
2942 VOLUME 11J O U R N A L O F C L I M A T E

q 1998 American Meteorological Society

Reproducible Forced Modes in AGCM Ensemble Integrations and Potential
Predictability of Atmospheric Seasonal Variations in the Extratropics

XIU-QUN YANG*

Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

JEFFREY L. ANDERSON AND WILLIAM F. STERN

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, New Jersey

(Manuscript received 27 August 1997, in final form 24 November 1997)

ABSTRACT

An approach to assess the potential predictability of the extratropical atmospheric seasonal variations in an
ensemble of atmospheric general circulation model (AGCM) integrations has been proposed in this study by
isolating reproducible forced modes and examining their contributions to the local ensemble mean. The analyses
are based on the monthly mean output of an eight-member ensemble of 10-yr Atmospheric Model Intercomparison
Project integrations with a T42L18 AGCM.

An EOF decomposition applied to the ensemble anomalies shows that there exist some forced modes that are
less affected by the internal process and thus appear to be highly reproducible. By reconstructing the ensemble
in terms of the more reproducible forced modes and by developing a quantitative measure, the potential pre-
dictability index (PPI), which combines the reproducibility with the local variance contribution, the local ensemble
mean over some selective geographic areas in the extratropics was shown to result primarily from reproducible
forced modes rather than internal chaotic fluctuations. Over those regions the ensemble mean is potentially
predictable. Extratropical potentially predictable regions are found mainly over North America and part of the
Asian monsoon regions. Interestingly, the potential predictability over some preferred areas such as Indian
monsoon areas and central Africa occasionally results primarily from non-ENSO-related boundary forcing,
although ENSO forcing generally dominates over most of the preferred areas.

The quantitative analysis of the extratropical potential predictability with PPI has shown that the preferred
geographic areas have obvious seasonality. For the 850-hPa temperature, for example, potentially predictable
regions during spring and winter are confined to Alaska, northwest Canada, and the southeast United States,
the traditional PNA region, while during summer and fall they are favored over the middle part of North America.
It has also been shown that the boreal summer season (June–August) possesses the largest potentially predictable
area, which seems to indicate that it is a favored season for the extratropical potential predictability. On the
contrary, boreal winter (December–February) appears to have a minimum area of extratropical potential pre-
dictability.

The results have been compared with the more traditional statistical tests for potential predictability and with
observations from the National Centers for Environmental Prediction reanalysis, which indicates that the PPI
analysis proposed here is successful in revealing extratropical potential predictability determined by the external
forcing.

1. Introduction

It is generally believed that information from the at-
mospheric initial state is more important than external
forcing for predicting the evolution of anomalous at-
mospheric circulation features on timescales up to about
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1 month. As the length of prediction extends beyond a
month or season, the external forcing, especially the
slowly varying anomalous lower boundary forcing, has
much more impact on atmospheric development than
the initial conditions. Although snow cover and soil
moisture may also play a significant role in the boundary
forcing of the atmosphere (Shukla 1984), SST anoma-
lies are commonly assumed to be the major component
of the lower boundary forcing for the atmosphere. A
variety of previous studies have been devoted to un-
derstanding the response of the atmosphere to SST
anomalies either in the Tropics or in the midlatitudes
(e.g., Lau 1985; Latif et al. 1990; Gates 1992; Lau and
Nath 1990, 1994; Smith 1995; Harzallah and Sadourny
1995). Atmospheric GCM simulations of the seasonal
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response to the ENSO component of SST anomalies
generally exhibit global circulation patterns resembling
those observed; this can be interpreted as evidence for
the feasibility of seasonal prediction (Palmer and An-
derson 1994).

The tropical atmosphere is primarily driven thermally
(Matsuno 1966; Gill 1980) and has variability on in-
terannual timescales that is dominated by the lower
boundary anomalies, especially the dominant ENSO-
related SST anomalies (Charney and Shukla 1981). Un-
like the Tropics, much of the extratropical atmospheric
variation is dominated by ‘‘chaotic’’ internal variability,
which is presumably not predictable on seasonal time-
scales, although SST anomalies may have significant
impact on the extratropical atmospheric variations via
Rossby wave propagation or other mechanisms. It is of
interest to isolate those regions and seasons for which
the effects of the external forcing are able to dominate
the effects of internal variability in the extratropical
atmosphere. Isolating and understanding the dynamics
through which tropical (or extratropical) SSTs are able
to create some predictable response in the extratropics
is also of interest. Hypothetically, one could hope to
isolate the externally forced response even in regions
where that response is insignificant compared to inter-
nally generated atmospheric noise.

Strictly speaking, an assessment of the predictability
of seasonal atmospheric variations should be based on
a coupled ocean–atmosphere system. As a preliminary
step, it is important to understand the predictability of
the atmosphere forced by prescribed SSTs. A number
of studies have investigated this issue using atmospheric
GCM (AGCM) integrations (e.g., Chervin 1986; Bran-
kovic et al. 1994; Ebisuzaki 1995; Stern and Miyakoda
1995; Kumar et al. 1996; Deque 1997), and many ap-
proaches have been proposed to distinguish the exter-
nally forced variations from the internal chaotic varia-
tions. Following the work of Madden (1976, 1981) and
Shea and Madden (1990), many earlier studies em-
ployed variance analysis methods in which the AGCM
with anomalous boundary forcing is compared with the
hypothetical situation in which the AGCM is forced by
climatological mean SSTs; significant differences be-
tween the variances of these two cases are interpreted
as indicating potential predictability (e.g., Chervin
1986).

More recently, ensemble integrations generated from
multiple GCM simulations have been conducted by a
number of groups, many in association with the At-
mospheric Model Intercomparison Project (AMIP). The
potential predictability of seasonal atmospheric varia-
tions has been reexamined based on these ensemble in-
tegrations. Frequently, a ratio of internal variance to
external variance (noise-to-signal) or a related quantity
is used to measure the impact of external forcing. For
example, the reproducibility, a description of the spread
among ensemble members, is defined to measure po-
tential predictability by Stern and Miyakoda (1995).

They found a high degree of reproducibility over most
tropical areas but found that most areas in the extra-
tropics were not reproducible. Using the same ensemble
integrations, Anderson and Stern (1996) presented a dif-
ferent method, using the Kolmogorov–Smirnov and
Kuiper’s statistical test for comparing two discrete dis-
tributions, and found some extratropical areas where the
ensemble forecast distribution is significantly different
from an appropriate climatological distribution. Both of
these measures were defined so that the measured po-
tential predictability was a function not only of geo-
graphical location but also of time.

