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Abstract Most of the uncertainty in the climate sensi-
tivity of contemporary general circulation models
(GCMs) is believed to be connected with differences in
the simulated radiative feedback from clouds. Tradi-
tional methods of evaluating clouds in GCMs compare
time–mean geographical cloud fields or aspects of pres-
ent-day cloud variability, with observational data. In
both cases a hypothetical assumption is made that the
quantity evaluated is relevant for the mean climate
change response. Nine GCMs (atmosphere models
coupled to mixed-layer ocean models) from the CFMIP
and CMIP model comparison projects are used in this
study to demonstrate a common relationship between

the mean cloud response to climate change and present-
day variability. Although atmosphere–mixed-layer
ocean models are used here, the results are found to be
equally applicable to transient coupled model simula-
tions. When changes in cloud radiative forcing (CRF)
are composited by changes in vertical velocity and sat-
urated lower tropospheric stability, a component of the
local mean climate change response can be related to
present-day variability in all of the GCMs. This suggests
that the relationship is not model specific and might be
relevant in the real world. In this case, evaluation within
the proposed compositing framework is a direct evalu-
ation of a component of the cloud response to climate
change. None of the models studied are found to be
clearly superior or deficient when evaluated, but a cou-
ple appear to perform well on several relevant metrics.
Whilst some broad similarities can be identified between
the 60�N–60�S mean change in CRF to increased CO2

and that predicted from present-day variability, the two
cannot be quantitatively constrained based on changes
in vertical velocity and stability alone. Hence other
processes also contribute to the global mean cloud re-
sponse to climate change.

1 Introduction

General circulation models (GCMs), which include
representations of the complex physical processes in the
climate system, are the primary tools used for climate
change prediction. However, predictions of climate
change for a given emissions scenario vary between
different state-of-the-art GCMs (Cubasch et al. 2001). A
leading order measure of the response of the climate
system to an external forcing is the climate sensitivity,
defined as the global mean surface temperature response
due to a doubling of CO2 once the climate system has
reached an equilibrium state (e.g. Schlesinger and
Mitchell 1987). Recent estimates using the instrumental
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temperatures from the mid nineteenth century to pres-
ent-day provide only a limited constraint on the climate
sensitivity (Andronova and Schlesinger 2001; Forest
et al. 2002; Gregory et al. 2002; Knutti et al. 2002). The
likely range of climate sensitivity was first estimated by
the National Academy of Sciences (1979) to be between
1.5 and 4.5 K. Based largely on the range of predictions
from different GCMs, successive reports of the Inter-
governmental Panel on Climate Change (IPCC) have
not found sufficient evidence to change this estimate
(Houghton et al. 1990, 1992, 1996, 2001), although some
GCMs exist with a higher climate sensitivity (e.g. Mur-
phy et al. 2004). Since climate change impacts are likely
to be quite different for a climate sensitivity of 1.5 K
versus 4.5 K (or higher), it is desirable that this uncer-
tainty is reduced if policy makers are to have confidence
in making potentially costly socio-economic decisions
regarding climate change mitigation and adaption
strategies.

Changes in clouds (amount, height and/or optical
properties) have the ability to amplify or suppress the
warming due to increased CO2. This radiative feedback
from clouds is believed to account for much of the range
of climate sensitivity in contemporary GCMs (e.g. Cess
et al. 1990; Senior and Mitchell 1993). Cloud radiative
forcing (CRF), defined as the radiative effect of cloud on
the radiation budget at the top of the atmosphere, pro-
vides a relatively simple measure of the radiative effect of
cloud on the climate system (Charlock and Ramanathan
1985). Changes in CRF occurring in response to an
external forcing may be used to compare cloud feed-
back, although processes not associated with cloud
changes can also affect the change in CRF (e.g. Zhang
et al. 1994; Soden et al. 2004).

Traditionally, evaluation of cloud in GCMs has been
based on comparing climatological maps of cloud vari-
ables (typically CRF or total cloud amount) simulated
by the GCM with observational data. More recently,
process-based evaluation techniques have been devel-
oped which use compositing techniques in order to
stratify the data (e.g. Bony et al. 1997; Ringer and Allan
2004; Tselioudis et al. 2000), with the aim of evaluating
a GCM cloud simulation within a meteorological ‘re-
gime’. Whilst accurately simulating present-day climate
is desirable, and essential for predicting regional climate
change, it does not necessarily follow that a model which
can provide a good present-day simulation of CRF will
also accurately simulate the change in CRF in response
to increased CO2. As climate change continues, it may
become possible to directly evaluate the climate change
CRF response against observational data. However at
present, the satellite observational record is not of suf-
ficient length, and the changes observed to date are not
of sufficient magnitude to detect and attribute a cloud
change signal.

There have been many studies which have examined
relationships between anomalies in cloud and other
variables, either spatially or temporally, in the present-
day climate (e.g. Hartmann and Michelsen 1993; Klein

and Hartmann 1993; Norris and Leovy 1994). Some
have also made a ‘hypothetical’ inference of the results
to the possible mean cloud response to climate change
(e.g. Norris and Weaver 2001; Hanson 1991; Ramana-
than and Collins 1991), albeit with caveats since in many
cases explicit demonstration of a causal mechanism is
difficult. As an example, a negative correlation exists
between low cloud and sea surface temperature in
present-day climate variability, therefore it might be
inferred that there will be a global reduction in low cloud
under climate change. However, most GCM climate
change simulations suggest an increase in low cloud in
some regions, despite all areas showing a warming. This
illustrates the importance of checking that a particular
relationship found in present-day climate variability is
applicable for the climate change problem, before
insisting that all models must be able to reproduce it in
order to have confidence in their climate change pre-
dictions. There have only been two studies which have
attempted to ‘directly’ demonstrate that a particular
form of evaluation is relevant for at least some aspects of
the climate change cloud response, namely Bony et al.
(2004) (hereafter B04) and Williams et al. (2003) (here-
after W03). Both of these studies aim to relate the
change in cloud in a climate change simulation to pro-
cesses associated with cloud variability in the present-
day climate, which can then be evaluated. Both studies
are limited to the tropical ocean regions and neither is
able to provide a complete quantitative evaluation of the
climate change cloud response for the region.

B04 composite monthly mean CRF from three GCM
simulations and Earth Radiation Budget Experiment
(ERBE) observations by 500 hPa vertical velocity (x500).
By assuming that x500 is a good measure of the large
scale dynamics, compositing by this variable will isolate
the ‘dynamic’ response (e.g. geographical shifts in cloud
fields) and B04 refer to the change within each of these
x500 bins as the ‘thermodynamic’ response. B04 find that
the net change in CRF due to changes in the dynamics is
small, and most of the net cloud response to climate
change is ‘thermodynamic’. In addition, they find that
most of the cloud response to climate change occurs in
weakly subsiding regimes due to their high population.
However, B04 acknowledge that evaluating the ther-
modynamic climate change cloud response is more
challenging. Whilst they propose a possible methodol-
ogy to investigate the thermodynamic response with
idealised sensitivity experiments using cloud resolving
and single column models, they do not pursue evalua-
tion of the thermodynamic cloud response in the study.

