


A New Oyster for Chesapeake Bay? Status of the Asian Oyster EIS & NOAA's Research Initiative

Jamie L. King, Ph.D. NOAA Chesapeake Bay Office April 7, 2005

Proposal to Introduce

- Intentional introduction of a non-native species: Crassostrea ariakensis (Asian or Suminoe oyster) – "Oregon strain"
- Joint Maryland/Virginia Proposal
- Purpose: To establish an oyster population that reaches a level of abundance in Chesapeake Bay that would support sustainable harvests comparable to harvest levels during the period 1920-1970.
- Proposed introduction is in state waters, but there are potential inter-state issues and effects beyond Chesapeake
- Federal jurisdiction is unclear

Timeline

National Research Council (NRC)

National Academy of Sciences Science Advisers to the Nation

Non-native Oysters in the Chesapeake Bay Released August 2003

Sponsors:Chesapeake Bay CommissionEPAMDNRMD Sea GrantNOAAVADEQVA Sea GrantFWSNFWFCT Sea Grant

NRC – Highlights

- Examined case studies of shellfish introductions worldwide
- Compared global and regional (MD vs. VA) patterns of oyster aquaculture vs. public fishery systems
- Studied U.S. and international regulatory framework for managing non-native species introductions
- Identified initial elements for risk assessment of the proposed introduction in Chesapeake Bay
- Evaluated 3 management options
- Identified some common misconceptions... 5 Myths

NRC – Management Options

1. No use of non-native

- ecologically reversible
- economic decline may be irreversible
- threat of a rogue introduction

2. Triploid aquaculture/research (6-7 years)

- unlikely to solve the fishery crisis
- reversible, at least in the early stages
- perception of progress (less threat of rogue actions)
- already closely scrutinized by CBP partners

3. Introduction of diploid

- may or may not have desired outcomes
- irreversible
- ill-advised given current knowledge

NRC – Identified 5 Myths

- Myth I: Declines in the oyster fishery and water quality of Chesapeake Bay can be quickly reversed
- Myth II: Oyster restoration, whether native or non-native, will dramatically improve water quality
- Myth III: Restoration of native oyster populations has been tried and will not work
- Myth IV: *C. ariakensis* will rapidly repopulate the Bay, increasing oyster landings and improving water quality
- Myth V: Aquaculture of triploid *C. ariakensis* will solve the economic problems of a devastated fishery and restore ecological services once provided by the native oyster

STAC Report

Scientific and Technical Advisory Committee of the Chesapeake Bay Program

Workshop December 2003

Sponsors: Chesapeake Bay Program NOAA Chesapeake Bay Office

- Diploid introduction would be irreversible
- Spread beyond Chesapeake Bay would be inevitable
- Detailed research needs: 5 years minimum

Environmental Impact Study (EIS)

EIS Project Delivery Team (PDT)

Lead Agency:

Army Corps of Engineers (Norfolk District)

Co-Leads:

Maryland (MDNR) Virginia (VMRC)

Cooperating Agencies:

NOAA EPA FWS

EIS Steps

- Notice of Intent Jan 5, 2004
- Public Scoping Meetings
 - 7 Alternatives:
 - 1. No action
 - 2. Expand native oyster restoration
 - 3. Harvest moratorium
 - 4. Native oyster aquaculture
 - 5. Non-native oyster aquaculture
 - 6. Introduce alternative non-native species
 - 7. Introduce C.a. & discontinue native restoration
 - 8. Combination of alternatives

EIS Steps

- Notice of Intent Jan 5, 2004
- Public Scoping Meetings
- Risk Assessment, Decision Criteria, Evaluation of Alternatives
 - Draft EIS
 - Public Comment Period
 - Final EIS
 - Record of Decision

Tiered Risk Assessment

Now

- Tier 1: Risk characterization Literature search Identify:
 - assessment endpoints
 - analytical tools (models)
 - data needs
- Tier 2: Incorporates data from short-term studies, preliminary model runs, quantifies remaining uncertainty
- Tier 3: Full risk assessment with projectrelevant data from longer-term research, all major data gaps filled