There are a variety of ways to use ensemble AGCM
integrations (Murphy 1989, 1990; Mureau et al. 1993;
Ferranti et al. 1994; Anderson and Stern 1996; Anderson
1996), but the most common is to use the ensemble
mean as a substitute for a single traditional forecast
(Brankovic et al. 1990; Milton 1990; Tracton and Kal-
nay 1993). It is important to determine if the ensemble
mean is predictable even in the presence of large spread
among the ensemble members. In a perfect model sense,
a small spread among ensemble members does imply
good predictability. However, a large spread or a low
degree of reproducibility as defined in Stern and Mi-
yakoda(1995) may not imply lack of predictability. It
is possible that over some geographic regions in the
extratropics the unpredictable internal noise has little
influence on the ensemble mean, even though the noise
may be large. If the ensemble mean is controlled by
externally forced modes, potential predictability of the
mean can exist even in the presence of large amounts
of noise. One way to assess this in the context of re-
producibility would be to apply a standard t test to de-
termine if the ensemble means for different years were
significantly different from the model climatological
distribution. Results from such an approach are gener-
ally quite similar to the Kuiper’s results of Anderson
and Stern (1996).

Unlike previous studies based on statistical tests or
direct measurement of noise-to-signal ratio, the present
study focuses on the ensemble behavior of a class of
orthogonal modes closely related to the external forcing
anomalies. Although derived statistically, there is some
hope that these modes can provide insight into the dy-
namics responsible for extratropical potential predict-
ability in AGCM ensemble integrations. The time-mean
potential predictability of the extratropical atmospheric
seasonal variations is investigated by examining the re-
producibility of these modes. In this paper a particular
geographic location is said to have potential predict-
ability when the model ensemble mean at the location
is dominated by a highly reproducible component,
which comes from the reproducible forced modes. A
potential predictability index, which combines the local
reproducibility and local variance contribution is de-
fined to quantitatively describe the potential predict-
ability. The major results from this study are compared
with those from both the reproducibility analysis of
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Stern and Miyakoda (1995) and the potential predictive
utility analysis with the Kolmogorov–Smirnov or Kui-
per’s statistic test of Anderson and Stern (1996). The
results are also validated with observations from the
National Centers for Environmental Prediction (NCEP)
reanalysis.

The model and ensemble integrations used in this
study are described in section 2. In section 3, an EOF
decomposition of the ensemble mean is used to detect
the existence of reproducible forced modes. Based on
these forced modes, the ensemble is filtered to exclude
both that part of the chaotic component that is inde-
pendent of the ensemble mean and modes that are pre-
dominantly influenced by internal processes. The geo-
graphic distribution of reproducibility based on the fil-
tered ensemble is presented. In section 4, the potential
predictability index (PPI) is proposed to quantitatively
describe the extratropical potential predictability, and
the preferred geographical areas and seasons for the
extratropical seasonal potential predictability are ex-
amined. The extratropical potential predictability in-
ferred from the PPI analysis approach is compared with
that obtained from other statistical tests and with ob-
servations in section 5.

2. Model and ensemble integrations

The AGCM used to generate ensemble integrations
has a spectral triangular truncation at wavenumber 42
(T42) and 18 vertical sigma levels (L18) (Gordon and
Stern 1974, 1982). The physical parameterizations are
documented in Stern and Miyakoda (1995). Eight mul-
tiyear integrations forced by observed AMIP SSTs
(Gates 1992) were generated with the AGCM. Each
ensemble member was integrated for 10 yr from 1 Jan-
uary 1979 through 31 December 1988. Initial conditions
for the ensemble were taken from analyses for 17 De-
cember 1978 through 21 January 1979, spaced 5 days
apart. Each of these analyses was then used as an initial
condition as if it were the analysis for 1 January 1979.
Stern and Miyakoda (1995) provided a detailed analysis
of the reproducibility of these ensemble integrations and
evaluated the model’s simulation of the atmosphere’s
climatology. Anderson and Stern (1996) applied a va-
riety of statistical tests to investigate the potential pre-
dictive utility of these ensembles. The present study
applies a different method to identify patterns of sig-
nificant time-mean extratropical potential predictability.

Of interest here is the degree to which the specified,
observed SST forcing can influence the seasonal mean
state of the AGCM, particularly in the extratropics. The
first year of the ensemble integration was discarded in
order to eliminate most direct effects of the initial con-
ditions. The analysis in the following is based on month-
ly mean output of the eight-member ensemble integra-
tion for 9 yr from January 1980 through December
1988. Results are presented for seasonal means; the four
boreal seasons are referred to as MAM (March–May),

JJA (June–August), SON (September–November), and
DJF (December–February). For any given season, say
MAM, there are a total of 27 individual months from
each ensemble integration. Two representative vari-
ables, the 850-hPa temperature anomaly (T850), and
300-hPa geopotential height anomaly (Z300), are se-
lected to document the AGCM’s seasonal variations in
the lower and upper troposphere. The following sections
describe the seasonal variations by finding reproducible
forced modes and evaluating their contributions to the
extratropical potential predictability.

3. Reproducible forced modes in ensemble

a. Definition of reproducibility

Assume that Xij is a monthly average quantity of the
ith ensemble member of an ensemble with size M (M
5 8 here) for the jth month among N months (N 5 27
months here as noted above) of a particular season. It
is important to keep in mind that the definitions below
are all for a single season, say MAM. The ensemble
monthly mean is defined as

M1
^X& 5 X , (3.1)Oj ijM i51

which is a function of time, and the ensemble seasonal
mean is

M N1
X 5 X . (3.2)O O ijMN i51 j51

Three variances, sI , sE, and sS can be defined:
N M1

2 2s 5 (X 2 ^X& ) , (3.3)O OI ij jMN j51 i51

N1
2 2s 5 (^X& 2 X) , (3.4)OE jN j51

M N1
2 2s 5 (X 2 X) , (3.5)O OS ijMN i51 j51

where sI , a measure of the ensemble spread, reflects the
internal ‘‘chaotic’’ variability of the atmosphere, where-
as sE measures variability that may be induced by the
external forcing, sometimes referred to as the external
variability. These variances satisfy the relationship 2sS

5 1 . As revealed in later sections of this study,2 2s sI E

sE almost always includes some amount of internal vari-
ability that is not directly attributable to externally im-
posed forcing.