W03 also use x500 as a measure of the large scale
dynamics, but they composite the change in cloud be-
tween control and 2·CO2 slab model simulations by the
change in x500, and present-day cloud variability by x500

anomalies. In addition to using the change in x500 as a
measure of the large scale dynamics, W03 also com-
posite by the change in sea surface temperature (SST)
relative to the tropical mean warming in the climate
change simulation and by the SST anomaly in the
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present-day simulation. W03 composite both CRF and
cloud amount diagnostics and find good agreement
between the climate change cloud response and present-
day simulation when composited by these variables.
They find that the response of high-top cloud, particu-
larly for thicker convective cloud, is mainly dependent
on the change in x500 whilst the low cloud response is
mainly associated with the SST anomaly. Although the
composited climate change response appears to be
qualitatively similar to variability in the present-day
simulation, especially in regions where the anomalies of
x500/relative SST are largest, W03 note that most data-
points have only small changes in x500/relative SST.
Hence a quantitative evaluation (not carried out by
W03), must weight this region of weak changes in the
x500-SST anomaly considerably higher than those re-
gions with the larger cloud changes. In order to have
confidence that the relationship between the composited
climate change cloud response and present-day vari-
ability might operate in the real world, it should be
shown to exist in several contemporary GCMs which
contain considerable differences in model formulation
(i.e. structural differences in parametrizations). This is a
key requirement of the methodology for evaluation of
cloud response to climate change proposed by W03 and
will be the focus of this paper.

In this study, nine atmosphere–mixed-layer ocean
models submitted to the Cloud Feedback Model Inter-
comparison Project (CFMIP) and to the Coupled Model
Intercomparison Project (CMIP) IPCC 4th Assessment
Report simulation database, are used in order to inves-
tigate a general relationship between the climate change
CRF response and that simulated as part of present-day
variability. The models and observational data are
briefly described in the next section. The data from the
models is composited as described in Sect. 3 in order to
relate the mean cloud response to climate change to
changes in present-day variability. The extent to which
this relationship exists generally amongst the models will
be explored in Sect. 4. It will be shown that the rela-
tionship can be seen in all of the models, hence a com-
parison of the composited present-day cloud variability
with observational data will form an evaluation of cloud
processes which have been demonstrated to be relevant
to (at least some of) the cloud response to climate
change. This evaluation will be pursued in Sect. 5. A
summary and discussion are in Sect. 6.

2 Models and observational data

The experimental design of CFMIP is to initially repeat
the atmosphere-only inverse climate change experiments
of Cess et al. (1990) with SST uniformly increased and
reduced by 2 K. These experiments are being repeated
for backwards compatibility, however such an experi-
mental design does not permit the SST to respond to
local changes in surface fluxes and hence, feedback on
the atmosphere. Therefore, CFMIP also requests par-

allel equilibrium control and 2·CO2 atmosphere–mixed-
layer ocean (slab model) experiments in order to provide
an intercomparison of climate change simulations with a
more realistic pattern of surface temperature response.
The surface temperature of the ocean is maintained close
to climatological values, in the absence of ocean cur-
rents, by use of a monthly varying heat flux. This is
calculated in a calibration experiment (performed for
each model prior to the main control and 2·CO2

experiments) in which the SSTs are reset to climatolog-
ical values at each timestep. Data from the slab model
control and 2·CO2 simulations are presented here.

The diagnostic requirements ofCFMIP are specifically
designed to allow a detailed intercomparison of cloud
processes between GCMs; in particular, output from the
International Satellite Cloud Climatology Project (IS-
CCP) simulator (Klein and Jakob1999; Webb et al. 2001;
http://gcss-dime.gis.nasa.gov/simulator.html) is re-
quired. At this time, data are still being collected and high
temporal resolution data from the ISCCP simulator is not
currently available from many models. Analysis of such
datawill be pursued in future studies. In the present study,
the more traditional diagnostics of monthly mean CRF
from the CFMIP slab model experiments are used. Since
these diagnostics are also requested forGCMs submitting
to CMIP (which requests the same experimental design)
the number of models used in this study can be increased
(by 2) by also including slab models submitted to CMIP
but not CFMIP.

The models used in this study are listed in Table 1 and
together form an ensemble of GCMs with significant
structural differences. The models cover almost a factor
of three in horizontal resolution and a factor of two in
vertical resolution. A mix of prognostic and diagnostic
cloud liquid water parameterisations are present in the
ensemble (together with many other parameterisation
differences). Although there are three Hadley Centre
models included, HadGSM1 and HadSM3 (slab model
versions of HadGEM1 and HadCM3) have considerable
structural differences including a different dynamic core,
resolution and many different or revised physical pa-
rameterisations. Hence they may be considered as being
as structurally different as models from two different
centres. HadSM4 is a development model and contains
aspects of both HadSM3 and HadGSM1.

Since this paper is more concerned with the meth-
odology of demonstrating the relevance of the evalua-
tion rather than the final evaluation, the models in
Table 1 are randomly assigned letters A-I, and will
simply be referred to by their letter for the remainder of
the paper. (Note: the order of the letters does not cor-
respond to the order of models in Table 1).

For the evaluation process, monthly mean CRF data
from the Earth Radiation Budget Experiment (ERBE)
(Barkstrom et al. 1990; Harrison et al. 1990) are used.
TheERBEdataset is available on a2.5�by2.5� grid for the
periodNovember 1984–February 1990 (the periodMarch
1985–February 1990 being used in this analysis). Since
global observations of the compositing variables to be
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introduced in Sect. 3 do not exist, model re-analysis data
must be used to stratify the ERBE data. Two re-analysis
datasets are utilised and the results compared in order to
investigate possible errors in the choice of re-analysis
model for the data compositing. The re-analyses are the
European Centre for Medium Range Weather Forecasts
(ECMWF) 40 year re-analysis (ERA-40) (http://
www.ecmwf.int/products/data/archive/descriptions/e4)
and the National Center for Atmospheric Research
(NCAR)/National Centers for Environmental Prediction
(NCEP) 40 year re-analysis (Kalnay et al. 1996).

3 Cloud compositing methodology

Several studies (e.g. Bony et al. 1997; Norris and Weaver
2001, W03) find an association between changes in
cloud, particularly high-top cloud, and changes in ver-
tical velocity, over both tropical and mid-latitude
oceans. Whilst B04 find little net contribution to the
climate change cloud response from changes in the dy-
namic regimes, the local change in dynamics is found to
be one of the principle processes associated with the
local response of high cloud in the GCMs. For example,
the geographical distribution of the change in high-top
cloud in response to a doubling of CO2 and the change
in x500 show close agreement (e.g. Fig. 1a, b. Note that
the colours used in the figures throughout this study are
blue for more cloud/stronger CRF components/pro-
cesses increasing cloud amount, and red for less cloud/
weaker CRF components/processes reducing cloud
amount).

Recently the lead-author has repeated the analysis of
W03, extended to include weighting by the population of
the bins (not shown). The analysis has been applied to
several of the models submitted to CFMIP. Whilst the
change in high cloud has generally been found to be
associated with changes in vertical velocity, the rela-
tionship between low cloud and the local temperature
response, relative to the mean response, appears to apply
less well in other models and over other geographical
regions. Hence, the relationship found by W03 is
thought to be specific to the Hadley Centre model and

an alternative variable which is more generally associ-
ated with low cloud is required.

In an observational study, Klein and Hartmann
(1993) conclude that the variability of low cloud in the
seasonal cycle is associated more with variations in lower
tropospheric dry static stability, diagnosed in terms of
the monthly mean difference between the potential tem-
perature at 700 hPa and the surface, than with SST. They
argue that this measure of stability can be used as a
simple indicator of the frequency and intensity of lower
tropospheric inversions. Weaver (1999) also identifies the
importance of a lower tropospheric inversion for the
formation of low cloud but in addition, presents the
stability with respect to moist processes. The geograph-
ical pattern and sign of the change in low cloud in re-
sponse to a doubling of CO2 is now compared to mean
change in three measures of lower tropospheric stability
(Fig. 1c–f). The results are illustrated with one model
(Model A), however several of the models have been
investigated using these diagnostics and the results are
qualitatively similar in each case.

