 

Climate System Model.  GLIMMER will be forced with temperature, precipitation, and other 

climate fields, and will return a modified surface elevation profile along with meltwater freshwater 

fluxes.  As the ice sheet thins, melting will likely increase because the surface descends to a lower 

elevation where the temperature is higher temperature-elevation feedback.  Meanwhile, meltwater 

freshwater fluxes will freshen the upper ocean and possible modify the thermohaline circulation.  

GLIMMER will initially be used to model the Greenland ice sheet and later will be used for 

simulations of the Antarctic ice sheet as well as paleo ice sheets (e.g., the Laurentide ice sheet that 

covered much of North America during the last glacial period). 
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Like most current-generation models, GLIMMER is based on the shallow-ice approximation, which 

assumes that ice flow is dominated by vertical shear.  This approximation is valid in slow-moving 

ice sheet interiors but is insufficient to model fast dynamic changes near the ice sheet margin.  A 

number of physical, numerical and computational improvements are needed to provide realistic 

projections of 21st century ice sheet changes.  Among the major challenges are the following. 

 

• Incorporate a unified treatment of stresses: both the vertical shear stresses that dominate in 8 

the ice sheet interior and the longitudinal stresses that are important in ice shelves and ice 

streams. 

• Decrease grid spacing to 5 km or less to resolve small-scale features such as ice streams and 

outlet glaciers.  This may require nested or unstructured grids, as well as parallel codes that 

scale efficiently with large numbers of processors. 

• Develop improved methods of downscaling atmospheric fields, which are typically at a grid 

spacing of 100 km or more, to the finer ice sheet grid, making sure that energy is conserved 

in the process. 

• Develop realistic parameterizations of surface and subglacial hydrology.  Fast dynamic 

processes are largely controlled by the pressure and extent of water at the base of the ice 

sheet.  

• Model the interaction of ice shelves with the ocean circulation.  Ocean models, which 

usually assumed fixed topography, must be modified to include flow beneath advancing and 

retreating ice. 22 
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Meeting these challenges will require increased interaction between the glaciological and climate 

modeling communities, which until recently have been largely isolated from one another. 

 

 

Hydrology: The initial focus of land models was vertical coupling of the surface with the overlying 

atmosphere. However, horizontal water flow through river routing has been available in some 

models for some time (e.g., Sausen et al., 1994; Hagemann and Dümenil, 1998), with spatial 

resolution of routing in climate models increasing in more recent versions (Ducharne et al., 2003). 
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However, freezing soil poses additional challenges for modeling runoff (Pitman et al., 1999), with 

more recent work showing some skill in representing its effects (Luo et al., 2003; Rawlins et al., 

2003; Niu and Yang, 2006). 
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Work is also underway to couple ground-water models into land models (e.g., Gutowski  et al., 

2002; York et al., 2002; Liang et al., 2003; Maxwell and Miller, 2005; Yeh and Eltahir, 2005). 

Ground water potentially introduces longer time scales of interaction in the climate system in places 

where it has contact with vegetation roots or emerges through the surface. 

 

Scale considerations: Land models encompass spatial scales ranging from the size of the model 

grid box down to biophysical and turbulence processes operating on scales the size of leaves. 

Explicit representation of all these scales in a climate model is beyond the scope of current 

computing systems as well as observing systems that would be needed to provide adequate model 

calibration for global and regional climate. As indicated above, land models have been developed to 

increase the sophistication of their climate-system simulation without becoming so complex as to be 

intractable. Thus, for example, typical land models in climate simulation do not represent individual 

leaves but the collective behavior of a canopy of leaves, and multiple canopy layers are generally 

represented by a single, effective canopy. 
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Although model fluxes are primarily in the vertical direction, they do not represent a single point 

but behavior in a grid box that may be many tens or hundreds of kilometers across. Initially, these 

grid boxes were treated as homogeneous units, but starting with the pioneering work of Avissar and 

Pielke (1989), many land models have tiled a grid box with patches of different land-use and 

vegetation types. Although these patches may not interact directly with their neighbors, they are 

linked by their coupling to the grid box’s atmospheric column. This coupling does not allow 

possible small-scale circulations that might occur because of differences in surface-atmosphere 

energy exchanges between patches (Segal and Arritt, 1992; Segal et al., 1997), but under most 

conditions, the imprint of such spatial heterogeneity on the overlying atmospheric column appears 

to be limited to a few meters above the surface (e.g., Gutowski  et al.,1998).  
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Vertical fluxes linking the surface, canopy and near-surface atmosphere generally assume some 

form of down-gradient diffusion, though counter-gradient fluxes can exist in this region much like 

in the overlying atmospheric boundary layer, so there has been some attempt to replace diffusion 

with more advanced, Lagrangian random-walk approaches (Gu et al., 1999; Baldocchi and Harley, 

1995; Wilson et al., 2003). 

 

Digital Elevation Models: Topographic variation within a grid box is usually ignored in land 

modeling. However, implementing detailed river-routing schemes will require accurate digital 

elevation models (e.g., Hirano et al., 2003; Saraf  et al., 2005). In addition, some soil water schemes 

also include effects of land slope on water distribution (Choi et al., 2007) and surface radiative 

fluxes (Zhang et al., 2006).  
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Validation: Validation of land models, especially globally, remains a problem, due to lack of 

measurements for relevant quantities such as soil moisture and energy, momentum, moisture and 

carbon fluxes. PILPS (Henderson-Seller  et al., 1995) has provided opportunity to make detailed 

comparisons of multiple models with observations at point locations around the world with differing 

climates, thus providing some constraint on the behavior of land models. Global participation in 

PILPS has led to a greater understanding of differences among schemes and improvements. The 

latest generation of land surface models exhibit relatively smaller differences (Henderson-Sellers  et 

al., 2003) compared to previous generations. River routing can provide a diagnosis versus 

observations of the spatially distributed behavior of a land model (Kattsov et al., 2000). Remote 

sensing has been useful for calibration of models developed to exploit it, but it has not generally 

been used for model validation. The development of regional observing networks that aspire to give 

Earth-system observations, such as some of the mesonets in the United States, offers promise of 

spatially distributed observations of important fields for land models that resolve some of the spatial 

variability of land behavior. 
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Future: Land modeling has developed in other disciplines roughly concurrently with the advances 

implemented in climate models.  Applications are wide ranging and include detailed models used 

for water resource planning (Andersson  et al. 2006), managing ecosystems (e.g., Tenhunen  et al., 

1999), estimating crop yields (e.g., Jones and Kiniry, 1986; Hoogenboom  et al.; 1992), simulating 
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ice sheet behavior (Peltier, 2004), and projecting land-use, such as for transportation planning (e.g., 

Schweitzer; 2006). As suggested by this list, there are widely disparate applications, which have 

developed from differing scales of interest and focus processes. Land-model development in some 

of these other applications has informed advances in land models for climate simulation, as in 

representation of vegetation and hydrologic processes. Because land models do not include all 

climate system processes, they can be expected in the future to engage other disciplines and 

encompass a wider range of processes, especially as resolution increases. 

 

 Sea Ice Models, including parameterizations and evaluation  

 

General overview: All the considered climate models have sea ice components that are both 

dynamic and thermodynamic. That is, the models include the physics for ice movement as well as 

the physics that is related to energy and heat within the ice. The differences in the various models 

relate primarily to how complex the code for the dynamics is in determining the representation of 

ice rheology and their use of parameters.  
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Two dynamical codes are in common use in ice models, the standard Hibler viscous-plastic (VP) 

rheology (Hibler, 1979; Zhang and Rothrock, 2000) and the more complex elastic-viscous-plastic 

(EVP) rheology of Hunke and Dukowicz (1997). The EVP method explicitly solves for the ice 

stress tensor, while the VP solution uses an implicit iterative approach. The solutions are similar 

(Hunke and Zhang, 1997). The NOAA-GFDL models [Delworth et al., 2005] and the NCAR-

CCSM3 (Collins et al., 2005) use the EVP rheology, while the NASA-GISS models use the VP 

implementation. The EVP is more efficient, especially when using multiple processors. 

 

The thermodynamics portions of the codes also vary in their implementation. Previous climate 

models generally used the thermodynamics code of Semtner (1976). This classic sea ice model 

includes one snow layer and two ice layers with constant heat conductivities and a simple 

parameterization of the brine (salt) content. The NOAA-GFDL models continue to use the Semtner 

structure with three layers but extend the code relating to brine content in the upper ice layer to be 

represented by variable heat capacity (Winton, 2000). The NCAR-CCSM3 and NASA-GISS 

models use variations of the Bitz and Lipscomb (1999) thermodynamics (Briegleb et al.,  2002). 
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The code accounts for more of the physical processes within the ice, including the melting of 

internal brine regions and conserves energy.   

 

The prognostic variables of the sea ice components of the separate climate models are similar to 

their ocean counterpart, that is the NOAA-GFDL and NCAR-CCSM use velocity, temperature and 

volume while the NASA-GISS models use velocity, enthalpy, and mass. The amounts of snow and 

ice for the layers are also computed with each model defining the number of ice layers and ice 

categories differently. The NOAA-GFDL models use a snow layer, two ice layers and five ice-

thickness categories. The NCAR-CCSM3 model has a snow layer, four ice layers, and six ice 

categories. The NASA-GISS model includes one snow layer, three ice layers, and two ice 

categories. There is variation among the models on how ice categories are defined, but all include a 

"no ice" category. The resolution of the sea-ice component is the same as the ocean components of a 

specific climate model: NASA-GISS is at a relatively low resolution of 4°x5°, while the NOAA-

GFDL and NCAR-CCSM models are on the order of 1°. 

 

 Parameterizations 16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

 

Albedo: As an important feedback to the atmosphere, the albedo (the proportion of incident 

radiation reflected off a surface) of the snow and ice plays a significant role in the climate system. 

All the sea ice component models parameterize the albedo to some extent. Figure II. C from Curry  

et al. (1995) illustrates the interrelations of the sea-ice system and how the albedo is a function of 

the snow or ice thickness, ice extent, open water, and the surface temperature, along with other 

factors, including the spectral band of the radiance. The various models treat the different 

contributions to the total albedo in similar ways, but vary on the details. For example, the NCAR-

CCSM3 sea-ice component does not include dependence on the solar elevation angle (Briegleb  et 

al., 2002), while the NASA-GISS model does (Schmidt  et al., 2006). Both of these models include 

the contribution of melt ponds (Ebert and Curry, 1993; Schramm  et al., 1997) The NOAA-GFDL 

model follows Briegleb et al. (2002), but accounts for the differences in spectral contributions using 

fixed ratios (Delworth  et al. 2006).  
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 1 
2 Figure II. C  (from Curry  et al. (1995)).  
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Other parameterizations: Additional parameters include reference values for defining ice salinities, 

strengths, roughness, and drag coefficients. Details of these parameters can be found in the 

references listed above which describe the basic sea-ice models of the various groups.  

 

Component coupling and coupled model evaluation 
 

We describe in the following some of the key aspects of the model development process at the three 

U.S. groups that contributed models to the Fourth Assessment of the IPCC, with particular focus on 

those aspects most relevant for simulation of the 20th century global mean temperature record on the 

one hand, and the model's climate sensitivity on the other hand. We begin with some general 

comments on the model development process.  

 

The complexity of the climate system, and our inability to resolve all relevant processes in our 

models, result in a host of choices for development teams to make. Differing expertise, experience, 

and interests result in distinct development pathways for each climate model. While we eventually 

expect to see model convergence, forced by increasing insights into the working of the climate 

system, we are still far from that limit today in several important aspects of the models. Given this 

level of uncertainty, multiple modeling approaches are clearly needed. Models differ in their details 

primarily because development teams have differing ideas concerning the underlying physical 

mechanisms relevant for the less well-understood aspects of the system.  

 

The NOAA Geophysical Fluid Dynamics Laboratory Model Development Path 

 

The Geophysical Fluid Dynamics Laboratory of NOAA conducted a thorough restructuring of its 

atmospheric and climate models over more than five years prior to its delivery of a model to the 

CMIP-3/IPCC database in 2004. This was performed partly in response to need for modernizing the 

software engineering, and partly in response to new ideas in modeling the atmosphere, ocean, and 

sea ice. The differences between the resulting models and the previous generation of climate models 

at GFDL are sufficiently varied and substantial, that mapping out exactly why climate sensitivity 

and other aspects of the climate simulations differ between these two generations of models would 
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be very difficult and has not been attempted. Unlike the earlier generation, the new models do not 

use flux adjustments. 

  

The new atmospheric models developed at GFDL for global warming studies are referred to as 

AM2.0 and AM2.1 (GFDL Atmospheric Model Development Team, 2006).  A key point of 

departure from previous models at GFDL was the adoption of a new numerical core for solving the 

fluid dynamical equations for the atmosphere. Much of the atmospheric development was based on 

running the model over observed seas surface temperature and sea ice boundary conditions over the 

period 1980-2000, with a focus on both the mean climate and the response of the atmosphere to 

ENSO variability in the tropical Pacific. Given the basic model configuration, several subgrid 

closures were varied to optimize aspects of the climate. Modest improvements in the midlatitude 

wind field were obtained by adjusting a part of the model referred to as “orographic gravity wave 

drag” which accounts for the effects of the force exerted on the atmosphere by unresolved 

topographic features ("hills"). Substantial improvements in tropical rainfall and its response to 

ENSO resulted from an optimization of parameters as well, especially the treatment of vertical 

transport of horizontal momentum by moist convection.  

 

The ocean model chosen for this development was the latest version of the Modular Ocean Model 

developed over several decades at GFDL, notable new features in this version being a grid structure 

better suited to simulating the Arctic ocean and a framework, that has been nearly universally 

accepted by ocean modelers in recent years, for sub-gridscale mixing that avoids unphysical mixing 

between oceanic layers of differing densities (Gent and McWilliams, 1990). A new sea ice model 

includes the large-scale effective rheology that has proven itself in the past decade in several 

models, and multiple ice thickness/lead classes in each grid box.  The land model chosen was 

relatively simple, with vertically resolved soil temperature but retaining the “bucket hydrology” 

from the earlier generation of models.  

 

The resulting climate model was studied, restructured, and tuned for an extended period, with 

particular interest in optimizing the structure and frequency of the model’s spontaneously generated 

EL Nino events, minimizing surface temperature biases, and maintaining an Atlantic overturning 

 46



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

circulation of sufficient strength.  During this development phase, climate sensitivity was monitored 

by integrating the model to 

equilibrium with doubled CO2 when coupled to a "flux-adjusted slab" ocean 

model A single model modification reduced the model’s sensitivity from a value of 4.0–4.5 K to 

values between 2.5 and 3.0 K.  The change responsible for this reduction was the inclusion of a new 

model of mixing in the planetary boundary near the Earth’s surface. It was selected for inclusion in 

the model because it generated more realistic boundary layer depths and near surface relative 

humidities. The reduction in sensitivity resulted from modifications to the low level cloud field; the 

size of this reduction was not anticipated.  

 

Aerosol distributions used by the model were computed off-line from the MOZART-II model as 

described in Horowitz,  et al., (2003). No attempt was made to simulate the indirect aerosol effects 

(interactions between clouds and aerosols) as the confidence in the schemes tested was deemed 

insufficient for inclusion in the model. In the 20th century simulations, solar variations followed the 

prescription of Lean et al., (1995), while volcanic forcing was estimated from obervations.  

Stratospheric ozone was prescribed, with the Southern Hemisphere ozone hole prescribed, in 

particular, in the 20th century simulations. A new detailed land-use history provided a time-history 

of vegetation-types.  

 

Final tuning of the global energy balance of the model, using two parameters in the cloud prediction 

scheme, was conducted by examining control simulations of the fully coupled model using fixed 

1860 and 1990 forcings. The IPCC-relevant runs of the resulting model (CM2.0) were provided to 

the CMIP-3/IPCC archive under considerable time pressure. 

  

The simulations of the 20th century with time-varying forcings provided to the database were the 

first simulations of this kind generated with this model. There was no retuning of the model, and no 

iteration of the aerosol or any other time-varying forcings, at this point. 

 

Model development efforts proceeded in the interim, and a new version of the model emerged 

rather quickly in which the numerical core of the atmospheric model was replaced by a “finite-

volume” code (Lin and Rood, 1996), substantially improving the wind fields near the surface. These 
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improved winds in turn resulted in improved extratropical ocean circulation and temperatures. 

ENSO variability increased in this model, to unrealistically large values. But the efficiency of the 

ocean code was also improved substantially, and with a retuning of the clouds for global energy 

balance, the new model, CM2.1, was deemed to be a substantial enough improvement to warrant 

generating a new set of runs for the database. CM2.1 when run with a slab ocean model was found 

to have a somewhat increased sensitivity, (3.3K). However, the transient climate sensitivity, the 

global mean warming at the time of CO2 doubling in a fully-coupled model with 1%/yr increasing 

CO2, is actually slightly smaller than in CM2.0.  

The solar, aerosol, volcanic, and greenhouse gas forcings are identical in the two models.  

 

The Community Climate System Model Development Path  

 

A new version of the Community Climate System Model, version 3 (CCSM3) has been 

developed, and was released to the climate community in June, 2004.  CCSM3 is a coupled climate 

model with components representing the atmosphere, ocean, sea ice, and land surface connected by 

a flux coupler.  CCSM3 is designed to produce realistic 

simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting 

several millennia or detailed studies of continental-scale dynamics, variability, and climate change.  

Twenty six papers documenting all aspects of the CCSM3, and runs performed with it, were 

published is a Journal of Climate Special Issue, Vol 19, No 11, June 2006.  Three different 

resolutions of the model are supported.  The highest resolution is the configuration used for climate-

change simulations, with a T85 grid for the atmosphere and land, and a grid with approximately 1º 

resolution for the ocean and sea-ice, but finer meridional resolution near the equator.  The second 

resolution is a T42 grid for the atmosphere and land, with the 1ºocean and sea-ice resolution.  There 

is also a lower resolution version, designed for Paleoclimate studies, that has T31 resolution for the 

atmosphere and land, and a 3ºversion of the ocean and sea ice. 

 

The new version of the CCSM3 incorporates several significant improvements in the physical 

parameterizations. The enhancements in the model physics are designed to reduce or eliminate 

several systematic biases in the mean climate produced by previous versions of CCSM.  These 

include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean 
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mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice 

thickness, polar radiation budgets, tropical sea-surface temperatures, and cloud radiative effects.  

CCSM3 produces stable 

climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged 

among the component models.  Nonetheless, there are still systematic biases in the ocean-

atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the 

spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface 

air temperatures. Work is underway to produce the next version of the CCSM, which will reduce 

these biases further, and to extend the CCSM to a more accurate and comprehensive model of the 

complete Earth’s climate system. 

 

The climate sensitivity of the CCSM3 has a weak dependence on the resolution used.  

The equilibrium temperature increase due to a doubling of carbon dioxide, using a slab ocean 

model, is 2.71C, 2.47C, and 2.32C, respectively, for the T85, T42, and T31 atmosphere resolutions. 

The transient climate response to doubling carbon dioxide in fully coupled integrations is much less 

dependent on resolution, being 1.50C, 1.48C, and 1.43C, respectively, for the T85, T42, and T31 

atmosphere resolutions, see the Kiehl  et al. paper in the Journal of Climate Special Issue, Vol 19, 

No 11, June 2006, 2584–2596.   

 

For the IPCC Fourth Assessment Report, the following CCSM3 runs were submitted for evaluation, 

and to PCMDI for dissemination to the climate scientific community.  Long, present day and 1870 

control runs, an ensemble of eight 20th century runs, and smaller ensembles of future scenario runs 

for the A2, A1B, and B1 scenarios, and for the 20th century commitment run, where the carbon 

dioxide levels were kept at their 2000 values.  

The control and 20th century runs are documented and analysed in several papers in the Journal of 

Climate Special Issue, and the future climate change projections using the CCSM3 are documented 

by Meehl et al (2006).  

 

The GISS Development Path 
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The most recent version of the GISS atmospheric GCM, modelE, resulted from a substantial 

reworking of the previous version, model II'.  While the model physics has become more 

sophisticated, execution by the user is simplified as a result of modern software engineeering and 

improved model documentation embedded within the code and accompanying web pages.  The 

model can be downloaded from the GISS website by outside users, and is designed to run on myriad 

platforms ranging from laptops to a variety of multi-processor computers, partly as the result of the 

rapidly shifting computing environment at NASA.  The most recent (post-AR4) version can be run 

on an arbitrarily large number of processors.  

 

Historically, GISS has eschewed flux adjustment.  Nonetheless, the net energy flux at the top of 

atmosphere and surface have been reduced to near zero, by adjusting the threshold relative humidity 

for water and ice cloud formation, two parameters that are otherwise weakly constrained by 

observations.  Near-zero fluxes at these levels are necessary to minimize drift of either the ocean or 

the coupled climate.  

 

To assess the sensitivity of the climate response to the treatment of the ocean, modelE has been 

coupled to a slab-ocean model with prescribed horizontal heat transport, along with two ocean 

GCMs.  One GCM, the Russell ocean (Russell et al.,1995), has 13 vertical layers and horizontal 

resolution of 4º latitude by 5º longitude, and is mass conserving (rather than volume conserving like 

the GFDL MOM).  Alternatively, ModelE is coupled to the Hybrid Coordinate Ocean Model 

(HYCOM), an isopycnal model developed originally at the University of Miami (Sun and Bleck, 

2006).  HYCOM has 2º latitude by 2º longitude resolution at the equator, with the latitudinal 

spacing decreasing poleward with the cosine of latitude.  A separate rectilinear grid is used in the 

Arctic to avoid the polar singularity, and joins the spherical grid around 60 N.  

 

Climate sensitivity to doubling of CO2 depends upon the ocean model due to differences in sea-ice.  

For the slab-ocean model, the climate sensitivity is 2.7 C, and 2.9 C for the Russell ocean (Hansen 

et al 2005).  As at GFDL and CCSM, no effort is made to match a particular sensitivity, nor is the 

sensitivity or forcing adjusted to match 20th century climate trends (Hansen et al 2007).  Aerosol 

forcing is calculated from prescribed concentration, computed offline by a physical model of the 

aerosol life cycle.  In contrast to the GFDL and NCAR models, modelE includes a representation of 
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the aerosol indirect effect.  Cloud droplet formation is related empirically to the availability of cloud 

condensation nuclei, which depends upon the prescribed aerosol concentration (Menon and Del 

Genio 2005).  

 

Flexability is emphasized in model development (Schmidt et al., 2006). ModelE is designed for a 

variety of applications, ranging from simulation of stratospheric dynamics and the middle 

atmosphere response to solar forcing, to projection of twenty-first century trends in surface climate.  

Horizontal resolution is typically 4º latitude by 5º longitude, although twice the resolution is more 

often used for studies of cloud processes.  The model top has been raised from 10 mb (as in the 

previous model II') to 0.1 mb, so that the top has less influence upon the stratospheric circulation. 

Coding emphasizes “plug-and-play” structure, so that the model can be easily adapted for future 

needs, such as fully interactive carbon and nitrogen cycles.  

 

Model development is devoted to improving the realism of individual model parameterizations, 

such as the planetary boundary layer, or sea ice dynamics.  Because of the variety of applications, 

relatively little emphasis is placed upon optimizing the simulation of specific phenomena such as El 

Nino or the Atlantic thermohaline circulation; as noted above, successful reproduction of one 

phenomena usually results in a sub-optimal simulation of another.  Nonetheless, some effort was 

made to reduce biases in previous versions of the model that emerged from the interaction of 

various features of the model, such as subtropical low clouds, tropical rainfall, and variability of the 

stratospheric winds.  Some of the model adjustments were structural, as opposed to the adjustment 

of a particular parameter: for example, the introduction of a new planetary boundary layer 

parameterization that reduced the unrealistic formation of clouds in the lowest model level (Schmidt 

et al., 2006).  

 

Because of their uniform horizontal coverage, satellite retrievals are emphasized for model 

evaluation, like Earth Radiation Budget Experiment fluxes at TOA, Microwave Sounding Unit 

channels 2 (troposphere) and 4 (stratosphere) temperatures, and International Satellite Cloud 

Climatology Project (ISCCP) diagnostics.  Comparison to ISCCP is through a special algorithm that 

samples the GCM output to mimic data collection by an orbiting satellite.  For example, high clouds 

may include contributions from lower levels in both the model and the downward looking satellite 
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instrument.  This satellite perspective within the model allows a rigorous comparison to 

observations.  In addition to satellite retrievals, some GCM fields like zonal wind are compared to 

in situ observations adjusted by the ERA-40 reanalyses.  Surface air temperature is taken from the 

Climate Research Unit (Jones et al., 1999).  
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The CCSM and GFDL Development Teams met several times during this period to compare 

experiences and discuss common biases in the two models. A topic of considerable discussion and 

concern, for example, was the tendency for too strong an equatorial cold tongue in the Eastern 

Equatorial Pacific and associated problems with the pattern of precipitation (often referred to as the 

“double ITCZ problem”). It was noted in these meetings that the climate sensitivities of the two 

models had converged to some extent from an earlier generation in which the NCAR model was on 

the low end of the canonical sensitivity range of 1.5–4.5K, while the GFDL model had been near 

the high end. This convergence in the global mean was considered by the teams to be coincidental; 

it was not a consequence of any specific actions taken so as to engineer convergence, and did not 

reflect convergence either in the specifics of the cloud feedback processes that resulted in these 

sensitivity changes, nor in the regional temperature changes than make up these global mean values. 

