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Seasonality is a pattern that more or less repeats itself
each year, although this pattern may drift or change

in amplitude over time; the study of seasonality

also is linked to the study of business cycles

hat is seasonality? This is a surpris-

\ J‘ / ingly difficult question, for which there
is no simple answer. At the most basic

level, there is the intuition that seasonality is an
approximately cyclical pattern in a time series
that more or less repeats itself each year. Com-
plicating matters is the possibility that the pattern
will drift or change in amplitude from year to year.

The consensus among economists is that three
basic exogenous factors give rise to seasonality
in economic data.' The first factor is the weather:
temperature, hours of daylight, and the likelihood
of severe storms. All change somewhat predict-
ably with the calendar and affect the costs of
doing many types of business. Second, predict-
able and regular calendar events, such as Christ-
mas, the Federal tax payment deadline on April
15, and the Independence Day holiday, affect
production and consumption decisions. Third,
social conventions have an impact on the timing
of certain activities. For example, families with
school-aged children time their vacations with
the school calendar.

Businesses and consumers smooth over or
heighten these exogenous factors as they plan
their activities. For instance, a firm might time a
shutdown for retooling to accommodate the va-
cation plans of employees. In response, the firm’s
suppliers and customers also might shut down at
that time, causing what amounts to a seasonal
slump in the industry.

In addition, changes in production techniques
or preferences can accentuate or diminish sea-
sonal patterns. For example, improvements in
transportation between the Northeast and Cali-

fornia might dampen seasonal patterns in pro-
duce prices in the Northeast.

Why bother with seasonality?

Historically, the study of seasonality has been
tied to the study of business cycles. The busi-
ness cycle is a pattern of boom and bust that is
apparent in economic data over long periods,
particularly in measures of output. A typical busi-
ness cycle lasts about 48 months, although a cycle
may extend for as little as 2 years or as long as 8
years. Predicting business cycles, or even deter-
mining where we are in a particular cycle, is
important to business and government. As a re-
sult, many analysts use current data to make in-
ferences about changes in the overall economy.
The aim is to identify changes in the trend of
economic activity from movements in certain
indicators, such as data on prices or interest rates,
or some other index of economic activity that is
reported very frequently.

In this context, a seasonal pattern can compli-
cate inferences about the business cycle. For ex-
ample, industrial production drops significantly
in the first quarter of the year, whether the
economy is in an expansion or a recession. Ana-
lysts must judge whether a first-quarter dip is
caused by seasonal factors that will disappear
next quarter or whether the decline is a signal of
achange in the business cycle from boom to bust.
Decisions such as whether to hire additional
workers and whether to invest in new plant and
equipment will depend on a correct reading of
the causes of economic changes.
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In this arena, the traditional view of seasonal-
ity is that it is overlaid onto economic data and
that it has no intrinsic interest, particularly when
compared with the business cycle component:

Since the seasonal pattern, by and large, is
much the same in years of “‘good” business
and years of “bad” business, our analysis
of cyclical movements can be facilitated by
putting the seasonal fluctuations provision-
ally out of sight. The effects on business
enterprise of an increase in activity that is
expected to last at most a few months are
very different from an increase that is ex-
pected to continue for years.?

The seasonal pattern in economic data is
*noise” in the “signal” that obscures and con-
ceals the important features of the economy,
which are the components of trends and cycles.
This view of seasonality is at the very core of
the approach taken by government statistical agen-
cies toward seasonal adjustment of their data.

Implicitin such a view is a model of how eco-
nomic data are generated. Arthur F. Burns and
Wesley Clair Mitchell argue that an economic
time series,
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can be broken down into y 5, the seasonal vari-
able at time 7, and y *, the trend in the time se-
ries and/or business cycle component. (It is com-
mon also to include an irregular “noise” component
e, that is unrelated to the trend, cycle, or seasonal
variable.) Implicit in Burns and Mitchell’s view
is the idea that the analyst is most interested in
estimating trend-cycle relationships in the data.