Following Klein and Hartmann (1993), the difference
between the potential temperature at 700 hPa and at the
surface is used as a measure of dry stability (h¢: the prime
representing a difference between the two levels;
Fig. 1d). These levels were chosen in order to test for the
presence of a lower tropospheric inversion capping the
boundary layer. 700 hPa is usually above the boundary
layer, hence might be considered representative of the
lower free troposphere. Weaver (1999) reports little
sensitivity in choosing 700 or 500 hpa to represent the
free troposphere. By subtracting the surface value, the
environmental stability for an air parcel rising from
the surface may be crudely estimated. Stable conditions
suggest a strong capping inversion, hence rising air
parcels will be capped and any cloud formed is likely to
be low-topped stratocumulus. Unstable conditions
are likely to generate less low cloud, either because
shallow convection is not capped so strongly (and hence
is less likely to spread into stratocumulus) or, in cases of
strong instability throughout the troposphere, deep
convective cloud with higher cloud tops may form which
obscures the TOA radiative effect of any low cloud. An

Table 1 List of models used in this study (all are atmosphere–mixed-layer ocean configurations of the model). Horizontal resolution is
pre-fixed by ‘T’ for the truncation of spectral models and ‘N’ for half the number of east-west points for grid-point models (this notation
permits approximate comparison of the two model structures)

Model Resolution Nature of cloud scheme Main references

ECHAM5 T63 L32 Prognostic Roeckner et al. (2003)
GFDL AM2 N72 L24 Prognostic GFDL GAMDT (2004)
GISS ER N36 L20 Prognostic Schmidt et al. (2005)
HadSM3 N48 L19 Diagnostic Pope et al. (2000); Williams et al. (2001)
HadSM4 N48 L38 Diagnostic Webb et al. (2001)
HadGSM1 N96 L38 Diagnostic Martin et al. (2005); Johns et al. (2005)
IPSL CM4 N48 L19 Diagnostic
MIROC T42 L20 Diagnostic K-1 model developers (2004)
UIUC N36 L24 Prognostic Yang et al. (2000)

The number of atmosphere levels is prefixed by ‘L’. Also shown is whether the model uses prognostic or diagnostic cloud liquid water in its
large-scale cloud scheme

148 K. D. Williams et al.: Evaluation of a component of the cloud response to climate change



alternative measure of stability, taking moist processes
into account, is the difference in the saturated equivalent
potential temperature at 700 hpa and the equivalent
potential temperature at the surface (h¢e; Fig. 1e). Fi-
nally, the difference in saturated equivalent potential
temperature between the two levels is considered as a
measure of the stability to a saturated air parcel (h¢es;
Fig. 1f). Whilst the pattern of response to a doubling of
CO2 is broadly similar for each of these diagnostics, it
can be seen that there is an increase in h¢ and h¢e in most
regions (i.e. there is an increase in these measures of
stability). In the regions of increased h¢ and h¢e, both
increases and decreases in low cloud can be seen. The
overall increase in dry, and to a lesser extent moist,
stability is associated with the larger warming of the free

troposphere than the surface. This is a common climate
change signal in GCMs (e.g. Colman 2003). The pattern
and sign of the change in h¢es can be seen to be most
closely related to the change in low cloud in Model A
(Fig. 1c, f). The change in h¢es tends to be towards more
unstable conditions in many locations (compared with
the general increase in stability for h¢ and h¢e) due to
more latent heat release at lower levels i.e. for the same
change in h at two different levels, the change in h¢es is
larger nearer to the surface (illustrated by saturated
adiabats narrowing at low levels on a standard ‘tephi-
gram’). The area-weighted spatial correlation for
Fig. 1a, b is 0.85 and for Fig. 1c, f is 0.521, suggesting a

Fig. 1 Model A, 2·CO2

simulation minus control.
a Change in total high cloud
amount (%) (as output from
the ISCCP simulator).
b Change in vertical velocity
(x500 hpa day�1). c Change in
total low cloud (%) (as output
from the ISCCP simulator).
d Change in dry lower
tropospheric stability (h¢, K).
e Change in moist lower
tropospheric stability (h¢e, K).
f Change in saturated lower
tropospheric stability (h¢es, K)

1The correlation for Fig. 1c, d is 0.41 and for Fig. 1c, e is 0.24
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relationship between cloud response and these two
variables.

In order to test which measure of lower tropospheric
stability may be most closely related to changes in low
cloud in the real world, 5-years worth of monthly mean
h¢, h¢e and h¢es from the re-analyses are correlated against
total low cloud amount from ISCCP for the region 60�S-
60�N (which provides around 400,000 spatio-temporal
data-points) (Table 2). Statistically significant correla-
tions exist for all of the measures of lower tropospheric
stability (although the correlations are not very high),
however the correlation of low cloud amount with h¢es is
somewhat greater than for the other measures of sta-
bility when using either re-analysis. It is possibly sur-
prising that the correlations are higher for h¢es rather
than h¢e, which might be expected to be most closely
related to the processes involved in lifting an unsatu-
rated air parcel from the surface. Although it is possible
that this is due to using monthly rather than daily data,
a compositing method similar to B04 has been carried
out using these various measures of stability as com-
positing variables on both daily and monthly data for
two GCMs. Little difference is found when compositing
by h¢e or h¢es between using monthly and daily data
(other than in the range of h¢e/h¢es sampled). A possible
physical explanation for the higher correlation with h¢es
is the following. The temperature profile of the lower
free troposphere, particularly in the tropics, typically
closely follows a saturated adiabat. The measure of a
capping inversion should, therefore, be with respect to a
saturated adiabat rather than a dry adiabat (hence h¢es
rather than h¢). In general, an increase in stability over a
region where low cloud can form will lead to a stronger
inversion and hence more low cloud, however h¢e can
also become more stable if the surface humidity de-
creases. In this case the boundary layer will be dryer and
less low cloud form. Since h¢e as a measure of stability
does not discriminate between these two effects, the
combination of the two opposing processes may lead to
the lower correlation.

W03 composite the cloud response to climate change
at each grid-point by the change in 500 hpa vertical
velocity (x500) and the relative change in SST. They use
monthly mean data so that each month from the 2·CO2

simulation is differenced from the same month of the
control. Such a methodology will include aspects of

variability within the annual cycle which might domi-
nate the association between the climate change re-
sponse and present-day variability, and possibly lead to
an artificially high correlation between the two com-
posites. The long-term mean cloud response to climate
change is the target for this study, hence the 20-year
multi-annual mean climate change response of CRF for
each slab model is composited i.e. one multi-annual
mean difference field between the 2·CO2 and control is
composited for each variable. Each GCM grid-point is
assigned to a bin based on the 20-year mean change in
vertical velocity (D x500) and lower tropospheric stability
(D h¢es) at that grid-point (e.g. Fig. 2a). Hence the
number of data values is the same as the number of grid-
points in the model over the region studied. (The com-
positing has been repeated spatio-temporally for some of
the GCMs using changes in monthly data, as done by
W03, with little difference in the composite mean results
other than in the range of D x500-D h¢es sampled). The
mean h¢es fields are calculated monthly from temperature
and pressure fields and averaged to account for any non-
linearities in determining stability between the monthly
and multi-year time-scales (ideally the stability should
be calculated at even higher temporal resolution,
however these diagnostics were not available from all
of the models). Each grid-point is assigned to a
2.5 hpa day�1D x500 by 2.5 KD h¢es bin. Points which
have changes in x500 of greater than 51.25 hPa day�1 or
less than �51.25 hpa day�1, or changes in h¢es of greater
than 21.25 K or less than �41.25 K are included in the
nearest bin of the composite (i.e. on the perimeter of the
composite space). The range of D h¢es bins is not centred
on zero as it has been found that all models studied show
a slight shift towards more unstable h¢es regimes under
climate change. Hence, the compositing is centred on a D
h¢es of �10 K. The population of each bin is area-
weighted and normalised so that the population inte-
grated across all the bins is one and the value in each bin
is the fraction of the total area analysed. The mean
change in shortwave, longwave and net CRF (DSCRF,
DLCRF, DNCRF) at each GCM grid-point is assigned
to the appropriate bin and the area weighted mean
change in CRF for each bin calculated (e.g. Fig. 2b–d).

