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A linear time invariant model is applied to functional fMRI blood flow data. Based on tra-

ditional time series analysis, this model assumes that the fMRI stochastic output sequence

can be determined by a constant plus a linear filter (hemodynamic response function) of

several fixed deterministic inputs and an error term assumed stationary with zero mean.

The input function consists of multiple exponential distributed (time delay between images)

visual stimuli consisting of negative and erotic images. No a priori assumptions are made

about the hemodynamic response function that, in essence, is calculated at each spatial

position from the data. The sampling rate for the experiment is 400 ms in order to allow for

filtering out higher frequencies associated with the cardiac rate. Since the statistical anal-

ysis is carried out in the Fourier domain, temporal correlation problems associated with

inference in the time domain are avoided. This formal model easily lends itself to further

development based on previously developed statistical techniques.

Published by Elsevier Ireland Ltd.

1. Introduction

The use of functional magnetic resonance images (fMRI) to
study local changes in cerebral blood oxygenation is an impor-
tant field of study. These functional magnetic resonance imag-
ing (fMRI) studies often take the form of an input–output sys-
tem where the input stimulus is used to elicit a hemodynamic
response in the brain. Hemodynamic responses can then be
indirectly measured using multiple T∗

2-weighted echo-planer
magnetic resonance scans. These scans produce data that
consist of a set of three-dimensional voxels covering all or part
of the brain, where each voxel is composed of a series of time
points. It is this time series (along with that of the input stim-

∗ Corresponding author at: NIAAA, NIH, Bldg. 10, CRC, Rm 2-2332, 10 Center Dr., MSC 1540, Bethesda, MD 20892-1540, United States.
E-mail address: drio@nih.gov (D.E. Rio).

ulus) that is used to discern whether a response has occurred.
Thus, the problem is to use these time series within the con-
text of a mathematical model that allows us to estimate the
statistical significance of the hemodynamic response of the
brain to the input stimulus. There are numerous problems
inherent in carrying out this calculation, as the fMRI signal
also includes various sources of noise as well as the results of
the intrinsic hemodynamic filtering that occurs in the brain.
This leads to a response that is both temporally shifted and
blurred because of the hemodynamic filter and has noise lay-
ered on top of it. This problem is further complicated by the
inherent temporal correlation in the data that can compro-
mise the assignment of statistical significance [1–3]. Attempts
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at handling the temporal autocorrelation problem have been
previously addressed by band-pass filtering, prewhitening or
coloring and extensively studied [4,5].

While most analysis techniques have been used to pro-
cess these data in the temporal domain [6], some of the
more interesting studies have involved the use of the fre-
quency domain to mitigate the effects of this temporal
correlation [7,8]. These techniques have worked best with
experimental designs using a boxcar or single event with
fixed interstimulus interval [7,8]. While a periodic stimulus
has an obvious advantage in frequency-based analyses, the
methodology to be presented in this paper can deal with
any general input stimulus that is periodic or non-periodic in
structure.

Furthermore, none of the previous frequency based analy-
sis methods have been based on a unified hypothesis-testing
formulation of this problem even though this has been a
well-studied area of mathematical statistics [9–11]. A model
is presented to analyze what are essentially traditional time
series data embedded in a three-dimensional spatial array.
By direct generalization, this model can be extended to fMRI
data where the parameters correspond to multidimensional
Euclidean spatial coordinates. In particular this model is based
on statistical analyses of the general linear model in the fre-
quency domain [9,12–14]. From a statistical point of view,
analysis in the spectral domain presents an obvious method-
ological advantage when there is correlation in the temporal
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of random variables at each spatial position x. In particular s(x,
t) is a sequence, length T in time, of three-dimensional fMRI
images, and ε(x, t) is the associated noise in these images. A
diagram of the model is presented in Fig. 1 for a 2 × 1 input
vector relevant to the application in this paper.