 

A procedure common to each of these three models, and to all other comprehensive climate models, 

is a tuning of the global mean energy balance. A climate model must be in balance at the top of the 

atmosphere and globally averaged, to within a few tenths of a W/m2 in its control (pre-1860) 

climate if it is to avoid temperature drifts in 20th and 21st century simulations that would obscure the 

response to the imposed changes in greenhouse, aerosol, volcanic, and solar forcings. Especially 

because of the difficulty in modeling clouds, but even in the clear sky, untuned models do not 

currently possess this level of accuracy in their radiative fluxes. The imbalances are more typically 

range up to 5 W/m2 or more. Parameters in the cloud scheme are then altered to create a balanced 

state, often taking care that the individual components of this balance, the absorbed solar flux and 

emitted infrared flux, are individually in agreement with observations, since these help insure the 

correct distribution of the heating between atmosphere and ocean. This is occasionally referred to as 
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the “final tuning” of the model, to distinguish it from the various choices made with other 

motivations while one is configuring the model. 

 

The need for this final tuning does not preclude the use of these models for global warming 

simulations, in which the radiative forcing is itself of the order of several W/m2. Consider for 

example, the study of Ramaswamy et al., (2001) of the effects of modifying the treatment of the 

“water vapor continuum” in a climate model. This is an aspect of the radiative transfer algorithm in 

which there is significant uncertainty. While modifying the treatment of the continuum can change 

the top-of-atmosphere balance by more than 1 W/m2, the effect on climate sensitivity is found to be 

insignificant. The change in radiative transfer in this instance alters the outgoing infrared flux by 

roughly 1% , and it affects the sensitivity (by altering the derivative of the flux with respect to 

temperature) by roughly the same percentage. But a change in sensitivity of this magnitude, say 

from 3K to 3.03K, is of little consequence given uncertainties in the cloud feedbacks. It is some 

aspects of the models that affect the strengths of temperature-dependent feedbacks that are of 

particular concern, not errors in mean fluxes per se.  

 

Reductive vs. holistic evaluation of models:  17 
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In order to evaluate models, appreciation is needed of their structure.  For example, the discussion 

of the climatic response to increasing greenhouse gases is intimately related to the question of how 

the infrared radiation escaping to space is controlled.  When summarizing the results from climate 

models, one often speaks and thinks in terms of a simple energy balance model in which the global 

mean infrared energy escaping to space is a single number that has a simple dependence on global 

mean surface temperature.  Water vapor or cloud feedbacks are often incorporated into such global 

mean energy balance models with simple empirical relationships that can easily be tailored to 

generate a desired result.  In contrast, Figure II D shows a snapshot at an instant in time of the 

infrared radiation escaping to space in the kind of atmospheric general circulation model discussed 

in this report.  The detailed distributions of clouds and water vapor simulated by the model, 

transported by the model’s evolving wind fields, create complex patterns in space and time that, if 

the simulation is sufficiently realistic, resemble the images seen from satellites viewing the Earth at 

infrared wavelengths.      
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A snapshot in time of the infrared radiation escaping to space in a version of the atmospheric model 

AM2 (GAMDT, 2004) constructed at NOAA’s Geophysical Fluid Dynamics Laboratory. The energy 

emitted is largest in the darkest areas and smallest in the  brightest areas. (This version of the 

atmospheric model has higher resolution than that used for the simulations in the CMIP3 archive 

(50 km rtrher than 200km)but other than resolution it uses the same numerical algorithm.)             
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This class of model evolves the state of the atmosphere/land system forward in time, starting from 

some initial condition. It consists of rules that generate this state (temperature, winds, water vapor, 

clouds, rainfall rate, water storage in the land, land surface temperature) from the preceding state, in 

this case one half hour earlier. By this process it evolves the “weather” over the Earth. To change 

the way in which this model’s infrared radiation reacts to increasing temperatures, one would need 

to modify these rules.  

 

The goal of the climate modeling enterprise is to decrease the level of empiricism and to base 

models as much a possible on well-established physical principles.  This goal is pursued primarily 

by decomposing the climate system into a number of relatively simple processes and interactions, 

and by focusing on the rules governing the evolution of these individual processes, rather than 

working with more holistic concepts such as the global mean infrared radiation escaping to space, 

the average summertime rainfall over Africa, or the average wintertime surface pressure over the 

Arctic.  These are all outcomes of the model, determined by the set of reductive rules that govern 

the model’s evolution. 

 

Suppose one is interested in how ocean temperatures affect rainfall over Africa.  One can develop 

an empirical, holistic, model, using observations and standard statistical techniques, in which one 

“fits” the model to these observations.  Alternatively, one can try to use a general circulation model 

of the sort pictured above, which does not deal directly with a high level climate output such as 

African rainfall averaged over some period, but rather attempts to simulate the inner workings, or 

dynamics, of the climate system at a much finer level of granularity. To the extent that the 

simulation is successful and convincing, with analysis and manipulation of the model one can hope 

to uncover the detailed physical mechanisms underlying this causal connection. The resulting fit 

may or may not be as good as the fit obtained with the explicitly tuned statistical model, but a 

reductive model ideally provides a different level of confidence in its explanatory and predictive 

power.  See, for example, Hoerling, et al 2006 for an analysis of African rainfall/ocean temperature 

relationships in a set of atmospheric GCMs.  

 

Our confidence in the explanatory and predictive power of climate models grows based on their 

ability to simulate many aspects of the climate system simultaneously with the same set of 
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physically based rules.  When one evaluates a models ability to simulate the evolution of the global 

mean temperature evolution over the 20th century, it is important to try to make this evaluation in 

the context of the model’s simultaneous capacity to simulate the seasonal cycle of the Asian 

monsoons, for example, and it ability to generate the poleward shift of the jet stream in the Southern 

hemisphere over the past 30 years that has impacted rainfall over southern Australia, and its ability 

to spontaneously generate El-Nino’s of the correct frequency and spatial structure and to capture the 

effects of El Nino on rainfall and clouds.  The quality of the simulation in all of these respects adds 

confidence in the reductive rules being used to generate the simultaneous simulation of all of these 

phenomena.   

 

A difficulty that we will return to frequently in this report is that of relating the qualities of a climate 

simulation to a level of confidence in the model’s ability to predict climate change.  

 

The use of model metrics 

 

Recently, objective evaluation of models has exploded with the wide availability of model 

simulation results in the CMIP3 model database (Meehl, et al, 2006).  One important area of 

research is in the design of of metrics to test the ability of models to simulate well observed climate 

features (Reichler and Kim, 2007; Gleckler, et al,, 2007).  It is unclear which aspects of observed 

climate must be simulated to ensure reliable future predictions. For example, it is not clear that the 

most realiable climate projections for temperature over North America are obtained from models 

that simulate the most realistic present-day temperatures for North America.  The projected climate 

changes in North America  may depend strongly on the changes in ocean temperature in the tropical 

Pacific Ocean, and the manner in which the jet stream over the Pacific responds to these changes in 

temperature.  The quality of a models simulation of atmosphere-ocean cpoupling over the Pacific 

could potentially  be a more relevant metric of quality in this instance.  However, metrics  can 

provide guidance about the overall strength and weaknesses of individual models as well as the 

general state of modeling.   

 

The use of metrics can also inform the community as why it is impossible at this time to determine 

which is the “best” climate model.  In Figure II E below, each of the colored triangles represents a 
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different metric for which each model was evaluated, for example, “ts” represents surface 

temperature.  The figure displays the relative error value for a variety of metrics, for each model, 

represented by a vertical column above each tick mark on the horizontal axis.  Values less than zero 

represent a better than average simulation of a particular field measured by the metric, while values 

greater than zero show models with errors greater than the average.  The black triangles connected 

by the dashed line represent the normalized sum from the errors of all 23 fields.  The models were 

then ranked from left to right based on the value of this total error. As can be seen, the models with 

the lowest total error, tend to also score better than average in most individual metrics, however, the 

“best” models do not score the best for every metric. For an individual application, the model with 

the lowest total error may not be the best choice. 
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Figure II E – Model metrics for 23 different climate fields.  Values less than 0 indicate an error less 

than the average CMIP3 model, while values greater than 0 show values greater than the average.  

The black triangles connected by the black line is a total score obtained by averaging all 23 fields. 
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Climate simulations discussed in this report  

 

Three types of climate simulation are discussed in this report. They differ according to the climate 

forcing factors used as input to the models: 

 

Control runs use constant forcing. (The name “control runs” originated in comparing them with the 

other simulation types discussed below.) The Sun’s energy output and the atmospheric 

concentrations of carbon dioxide and other gases and aerosols do not change in control runs. As 

with the other types of climate simulation, day-night and seasonal variations occur, as well as 

internal “oscillations” such as ENSO (see below). Other than these variations, the control run of a 

well-behaved climate model is expected to reach a steady state eventually. 
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Values of control-run forcing factors are typically set to match present-day conditions, and model 

output is then compared with present-day observations. Actually, the present climate is affected not 

only by current forcing but also by the history of forcing over time—in particular past emissions of 

greenhouse gases—but present-day control run output and observations are expected to agree fairly 

closely if models are reasonably accurate. We compare model control runs with observations in 

Chapter V below. 

 

 Idealized climate simulations are aimed at understanding important processes in models and in 

the real world. They include experiments in which the amount of atmospheric carbon dioxide 

increases at precisely 1% per year (about twice the present rate of increase) or doubles 

instantaneously. The carbon dioxide doubling experiments are typically run until the simulated 

climate reaches a steady state in equilibrium with the enhanced greenhouse effect. Until the mid-

1990’s, idealized simulations were often employed to assess possible future climate changes 

including human-induced global warming. Recently, however, the more realistic time-evolving 

simulations defined immediately below have been used for making climate predictions. We discuss 

idealized simulations and their implications for climate sensitivity in Chapter IV below. 
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Time-dependent climate forcing simulations are the most realistic, especially for eras in which 

climate forcing is changing rapidly such as the 20th  and 21st centuries. Input for the 20th century 

simulations includes observed time-varying values of solar energy output, atmospheric carbon 

dioxide, and other climate-relevant gases and aerosols including those produced in volcanic 

eruptions. Each modeling group uses its own best estimate of these factors. There are significant 

uncertainties in many of them, especially atmospheric aerosols, so that different models use 

somewhat different input for their 20th century simulations. We discuss these simulations in Chapter 

V after comparing control runs with observations. 
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Time-evolving climate forcing is also used as input for modeling future climate change. This 

subject is discussed in CCSP Synthesis and Assessment Product 3.2. Finally, we mention for the 

record simulations of the distant past (various time periods ranging from the early Earth up to the 

19th century). These simulations are not discussed in this report, but some of them have been used to 

loosely “paleocalibrate” simulations of the more recent past and the future (Hoffert and Covey, 

1992; Hansen et al., 2006; Hegerl et al., 2006). 
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Chapter III – The Added Value of Regional Climate Model Simulations 

 

Types of downscaling simulations 

 

This section focuses on downscaling using three-dimensional models based on fundamental 

conservation laws, i.e., numerical models with a similar basis as GCMs. A later section of the 

chapter discusses an alternative approach, statistical downscaling.  There are three primary 

approaches to numerical downscaling: limited-area models (Giorgi and Mearns, 1991; McGregor, 

1997; Giorgi and Mearns, 1999; Wang et al., 2004), stretched grid models (e.g., Deque et al.,1995; 

Fox-Rabinovitz et al., 2001, 2006) and uniformly high-resolution atmospheric GCMs (AGCMs) 

(e.g., Brankovic and Gregory, 2001; May and Roeckner, 2001; Duffy et al., 2003; Coppola and 

Giorgi, 2005). The last approach is sometimes called “time-slice” climate simulation because the 

AGCM simulates a portion of the period simulated by the parent, coarser resolution GCM that 

supplies boundary conditions to it. The limited-area models, also known as regional climate models 

(RCMs), have the most widespread use.  All three approaches use interactive land models, but sea-

surface temperatures and sea ice are generally specified from observations or an atmosphere-ocean 

GCM. All three approaches are also used for purposes beyond downscaling global simulations, 

most especially to study climatic processes and interactions on scales too fine for typical GCM 

resolutions. 

 

RCMs, as limited-area models, cover only a portion of the planet, typical a continental domain or 

smaller. They require lateral boundary conditions from observations, such as atmospheric analyses 

(e.g., Kanamitsu et al. 2002, Uppala et al. 2005), or a global simulation. There has been limited 

two-way coupling wherein an RCM to supplies part of its output back to the parent GCM (Lorenz 

and Jacob, 2005).  Simulations with observation-based boundary conditions are used not only for 

studying fine scale climatic behavior, but also to help segregate GCM error from error intrinsic to 

the RCM when performing climate-change simulations (Pan et al., 2001).  RCMs may also use 

grids nested inside a coarser RCM simulation to achieve higher resolution in subregions (e.g. Liang 

et al., 2001; Hay et al., 2006). Stretched-grid models, like the high-resolution AGCMs, simulate the 
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globe, but with spatial resolution varying horizontally. Highest resolution may focus on one (e.g. 

Deque and Piedelievre, 1995; Hope et al., 2004) or a few regions (e.g., Fox-Rabinovitz et al., 2002).  

In some sense, high-resolution AGCMs are a limiting case of stretched-grid simulations where the 

grid is uniformly high everywhere. 

  

Highest spatial resolutions are most often several tens of kilometers, though some (e.g., Grell et al., 

2000a,b; Hay et al., 2006) have simulated climate with resolutions as small as a few kilometers 

using multiply nested grids.  Duffy et al. (2003) have performed multiple AGCM time-slice 

computations using the same model to simulate resolutions from 310 km down to 55 km. Such 

approaches expose changes in climate with resolution. Higher resolution generally yields improved 

climate, especially for fields with high spatial variability, such as precipitation. For example, some 

studies show that higher resolution does not have a statistically significant advantage in simulating 

large-scale circulation patterns but it does yield better monsoon precipitation forecasts and 

interannual variability (Mo et al., 2005) and precipitation intensity (Roads et al., 2003).  

 

However, improvement is not guaranteed: Hay et al. (2006) find deteriorating timing and intensity 

of simulated precipitation versus observations in their inner, high-resolution nests, even though the 

inner nest improves resolution of topography.  Extratropical storm tracks in a time-slice AGCM 

may shift poleward relative to the parent, coarser GCM (Stratton, 1999; Roeckner et al., 2006) or 

lower resolution versions of the same AGCM (Brankovic and Gregory, 2001), thus yielding an 

altered climate with the same sea-surface temperature distribution as the parent model. 

  

Spatial resolution affects the length of simulation periods because higher resolution requires shorter 

time steps for numerical stability and accuracy. Required time steps scale with the inverse of 

resolution and can be one or two orders of magnitude smaller than AOGCM time steps.  Since 

increases in resolution are most often applied to both horizontal directions, this means that 

computation demand varies inversely with the cube of resolution. Although several RCM 

simulations have lasted 20 to 30 years (Christensen et al., 2002; Leung et al., 2004; Plummer et al., 

2006) and even as long as 140 years (McGregor, 1999) with no serious drift away from reality, 

stretched-grid, time-slice AGCM and RCM simulations typically last from months to a few years. 

Vertical resolution usually does not change with horizontal resolution, though Lindzen and Fox-
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Rabinovitz (1989) and Fox-Rabinovitz and Lindzen (1993) have expressed concerns about the 

adequacy of vertical resolution relative to horizontal resolution in climate models. 

 

Higher resolution in RCMs and stretched-grid models must also satisfy numerical constraints. 

Stretched-grid models whose ratio of coarsest to finest resolution exceeds a factor of roughly three 

are likely to produce inaccurate simulation due to truncation error (Qian et al., 1999). Similarly, 

RCMs will suffer from incompletely simulated energy spectra and thus loss of accuracy if their 

resolution is roughly 12 times or more finer than the resolution of the source of lateral boundary 

conditions, which may be coarser RCM grids (Denis et al., 2002, 2003; Laprise, 2003; Antic et al., 

2004, 2006; Dimitrijevic and Laprise 2005). In addition, these same studies indicate that lateral 

boundary conditions should be updated more frequently than twice per day.  

 

Additional factors also govern ingestion of lateral boundary conditions (LBCs) by RCMs. LBCs are 

most often ingested in RCMs by damping of the model’s state toward the LBC fields in a buffer 

zone surrounding the domain of interest (Davies, 1976; Davies and Turner, 1977). If the buffer zone 

is only a few grid points wide, the interior region may suffer phase errors in simulating synoptic-

scale waves (storm systems), with resulting error in the overall regional simulation (Giorgi et 

al.,1993). Spurious reflections may also occur in at boundary regions (e.g., Miquez-Macho et al., 

2005). RCM boundaries should be where the driving data are of optimum accuracy (Liang et al., 

2001), but placing the buffer zone in a region of rapidly varying topography can induce surface 

pressure errors due to mismatch between the smooth topography implicit in the coarse resolution 

driving data and the varying topography resolved by the model (Hong and Juang 1998). Domain 

size may also influence RCM results. If a domain is too large, the model’s interior flow may drift 

from the large-scale flow of the driving data set (Jones et al., 1995). However, too small a domain 

overly constrains interior dynamics, preventing the model from generating appropriate response to 

interior mesoscale-circulation and surface conditions (Seth and Giorgi, 1998). RCMs appear to 

perform well for domains roughly the size of the contiguous United States. Figure III.A shows that 

the daily, root-mean-square difference (RMSD) between simulated and observed (reanalysis) 500 

hPa heights is generally within observational noise levels (roughly 20 m). 
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Figure III. A.  Daily root-mean-square differences (RMSD) in 500 hPa height between observations 

(reanalysis) and 6 models participating in the PIRCS 1b experiment (Anderson  et al., 2003). RMSD values 

averaged over the simulation domain inside the boundary-forcing zone. Also shown is the mean curve for the 

6 models. (y-axis scale: meters). 
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Because simulations from the downscaling models may be analyzed for periods as short as a month, 

model spin-up is important (e.g., Giorgi and Bi, 2000). During spin-up the model evolves to 

conditions representative of its own climatology, which may differ from the sources of initial 

conditions. The atmosphere spins up in a matter of days, so the key factor is spin-up of soil moisture 

and temperature, which evolve more slowly. Equally important, data for initial conditions is often 

lacking or has low spatial resolution, so that initial conditions may be only a poor approximation to 

the model’s climatology. Spin-up is especially relevant for downscaling because these models are 

presumably resolving finer surface features than coarser models, with the expectation that the 

downscaling models are providing added value through proper representation of these surface 

features. Deep soil temperature and moisture, at depths of 1–2 meters, may require several years of 

spin up. However, these deep layers generally interact weakly with the rest of the model, so shorter 

spin-up times are used. For multi-year simulations, 3–4 years appears to be a minimal requirement 

(Christensen, 1999; Roads et al., 1999). This ensures that the upper meter of soil has a climatology 

in further simulation that is consistent with the evolving atmosphere. 

  

Many downscaling simulations, especially with RCMs, are for periods much shorter than two years. 

Such simulations likely will not use multi-year spin up. Rather, these studies may focus on more 

rapidly evolving atmospheric behavior that is governed by lateral boundary conditions, including 

extreme periods like drought (Takle et al.,1999) or flood (Giorgi et al., 1996; Liang et al., 2001; 

Anderson  et al., 2003). Thus, they assume that the interaction with the surface, while not 

negligible, is not strong enough to skew the atmospheric behavior studied. Alternatively, relatively 

short regional simulations may specify, for sensitivity study, substantial changes in surface 

evaporation (e.g., Paegle et al., 1996), soil moisture (e.g., Xue et al., 2001) or horizontal moisture 

flux at lateral boundaries (e.g., Qian et al., 2004). 

  

Even with higher resolution than standard GCMs, models simulating regional climate still need 

parameterizations for subgrid-scale processes, most notably boundary-layer dynamics, surface-

atmosphere coupling, radiative transfer and cloud microphysics. .  Most regional simulations also 

require a convection parameterization, though a few have used sufficiently fine grid-spacing, a few 

kilometers, to allow acceptable simulation without one (e.g., Grell et al., 2000). Often, these 
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parameterizations are the same or nearly the same as used in GCMs. However, all parameterizations 

make assumptions that they are representing the statistics of subgrid processes, and so implicitly or 

explicitly they require that the grid box’s area in the real world would have sufficient samples to 

justify the stochastic modeling. For some parameterizations, such as convection, this assumption 

becomes doubtful when grid boxes become only a few kilometers in size (Emanuel 1994). In 

addition, models simulating regional climate may include circulation characteristics, such as rapid 

mesoscale circulations (jets) whose interaction with subgrid processes like convection and cloud 

cover differs from the larger scale circulations resolved by typical GCMs. This factor is part of a 

larger issue, that parameterizations may have regime dependence, performing better for some 

conditions than others. For example, the Grell (1993) convection scheme is responsive to large-

scale tropospheric forcing, whereas the Kain and Fritsch (1993) scheme is heavily influenced by 

boundary-layer forcing. As a result, the Grell scheme simulates better the propagation of 

precipitation over the U.S. Great Plains that is controlled by the large-scale tropospheric forcing, 

while the Kain–Fritsch scheme simulates better late afternoon convection peaks in the southeastern 

U.S. that are governed by boundary-layer processes (Liang et al., 2004). As a consequence, 

parameterizations for regional simulation may differ from their GCM counterparts, especially for 

convection and cloud microphysics. As noted earlier, the regional simulation in some cases may 

have resolution of only a few kilometers and the convection parameterization may be discarded 

(Grell et al., 2000). A variety of parameterizations exist for each of these phenomena, with multiple 

choices often available in a single model (e.g., Grell et al., 1994; Skamarock et al., 2005).  

  

The chief reason for performing regional simulation, whether by an RCM, a stretched-grid model or 

a time-slice AGCM, is to resolve behavior considered important for a region’s climate that a global 

model does not resolve. Thus, regional simulation should have clearly defined regional-scale 

(mesoscale) phenomena targeted for simulation.  These include, for example, tropical storms (e.g., 

Oouchi et al., 2006), effects of mountains (e.g., Leung and Wigmosta, 1999; Grell et al., 2000; Zhu 

and Liang, 2007), jet circulations (e.g., Takle et al., 1999; Anderson et al., 2001; Anderson et al., 

2003; Byerle and Paegle, 2003; Pan et al., 2004) and regional ocean-land interaction (e.g., Kim et 

al., 2005; Diffenbaugh et al. 2004). The most immediate value, then, of regional simulation is to 

explore how such phenomena operate in the climate system, which becomes a justification for the 

expense of performing regional simulation. Phenomena and computational costs together influence 
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the design of regional simulations. Simulation periods and resolution are balances between 

sufficient length and number of simulations for climate statistics versus computational cost.  For 

RCMs and stretched-grid models, the sizes of regions targeted for high-resolution simulation are 

determined in part by where the phenomenon occurs. 

 

In the context of downscaling, regional simulation offers the potential to include phenomena 

affecting regional climate change that are not explicitly resolved in the global simulation. When 

given boundary conditions corresponding to future climate, regional simulation can then indicate 

how these phenomena contribute to climate change. Results, of course, are dependent on the quality 

of the source of the boundary conditions (Pan et al., 2001; de Elía et al., 2002), though use of 

multiple sources of future climate may lessen this vulnerability and offer opportunity for 

probabilistic estimates of regional climate change (Raisanen and Palmer, 2001; Giorgi and Mearns, 

2003; Tebaldi et al., 2005). Results also depend on the physical parameterizations used in the 

simulation (Yang and Arritt, 200; Vidale et al., 2003; Déqué et al., 2005; Liang et al., 2006). 

Advances in computing power suggest that typical GCMs will eventually operate at resolutions of 

most current regional simulations (a few tens of kilometers), so that understanding and modeling 

improvements gained for regional simulation can promote appropriate adaptation of GCMs to 

higher resolution. For example, interaction between mesoscale jets and convection appears to 

require parameterized representation of convective downdrafts and their influence on the jets 

(Anderson et al., 2007), behavior not required for resolutions that do not resolve mesoscale 

circulations. 

  

Because of the variety of numerical techniques and parameterizations employed in regional 

simulation, many models and versions of models exist. Side-by-side comparison (e.g., Takle et al., 

1999; Anderson et al., 2003; Fu et al., 2005; Frei et al., 2006; Rinke et al., 2006) generally shows 

no single model appearing as best versus observations, with different models showing superior 

performance depending on the field examined. Indeed, the best results for downscaling climate 

simulations and estimating climate-change uncertainty may come from assessing an ensemble of 

simulations (Giorgi and Bi, 2000; Yang and Arritt, 2002; Vidale et al., 2003; Déqué et al., 2005). 

Such an ensemble may capture much of the uncertainty in climate simulation, offering an 

opportunity for physically based analysis of the climate changes and also the uncertainty of the 
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changes. Several regional models have performed simulations of climate change for parts of North 

America, but at present, there have been no regional projections using an ensemble of regional 

models simulating the same time periods with the same boundary conditions. Such systematic 

evaluation has occurred in Europe [PRUDENCE (Christensen et al., 2002) and ENSEMBLES 

(Hewitt and Griggs 2007) projects] and is starting in North America with the North American 

Regional Climate Change Assessment Program (NARCCAP 2007).  