Guiding Documents:

- National Research Council (NRC)
- Scientific and Technical Advisory Committee (STAC)
- International Code of Practice on the Introduction and Transfers of Marine Organisms (ICES Protocols)

Ecological

- water quality
- reef habitat

Economic

- local watermen
- processing industry

We need to determine:

- theorized benefits are real
- benefits will outweigh the risks/costs
- benefits can be achieve more quickly and cost-effectively with a non-native species than with the native oyster

Biological Assessments Economic Assessments

Summary of Research Needs for a Defensible EIS on the Non-native Oyster Federal consensus document by NOAA, EPA, FWS

Major Research Topics

- 1. Understand C. ariakensis in its native range
- 2. Potential for population growth/sustainability
- 3. Susceptibility to known diseases
- 4. Interactions with native oyster
- 5. Human consumption risks
- 6. Potential to be fouling nuisance or invasive
- 7. Ecosystem services (reef, filtration, food web)

Understand C.a. in Native Range

Taxonomy

- What species are we dealing with?
- Utility of previous literature?

Population Genetics

- Different genetic strains or phenotypic plasticity?
- Which regions/genetic strains best for broodstock?

Pathogens

• Response to pathogens in native environment?

Ecology

- Do they build reefs? Under what conditions?
- Competitive interactions with other oyster species?
- Environmental tolerances?

Population Growth & Sustainability

- Demographic Model
- Larval Transport Model
- Data for Model Parameterization
 - Fecundity (size-specific)
 - Sex ratio
 - Fertilization coefficient
 - Effective fertilization distance
 - Spawning cues and synchrony
 - Interspecific gamete competition
 - Growth rate (age-specific)
 - Natural mortality (egg, larval, juv, adult)
 - Fishing mortality

- Larval behavior
- Substrate preference
- Metamorphosis rate
- Bottom type distributions
- Existing C.v. populations
- Environmental tolerances

Disease

Bonamia sp.

- Discovered in North Carolina
- Could it spread to Chesapeake Bay?

Herpes virus

- Vertical transfer
- Other viral pathogens

Common parasites and pathogens

• Shell disease (*Polydora*, shell blisters)

Interactions with C. virginica

- > Hybridization
- Gamete competition
- Ecological competition
 - Space
 - Food

Human Consumption Risks

Uptake and clearance rates

- Bacteria (fecal coliform)
- Viral human pathogens
- Protozoan human pathogens

Potential for Fouling Nuisance

For example: Zebra Mussels

• Will C. ariakensis become invasive?

Ecosystem Services and Functions

- Reef building
- Water quality
- Food web dynamics

Biological Assessments Economic Assessments

Summary of Research Needs for a Defensible EIS on the Non-native Oyster Federal consensus document by NOAA, EPA, FWS

Economic Issues

- Spread to other regions with native oyster industries or aquaculture?
 - to the north NJ, DE, CT, RI, MA, ME
 - to the south NC, SC, GA, FL, Gulf states
- Disruption of market supply-demand?
 - current U.S. oyster supplies meet market demand
- Marketable product?
 - shelf-life and shipping (gapers, thin shells)
 - taste tests cancelled in NC (poor meat quality)
 - not commercially grown anywhere in world
 - grows fast in Chesapeake Bay (VSC pilot)
- Magnitude of economic and socio-cultural benefits anticipated?

Research Timeline

How long will this research take? NRC: 6-7 years (maybe 5 years) STAC: 5 years

Why?

