0OCS Report
MMS 97-0018

Mapping the Foot of the Continental Slope with

Spline-Smoothed Data Using the

Second Derivative in the Gradient Direction

U.S. Department of the Interior
Minerals Management Service
Resource Evaluation Division




Cover figure: 3-D Net Display of U.S. Atlantic Coast Spline-Smoothed NOAA ETOPS Data
{location of foot of Continental Slope indicated by heavy black line)



OCS Report
MMS 97-0018

Mapping the Foot of the Continental Slope with
Spline-Smoothed Data Using the
Second Derivative in the Gradient Direction

By

John O. Bennett

U.S. Department of the Interior
Minerals Management Service Herndon, Virginia
Resource Evaluation Division 1998






Acknowledgments

The software used for these computations is a MathWorks, Inc., software package called Matlab. The
programs are written in the Matlab script files called M-files. The Matlab Spline Toolbox, written by
Professor Carl de Boor, is used to¢ determine S(x,y) in the spline smoothing computations. He also derived
the mathematical theory. I am most grateful to Professor de Boor for the many hours of consultation,
ideas, and M-files given to me that made this effort possible. I am grateful to Professor Larry Schumaker
for first introducing me to splines and reading this report. Walter Johnson and Charles Marshall supplied
the NOAA ETOPOS dataset and valuable consultation. I would like to express my appreciation to
Professor Petr Vanicek and Dr. Zigiang Ou for introducing me to this area of research and suggesting
improvements to this report. The support and encouragement of Michael Hunt, George Dellagiarino,
John Padan, Roger Amato, George Carpenter, Jackie Durham, Marianna Feagans, and James A. Bennett
at MMS in this work were much appreciated. For all this help, T am most grateful.

The use of Matlab software in the computations and obtaining the displays in this report does not
constitute an MMS or UU.S. Government endorsement of the product.

1t






Contents

Abbreviations and ACTONYIMS .. . ... e e vi
A ITaCT L 1
INtrodUCHiON . .o e e 1
Surface of Second Derivative in Gradient Direction (SDG) .. .. .. . . o o i 2
Example: The U.S. Atlantic Foot of the Continental Slope . ... ... ... ... ... .. .. .o o L. 5
Summary and Conclusions . ... ... . e 17
] 1 ] 17 18
Appendix A: Brief Discussion of Spltne Functions ......... ... ... oo 19
Appendix B: Area of U.S. Atlantic Coast where FCS is Seaward of the 200-Nautical Mile EEZ . . . .. 22
Figures

1. Cross-section showing the Foot of the Continental Slope .. ... ... ... ... oo o o 1
2, Mapofstudyarea of U.S. Atlantic coast . ... .. .. ... . . e 5
3. 3-D Netdisplay of original NOAA ETOPOS datap=1 ....... ... ... ... ... .. ... ... ... 6
4. Contour map of NOAA ETOPOS data(p=1.0,85x85grid) .......... .. ... ... ... ...... 7
5. Contour map of NOAA ETOPOS5 data (p=9999, 85 x85¢gnd) ....... ... ... ... ... ..., o d
6. Contour map of NOAA ETOPOS data (p=999, 85 x85grid) ......... ... ... ... ... ...... 9
7. Contour map of NOAA ETOPOS data (p=99,85x85gnid) ....... ... .. ... ... ... ...... 9
8. 3-D Netdisplay of SDG surface (p=999, 85 x85arid) ....... ..o v i, 10
9. Contour map of SDG surface (p=999, 85 x85grd) ....... . ... .. ... ... ... .. 10
10. 3-D Net display of spline-smoothed data plotted with FCS (p=.999, 170 x 170 grid) .......... 11
11. Contour map of NOAA ETOPOS data (p=999, 170x 170 grid) ........... ... . ... .. .. ... 12
12. 3-D Net display of SMC (x, y, and zaxesinkilometers) . . ............ .. ... ... ... ... 14
13. Contour map FCS by SMC (x, y,and zaxes in kilometers) . .............. ... .. ... .. ..... 14
14. 3-D Net display of SDG (x, y, and z axes in kilometers) . ........ ... ... ... ... .. .. ... 15
15. Contour map FCS by SDG (x, y, and z axes inkilometers) .. ... ... ... ... ... ... .. ... 15
16. 3-D Net display difference surface (SMC-SDG) {axes in kilometers) . ........... ... . ... 16
Al. Graphs of fA) a cubic polynomial, (B) a cubic spline, and (C) a bi-cubic spline . ............. 21
B1. Map showing location of the area of interest forappendix B .............. ... ... ... ..... 22
B2. Map showing the locationof the FCSand EEZ . .. ... ... o oo oo 23
Table

