Synthesis and Assessment Report 3.1 Draft Outline

August 3, 2006

I. Overview of the state of climate modeling

- A. Describe the main characteristics of coupled atmosphere-ocean general circulation models (AOGCMs), regional climate models (RCMs) and climate models of intermediate complexity (EMICs). (The report will focus primarily on AOGCMs and secondarily on RCMs.)
- B. Historical background, the relationship to numerical weather prediction models, and a discussion of the increasing resolution and expanding comprehensiveness of models.

II. Description of major components of global climate system models

- A. Atmospheric GCMs
- B. Ocean GCMs
- C. Land surface models
- D. Sea Ice models
- E. -Couplings, feedbacks, and the model development process distinguish between those parts that are validated independent of the climate simulations (reductive) and those that are "tuned" explicitly to improve the simulations (holistic).

- III. Climate simulations discussed in this report
 - A. Control runs (constant forcing, except for diurnal and seasonal changes)
 - B. Idealized forcing experiments, especially climate sensitivity tests
 - C. 20th Century time-dependent forcing simulations
- IV. The added value of regional models, using N. America as the focus
 - A. Design of downscaling simulations
 - B. Strengths and limitations of regional models
- V. Concise survey of our ability to simulate the continental to global scale structure of the climate and major climate features
 - A. Mean climate
 - B. 20th century trends
 - C. More in-depth but relatively brief discussions of specific phenomena (possible topics include --)
 - 1. Processes
 - a) -clouds
 - b) aerosol-radiative interactions
 - 2. Circulation
 - a) extratropical storms

- b) monsoons
- c) tropical storms
- d) Polar climates
- e) vertical structure of atmosphere
- f) the Atlantic overturning circulation
- 3. Modes of variability
 - a) Madden-Julian oscillation
 - b) ENSO
 - c) multi-decadal variability
- 4. Extreme events
 - a) precipitation
 - (1) droughts, particularly over N. America and Africa),
 - (2) excessive rainfall leading to floods
 - b) heat and cold waves
- 5. North America emphasis
 - a) North American Monsoon
 - b) Great Plains low level jet
- VI. Discussion of uncertainties in climate modeling and the future direction of model development and application
 - A. Cloud-resolved models
 - B. Biogeochemistry
 - C. Ecosystem dynamics and dynamic vegetation
 - D. Surface /subsurface hydrology