All land and ocean points in the tropics and mid-lat-
itudes (60�S–60�N) are included in the compositing, ex-
cept where the monthly mean surface pressure is below
800 hpa (since in these cases the difference in hes from
700 hpa is unlikely to be a good measure of lower tro-
pospheric stability). Polar regions are excluded as ERBE
CRF data are not believed to be reliable at high latitudes,
restricting evaluation in this region. The compositing has
been repeated with land and ocean regions separately
and with the tropics and mid-latitudes separated. The
resulting composites are similar to those presented here
for the whole region, although the areas of the composite
space populated differ in each case (e.g. the largest
changes in stability are mainly over land and the largest
changes in vertical velocity are mainly in the tropics).

Table 2 Correlation between spatio-temporal monthly mean total
low cloud amount in a grid-box obtained from ISCCP and three
measures of monthly mean lower tropospheric stability (see main
text for definitions)

ERA-40 NCAR/NCEP

h¢ 0.36 0.32
h¢e 0.37 0.36
h¢es 0.47 0.44

Correlations using ERA-40 and NCAR/NCEP re-analyses for the
lower tropospheric stability are shown
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Fig. 2 a GCM-mean relative frequency of occurrence (RFO) of D
x500/D h¢es bins for the climate change simulations (2·CO2 mean
minus control mean) i.e. composites were produced for each model
and the composites averaged. b–d GCM-mean change in SCRF,
LCRF and NCRF in response to doubling CO2 i.e. the geographic
pattern of response is composited by D x500/D h¢es for each model

and averaged. e GCM-mean RFO of spatio-temporal monthly-
mean anomalies in x500 and h¢es from the control simulations. f–h
GCM-mean spatio-temporal monthly-mean anomalies of SCRF,
LCRF and NCRF from the model control simulations composited
by D x500/D h¢es. i An interpretation aid for the four quadrants of
the composite space (for use with Figs. 2, 3, 4, 5, 6, 7, 8, 9)
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The composited mean climate change response is
compared with spatio-temporal variability within the
control simulation. Monthly anomalies in CRF are
differenced from the 20 year mean for that month in the
slab model control simulation, so that the number of
data values used is equal to the number of GCM grid-
points in the region multiplied by 240 months. The CRF
anomalies are composited by anomalies in x500 and h¢es
(e.g. Fig. 2e–h). Most of the control simulations use pre-
industrial greenhouse gas emissions, however some use a
CO2 concentration more typical of the late twentieth
century. Compositing anomalies in CRF means that
similar results are obtained regardless of the period
chosen. The control variability compositing was re-
peated for five of the models with parallel atmosphere-
only simulations forced with observed SSTs and late
twentieth century CO2 concentrations. The resulting
variability composites were correlated with those from
the pre-industrial slab control simulations and for the
region of composite space populated in both cases, the
correlations of CRF anomalies was greater than 0.9 for
all models. Note that the control variability will be re-
ferred to as ‘present-day’ variability in this study, even
though the forcing is actually pre-industrial in most
cases.

4 Relating cloud response to climate change
to present-day variability

The GCM-mean change in CRF in response to doubling
CO2 and the present-day CRF variability, composited
by D x500�D h¢es, is shown in Fig. 2 i.e. composites were
produced for each model and the composite average is
shown. ‘Postage stamp’ composites for the individual
models are in Fig. 3. Since each of the models populate
different regions of D x500�D h¢es space, bins towards the
edges of the composite may only be the mean of a few
models. The GCM-mean DCRF composites are only

shown for those bins which are populated by two or
more models. The relative frequency of occurrence
(RFO) of the bins for the climate change composite
occupy both positive and negative values of D x500 and
D h¢es, with the centre of the RFO close to zero (note the
logarithmic scale) (Fig. 2a). However it can be seen that
there is also a large RFO in bins with reduced stability
(up to �20K). Unlike the relative change in SST used by
W03, there is no theoretical constraint on the RFO
distribution in D h¢es space i.e. there is no prior
requirement for the mean of the distribution to be near
to zero for the climate change composite. The GCM-
mean net change in stability is �2.7 K; the net change
for each of the models is given in the left hand column of
Table 3. All of the GCMs studied simulate a net
reduction in saturated lower tropospheric stability in
response to increased CO2. The change in SCRF varies
with both compositing variables: SCRF becoming
stronger (more negative) where there is increased ascent/
reduced descent due to more deep convective cloud
being produced, and where the environment becomes
more stable due to shallow convection being capped and
spreading into stratocumulus. The change in LCRF can
be seen to be mainly associated with the change in ver-
tical velocity, with increased LCRF where there is in-
creased ascent/reduced descent due to the increased
amount of high cloud (as found by W03). The change in
NCRF appears to mainly vary with the change in sta-
bility (Fig. 2d). This suggests that changes in SCRF and
LCRF associated with D x500 are of similar magnitude
and tend to cancel. The observed balance between SCRF
and LCRF in deep convective regions has been noted in
several studies (e.g. Hartmann et al. 2001), however it
remains an open question as to whether the change in
each component under climate change is likely to be
similar. The composites from the GCMs used here
suggest that in response to changes in vertical velocity,
most models simulate changes in SCRF and LCRF of a
similar magnitude.

Table 3 For each model: the RFO-mean change in h¢es; unweighted correlations between the climate change and present-day variability
DCRF composites (e.g. correlation between Fig. 2b, f); correlations between the climate change and present-day variability DCRF
composites, weighted by the climate change RFO (e.g. correlation between Fig. 4a, d)

Model NetD h¢es (K) Correlations

Unweighted Weighted

DSCRF DLCRF DSCRF DLCRF

Model A �2.7 0.75±0.03 0.96±0.01 0.79±0.04 0.91±0.02
Model B �3.1 0.73±0.03 0.86±0.02 0.86±0.04 0.46±0.08
Model C �3.1 0.81±0.03 0.88±0.02 0.60±0.03 0.60±0.05
Model D �3.2 0.77±0.03 0.69±0.04 0.66±0.05 0.84±0.05
Model E �3.8 0.59±0.03 0.65±0.02 0.57±0.04 0.52±0.04
Model F �4.0 0.40±0.04 0.77±0.03 0.68±0.07 0.25±0.09
Model G �2.9 0.65±0.04 0.57±0.04 0.85±0.06 0.86±0.03
Model H �1.7 0.54±0.04 0.90±0.02 0.53±0.09 0.87±0.04
Model I �2.6 0.54±0.03 0.60±0.02 0.70±0.09 0.52±0.07
GCM-mean �2.7 0.80±0.01 0.89±0.01 0.88±0.01 0.72±0.03

Note that the ‘GCM-mean’ is the correlation between the mean climate change and present day composites, rather than the mean of the
correlations
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Monthly variability in x500 and h¢es generally samples
a larger region of the compositing space than the multi-
annual mean climate change simulation (c.f. Fig. 2a, e).