1. The steps of the SDG algorithm . ... .. ... .. . 4



Abbreviations and Acronyms
CSAPS: A Matlab M-file for doing spline smoothing of digital data in I-dimension.

D(S): Gradient of the function §(x.y) of 2 variables, t.e., DS=( D,S, DS } where .S is the partial
derivative of § with respect to x and DvS§ is the partial derivative of § with respect to y.

EEZ: Exclusive Economic Zone, a line 200 nautical miles from coast line. This line determines the
seaward extent of a country's mineral rights unless the FCS extends farther seaward than 200 nautical
miles. In this case the FCS (plus 60 nautical miles) determines the limits of a country's mineral rights.
Mineral Rights can never go beyond 350 nautical miles.

FCS: The Foot of the Continental Slope is " the point of maximum change in the gradient at its base."

H: The Hessian of a function S(x,y) of two variables is a 2 x 2 matrix with entries: 4, =D_S, h;,=D_S,
hyy =D,S, hy, =D, S. See page 4.

Matlab: A mathematical software and graphics package by The MathWorks, Inc.

M-file: Series of Matlab commands in a script file started by typing its name at a Matlab prompt. M-files
can be user defined functions or script files. Matlab has many system and user created M-files to do
various mathematical, display, and bookkeeping tasks.

MMS: Minerals Management Service of the Department of the Interior, USA.

NOAA: National Oceanic and Atmospheric Administration.

R.Q.: Rayleigh Quotient a number obtained from a formal mathematical operation on a 2-D vector v and
a 2 x 2 Hessian matrix, H, as defined in item 4 above where R.Q.(v) = [»'Hv)/[v'v].

Superscripting a vector v with “T” means take the transpose of the vector v.

SDG: Surface of Directed Gradient obtained from computing the Rayleigh Quotient of the Hessian of
the normalized gradient of S(x,y) in the gradient direction.

SMC: Surface of Maximum Curvature is a mathematical procedure for computing maximum curvature
surface for a given input surface S(x, v} of two variables. It is obtained by finding the largest eigenvalue of

the Hessian for S(x,y). :

TCSAPS: A Matlab M-file for doing Spline Smoothing of digital data in two dimensions.
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Abstract

The United States National Oceanic and
Atmospheric Administration’s (NOAA)
ETOPOS worldwide digital bathymetric dataset
has been in the public domain for some years.
Because it is noisy, it has not found much use
in oceancgraphy. A bi-cubic spline approach is
used to smooth out the noise and represent the
data as an explicit mathematical function, thus
making it useful in many areas of oceanography.
This method requires the data to have a
rectangular grid.

This report' gives an effective approach for
ETOPOS3 data’s bi-cubic spline representation
and smoothing. It presents a new procedure
designed to determine the Foot of the
Continental Slope (FCS.) This procedure is in
accord with The United Nations Law of the Sea
(LOS) Article 76, section 4.b legal definition of
the FCS, which is “the rate of maximum change
of the gradient at its base™. This explicit
mathematical function can also be used 1o refine
the grid. This function can also be differentiated
exactly. One may compute from this function, at
any point, the second derivative in the
normalized gradient direction. The resulting
surface is called for brevity "Surface of Directed
Gradient" (SDG). The location of the crest of its
highest ridge is a good approximation of the
FCS. This appreach gives an accurate
mathematical representation of the LOS
Convention's legal description of the FCS as
stated above. The SDG technique is used to
compute the FCS for the U.5. Atlantic coast.

The FCS computed by the SDG method 15
compared to the FCS computed by the surface
of maxium curvature approach that is in general
use.