Traditionally, the potential predictability of some field
in an ensemble of AGCM integrations is assessed using
the ratio of external to internal variability, sE : sI , or
some closely related quantity. If the internal variability
does not dominate the external variability, one can say
that the seasonal atmospheric variation is potentially
predictable.

Stern and Miyakoda (1995) assessed the feasibility
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FIG. 1. Anomalies of ensemble integrations from ensemble-mean
seasonal climate for 850-hPa temperature during MAM at a selected
grid point in the Tropics (08, 1258W) (upper panel) and the extra-
tropics (608N, 1258W) (lower panel). Circles denote the ensemble-
mean anomaly, ^X &j 2 X , and crosses denote individual ensemble
member anomalies, Xij 2 X .

of seasonal forecasts inferred from an ensemble of mul-
tiple AGCM simulations by defining the reproducibility
for an ensemble. In the present study, a time-mean re-
producibility is defined as

sIR 5 1 2 , (3.6)
sS

which will be referred to as simply the reproducibility
in the following. When the internal chaotic variability
(sI) is very small, R will be close to 1 and the ensemble
is highly reproducible, indicating that the seasonal vari-
ation is largely controlled by external forcing. This def-
inition of reproducibility is somewhat different from that
used by Stern and Miyakoda, who initially defined their
reproducibility as sI( j)/sS with the ensemble variance
at a time, sI( j), and therefore R defined as a function
of time. To measure cumulative reproducibility over the
ensemble integration period, Stern and Miyakoda de-
fined a time-averaged reproducibility, which is quali-
tatively consistent with 1 2 R as defined in (3.6); note
that this means that high reproducibility in Stern and
Miyakoda was associated with small values of their met-
ric.

Reproducibility can be used to determine if the dis-
tribution of individual predictions within the ensemble
shows some systematic reproducible behavior or wheth-
er it is unpredictable. For example, Fig. 1 shows the
ensemble integrations for T850 at selected grid points
in the Tropics (08, 1258W) and the extratropics (608N,
1258W) during MAM. It is evident that in the Tropics
the ensemble members are close together, whereas those
for the extratropics have relatively large scatter. Figure
7a shows the geographic distribution of reproducibility
as defined in (3.6) and confirms that large values of R
are primarily confined to the Tropics consistent with the
results of Stern and Miyakoda (1995).

b. Reproducible forced modes

The features appearing in Figs. 1 and later in Fig. 7a
indicate that the tropical seasonal atmospheric variation
is dominated by the external forcing, whereas in the
extratropics the internal variation is so large that the
influence of the external forcing is difficult to detect.
This section presents a method for extracting that part
of the variability in the AGCM that is highly repro-
ducible, even in extratropical regions that are dominated
by internal variability.

Monthly mean anomalies of the ith ensemble member
for the jth month may be considered to be composed of
three parts:

Xij 2 X 5 1 1 ,I IE EY Y Yij ij ij (3.7)

where is that part of the internal variation that is notIY ij

reproducible and has no contribution to the ensemble
mean (^Y I& j 5 0), represents the highly reproducibleEY ij

part, which is a direct response to the external forcing,
and is the part with low reproducibility that alsoIEY ij

contributes to the ensemble mean. Here may be in-IEY ij

duced by interaction between external forcing and in-
ternal processes but is dominated by the effects of in-
ternal variability. The ensemble-averaged anomaly re-
sults only from the latter two parts; that is,

^X& j 2 X 5 ^Y IE&j 1 ^YE& j. (3.8)

The second term on the right side of (3.8) (the repro-
ducible part) is the key to potential predictability. If this
component dominates the complete ensemble mean, po-
tential predictability will exist. However, in the presence
of ‘‘noise’’ from the other two components, andIY ij

, it becomes problematic to extract this reproducibleIEY ij

component.
For a particular geographic location, it is difficult to

detect the reproducible component locally. In this study,
reproducible global modes are derived from the ensem-
ble and the local reproducible component is then com-
puted by assessing the local contribution from the global
modes. In principle, the reproducible modes are fun-
damentally forced modes resulting from some kind of
external forcing, and the existence of reproducible
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FIG. 2. Spatial patterns of the leading EOF of ensemble-averaged 850-hPa temperature anomalies for (a) MAM, (b) JJA, (c) SON,
and (d) DJF.

modes depends on whether the external forcing can win
a competition with the internal chaotic processes.

The reproducibility of a given spatial pattern for a
given mode can be assessed by examining the time se-
ries of the projection of the individual ensemble monthly
means onto the spatial pattern. Then the reproducibility
of the time series corresponding to that spatial pattern
is assessed. High reproducibility indicates that the pat-
tern is less affected by atmospheric internal variability.
In this study, the spatial patterns of interest are computed
by performing an EOF decomposition of the ensemble-
averaged anomalies:

N

^X& 2 X 5 a P (r), (3.9)Oj jk k
k51

where ajk is the principal component at the jth month
corresponding to the kth EOF spatial pattern, Pk(r),
where r is a vector spanning the phase space of the
AGCM (a vector composed of the value of a field at
each model grid point for our purposes).

Figure 2 shows the spatial pattern of the leading EOF
of the ensemble-averaged T850 anomaly for the four
different seasons. The spatial structure in the Tropics is
characterized by the classical ‘‘ENSO pattern’’ with
large amplitude in the eastern equatorial Pacific and
little seasonal dependence. The spatial patterns in the

extratropics, especially over North America and Asia,
exhibit obvious seasonality. In the synopsis that follows,
the signs of the anomalies are those that occur in con-
junction with a positive anomaly in the east tropical
Pacific. Over North America in winter (Fig. 2d) a large
positive center in north Canada accompanies a negative
center in the southeast United States, whereas in summer
(Fig. 2b) a negative center occupies the central part of
North America with weak positive areas shifted to Alas-
ka through eastern Siberia. Over Asia, seasonality is
particularly evident in southeast Asia, with a positive
center in summer (Fig. 2b) but negative center in winter
(Fig. 2d). The spatial patterns for MAM and SON (Figs.
2a and 2b) seem to be intermediate to those for DJF
and JJA.