By construction, the present-day variability will be
centred on zero. The changes in x500 which occur as a
mean response to doubling CO2 can be seen to be well

Fig. 3 For each model, the
climate change and present-day
variability composited DSCRF
(left columns) and DLCRF
(right columns) i.e. for each
model from left to right, plots
similar to Fig. 2b, c, f, g
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sampled in present-day variability, however large chan-
ges in stability are sampled less well. In a couple of
models there are a small number of grid-points where
the reduction in h¢es in the mean climate change field is
outside that simulated in present-day variability. How-
ever for the GCMs in question, these points account for
less than 3% of the net change in NCRF, so the lack of a
present-day analogue for these extreme changes only
imposes a limited restriction on the analysis. For the
bins occupied by both composites, the anomalies in
CRF due to present-day variability can be seen to be
reasonably similar to the mean CRF changes under
climate change (c.f. Fig. 2b–d, f–h). This similarity exists
in each of the models with correlations between the two
being mostly in excess of 0.5 (Fig. 3; Table 3 unweighted
correlations). Uncertainty estimates have been added to
each of the correlations in Table 3. These are based on
compositing the climate change difference for each year
of the 20 separately, similarly each of 20 years of the
present-day simulation is composited separately and the
correlations determined for each year. The uncertainty is
calculated as two standard deviations of the inter-annual
variability in the correlation divided by the square-root
of the number of years. This provides approximately a
5% significance assuming a normal distribution and that
each year is an independent sample. It can be seen that
all of the models have a significant positive correlation
for both CRF components.

The correlations between the climate change and
present-day variability composites may be influenced by
the larger CRF changes towards the edges of the com-
posite space. These bins have a smaller RFO and hence,
may be less important for the net change in CRF. For a
quantitative comparison of the climate change and
present-day variability composites, the DCRF in each
bin should be multiplied by the normalised population
of that bin (the RFO) from the climate change com-
posite. By weighting both the climate change and pres-
ent-day variability composites by the climate change
RFO, the two composites can be directly compared
(Fig. 4). Weighting by the population of the bins indi-
cates that those bins closest to the centre of the com-
posite are most important for the net cloud response i.e.

the large number of points with small changes in x500,
h¢es (and CRF) provide a larger contribution to change
in CRF than the few bins with large CRF changes to-
wards the edge of the composite. As with the unweighted
case, the climate change and variability population
weighted composites appear to be very similar. For the
GCM-mean, the correlation between the two for the
change in SCRF and LCRF are 0.88 and 0.72, respec-
tively. The correlations for the individual models are
shown in Table 3. Whilst not always as high as for the
ensemble mean, the correlations for all of the models are
reasonable with the vast majority being greater than 0.5.
The correlations are considerably higher than was ob-
tained for composites with changes in other variables
being used on the x-axis instead of D h¢es2. Even the
lowest correlation (0.25 for the change in LCRF in
model F) has some qualitative similarity between the
climate change and present-day variability composite
(Fig. 5a, b) with LCRF reducing with reduced ascent/
more descent and increasing in bins with the largest in-
creases in ascent/reduced descent (this is also shown by
the higher correlations for the unweighted composite).
However, in the climate change response, the bins with
near zero D x500 show a weak reduction in LCRF and
the high population of these bins provides a significant
contribution to the net change in LCRF. This suggests
that factors other than the change in x500 are affecting
the high cloud response in this model (possibly affecting
changes in cirrus). In contrast with model F, the change
in LCRF in model A is almost completely determined by
the change in vertical velocity, with little evidence for
other processes affecting the climate change response
(Fig. 5c, d).

In general, the weighted and unweighted correlations
are of a similar size, hence the high unweighted corre-
lations are not simply due to the large CRF changes in
bins with a low RFO. The fact that the weighted climate
change and present-day variability composites are sig-
nificantly correlated demonstrates a mechanism which

Table 4 WMC for each model
(e.g. sum across the bins in
Fig. 4a, d, etc.) for the climate
change and present-day
variability composites

Model WMC (Wm�2)

Climate change Variability

DSCRF DLCRF DSCRF DLCRF

Model A 1.7±0.3 �0.4±0.1 2.7±0.4 �0.2±0.1
Model B 2.2±0.2 �1.3±0.2 1.8±0.2 0.1±0.1
Model C 2.4±0.2 �0.8±0.1 2.1±0.4 0.1±0.1
Model D 0.9±0.2 �1.5±0.1 3.4±0.3 �0.8±0.2
Model E 4.5±0.2 �1.7±0.1 2.9±0.3 �0.6±0.2
Model F 3.3±0.2 �1.3±0.1 1.5±0.3 0.2±0.2
Model G 1.2±0.1 �1.1±0.1 2.4±0.3 �1.0±0.2
Model H 0.2±0.1 �0.2±0.1 1.4±0.3 0.0±0.2
Model I 1.1±0.3 �1.1±0.1 1.3±0.3 0.3±0.2
GCM-mean 1.8±0.1 �1.0±0.0 1.9±0.1 �0.1±0.1

2Other variables tested were absolute surface temperature, surface
temperature relative to the local warming, different measures of
stability and near surface relative humidity
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exists in both current climate variability and in the mean
response to climate change. Changes in x500 and h¢es
therefore determine at least a component of (and in
models with a high correlation, most of) the climate
change cloud response at a grid-point.

Integrating the RFO weighted changes in CRF from
all the bins in the composite yields the weighted mean of
the composite (WMC). For the climate change com-
posite this is equal to the net change in CRF in response
to doubling CO2 over the region 60�N–60�S, hence if
uncertainty in the WMC can be reduced then uncer-
tainty in climate sensitivity may also be reduced. The
climate change WMC is shown at the top of each panel
in Fig. 4a–c. The WMC from the present-day variability
CRF anomalies, weighted by the climate change popu-
lation, is a prediction of the change in CRF due to a
doubling of CO2 based on the model’s present-day CRF

variability (after applying the model’s climate change
x500/h¢es response) (Fig. 4d–f). The increase in LCRF in
regions of increased ascent/reduced descent tends to
cancel with the reduction in LCRF where there is re-
duced ascent/increased descent. Therefore most of the
local changes in LCRF are probably associated with
shifts in high cloud which cancel globally, rather than,
for example, regions of ascent becoming more concen-
trated. This is consistent with B04 who find little net
change in CRF associated with changes in the large scale
dynamics. As noted earlier, SCRF varies with both
compositing variables. The overall reduction in stability
results in a weakening of SCRF due to the more
unstable regimes dominating the increase in SCRF at
those points which have become more stable. The
greater dependence of NCRF on stability rather than
x500 can be seen, with the shift to more unstable

Fig. 4 As Fig. 2b–d, f–h, however both the mean climate change
and present-day variability plots have been weighted by the GCM-
mean RFO from the climate change simulation (Fig. 2a). The
composites have been masked so that only bins with a non-zero
RFO in both the climate change and present-day variability
composites are shown. The WMCs are shown at the top of each

figure and are approximately equal to the tropical and mid-latitude
mean CRF response (this would be exact with infinitely small bins
and if points with surface pressures below 800 hPa were included).
The uncertainty estimates on each figure are estimates of the likely
error due to variability in the composites
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Table 5 For each model: the mean climate change weighted, RMS difference (Wm�2) between the model and ERBE data composited by
ERA-40 re-analysis and by NCAR/NCEP re-analysis

Model ERBE/ERA ERBE/NCEP

DSCRF DLCRF DSCRF DLCRF

Model A 2.5 1.0 3.1 1.0
Model B 1.9 1.2 2.2 1.1
Model C 1.2 1.0 1.7 0.9
Model D 2.2 1.4 3.0 1.5
Model E 1.8 1.1 2.3 1.2
Model F 1.4 1.2 1.3 1.2
Model G 1.7 1.6 2.3 2.0
Model H 1.5 1.1 2.0 1.0
Model I 1.2 1.4 1.3 1.1

RMS difference between Figs. 2f and 9b for each model, with the RMS calculation being weighted by Fig. 2a. The model with the lowest
RMS difference (i.e. most similar to observations) is highlighted in bold in each case

Fig. 5 Similar to Fig. 4b, e,
except for Model F and Model
A only
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conditions resulting in a positive change in NCRF of
0.8 Wm�2. The uncertainty estimates are calculated
using similar method as that adopted for the correlation
uncertainty estimates. Additionally, the RFO of the
climate change composite is calculated separately and
the variances added to those due to variability in CRF.