Christopher A. Sims has analyzed the prob-
lem of trying to estimate relationships between
time series under conditions of seasonality, us-
ing the Burns-Mitchell paradigm.* In the Sims
model, one is interested in estimating a relation-
ship between the unobservable trend-cycle com-
ponents of two time series. Sims discusses a true
regression model,

y=xTb+u,

in which «, is a regression disturbance term
uncorrelated with x,/¢. However, one does not
observe y,"¢ or x,"C. Instead, one observes
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where y* and x’ are seasonal “noises,” which
are perhaps correlated with each other accord-
ing to the equation
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In these equations, v, w, and z, are irregular
“noises™ not correlated with each other or with
any other feature of the model. In this model,
the trend-cycle component and the seasonal com-
ponent are unrelated, are uncorrelated, and have
different structural explanations.

Suppose we ignore the seasonal “noise” and
estimate the model

y=xb+e,.

One might ask, What is the relationship between
the estimated parameter »' and underlying model
parameter b7 In general, the two will not be the
same: the parameter estimate that one obtains by
regressing the observed y, on x, is not going to
be equal to the estimated parameter that one
would obtain if one regressed y " on x,7C. One
can further show that, in general, the parameter
b is a weighted average of two parameters, one
of which is the model parameter 5 and the other
of which is the relationship with the seasonal
components, ¢, Thus, #' is a biased estimate of
b If the seasonal components of the two time
series are unrelated, the net effect will be that
the estimated parameter will be attenuated. On
the other hand, it is possible—indeed, likely—
that the seasonal components will be correlated
across the series at hand. In this case, the bias
can be quite large. '

If we ignore seasonality, our estimates of the
model parameters may be polluted by seasonal
“noise.” Thus, predictions and inferences may be
incorrect. One might then ask whether it is pos-
sible to filter out the seasonal variable to get better
estimates of the true model parameters. A common
approach is to deal with seasonality by applying
the x-11 filter. (For an examination of seasonality
as applied to the BLS Consumer Expenditure Sur-
vey using X-11 methodology, see the article by
Thomas G. Moehrle, pp. 3346, this issue.)

Defining x-11

The x-11 filter is a general-purpose univariate
method for filtering time series to attenuate the
seasonal component. It was developed by Julius
Shiskin and associates at the Bureau of the Cen-
sus in the 1950’s and 1960’s. Assuming that a
tire series can be broken down as above into a
trend-cycle component, seasonal component, and
irregular component, the idea behind X-11 is to
extract the various components with a series of
symmetric moving-average filters.

While numerous options affect the procedure,
the outline of X-11 can be described as follows.
Starting with monthly data, the first step is to




take a 12-term centered moving average of the
data.® This is used as a first estimate of the trend-
cycle component. The difference between the
centered moving average and the original series
is a first estimate of the sum of the seasonal and
irregular components. Then, a five-term moving
average is applied separately to each month, to
extract the seasonal factors, The seasonal fac-
tors are further smoothed and are subtracted out
to yield an estimate of the irregular components,
At this point, extreme values of the irregulars are
downweighted, and another series of moving-av-
erage filters is applied to obtain refined estimates
of each of the components. The initial estimate of
the trend is further smoothed, and the seasonals and
irregulars are reestimated. The seasonally adjusted
series is obtained by subtracting the final estimate
of the seasonal from the raw series.

Why not just filter all data with x-11 before
estimating a regression? This approach has two
problems. First, filtering series that lack a sea-
sonal component can induce spurious correla-
tions in the adjusted series. Second, problems of
hypothesis testing associated with X-11 filtering
are surprisingly difficult to resolve.

The first point is made by Kenneth F. Wallis,
who conducted simulations that show how the
X-11 filter affects the autocovariance structure
of several common models.” Wallis performs the
exercise of generating data from a known model,
filtering it with X-11, and trying to recover the
parameters of the original model. Not surpris-
ingly, he finds that it is difficult to recover the
original coefficients from the filtered data.

For example, suppose one picks a value for b
and generates data using the model

y=by_ +e,.

Lety/ be the filtered data that we get from pass-
ing the original data through the X-11 procedure.
Estimate the AR(1} model

[ r
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and compare the estimates of ' with the known
values of b that generated the simulated data. In
this particular example, the model parameter b'
estimated from the filtered data will be an over-
estimate of the true value of the parameter 6.