Similar characteristics can be observed in the spatial
patterns of the leading EOF for the ensemble-averaged
Z300 anomaly field (not shown). The spatial pattern
over the eastern equatorial Pacific appears to be roughly
symmetric about the equator and is seen throughout the
year; this might be attributed to the Rossby wave re-
sponse to the ENSO-related SST forcing. In the extra-
tropics of the Northern Hemisphere, the Pacific–North
American (PNA) pattern is dominant in winter as well
as in spring, whereas a zonally elongated pattern spans
the central part of North America in summer and in fall.
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FIG. 3. Distribution of simultaneous correlation between global SST
anomaly and (a) the first principal component and (b) the second
principal component of ensemble averaged 850-hPa temperature
anomaly during MAM. Contour interval is 0.2. Regions of correla-
tions greater than 0.4 are heavily shaded and regions less than 20.4
are lightly shaded.

However, only in JJA and SON is a wave train pattern
seen in the Southern Hemisphere.

Overall it is evident that the first EOF of the ensemble
mean is fundamentally dominated by the ENSO-like
pattern as revealed in many previous studies (e.g., Wal-
lace and Gutzler 1981). This can be further confirmed
by Fig. 3a, which shows the spatial distribution of the
temporal correlation of the first principal component of
the ensemble-averaged T850 with global SST anoma-
lies, again revealing a typical El Niño pattern.

The relation of the other EOFs to the external forcing
appears to be somewhat complicated. This is partly be-
cause there is no globally dominant external forcing
signal except for ENSO, and partly because more in-
ternal processes are involved in the higher EOFs. How-
ever, it is still possible that some of the higher-order
EOFs reflect the effect of non-ENSO external forcing.
For example, Fig. 3b shows the temporal correlation of
the second principal component of ensemble-averaged
T850 with global SST anomalies during MAM. Larger

values of the correlation are found in midlatitudes
(around 308N) of the North Pacific, rather than in the
equatorial Pacific as in Fig. 3a.

Projecting the original ensemble integrations onto the
kth ensemble-average EOF pattern can reveal to what
extent the EOF is affected by internal processes versus
external forcing. In terms of the spatial patterns defined
in (3.9), one can define an ensemble of projected prin-
cipal components, bijk, for the kth ensemble-average
EOF by

b 5 (X 2 X)P (r). (3.10)Oijk ij k
r

The projected principal components (bijk, k 5 1, . . . ,
N) do not form a complete set for the ith ensemble
member. However, the ensemble mean of all of the pro-
jected principal components does form a complete set
for the ensemble mean (hereafter the usage of complete
set is in the sense of ensemble mean), since the ensemble
average of bijk is the same as the principal component
of the original ensemble mean—that is, ^b& jk 5 ajk. The
projected components indicate the contribution that each
ensemble member can make to the ensemble mean.

Figure 4 illustrates the projected principal component
ensemble for the first ensemble-average EOF for T850
for the four seasons. Consistent with the spatial pattern
in Fig. 2, the first principal component time series of
the ensemble mean exhibits the ENSO signals with
peaks in 1982–83 and 1986–87 for all seasons. The
individual projected principal components display very
little scatter demonstrating that this first EOF is highly
reproducible with values of reproducibility exceeding
0.59 for all seasons [here the reproducibility for the
projected principal components was computed with a
definition analogous to (3.6)]. Note that the reproduc-
ibility found for an eight-member ensemble of red noise
having the same 1-month autocorrelation is about 0.1.
This reveals that the first mode is predominantly a re-
sponse to external forcing and is mostly unaffected by
the presence of internal atmospheric noise.

Generally, the value of reproducibility of the pro-
jected principal component ensembles decreases with
increasing EOF order for all the seasons, as shown in
Fig. 5. However, the distribution of reproducibility as
a function of EOF order has obvious seasonal depen-
dence. The largest number of relatively reproducible
EOFs was found in summer, with the fewest found in
winter. This may simply indicate that the internal vari-
ability is strongest in winter but weakest in summer.

It is of particular interest that, besides the first EOF,
relatively high reproducibility is also found for some
higher-order EOFs, which are generated by non-ENSO-
related boundary forcing such as midlatitude SST anom-
alies (shown in Fig. 3b). As discussed in the next sec-
tion, those relatively reproducible modes controlled by
non-ENSO-related boundary forcing are as important in
contributing to the ensemble mean over some local
regions as are the ENSO-related modes.
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FIG. 4. Projection of ensemble members on the first principal component of the ensemble mean, bij1, for 850-hPa temperature anomalies
for (a) MAM, (b) JJA, (c) SON, and (d) DJF. Circles denote the ensemble mean of the projections and crosses mark the projections of the
individual members.

c. Reconstruction of ensemble

The results above indicate that the ENSO-forced EOF
is highly reproducible in all seasons and that some ad-
ditional predominantly forced EOFs also exist. Since
reproducibility is found to decrease with increasing EOF
order, one can easily reconstruct the ensemble based
only on those modes that are relatively reproducible.
This reconstructed ensemble should be useful for iso-
lating the locally reproducible components of the en-
semble and for further understanding the sources of po-
tential predictability in the extratropics.

Using the projected principal components defined in
(3.10), the reconstructed anomaly of a monthly mean
quantity for the ith ensemble member and the jth month
can be written in terms of the first K reproducible modes
as

K

KZ 5 b P (r). (3.11)Oij ijk k
k51

As discussed in section 3b, two types of atmospheric
internal variability can exist. One appears to be purely
noise and has nothing to do with the ensemble mean.
The other is a result of internal processes interactively
mixed with effects of external forcing. Reconstructing

an ensemble in terms of the EOFs of the ensemble mean
has two advantages. First, the reconstruction can elim-
inate chaotic variation, which is independent of the orig-
inal ensemble mean. If the reconstruction is based on a
complete set of N EOFs (i.e., K 5 N), the reconstructed
ensemble-averaged anomaly is exactly the same as that
for the original ensemble mean—that is, ^ZN& j 5 ^X&j

2 X . However, the reconstructed ensemble mean does
not include the noise:

5 Xij 2 X 2 ,I NY Zij ij (3.12)

from (3.7) that is independent of the ensemble mean.
Second, by excluding higher-order EOFs that are pri-
marily a result of internal chaotic processes—that is,
eliminating the unreproducible component in (3.7),IEY ij

one can isolate the local reproducible component, the
term in (3.7).EY ij

Suppose that the first L EOFs are relatively repro-
ducible. Using (3.11) together with (3.7) and (3.12), the
two components, which could both be significant to the
ensemble mean, can be calculated: the reproducible
component,

5 ,E LY Zij ij (3.13)

and the unreproducible component,
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FIG. 5. The reproducibility of the projected principal components, plotted as a function
of EOF order.