The climate change and variability WMC for each
model are given in Table 4. The uncertainty estimates
for the present-day variability tend to be slightly larger
than the climate change composite due to the
construction of the composite from monthly mean
anomalies compared with a difference in a multi-annual
mean. In general, the estimated error ranges from the

climate change and present-day variability composites
do not overlap, indicating that changes in x500 and h¢es
alone are not sufficient to explain the global mean
change in CRF in response to climate change. This is
not surprising given the complexity and diversity of
model parameterisations and interactions (cloud
parameteri-sations are generally not a simple function of
these two variables!). However, in all cases the climate
change and present-day predicted change in SCRF is
positive, and in most cases the climate change and
present-day predicted change in LCRF is closer to zero
(although this is always negative for the climate change
response).

Fig. 6 Change in each ISCCP
cloud type in response to
doubling CO2 as simulated by
Model A and composited by D
x500�D h¢es. The composites are
weighted by the RFO of the
bins from Model A. WMCs and
uncertainties due to variability
are shown at the top of each
figure
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Similar weighted composites may be produced for
other cloud variables: for example, cloud amount in each
of the ISCCP D2 cloud types (Rossow and Schiffer 1991)
as output by the ISCCP simulator. The climate change
composite, weighted by the RFO of the bins, is shown for
Model A in Fig. 6 and the climate change weighted
present-day variability composite in Fig. 7. For some of
the cloud types (high-top thick and thin cloud types, and
low cloud with a medium optical thickness), the climate
change and variability composites appear to be very
similar (although the WMCs remain inconsistent),
however mid-level-topped cloud and thin low cloud ap-
pear to have less similarity between the climate change
and variability composites. At present, monthly ISCCP
simulator data are only available for four of the models,
but in all of these it is found that high and low-top cloud
(particularly low cloud of intermediate thickness) show
reasonable agreement between the climate change and
variability composites, whereas middle-top clouds show
less agreement. This suggests that processes affecting
mid-level cloud are being excluded from the analysis
presented in this study, possibly explaining some of the
discrepancy in the WMCs between the climate change
and variability composites in Table 3. Future work will
investigate this further.

This study uses atmosphere models coupled to mixed-
layer ocean models since this GCM configuration has
the largest number of structurally different models
available (with the required diagnostics) at the time of
analysis. However, the slab model configuration is not a
pre-requisite of the methodology. The technique could
be applied equally well to transient coupled model sim-
ulations. This has been carried out for coupled model
versions of four of the models used here and the results
for the coupled and slab versions of Model A are shown
in Fig. 8 for comparison. The difference between a 20-
year period centred on the time of CO2 doubling, in a
coupled simulation with CO2 increasing at 1%/year, and
the same period in a pre-industrial control, are analysed
as the climate change response. Since the warming at the
time of CO2 doubling in a transient simulation is less
than the equilibrium warming due to the thermal inertia
of the oceans, the shift to more unstable conditions is
found to be smaller than in the slab composites, hence

the WMC for SCRF is smaller (cf. Fig. 8a, e). However,
for the region of the composite space occupied by both
coupled and slab configurations, the correlation of the
CRF changes is in excess of 0.8 for all of the models,
suggesting the main processes determining the local
cloud response are being simulated in both the slab and
coupled models. In addition, the correlations of the
composited transient climate change CRF with com-
posited present-day variability CRF are similar to those
in Table 3. This implies that the conclusions from this
study are likely to also be valid for the cloud response in
transient coupled model simulations.

The correlation between the climate change and
present-day variability CRF composites in Table 3,
combined with some broad similarity in the 60�N–60�S
WMC, suggests that changes in x500 and h¢es are
important for explaining at least a component of the
cloud response to climate change, and that it can be
related to present-day variability (although other pro-
cesses also contribute to the WMC). Given this rela-
tionship, evaluation of the variability composite will also
be an evaluation of an aspect of the cloud response to
climate change in a GCM.

5 Evaluation of cloud composites

There are two stages to the evaluation of cloud response
to climate change within the compositing framework.
Firstly, an evaluation of whether the change in CRF
associated with the compositing variables correct i.e. is
the cloud response in each bin correct? The second stage
is to determine whether the changes in x500 and h¢es are
likely to be correct i.e. is the climate change RFO of the
bins correct? These questions will be addressed in the
subsequent two sub-sections and the relative importance
of the two in reducing uncertainty between models is
quantified in Sub-sect. 5.3.

5.1 Evaluation of composited CRF

The first part of the evaluation involves comparing the
simulated present-day variability CRF composites with

Table 6 For each model as a difference between El-Niño and a La-Niña: correlations and RMS differences for maps of D x500 (hPa
day�1) and D h¢es (K) between the model and re-analyses; correlations between the composited RFO of the model and re-analyses; the net
change in h¢es (for comparison, net D h¢es for ERA-40 is 0.2 K and for NCAR/NCEP is �1.0 K)

Model Difference in x500 Difference in h¢es RFO NetD h¢es

Corr. RMSD Corr. RMSD Correlation

ERA NCEP ERA NCEP ERA NCEP ERA NCEP ERA NCEP

Model A 0.65 0.62 15.3 14.6 0.69 0.66 2.7 2.8 0.94 0.91 �0.6
Model B 0.69 0.69 13.0 11.0 0.70 0.72 2.6 2.4 0.87 0.91 �0.8
Model C 0.68 0.62 15.9 16.6 0.75 0.76 2.4 2.3 0.95 0.92 �0.5
Model F 0.61 0.68 14.4 11.5 0.68 0.73 2.9 2.7 0.93 0.90 �0.5
Model G 0.62 0.58 13.9 12.0 0.64 0.65 2.8 2.6 0.91 0.92 �0.8

In each case, the model with the highest correlation/lowest RMS difference (i.e. closest to observations) is highlighted in bold
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composited data from ERBE. The observational data
are composited using anomalies in x500 and h¢es from
both ERA-40 and NCAR/NCEP re-analyses for the
period March 1985–February 1990. The two re-analyses
are used to test for any sensitivity of the results to the re-

analysis. Monthly ERBE datasets contain a reasonable
amount of missing data. The approach adopted has been
to simply include all non-missing data points from the
observational dataset and compare with the model
(which has no missing data other than those points with

Fig. 7 Spatio-temporal anomalies in each ISCCP cloud type for the Model A control simulation, composited by anomalies in x500 and
h¢es. The composites are weighted by the climate change RFO of the bins from model A for comparison with Fig. 6. WMCs and
uncertainties due to variability are shown at the top of each figure
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surface pressure below 800 hpa). Since more of the ex-
treme stability anomalies are over land, where data are
often missing, the range of stability anomalies sampled
by the observational data are more constrained than
from the models (Fig. 9a, e). Therefore, evaluation of
points with the largest changes in stability under climate
change is not possible.