Using this as our model it is possible to construct statisti-
cal tests in the Fourier domain. The one-dimensional Fourier
transforms of r(t), a(x, t) and s(x, t) from (1) in the temporal
domain are given by

r̃(k) = T−1/2
T−1∑
t=0

r(t)e−i�kt, ã(x-, k) = T−1/2
T−1∑
t=0

a(x-, t)e−i�kt (2)

and

s̃(x-, k) = T−1/2
T−1∑
t=0

s(x-, t)e−i�kt

respectively where �k = 2�k/T and k represents the kth wave
number.

The following periodogram functions:

Isr(x-, �k) = (2�T)−1s̃(x-, �k)r̃(�k)T, a 1 × R vector;

Irs(x-, �k) = (2�T)−1 r̃(�k)s̃(x-, �k)T, a R × 1 vector;
omain because, asymptotically, correlation between statis-
ics at different frequencies is absent in the spectral domain
9].

In this paper, a number of hypothesis-based statisti-
al tests using this model are presented and applied to a
MRI dataset obtained using non-periodic pseudo-Poisson
rocess input stimuli with a very fast sampling rate. A

ocalized estimation is made of the hemodynamic transfer
unction and sample results for a number of subjects are
isplayed.

. Linear time invariant model

.1. Basics

et s(x, t) be a univariate stochastic field with multivariate
patial index x = (x1, x2, x3) and temporal variable t that cor-
esponds to a four-dimensional functional image. In this case
(x, t) represents an fMRI signal [10]. If the input sequence r(t) is
R × 1 vector consisting of R deterministic inputs functions of

ime and a(x, t) is a 1 × R filter with multivariate spatial index
, then the stochastic output is given by

(x-, t) = �(x-) +
∞∑

u=−∞
a(x-, t − u)r(u) + ε(x-, t) (1)

here �(x) is a constant and ε(x, t) is the error at each given
oint. At each spatial position ε(x, t) is assumed stationary with
ero mean. Take the temporal variable t to be size T and let the
ultivariate spatial variable x define some region of interest
ithin the image. Thus, s(x, t) and ε(x, t) consist of 1 × T vectors
Irr(�k) = (2�T)−1 r̃(�k)r̃(�k)T, a R × R matrix;

Iss(x-, �k) = (2�T)−1s̃(x-, �k)s̃(x-, �k)T, a 1 × 1 scalar (3)

(R dimensions are a consequence of having R input functions)
are constructed from the Fourier transform of the input func-
tion and the output (fMRI signal) function (2).

Estimates of the cross-spectral functions can be con-
structed from these periodograms. Furthermore, by construct-
ing these estimates over disjoint frequency bands size k = −m
to m centered at �, more stable estimates of the cross-spectral
functions may be obtained. Thus, using (3) the multivariate
cross spectral functions are constructed as follows:

fsr(x-, �) = (2m + 1)−1
m∑

k=−m

Isr(x-, � + �k),

frs(x-, �) = (2m + 1)−1
m∑

k=−m

Irs(x-, � + �k),

frr(�) = (2m + 1)−1
m∑

k=−m

Irr(� + �k),

fss(x-, �) = (2m + 1)−1
m∑

k=−m

Iss(x-, � + �k) (4)

where � is the center frequency of each disjoint band. These
take a slightly different form for even or odd spectral ranges
and at the end points of the spectrum [9,15]. The functions
frr(�) and fss(x, �) are the power spectra of the input and output
(fMRI) of the system, respectively.
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Fig. 1 – Diagrammatic representation of the mathematical model used to statistically analyze data where multiple inputs are
presented to the subject. The subject processes these input stimuli and an output indicator is measured (the fMRI signal).
This output signal is seen to be affected by a filter (the hemodynamic transfer function in this case) and various sources of
noise (both biological and acquisition based).