5 2 .IE N LY Z Zij ij ij (3.14)

Retaining the first L EOFs is not optimal, but the results
are not particularly sensitive to this truncation (see, e.g.,
Fig. 10). The determination of the number of retained
EOFs, L, is an important issue to be discussed in the
next section.

Both advantages discussed above can be seen in Fig.
6, which presents a comparison of the original and re-
constructed ensembles of T850 anomalies at a selected
grid point (608N, 1258W) during MAM. A notable re-
duction of noise in the reconstructed ensemble in terms
of a complete set of 27 EOF modes ( ) is observed inNZ ij

Fig. 6b relative to the original ensemble (Fig. 6a). Note
that the ensemble means of the two panels are the same.
The bottom panel shows the reconstructed ensemble in
terms of only the first EOF mode, 5 . The highlyE 1Y Zij ij

reproducible time series in Fig. 6c, largely a response
to ENSO, dominates the original ensemble mean (Fig.
6a). At least at this grid point, the highly reproducible
externally forced component contributes significantly to
the local ensemble mean.

d. Geographic distribution of reproducibility

One goal of the method developed here is to find the
preferred geographic regions with potential predict-
ability. The reconstruction of the ensemble in terms of
reproducible modes can isolate part of the externally

forced signal. However, the selection of the number of
modes to be retained in the reconstruction seems some-
what arbitrary. The transition from reproducible modes
to unreproducible higher-order modes appears to be
gradual. In addition, retaining too many modes leads to
a reconstruction that contains noise, which obscures the
reproducible signal, whereas retaining too few modes
can eliminate useful reproducible information.

As an example, the reproducibility of the reconstruct-
ed ensemble in terms of all of the EOFs (i.e., ), de-NZ ij

noted as RN 5 1 2 / , is examined first. Such aN Ns sI S

reconstruction reduces noise without altering the en-
semble mean. The geographic distribution of high re-
producibility based on the untruncated reconstructed en-
semble indicates where the original ensemble mean has
potential predictability. Figure 7b presents the distri-
bution for MAM. Comparing with the raw reproduci-
bility shown in Fig. 7a, increased areas with high re-
producibility can be observed in the extratropics, es-
pecially over North America. In areas with high repro-
ducibility in Fig. 7, the reproducible forced modes
dominate the ensemble mean implying that the ensemble
mean is locally potentially predictable.

It is encouraging to find some extratropical regions
where the ensemble mean has significant reproducible
components. However, applying a more truncated EOF
filter may be able to extract additional signal. Figure 8
shows the percentage of grid points with reproducibility
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FIG. 6. Time series of (a) original ensemble anomaly, Xij 2 X ; (b)
reconstructed ensemble with a complete set of EOF modes (27
modes), ; and (c) reconstructed ensemble in terms of the leading27Z ij

EOF mode, , for 850-hPa temperature during MAM at (608N,1Z ij

1258W). Circles denote ensemble mean and crosses denote individual
ensemble members.

FIG. 7. Global distribution of reproducibility for 850-hPa temperature
during MAM (a) for the original ensemble, (b) for the ensemble recon-
structed in terms of a complete set of 27 EOF modes (b), and (c) for
the ensemble reconstructed in terms of the first eight EOF modes. Contour
interval is 0.1 with values larger than 0.4 shaded.

greater than 0.4 as a function of the number of EOFs
retained in the reconstructed ensemble. Generally, this
percentage decreases as the number of retained EOFs
is increased. Figure 7c presents the geographic distri-
bution of reproducibility for T850 during MAM, cal-
culated from the reconstructed ensemble in terms of a
truncated sets EOFs. The number of retained modes was
empirically selected in an attempt to retain as many
relatively potentially predictable features of the com-
plete ensemble mean as possible. The result is that much
larger areas with significant reproducibility can be found
in the extratropics than for the complete reconstruction

shown in Fig. 7b. Of particular interest is the relatively
high degree of reproducibility was found over many
areas of North America and even Asia. These repro-
ducible regions in the truncated reconstructed ensemble
indicate that the lower boundary forcing is able to gen-
erate a forced component that contributes to the ensem-
ble mean in many areas of the extratropics.

The reproducibility of the reconstructed ensemble has
considerable seasonal dependence, as shown in Fig. 8.
In general, summer (JJA) is a preferred season, which
possesses the largest area with high reproducibility,
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FIG. 8. Percentage of grid points with reproducibility no less than 0.4 as a function of number,
K, of EOF modes included in the reconstructed ensemble for 850-hPa temperature anomalies (a)
and 300-hPa geopotential height anomalies (b).

whereas winter (DJF) has the smallest area. The tran-
sition seasons are in between. The seasonal dependence
is dominated by the Northern Hemisphere, which has
the largest preferred area. Also, the seasonal difference
is larger for T850 than for Z300. One might speculate
that winter is the season during which the externally
forced signal is most difficult to detect because chaotic
processes in the atmosphere dominate the forced com-
ponents, whereas summer seems to be, at least for T850,
the most favorable for the external forcing to generate
significant responses.

4. Potential predictability of local ensemble mean

According to the analysis in the last section, two pri-
mary prerequisites for the existence of potential pre-
dictability of the ensemble mean are (i) the local vari-
ance of the ensemble mean is dominated by forced
modes, and (ii) these forced modes are highly repro-
ducible. The simultaneous occurrence of these two cri-
teria implies that the ensemble mean at the particular
geographic location is potentially predictable in a time-
mean sense. This section presents a quantitative measure
of potential predictability based on these criteria.

a. Potential predictability index

As seen in section 3, it is problematic to use repro-
ducibility of reconstructed ensembles in terms of the
ensemble-mean EOFs to examine the local potential pre-
dictability because one does not know how many EOFs
to include in the truncated reconstruction [selection of
L in (3.13)]. Here, the potential predictability index
(hereafter referred to as PPI), a combination of the prin-
cipal modes’ reproducibility and their variance contri-

bution to the ensemble mean is proposed as a practical
tool for assessing potential predictability in this context.