Compositing the ERBE data by the two re-analyses
gives very similar results, implying that this aspect of the
evaluation is not sensitive to the choice of re-analysis
(Fig. 9). A root-mean-square (RMS) difference of the
observational and model present-day variability com-
posites provides a simple scalar measure for evaluation.
This could be performed on the unweighted composites,
but differences in the large CRF anomalies towards the
edges of the composite may considerably influence the
results. The centre and slightly more unstable regions of
the composite space are the most important for the mean
climate change response (Fig. 2a), hence an RMS dif-
ference of the unweighted composites may not be a good
measure of the model in those bins which determine the
mean climate change response. Ideally there would be
some independent method (i.e. not using models) for
upweighting the bins which are most important for the
climate change response. Unfortunately, this is not the

case since observed climate change to date is not suffi-
cient to detect a climate change signal of D x500 and D
h¢es. Hence, the observational and model variability
composites from the GCMs are each weighted by the
GCM-mean climate change RFO (Fig. 2a). In using this
mean RFO, the simulated climate change D x500 and D
h¢es from each model is treated as equally likely, although
weighting by the RFO of the individual models does not
greatly influence the results (see also Sect. 5.3). The RMS
difference of the weighted model and observational
composites are given in Table 5. In general there appears
to be more variation in the RMS difference for SCRF
anomalies than LCRF anomalies. Despite the RMS
differences varying by more than a factor of two between
the models, there are no clearly superior or deficient
models, however Models C, F and I are in closest
agreement with the observations for anomalies in both
CRF components, when composited by either re-analy-
ses. The main deficiency in the models which evaluate less
favourably in the SCRF comparison (e.g. Models A and
D), is that changes in SCRF are too sensitive to changes
in h¢es for locations with near-zero changes in vertical
velocity i.e. the variation of DSCRF with D h¢es across the
centre of the composite is too rapid. It is possible that
further discrimination between the models might be

Fig. 8 Climate change and present-day variability DSCRF and
DLCRF, composited by D x500 and D h¢es and weighted by the
climate change RFO. a–d Slab version of Model A with the climate
change response being the equilibrium response to doubling CO2.

e–h Coupled version of Model A with the climate change response
being the period around the time of CO2 doubling in a transient
simulation with CO2 increasing at 1%/year
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made easier if the observational data also sampled the
bins with large reductions in saturated stability.

The WMC of the CRF composites from ERBE, when
weighted by the climate change mean RFO from the
GCMs, can be used as a prediction from observational
data of the change in CRF (60�N–60�S) due to a dou-
bling of CO2, associated with changes in x500 and h¢es,
and assuming the GCM-mean change in x500 and h¢es
(Fig. 2a). The values for ERBE composited by ERA-40
and NCAR/NCEP, respectively are 1.3±0.6 Wm�2 and
1.0±1.0 Wm�2 for the change in SCRF and
�0.2±0.9 Wm�2 and 0.0±1.1 Wm�2 for the change in
LCRF. The error estimates take account of the uncer-
tainty due to internal variability and in the different
climate change RFO between GCMs. They do not in-
clude any estimate of uncertainty in the ERBE data. In
addition, the prediction does not include any estimate of
the contribution from the bins populated in the mean
climate change response but not sampled by the obser-
vations. Comparing these observationally based WMCs
with the model variability WMCs in Table 4, it can be

seen that the DSCRF in several models (e.g. Models A,
D and E) appears to be excessive.

5.2 Evaluation of the change in vertical
velocity/stability

The second part of the evaluation process is to determine
whether the climate change RFO composite is accurate.
The climate change RFO cannot be directly evaluated,
however confidence in a model’s ability to simulate
changes in x500 and h¢es may be obtained by evaluating
changes in these variables as part of present-day vari-
ability. The El-Niño Southern Oscillation (ENSO) is a
primary mode of natural variability in the climate sys-
tem. Five of the models used in this study have parallel
atmosphere-only simulations available, forced with ob-
served SSTs (following the AMIP experimental design).
The difference in mean x500/h¢es fields between an
El-Niño and a La-Niña event from these models is used
to assess the ability of the GCM to simulate tropical

Fig. 9 a, e RFO of monthly spatio-temporal anomalies in x500 and h¢es from ERA-40 and NCAR/NCEP re-analyses. b–d, f–h Anomalies
in SCRF, LCRF and NCRF from ERBE composited by anomalies in x500 and h¢es from the re-analyses
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variability in the compositing variables. The La-Niña
period May 1988–April 1989 is differenced from the
El-Niño period January 1987–December 1987, these
periods being chosen as they are the 12 consecutive
months in the late 1980s when the warm/cold anomaly in
the Niño 3.4 region (5�N–5�S, 120�–170�W) was greatest.

Maps of differences in x500 and h¢es between an El-
Niño and a La-Niña for one of the models (Model A),
ERA-40 and NCAR/NCEP are shown in Fig. 10. Both
re-analyses show a broadly similar pattern with in-
creased ascent towards the central Pacific, a reduction in
stability over the central and eastern Pacific and reduced
ascent/increased stability over the warm pool and sub-
tropical western Pacific. However, there are some dif-
ferences, particularly in terms of the magnitude and
extent of the areas of greatly increased ascent. These
differences will affect the ability to differentiate between
models. A correlation, or RMS difference, of the geo-
graphical map of D x500/D h¢es between the model and
re-analyses provides a measure of the ability of the
model to accurately simulate changes in these variables

(Table 6). The correlations and RMS differences for
both variables vary between GCMs by 20–30%, sug-
gesting that the uncertainty in both variables is similar.
For the change in x500, Model B scores highest for both
the correlation and RMS difference (i.e. highest corre-
lation and lowest RMS difference). For the change in
h¢es, Model C scores the most favourably.

Whilst the ability of the model to correctly simulate
the geographical location of changes in x500 and h¢es is
important for the regional cloud response to climate
change, for the compositing analysis presented above it
is the population of each D x500/D h¢es bin that is
important. Therefore, as an additional measure of model
variation in x500 and h¢es, RFO composites for the re-
analyses and models are correlated for the difference
between the El-Niño and a La-Niña event (Table 6). The
mean change in h¢es is also calculated (the mean change
in x500 being close to zero in all cases). The ENSO RFO
composites for the two re-analyses are somewhat dif-
ferent with ERA-40 being centred on zero change in h¢es
for all changes in x500, whereas the NCAR/NCEP

Fig. 10 The mean difference in
x500 (left) and h¢es (right)
between 12 months of an El-
Niño event (January 1987–
December 1987) and a La-Niña
event (May 1988–April 1989).
The mean difference is shown
for: a, b Model A (atmosphere-
only configuration); c, d ERA-
40 re-analysis; e, f NCAR/
NCEP re-analysis
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re-analysis has a shift to more unstable conditions in
regions of increased ascent/reduced descent (i.e. the axis
of the RFO is tilted from top right to bottom left) (not
shown). This suggests that the two compositing vari-
ables are related in the NCAR/NCEP model (although
the methodology presented in this paper does not re-
quire them to be independent). The net change in h¢es is
�1.0 K for NCAR/NCEP and is slightly positive for
ERA-40. All of the models show a shift to slightly more
unstable conditions with net D h¢es values between those
of the two re-analyses. In addition, all of the composite
correlations are high—Model C correlating the best with
both re-analyses. Overall, the models can be described as
being within the envelope of the re-analyses, although
we are unable to chose between them in terms of the
composited ENSO RFO.