 

Empirical downscaling 

 

Empirical, or statistical, downscaling is an alternative approach to obtaining regional-scale climate 

information (Kettenberg et al.,1996; Hewitson and Crane, 1996; Giorgi et al., 2001; Wilby et al., 

2004, and references therein). It uses statistical relationships to link resolved behavior in GCMs 

with climate in a targeted area. The size of the targeted area can be as small as a single point. So 

long as significant statistical relationships occur, empirical downscaling can yield regional 

information for any desired variable, such as precipitation and temperature, as well as variables not 

typically simulated in climate models, such as zooplankton populations (Heyen et al.,1998) and 

initiation of flowering (Maak and von Storch, 1997). The approach encompasses a range of 

statistical techniques from simple linear regression (e.g., Wilby et al., 2000) to more complex 

applications, such as those based on weather generators (Wilks and Wilby, 1999), canonical 

correlation analysis (e.g., von Storch et al.,1993) or artificial neural networks (e.g., Crane and 

Hewitson, 1998). Empirical downscaling can be very inexpensive compared to numerical 

simulation when applied to just a few locations or using simple techniques. This together with the 

flexibility in targeted variables has led to a wide variety of applications for assessing impacts of 

climate change.   

 

There has been some side-by-side comparison of methods (Wilby and Wigley, 1997; Wilby et al., 

1998; Zorita and von Storch 1999; Widman et al., 2003). These studies have tended to show fairly 

good performance of relatively simple versus more complex techniques and to highlight the 

importance of including moisture as well as circulation variables when assessing climate change. 

There also has been comparison of statistical downscaling and regional climate simulation (Kidson 

and Thompson, 1998; Mearns et al.,1999; Wilby et al., 2000; Hellstrom et al., 2001; Wood et al., 
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2004; Haylock et al., 2006), with neither approach distinctly better or worse than the other.  

Statistical methods, though computationally efficient, are completely dependent on the accuracy of 

regional temperature, humidity and circulation patterns produced by their parent global models.  In 

contrast, regional climate simulation, though computationally more demanding, can improve the 

physical realism of simulated regional climate through higher resolution and better representation of 

important regional processes.  The strengths and weaknesses of statistical downscaling and regional 

modeling are thus complementary. 
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 Strengths and limitations of regional models 

 

We focus here on numerical models simulating regional climate without discussing empirical 

downscaling because the wide range of applications using the latter undermines making a general 

assessment of strengths and limitations. 

 

The higher resolution in regional-scale simulations provides quantitative value to climate 

simulation. With finer resolution, one can resolve mesoscale phenomena contributing to intense 

precipitation, such as stronger upward motions (Jones et al.,1995) and coupling between regional 

circulations and convection (e.g., Anderson  et al., 2007). Time-slice AGCMs show intensified 

storm-tracks relative to their parent model (Solman et al., 2003, Roeckner  et al., 2006). Thus, 

although regional models may still miss the most extreme precipitation (Gutowski et al., 2003, 

2007), they can give more intense events that will be smoothed in coarser resolution GCMs. The 

higher resolution also includes other types of scale-dependent variability, especially short-term 

variability such as extreme winds and locally extreme temperature that coarser resolution models 

will smooth and thus inhibit. 

  

Mean fields also appear to be simulated somewhat better on average versus coarser GCMs because 

spatial variations are potentially better resolved. Thus, Giorgi et al., (2001) report typical errors in 

RCMs of less than 2˚C temperature and 50% for precipitation for regions 105–106 km2. Large-scale 

circulation fields tend to be well simulated, at least in the extratropics. 
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As alluded to above, regional-scale simulations also have phenomenological value, simulating 

processes that GCMs either cannot resolve or can resolve only poorly. These include internal 

circulation features such as the nocturnal jet that imports substantial moisture to the center of the 

United States and couples with convection (e.g., Byerle and Paegle, 2003; Anderson et al., 2007). 

These processes often have substantial diurnal variation and are thus important to proper simulation 

of regional diurnal cycles of energy fluxes and precipitation. Some processes require resolving 

surface features too coarse for typical GCM resolution, such as rapid topographic variation and its 

influence on precipitation (e.g., Leung and Wigmosta, 1999; Hay et al., 2006) and climatic 

influences of bodies of water like the Gulf of California (e.g., Anderson et al., 2001) and the North 

American Great Lakes (Lofgren, 2004) and their downstream influences. In addition, regional 

simulations resolve land-surface features that may be important for climate-change impacts 

assessment, such as distributions of crops and other vegetation (Mearns, 2003; Mearns et al., 2003), 

though care is needed to obtain useful information at higher resolution (Adams et al., 2003). 

  

An important limitation for regional simulations is that they are dependent on boundary conditions 

supplied from some other source. This applies to all three forms of numerical simulation (RCMs, 

stretched-grid models, time-slice AGCMs), since they all typically require input sea-surface 

temperature and ocean ice. Some RCM simulations have been coupled to a regional ocean-ice 

model, with mixed-layer ocean (Lynch et al.,1995, 2001) and a regional ocean-circulation model 

(Rummukainen et al., 2004) but this is not common. In addition, of course, RCMs require lateral 

boundary conditions. Thus, regional simulations by these models are dependent on the quality of the 

model or observations supplying the boundary conditions. This is especially true for projections of 

future climate, suggesting that there is value in performing an ensemble of simulations using 

multiple atmosphere-ocean global models to supply boundary conditions. 

 Careful evaluation is also necessary to show differences, if any, between the large-scale 

circulation of the regional simulation and its driving data set. Generally, any tendency for the 

regional simulation to alter biases in the parent GCM’s large-scale circulation should be viewed 

with caution (Jones et al., 1995). RCM should not normally be expected to correct large-scale 

circulation problems of parent model, unless there is a clearly understood physical basis for the 

improvement. Clear physical reasons for the correction due to higher resolution, such as better 

rendition of physical processes like topographic circulation (e.g., Leung and Qian, 2003), surface-
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atmosphere interaction (Han and Roads, 2004) and convection (Liang et al., 2006), must be 

established. Otherwise, the regional simulation may simply have errors that counteract the parent 

GCM’s errors, which undermines confidence of projected future climate. 
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RCMs may also exhibit difficulty in outflow regions of the domain, especially for domains with 

relatively strong cross-boundary flow, such as extratropical domains covering a single continent or 

less. The difficulty appears to arise because storm systems may track across the RCM’s domain at a 

different speed than in the driving-data source, resulting in a mismatch of circulations at boundaries 

where storms would be moving out of the domain. Also, there are always unresolved scales of 

behavior, so the regional simulations are still dependent on the quality of their parameterizations for 

the scales explicitly resolved. Finally, the higher computational demand due to shorter time steps 

limits the length of typical simulations to two to three decades or less (e.g., Christensen  et al., 

2002; NARCCAP, 2007), with few ensemble simulations to date. 
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The response of climate to a perturbation, like a change in carbon dioxide concentration, or in the 

flux of energy from the sun, can be divided into two parts; the “radiative forcing” due to the 

perturbation in question; and the ”climate sensitivity”, characterizing the response of the climate per 

unit change in the radiative forcing.  The climate response is then the product of the radiative 

forcing and the climate sensitivity.  While it is not always perfectly clear, this distinction is useful in 

analyzing and discussing climate change. The utility of this decomposition is based on several 

considerations:   radiative forcing can often be usefully considered as external to the climate system;  

climate sensitivity can often be thought of as independent of the agent responsible for the forcing; 

and when two or more factors are simultaneously present, one can approximate  their cumulative 

effect by adding their respective radiative forcings.   

 

Radiative forcing is typically calculated by changing the atmospheric composition or external 

forcing very quickly and computing the net trapping of heat that occurs before the climate system 

has had time to adjust. In the case of carbon dioxide, it has become standard to use the surface-plus-

troposphere heating (encompassing both the surface and the altitude range of about 0-10 km in the 

atmosphere) in the definition of radiative forcing.  The direct heat-trapping properties are very well 

characterized for the most significant greenhouse gases.  As a result, uncertainty in climate 

responses to the greenhouse gases are typically dominated by uncertainties in climate sensitivity 

rather than in radiative forcing (Ramaswamy et al. 2001).  For example, suddenly doubling the 

atmospheric amount of carbon dioxide would add energy to the surface and the troposphere at the 

rate of about 4 Watts per square meter for the first few months after the doubling, according to the 

most recent estimates (Forster and Ramaswamy, 2007). Eventually temperatures would increase 

(and climate would change in other ways) in response to this forcing, Earth would radiate more heat 

to space, and the imbalance would be redressed as the system returned to equilibrium. 

 

The idea of encapsulating global climate sensitivity in a single number appeared early in the 

development of climate models (Schneider and Mass 1975).  Today, two different numbers are in 

common use.  Both involve changes in global and annual mean surface or near-surface temperature.  

(The global and annual mean is obtained by averaging over both Earth’s total area and the cycle of 
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the seasons.)  Equilibrium warming is defined as the long-term surface warming after atmospheric 

carbon dioxide has been doubled but thereafter held constant, and the climate is allowed to reach a 

new steady state, as described in the preceding paragraph. Transient climate response or TCR is 

defined by assuming that carbon dioxide increases by 1% per year and recording the increase in 

temperature at the time that carbon dioxide doubles (about 70 years after the increase begins). 
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Equilibrium warming is difficult to obtain from AOGCMs because the deep ocean takes thousands 

of years to fully respond to changes in climate forcing.  To avoid unacceptably lengthy computer 

simulations, equilibrium warming is usually estimated from a modified climate model in which the 

ocean component is replaced by a simplified, fast-responding “slab ocean model.”  This procedure 

makes the assumption that ocean heat transports do not change as the climate changes.  The 

equilibrium response is of greatest interest when comparing climate models with paleoclimatic data, 

while the transient climate response is of more direct relevance to the attribution of recent warming 

and projections for the next century.   

 

US models exemplify the climate sensitivity of modern AOGCMs.  Kiehl et al. (2006) examined the 

sensitivity of three successive versions of the Community Climate System Model developed over a 

period of a decade: CSM1.4, CCSM2 and CCSM3.  Stouffer et al. (2006) and Hansen et al. (2006) 

similarly studied the most recent GFDL and GISS models, respectively.  As discussed above, these 

(and other) models differ in their details because development teams have differing ideas 

concerning the underlying physical mechanisms relevant for the less well-understood aspects of the 

system.  

Climate sensitivity is an emergent, or holistic, property of the models –  it is not input into the 

model. None of the U.S development teams engineered their models to produce a desired value of 

climate sensitivity. 

 

Climate sensitivity values for the US models are shown in Table IV(1). Only the higher number 

associated with GISS Model E used a full OGCM as a part of the climate model. All other values of 

equilibrium warming in the table are obtained with the OGCM replaced by a slab ocean model.   
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Table IV 1 Model sensitivity values for US CMIP3 models 

 

Model TCR Equilib. warming* 

CSM1.4 1.4°C 2.0°C 

CCSM2 1.1°C 2.3°C 

CCSM3 1.5°C 2.5°C 

GFDL CM2.0 1.6°C 2.9°C 

GFDL CM2.1 1.5°C 3.4°C 

GISS Model E  2.7-2.9°C 

6  
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Note that equilibrium warming is greater than TCR for any given model.  This is because TCR is 

measured before the deep ocean, with its large thermal inertia, has had time to warm fully in 

response to doubled atmospheric carbon dioxide.   Comparing different rows within any single 

column, it is apparent that a wide range of equilibrium sensitivity values are obtained by different 

models.  Nearly three decades ago, Charney (1979) judged the range of equilibrium warming due to 

doubled atmospheric carbon dioxide, based on the few model calculations then available, to be 1.5-

4.5°C, a three-fold range of uncertainty.  The table might suggest a reduction in this range, but 

including other models in the CMIP3 archive expands the upper end; the full CMIP3 range is 2.1 to 

4.4°C with a median of 3.2°C.  Furthermore,  a systematic exploration of plausible input parameters 

for a single (Hadley Centre) model gives a 5-95 percentile range of ~2-6°C, again a three-fold span 

(Piani et al. 2005, Knutti et al. 2006).  The low end of the equilibrium sensitivity range is thought to 

be more certain than the high end (Bierbaum et al. 2003,Randall and Wood, 2007.)  It is difficult to 

reconcile a very low sensitivity value with the climate changes observed during the past century 

(Andronova and Schlesinger 2001, Forest et al. 2001) and inferred for the more distant past (Hansen 

et al. 1993, Covey et al. 1996). 

 

The variation among models is less for TCR than for equilibrium warming because enhanced 

equilibrium sensitivity correlates with enhanced heat transport to the deep ocean, and these two 

effects cancel to some extent in transient simulations (Covey et al. 2003).  Apart from CCSM2, 

model TCR varies by less than 15% in the table above.  Systematic exploration of model input 

parameters in one Hadley Centre model gives a wider range, 1.5-2.6°C (Collins et al. 2006).  The 

full range in the CMIP3 archive is 1.3-2.6°C, with a median of 1.6°C  and with the half of the 

models within the 25%-75% quartiles of the distribution lying within the relatively small range of 

1.5-2.0°C (Randall and Wood, 2007).   

 

Climate sensitivity can be altered in a model by modifying aspects of the models that are relatively 

poorly constrained by observations or theory.  In an influential early paper, Senior and Mitchell 

(1993, 1996) demonstrated how a seemingly minor modification to the cloud prediction scheme can 

alter climate sensitivity. In the standard version of the model, the effective size of cloud drops is 

fixed.  In two other versions, this cloud drop size is tied to the total amount of liquid water in the 
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cloud through two different empirical relationships. The equilibrium global mean warming ranged 

from from 1.9oC to 5.5oC in response to doubling CO2 in the atmosphere in these three models. 

 

Studies of the CCSM family of models provide another example of this problem.  Kiehl et al. 

(2006) found that a variety of factors are responsible for differences in climate sensitivity among the 

models of this family.  Most notably, the generally lower sensitivity of CCSM2 (evident in Table 

IV(1) ) is mainly due to a single change (relative to CSM1.4 and CCSM3) in the model's algorithm 

for simulating convective clouds.  CCSM3’s formulation reflects intensive efforts to represent 

climate processes more accurately than its predecessors CSM1.4 and CCSM2, but it is not clear 

whether the resulting global climate sensitivity is closer to reality.   

 

Fig. IV A  below shows how equilibrium warming due to doubled atmospheric carbon dioxide 

varied during the development of the most recent GFDL models.  The dramatic drop in sensitivity 

between model versions p10 and p12.5.1 was unexpected.  It followed a reformulation of the 

model’s treatment of processes in the lower atmospheric boundary layer which, in turn, affected 

how low level clouds in the model respond to climate change.   
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Figure IV A:  Equilibrium global mean near-surface warming due to doubled atmospheric carbon 

dioxide from intermediate (“p”) model versions leading to GFDL’s CM2.0 and CM2.1.  

Equilibrium warming was assessed by joining a simplified slab ocean model to the atmosphere, land 

and sea ice AOGCM components.  The later versions include sea ice motion (dynamics) as well as 

sea ice thermodynamics. 
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Better understanding of Earth’s climate sensitivity, with potential reduction in its uncertainty, will 

require better understanding of a multitude of climate feedback processes (Bony et al. 2006). We 

discuss two of the most important of these feedback effects below. The strengths of these feedbacks 

are most frequently described by the resulting change in the heating of the troposphere-plus-surface 

per degree warming of  global mean temperature, in units of W/m2/K. 

 

Cloud Feedbacks 

 

Clouds reflect solar radiation to space, cooling the Earth-atmosphere system. Clouds also trap 

infrared radiation, keeping the Earth warm.  The net effect depends on the height, location, 

microphysical and radiative properties of clouds, and their appearance in time with respect to the 

seasonal and diurnal cycles of the incoming solar radiation.  Cloud feedback refers to the changes in 

cloud amounts and properties that can either amplify or moderate a climate change.  Uncertainties 

of cloud feedbacks in climate models have repeatedly been identified as the leading source of 

uncertainty in model-derived estimates of climate sensitivity (e.g., Cess et al 1990; Randall et al. 

2000; Zhang 2004; Stephens 2005; Bony et al. 2006; Soden and Held 2006).  The fidelity of cloud 

feedbacks in climate models is therefore important to the reliability of their prediction of future 

climate change.  

 

Several diagnostic methods have been used to evaluate and understand cloud feedbacks in AGCMs.  

One method is referred to as partial radiative perturbation (PRP) (e.g., Hansen et al. 1984; 

Wetherald and Manabe 1988; Zhang et al. 1994; Soden et al. 2004; Soden and Held 2006).   A 

second method uses the changes in cloud radiative forcing (CRF) (Cess and Potter 1988). The CRF 

approach is more commonly used because of convenience of calculation and, most importantly, the 

availability of satellite data for comparison.  There are significant differences between the 

diagnosed feedbacks from the two methodologies (Zhang et al. 1994; Coleman 2003; Soden et al. 

2004), with the PRP estimates, considered to be more appropriate for feedback analyses, producing 

cloud feedbacks that are more positive by roughly 0.6 W/m2/K, causing some confusion in the 

literature on cloud feedbacks.  The differences between models are similar using either technique, 

and both correlate well with the climate sensitivity across models.   
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Early GCM cloud feedback studies diagnosed positive cloud feedbacks (Hansen et al. (1984); 

Wetherald and Manabe (1988)) using the PRP approach. In an influential work, Cess et al. (1990) 

used the response of models to a simple warming or cooling of the oceans by 2oK as a surrogate 

climate change and diagnosed the cloud feedbacks in 19 GCMs  using the CRF approach, showing a 

wide range of values from negative to strongly positive. Many subsequent studies with other GCMs 

also showed large sensitivity of cloud feedbacks to the formulation of model physics (e.g., Le Treut 

et al. 1994; Yao and Del Genio, 2002; Soden et al. 2004; Yokohata et al., 2005). 

 

Many recent studies have focused on categorizing and decomposing the model cloud feedbacks 

according to the simulated meteorological conditions, rather than lumping them into a single global 

number.  Williams et al. (2003), Bony et al. (2004), and Wyant et al. (2006) showed that in the 

tropical region, the CRF response differs most between models in subsidence regimes in which deep 

convection is suppressed, and not primarily in the regions of deep convection, suggesting a 

dominant role for low-level clouds in the diversity of modelled tropical cloud feedbacks.  Others 

have also diagnosed errors in the simulation of particular cloud regimes or in specific dynamical 

conditions (Klein and Jakob, 1999; Tselioudis et al., 2000;; Webb et al., 2001, Norris and Weaver, 

2001; Jakob and Tselioudis, 2003; Williams et al., 2003; Bony et al., 2004; Lin and Zhang, 2004; 

Ringer and Allan, 2004; Bony and Dufresne, 2005; Del Genio et al., 2005; Williams et al., 2006; 

Wyant et al., 2006).   Zhang et al. (2005) evaluated clouds in ten AGCMs and showed that even 

though they simulate reasonable radiation balance at the top of the atmosphere, models have 

systematic compensatory cloud biases. Common among them are overestimation of optical thick 

clouds and underestimation of middle and low clouds.  The biases are large enough to affect the 

ability to simulate cloud feedback in a climate change.  

 

Soden and Held (2006) evaluated cloud feedbacks in 12 CMIP3 coupled models using simplified 

PRP calculations.  They showed positive cloud feedback in all models, ranging from 0.14 W/m2/K 

to 1.18 W/m2/K.  The highest values raise the equilibrium climate sensitivity from typical values of 

2K for CO2 doubling, a typical value in the absence of cloud feedback,  to roughly 4K.  Comparing 

with the earlier studies of Cess (1990) and Coleman (2003), the spread among GCMs has become 

somewhat smaller over the years, but it is still very substantial.   
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Results are beginning to emerge from a new class of much higher resolution atmospheric 

simulations.  Using the surrogate climate change framework of Cess (1990) in which ocean 

temperatures are warmed uniformly, Miura et al. (2005) carried out experiments with a global 

model with 7 km resolution, obtaining a climate sensitivity that is significantly reduced by strong 

negative (CRF) feedback outside of the tropics. A multi-grid technique in which high resolution 

cloud models are embedded in each grid box of a traditional GCM was utilized by Wyant et al. 

(2006) and generated a negative CRF response  of -0.9 W/m2/K in the same Cess framework 

(corresponding to roughly neutral PRP cloud feedbacks). Much work will be required with these 

new types of models before they can be given substantial weight in discussions of the most probable 

value for cloud feedbacks, but they are hinting that the feedback may be less positive than is typical 

in the CMIP3 AGCMs.  Results from this new generation of models will be of considerable interest 

in the coming years.   

 

Several questions remain to be answered about cloud feedbacks in GCMs.  The  physical 

mechanisms underlying cloud feedbacks in different models must be better characterized, so that we 

can better appreciate which features and mechanisms in these models are robust across the models 

and which are not.  It is not clear how best to judge the importance of model biases in simulations of 

the current climate, and in the simulations of cloud changes in different modes of observed 

variability.  In particular, it is unclear how to translate these biases into levels of confidence in the 

simulations of  cloud feedback processes in climate change scenarios.  New satellite products such 

as those from active radar and lidar systems will undoubtedly play vital role in cloud research in the 

coming years, and are providing more confidence that progress on these difficult questions can be 

achieved. 

 

Water Vapor Feedback 

 

Analysis of the radiative feedbacks in the CMIP3 models (Soden and Held, 2006) reaffirms that 

water vapor feedback, the increase in heat trapping due to the increase in water vapor as the climate 

warms, is fundamental to their climate sensitivity. The strength of the water vapor feedback in these 
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models is typically close in magnitude but slightly weaker than that obtained by assuming that 

relative humidity remains unchanged as the climate warms.   

 

A trend towards increasing column water vapor in the atmosphere  consistent with model 

predictions has been documented from microwave satellite measurements (Trenberth, et al 2005) 

and excellent agreement has been found between satellite observations and climate models 

constrained by the observed ocean surface temperatures (Soden, 2000).  These studies increase 

confidence in the model’s vapor distributions more generally, but they are dominated by changes in 

the lower troposphere and do not directly address the bulk of the water vapor feedback issue.  This 

feedback is primarily a consequence of increases in water vapor  in the tropical upper troposphere.  

Studies of vapor trends in this region are therefore of central importance.  Soden (2006) presents 

analysis of radiance measurements (from the infrared sounder on NOAA satellites) that relative 

humidity has remained unchanged in the upper tropical troposphere over the past few years, which 

combined with temperature measurements provides evidence that water vapor in this region is 

increasing. 

 

One can use observations of interannual variability in water vapor to help judge the quality of 

model simulations.  Recently, Minchswaner, et al (2006) have compared the interannual variability 

in humidities in the highest altitudes of the tropical troposphere, as measured by infrared limb 

sounding satellites, with CMIP3 20th century simulations. Both models and observations show a 

small negative correlation between relative humidity and tropical temperatures, due to in large part 

to a tendency for lower relative humidity in warm El-Nino years and higher values in cold La Nina 

years.  However, there is a suggestion that the magnitude of this co-variation is underestimated in 

most of the models.  Looking across the models, there is also a tendency for models with larger 

interannual variations in relative humidity to produce larger reductions in this region in response to 

global warming, suggesting that this deficiency in interannual variability might be relevant for 

climate sensitivity.  Thus, this study provides indirect evidence suggesting that the feedback for the 

very highest levels of the tropical troposphere may be overestimated somewhat in models.   

 

The potential for the uncertainties in cloud feedbacks to impact water vapor feedbacks in the 

tropics, through evaporation of condensate, remains a possibility.   But analyses examining the 
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extent to which tropical humidities can be understood without considering sources from condensate, 

such as Dessler and Sherwood (2000)  continue to suggest that effects of this kind are small.  

 

The CMIP3 simulations of the water vapor climatology has also been critically analyzed  (e.g., 

Pierce et al, 2006).  Despite uncertainties in the observations, some systematic deficiencies are 

clear, but just as for clouds, it is not straightforward to judge which kinds of deficiencies in the 

models are of most concern for estimating feedback strength.   

 

The strength of water vapor feedback varies somewhat across models, but its strength is inversely 

correlated with the lapse rate feedback (Zhang et al, 1994; Soden and Held, 2006).  The latter is a 

way of accounting for the fact that temperatures do not warm uniformly in response to greenhouse 

gas increases.  In particular, models generally predict that that the tropical upper troposphere warms 

more rapidly than the surface.  Due to the increased infrared emission to space from the warm upper 

troposphere, the surface need warm less for the system to come to energy balance with the radiative 

forcing, providing a negative feedback on surface temperatures.  Since much of the water vapor 

feedback comes from the tropical upper troposphere as well, there is some cancellation between 

these two effects, resulting in a net feedback ranging from 0.8-1.2 W/m2/C  in the CMIP3 study of 

Soden and Held (2006).  There is considerably less scatter among the models when one sums the 

water vapor and lapse rate feedbacks than in either of these individual contributions in isolation. 

 

Disparities In Imposed Radiative Forcing  

 

While increases in the concentration of greenhouse gases provide the largest change in radiative 

forcing during the twentieth century (IPCC AR4), other forcings must be considered to account for 

the observed change in surface air temperature.  The burning of fossil fuels that releases greenhouse 

gases into the atmosphere can also create aerosols (small liquid droplets or solid particles that are 

temporarily suspended in the atmosphere) that cool the planet by reflecting sunlight back to space.  