Now consider a “white noise” series—a time
series for which there are no significant auto-
correlations in the data. Wallis’ experiments show
that the X-11 filtered data exhibit spurious “sig-
nificant” positive and negative autocorrelations
at various leads and lags.

For data with a strong periodic component, the
simulation results are more surprising. Consider,
for example, the AR model

y, = byr_4 +e,

This model is consistent with, for example, sto-
chastic seasonality in quarterly data. The
autocorrelation plot for the {y ) time series shows
peaks at lags 4, 8, 12, and so on and zeros at the
other lags. The autocorrelation plot for the x-11
filtered data will show that correlation at the sea-
sonal lags is reduced. However, filtering induces
spurious positive correlations on all other lags.
The conclusion is that X-11 filtering tends to
scramble some univariate time series properties
of the data.

Wallis addresses the question of how the rela-
tionship between a pair of time series is affected
by filtering. Suppose the true model is

y=xb+e,

but instead we estimate the model with “ad-
justed” series obtained by linear filtering:

yisc ¥y te, Y t---=Xe L'y, = C(Ly,
xf=dix_+vdyx ,+...=Xd L'x =Dy,

Here, L is the lag function Lx,=x_,. After filter-
ing, we find that the true model becomes

2= CWyy, = CL)(x, b +e)
= {(C(LVD(L)x2b, + C(L)e,
=Xbx_a+Xce,,

What starts out as a simple, direct linear rela-
tionship in the raw data is greatly complicated
by the filter: a simple first-order linear relation-
ship becomes a complicated relationship involv-
ing a number of lags of the dependent variable.
Note, however, that most of the complications
are avoided if both series are run through the
same filter, that is, if

C(L) = D(L).

Because the X-11 filter is nearly data independ-
ent, we can argue that this is usually the case.
Then, the only ill effect associated with X-11 fil-
tering is to induce autocorrelation in the error
term. Although this complicates inference and
hypothesis testing, in principle, one can take it
into account when doing empirical work.

The second problem has to do with model es-
timation using the adjusted data. For example,
estimating and extracting seasonal factors is
analogous to extracting means from the data be-
fore calculating a regression. The estimation that
is involved should affect hypothesis tests in some
way, through, for instance, a degrees-of-freedom
correction. Unfortunately, identifying the appro-
priate statistical adjustments is an unsolved prob-
lem of statistics.
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This makes it difficult for analysts to interpret
their empirical results, If one estimates a model
using seasonally adjusted data, the test statistics
that are generated by a statistical package are not
entirely reliable. Thus, one is not sure how to in-
terpret tests of hypotheses about model parameters:

When the objective is to estimate regres-
sion coefficients, the ultimate appraisal of
any seasonal adjustment procedure must be
based on whether it improves the proper-
ties of the parameter estimates. From this,
it becomes obvious that the adjustment pro-
cedure should be evaluated in the context
of the econometric model in which it is used,
and it must, therefore, be expected that
whether a seasonal adjustment method im-
proves the properties of the parameter esti-
mates depends on the data, the method of
parameter estimation, and the characteris-
tics of the econometric model

Ideally, then, a seasonal filter should be esti-
mated in conjunction with an economic model,
and the analyst should take explicit account of
the effects of seasonal adjustment in conducting
hypothesis tests on estimated coefficients.

Some common filters

Three main approaches are available for model-
ing seasonality. One can model seasonality as a
deterministic seasonal process, a stationary sea-
sonal process, or a seasonally integrated process.
The first of these assumes that the seasonal com-
ponent has a purely deterministic explanation that
does not vary in shape. This type of seasonality
is modeled with seasonal dummy variables by
the equation

S -
yo=H e,

where e, is “white noise” and
=2 _ 1p M I(n,

in which p is the number of periods in the year
(that is, 4 or 12, depending upon whether one is
working with quarterly or monthly data), m, is
the mean for observations in the ith period of the
year, and /(¢) is an indicator variable (7{t) = 1 if
observation ¢ falls into the ith period of a year,
and /,(1) = 0 otherwise). The seasonal pattern is
represented by allowing each month or quarter
to have adifferent mean. This is perhaps the most
common approach to seasonal adjustment in em-
pirical work.