- need to study adults, not just juveniles
- competitive interactions play out over time
- sequential nature of scientific investigation

Research Timeline

2003 2005 J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 1. Understand C. ariakensis within its native geographic range a. Taxonomy, population genetics NOAA-02 #9 NOAA-04 #7 NOAA-04 #8 b. Pathogens NOAA-02/03 #7 NOAA-04 #10 NOAA-04 #13 c. Ecology, reef building, phenotypic variation **MDNR #12** NOAA-04 #8 2. Potential for population growth and sustainability of C. ariakensis in Chesapeake Bay MDNR #2, PRFC #7 Demographic model Larval dispersal model MDNR #5 Gametogenesis, fecundity, spawn cues, sex ratio MDNR #8 NOAA-04 #30 MDNR/PRFC #11 Fertilization efficiency coefficient NOAA-04 #9 Larval temperature & salinity tolerances **MDNR #15** Larval mortality Larval physiology, behavior, metamorphosis MDNR #6 NOAA-04 #20 Settlement cues, substrate preferences **MDNR #10** NOAA-04 #29 NOAA-03 #8 Juvenile mortality - mesohaline predation NOAA-03 #8 (year 2) Juvenile mortality - polyhaline predation NOAA-04 #28 Juv/adult mortality - low DO, sediment Growth rate MDNR/PRFC #7.11 Triploids as surrogates for diploids 3. Susceptibility of C. ariakensis to known disease-causing parasites and pathogens NOAA-04 #12 a. Bonamia spp. VASG MDNR #9 b. Herpes virus and vertical transfer NOAA-03 #10 NOAA-04 #10 c. Other viral pathogens MDNR #4 4. Interactions between C. ariakensis and native oyster species NOAA-04 #9 a. Hybridization, gamete competition b. Competition (food, space, etc.) MDNR/PRFC #11 NOAA-04 #30 NOAA-03 #4 NOAA-03 #4 (year 2) 5. Human consumption risk a. Fecal coliform uptake, clearance rates b. Viral and protozoan human pathogens NOAA-04 #2 6. Potential for C. ariakensis to become a fouling nuisance **MDNR #13** NOAA-04 #18 a. Fouling 7. Ecosystem services and functions MDNR/PRFC #11 a. Reef building NOAA-04 #30 NOAA-03 #2 NOAA-03 #2 (year 2) b. Water quality c. Food web dynamics

Funding Sources

> NOAA

- Maryland DNR
- Potomac River Fisheries Commission
- Virginia Sea Grant
- EPA Chesapeake Bay Program

NOAA Funding

Sponsor NRC study (FY02)	\$	50 K	
National Sea Grant ODRP (FY03, FY04)	\$3	\$352 K	
Biosecurity/monitoring VSC trial (FY03)	\$	1 M	
Research Initiative (FY04)	\$	2 M	
Research Initiative (FY05)	\$	2 M	
Research Initiative (FY06) anticipated	\$	2 M	
ΤΟΤΑΙ	_ >\$'	7.4 M	

Institutions

University of Maryland

- UMCES Horn Point Laboratory
- UMCES Chesapeake Biological Lab
- Biotechnology Institute, COMB
- College Park

Virginia Institute of Marine Science

- Gloucester Point
- Eastern Shore Laboratory
- Smithsonian Env. Research Center

Hainan University

Institute of Oceanology Chinese Academy of Sciences

Rutgers University

• Haskins Shellfish Research

University of North Carolina

• Institute of Marine Science

North Carolina

• Division of Marine Fisheries

Johns Hopkins University

Bloomberg School Public Health

Cooperative Oxford Lab

Versar, Inc.

Lynnhaven River, Virginia Natural recruitment of native oysters following restoration. Courtesy of Chesapeake Bay Foundation

Jamie.King@noaa.gov 410-267-5655

Science, Service, & Stewardship

NOAA Funding

Native Oyster Restoration Chesapeake Bay

Large-scale restoration – Maryland	\$2M
Large-scale restoration – Virginia	\$2M
Small watershed projects	\$ 200 K
Oyster disease research (Sea Grant ODRP)	\$2M
NOAA divers – monitoring	?

TOTAL: > \$ 6 M/yr