In addition, there are changes in land use that change the reflectivity of the earth's surface, as well 

as variations in sunlight impinging on the earth, among other forcings. In this section, we briefly 

discuss the extent to which twentieth century radiative forcing is known.  Further information is 

provided in Forster and Ramaswamy (2007). 
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The radiative forcing can be quantified in different ways, as outlined by Hansen, et al 2005.  The 

radiative response to CO2 doubling at the top of the atmosphere can be computed for example, by 

holding all atmospheric and surface temperatures fixed, by allowing the stratospheric temperatures 

to adjust to the new CO2 levels, by fixing surface temperatures over both land and ocean and 

allowing the atmosphere to equilibrate, and fixing ocean temperatures only and allowing the 

atmosphere and land  to equilibrate.  Comparing model forcings in the literature is made more 

complex because of differing definitions in different papers. Compared to the pre-industrial, 

present-day forcing in GISS modelE is 1.77 W/m2 when computed with fixed ocean temperatures 

(Hansen et al. 2007), but it is 2.1 W/m2 in the GFDL CM2.1 model (I. Held, personal 

communication) using the same definition, while it is 2.6 W/m2 if only the stratosphere is allowed 

to adjust (D. Schwarzkopf, personal communication).  Variations in radiative forcing among models 

introduce uncertainty in the simulation and attribution of twentieth century climate change.  

 

Greenhouse gases like carbon dioxide and methane have atmospheric lifetimes that are long 

compared to the time required for these gases to be thoroughly mixed throughout the atmosphere.  

Trends in concentration are consistent throughout the world, and have been measured routinely 

since the International Geophysical Year in 1958.  Measurements of the gas bubbles trapped in ice 

cores give the concentration prior to that date with less time resolution.  While changes in 

greenhouse gas concentration are accurately known, the associated radiative forcing varies among 

climate models. This is partly because GCM radiative calculations need to be computationally 

efficient, necessitating various approximations to calculations based upon the most accurate 

laboratory spectroscopic data and radiation algorithms.  Using changes in well-mixed greenhouse 

gases, including carbon dioxide, methane, nitrous oxide and chlorofluorocarbons, measured 

between 1860 and 2000, Collins et al (2006) compared the radiative forcing computed by climate 

models (including CCSM, GFDL, and GISS) for clear sky conditions in midlatitude summer.  The 

GCM values were further compared to line-by-line (LBL) calculations, where fewer approximations 

are made, and small differences result mainly from the omission of particular absorption bands 

(Collins et al 2006).  The median LBL forcing at the top of the model by greenhouse gases is 2.1 

W/m2, and the corresponding median among the climate models is higher by only 0.1 W/m2.  

However, the standard deviation among model estimates is 0.30 W/m2 (compared to 0.13 for the 
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LBL models).  In general, forcing calculated by the CCSM and GISS models is on the high side of 

estimates, while the GFDL model is on the low side. For a doubling of greenhouse gas 

concentration, CCSM and GISS calculate forcing at the top of the atmosphere of 3.95 and 4.06 

W/m2, respectively, while the GFDL model calculates 3.50 W/m2 compared to the all-model 

average of 3.67 +/- 0.28 W/m2 (W. Collins, personal communication), for this particular 

atmospheric profile.  LBL calculations are not available for the entire globe, and uncertainties in the 

observed 3-dimensional cloud distribution create additional uncertainties in the forcing 

computations.  But based on these most recent comparisons with LBL computations, it is reasonable 

to assume that radiative forcing due to carbon dioxide doubling in individual climate models, 

including the US models, may be in error by roughly 10 percent.  

 

Aerosols have short lifetimes, on the order of a week or so, that prevents them from dispersing 

uniformly throughout the atmosphere, in contrast to well-mixed greenhouse gases.  Consequently, 

aerosol concentrations have large spatial variations, which are currently not measured with 

sufficient detail.  Global radiative forcing by aerosols has historically been estimated using physical 

models of aerosol creation and dispersal constrained by the available observations. Recent estimates 

center around -1.5 W/m2 (Anderson et al., 2003). Satellite retrievals are increasingly used to 

provide direct observational estimates, which range from 0.35-0.25 W/m2 (Chung et al 2005) to -

0.5-0.33 W/m2 (Yu et al 2006) to -0.8-0.1 W/m2 (Bellouin et al 2005) (??).  That these estimates do 

not overlap suggests that there are assumptions that are not represented in the formal uncertainty 

analysis of each study.  In particular, each calculation must decide how to extract the anthropogenic 

fraction of aerosol within each column.  Because aerosol species are not retrieved directly, and the 

instruments cannot identify the original source region, this extraction is uncertain.  In the absence of 

species identification, the optical properties used in the calculation of radiative forcing are also 

imprecisely known.  Future satellite instruments will identify aerosol type with greater accuracy, 

improving the forcing estimates.  

 

Global forcing by aerosols is estimated by the IPCC AR4 as -0.2 +/- 0.2 W/m2, according to 

models, and -0.5 +/- 0.4 W/m2, based upon satellite estimates.  This represents decreased 

uncertainty compared to the 2001 IPCC estimate of -0.9 +/- 0.5 W/m2.  However, this represents 

only the direct radiative forcing by aerosols: that is, the change in the radiative fluxes through 
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scattering and absorption of photons by aerosol droplets or particles.  Aerosols also act as cloud 

condensation nuclei, and alter radiative forcing by clouds.  For example, an increase in aerosol 

number increases the condensation nuclei available for cloud droplet formation, which has the 

potential to increase cloud droplet number. If the total cloud water is unchanged by the aerosols, the 

cloud will nonetheless be brighter because a larger number of smaller cloud droplets have a larger 

cross-sectional area for reflection of sunlight.  This is the first aerosol indirect effect (Twomey 

1977).  Smaller cloud droplets are also thought to slow the coalescence and growth of rain droplets, 

reducing precipitation efficiency and extending the cloud lifetime: the second aerosol indirect effect 

(Albrecht 1989).  Aerosol changes to cloud droplet density can also alter dynamical mixing within 

the cloud, affecting cloud cover and lifetime (Ackerman et al, 2004).  Because of the complex 

interactions between aerosols and dynamics along with cloud microphysics, the aerosol indirect 

effect is very difficult to measure directly, and model estimates vary widely.  This effect was 

generally omitted from the IPCC AR4 models, although it was included in GISS modelE where 

increased cloud cover due to aerosols results in a twentieth century forcing of -0.87 W/m2 (Hansen 

et al 2007).   

 

Other model forcings include variability of solar irradiance and volcanic aerosols.  Satellites 

provide the only measurements of these quantities at the top of the atmosphere.  Prior to the satellite 

era in the 1970's, solar variations are inferred using records of sunspot area and number and cosmic 

ray-generated isotopes in ice cores (Foukal et al 2006), which are converted into irradiance 

variations using empirical relations.  The US CMIP3 models all use the solar reconstruction by 

Lean et al (1995) with subsequent updates.  Prior to the satellite era, volcanic aerosols are inferred 

from surface estimates of aerosol optical depth.  The radiative calculation requires aerosol amount 

and particle size, which is inferred using empirical relations with optical depth derived from recent 

eruptions.  The GFDL and GISS models use updated versions of the Sato et al (1993) eruption 

history, while CCSM uses Ammann et al (2003).  

 

Land use changes are also uncertain, and can be of considerable signficance locally, but global 

models typically show very modest global responses, as discussed in Hegerl and Zwiers, 2007. 
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Studies attributing 20th century global warming to various natural and human-induced forcing 

changes are clearly hindered by these uncertainties in radiative forcing, especially in the solar and 

aerosol components. Recent satellite measurements of solar irradiance are of vital importance 

because they show that the Sun’s contribution to the rapid warming of the past several decades is 

small.  The relevance of solar energy output changes for the warming earlier in the 20th century is 

more uncertain.  Given the solar reconstructions in use in the CMIP3 models, much of the early 20th 

century warming is driven by solar variations in these models, but uncertainties in these 

reconstructions do not allow confident attribution statements concerning this early century 

warming.  The large uncertainties in aerosol forcing are the most important reason that one cannot 

use the observed late 20th century warming to provide a sharp constraint on climate sensitivity.  We 

do not have good estimates of the fraction of the greenhouse gas forcing that has been cancelled by 

aerosols.   
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The uncertainties associated with modeling of the uptake of heat by the ocean are significant in our 

understanding of the robustness of the estimates of the Earth's future global temperature.  The 

degree to which the ocean takes up heat inversely affects the earth's surface temperature (e.g. Sun 

and Hansen 2003).  Studies show (e.g. Volker et al. 2002) that CO2 uptake by the ocean is also 

linked in complicated ways to the ocean's temperature. In an AOGCM, the ocean component's 

ability to take up heat is dependent upon how a model defines the physics to handle the mixing of 

heat and salt and how it transports heat between the low latitudes (where heat is taken up by the 

ocean) and high latitudes (where heat is given up by the ocean).  The processes involved make use 

of several parameterizations (see section describing the ocean component of an AOGCM) and these 

parameterizations have their own uncertainties. Hansen et al. (1985) and Wigley and Schlesinger 

(1985) explored, early on, the important role of the ocean in moderating global temperatures and 

associated uncertainties in mixing parameters.  Thus, as part of understanding any given model's 

climate sensitivity value, it is necessary to also understand its ability to accurately represent the 

ocean's mixing processes and the transport of the ocean's heat as well as feedbacks between the 

ocean, ice, and atmosphere.  
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Unfortunately, the relative importance of the uptake rate as compared to other processes, including 

feedbacks between the ocean and atmosphere, is still an open research topic.  The uncertainties in 

the estimates of ocean uptake are not well understood.  Comparisons of ocean heat uptake with 

respect to climate sensitivity mostly compare a few runs of the same model and runs between 

different AOGCMs.  Raper et al. (2002) examined climate sensitivity and ocean heat uptake in a 

suite of recent AOGCMs.  They calculated the ratio of the change in heat flux to the change in 

temperature (defined as the "ocean heat uptake efficiency": k by Gregory and Mitchell 1997) and 

found a general trend in the models that lower ocean uptake efficiency values were associated with 

lower climate sensitivity values.  In an example that compares a current generation of AOGCM to 

previous generation AOGCMs, Kiehl et al. (2006) demonstrate that the atmospheric component of 

the models is the primary reason for different climate sensitivities and the ocean component's ability 

to uptake heat is of secondary importance. How the atmosphere affects the ocean's surface density is 

the important factor, rather than the particular aspects of the ocean component that is being used.  

The ocean heat uptake efficiency values calculated, in this second study, are not consistent with 

Raper et al. (2002), in that the model with the highest ocean heat update efficiency has the lowest 

climate sensitivity and the reasons for the differences are not understood.  In a related study, 

Stouffer et al. (2006), using a different current AOGCM, conclude that a more realistic Southern 

Hemisphere atmospheric jet may produce a more realistic representation of the ocean's heat uptake 

in this region.   

 

Impact of climate sensitivity on using model projections of future climates 

 

This chapter -- and most investigations -- emphasize the global and annual mean of surface 

temperature change, even though practical applications of climate change science involve particular 

seasons and locations. The underlying assumption is that local climate impacts scale with changes 

in global surface temperature. Results of idealized simulations (the transient climate response 

experiments discussed above) indicate that this assumption may indeed be a reasonable first 

approximation to model behavior. Figure IV-B-1 shows, for North America, the ratio of the 

warming near the time of atmospheric carbon dioxide doubling (TCR as defined above) to its global 

mean value for the "average" CMIP3 model and each of the three US models. In all cases, the 

warming generally increases with latitude, and interior regions warm more than coastal areas. The 
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similarity of the four maps indicates a rough agreement of "scaled" regional warming among the 

models. The agreement occurs despite ~50% differences in globally averaged surface temperature 

change among the US models (Table IV.1).  

 

Figure IV-B-2  shows the analogous results for precipitation change. Here the changes are generally 

positive in the Eastern US and negative in the Western US, consistent with the general finding that 

wet areas become wetter and dry areas become drier in global warming scenarios. The ratios of 

local to global mean precipitation change (which in turn scales with global mean temperature 

change) are again quite similar among the three US models as well as the "average" CMIP3 model. 
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Figure IV  B 1 Ratio of annual local surface temperature change to annual global surface 

temperature change in mean CMIP3 model and three US CMIP3 models for idealized CO2  

doubling. 
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Figure IV B 2 Ratio of annual local precipitation change to global annual precipitation change in 

mean CMIP3 model and three US CMIP3 models for idealized CO2 doubling. 
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Mean climate 

 

Monthly mean near-surface temperature is well simulated by modern AOGCMs. This success 

occurs despite the fact that nearly all models now allow the ocean and atmosphere to exchange heat 

and water without explicitly forcing agreement with observation by artificial adjustment to air-sea 

fluxes. Figure V A quantifies the extent of agreement between simulations by several models and 

observations for both temperature and precipitation (the triangular points will be discussed in 

Chapter VI below). Each model’s temperature or precipitation simulation produces a single point on 

the diagram, but in the figure, the ranges of results from all the models are shown as shaded areas. 
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Figure V. A. Taylor Diagram of CMIP3 models  
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This type of diagram (Taylor 2001) displays the overall space-time correlation between simulated 

and observed variables as an angular coordinate. A 100% perfect correlation would place a point 

along the horizontal direction to the right, while zero correlation would place a point along the 

upward vertical direction. Looking at the red-shaded area that depicts the range of near-surface 

temperature simulations, one sees a remarkable 95–98% correlation with observations. The second 

independent (radial) coordinate in the diagram gives the ratio of simulated to observed amplitude 

for the variations that are being correlated. A value of 1.0 indicates perfect agreement of the 

amplitudes. In this coordinate system, complete agreement between simulation and observation in 

both dimensions would place a point where the dashed semicircle and the horizontal line intersect. 

The distance from this point to the actual point for any given model is proportional to the combined 

root-mean-square model error in both space and time dimensions. Temperature points for all of the 

models lie very close to complete agreement with observation—indeed nearly within the 

uncertainty range of the observations themselves (Covey et al., 2003). 

 

For monthly mean precipitation, AOGCM simulations are considerably less precise than for 

temperature. The figure shows that overall space-time correlation between models and observations 

is ~50–60%. Qualitative examination of latitude-longitude maps shows that AOGCMs generally 

reproduce the observed broad patterns of precipitation amount and year-to-year variability (A. Dai, 

2006: Precipitation characteristics in eighteen coupled climate models, J. Climate, in press). The 

most prominent error is that models without flux adjustment fail to simulate the observed 

northwest-to-southeast orientation of a large region of particularly heavy cloudiness and 

precipitation in the Southwest Pacific Ocean (the Southwest Pacific Convergence Zone or SPCZ). 

Instead, these models produce an unrealistic set of Inter-Tropical Convergence Zones in two 

parallel lines straddling the Equator: a “double ITCZ” pattern. The double-ITCZ error has been 

frustratingly persistent in climate models despite much effort to correct it. The average day-night 

cycle of temperature and precipitation in AOGCMs exhibits general agreement with observations, 

although simulated cloud formation tends to start too early in the day. Another discrepancy between 

models and observations appears upon sorting precipitation into light, moderate and heavy 

categories. Models reproduce the observed extent of moderate precipitation (10-20 mm/day) but 

underestimate the extent of heavy precipitation and overestimate the extent of light precipitation 
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(Dai 2006). Additional model errors appear when precipitation is studied in detail for particular 

regions, e.g. within the US (Ruiz-Barradas, A., and S. Nigam, 2007). 

 

Taking examples from two of the US model families discussed in Chapter IV, one finds that 

AOGCM-simulated and observed maps of surface temperature and even precipitation appear rather 

similar at first sight. Constructing simulated-minus-observed “difference maps,” however, reveals 

monthly and seasonal mean temperature and precipitation errors up to ~10°C and 7 mm / day 

respectively at some points (Figs V B, W. Collins et al., 2006; and V C  Dellworth et al., 2006). 
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Figure V.B 1–4. CCSM3 annual mean simulated-minus-observed sea surface temperature [°C] 
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The CCSM3 temperature difference maps exhibit the largest errors in the Arctic (note scale change 

in last frame), where continental wintertime near-surface temperature is overestimated. AOGCMs 

find this quantity particularly difficult to simulate because, for land areas near the poles in winter, 

models must resolve a strong temperature inversion (warm air overlying cold air). 
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Figure V. C 1-5. Observed and model-simulated precipitation [mm/day] 
The GFDL precipitation difference maps reveal significant widespread errors in the tropics, most notably in 

the ITCZ region discussed above and in the Amazon River basin, where precipitation is underestimated by 

several millimeters per day.  
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Similar precipitation errors appear in the following table of CCSM3 results  Table V 1. 

 

Table V 1 CCSM3 Precipitation by region(Collins, et al, 2006) 

 

Region CCSM3-simulated precip Error 
Southeast USA (30-40°N, 80-100°W) 2.4 mm/day −24% 

Amazon basin (10°S-10°N, 60-80°W) 4.5 mm/day −28% 

Southeast Asia (10-30°N, 80-110°E) 3.1 mm/day −24% 

 

AOGCM precipitation errors have serious implications for “Earth system” models with interactive 

vegetation, because such models use the simulated precipitation to calculate plant growth (see 

Chapter VI below). Errors of the magnitude shown above would produce an unrealistic distribution 

of vegetation in an Earth system model, e.g. by spuriously deforesting the Amazon basin. 

 

In summary, modern AOGCMs generally simulate large-scale mean climate with considerable 

accuracy, but the models are not reliable for aspects of mean climate in some regions, especially 

precipitation. 

 

20th century trends 

 

Modern AOGCMs are able to simulate not only the time-average climate but also changes (trends) 

of climate during over the past century or more. For example, Figure V D shows results from the 

three US models and “average” CMIP3 models. All parts of the figure display the same curves of 

annual mean globally averaged near-surface temperature as observed by the UK Climatic Research 

Unit (CRU), as well as simulated by the average over all  CMIP3 models and the average over only 

those CMIP3 models that included the effects of volcanic eruptions.  Results from individual US 

models are shown both for separate ensemble members (dotted lines) and for the average over all 

ensemble members (continuous lines). Separate ensemble members were run under a variety of 

initial conditions. The precise initial conditions, especially deep ocean temperature and salinity, are 

not known for 1860; the spread among the dotted-line curves thus indicates uncertainty in model-

simulated temperature arising from our lack of knowledge of initial conditions. 
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These results demonstrate that modern climate models typically exhibit good agreement with 

observed near-surface temperature trends for the global mean (Min and Hense, 2006).  Global 

warming during the past few decades is successfully simulated by the models only if they include 

anthropogenic emissions of greenhouse gases and aerosols. Min and Hense, (in press) show the 

same is true for most individual continents. Observed trends in climate extremes such as heat-wave 

frequency and frost-day occurrence are also simulated with basic reliability by the latest generation 

of AOGCMs (Tebaldi et al., in press).  
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Figure V D 1. Twentieth century globally averaged surface temperature simulation from GFLD 

CM2.1 
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Figure V D 2 Twentieth century globally averaged surface temperature simulation from GISS 

Model E-r 
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1 Figure V D 3 Twentieth century globally averaged surface temperature simulation from CCSM3 
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Figure V D 4 Twentieth century globally averaged surface temperature simulation from the three 

US CMIP3 models and the average of all CMIP3 models that include4d volcanic effects 
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At smaller scales the model simulation of trends can be less accurate. For example, model-

simulated trends do not consistently match the observed lack of 20th century warming in the Central 

US (Kunkel et al., in press). The evolution of large-scale patterns, however, can be simulated with 

fair detail by modern climate models. For example, the longitude-latitude map of trends from GISS 

modelE agrees reasonably well with the observed spatial distribution Fig V E (Hansen et al., 2006) . 
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Figure V. E.   The figure shows general agreement between the model and observations not only for the 

overall period 1880-2003, but also for the segments 1880–1940 and 1979–2003, which encompass periods 

of early and late 20th century warming.  
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Amplification of warming and cooling at high northern latitudes is the most obvious feature in the 

observations. For the period 1940–1979, the model simulates only a small change in global mean 

temperature in agreement with observations, but it fails to simulate the strong north polar cooling 

observed for this period. As a result, the model-simulated global mean temperature change (upper 

right corner of each frame) for 1940–1979 is slightly positive rather than slightly negative as 

observed. For both 20th century warming periods, the model simulates but underestimates the high-

latitude amplification of global warming. 

 

Finally, the CCSM3 simulates 4.7 cm of global mean sea level rise during the 20th century (Meehl  

et al. 2006). The actual value of sea level rise is 3–5 times as large, but the model does not include 

melting glaciers and ice sheets, and therefore it simulates only the part of sea level rise due to 

expansion of ocean water from heating. 

 

A number of specific climate phenomena in addition to near-surface temperature, precipitation and 

sea level are discussed in the following sections. These are important for practical applications of 

climate models because they directly affect near-surface temperature and precipitation patterns (and 

thereby indirectly affect the evolution of sea level, together with many other features of climate). 

 

 

Annular Modes 

 

The primary mode of Arctic interannual variability is the Arctic Oscillation (Thompson and 

Wallace 1998), which is also referred to as the Northern Annual Mode (NAM) and which is related 

to the North Atlantic Oscillation (Hurrell 1995).  The primary mode of Antarctic interannual 

variability is the Southern Annular mode (SAM) (Thompson and Wallace 2000), also known as 

Antarctic Oscillation. Coupled global climate models have shown skill in simulating the NAM 

(Fyfe et al. 1999, Shindell et al. 1999, Miller et al. 2006), although in some cases too much of the 

variability in sea level pressure is associated with the NAM in these models (Miller et al. 2006). 

Global climate models also realistically simulate the SAM (Fyfe et al. 1999, Cai et al. 2003, Miller 

et al. 2006), although some details of the SAM (e.g. amplitude and zonal structure) show 
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disagreement between global climate model simulations and reanalysis data (Raphael and Holland 

2006; Miller et al. 2006). 

In response to increasing concentrations of greenhouse gases and tropospheric sulfate 

aerosols in the 20th century, the multi-model average exhibits a positive annular trend in both 

hemispheres, with decreasing sea-level pressure (SLP) over the poles and a compensating increase 

in mid-latitudes (Miller et al. 2006). However, the models underestimate the coupling of 

stratospheric changes (from volcanic aerosols) to annular variations at the surface, and may not 

simulate the appropriate response to increasing GHGs (Miller et al. 2006) ) and changes in 

stratospheric ozone (Arblaster and Meehl, 2006). 

. 

 

Ocean structure and circulation 

 

A set of ocean characteristics or metrics (sea surface temperature, ocean heat uptake, meridional 

overturning and ventilation, sea level variability and global sea level rise) is used to describe the 

realism of the ocean in the climate models. 

 

Sea surface temperature: The sea surface temperature (SST) plays a critical role in the 

determination of the climate and the predictability of the changes. In general, when the simulated 

fields of SST are compared to observational fields there is improvement in the models' 

representation of the mean SST Figure V F(Delworth et al., 2006) compares the CM2.0 and CM2.1 

mean SST field averaged over a period of 100 years to the Reynolds SST observational 

climatology. With an improved atmospheric core and a different viscosity parameter value, the later 

version (CM2.1) of the GFDL climate model produces a reduced cold bias in the northern 

hemisphere.   
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Figure V F Maps of errors in simulation of annual mean sea-surface temperature (SST). Units are 

K. The errors are computed as model minus observations, where the observations are from the 

ReynoldsSST data (provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, 

USA, from their Web site at http://www.cdc.noaa.gov/). (a) CM2.0 (using model years 101-200). 

(b) CM2.1 (using model years 101-200). Contour interval is 1K, except that there is no shading for 

values between 1 K and +1 K. 
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The CCSM3.0 model also has improved its simulation of SST primarily in the handling of the 

processes associated with the mixed layer of the upper ocean waters (Danabasoglu et al., 2005).  

The improvement in the representation of the SST is apparent especially in the eastern tropical 

Pacific (see Figure V G).  An inter-model comparison of the 50 year global SST trend for each 

model is shown in Figure V H. The SST trends range from a low of 0.1°C/50yrs to a high of about 

0.6°C/50yrs, with the observational trend estimate given as about 0.43°C/50yrs.  The figure also 

shows that within a group, the estimates significantly vary. This distribution of values in SST trends 

shows that improvements in any model's representation of SST are dependent on both advances in 

the ocean and atmospheric components. 
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Figure V G Differences in annual-mean surface temperature between CCSM2 and the HadISST 

data set (Rayner  et al. 2003) (top); corresponding differences for CCSM3 (bottom) (Collins, et al, 

2005). 
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Figure V H Scatter plot of the SST trends averaged in the central and eastern tropical Pacific (9 S–9 

N and 90–180 W), and global mean surface temperature trends. Correlation of the model results is 

0.58, of higher magnitude than the 95% significance level of 0.46. The 1:1 line is drawn for clarity.  