2.2. Hypothesis testing

If at each spatial position x, the expectation value E[ε̃(x-, �)] = 0
and

E[ε̃(x-, �) ε̃(x-, �)] = 2�Tf��(x-, �) (5)

where f��(x, �) is called the error spectrum, then by application
of the complex form of the Gauss–Markov theorem and taking
into account the distributional attributes of the variables, F-
tests may be set up [12,16]. Consider the test of the hypothesis
H0 : ã(x-, �) = 0 at each spatial position and wave number. This
takes the form of the following F-test:

F(x-, �)2R;2(2m+1−R) = (2m + 1)Â(x-, �)frr(�)Â(x-, �)T

Rg��(x-, �)
(6)

where

Â(x-, �) = fsr(x-, �)[frr(�)]−1 (7)

is an estimate of the transfer function ã(x-, �) (filter in the fre-
quency domain). Furthermore, using (4), an estimate of the
error spectrum can be constructed as:

g��(x-, �) = 2m + 1 {
fss(x-, �) − fsr(x-, �)[frr(�)]−1frs(x-, �)

}
(8)

where B is an R × (R − 1) matrix used to test various compo-
nents of the input vector r(t).

All other terms have been previously defined in Eqs. (4) and
(7). Note again that R is the number of input time functions
and 2m + 1 is the size of the disjoint bands. Using these con-
structed values it is possible to test for activation caused by
the response of the system to each component of the input
function at each spatial position of interest and wave number
� and, furthermore also test whether there is a differential
response between the various components. Generally care
must be taken when applying this test for bands with low
input power as this test becomes invalid because of numer-
ical instability.

3. Application

3.1. Experimental design

As a demonstration of the methodology, a set of five male sub-
jects aged 21–35 years, was investigated from a larger set of
data using event related fMRI. The general focus of this study
was to study the neural substrates of arousal using a combina-
tion of erotic and negative stimuli. Additional considerations
in designing this study were to achieve high rate sampling
within the context of a short duration experiment. Hence a
2m + 1 − R

This estimate of the error spectrum f��(x, �) indicates how
well the linear time invariant model fits the data.

Further tests similar to the general F-test for activation can
be constructed to compare and contrast the multiple inputs,
r(t) [12]. The hypotheses to be tested now take the form H0 :
ã(x-, �)B = 0 where the F-test is constructed as follows:

F(x-, �)2(R−1);2(2m+1−R)

= (2m + 1)Â(x-, �)B[BT[frr(�)]−1B]
−1

BTÂ(x-, �)T

(R − 1)g��(x-, �)
(9)
high sampling rate of TR = 400 ms was chosen along with stim-
ulus presentation time of 800 ms. Studies have shown that a
change in feelings can be evoked in subjects with stimulus
presentations of 500 ms outside of the scanner [17]. The com-
bination of high sampling rate and analysis in the frequency
domain enables the application of filters to eliminate some
cardiac and motion artifacts. For high sampling rates and large
T during multislice imaging, it has been shown that it is possi-
ble to distinguish frequencies of respiratory and cardiac noise
[18]. Finally, it was also likely that a short duration experiment
would reduce patient movement and also allow the subjects
to remain focused on the task at hand.
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Fig. 2 – Diagram showing the Poisson input stimulus
timing where each time point is 400 ms long. Each vertical
blue line represents an 800 ms presentation of a negative
image to the subject and each vertical red line an erotic
image also presented for 800 ms. For interpretation of the
references to colour in this figure legend, the reader is
referred to the web version of the article.

3.2. Pseudo-Poisson input

In Fig. 2 each line represents a visual presentation of either
negative (blue) or erotic (red) images each having a duration
of 800 ms. The time interval between each image has been
derived from an exponential distribution. These distributions
were generated until little or no overlap occurred between the
two selected input functions. In a few instances where over-
lap occurred, the image presentations were randomly shifted
400 ms up or down until no overlap occurred.