Assume that a reconstructed ensemble in terms of the
first K EOFs is represented by . The reproducibilityKZ ij

of the reconstructed ensemble, denoted as RK 5 1 2
/ , can be calculated according to (3.1)–(3.6). LetK Ks sI S

FK 5 /sE be the ratio of the local variance explainedKsE

by the truncated reconstruction to the original ensemble
mean’s variance (note that FK 5 1 when K 5 N). The
PPI at a particular grid point is defined as

PPI 5 FKRK. (4.1)

Since 0 # RK # 1, and 0 # FK # 1, the PPI satisfies
0 # PPI # 1. Large PPI at a geographic location cor-
responds not only to high reproducibility but also to a
high percentage of variance contribution to the ensemble
mean, thus indicating potential predictability in the time
mean. In addition, as discussed below, PPI analysis can
help to determine the appropriate truncation for the re-
constructed ensemble in order to extract the reproduc-
ible component ( ).EY ij

b. Geographic distribution and seasonality of PPI

One advantage of PPI analysis is that the spatial pat-
tern of potentially predictable areas is relatively insen-
sitive to the EOF truncation as shown in Fig. 9. The
pattern of high PPI regions is relatively consistent for
truncations ranging from 1 through 20 modes. As noted
in the next subsection, this is because the first EOF mode
(i.e., ENSO-forced mode) dominates over most areas
although other forced modes may come into play over
some local regions.

Another advantage of PPI analysis is that one can
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FIG. 9. Global distribution of PPI for 850-hPa temperature during MAM, for different EOF truncations: (a) 1 EOF, (b) 5 EOFs, (c) 10
EOFs, and (d) 20 EOFs.

FIG. 10. Percentage of grid points with PPI larger than 0.4 as a function of number, K, of
EOF modes included in the reconstructed ensemble for 850-hPa temperature anomalies (a) and
for 300-hPa geopotential height anomalies (b).
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FIG. 11. Global distribution of PPI for EOF truncation, L, corresponding to the peak in Fig. 10 for 850-hPa temperature during (a) MAM
(L 5 3), (b) JJA (L 5 4), (c) SON (L 5 2), and (d) DJF (L 5 1). Contour interval is 0.1 with regions greater than 0.4 shaded.

find an EOF truncation that maximizes the geographic
area with a given level of potential predictability. Figure
10 plots the percentage of grid points with PPI larger
than 0.4 as a function of the number of EOFs for T850
and Z300. Generally, the area with PPI exceeding a
threshold becomes approximately constant when the
number of EOFs included in the reconstructed ensemble
becomes large. The PPI distribution for a complete set
of EOF modes (i.e., K 5 N) has the same geographic
area as for the distribution of reproducibility from the
untruncated reconstruction as shown in Fig. 7b.

Figure 10 shows that there is a maximum area as a
function of the number of retained EOFs for each sea-
son. For example, for T850 (Fig. 10a), retaining the
first four EOFs (L 5 4) produces the maximum PPI
area during JJA, whereas retaining only a single EOF
is optimal for DJF (L 5 1), three EOFs is optimal for
MAM, and two for SON. For Z300 (Fig. 10b), the first
two EOFs are optimal for all seasons (L 5 2). The
results here are relatively insensitive to the empirical
PPI threshold value; results for other values greater
than the 0.4 used here gave essentially identical results.

Figure 11 shows the PPI distribution obtained from
the reconstructed ensemble truncated at the peaks

from Fig. 10 for T850. The most significant areas with
large PPI in the extratropics are over North America.
Like the reproducibility examined in section 3 (Fig.
8), the extratropical areas of high PPI have a large
seasonal dependence. During MAM and DJF, the pre-
ferred areas coincide with the traditional PNA regions
with the major center over north Canada and a rela-
tively small center over the southeast United States
(Figs. 11a,d). During JJA and SON (Figs. 11b,c), the
significant areas are shifted to the middle part of North
America. Areas that have potential predictability can
be found over Asia for all seasons except DJF. For
example, large PPI was found over the Indian mon-
soon region during JJA (Fig. 11b), as well as over
southeast China and northeast Asia during SON (Fig.
11c). A similar PPI distribution can be observed in
the Z300 field (not shown).

The PPI distributions in Fig. 11 suggest that the ex-
tratropical potential predictability is lowest during win-
ter, especially for T850. It can be seen from Fig. 10a
that JJA has the largest degree of potential predictability.
For Z300 (Fig. 10b), the seasonality tends to be smaller
although the seasonal variation is qualitatively similar.
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FIG. 12. Global distribution of PPI for 850-hPa temperature during
MAM, calculated from the reconstructed ensemble in terms of (a)
only the first EOF, (b) only the second EOF, and (c) the first three
EOFs. Contour interval is 0.1 with regions of greater than 0.4 shaded.

c. Contribution from ENSO and non-ENSO forcing

The PPI analysis above reveals the preferred geo-
graphic areas where the ensemble mean is potentially
predictable. These areas are attributed to several leading
EOF reproducible modes. Dynamically, the reproduc-
ible modes may be generated by different boundary
forcing. As mentioned in section 3 (Fig. 3b), non-ENSO
boundary forcing can play a role in this process. For
the T850 field, the correlation of the principal compo-
nent time series with SST shows that all modes except
the first are not strongly related to the ENSO SST signal.
These higher-order reproducible modes may come from
non-ENSO boundary forcing such as midlatitude SST
anomalies as shown in Fig. 3b.

One can use the PPI distributions from different trun-
cations to evaluate the contributions from ENSO and
non-ENSO forcing. For T850 during MAM, Figs. 12a,b
show the PPI distribution separately for contributions
from EOF1 (ENSO forcing) and EOF2 (leading non-
ENSO forcing). In comparison with the maximal area
PPI (truncated at three modes) shown in Fig. 12c, ENSO
forcing plays a dominant role in generating potential
predictability of the ensemble mean over most extra-
tropical areas, especially over North America. Figure
12b shows that the leading non-ENSO forcing, such as
SST anomalies in the subtropical western Pacific, makes
a significant contribution to potential predictability over
the Indian monsoon areas, western Europe, and the east-
ern United States where no direct ENSO effect was
found.

The contribution from non-ENSO forcing is concen-
trated in central Africa and southern South America
during JJA, and southeast Asia and northern Canada
during SON (not shown). Very little contribution from
non-ENSO forcing was found during DJF.