The red boxes denote US Climate models and the black box is the relationship computed from 

observations. (Zhang & McPhaden, 2006) 
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Meridional overturning circulation and ventilation: The circulation process related to the 

transportation heat and freshwater throughout the global oceans is referred to as thermohaline 

circulation. The Atlantic portion of this process is called the Atlantic meridional overturning 

circulation (AMOC). Tropical and warm waters flow northward via the Gulf Stream and North 

Atlantic Current. The southward flow occurs when water is sub-ducted in the regions of the 

Labrador Sea and Greenland Seas and occurs when the freshening of the surface waters become 

denser and flow down the slope to deeper depths. Similar processes occur at locations in the 

Southern Ocean. Ventilation is the process by which these dense surface waters are carried into the 

interior of the ocean. The important climate parameter is the rate at which this process occurs, the 

so-called "ventilation rate". It has been suggested that this pattern of circulation if it becomes 

weaker (i.e. less warmer water flowing towards Europe) will impact the climate. It is thus important 

to understand how well the ocean component simulates the observed estimates of these overturning 

processes. 
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Schmittner et al. [2005] examined the performance of the models in reproducing the observed 

meridional overturning in 4 of the 5 US models. The authors examined a small ensemble set of 

simulations to quantify the uncertainty in the models' representation of 20th century AMOC 

transports. To make their estimate, they evaluated the global temperature (T), the global salinity (S), 

the pycnocline depth (D), the surface temperature and surface salinity in the Atlantic (SST, SSS), 

and calculations of the overturning at 3 locations ~in the Atlantic. Their results suggest that 

temperature is simulated the most successfully on the large scale and that the overturning transports 

at 24°N are close (~18Sv) to the observed measurements (~15.8Sv). However, the maximum mean 

overturning transports in these models are too high (23.2, 31.7, 27.7, and 30.9 Sv: Schmittner et al. 

[2005] and 21.2 Sv from Bryan et al. [2006]) than the observed value (17.7 Sv). Table V 2 shows a 

reduced version of Table 1 from Schmittner et al. [2005] that shows the root mean errors (RMS) for 

the various quantities as compared to observations. The authors do not attempt to explain why the 

models are different from each other and from observations, rather, that there is a broad range in the 

value of these metrics for a set of climate models. 
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Table V 2 Model Errors  

Model Tglobal Sglobal Dglobal SSTNAtl SSSNAtl DNAtl AMOC24N (15.8) 

                  (SV) 

GFDL-2.0 0.20 0.43 0.57 0.34 0.53 0.75 0.16 (18.3) 

GISS-

AOM 

0.66 0.75 2.29 0.43 0.79 3.48 0.22 (19.2) 

GISS-EH 0.31 0.76 1.57 0.61 1.12 1.85 0.34 (21.1) 

GISS-ER 0.69 0.82 2.06 0.65 1.11 2.40 0.13 (17.9) 

From Schmittner et al. [2005] Table 1. RMS Errors for the Individual Models; RMS errors are 

normalized by the standard deviation of the observations unless otherwise stated. Schmittner et al. 

2005; "Observation-based estimates of the AMOC at 24 N from Ganachaud and Wunsch [2000] 

and Lumpkin and Speer [2003], at 48 N from Ganachaud [2003], and its maximum value in the 

North Atlantic from Smethie and Fine [2001] and Talley et al. [2003], as well as temperature, 

salinity, and pycnocline depth observations from the World Ocean Atlas 2001 [Conkright et al., 

2002] are used to evaluate the climate models." 
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The global overturning circulation can also be quantified by also examining the realism of the 

transports through the Drake Passage. The passage, between the tip of South America and the 

Antarctic Peninsula provides a constrained passage to measure the flow between two large ocean 

basins. The observed mean transport is around 135 Sv. Russell et al. [2006] estimate the flow in the 

passage for a subset of the climate models (Table V 3).  There is a wide range in the simulated mean 

values. The interaction between the atmospheric and ocean component models appears to be 

important in reproducing the observed transport. The strength and location of the zonal wind stress 

correlates with how well the transport reflects observed values.  
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TABLE V 3  

Model ACC 

(Sv) 

dρ/dy  

(kg m-3) 

Total τx 

1012 N 

Max τx (N m-2) Lat of 

max τx 

 

Observational 

estimate 

135 0.58 6.5 0.161 52.4 

GISS-ER 266 0.62 4.3 0.107 46.0 

GISS-AOM 202 0.38 2.9 0.166 43.5 

GFDL-CM2.1 135 0.58 6.1 0.162 51.0 

GFDL-CM2.0 113 0.56 4.5 0.149 46.0 

GISS-EH -6 0.43 3.6 0.096 46.0 

Reduced From Table 1 Russell et al. [2006] Various parameters related to the strength of the 

ACC. The ACC transport is the integral of the zonal velocity across the Drake Passage at 69°W. 

The density gradient (dρ/dy) is the zonally averaged density difference between 65° and 45°S. The 

total ACC-related wind stress (τx total) is the integral of the zonal wind stress over the Drake 

Passage channel (54°–64°S). The maximum westerly wind stress (τ max) is the maximum of the 

zonally averaged wind stress that is located at the latitude given by Lat τ max. The observed ACC 

strength is from Cunningham et al. (2003). The observed density gradient is calculated from the 

World Ocean Atlas 2001 (Conkright et al. 2002). The observed wind data are from the NCEP long-

term mean (Kistler et al. 2001). NA indicates data not archived at PCMDI 
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Northward Heat Transport: A common metric used to quantify the realism in ocean models is the 

northward transport of heat. This integrated quantity (from top to bottom and across latitude bands) 

gives an estimate of how heat moves within the ocean and is important in balancing the overall heat 

budget of the Earth. The calculations for the ocean's northward heat transport in the current 

generation of climate models show that the models reasonably represent the observations (Delworth 

et al. 2006, Collins et al. 2006, and Schmidt et al. 2006).  The current models have significantly 

improved over the last generation in the Northern Hemisphere. Comparisons of the simulated values 

to the observed values for the North Atlantic are within the uncertainty of the observations. In the 

Southern Hemisphere, the comparisons in all the models are not as good, with the Indian Ocean 

transport estimates contributing to a significant part of the mismatch. 

 

Heat Content: Related to the heat transport is the ocean's heat content itself. This can be thought of 

how realistically the models reproduce the uptake of heat. An evaluation of the temporally evolving 

ocean heat content in the suite of climate models for the AR4 shows the models abilities to simulate 

the zonally integrated annual and semi-annual cycle in heat content. In the middle latitudes 

[Gleckler et al. 2006], the models do a reasonable job while there is a broad spread of values for the 

tropical and polar regions.  This analysis showed that the models replicate the dominant amplitude 

of the annual cycle along with its phasing in the mid-latitudes [Fig V I]. At high latitudes, the 

comparisons with observations are not as consistent. While the annual cycle and global trend are 

reproduced, analyses of the models [e.g. Hansen et al. 2005] show that they do not simulate the 

decadal changes in estimates made from observations [Levitus et al. 2001]. Part of the difficulty of 

comparisons at high latitudes and at long periods is the paucity of observational data [Gregory et al. 

2004].  
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Figure V I 1 
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From Glecker  et al. 2006 .Figure 1. Observed (WOA04) and simulated zonally integrated ocean heat content (0–250 

m): (a) annual cycle amplitude (108J/ m2) and (b) semiannual/annual (A2/A1).  
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1 Figure V I 2 
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From Glecker  et al., 2006, Figure 3. Annual cycle of observed (WOA04) and simulated basin average global ocean 

heat content 

(0–250 m). Units are 1022J. Arctic Ocean is defined as north of 60 N, and Southern Ocean is south of 

60 S. 
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Global mean sea level rise: Two separate physical processes contribute to the sea level rising: 1) the 

thermal expansion of the ocean from an increase in the heat uptake by the ocean (steric component) 

and 2) the addition of freshwater from precipitation, continental ice melt, and/or river runoff (the 

eustatic component). The current ocean component of all the models except the GISS models, 

conserve volume. In practice, the first component can be easily computed from a model's primary 

variables. The second contribution maybe considered as a freshwater flux into the ocean. The 

various ocean models handle the process in different ways. With the addition of a free surface in the 

current generation of ocean models, the freshwater flux into the oceans can be included directly 

[Griffies et al. 2001]. In other cases, the mass or freshwater contribution is computed by quantities 

estimated by land/ice sheet components of the climate model [e.g. Church et al., 2005, Gregory et 

al., 2006]. In general, the state-of-the-art climate models underestimate the combined global mean 

sea level rise as compared to tide gauge and satellite altimeter estimates while the rise for each of 

the separate components is within the uncertainty of the observed values. The reason for this is an 

open research question and may relate to either observational sampling or not correctly accounting 

for the all the eustatic contributions. The steric component to the global mean sea level rise is 

estimated to be 0.40+/-0.05mm/yr from observations [Antonov et al. 2005]. The models simulate a 

similar, but somewhat smaller rise [Gregory et al., 2006, Meehl et al. 2005]. There are also 

significant differences in the magnitudes of the decadal variability between the observed and the 

simulated sea level or SSH. It most be noted, however, that progress is been made over the previous 

generation of climate models. When atmospheric volcanic contributions are included, for example, 

ocean models of the current generation capture the observed impact on the ocean (a decrease in the 

global mean sea level). Figure V J from Church et al. 2006 gives an example of a few models and 

their de-trended estimate of the historic global mean sea level that shows the influence of including 

the additional atmospheric constituents in changing the steric height of the ocean. 
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C.  Simulation of specific climate dynamical features 1 
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Extratropical storms 

Climate models have developed from numerical weather prediction models whose performance has 

been primarily judged on their ability to forecast mid-latitude weather.  The success of these models 

in their simulation of midlatitude cyclones and anticyclones has resulted in the continuous growth in 

the value of numerical weather prediction.  The ability of general circulation models to generate 

realistic statistics of midlatitude weather has also been central in the development of climate 

modeling. This is not only because midlatitude weather is important in its own right, but also 

because these storms are the primary mechanism by which heat, momentum, and water vapor are 

transported by the atmosphere, making their simulation crucial for the simulation of the atmospheric 

climate. 

 

Indeed, it can be thought of as the defining feature of Atmospheric General Circulation Models 

(AGCMs) that they compute midlatitude eddy statistics and the associated eddy fluxes through 

explicit computation of the life cycles of individual weather systems and not through some 

turbulence or closure theory. It may seem very inefficient to compute the evolution of individual 

eddies when primarily interested in the long term statistics of the eddies, but  it is has been the clear 

judgment of the community for decades that the explicit simulation of these eddies in climate 

models is far superior to the attempts that have been made to date in developing closure theories for 

the eddy statistics.   The latter theories typically form the basis for EMICs (Earth System Models of 

Intermediate Complexity), which are far more efficient computationally than GCMs, but provide 

less convincing simulations. 

 

Two figures illustrate the quality of the simulations of midlatitude eddy statistics that coupled 

AOGCMs of the horizontal resolution used in AR4 are capable of generating.  Shown for the GFDL 

CM2.1 in Fig. V K 1 is the wintertime variance of the north-south component of velocity at 300 hPa 

(in the upper troposphere) and in Fig. V K 2  the wintertime poleward eddy heat flux, or the 

covariance between temperature and north-south velocity, at 850mb (in the lower troposphere).  

When analyzing eddy statistics it is often useful to filter the flow fields to retain only those time 

scales, roughly 2-10 days, associated with midlatitude weather systems, but the two quantities 
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chosen here are dominated by these time scales to a sufficient degree that they are relatively 

insensitive to filtering.  Here we have simply removed the monthly means before computing 

variances.  In each case, the eddy statistics are compared to the estimates of the observed statistics 

obtained from the NCEP-NCAR reanalysis (B.Wyman, personal communication).  

 

In winter, Northern Hemisphere storms are organized into two major oceanic storm tracks over the 

Pacific and Atlantic oceans.  Historically, it has been found that atmospheric models of resolutions 

of about 200-300 kms are typically capable of simulating the midlatitude storm tracks with 

comparable realism to that shown in the figure.  The eddy amplitudes are often a bit weak and often 

displaced slightly equatorward, especially in Southern hemisphere summer (although the model 

shown here has a weaker Southern hemisphere bias than most models). In models with resolution 

coarser than 200-300kms, the simulation of the midlatitude storm tracks typically deteriorates 

significantly (see for example, Boyle 1993).  It is thought to be important for the general 

improvement in model simulations described in Chapter 1 that most of the models in the CMIP3 

database are now utilizing this 200-300km resolution. While finer resolution results in better 

simulations of the structure of midlatitude storms, including the structure of warm and cold fronts as 

well as the interaction between these storms and coastlines and mountain ranges, the improvements 

in the midlatitude climate on large scales tend to be less dramatic and systematic.  Other factors 

besides horizontal resolution are considered to be important for the details of storm track structure, 

including the distribution of tropical rainfall, which is sensitive to the closure schemes utilized for 

moist convection, interactions between the stratosphere and the troposphere, which are sensitive to 

vertical resolution.  Roeckner  et al (2006) illustrate the importance of vertical resolution for  the 

midlatitude circulation and storm track simulation.   

 

A more detailed look at the ability of the AR4 models to simulate the space-time spectra of the 

observed eddy statistics is provided by Lucarini,  et al,(2006).  These authors view the deficiencies 

noted, which vary in detail from model to model, as serious limitations to the credibility of the 

models.  But, as indicated in Chapter 1, our ability to translate measures of model biases into useful 

measures of  model credibility is limited, and the implications of these biases in the space-time 

spectra of the eddies is not self-evident.  Indeed, in the context of the simulation of the eddy 

characteristics generated in complex turbulent flows in the laboratory (e.g., Dimotakis , 2005) the 
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quality of these atmospheric simulations, closely based on fluid dynamical first principles, should 

probably be thought of as one of the most impressive characteristics of current models.   

 

As an example of a significant model deficiency that can plausibly be linked to limitations in the 

credibility of the climate projections, note that the Atlantic storm track, as indicated by the 

maximum in velocity variance in Fig 5.1, is too zonally oriented, the observed stormtrack having 

more of an southwest-northeast tilt.  This particular deficiency is common in the CMIP-3  models 

(van Ulden and van Oldenborgh, 2006) and is related to the difficulty in simulating the phenomenon 

of blocking in the North Atlantic with the correct frequency and amplitude.  Van Ulden and van 

Oldenborgh make the case that this bias is significant for the quality of regional climate projections 

over Europe. 

. 
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Figure V K 1:  Top: variance of north-south velocity at 300hPa as simulated by the GFDL CM2.1 
model in years 1981-2000 of one realization of the 20C3M simulation, as contributed to the CMIP3 
database.  Units are m2/s2.  Middle: The same quantity as obtained from the NCEP-NCAR 
reanalysis (ref). Bottom:  model minus observations. 
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Figure V K 2:  Top: covariance of north-south velocity and temperature at 850hPa as simulated by 
the GFDL CM2.1 model in years 1981-2000 of one realization of the 20C3M simulation, as 
contributed to the CMIP3 database.  Units are Km/s.  Middle: The same quantity as obtained from 
the NCEP-NCAR reanalysis (ref). Bottom:  model minus observations. 
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Monsoons 

 

The word `monsoon' derives from the Arabic word for season, and a 

monsoonal circulation is distinguished by its seasonal reversal after 

the sun crosses the equator into the new summer hemisphere.  Rain is 

largest, if not entirely restricted, to the summer within monsoonal 

climates, when continental rainfall is supplied mainly by evaporation 

from the nearby ocean.  This limits the reach of monsoon rains to the 

distance over which moisture can be transported onshore (Prive and 

Plumb 2007).  Variations in the spatial extent of the monsoon from 

year to year determine which inland regions experience a drought. 

 

Historical theories for the monsoon emphasize the influence of the 

contrast between land and ocean (Webster et al. 1998).  Land responds 

more quickly to solar heating than the ocean, where heating is mixed 

over a deeper layer.  Air is driven by this temperature contrast 

toward the warm land, where it ascends and precipitates moisture 

before returning offshore.  Conversely, land cools more rapidly during 

winter when the sun is in the opposite hemisphere, and this drives air 

offshore toward the warmer ocean where it rises.  While a coastal sea 

breeze is also driven by the temperature contrast between land and 

ocean, the monsoon is distinguished by its continental scale.  The 

onshore flow is so extensive that it is deflected by the earth's 

rotation.  Over the Arabian Sea, for example, surface air flows toward 

the east and northeast during the Northern Hemisphere summer, rather 

than traveling directly north toward the Asian continent. 

 

While the monsoon takes its name from a language spoken by traders 
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around the Arabian Sea, this circulation reaches far beyond the 

periphery of the Indian Ocean, and local cultures have their own words 

for the monsoon: for example, Mei-yu in China, Chang-ma in Korea, and 

Bai-yu in Japan.  Over a billion people are dependent upon the arrival 

of the monsoon rains for water and irrigation for agriculture.  The 

Asian monsoon during NH summer is the most prominent example of the 

monsoon circulation, dominating global rainfall during this 

season. However, the seasonal reversal of winds and summer rainfall 

maximum also indicate monsoon circulations in West Africa and the 

Amazon basin. In addition, during NH summer, air flows off the eastern 

Pacific Ocean toward Mexico and the American southwest, while over the 

Great Plains of the United States, moisture from the Gulf of Mexico 

brings an annual peak in rainfall. Thus, the climate in these regions 

is also described as monsoonal. 

 

Because of the geographic extent of the Asian monsoon, the fidelity of 

climate model simulations is weighed according to metrics from a 

variety of regions. Kripalani et al. (2007) judged that three-quarters 

of the eighteen analyzed coupled models (including the GFDL CM2.0 and 

2.1 models, along with the NCAR PCM and GISS modelE-R) match the 

timing and magnitude of the summertime peak in precipitation over East 

Asia between 100 and 145E and 20 to 40N that is evident in the NOAA 

NCEP Climate Prediction Center Merged Analysis of Precipitation (CMAP, 

Xie and Arkin 1997). However, only half of these models (including 

both GFDL CGCMs) were able to reproduce the observed spatial 

distribution of monsoon rainfall, and its extension along the coast of 

China toward the Korean peninsula and Japan.  Considering a broader 

range of longitude (40-180E) that includes the Indian subcontinent, 

Annamalai et al. (2007) found that only six of eighteen CGCMs 

(including both GFDL models) were significantly correlated with the 

observed spatial pattern of CMAP precipitation during June through 
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September. These six models also included a realistic simulation of 

ENSO variability, which is known to influence interannual variations 

in the Asian summer monsoon. Kitoh and Uchiyama (2007) computed the 

spatial correlation and root-mean-square error of simulated 

precipitation over a similar region and found the GFDL models in the 

top tercile with a spatial correlation exceeding 0.8, while the GISS 

modelE-R correlation was just under 0.5. 

 

During NH winter, the Asian surface winds are directed offshore: from 

the northeast over India, and the northwest over East Asia. The two 

American models included in the comparison of the simulated East Asian 

winter monsoon by Hori and Ueda (2006), GFDL CM2.0 and GISS modelE-R, 

generally reproduce the observed spatial distribution of sea level 

pressure and 850 mb zonal wind. 

 

In response to increasing greenhouse gases, models project increasing 

summer precipitation during the 21st century (Kripalani et al. 2007 

Kimoto 2005). However, the circulation strength in both winter and 

summer is expected to weaken (Kimoto 2005, Ueda et al. 2006), 

consistent with simple physical arguments by Held and Soden (2006). 

The latter is also consistent with a study of previous generation 

models where interannual fluctuations in low-latitude rainfall 

increased, indicating increasingly severe seasonal departures from the 

mean (R\"ais\"anen 2002). 

  

Observed variability of the West African monsoon is related to 

variations of ocean temperature in the Gulf of Guinea. The drying of 

the Sahel during the late 20th century, and the attendant 

societal impacts, is related to the inland extent of the monsoonal 

circulation. Cook and Vizy (2006) found that slightly over half of 

the 18 analyzed coupled models reproduced the observed maximum in 
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precipitation over land during June through August. Of these models, 

only six reproduced the anti-correlation between Gulf of Guinea ocean 

temperature and Sahel rainfall. The GISS modelE-H and both GFDL 

models were among the most realistic. 

 

It is unresolved whether the late-20th century Sahel drought is due to 

natural or human influences. Hoerling et al. (2006) surveyed the 

average response of eighteen coupled model to conclude that 

anthropogenic forcings during this period account for only a small 

fraction of rainfall variations observed in the Sahel. In contrast, 

Biasutti and Giannini (2006), contrast Sahel rainfall between 

simulations with observed 20th century forcings (such as greenhouse 

gas and aerosol concentrations), nineteenth century (pre-industrial) 

conditions, and increasing greenhouse gases. They suggest that the 

observed late 20th century trend was externally forced, predominately 

by anthropogenic aerosols. This conclusion is based upon the average 

behavior of the models considered. It is supported in particular by 

the GFDL and GISS models. It is currently unclear how to resolve these 

contrasting conclusions, because they are based upon different methods 

and comparisons of models. Both studies agree that the Sahel drought 

is the result of ocean warming in the Gulf of Guinea, compared to the 

NH subtropical Atlantic. What remains unresolved is whether forcing by 

greenhouse gases and aerosols has changed the contrast in ocean 

temperature between these two regions. 

 

Rainfall over the Sahel and Amazon are anti-correlated: when the Gulf 

of Guinea warms, rainfall is generally reduced over the Sahel but 

increases over South America. Amazon rainfall also depends upon the 

eastern equatorial Pacific, and during an El Nino, rainfall is reduced 

in the Nordeste region of the Amazon. Li et al. (2006) compare the 

hydrological cycle of eleven CGCMs over the Amazon during the 
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late 20th and twenty-first centuries. Based upon a comparison to 

CMAP rainfall, the GISS modelE-R is among the best, with the GFDL 

CM2.1 and NCAR CCSM3 models similarly ranked. Despite this fidelity, 

the models make disparate predictions for the 21st century. 

In the GISS modelE-R, the equatorial Pacific warms more in the west, 

resembling a La Nina event. This, together with warming in the Gulf 

of Guinea, is associated with an increase in Amazon rainfall. While 

the NCAR CCSM3 predicts a comparable increase, the GFDL CM2.1 exhibits 

a decrease and lengthening of the Amazon dry season. 

 

The studies of Li et al. (2006) along with Ammamalai et al. (2007) note 

that future changes in the South American and Asian monsoons are 

intimately tied to the response of El Nino in the 21st  

century. Expected temperature changes in the eastern equatorial 

Pacific are discussed in ENSO  section. Here, we note that a consensus 

is yet to emerge, adding to uncertainty in monsoon projections. 

 

The ability of climate models to simulate NH summer rainfall over the 

US Great Plains and Mexico was summarized by Ruiz-Barradas and Nigam 

(2006). Among the American models, the GISS modelE-H matches the 

annual cycle of precipitation over the Great Plains and Mexico most 

closely. It is also one of two models to simulate interannual 

variations in precipitation that are significantly correlated with 

observed variability during the second half of the 20th century. 

The observed predominance of moisture import from the Gulf of Mexico 

compared to local evaporation is most closely reproduced by the NCAR 

PCM. Moisture import is excessive in the GISS modelE-H, whereas as 

evaporation contributes too large a fraction in the GFDL CM2.1. 

 

Initial evaluations of the monsoon simulated by the most recent 

generation of climate models have emphasized the seasonal time scale. 
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However, subseasonal variations, such as break periods when the 

monsoon rains are temporarily interrupted, are crucial to forecasts 

and the impact of the monsoon upon water supply.  Simulation of the 

diurnal cycle, and the local hour of rainfall, is also important to 

the partitioning of rainfall between runoff and transpiration, and 

these are important topics for future model evaluation.  Transports of 

moisture by regional circulations beneath the resolution of the model 

(such as low-level jets along the Rockies and Andes and tropical 

cyclones) contribute to the onshore transport of moisture.  In 

general, the models show success at simulating the gross seasonal 

features of the various monsoon circulations, but variations on 

smaller spatial and time scales that are important to specific 

watersheds and hydrological projections need to be evaluated. 

 

Tropical storms 

 

Tropical storms (hurricanes in the Atlantic and typhoons in the Pacific and Indian Oceans) are of 

too small a scale to be reliably simulated in the class of global climate models currently used for 

climate projections.  There is hope for qualitatively useful simulations of the climatology of 

incipient tropical depressions, however.  The work of Vitart and Anderson (2001) is an example of 

evidence for signficant information content concerning tropical storm-like vortices in simulations 

with models of this type, using the model’s ability to simulate the effects of El Nino on Atlantic 

storm frequency as a guide.   

 

The recent 20km resolution simulation with an atmospheric model over prescribed ocean 

temperatures by Oouchi et al (2006) is indicative of the kinds of modeling that will be brought to 

bear on this problem in the next few years.  Experience with tropical storm forecasting suggests that 

this resolution should be adequate for describing many aspects of the evolution of nature tropical 

storms, and possibly the generation of storms from incipient disturbances, but probably not tropical 

storm intensity.  
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An alternative very promising approach is described by Knutson et al (2007), in which a regional 

model of comparable resolution (18 km) is used in a downscaling framework to simulate the 

Atlantic hurricane season.  Given the observed year-to year variations in the large-scale structure of 

the atmosphere over the Atlantic ocean, the model is capable of simulating the year-to-year 

variations in hurricane frequency over a 30-year period with a correlation of 0.7-0.8 and also 

captures the observed trend towards greater hurricane frequency over this period in the Atlantic.  

These results suggest that models of this resolution may be able to provide a convincing 

downscaling capability for tropical storm frequency projections into the future, although these 

projections will still rely on the quality of the global model projections for changes in sea surface 

temperature, atmospheric stability, and vertical shear.  The behavior of the El Nino Southern 

Oscillation into the future will be a key element affecting changes in those aspects of the large-scale 

structure of the atmosphere over the Atlantic that control tropical storm formation and tracks.   