For an ideal Poisson process these input functions would
distribute power equally at all frequencies in the power spec-
trum. Of course in this case, where the stimulus is finite and
the sampling is discrete (in this case a sampling rate of 400 ms),
the shape of the power spectra is compromised from this ideal
case as can be seen in Fig. 3. Thus, the power spectrum is not
uniform from frequency to frequency and decreases in power
at higher frequencies. This feature would subside for longer
duration experiments and the high frequency fall off would
decrease for increasing short sampling rates with point stim-
ulations.

F
n
t
r

3.3. Image acquisition and preprocessing

The subjects were exposed to erotic and negative slides
(pseudo-Poisson process) using the Affective Picture System
[19] matched for arousal (erotic = 5.95 with S.D. = 0.93; neg-
ative = 5.94 with S.D. = 1.25) and scrambled control images
during two runs each lasting 6.4 min. An arousal level of
5.95 on this scale is considered very high. The images
were projected onto a screen in the scanner room. Ten
contiguous oblique-axial slices were acquired of the lim-
bic area (5 slices) and frontal/orbitofrontal areas (5 slices).
During the task, 910 T∗

2-weighted echo-planer MR volumes
(TR = 400 ms, TE = 19.2 ms, flip angle = 60◦, FOV = 24 cm, slice
thickness = 5 mm, gap = 1 mm) were collected using a 1.5 T
magnet (Medical Advances, Milwaukee, WI), resulting in a
voxel size of 3.75 mm × 3.75 mm × 5 mm. The first 10 slices
were collected before the visual presentations of negative and
erotic images began. Sequences of runs as well as stimu-
lus presentations were counterbalanced. One hundred and
twenty-four T1-weighted coronal SPGR images (TR 27 = ms,
TE = 3.0 ms, flip angle = 45◦, BW = 15.63, FOV = 24, slice thick-
ness = 2 mm) were also acquired, resulting in a voxel size of
0.9375 mm × 0.9375 mm × 2 mm.

The first 10 time points, collected before the image pre-
sentations began, were discarded. The motion correction
algorithm implemented in the AFNI [20] was applied to the
functional data. Co-registration of the function scans to the
ig. 3 – A plot of the Poisson power distribution for the
egative (blue) and erotic (red) inputs. For interpretation of

he references to colour in this figure legend, the reader is
eferred to the web version of the article.
anatomical scan was also performed in AFNI using landmark
identification.

3.4. Computational information

For preprocessing, the AFNI software package used was
installed on an AMD clone PC (equivalent to a 2.5 GHz Intel
Pentium processor PC) with 2 GB of memory running Red-
Hat Linux 9.0. The bulk of the calculations used the image
processing software package SRView running on an Apple
1.8 GHz G5 computer with 1.5 GB of memory. This image pro-
cessing software was developed by Synergy Research Inc.,
12051 Greystone Dr., Monrovia, MD, 21770 in conjunction with
the staff from the National Institute on Alcohol Abuse and
Alcoholism. The mathematical, statistical and image presen-
tation programs were written in C, C++ and Motif. Tcl/Tk is
used as the scripting language to integrate more complex
calculations or make bulk runs. A typical analysis took less
than 30 min of computational time per subject when all steps
from initial alignment to completed statistical analysis were
included. In particular the statistical analysis discussed in
this paper required only about 5 min of computational time
on the Apple computer. This software also has been imple-
mented on other computers running Unix and Linux operating
systems.

3.5. Image processing

Once the functional images were aligned, the first four time
points were removed from them along with the first four
points of the input functions to remove scanner transients.
Then a two-dimensional spatial Gaussian filter, full width half
maximum (FWHM) equal to 4 mm, was applied. Lastly a low
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Fig. 4 – The general F-test (case 1-purple mask) shows activated voxels in the lingual and parahippocampal gyri of all five
subjects. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the
article.

pass filter was applied and all frequencies above 0.9 Hz were
removed from the fMRI signals to suppress some cardiac and
respiratory artifacts.