5.3 Relative importance of evaluating changes in CRF
versus changes in RFO

In order to prioritise the development of the above
evaluation methodologies, it is useful to know the rela-
tive importance of the two aspects to the evaluation.
Given that the primary aim is to reveal uncertainty be-
tween GCM simulations, this may be determined by
comparing the range of changes in CRF which occur
from using different model CRF composites with the
range which occurs from applying different model RFO
distributions. Firstly, the GCM-mean climate change
RFO (Fig. 2a) is applied to the present-day CRF vari-
ability composites from each GCM, and the variance in
the composite integrated CRF components calculated.
Secondly, the different GCM climate change RFO dis-
tributions are applied to the observational CRF anom-
aly composite (Fig. 9b–c) (alternatively the GCM-mean
CRF composite could be used) and the variance in the
composite integrated CRF components calculated. The
relative variance of each component is then compared
with the combined sum of the two. The combined var-
iance is similar (but not identical) to the variance in the
present-day predictions in Table 4. If the first compo-
nent accounts for 100% of the combined variance, then
the composited climate change D x500/D h¢es population
is the same for all the models, and differences are entirely
due to differences in the associated change in CRF. In
this case the evaluation in Sub-sect. 5.1 is of primary
importance. Alternatively, if the second component ac-
counts for 100% of the combined variance, then the
models all simulate the same change in CRF for a given
change in D x500/D h¢es, and the uncertainty in the cli-
mate change response is from differences in the RFO of
the compositing variables. In this case, evaluation
methodologies similar to those in Sub-sect. 5.2 require
further development.

Applying this analysis, it is found that 63% of the
combined variance in DSCRF and 84% of the combined
variance in DLCRF is due to the first component (dif-

ferences in the simulated change in CRF within the bin).
Hence, the first part of the evaluation (Sub-sect. 5.1) is
the most important for assessing differences between the
GCM cloud response to climate change. Differences in
the climate change RFO are less important for
accounting for differences in response, which is fortu-
nate since assessing confidence in vertical velocity and
stability changes under climate change has been shown
to be less straightforward. It should be noted, however,
that this result assumes that the climate change response
in the real world lies within the model ensemble. It is
possible that all the model’s are wrong and the actual
change in RFO will be outside the model range.

6 Summary and discussion

This study has applied a compositing methodology in
order to attempt to relate the cloud response to climate
change to present-day variability in a number of con-
temporary GCMs. Reasonably high correlations are
found between the multi-annual mean change in CRF in
response to a doubling of CO2 and anomalies of CRF as
part of present-day variability, when composited by the
change in 500 hpa vertical velocity and saturated lower
tropospheric stability. This suggests that changes in x500

and h¢es are important for at least a component of the local
cloud response to climate change. Since the relationship
has been demonstrated to exist in several models with
significant structural differences, we might have some
confidence that the same relationship will exist in the real
world (unless the parameterisations in all the models are
wrong). The combined tropical and mid-latitude mean
climate change DSCRF, and that predicted from present-
day variability, both tend to be positive. The DLCRF
from both composites tend to be closer to zero, although
all models simulate a small negative change in LCRF in
response to climate change. The quantitative 60�N–60�S
mean DCRF in the climate change composites and the
DCRF predicted from present-day variability are not
consistent, suggesting that processes not accounted for in
the present analysis are also responsible for determining
the net cloud response to climate change. However, since
the correlations and WMCs for the GCM-mean com-
posites are amongst the highest/closest of the models, the
processes not being represented by D x500�D h¢es appear
to be largely specific to individual models.

It is possibly surprising that h¢es appears to be more
closely associated with the low cloud response than h¢e,
since the former contains no information about the
humidity distribution. The full compositing analysis has
been repeated with several of the GCMs using h¢e, but
the correlations between the climate change and present-
day variability composites are poorer and the WMCs do
not show even the broad similarities identified above.
Further process based analysis, possibly involving sim-
ple models and high temporal-frequency diagnostics, is
required in order to fully understand this result.

K. D. Williams et al.: Evaluation of a component of the cloud response to climate change 163



Since composited CRF anomalies in present-day cli-
mate variability have been shown to be important for a
component of the cloud response to climate change,
evaluation against observational data forms a ‘direct’
evaluation of an aspect of the climate change response.
The evaluation process may be divided into two stages:
an evaluation of the CRF anomalies within each bin and
an evaluation of the climate change bin population.
Differences in the former have been found to account for
most of the difference in the net response between
GCMs. The first stage of the evaluation involves com-
parison against composited observational data. The re-
sults are found to be relatively insensitive to the choice
of re-analysis used for the compositing. This study used
ERBE data for the observed CRF, with no account
being taken of errors in this dataset. An extension of the
evaluation method might include compositing an alter-
native CRF dataset such as from the Clouds and Earth’s
Radiant Energy System (CERES) (Wielicki et al. 1996)
in order to investigate the effect of errors in the obser-
vational data. The second stage of the evaluation pro-
cess is less straightforward since the changes in x500 and
h¢es due to climate change cannot be directly evaluated.
In this study, the ability of the GCMs to simulate
changes in these variables in an ENSO cycle has been
used to assess confidence in the likely ability of the
model to simulate changes in these variables in response
to doubling CO2. Of course, processes governing chan-
ges in connection with ENSO may not be a good proxy
for those resulting from an external forcing. If possible,
the ability of the GCMs to simulate changes in x500 and
h¢es associated with other forms of variability (the North
Atlantic Oscillation, annual cycle, etc.) should be tested
in order to increase confidence. Although the second
part of the evaluation cannot be performed directly, it
has been shown that more of the uncertainty between
GCM simulations of cloud response occurs from dif-
ferences in the CRF anomalies rather than from the
climate change x500�h¢es response.

None of the models studied have been found to be
clearly superior or deficient, however a couple of the
GCMs (Model C and Model F) perform well in both
stages of the evaluation, particularly in the more
important evaluation of CRF anomalies within the
composite bins. Since changes in x500 and h¢es do not
fully account for the quantitative mean change in CRF,
the evaluation proposed in this study cannot exclusively
be used to discriminate between model predictions, and
this is part of the reason why the models have been
presented anonymously. Instead, it is proposed that
evaluation of composited cloud anomalies be included
as part of a basket of measures of GCM performance,
similar to that used by Murphy et al. (2004).

Whilst changes in x500 and h¢es appear to account for a
component (and in many models, a major component) of
the local cloud response to climate change, analysis of
output from the ISCCP simulator for several of the
GCMs suggest that these variables are most important
for particular cloud types (low cloud of an intermediate

optical depth and high-top cloud). The response of mid-
level cloud to increased CO2 appears to be largely related
to other processes, not accounted for by these variables.
These other processes which are not directly constrained
by x500 and h¢es result in the lack of quantitatively similar
WMCs in the climate change and variability composites,
and hence compositing by these two variables alone does
not directly constrain the global mean DCRF or climate
sensitivity. However the qualitative similarity of the
WMCs and the composite correlations correlations
highlight the importance of the x500 and h¢es in deter-
mining the local physico-dynamical regimes. This sug-
gests that processes related to x500 and h¢es must be
isolated if more subtle mechanisms contributing to the
mean cloud response to climate change are to be identi-
fied. Future work will aim to refine compositing meth-
ods, similar to those presented here, for example by
applying the compositing techniques to particular cloud
regimes (such as defined by Jakob and Tselioudis 2003).
This will possibly permit identification of other contrib-
uting processes and further our understanding of the
differences in the cloud response to climate change be-
tween GCMs.
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