 

 

 

Polar climates 

 

 

Changes in polar snow and ice cover affect the Earth’s albedo and thus the amount of insolation 

heating the planet (e.g., Holland and Bitz 2003, Hall 2004, Dethloff  et al. 2006). Concern has also 

emerged about potential melting of glaciers and ice sheets in Greenland and Antarctica that could 

produce substantial sea-level rise (Arendt  et al. 2002, Braithwaite and Raper 2002, Alley  et al. 

2005).  Polar regions thus require accurate simulation for projecting future climate change and its 

impacts. 

 Polar regions present unique environments and, consequently, challenges for climate 

modeling. The obvious are processes involving frozen water. While not unique to polar regions, 

they are more pervasive there. These processes include seasonally frozen ground and permafrost 

(Lawrence and Slater 2005, Yamaguchi  et al. 2005) and seasonal snow cover (Slater  et al. 2001), 

which can have significant sub-grid heterogeneity (Liston 2004), and clear-sky precipitation, 

especially in the Antarctic (King and Turner 1997, Guo  et al. 2003). Polar radiation also has 

important characteristics that test the ability of models to handle extreme geophysical behavior, 
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such as longwave radiation in clear, cold environments (Hines  et al. 1999, Chiacchio  et al. 2002, 

Pavolonis  et al. 2004) and cloud microphysics in the relatively clean polar atmosphere (Curry  et 

al. 1996, Pinto  et al. 2001, Morrison and Pinto 2005). In addition, polar atmospheric boundary 

layers can be very stable (Duynkerke and de Roode 2001, Tjernström  et al. 2004, Mirocha  et al. 

2005), and stable boundary layers remain an important area for model improvement. 
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Confidence in climate model projections of future climate is greatly increased if it can be 

shown that climate models can accurately simulate the current climate state, and much effort has 

gone into this type of analysis (e.g. Collins et al. 2006, Delworth et al. 2006). In particular climate 

models should be able to reproduce both long-term and short-term variations in climate including 

daily, seasonal, interannual, and decadal variability. For polar regions, much of the assessment of 

simulated interannual variability has focused on the primary modes of polar interannual variability, 

the Northern and Southern Annular Modes.  Assessment of simulated annular modes appears in 

Section B. of this chapter. 

Less attention has been given to the ability of global climate system models to simulate 

shorter-duration climate and weather variability in polar regions. Uotila  et al. (2007) and Cassano  

et al. (2007) evaluated the ability of an ensemble of 15 global climate-system models to simulate 

the daily variability in sea level pressure in the Antarctic and Arctic. In both polar regions, it was 

found that the 15-model ensemble was not able to reproduce the daily synoptic climatology, with 

only a small subset of the models accurately simulating the frequency of the primary synoptic 

weather patterns identified in global reanalysis data sets. The U.S. models discussed in detail in 

Chapter 2 of this report spanned the same range of accuracy as non-U.S. models, with GFDL and 

NCAR GCM versions part of the small, accurate subset.  Vavrus  et al. (2006) assessed the ability 

of seven global climate models to simulate extreme cold-air outbreaks in the Northern Hemisphere, 

and found that the spatial pattern of the outbreaks was accurately reproduced in the models, 

although some details differed.  

 Attention has also been given to the ability of regional climate models to simulate polar 

climate. In particular, the Arctic Regional Climate Model Intercomparison Project (ARCMIP) 

(Curry and Lynch 2002) engaged a suite of Arctic regional atmospheric models to simulate a 

common domain and period over the western Arctic. Rinke  et al. (2006) evaluated the spatial and 

temporal patterns simulated by 8 ARCMIP models, and found that the model ensemble agreed well 

with global reanalyses, despite some large errors for individual models. Tjernstrom  et al. (2005) 
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evaluated near-surface properties simulated by 6 ARCMP models. In general surface pressure, air 

temperature, humidity, and wind speed were all well simulated, as were radiative fluxes and 

turbulent momentum flux. Tjernstrom  et al. (2005) found that turbulent heat flux was poorly 

simulated, and that over an entire annual cycle the accumulated turbulent heat flux simulated by the 

models was an order of magnitude larger than the observed turbulent heat flux (Fig. PA-1).  In both 

Tjernstrom et al. (2005) and Rinke et al. (2006), the U.S. models performed about the same as their 

European counterparts. 

 Although simulations of polar climate display agreement with observed behavior, as 

indicated above, there remains room for improvement. In global models, polar simulation may be 

affected by errors in simulating other regions of the planet, but much of the difference from 

observations and uncertainty about projected climate change stems from current limitations in polar 

simulation. These limitations include missing or incompletely represented processes and poor 

resolution of spatial distributions. 

 As with other regions, model resolution affects simulation of important processes. In the 

polar regions, surface distributions of snow depth vary markedly, especially when snow drifting 

occurs.  Improved snow models are needed to represent such spatial heterogeneity (e.g., Liston 

2004), which will continue to involve scales smaller than resolved for the foreseeable future. Frozen 

ground, whether seasonally frozen or occurring as permafrost, presents additional challenges. 

Models for permafrost and seasonal freezing and thawing of soil are being implemented in land 

surface models (see Chapter 2, Land Surface Models).  Modeling soil freeze and thaw continues to 

be a challenging problem as characteristics of energy and water flow through the soil affect 

temperature changes, and such fluxes are poorly understood (Yamaguchi  et al. 2005).  

 Frozen soil affects surface and subsurface hydrology, which influences the spatial 

distribution of surface water with attendant effects on other parts of the polar climate system such as 

carbon cycling (e.g., Gorham 1991, Aurela  et al. 2004), surface temperature (Krinner 2003), and 

atmospheric circulation (Gutowski  et al. 2007). The flow of fresh water into polar oceans 

potentially alters their circulation, too. Surface hydrology modeling typically includes limited, at 

best, representation of subsurface water reservoirs (aquifers) and horizontal flow of water at both 

the surface and below surface. These features limit the ability of climate models to represent 

changes in polar hydrology, especially in the Arctic. 

 135



Vegetation has been changing in the Arctic (Callaghan  et al. 2004) and projected warming, 

which may be largest in regions where snow and ice cover retreat, may produce further changes in 

vegetation (e.g., Lawrence and Slater 2005). Current models use static distributions of vegetation, 

but dynamic vegetation models will be needed to account for changes in land-atmosphere 

interactions influenced by vegetation. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 A key concern in climate simulations is how projected anthropogenic warming may alter ice 

sheets on land, whose melting could raise sea levels substantially. At present, climate models do not 

include ice-sheet dynamics and thus cannot account directly for how ice sheets might change, 

possibly changing heat absorption from the sun and atmospheric circulation in the vicinity of the ice 

sheets. 

 How well each of the processes above is represented in climate simulation depends in part 

on model resolution. Distributions of snow, ice sheets, surface water, frozen ground and vegetation 

have important spatial variation on scales smaller than the resolutions of typical contemporary 

climate models. Finer resolution is thus needed. Part of this need may be satisfied by regional 

models simulating just a polar region. Because both the northern and southern polar regions are 

within circumpolar atmospheric circulations, their synoptic coupling with other regions is more 

limited than is the case with midlatitude regions, where the westerlies rapidly move synoptic 

systems in and out of a region (e.g., Wei  et al. 2002), which could allow polar-specific models that 

focus on ant/arctic processes, in part to improve modeling of surface-atmosphere exchange 

processes (Fig. V L ). While each of the above processes have been simulated in finer scale, stand-

alone models, their interactions as part of a climate system also need to be simulated and 

understood.  
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Fig. V L. Cumulative fluxes of surface sensible heat (top panel) and latent heat (bottom) at the 

SHEBA site from six models simulating a western Arctic domain for Sept. 1997 – Sept. 1998 for 

ARCMIP. SHEBA observations are the gray vertical bars; model identifications are given by the 

key in the upper panel. Adapted from Tjernstrom  et al. (2005). 
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Sea ice plays a critical role in the exchange of heat, mass, and momentum between the ocean and 

atmosphere and any errors in the sea-ice system will contribute to errors in the other components. 

Two recent papers [Holland and Raphael 2006 and Parkinson et al. 2006] quantify how the 

current models simulate the sea-ice process of the climate system.  Very limited observations make 

any evaluation of sea ice difficult.  The primary observation available is sea ice concentration. In 

some comparisons, sea ice extent (ice concentration greater than 15%), is used.  Satellites have 

made it possible for a more complete data set of observations for the past few decades. Prior to 

satellite measurements becoming available, observations of ice extent were fewer. Other quantities 

that might be evaluated include ice thickness. Such comparisons are difficult because of the limited 

number of observations and will not be discussed. 
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Ice Concentration and extent: Both of these studies indicate that the seasonal pattern in ice growth 

and decay in the polar regions for all the models is reasonable [Holland and Raphael 2006] (Figure 

V M). However, there is a large amount of variability between the models in their representation of 

the sea ice extent in both the northern and southern hemispheres. Generally, the models do better in 

simulating the Arctic region than in their simulation of the Antarctic region as shown with Figure V 

N].  An example of the complex nature of reproducing the ice field is given in Parkinson et al. 

[2006]. They found that all the models showed an ice-free region in winter to the west of Norway, 

as seen in observational data, but all the models also produced too much ice north of Norway. They 

suggest that this is because the North Atlantic Current is not being simulated correctly. In a 

qualitative comparison, Hudson Bay is ice covered in winter in all the models correctly reproducing 

the observations. The set of models are not consistent in their "fidelity" between the Northern and 

Southern regions and maybe due, partly, to how the parameters are defined in the sea ice models.  

 

Holland and Raphael [2006] examined the variability in the Southern Ocean sea ice extent 

extensively. As an indicator of the ice response to large scale atmospheric events, they compared a 

set of IPCC AR4 climate models sea ice response to the atmospheric index, the Southern Annular 

Mode (SAM) for the April-June (AMJ) period (Table V 4). The models show that the ice variability 

does respond modestly to the large scale atmosphere forcing but less than limited observations 

show. Two of the models also exhibit the out-of-phase buildup of ice between the Atlantic and 

Pacific sectors (the Antarctic Dipole) to some degree.  
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Table V 4  

 

MODIFIED FROM Table 1 Holland and Raphael [2006] Correlations of the leading mode of sea 

ice variability and the southern annular mode (SAM) for the observations and model simulations 

 AMJ SAM and high-pass 

filtered fields 

AMJ SAM and detrended 

fields 

Observations  0.47  0.47 

CCSM3  0.40  0.44 

GFDL-CM2.1  0.39  0.19 

GISS-ER  0.30  0.20 

Bold values are significant at the 95% level accounting for the autocorrelation of the timeseries 
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Figure V M 

 

 3 
4 
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From Holland and Raphael 2006. Fig. 1 The annual cycle of southern hemisphere ice extent 

defined to be the area of ice with concentrations greater than 15% 
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1 Figure V N 
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From Parkinson  et al. 2006: Figure 4. Difference between the modeled 1979–2004 monthly 

average sea ice extents and the satellite-based observations (modeled minus observed), for each of 

11 major GCMs, for both the (a) Northern Hemisphere and (b) Southern Hemisphere. 
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Modes of variability 

 

The Madden-Julian Oscillation: (MJO) is a characteristic pattern in the tropical atmosphere. It has 

taken on special prominence in research on simulating the tropical atmosphere. This phenomenon 

consists of large-scale eastward propagating patterns in humidity, temperature, and atmospheric 

circulation which strengthen and weaken tropical rainfall as they propagate around the Earth in 

roughly 30-60 days. This pattern often dominates intraseasonal (within season) variability of 

tropical precipitation on time scales longer than a few days, creating such phenomena as 1-2 week 

breaks in Asian monsoonal rainfall and weeks with enhanced hurricane activity in the Eastern North 

Pacific and the Gulf of Mexico. Inadequate prediction of the evolution of these propagating 

structures is considered one the main impediments to more useful extended-range weather forecasts 

in the tropics, and improved simulation of this phenomenon is considered by some a litmus test for 

the credibility of climate models in the tropics 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

 

Recent surveys of model performance indicate that simulations of the MJO remain inadequate. For 

example, Lin  et al (2006), in a study of many of the models in the CMIP-3 models, conclude that 

“… current GCMs still have significant problems and display a wide range of skill in simulating the 

tropical intraseasonal variability”, while Zhang  et al. (2005) in another multi-model comparison 

study, state that “… commendable progress has been made in MJO simulations in the past decade, 

but the models still suffer from severe deficiencies …” Nearly all models do capture the essential 

feature of the pattern, with large-scale eastward propagation and with roughly the correct vertical 

structure.  But the propagation is often too rapid and the amplitudes too weak. As an example of 

recent work, Klein (2007?) studies whether two of the US IPCC models can maintain a pre-existing 

strong MJO pattern when initialized with observations (from the TOGA-COARE field experiment), 

with limited success. Controlled experiments have suggested that for models to simulate MJO, the 

instability of the atmospehre must be allowed to accumulate  to a certain amount before convective 

storms  are triggered, and sufficient mesoscale statiform heating from convective systems should 

exist in the upper troposphere (Wang and Schlesinger 1999). These processes are however poorly 

understood in current climate models. 
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The difficulty in simulation of the MJO is related to the multi-scale nature of the phenomenon: the 

propagating pattern is itself of large enough scale that it should be resolvable by climate models, but 

the convection and rainfall modulated by this pattern, and feeding back and energizing it, occur on 

much smaller, unresolved, scales. In addition to this dependence on the parameterization of tropical 

convection, a long list of other effects has been shown by models and/or observational studies to be 

important for the MJO. These include the pattern of evaporation generated as the MJO propagates 

through convecting regions, feedback from cloud-radiative interactions, intraseasonal ocean 

temperature changes, the diurnal cycle of convection over the ocean, as well as the vertical structure 

of the latent heating, including especially the proportion of shallow cumulus congestus clouds and 

deep convective cores in the different phases of the oscillation (Lin  et al. 2004).  

 

 

A picture seems to be emerging that the difficulty in simulation may not be due to a single model 

deficiency but a result of the complexity of the phenomenon, given this long list of factors thought 

to be significant. In several of the multi-model studies, such as Lin  et al (2006) a few of the models 

do perform well, but without a clearer understanding of how these factors combine to generate the 

observed characteristics of the MJO, it is difficult to maintain a good simulation as the model is 

modified for other reasons, and it is difficult to transfer one model’s successful simulation to other 

models. It also remains unclear whether the models with superior MJO simulations should be given 

extra weight in multi-model studies of climate change in the tropics.  

 

 

The El Nino – Southern Oscillation (ENSO) El Nino was named originally in the 19th century by 

Peruvian sailors to note the early arrival of a warm current from equatorial latitudes (Philander 

1990). Every few years, a springtime northerly current arrives prematurely around Christmas (Yu 

and McPhaden 1999), bringing heavy rains to coastal Peru and a temporary decline in the anchovy 

harvest. By the mid 20th century, scientists recognized that this local anomaly was in fact part of a 

disruption to the atmospheric circulation across the entire Pacific basin. During El Niño, 

atmospheric mass migrates west of the dateline as part of the Southern Oscillation, reducing surface 

pressure and drawing rainfall into the central and eastern Pacific (Rasmussen and Wallace 1983). 
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Together, El Niño and the Southern Oscillation, often abbreviated in combination as ENSO, are the 

largest source of tropical variability observed during recent decades. 

 

Changes along the equatorial Pacific have been linked to global disruptions of climate (Ropelewski 

and Halpert 1987). During an El Niño event, the Asian monsoon is typically weakened, along with 

rainfall over eastern Africa, while precipitation increases over the American southwest. El Niño 

raises the surface temperature as far poleward as Canada, while changes in the North Pacific Ocean 

are linked to decadal variations in ENSO (Trenberth and Hurrell 1994). In many regions far from 

the eastern equatorial Pacific, accurate projections of climate change in the twenty-first century 

depend upon the accurate projection of changes to El Niño. Moreover, the demonstration that 

ENSO alters climate across the globe indicates that even changes to the time-averaged equatorial 

Pacific during the 21st century will influence climate far beyond the tropical ocean. For example, a 

long-term warming of the eastern equatorial Pacific relative to the surrounding ocean will favor a 

weaker Asian monsoon, even in the absence of changes to the size and frequency of El Niño events. 

 

Incident sunlight is largest on the equator, but in the eastern Pacific, the ocean is colder than at 

neighboring latitudes. Because of the Earth's rotation, easterly winds along the equator cool the 

surface by raising cold water from below, which offsets heating by the absorption of sunlight (e.g. 

Clement  et al 1996). In contrast, warm water extends deeper to the west so upwelling has little 

effect upon the surface temperature of the West Pacific, where the warmer ocean is consistent with 

the strong, equatorial solar heating. The westward increase of temperature along the equator is 

associated with a decrease in atmospheric pressure, reinforcing the easterly Trade winds. 

 

Theoretical arguments offer conflicting projections of tropical Pacific climate during the twenty-

first century.  One projection is for the equatorial temperature contrast to increase, so that the 

average state more closely resembles La Niña, marked by unusually cold ocean temperatures and 

enhanced upwelling in the East Pacific, the opposite to El Niño (Clement et al 1996; Cane  et al 

1997). According to this argument, an increase in net radiation into the ocean resulting from an 

increase in greenhouse gas concentration is partially offset by the upwelling of cold water. This 

compensation is stronger in the east than in the west, where the surface layer of warm water extends 

to greater depth. There is evidence for an observed trend toward a La Niña state (Cane  et al 1997), 
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but the trend remains ambiguous because of the large decadal variations in the ENSO cycle. 

Another theory is based upon the origin of upwelling water along the equator within descending 

surface water in higher latitudes. Liu  et al (1998) suggest that as these higher latitudes warm, the 

temperature of the upwelling water will increase, reducing its ability to offset radiative warming at 

the surface. A third theory suggests that as the tropical atmosphere becomes more stable in response 

to surface warming, the tropical circulation will weaken (Knutsen and Manabe 1998; see also Meehl 

and Washington 1996).  This will draw less cold water to the surface, preferentially warming the 

East Pacific.  Until recently, many coupled ocean-atmosphere models projected larger warming of 

the East Pacific and a drift of mean conditions toward an ENSO state.  

 

Below, we summarize the most recent model comparisons, emphasizing those studies carried out as 

part of the IPCC AR4. Our conclusions are based upon model behavior from a worldwide collection 

of coupled ocean-atmosphere models, although we illustrate many of the scientific issues using 

models from American laboratories.  The coupled models are designed for prediction of global 

climate over decades and centuries and are not tuned to optimize their simulation of ENSO per se, 

unlike many of the more simple dynamical and statistical models currently used for operational 

forecasts of ENSO over a period of several months. Nonetheless, we find that the global models as a 

group exhibit realistic simulations of present-day seasonal variations and ENSO variability, and 

represent a marked improvement compared to previous generations of coupled models.  However, 

among the most realistic models, there is little consensus on the anticipated change to either the 

mean state of the tropical Pacific (particularly the east-west difference in ocean temperature along 

the equator) or the amplitude and frequency of ENSO variability.  This introduces uncertainty in the 

projected climate response within regions throughout the globe influenced by El Niño. 

 

In general, coupled models developed for the CMIP3 are far more realistic than those of a decade 

ago, when ENSO variability was comparatively weak, and some models lapsed into permanent El 

Niño states (Neelin et al., 1992).  Even compared to the models assessed more recently by ENSIP 

and CMIP2 (Latif et al., 2001; AchutaRao and Sperber 2002), ENSO variability of ocean surface 

temperature is more realistic, although sea level pressure and precipitation anomalies show little 

recent improvement (AchutaRao and Sperber 2006). Part of this progress is the result of increased 

resolution of the equatorial ocean circulation that has accompanied inevitable increases in 
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computing speed. Table V 5  shows the horizontal and vertical resolution of the seven American 

coupled models whose output was submitted to AR4. 

 

Table V 5 

 

 Spacing of grid points at the equator in the American coupled models developed for AR4.  Except 

for the GISS models, spacing of grid points generally increases away from the equator outside of 

the domain of ENSO, so that resolution is highest on the equator. 

 

Model:         Longitude    Latitude    Vertical Levels 

 

GFDL CM2.0       1        1/3       50  

GFDL CM2.1       1        1/3       50 

GISS AOM        5        4        13  

GISS modelE-H      2        2        16  

GISS modelE-R      5        4        13  

NCAR CCSM3       1.125  0.27      27  

NCAR PCM        0.94      0.5       32 

 

........................................................................ 

 

Along the equator, oceanic waves that adjust the equatorial temperature and currents to changes in 

the wind are tightly confined to within a few degrees of latitude. To simulate this adjustment, the 

ocean state is calculated at points as closely spaced as 0.27 degrees of latitude in the NCAR 

CCSM3. NCAR PCM has half degree resolution, while both GFDL models have equatorial 

resolution of one-third of a degree. This degree of detail is a substantial improvement compared to 

previous generations of models. In contrast, the GISS AOM and modelE-R calculate equatorial 

temperatures at grid points separated by four degrees of latitude. This is broad compared to the 

latitudinal extent of cold temperatures observed within the eastern Pacific (the `cold tongue' region), 

which are the result of a narrow band of cold water rising to the surface along the equator. In the 

coarse resolution models, changes to the upward flow are spread over the dimensions of the grid 
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box, which is broader than the observed upwelling.  The cooling effect of this rising water is spread 

over a larger area, so that the amplitude of the resulting temperature fluctuation at the surface is 

weakened. In fact, both the GISS AOM and modelE-R models have unrealistic ENSO variations 

that are much smaller than observed (Hansen et al 2007). This minimizes the influence of their 

simulated El Nino and La Nina events on climate outside the equatorial Pacific, and we will not 

discuss these two models further in this section. 

 

In comparison to previous generations of global models, where ENSO variability was typically 

weak, the AR4 coupled models generally simulate El Nino near the observed amplitude, or even 

above (Neelin  et al 1992; AchutaRao and Sperber 2006).  The latter study compared sea surface 

temperature (SST) variability within the tropical Pacific calculated under pre-industrial conditions. 

Despite its comparatively low two-degree latitudinal grid spacing, the GISS modelE-H among the 

American models most closely matches observed SST variability since the mid-19th century, 

according to the HadISST v1.1 data set (Rayner  et al 2003). The NCAR PCM also exhibits El Niño 

warming close to the observed magnitude. This comparison is based upon spatial averages within 

three longitudinal bands, and GISS modelE-H along with the NCAR models exhibit their largest 

variability in the eastern band as observed. However, GISS modelE-H underestimates variability 

since 1950, when the NCAR CCSM3 is closest to observations (Joseph and Nigam 2006). While the 

fidelity of each model's ENSO variability depends upon the specific data set and period of 

comparison (c.f. Capotondi et al., 2006; Merryfield 2006, van Oldenborgh et al., 2005), the general 

consensus is that the GISS modelE-H, both NCAR models, and GFDL CM2.0 have roughly the 

correct amplitude, while variability is too large by roughly one-third in the GFDL CM2.1. While 

most models (including GISS modelE-H and both NCAR models, but excluding the GFDL models) 

exhibit the largest variability in the eastern band of longitude, none of the AR4 models match the 

observed variability at the South American coast, where El Nino was originally identified 

(AchutaRao and Sperber 2006; Capotondi et al., 2006). This is possibly because the longitudinal 

spacing of the model grids is too large to resolve coastal upwelling, and its interruption during El 

Niño (Philander and Pacanowski 1981). Biases in the atmospheric model, including underestimate 

of the persistent stratus cloud decks along the coast, may also contribute (Mechoso et al., 1995). 

 

El Niño occurs every few years, albeit irregularly. The spectrum of anomalous ocean temperature 
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shows a broad peak between two and seven years, and there are multi-decadal variations in event 

frequency and amplitude. Almost all of the AR4 models have spectral peaks within this range of 

time scales. Interannual power is broadly distributed within the American models, as observed, with 

the exception of the NCAR CCSM3 which exhibits strong biennial oscillations. 

 

While the models generally simulate the observed magnitude and frequency of events, reproduction 

of their seasonality is more elusive. Anomalous warming typically peaks late in the calendar year, 

as originally noted by South American fisherman. Among American models, this seasonal 

dependence is simulated only by the NCAR CCSM3 (Joseph and Nigam 2006). Warming in the 

GFDL CM2.1 and GISS modelE-H are nearly uniform throughout the year, while warming in the 

NCAR PCM is largest in December but exhibits a secondary peak in early summer. The mean 

seasonal cycle along the equatorial Pacific also remains a challenge for the models. Each year, the 

east Pacific cold tongue is observed to warm during NH spring and cool again late in the calendar 

year. The GFDL CM2.1 and NCAR PCM1 have the weakest seasonal cycle among the American 

models, while GISS modelE-H, GFDL 2.0 and NCAR CCSM3 are closest to the observed 

amplitude (Guilyardi 2006). Among the worldwide suite of AR4 models, the amplitude of the 

seasonal cycle of equatorial ocean temperature generally varies inversely with the strength of the 

ENSO cycle. 