5. Comparison to potential predictability statistics
and observations

By investigating the reproducible forced modes and
extracting the local reproducible component (i.e., forced
signal), regions in the extratropics where the local en-
semble mean is potentially predictable can be identified.
It is interesting to explore how the PPI defined in the
previous section relates to previous definitions of po-
tential predictability. In addition, the model results can
be compared to observations in light of the PPI results.
In this section, both of these issues are explored to gain
further insight into the relevance of the PPI approach.

a. Compared with statistical tests

The PPI distribution displays spatial patterns with
centers where the time-mean ensemble mean is strongly
controlled by external forcing. One can compare these
time-mean results to measures of the time-dependent
potential predictability. A statistical test for potential

predictability should measure whether the ensemble
mean is significantly different from the model clima-
tology when there exists a notable external forcing
anomaly. As an example, Fig. 13a shows the spatial
distribution of confidence of Student’s t-test, which in-
dicates if the ensemble mean in MAM of 1983 is sig-
nificantly different from the climatological mean. The
higher confidence centers are roughly consistent with
the larger PPI centers shown in Fig. 11a, suggesting that
much of the time-mean predictability is a result of forc-
ing from strong ENSO events.
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FIG. 13. Global distribution of confidence of Student’s t-test (a)
and KS test significance (b) for 850-hPa temperature during MAM
of 1983. Light (dark) shaded areas indicate values greater than 0.9
(0.99).

FIG. 14. Time series of (a) original ensemble anomaly, Xij 2 X ;
(b) reconstructed ensemble with a complete set of EOF modes (27
modes), ; and (c) reconstructed ensemble in terms of the leading27Z ij

EOF mode, , for 850-hPa temperature during MAM at (608N,1Z ij

1508W) compared with NCEP reanalysis. Closed circles denote en-
semble mean, crosses denote individual ensemble members, and open
circles mark the NCEP reanalysis.

Additional statistical tests such as the Kolmogorov–
Smirnov (KS) test and Kuiper’s test (Anderson and Stern
1996) evaluate whether two distributions are different.
Such tests can be more powerful tools than the Student’s
t-test or F test to evaluate the time-dependent potential
predictability. Figure 13b presents the spatial distribu-
tion of confidence of a KS test comparing the ensemble
distribution for MAM 1983 to the climatological dis-
tribution. Over most areas the difference between two
distributions (ensemble distribution in a particular time
and climatological distribution) is closely related to the
ensemble-mean difference as shown in Fig. 13a.

Both statistical tests for time-varying potential pre-
dictability exhibit similar patterns (Figs. 13a,b) to those
for the time mean from PPI analysis (Fig. 11a). Ac-
cording to PPI analysis, over those preferred extratrop-
ical areas, the local ensemble mean is dominated by a
distinguishable, systematic externally forced compo-
nent. This should be the reason why over those areas
the local ensemble distribution relative to an anomalous
external background is always found to differ from the
climatology. Thus, results from the statistical tests can
be related to global forced modes according to the PPI
analysis.

b. Comparison with NCEP reanalysis field

The PPI analysis has identified extratropical regions
with enhanced time-mean potential predictability. Over
those regions, the ensemble mean is controlled by ex-
ternal forcing rather than by internal chaotic process.
Since the external forcing is specified from the real
world, if the model realistically simulates the real world,
the AGCM ensemble mean should be similar to the
observations in areas with high PPI. In this study, the
external forcing includes only the SST so the potential
predictability here is referred to as the SST-induced sig-
nal.
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FIG. 15. Same as Fig. 14 except for at (308N, 768E).

Figures 14 and 15 display the NCEP reanalysis and
the ensemble behavior of the T850 anomalies during
MAM for the original ensemble (top panel), recon-
structed ensemble in terms of the complete set of EOF
modes (middle panel), and reconstructed ensemble in
terms of a single EOF mode (bottom panel, EOF1 in
Fig. 14 and EOF2 in Fig. 15) at two selected grid points
over regions where potential predictability was found.
Figure 14a shows that the original ensemble mean
agrees well with NCEP reanalysis at this point in the
Gulf of Alaska, with warm anomalies during two warm
event years (1983 and 1987) and cold anomalies during
a cold event (1985), despite the large ensemble spread.
Figure 14b shows that the reconstruction in terms of a
complete set of 27 EOF modes filters a considerable
part of the noise that has nothing to do with the ensemble
mean. Figure 14c demonstrates that the ensemble mean

is largely controlled by the first EOF, which is a repro-
ducible ENSO-related forced mode. At this grid point,
the ensemble mean is predictable, it is determined by
the ENSO-related SST anomaly, and the internal chaotic
processes have limited impact on the ensemble mean.

Figure 15 presents results for a grid point (308N,
768E) over the Indian monsoon region. The simulated
local ensemble mean is also consistent with the NCEP
reanalysis. However, the model ensemble mean is dom-
inated by the second EOF mode, which is related to
non-ENSO boundary forcing as shown in Figs. 3b and
12b. In this case, the first EOF mode (ENSO mode)
makes a relatively minor contribution to the ensemble
mean.

Figure 16 shows the spatial distribution of temporal
correlation between the model ensemble mean and the
NCEP reanalysis of T850 anomalies in MAM. Although
the correlations are not generally large, over those
regions (such as most of the Tropics, Alaska, the south-
eastern United States, and part of the Indian monsoon
region) where good potential predictability was found
with PPI analysis, simulated T850 anomalies agree well
with the observations. To a first approximation, the mod-
el ensemble mean correlates with the observations only
over regions with large PPI values.

The fact that the simulated ensemble-mean anomalies
over selected regions such as the southeastern United
States, Alaska coast, and even Indian monsoon areas
where there exists potential predictability have been
found to be reasonably consistent with the observations
is encouraging. This confirms not only that the ensemble
average forecasts are effective, but that the current mod-
el has some ability to simulate SST effects on atmo-
spheric seasonal variations.

6. Discussion and conclusions

An approach to assess potential predictability of the
extratropical atmospheric seasonal variations produced
in ensemble integrations forced with prescribed ob-
served SSTs has been developed in this study. EOF
decomposition was used to show that there exist some
modes that are less affected by the internal chaotic noise
of an AGCM and thus appear to be highly reproducible.
These reproducible modes are fundamentally forced
modes that are closely related to both ENSO and also
non-ENSO-related forcing. By reconstructing the en-
semble in terms of a complete set of EOF modes, some
part of the internal variability, which appears to be in-
dependent of the local ensemble mean, can be excluded
from the ensemble without altering the ensemble mean.
Reconstructing the ensemble in terms of a subset of the
more reproducible modes (forced modes) can further
reduce the impacts of internal atmospheric noise and
isolate the externally forced response even in regions
where that response is insignificant compared to inter-
nally generated atmospheric noise.