4. Results

4.1. Hypothesis testing

A number of significance tests can be performed with various
null hypotheses. These test whether the input stimuli (that is,

negative and erotic sequence of images) together or individu-
ally elicit a response in the fMRI output series. Furthermore, it
is also possible to test those voxels for a differential response
to the negative and erotic input stimuli.

For the input consisting of the two generated sequences
of images, R is set to 2 in (3) and the remaining Eqs. ((4)–(7)).
Eq. (5) is then used to test for a general response to the input.
Thus, the omnibus test for the general response to the input
is

Case 1 : test the hypothesis H0 : ã(x-, �) = 0
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Fig. 5 – Voxels activated by the negative images (case 2-blue mask) are found in the amygdala and sub-lenticular extended
amygdala in four of the five subjects. For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of the article.

The size of the bands (number of support frequencies) was
set to 13 or m = 6 in Eqs. (3)–(9) giving 33 bands to test. The first
band is centered at wave number 0 and the remaining disjoint
bands fill the frequencies up to the Nyquist frequency (note
that since a low pass filter was used on the fMRI data, tests
were restricted to frequencies below 0.9 Hz). Thus, sets of F-
test images based on Eq. (6) were constructed. The significance
level was set to ˛ = 0.0005 divided by 33 and tests were made
at each voxel and band. The expected false positive rate was
approximately three for the number of tests performed.

The following F-tests were also performed for those vox-
els that tested positive for case 1. Using Eq. (9) it is possible
to choose B as follows to perform hypothesis testing on the
specific negative and erotic input:

Case 2 : B =
(

1

0

)
,

test the hypothesis H0 : ã(x-, �)B = 0

for response to the negative image input
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Fig. 6 – Presentation of the erotic images activated voxels (case 3-red mask) in the amygdala and sub-lenticular extended
amygdala in four of the five subjects. However, while these activated voxels appeared in the same anatomical regions they
did not correspond to those voxels activated by the negative images (see Fig. 5). The subjects without amygdala activation
show activation in the right hippocampus. For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of the article.

Case 3 : B =
(

0

1

)
,

test the hypothesis H0 : ã(x-, �)B = 0

for response to the erotic image input

Case 4 : B =
( −1

1

)
,

test the hypothesis H0 : ã(x-, �)B = 0

for differential response to the negative and

erotic image inputs

These tests are performed for each frequency band and,
while it may be of some interest to note the frequencies that
give a significant response for the applied input, in this paper
a cumulative mask was constructed to present most of the
results as follows. A binary mask was produced for each band,
where a value of 1 was assigned for a positive response (i.e.,
when the hypothesis was non-zero). Then the masks from
each band were ORed together, except for the 0 band. Thus,
the resultant masks represent a response at any frequency
band that occurred to the input at that spatial position. The
band centered at 0 was omitted to limit low frequency drift,
some of which may be caused by subject movement.
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Fig. 7 – Voxels in the right lateral orbital gyrus showed differential activation (case 4-yellow mask) between negative and
erotic images in four of the five subjects. For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of the article.

Several brain regions were used as representative regions
to show results from the four F-test cases. These regions were
the lingual and parahippocampal gyri, the amygdala and sub-
lenticular extended amygdala and the orbital cortex.

The results of the general F-test for the five subjects are
presented in Fig. 4 (case 1-purple mask). Fig. 5 depicts the
response to the negative image presentation (case 2-blue
mask) and Fig. 6 to the erotic image input (case 3-red mask).
Finally, Fig. 7 (case 4-yellow mask) presents those voxels in
which the negative and erotic response was different. Note
again that only those voxels that responded to the general
input case 1 were tested for cases 2–4.

4.2. A closer look at the analysis in the frequency
domain

Using (4), frr(�), the banded spectral power of the input stim-
uli is obtained. This is presented in Fig. 8 and includes
both the lowest frequency band as well as the higher fre-
quency bands before a low pass filter was applied (bands
not used in the hypothesis testing). Some similarity with the
power spectra obtained at each frequency in Fig. 3 can be
discerned.