 

Anticipation of twenty-first changes to El Nino remains uncertain, because of a lack of consensus 

among the models. Among fifteen models forcecd by increasing carbon dioxide, three exhibit 

statistically significant increases in amplitude, while five exhibit a decrease, compared to their 

variability under pre-industrial conditions (Merryfield, 2006). Even when only the most realistic 

models are surveyed (including the GFDL CM2.1), identified according to a detailed examination 

of their mechanisms of variability (described below), no consensus emerges. No significant change 

in event period is found either (Guilyardi 2006).  These trends are inferred based upon the response 

to a doubling or quadrupling of carbon dioxide, compared to a pre-industrial climate. This forcing is 

strong compared to forcing over the 20th century in which one might hope to infer trends in El Nino 

from the observational record. The occurrence of the two largest El Nino events late in the 20th 

century has been attributed to increasing greenhouse gas concentrations (Trenberth and Hoar 1997; 

Knutsen and Manabe 1998), although this remains unsettled because of large variations in the 
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tropical Pacific within the multi-decadal instrument record (Rajagopalan et al., 1997). 

 

 Changes in the climate of the tropical Pacific (as opposed to trends in El Nino variability) are also 

inconsistent (van Oldenborgh  et al 2006).   Of particular interest is the relative warming along the 

equator, because this is related to the strength of the tropical circulation, which creates regional 

changes throughout the globe.  The ostensible consensus among the most recent generation of 

models (including both American and international modeling centers) is that the eastern Pacific will 

warm by about a half degree Celsius more compared to the west (see Figure 10.16 of  Meehl et al. 

2007).   
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This is small compared to the currently observed difference of a few degress.  When only the most 

realistic models are surveyed (including the two GFDL models), the warming is nearly uniform 

across the Pacific (van Oldenborgh et al. 2005).  This behavior is consistent with a previous 

generation of global models, surveyed as part of CMIP2 (Collins et al. 2005).  When the model 

predictions were weighted by the realism of each model, the multi-model average warming was 

nearly uniform, with only a small probability of greater warming in the east.  In summary, warming 

along the equatorial Pacific is expected to be uniform or slightly larger to the east, but this contrast 

is on the order of differences among the models.  This translates into an uncertainty in the climate in 

regions outside the tropical Pacific affected by ENSO. 

 

The lack of consensus among model projections for the 21st century may result from the 

combination of physical mechanisms contributing to observed variability, and the difficulty of 

simulating them individually along with their relative importance. There is evidence that the 

importance of certain mechanisms changed in the middle of the 1970's (Wang 1995), so it is unclear 

what the correct emphasis should be. In addition, positive feedbacks, inferred from the observations, 

may exacerbate unrealistic features in the models, contributing further to model error. 

 

Several studies have assessed the mechanisms contributing to variability among the AR4 models. 

Confidence in the models' projection of climate within the tropical Pacific during the twenty-first 

century depends upon accurate simulation of mechanisms of variability observed at present. El Niño 

occurs when the upwelling of cold water to the surface is interrupted within the equatorial eastern 

Pacific and South American coast. This can occur because the rate of upwelling decreases, or 
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alternatively because the temperature of the upwelling water increases. This subsurface temperature 

is related to the depth of the thermocline, within which the water temperature falls off sharply with 

depth. During El Niño, the thermocline deepens, so that upwelling water originating in the cold 

water below now begins its rise within the relatively warm layer above (Wyrtki 1975). In addition, 

the slowing of the easterly Trade winds reduces the rate of upwelling (Bjerknes 1969), which at the 

surface reduces the export of water from the cold tongue toward the West Pacific. Within the 

weaker surface current, water has more time to be warmed by the sun and overlying atmosphere. El 

Niño is a coupled phenomenon because the winds that change the upwelling of cold water to the 

surface depend upon the ocean temperature itself. Because the easterlies are driven partly by the 

temperature contrast between the cold east Pacific and the warmer ocean west of the dateline, 

warming in the east reinforces the slackening of the easterly Trade winds. 

 

The coupling between ocean temperature and equatorial winds is typically inferred by regressing 

wind stress upon temperature averaged within the ENSO domain. The observed wind anomaly is 

westerly and strongest slightly to the west of a warm ocean anomaly, as expected based upon simple 

theoretical models (Gill 1980; Lindzen and Nigam 1987, Yu and Neelin 1997). The model wind 

anomalies are typically displaced farther west than observed, and are excessively confined to the 

equator (Capotondi et al., 1987). The NCAR PCM regression is roughly half the observed strength, 

while among the American models, the NCAR CCSM3 and GFDL CM2.1 come closest to 

observations (Van Oldenborgh et al., 2005). The GISS modelE-H exhibits reasonable coupling in 

the Central Pacific, but almost no coupling toward South America. 

 

The converse response of SST to wind anomalies is diagnosed by evaluating various terms in the 

equation for the evolution of ocean temperature (van Oldenborgh 2005; Capotondi et al., 2006). 

Changes in the temperature of upwelling water are observed to be important in the eastern Pacific 

(Capotondi et al., 2006). This feedback is reproduced by the GFDL CM2.0 and NCAR CCSM3 

models, although with somewhat low amplitude, possibly because the climatological upwelling is 

weak. (The model output necessary for this diagnosis was not available for the GFDL CM2.1, 

NCAR PCM, and GISS modelE-H.) While a decrease in the rate of upwelling is crucial to observed 

warming in the Central Pacific, this feedback is weak in the GFDL CM2.0, and absent in the NCAR 

CCSM3. The ocean feedback to wind anomalies is also diagnosed by regressing the evolution of 
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ocean temperature upon various mechanisms represented within the ocean heat budget (van 

Oldenborgh et al.,2005). The NCAR PCM has very strong feedbacks of upwelling rate and 

temperature in response to wind anomalies, which compensate for its weak wind response to 

anomalous SST. The GFDL CM2.1 generally reproduces the observed regression relations. In 

contrast, van Oldenborgh et al. (2005) note that regression analysis of GISS modelE-H is noisy and 

difficult to interpret. It is not clear at this point how GISS modelE-H compensates for its weak wind 

response to ocean temperature anomalies in order to create ENSO temperature variability near the 

observed magnitude and location. This lack of transparency calls its projection of future changes 

into question. 

 

In general, GFDL2.1 is consistently ranked among American models as the most realistic 

simulation of El Nino (van Oldenborgh et al., 2005; Guilyardi 2006; Merryfield 2006). This is 

based not only on its surface temperature variability (which in fact is slightly too high), but on its 

faithful simulation of the observed relationship between ocean temperature and surface wind, along 

with the wind-driven ocean response. While SST in many models is consistently dominated either 

by anomalies of upwelling strength or else temperature, these processes alternate in importance over 

several decades within the GFDL CM2.1 as observed (Guilyardi 2006).  Since the 1970's, the 

upwelling temperature has been the predominant feedback (Wang 1995). 

 

While GFDL CM2.1 predicts a reduced ENSO amplitude in response to increased greenhouse 

forcing, there is no consensus even among the most highly regarded models. Philip and Van 

Oldenborgh (2006) find that while both upwelling feedbacks amplify as the greenhouse gas 

concentration increases, damping processes (due to cloud radiation, for example) also become more 

effective. A robust prediction of future El Niño amplitudes requires both the upwelling feedback 

and damping along with their relative amplitude to be simulated consistently, which remains a 

challenge. 

 

El Niño events are related to climate anomalies throughout the globe. Models with more realistic 

ENSO variability generally exhibit an anti-correlation with the strength of the Asian summer 

monsoon (e.g. Annamalai et al., 2006), while 21st century changes to Amazon rainfall have been 

shown to depend upon projected trends in the tropical Pacific (Li et al., 2006). El Niño has a long-
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established relation to North American climate (Horel and Wallace 1981), assessed in the AR4 

models by Joseph and Nigam (2006). This relation is strongest during NH winter, when the tropical 

anomalies are largest. Anomalous circulations driven by rainfall over the warming equatorial 

Central Pacific radiate atmospheric disturbances into mid-latitudes that are amplified within the 

North Pacific storm track (Sardeshmukh and Hoskins 1988; Held et al., 1989; Trenberth et al., 

1998). To simulate the influence of ENSO upon North America, the models must simulate realistic 

rainfall anomalies and in the correct season in order that the connection is amplified by the 

wintertime storm tracks. The connection between equatorial Pacific and North American climate is 

simulated most accurately by the NCAR PCM model (Joseph and Nigam 2006). In the GFDL 

CM2.1, North American anomalies are too large, consistent with the model's excessive El Niño 

variability within the equatorial Pacific. The connection between the two regions is realistic if the 

model's tropical amplitude is accounted for. In the GISS model, anomalous rainfall during ENSO is 

small, consistent with the weak tropical wind stress anomaly cited above. The influence of El Nino 

over North America is nearly negligible in this model. The weak rainfall anomaly is presumably a 

result of unrealistic coupling between the atmospheric and ocean physics. When SST is instead 

prescribed in this model, rainfall calculated by the GISS modelE AGCM over the American 

southwest is significantly correlated with El Niño as observed. 

 

 Realistic simulation of El Niño, and its global influence, remains a challenge for coupled models, 

because of the myriad processes contributing and their changing importance in the observational 

record. Key aspects of the coupling between the ocean and atmosphere, the relation between SST 

and wind stress anomalies, for example, are the result of complicated interactions between the 

resolved model circulations, along with parameterizations of the ocean and atmospheric boundary 

layers and moist convection. Simple models identify parameters controlling the magnitude and 

frequency of El Niño, such as the wind anomaly resulting from a change in SST (e.g., Zebiak and 

Cane 1987; Fedorov and Philander 2000), offering guidance to improve the realism of fully coupled 

GCM's. However, in a GCM, the coupling strength is emergent rather than prescribed, and it is 

often unclear a priori how to change the coupling. Nonetheless, the improved simulations of the 

ENSO cycle compared to previous generations (AchutaRao and Sperber 2006) suggest that 

additional realism can be expected in the future. This optimism arises in part from the extensive and 
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unprecedented model comparisons carried out as part of the AR4, where the flaws identified in 

current models may point toward future solutions. 

 

Multi-decadal variability 

 

The Earth's climate varies naturally on multi-decadal scales due to the internal dynamics of the 

system.   These changes are apparent from accurate measurements taken over decades to centuries.  

From the 1950s onward, an unprecedented volume of observations has been collected that 

contributes to the understanding of the changes to our climate.  The satellite era, beginning in the 

late 1960's has further expanded the available data and contributed greatly to the set of 

measurements that are used in this area of research.  Further, retrospective research efforts are able 

to deduce earlier changes to the climate through the analyses of climate indicators such as tree rings 

and ice cores.   

 

To understand the long period changes in the Earth's climate system, scientists primarily use a set of 

indices that reduce a large amount of data to a small set of time series.  For example, in the tropical 

Pacific, an index referred to as "Nino 3" is the average sea surface temperature (SST) between 5°N-

5°S and150°W-90°W, and indicates variations associated with El Nino and the climate of the 

tropical Pacific.   Other indices, such as the North American Oscillation Index, use sea surface 

pressure differences at two locations, one in Iceland and one near the Azores (Jones et al. 1997, 

Hurrell 1995) to examine large-scale shifts in atmospheric pressure systems.  Long period 

measurements of precipitation, such as over the Sahel (20°N-10°N, 20°W-10°E) (Janowiak 1988) 

also are used understand decadal variability.   These analyses can be used to assess the realism of 

internal or natural variability of the climate models.  In addition to whether actual events have been 

modeled correctly, the climate models are evaluated also in terms of whether the statistical 

properties of the observed variability are well represented.  Previous sections have described some 

of the low frequency behavior of the climate models (e.g. ENSO, annular modes, polar climates, ice 

models). 

 

All the models have their own unique intrinsic or natural variability due to the various model design 

decisions that have been made.   The models also tend to differ regionally in their simulation skill.  
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For example, some are better at simulating the North Atlantic, while others have more skill in the 

tropics.  Often, this regional skill is serendipitous and emerges unexpectedly from attempts to 

improve simulation of processes that operate globally.  A set of examples are given to provide an 

overview of the general abilities of the current climate models to reproduce decadal and longer 

variability.  

 

In the Arctic, during the last century, there have been two long period warm events, one between 

1920 and 1950 and another beginning after 1979.  Wang et al. (2007) evaluated a set of IPCC 

Fourth Assessment models as to the models' ability are to reproduce the amplitudes of air 

temperature variability of the mid-century.   The CCSM3 and GFDL-CM2 models contain similar 

variance with the observational variance in the Arctic region.  Other models under-represented the 

natural variability.   

 

Multi-decadal variability in the North Atlantic is characterized by the Atlantic Multidecadal 

Oscillation (AMO) index which represents a spatial average of SST (Enfield et al. 2001). Kravtsov 

and Spannagle (2007) analyzed SST from a set of current generation climate models. Their analysis 

attempts to separate the variability that is associated with internal fluctuations of the ocean from that 

associated with changes in the atmospheric component due to anthropogenic contributions.  By 

isolating the multi-decadal period of several regions in the ensemble SST series through statistical 

methods, they found that models, on average, correlate well with the AMO (Figure 7, 8 from 

Kravtsov and Spannagle, 2007).  

 

In the mid-latitude Pacific region, the decadal variability is generally under-represented in the ocean 

(e.g. volume transports as described by Zhang and McPhaden, 2006, Figure 3), with some of the 

models approaching the amplitudes seen in the observations.   Examination of complicated 

feedbacks between the atmosphere and ocean at the decadal and longer scales show that the while 

the climate models generally reproduce the pattern in SST related to the Pacific Decadal Oscillation 

(PDO), observed correlations between the PDO and tropical SST are not seen in the models (e.g. 

Alexander et al. 2006).   
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One of the most difficult areas to simulate is the Indian Ocean, because of competing effects of 

warm water inflow through the Indonesian archipelago, ENSO, monsoons, etc).  The processes 

interact to varying degrees, challenging a model's ability to simulate all aspects of the system with 

the observed relative emphasis.  An index used to understand the Indian Ocean's variability is the 

Indian Ocean Dipole pattern that combines information about the SST and wind stress fields of the 

Indian Ocean (Saji et al., 1999).  While most of the models evaluated by Saji et al. (2006) were able 

to simulate the Indian's Ocean response to local atmospheric forcing on short time periods (semi-

annual), the longer period events such as the ocean's response to ENSO changes in the Pacific, were 

not simulated well. 

 

 

 Extreme events 

 

Flood-producing precipitation, drought, heat waves, and cold waves have severe impacts on North 

America. Flooding resulted in average annual losses of $3.7 billion during 1983-2003 

(http://www.flooddamagedata.org/). Losses from the 1988 drought were estimated at $40 billion 

and the 2002 drought at $11 billion. The heat waves in 1995 resulted in 739 excess deaths in 

Chicago alone (Whitman et al., 1997). It is probable that a large component of the overall impacts 

of climate change will arise from changes in the intensity and frequency of extreme events. 

  

The modeling of extreme events poses special challenges since they are, by definition, rare in 

nature. Although the intensity and frequency of occurrence of extreme events are modulated by the 

state of the ocean and land surface and by trends in the mean climate state, internal variability of the 

atmosphere plays a very large role and the most extreme events arise from the chance confluence of 

unlikely conditions. Their very rarity makes statistical evaluation of model performance less robust 

than for the mean climate. For example, if one wanted to evaluate the ability of a model to simulate 

heat waves as intense as the 1995 event in Chicago, there are only a few episodes in the entire 20th 

century that approach or exceed that intensity (Kunkel et al., 1996). For such rare events, there is 

substantial uncertainty in the real risk, varying from once every 30 years to once every 100 years or 

more. Thus, a model that simulates such events at a frequency of once every 30 years may be 
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performing adequately, but it cannot be distinguished in its performance from a model simulating 

such an event at a frequency of once every 100 years. 

  

Although one might expect that a change in mean climate conditions will apply equally to changes 

in the extremes, this is not necessarily the case. Using as an example the 50 state record low 

temperatures, the decade with the largest number of records is the 1930’s, yet winters during this 

decade averaged as the third warmest since 1890; in fact, there is no significant correlation between 

the number of records and U.S. wintertime temperature (Vavrus et al., 2006). Thus, the severest 

cold air outbreaks in the past have not necessarily been coincident with cold winters. Another 

examination of model data showed that the future changes in extreme temperatures differed from 

changes in the mean temperature in many regions (Hegerl et al., 2004). This means that climate 

model output must be analyzed explicitly for extremes by examining daily (or even finer) resolution 

data, a resource-intensive effort. 

  

The evaluation of model performance with respect to extremes is hampered by incomplete data on 

the historical frequency and severity of extremes. A study by Frich et al., (2002) described a set of 

indices suitable for performing global analyses of extremes and presented global results. However, 

many areas were missing due to lack of suitable station data, particularly in the tropics. It has 

become common to use some of these indices for comparisons between models and observations. 

Another challenge for model evaluation is the spatially-averaged nature of model data, representing 

an entire grid cell, while station data represent point observations. For some comparisons, it is 

necessary to average the station data over areas representing a grid cell. 

  

There are several approaches toward the evaluation of model performance of simulation of 

extremes. One approach examines whether a model reproduces the magnitude of extremes. For 

example, a daily rainfall amount of 100 mm or more is expected to occur about once every year in 

Miami, once every 6 years in New York City, once every 13 years in Chicago, and once every 200 

years in Phoenix. To what extent is a model able to reproduce the absolute magnitudes and spatial 

variations of such extremes? A second approach examines whether a model reproduces observed 

trends in extremes. Perhaps the most prominent observed trend in the U.S. is an increase in the 
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frequency and intensity of heavy precipitation, particularly during the last 20–30 years of the 20th 

century. Another notable observed trend is an increase in the length of the frost-free season. 
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In some key respects, it is likely that the model simulation of temperature extremes is less 

challenging than of precipitation extremes, in large part due to the scales of these phenomena. The 

typical heat wave or cold wave covers a relatively large region, of the order of several hundred 

miles or more, or a number of grid cells in a modern climate model. By contrast, heavy precipitation 

can be much more localized, often extending over regions of much less than 150 km, or less than 

the size of a grid cell. Thus, the modern climate model can directly simulate the major processes 

causing temperature extremes while heavy precipitation is sensitive to the parameterization of 

subgrid scale processes, particularly convection (Chapter 2; Emori et al., 2005; Iorio et al., 2004). 

  

Droughts, particularly over North America and Africa  

 

Recent analysis indicates that there has been a globally-averaged trend toward greater areal 

coverage of drought since 1972 (Dai et al., 2004). A simulation by the HadCM3 model 

reproduces this dry trend (Burke et al., 2006) only if anthropogenic forcing is included. A 

control simulation indicates that the observed drying trend is outside the range of natural 

variability. The model, however, does not always correctly simulate the regional 

distributions of areas of increasing wetness and dryness.  

  

The simulation of specific regional features remains a major challenge for models. Globally, one of 

the most significant observed changes is the shift to more frequent and more severe droughts in the 

Sahel region of Africa since about 1970. Lau et al., (2006) find that only eight CGCMs produce a 

reasonable Sahel drought signal, while seven CGCMs produce excessive rainfall over the Sahel 

during the observed drought period. Even the model with the highest prediction skill of the Sahel 

drought could only predict the increasing trend of severe drought events but not the beginning and 

duration of the events. Hoerling  et al. (2006) also finds that the AR4 models fail to simulate the 

drying and furthermore uses the model results to suggest that the observed drying was not due to 

anthropogenic forcing. However, two GFDL models are successful in reproducing the drying and 

analysis of those models suggests that the drying is of anthropogenic origin (Held  et al. 2005). 
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Biasutti and Giannini (2006) interpret these results as an indication that the drying was a 

combination of decadal-scale internal variability superimposed on longer timescale changes 

associated with anthropogenic forcing. The differences between modeled and observed regional 

patterns may then be due to the randomness of natural variability, but may also result from 

inadequate representation of regional processes and feedbacks.  

 

Excessive rainfall leading to floods Several different measures of excessive rainfall have been 

used in analyses of model simulations. A common one is the annual maximum 5-day 

precipitation amount, one of the Frich  et al. (2002) indices. This has been analyzed in 

several recent studies (Kiktev  et al. 2003; Hegerl  et al. 2004; Tebaldi  et al. 2006). Other 

analyses have examined thresholds of daily precipitation, either absolute (e.g. 50 mm per 

day in Dai 2006) or percentile (e.g. 4th largest precipitation event equivalent to 99th 

percentile of the 365 daily values as in Emori  et al. 2005). Recent studies of model 

simulations produced for the IPCC AR4 provide information on the performance of the 

latest generation of models. 
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 There is a general tendency for models to underestimate very heavy precipitation. This is 

shown in a comparison between satellite (TRMM) estimates of daily precipitation and model-

simulated values within the 50S-50N latitude belt (Dai 2006). The TRMM observations derive 7% 

of the total precipitation from very heavy rainfall of 50 mm or more per day, in contrast to only 0-

2% for the models. For the frequency of very heavy precipitation of 50 or more mm per day, the 

TRMM data show a frequency of 0.35% (about once every 300 days), whereas it is 0.02-0.11% 

(once every 900 to 5000 days) for the models. A global analysis of model simulations showed that 

the models produced too little precipitation in events exceeding 10 mm per day (Sun  et al. 2006). 

Examining how many days it takes to accumulate 2/3’s of the annual precipitation, the models 

generally show too many days compared to observations over North America, although a few 

models are close to reality. In contrast to the general finding of a tendency toward underestimation, 

a study (Hegerl  et al. 2004) of two models (HadCM3 and CGCM2) indicates generally good 

agreement with the observed annual maximum 5-day precipitation amount over North America for 

HadCM3 and even somewhat of an overestimation for CGCM2.  
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 This model tendency to produce rainfall events less intense than observed appears to be due 

in part to the low spatial resolution of global models. Experiments with individual models show that 

increasing the resolution improves the simulation of heavy events. For example, the 4th largest 

precipitation event in a model simulation with a resolution of approximately 300 km averaged 40 

mm over the conterminous U.S., compared to an observed value of about 80 mm. When the 

resolution was increased to 75 km and 50 km, the 4th largest event was still smaller than observed, 

but by a much smaller amount (Iorio  et al. 2004). A second factor that is important is the 

parameterization of convection. Thunderstorms are responsible for many intense events, but their 

scale is smaller than the size of model grids and thus they must be indirectly represented in models 

(Chapter 2). One experiment showed that changes to this representation improves model 

performance and, when combined with high resolution of about 1.1 deg latitude, can produce quite 

accurate simulations of the 4th largest precipitation event on a globally-averaged basis (Emori 

2005). Another experiment found that the use of a cloud-resolving model imbedded in a global 

model eliminated the underestimation of heavy events (Iorio  et al. 2004). A cloud-resolving model 

eliminates the need for a parameterization of convection, but is very expensive to run. These sets of 

experiments indicate that the problem of heavy event underestimation may be significantly reduced 

in the future as increases in the computer power allows simulations at higher spatial resolution and 

perhaps eventually the use of cloud-resolving models. 

 The improved model performance at higher spatial resolutions provide motivation for use of 

regional climate models when only a limited area is of interest, such as North America. The spatial 

resolution of these models is sufficient to resolve the major mountain chains; some of these models 

thus display considerable skill in areas where topography plays a major role in the spatial patterns.  

For example, they are able to reproduce rather well the spatial distribution of the magnitude of the 

95th percentile of precipitation (Leung  et al. 2003), the frequency of days with more than 50 mm 

and 100 mm (Kim and Lee 2003), the frequency of days over 25 mm (Bell  et al. 2004), and the 

annual maximum daily precipitation amount (Bell  et al. 2004) over the western U.S. Kunkel  et al. 

(2002) found that an RCM’s simulation of the magnitude of extreme events over the U.S. varied 

spatially and depended on the duration of the event being examined; there was a tendency for 

overestimation in the western U.S. and good agreement or underestimation in the central and 

eastern U.S. 
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 Most studies of observed precipitation extremes suggest that such extremes have increased 

in frequency and intensity during the latter half of the 20th century. A study by Tebaldi et al., (2006) 

indicates that models generally simulate a trend towards a world characterized by intensified 

precipitation, with a greater frequency of heavy-precipitation and high-quantile events, although 

with substantial geographical variability. This is in agreement with observations. Wang and Lau 

(2006) find that the CGCMs simulate an increasing trend in heavy rain over the tropical ocean. 

 

Heat and cold waves 8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Analysis of simulations produced for the IPCC AR4 by seven climate models indicates that they 

reproduce the primary features of cold air outbreaks (CAOs), with respect to location and 

magnitude (Vavrus et al., 2006).  In their analysis, a CAO is an episode of at least 2 days duration 

during which the daily mean winter (December-January-February) surface temperature at a 

gridpoint is 2 standard deviations below the gridpoint’s winter mean temperature. Maximum 

frequencies of about four CAO days/winter are simulated over western North America and Europe, 

while minimal occurrences of less than one day/winter exist over the Arctic, northern Africa, and 

parts of the North Pacific. The GCMs are generally accurate in their simulation of primary features, 

with a high pattern correlation with observations and the maximum number of days meeting the 

CAO criteria around 4 per winter. One favored region for CAOs is in western North America, 

extending from southern Alaska into the upper Midwest. Here, the models simulate a frequency of 

about 4 CAO days per year, in general agreement with the observed values of 3-4 days. The models 

underestimate the frequency in the southeastern United States: mean simulated values range from 

0.5 to 2 days versus 2 to 2.5 days in observations. This regional bias occurs in all the models and 

reflects the inability of GCMs to penetrate Arctic air masses far enough southeastward over North 

America.  