The second approach is to model seasonality
as a stationary stochastic process, generated by
a stationary autoregression
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where ¢, is “white noise.” This corresponds to a
seasonal process for which the magnitude or sign
of the seasonal effects vary slowly through the
sample.

Numerous refinements to these basic models
are possible, One example is an increasingly
popular method of modeling seasonal variation
in which parameters are allowed to vary smoothly
through time as a means of capturing time-vary-
ing seasonality. In a variation of this, we may
wish to allow a model with a combination of sea-
sonal dummies and stochastic seasonality in
which all the parameters are slowly varying
through time.® However, the basic building
blocks of the time-varying parameter specifica-
tions are still a seasonal dummy component and
a stochastic seasonal component.

Some work has been done on the problem of
determining which of these two approaches fits
the data better. Robert B. Barsky and Jeffrey A.
Miron have evaluated the relative importance of
deterministic seasonality and stochastic season-
ality in U.S. macroeconomic data. They found
that seasonal dummies seem to be more impor-
tant than stochastic seasonal effects in modeling
U. S. macroeconomic time series.'? They also
found that the estimated seasonal dummy coef-
ficients appear to be quite stable over time and
that the R? in the regression of detrended eco-
nomic data on seasonal dummies is typically
quite high. Seasonal dummies commeonly cap-
ture nearly 85 percent of the short-term varia-
tion apart from the trend.

These findings suggest that the stationary sto-
chastic model is perhaps less important as a de-
scription of seasonality in macroeconomic data.
The stationary stochastic approach models sea-
sonality as an AR process applied to zero mean
innovations; hence, the means for the seasonal
periods each have the same unconditional expec-
tation. The finding of a consistent pattern in the
scasonal dummy coefficients is contrary to what
one might expect if the stochastic model were
the primary description of seasonality.

The preceding findings must be qualified by
the possibility that neither the deterministic nor
the stationary stochastic model constitutes an
appropriate model of seasonality. Accordingly,
a third approach, the integrated seasonal process,
is gaining much attention in the literature on ap-
plied economics. Seasonal integration occurs if
there is a unit root in the autoregressive repre-
sentation of the seasonal process. For example,
for quarterly data, we might have a model such
as y’ =y, 5+ e, where e, is “white noise.” That
is, the seasonal part of our time series has the
features of a random walk. The seasonally inte-




grated model has properties that are quite different
from the properties of the other two models. For
example, it exhibits a “long memory” property, in
which a single shock may permanently affect the
observed seasonal pattern. Another important prop-
erty of the model is that the implied variances of
both the overall process time series and the sea-
sonal component increase at a rate linear with time.
An important reason why one should be aware
of seasonally integrated models is that the econo-
metrics of nonstationary unit root processes are
quite different from the econemetrics of station-
ary processes. In general, the usual techniques
of hypothesis testing give misleading results
when applied to nonstationary data. The prob-
lem is that test statistics fail to converge to their
expected limiting distributions. As a result, one
can easily draw wrong conclusions on the na-
ture of the model underlying one’s data. For ex-
ample, Philip Hans Franses, Svend Hylleberg, and
Hahn S. Lee showed that if one estimates a sea-
sonal durnmy model on nonstationary data, statis-
tical tests will tend to give spurious results,!' Tests
will appear to indicate that seasonal dummies are
significant and that the model fits the data very well.
The observed relationship is spurious because the
seasonal dummy model will predict the future evo-
lution of the data very poorly. A test for seasonal
unit roots is given and applied in the literature.'?

Application to economic models

All of the foregoing filtering methods rest on the
assumption that one can decompose an economic
time series into a trend-cycle component and an
independent seasonal component. Several recent
articles and papers have looked at whether the
trend-cycle/seasonal breakdown is justified. Bar-
sky and Miron’s article was one of the first to focus
on seasonal fluctuations in their own right, ex-
amining the role they played in economic data.'?