The PPI, which combines the reproducibility with the
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FIG. 16. Spatial distribution of temporal correlation between model and NCEP reanalysis of
850-hPa temperature in MAM; contour interval is 0.2 with values greater than 0.2 shaded.

local variance contribution, was defined to isolate po-
tentially predictable signals over the largest possible
extratropical area. Over the regions with larger PPI we
say that the ensemble mean whose major part as a dis-
tinguished reproducible component represents the SST
effect is potentially predictable. Extratropical potential
predictability is found primarily over North America
and part of the Asian monsoon region. Although ENSO-
related SST effects are dominant, especially over North
America, non-ENSO SST anomalies were found to be
of considerable importance in some seasons over some
regions such as the Indian monsoon areas in MAM,
central Africa in JJA, and Southeast Asia in SON.

Quantitative analysis of the extratropical potential
predictability with PPI has shown that the preferred geo-
graphic areas have obvious seasonality. For the 850-hPa
temperature, for example, potentially predictable
regions during spring and winter are confined to Alaska,
northwest Canada, and the southeastern United States—
that is, the traditional PNA region, whereas, during sum-
mer and fall they are confined to the middle part of
North America. It has also been shown that the JJA
season possesses the largest potentially predictable area
while DJF has the least. The MAM and SON seasons
are intermediate.

The seasonality of extratropical potential predict-
ability indicates the influence of the annual cycle on the
relative impact of anomalous lower-boundary forcing.
However, as argued by Brankovic et al. (1994), there
are two potentially conflicting effects of the annual cycle
on extratropical predictability. Dynamical teleconnec-
tions between the Tropics and extratropics are stronger
in winter when potential vorticity gradients and hence
Rossby wave dynamics are more intense, suggesting the

extratropics has larger predictability conferred through
tropical SSTs in that season. On the other hand, the
internal chaotic dynamics of the atmosphere is weaker
in summer, suggesting a relatively stronger role for ex-
tratropical lower-boundary forcing and hence enhanced
potential predictability. The model used in this study
found that wintertime was not a preferred season for
extratropical potential predictability, consistent with the
European Centre for Medium-Range Weather Forecasts
(ECMWF) model (Brankovic et al. 1994). However, the
model used here suggests the preferred season is boreal
summer, whereas the ECMWF model favors the spring
season. Some possible explanations for this difference
are the use of a perfect model framework in the present
study and the fact that this study depends solely on
boundary forcing while the ECMWF studies make use
of the initial atmospheric conditions.

The PPI analysis method seems to be effective in
uncovering the preferred geographic regions and fa-
vored season for the extratropical potential predictabil-
ity. It provides considerable useful information in the
extratropics, which cannot be described with the direct
measure of reproducibility defined by Stern and Mi-
yakoda (1995) due to large chaotic variability. The re-
sults from the PPI analysis are consistent with those
from the statistical tests for time-varying potential pre-
dictability proposed by Anderson and Stern (1996).
However, unlike the statistical tests, the PPI analysis
may give additional insight into the dynamics leading
to the potential predictability. According to this analysis,
whether the ensemble average is potentially predictable
is determined by whether there exist highly reproducible
forced modes that dominate the local ensemble mean.
A key point is that there must be some sort of repro-
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ducible forced modes that are not distorted by internal
dynamics. Fortunately, in the current model, the ENSO-
forced modes satisfy these conditions for all seasons
and non-ENSO-forced modes do so for all seasons ex-
cept for DJF. It is encouraging to note that for those
geographic regions with high potential predictability,
the simulated ensemble mean agrees well with obser-
vations.

The results obtained from this study have some im-
plications for seasonal predictions. Due to the large cha-
otic variability, the prediction of extratropical seasonal
variation must be based on an ensemble of forecasts
rather than on individual forecasts. Also, despite the
larger ensemble scatter in the extratropics useful infor-
mation is available from the external forcing over some
selected regions. In the current model, for example, the
ensemble average simulation is able to extract useful
information over North America. Since the SST forcing
is prescribed from observations, the results from the
forced ensemble are an approximate upper bound on the
AGCM’s capability to forecast seasonal variations.

There are a number of caveats to the conclusions
presented here. First, the external forcing used in the
AGCM integrations is only the SST. If other lower
boundary forcing such as soil moisture, snow cover, and
sea ice anomalies are included, potential predictability
might be enhanced to an unknown degree. The poten-
tially predictable regions in the present study were main-
ly limited to North America because the PNA region is
unusually sensitive to the SST. Second, the results could
be influenced by systematic errors in the AGCM, which
could cause the detected regions of potential predict-
ability to be misplaced or distorted. However, this model
does appear to be relatively successful in simulating
climatology and anomaly patterns over the PNA region.
The impact of model systematic error on potential pre-
dictability should be a focus of future research. Third,
this analysis is based on an ensemble of AGCM sim-
ulations, not forecasts. The impact of initial conditions
would have an influence on the behavior of forecasts;
in general, this should lead to a decrease in potential
predictability (and predictability) with lead time. Fourth,
due to interaction among air–sea, air–land, and air–ice
systems, the change of one type of lower boundary con-
dition would influence another. The final evaluation of
potential predictability should be based on results from
a fully coupled model of the complete climate system.
Finally, as stated in the previous section, the use of the
ensemble average forecast is the most straightforward
application of ensemble forecasts. As long as the en-
semble distribution remains quasi-normal, the use of the
ensemble mean is straightforward. However, if the en-
semble distribution is not normal, the ensemble average
forecast may not be a particularly good choice for pre-
diction. Because of a variety of uncertainties such as
initial conditions and model physical parameterizations,
a more reasonable seasonal prediction with GCMs
would be based on probabilistic forecasts. How to pro-

duce and evaluate the probabilistic forecasts from model
ensemble forecasts thus become another important issue
(Anderson 1996). It seems likely that seasonal predic-
tion with GCMs could be significantly improved with
further understanding of the issues discussed above.
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