To demonstrate a response of the output signal, s(x, t) to
the input, a number of graphs are presented for both an inac-
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Fig. 8 – A plot of the cross-spectral functions frr(�) for
the 33 bands used in the analysis. Similar to the power
spectra plotted in Fig. 3, each band is 0.0335 Hz wide (for
example the band labeled 1 includes frequencies from
0.0195 to 0.0530 Hz) including the zero-centered frequency
band that is calculated using the symmetry in the Fourier
spectrum.

tivated voxel (Fig. 9) and activated voxel (Fig. 10). Firstly, the
banded spectral density function, fss(x, �) of the output or fMRI
signal, s(x, t) is graphed. Beneath this graph the banded F-test
(6) results for case 1, testing the hypothesis H0 : a(x-, �) = 0,
is plotted, along with the threshold value for the F-statistic
equal to 7.67 (the dashed line), calculated for ˛ = 0.0005 divided
by 33 bands as noted previously. Values for the F-statistic
above threshold show the statistically significant frequency
bands. For the inactivated voxel there are none while for the
activated voxel two bands centered at 0.0530 Hz (band 1) and
0.1256 Hz (band 3) show a response to the input stimulus.
Finally, the bottom graph in Figs. 9 and 10 show the error spec-
tra g��(x-, �), that is seen to be much smaller for the activated
voxel.

Comparing these graphs for the activated voxel (Fig. 10) to
the graphs for the inactivated voxel (Fig. 9) clearly shows the
differences between the voxels, with the activated voxel hav-

Fig. 10 – Plots of the cross-spectral functions fss(x, �)-(top
plot-based on Eq. (4)), F-test spectral function for the
general test, F(x, �) (center plot-purple line, based on Eq. (6))
and error function, g��(x, �) (bottom-orange line, based on
Eq. (9)) for the 33 bands used in the analysis for a particular
activated voxel. The center plot for the F-test function also
shows the threshold for activation as a dashed line. For
interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the
article.

ing F values that are significant and an error spectrum that
is much smaller than that for the inactivated voxel. While a
lower error spectrum is not a necessary condition for acti-
vation, it usually is low in voxels in which activation can
be seen.

5. Conclusion

We present a general linear model in the Fourier domain for
which numerous F-tests can be constructed to test multiple
input evoked responses. Problems with temporal correlation
are avoided by performing the statistics in the Fourier domain.
Also no a priori assumptions need be made about the filter
in applying this model, and estimates of the corresponding
hemodynamic transfer function are obtained at each spa-
tial location for the volumetric image. Additional features of
this methodology will also allow testing for differences in the
hemodynamic transfer function at different spatial locations
or different experimental conditions.

To demonstration the usefulness of this methodology for
non-periodic and short interstimulus intervals, multiple input
stimuli of duration 800 ms were used in an fMRI experiment
with a TR of 400 ms. This allows for a short duration experi-
ment that reduces subject movement confounds, and allows
for filtering of unwanted physiological processes that may
interfere with the evoked response.
Fig. 9 – Plots of the cross-spectral functions fss(x, �)-(top
plot-based on Eq. (4)), F-test spectral function for the
general test F(x, �) (center plot-purple line, based on Eq. (6));
and error function, g��(x, �) (bottom-orange line, based on
Eq. (9)) for the 33 bands used in the analysis for a particular
non-activated voxel. The center plot for the F-test function
also shows the threshold for activation as a dashed line.
For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the
article.
Furthermore, since this methodology shows particular
promise for single subject analysis studies are currently being
designed to apply it in a clinical setting. Toward this end exper-
imental protocols using fearful images (to be presented in a
similar fashion to that for the input images in this study) will
be used to study a group of subjects who perpetrate acts of
domestic violence [21,22].
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