The IPCC AR4 model simulations show a positive trend for growing season, heat waves and 

warm nights and a negative trend for frost days and daily temperature range (maximum minus 

minimum) (Tebaldi  et al. 2006). They indicate that this is in general agreement with observations, 

except that there is no observed trend in heat waves. The modeled spatial patterns have generally 

larger positive trends in western North America than in eastern sections. For the U.S., this is in 

qualitative agreement with observations which show that the decreases in frost-free season and frost 

days are largest in the western U.S. (Kunkel  et al. 2004; Easterling  et al. 2002). 

 160



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Analysis of individual models provides a more detailed picture of model performance. In a 

simulation from the PCM (Meehl  et al. 2004), the largest trends for decreasing frost days occurs in 

the western and southwestern USA (values greater than –2 days per decade), and trends near zero in 

the upper Midwest and northeastern USA, in good agreement with observations. The biggest 

discrepancy between model and observations is over parts of the southeastern USA where the 

model shows trends for decreasing frost days and the observations show slight increases. This is 

thought to be a partial consequence of the two large El Nino events in the observations during this 

time period (1982–83 and 1997–98) where anomalously cool and wet conditions occurred over the 

southeastern USA and contributed to slight increases of frost days. The ensemble mean from the 

model averages out effects from individual El Nino events, and thus the frost day trends reflect a 

more general response to the forcings that occurred during the latter part of the 20th century.  An 

analysis of short-duration heat waves simulated by the PCM (Meehl and Tebaldi, 2004) indicates 

good agreement with observed heat waves for North America.  In that study, heat waves were 

defined by daily minimum temperature.  The most intense events occurred in the southeast U.S. for 

both the model simulation and observations.  The overall spatial pattern of heat wave intensity in 

the model matched closely with the observed pattern.  In a four-member ensemble of simulations 

from the HadCM3 (Christidis  et al. 2005), the model shows a rather uniform pattern of increases in 

the warmest night for 1950-1999. The observations also show a global mean increase, but with 

considerable regional variations. In North America, the observed trends in the warmest night vary 

from negative in the south-central sections to strongly positive in Alaska and western Canada, 

compared to a rather uniform pattern in the model. However, this discrepancy might be expected, 

since the observations probably reflect a strong imprint of internal climate variability that is reduced 

by ensemble averaging of the model simulations. 

 An analysis of the magnitude of temperature extremes for California in a regional climate 

model simulation (Bell  et al. 2004) show mixed results. The hottest maximum in model is 4°C less 

than observations, while coldest min is 2.3°C warmer. The number of days >32°C is 44 in the 

model compared to an observed value of 71. This could result from the lower diurnal temperature 

range in the model (15.4°C observed vs. 9.7°C simulated). While these results are better than the 

driving GCM, the RCM results are still somewhat deficient, perhaps reflecting the very complex 

topography of the region of study. 
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 Models display some capability to simulate extreme temperature and precipitation events, but there 

are differences from observed characteristics. They typically produce global increases in extreme 

precipitation and severe drought, and decreases in extreme minimum temperatures and frost days, in 

general agreement with observations. There is a general, though not universal, tendency to 

underestimate the magnitude of heavy precipitation events. Regional trend features are not always 

captured. Since the causes of observed regional trend variations are not known in general and such 

trends could be due in part to stochastic variability of the climate system, it is difficult to assess the 

significance of these discrepancies. 
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Cloud-resolved models  

 

Cloud resolving models (CRMs) have spatial resolutions of less than a few kilometers.  CRMs can 

therefore explicitly calculate many atmospheric systems that are on sub-grid scales of AGCMs 

(Randall  et al. 2005). These include the mesoscale organizations in squall lines, updrafts and 

downdrafts, and cirrus anvils. The CRMs also allow calculation of cloud properties and cloud 

amount with more realistic dynamical conditions, and thus their impact on radiative transfer. 

Because of improved resolution, CRMs can also better simulate the spatial distribution of 

precipitation and convective enhancement of the surface fluxes, which are important to describe the 

interaction of the atmosphere with the land and ocean surfaces.  

 

CRMs are variations of models designed for mesoscale storm and cumulus convection simulations. 

At CRM scales, hydrostatic balance is no longer universally valid. CRMs are therefore formulated 

with non-hydrostatic equations in which vertical accelerations are calculated. Tripoli (1992) 

contains a good review of the various model formulations used to simulate non-hydrostatic 

meteorological dynamics.  

 

Similar to AGCMs, CRMs also contain empirical relationships to calculate the impact of sub-grid 

scale processes. These relationships however have different roles from those in AGCMs. First, 

because CRMs capture a larger portion of the size spectrum of the meteorological systems, the 

impact of the empiricism is less important in CRMs. For example, cumulus parameterizations for 

deep tropical convection are no longer needed in CRMs. Second, since CRMs better resolve 

atmospheric dynamics, cloud  processes can be formulated based on more realistic physical 

conditions.  

 

CRMs can therefore accommodate more sophisticated microphysical and precipitation processes 

than AGCMs. One-moment bulk microphysical schemes (mass concentration only) with two-class 

liquid (cloud water and rain) and three-class ice (cloud ice, snow and graupel/hail) are commonly 

used in CRMs. This level of sophistication is rare in AGCMs and, in any case, unlikely to be useful 
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given the absence of the needed detail in the small scale flow field. Some CRMs have started to use 

explicit bin-microphysical schemes. These schemes solve the stochastic kinetic equations for the 

size distribution functions of water droplets (both cloud droplets and raindrops) and different ice 

particle habitats (i.e., columnar, plate-like, dendrites, snowflakes, graupel and frozen drops). 

Because of better size information, these schemes can more realistically calculate the nucleation or 

activation processes of clouds, along with more accurate calculation of conversion processes among 

different cloud habitats (Tao 2007).  

 

Subgrid scale processes in CRMs are calculated by using turbulence models. The majority of CRMs 

use either simple first-order closure to diagnostically compute the turbulent diffusion strength, or 

the one-and-a-half order closure to prognostically calculate the turbulent kinetic energy which is 

then used to determine turbulent diffusion coefficients. Prognostic methods typically take into 

account the thermodynamic stability, deformation, shear stability, diffusion, dissipation, moist 

processes and transport of sub-grid energy (Klemp and Wilhelmson 1978). Other CRMs use higher 

order turbulence closures (Krueger 1988).  

 

Radiative transfer in the atmosphere and surface fluxes of heat and moisture in CRMs are computed 

using algorithms similar those in AGCMs. Because of better spatial resolution atmospheric fields 

such as clouds and precipitation, CRMs calculate these parameters more accurately than AGCMs. 

 

High resolution of CRMs, however, is at the expense of model domain size and integration length. 

Current computing infrastructure, with the exception of the Japanese Earth Simulator, only allows 

CRMs to simulate the atmosphere of less than a few thousand kilometers. Most previous CRM 

studies were carried out only for two-dimensional slices of the atmosphere, an assumption that 

somewhat compromises the fidelity of three-dimensional convective cloud simulations.  Few CRM 

simulations are carried out for longer than a year. CRMs with explicit bin-microphysics or high 

order turbulence closures have been integrated only for a few days.   

 

Research with CRM falls into two categories. In the first one, CRMs are used to investigate the time 

evolution of cloud systems by specifying realistic initial conditions. This type of study enables 

deterministic understanding of convection initiation, cold pools, surface fluxes and their direct 
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comparison with aircraft and other high resolution observation. The simulations are however only 

valid for a few hours. In the second category, CRMs are used to study the properties of cloud 

ensembles by specifying external forcing fields. This approach allows statistical description of 

multiple cloud types with different life cycles (Tao 2007).    

 

Although CRMs are advantageous over ACGMs in describing moist processes, they also face 

unique challenges when utilized in forecasting mode. CRM results are often very sensitive to the 

specification of initial conditions and external forcing conditions. They are also sensitive to the 

physical algorithms in themit. There are still large uncertainties in the CRM cloud microphysics, 

including prediction of ice particle concentrations, falling speed calculation of cloud habitats, initial 

broadening of cloud droplet spectra in warm clouds, details of hydrometeor spectra evolution, 

quantitative simulations of entrainment rates (Cotton 2003). The high sensitivity of model results 

makes it difficult to rigorously validate CRMs. 

 

Several field programs, such as the DOE ARM program, have enabled collection of observational 

data that are essential to evaluate CRMs (Zhang  et al. 2001; Tao  et al. 2004). Results from these 

programs will facilitate the improvement of model physics. On the other hand, a global model 

approaching CRM resolution has been developed and has been integrated on the Earth Simulator 

with spatial resolution of 7 kilometers (Miura  et al. 2005). There is another paradigm for multiscale 

problems that will be likely attempted in the next decade.  This is the nesting of coupled regional 

models of the atmosphere and the ocean within global coupled GCMs.  Progress on these fronts will 

guide where climate models should go in the future. 

 

    

Biogeochemistry 

 

The Carbon Cycle Libes [1992] defined biogeochemistry as "the science that studies the 

biological, chemical, and geological aspects of environmental processes".  At present, three-

dimensional climate models are usually limited to the physical climate system: atmosphere, land, 

ocean, and sea ice. However, the physical climate system and biogeochemical processes are tightly 

coupled. For example, changes in climate affect the exchange of atmospheric CO2 with the land 
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surface and ocean, and changes in CO2 fluxes affect Earth’s radiative forcing and thus the physical 

climate system. Some recently developed AOGCMs have included the carbon cycle and confirmed 

the potential for strong feedback between it and global climate (Cox  et al., 2001; Friedlingstein  et 

al., 2001; Govindasamy  et al., 2005). The next generation of AOGCMs is expected to include the 

carbon cycle and possibly interactive atmospheric aerosols and chemistry. Such models would 

predict time-evolving atmospheric concentrations of CO2, etc., using anthropogenic emissions 

rather than assumed concentrations as input. 

 

Models that include the global carbon cycle must account for the processes shown in Figure VI.1. 

Boxes represent the carbon reservoirs and arrows show the direction and magnitude of the fluxes. 

The present-day atmosphere holds about 750 Petagrams of carbon atoms in the form of CO2. 

(“Petagrams of carbon” is abbreviated PgC; note that 1 Petagram =1015 grams = 109 metric tons.) A 

roughly equal amount of carbon is contained in land vegetation and about twice as much in soils. 

The ocean is by far the largest reservoir of carbon with about 40,000 PgC. The largest flows of 

carbon in the system are photosynthetic uptake of ~120 PgC / year by terrestrial ecosystems (gross 

primary productivity or GPP), plant respiration which releases ~60 PgC / year back to the 

atmosphere (hence the remainder—net primary production or NPP—is ~60 PgC / year), and 

heterotrophic (soil) respiration which releases ~60 PgC / year. In the upper ocean, photosynthesis by 

marine organisms incorporates carbon at the rate of ~50 PgC / year, about 4/5 of which is 

reconverted to CO2 and related inorganic carbon molecules by respiration. The remaining ~10 PgC / 

yr of organic matter sinks into deep ocean, a process sometimes called the “biological pump.” This 

organic matter is oxidized and eventually returns to the surface ocean via a combination of both 

convective / turbulent mixing and the “solubility pump” (the latter so named because it involves 

sinking of cold water, with high levels of dissolved inorganic carbon, near the poles). 

 

The present-day global carbon cycle is not in equilibrium because of fossil fuel burning and other 

anthropogenic carbon emissions. These must of course be included in models of climate change, but 

such a calculation is not easy because human-induced changes to the carbon cycle are small 

compared to the large natural fluxes discussed above. Fossil fuels are estimated to contain about 

4,000 PgC. During the 1990’s, fossil fuel emissions averaged ~6 PgC / year and carbon release from 

land cover change (e.g. deforestation) averaged ~2 PgC / year, providing a net anthropogenic source 
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of ~8 PgC / year to the atmosphere. Terrestrial and ocean ecosystems together absorbed about half 

of this flux, i.e. ~4 PgC / year, with the net uptake of carbon by the terrestrial biosphere and the net 

flux of CO2 into the ocean each estimated as ~2 PgC / year. The rest (~ 4 PgC/ year) accumulated in 

the atmosphere, appearing as an increasing concentration of atmospheric CO2. 

 

The globally averaged carbon reservoirs and fluxes shown in Figure VI .1 are consistent with 

estimates from a variety of sources, but substantial uncertainties attach to the numbers (e.g. often a 

factor > 2 uncertainty for fluxes; see Prentice  et al. 2001). Additional uncertainty applies to 

regional, seasonal and interannual variations in the carbon cycle. Evaluation of climate-carbon cycle 

models is therefore problematic: for many aspects of a simulation it is not clear what the “right 

answer” is. 

 

Recent three-dimensional climate-carbon modeling studies 

 

The feedbacks between the physical climate system and the carbon cycle are represented plausibly, 

but with substantial differences, in different AOGCM / carbon-cycle models. Cox  et al. (2000) 

obtained a very large positive feedback, with global warming reducing the fraction of anthropogenic 

carbon absorbed by the biosphere and thus boosting the model’s simulated atmospheric CO2; 

Friedlingstein  et al. (2001) obtained a much weaker feedback. Thompson  et al. (2004) 

demonstrated that making different assumptions about the land biosphere within a single model 

gave markedly different feedback values. Using the same model, Govindasamy  et al. (2005) noted 

a positive correlation between the magnitude of carbon cycle feedback and the sensitivity (q.v.) of 

the physical climate system. 

 

A recent study examined carbon cycle feedbacks in eleven coupled AOGCM / carbon-cycle models 

using the same forcing (Friedlingstein  et al., 2006). There was unanimous agreement among the 

models that global warming will reduce the fraction of anthropogenic carbon absorbed by the 

biosphere, but the magnitude of this feedback varied widely among the models (Fig VI .2), leading 

to additional global warming (when the models included an interactive carbon cycle) ranging 

between 0.1 to 1.5 °C. Eight models attributed most of the feedback to the land biosphere, while 

three attributed it to the ocean. 
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These results demonstrate extreme sensitivity of climate model output to assumptions about carbon-

cycle processes. To reduce the consequent uncertainties in model predictions of the future, it will be 

necessary to thoroughly compare model output with real-world observations for present day 

conditions. Studies that span a broad range of ecosystems and climate regimes, including both and 

global remote sensing by satellites and local in situ measurements, are beginning to be integrated 

with diagnosis and improvements of the models. For example, the CCSM Biogeochemistry 

Working Group has recently begun intercomparison of three different biogeochemistry sub-models 

within the CCSM (climate.ornl.gov/bgcmip). 

 

Other biogeochemical cycles Methane (CH4) is a potent greenhouse gas and part of the carbon 

cycle. Also, CO2-fertilized ecosystems are limited by the availability of nutrients such as nitrogen 

and phosphorous, so changes in their availability are important to the carbon cycle through changes 

in plant nutrient availability (Field  et al. 1995; Schimel 1998; Nadelhoffer  et al. 1999; Shaw  et al. 

2002; Hungate  et al. 2003). Future climate-carbon models will probably represent these variables. 

The few models that do so now show less plant growth in response to increasing atmospheric CO2 

(Cramer  et al. 2001, Oren  et al. 2001, Nowak  et al. 2004). Incorporation of other known limiting 

factors such as acclimation of soil microbiology to the higher temperatures (Kirschbaum, 2000; 

Tjoelker, et al., 2001), and other elemental cycles such as the sulfur cycle (which affects aerosol 

and cloud properties), will also be important in developing comprehensive Earth system models. 
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Land Cover and land management practice changes 

 

Generally, climate-carbon models do not include the effects land cover and land management 

changes on natural ecosystems. Land cover change is often accounted for simply by prescribing 

estimates for the historical period (e.g., Houghton, 2003) and the IPCC SRES scenarios for the 

future. These estimates do not include practices such as crop irrigation and fertilization. Many 

models with “dynamic vegetation” do not actually simulate crops; they allow only natural 

vegetation to grow. Deforestation, land cultivation and related human activities will probably be 

included in at least some future AOGCMs, enabling assessment of total anthropogenic effects on 

the global climate and environment (Ramankutty  et al. 2002, Root and Schneider 1993). 
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Ocean Biogeochemistry 

 

With respect to the ocean, we are concerned with how global warming impacts the marine 

environment including changes in the carbon content of the ocean and feedbacks to the atmosphere. 

Also of importance are the effects of modified ocean temperature, salinity and circulation patterns 

on the ocean's biota.  Implementation of ocean biogeochemistry processes into AOGCMs is still in 

the development stage (e.g. CCSM Biogeochemistry Working Group Meeting Report, Mar. 2006, 

and GFDL Earth System Model, http://gfdl.noaa.gov/~jpd/esmdt.html) but is expected to proceed 

rapidly (Doney et al. 2004) to improve simulation of the ocean carbon cycle under various 

scenarios.  

 

One challenge to this effort is the complexity of the ocean’s ecosystems. Complexity is added with 

each organism that fixes nitrogen, denitrifies, calcifies, or silicifies because each adds additional 

parameterizations and variables to the system (Hood et al. 2006). There needs to be sufficient 

complexity in the biological models to capture the variability of the system as observed. In addition, 

models should include processes that are important over time periods substantially greater than a 

year (Rothstein et al. 2006) in addition to much shorter periods. However, Earth system models 

cannot be so complex that their computational cost precludes their actual use, and adding 

complexity to the biogeochemistry models may lead to a decrease in their predictive ability because 

the inability to constrain the model with the available data (Hood et al. 2006). Thus, as with other 

component models such as those simulating clouds and convection, the development of ocean (and 

land) BGC models for incorporation into physical climate models involves a trade-off between 

realism and tractability. 

 

The current strategy of climate modeling groups to address ocean carbon and biogeochemistry 

includes systematic comparison of different models in the Ocean Carbon-Cycle Model 

Intercomparison Project (OCMIP) under auspices of the International Geosphere-Biosphere 

Programme (IGBP). The most recent phase of OCMIP involved 13 groups—including several from 

the USA—implementing a common biological model in their different GCMs (Najjar et al. 2006). 

The common biological model includes five prognostic variables: inorganic phosphate (PO4
2−), 

 169



1 

2 

3 

4 

5 

6 

7 

dissolved organic phosphorus (DOP), dissolved oxygen (O2), dissolved inorganic carbon (CO2 + 

HCO3
− + CO3

2−) and total alkalinity (the acid / base buffering capacity of the system). 

Intercomparison of the models revealed significant differences in simulated biogeochemical fluxes 

and reservoirs. A biogeochemistry model's realism of any particular simulation is closely tied to the 

dynamics of the simulation's circulation model.  The US climate modeling groups are building upon 

this community effort to incorporate biogeochemistry into the ocean component of the models. 
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Figure VI 1: The global carbon cycle from the point of view of existing physical climate system 

models (coupled AOGCMs). The four boxes represent atmosphere, land-surface, ocean and sea-

ice—the major components of AOGCMS. Earth System Models will evolve from AOGCMS by 

incorporating the relevant biogeochemical cycles into the four-box framework (with the sea-ice 

component not being a reservoir of carbon). Numbers shown are average values for the 1990s. 

Small (≤ 1 PgC / year) fluxes such as carbon runoff from land to ocean and methane fluxes are not 

shown, except for burial of ~0.2 PgC / year in ocean bottom sediments. Burial in ocean sediments 

removes carbon from the AOGCM four-box domain;  

 171



 1 
2 

3 

4 

5 

6 

7 

8 

 

 

 

 

 

Figure VI .2: Time series of atmospheric CO2 temperature from eleven different AOGCM / carbon 

cycle models (from Friedlingstein et al. 2006, Figure 1(a)) 
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Chapter VII - Example Applications of Climate Model Results 

 

Dryland Crop Yields 

 The effects of weather and climate on crops are complicated and not fully understood. 

Numerous models that simulate crop growth have been developed. These models parameterize 

many physiological processes. The present generation of state-of-the-art crop models typically steps 

through the growth process at a daily resolution and utilizes as input a number of meteorological 

variables that usually include maximum and minimum temperature, precipitation, solar radiation, 

and potential evapotranspiration. A key characteristic of these models is that they have been 

developed for application to a point location and have been validated based on point data, including 

meteorological inputs. Thus, the use of these models for assessment of climate change impacts on 

crop yields confronts a mismatch between the spatially-averaged climate model grid box data and 

the point data expected by the crop models. Also, biases in climate model data can have unknown 

effects on crop model results because the dependence of crop yields on meteorological variables is 

highly non-linear. The typical applications study circumvents these difficulties by avoiding the 

direct use of climate model output using some form of statistical downscaling. One approach 

developed during the early days of climate change assessments is still used today. In this approach, 

sometimes dubbed the “delta” method, the climate model output is used to determine the future 

change in climate with respect to the present-day climate, typically a difference for temperature and 

a percentage change for precipitation. Then, these change functions are applied to historical daily 

climate data for input to the crop model. In a second approach, the climate model data is used to 

adjust statistical characteristics of the observed data. Then, daily weather data for future periods are 

artificially produced using weather generators. In a recent study, Zhang (2005) used this approach 

to estimate Oklahoma wheat yields for a future simulation from HadCM3. These methods do not 

transmit certain climate model-simulated changes that do not affect basic statistical characteristics 

but might affect yields (a change to longer wet and dry spells without a change in total 

precipitation). Thus, additional uncertainty is introduced by such downscaling. 
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 This application faces many of the same issues as for dryland crop yields.  For example, the 

models used for simulating runoff in small watersheds have been validated using point station data.  

In addition, runoff is a highly non-linear function of precipitation and the occurrence of flooding is 

particularly sensitive to the exact frequency and amount of precipitation for the most extreme 

events.  As noted in Section V.H, climate models often under-estimate the magnitude of extremes.  

The ubiquitous “delta” method is also often used in such applications.  Recently, Cameron (2006) 

determined percentage changes in precipitation from climate model simulations and applied these to 

a stochastic rainfall model to produce precipitation time series for input to a hydrologic model.  

 

Urban heat waves 

 This estimation of changes in heat wave frequency and intensity can be accomplished using 

only near-surface temperature, a state variable.  In addition, heat waves are large-scale phenomena 

and near-surface temperature is rather highly correlated over the scale of grid box size.  Biases 

remain an issue, but that can be circumvented by using percentile-based definitions of heat waves.  

Meehl and Tebaldi (2004) used output from the National Center for Atmospheric Research/U.S. 

Department of Energy Parallel Climate Model (PCM) for 2080-2099 to calculate percentile-based 

measures of extreme heat; they found that heat waves will increase in intensity, frequency, and 

duration.  If mortality estimates are desired, then biases are an issue because existing models 

(Kalkstein and Green 1997) used location-specific absolute magnitudes of temperature to estimate 

mortality.  However, in this case, there are other factors that should be considered, such as 

adaptation (e.g. Davis et al. 2002). 

 
 

Water Resources in the Western U.S. 

 The possibility that climate change may adversely affect the limited water resources of the 

mostly arid and semi-arid western U.S. poses a threat to the prosperity of that region.  A group of 

university and government scientists, under the auspices of the Accelerated Climate Prediction 

Initiative (ACPI), conducted a coordinated set of studies that represented an end-to-end assessment 

of this issue (Barnett et al. 2004).  A suite of carefully selected climate simulations were performed 

by the Parallel Climate Model (Dai et al. 2004; Pierce et al. 2004).  These were then used to drive a 
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regional climate model to provide higher resolution data (Leung et al. 2004), both for direct 

assessment of effects on water resources and for use in impacts models.  Finally, time series of 

model data at a daily resolution were used in a set of studies to assess water resources impacts 

(Steward et al. 2004; Payne et al. 2004; VanRheenen et al. 2004; Dettinger et al. 2004; Knowles and 

Cayan 2004; Christensen et al. 2004) and other environmental impacts (Brown et al. 2004; Pierce 

2004).  This project is noteworthy because of the close coordination between the production of the 

model simulations and the needs of the impacts modeling.  Those performing the impacts studies 

had the opportunity of influence the model simulations and the type of model output that was made 

available.  It is also a good example of the use of very detailed, high temporal resolution model 

data, rather than simple change functions between the present and the future.  Overall, this 

assessment indicated that future climate change will likely create major challenges for water 

resource management, even under the rather modest changes produced by the low climate 

sensitivity PCM. 
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	Climate simulations discussed in this report 
	Multi-decadal variability
	 Extreme events
	Droughts, particularly over North America and Africa 
	Recent analysis indicates that there has been a globally-averaged trend toward greater areal coverage of drought since 1972 (Dai et al., 2004). A simulation by the HadCM3 model reproduces this dry trend (Burke et al., 2006) only if anthropogenic forcing is included. A control simulation indicates that the observed drying trend is outside the range of natural variability. The model, however, does not always correctly simulate the regional distributions of areas of increasing wetness and dryness. 
	Excessive rainfall leading to floods Several different measures of excessive rainfall have been used in analyses of model simulations. A common one is the annual maximum 5-day precipitation amount, one of the Frich  et al. (2002) indices. This has been analyzed in several recent studies (Kiktev  et al. 2003; Hegerl  et al. 2004; Tebaldi  et al. 2006). Other analyses have examined thresholds of daily precipitation, either absolute (e.g. 50 mm per day in Dai 2006) or percentile (e.g. 4th largest precipitation event equivalent to 99th percentile of the 365 daily values as in Emori  et al. 2005). Recent studies of model simulations produced for the IPCC AR4 provide information on the performance of the latest generation of models.
	Heat and cold waves


	Small watershed flooding