Barsky and Miron found patterns in the sea-
sonal dummy models estimated on macro-
economic data. One of their key findings was that
there is a stable pattern in the seasonality of real
output variables. The typical seasonal pattern is
an increase in growth rates in the second and
fourth quarters, a mild decrease in the third quar-
ter, and a very large decrease in the first quarter.
This pattern seems to be stable in the data over
the postwar period, and it also holds for other coun-
tries."* For a typical country, gross domestic prod-
uct peaks in the fourth quarter, rising between 4
and 5 percent. It then falls by between 5 percent
and 10 percent during the subsequent first quarter.

Several articles followed Barsky and Miron
in using seasonal dummy variables to examine
seasonal patterns in macroeconomic data. Miron
has written a summary of the findings that

emerged from this literature.!® In the business
cycle, the production of goods in all the major sec-
tors of the economy moves together. Similarly, the
seasonal cycle seems to exist across various sec-
tors of the economy, affecting each more or less in
the same manner. This is somewhat counter-
intuitive, because analysts might expect a differen-
tial impact of seasonality across industry sectors.

Another key feature of the business cycle is
the absence of production smoothing: produc-
tion and sales move together, and inventories do
not appear to be used to accommodate changes
in demand. The same pattern also appears to hold
in seasonal data. A third feature of the business
cycle is that changes in the money stock and
changes in output are correlated; one sees a simi-
lar pattern of correlation in money and output in
the seasonal cycle, in which periods of high pro-
duction are periods where the money stock is
high, and periods of low production are periods
in which money holdings are low. Finally, labor
productivity is procyelical over both the seasonal
and the business cycles.

The reliability of these results depends partly
on one’s ability to extract the trend from a time
series before estimating the seasonal component.
(If this is not done, spurious resuits are possible.
For example, if a time series exhibits a secular
downward trend, then unless the trend is ex-
tracted, seasonal dummies will extract it and will
appear to be statistically significant.) Rather than
depending on estimates of the trend component
of a time series, we can estimate a model of busi-
ness cycles that allows for seasonal effects. Sev-
eral papers and texts have taken just this tack, and
the results further tend to confirm the importance
of seasonal factors in business cycle relationships.

Eric Ghysels has found that seasonal means
are different in periods of expansion, compared
with periods of recession.!® (During a recession,
the winter drop is slightly sharper, and the fall
boom is not as marked.) Ghysels estimated a sto-
chastic regime-shifting model and found that the
transition probabilities varied with the seasons.!”
In particular, recessions are less likely to begin
during the fourth-quarter boom and more likely
to begin during the first-quarter downturn.

Ghysels’ work presents problems for seasonal
adjustment. At the core of seasonal adjustment
methods is the assumption that the seasonal pat-
tern is independent of patterns in economic trends
and cycles. If seasonal components and cycles
are related, seasonal adjustment may end up fil-
tering out information that is useful and impor-
tant in describing the economy.

When is seasonal adjustment appropriate?

Are seasonal adjustments still a good idea? To
this question, we give the economist’s typical an-
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swer: it depends. We have a collection of find-
ings that suggests that, first, empirical findings
may be suspect if seasonality is a factor but is
ignored. Second, if seasonality is not present, and
we attemnpt to filter it out anyway, we have addi-
tional problems. Third, there is probably no one
best model of seasonality, and taking a specific
approach to modeling the seasonal component
involves making assumptions about the charac-
teristics of the underlying process that must be
carefully thought out and defended.

Finally, we question whether it makes sense
to assume that we can break down a time series
into a trend-cycle component and a seasonal com-

Footnotes

ponent. Before conducting empirical work,
economists should consider whether this ap-
proach to the time series is reasonable and
whether the assumptions involved are appropri-
ate for the model being examined. For example,
we can imagine empirical estimation problems
in which we are interested only in the total ef-
fect of one time series on another, and the de-
composition of this total into a seasonal and a
model component is not necessary to answer the
empirical question being considered. In any
event, economists should be aware of the
tradeoffs that are implicit in seasonally adjust-
ing economic time series. il
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