Introduction

resources on the Federal Outer Continental
Shelf {OCS) and Exclusive Economic Zone
(EEZ). These mineral resources include, but are
not limited to, oil, gas, sulphur, sand, gravel,
phosphorites, manganese, cobalt, and heavy
minerals. The MMS, therefore, has an interest
in defining the Foot of the Slope and outer
limits of the EEZ. The United Nations Law of
the Sea (LOS) gives a legal definition of the
Foot of the Continental Slope (FCS). The FCS
extends a nation's mineral rights past the
200-nautical mile Exclusive Economic Zone
(EEZ) where the FCS is beyond 200 nautical
miles from that country's coast. This is true for
some parts of the U.S. Atlantic coast. The
accurate location of the FCS is important to any
coastal country whose FCS extends beyond the
200-nautical mile EEZ. As new technology
allows for deeper offshore drilling and mining,
the location of the FCS will become more
crucial. Location of the FCS can also be of
importance in boundary dispuites between
coastal countries.

The United Nations Convention on the LOS
states, in Article 76(4)(b), that the "foot of the
continental slope (FCS) shall be determined as
the point of maximum change in the gradient at
its base." See figure 1 for a cross-section
showing the location of the FCS.

The Minerals Management Service (MMS) s
the bureau 1n the Department of the Interior that
is responsible for managing the mineral

L.
This report does not necessarily represent the methodology
the United States witl employ in defining the outer limit of its continental
shelf.

Continental Slope

LAND SHELF EDGE

Centlnental rise
Deep
seabed

Conti | margln

Figure 1. The foot of the Continental Slope (FCS) as
located on cross-section of the continental shelf.



To follow the legal description of FCS as cited
above, one must proceed in the direction of the
gradient at each point (x,y) of the digital
bathymetic dataset. The computational
procedure, as presented in this report, generates
the surface by computing the second derivative
in the normalized gradient direction of the
smoothed function. This is the same as the
Rayleigh Quotient (R.(Q.) of the Hessian (H) of
the smoothed function evaluated at the gradient.
The resulting surface is called the "Surface of
Second Derivative in the Gradient Direction” or
for brevity the "Surface of Directed Gradient”
{SDG}). The location of the crest of the highest
ridge of this surface is a good approximation to
the location of the FCS. This procedure is then
used to compute the FCS for an area covering
most of the U.S. Atlantic coast using a spline-
smoothed version of NOAA's ETOPQS
bathymetric dataset. For a discussion of splines
see de Boor (1978) or Schumaker (1981).

Vanicek et al. (1994) determine the FCS by
computing the "Surface of Maximum
Curvature" {SMC). Because the SMC computes
a surface of curvature, the SMC approach
requires a scaling of the x, y, and z axes to the
same units to give satisfactory results. After the
scaling and the FCS is obtained, the results need
to be scaled again to return it to the proper
aspect ratio. After scaling twice, the SMC
obtains essentially the same results as those
obtained by the SDG in locating the FCS. The
SMC, as outlined by Vanicek, when
implemented on the original ETOPOS data with
the axes betng x: degrees longitude, y: degrees
latitnde, and z: meters, did not give a
satisfactory FCS.

The notation in labeling the grid intervals of
the figures is an issue throughout this report.
The original coordinate units for the ETOPO35
data are: x: degrees longitude, y: degrees

latitude, and z: meters measured below sea level.

These are measured on a sphere. In displaying
the data and results of this report, a flat surface
15 used. One degree of latitude on the y-axis is
approximately 60 nautical miles or 5 minutes of
latitude are approximately 5 nautical miles.
When converting to nautical miles from degrees
on the x or longitudinal axis, the farther the
distance is from the equator, the

smaller is a degree of longitude according to the
rule:

1 degree longitude (at latitude @ )
= ( 60 nautical miles ) x Cos( © ),

with & being 90 degrees at the Equator and 0
degrees at the North Pole.

For example, when a grid interval of 5
nautical miles is referred to, it means 3 nautical
miles on the y-axis and 5 x cos(36.5) = 4.02
nautical miles on the x-axis. (See figs. 4-6.) The
36.5° is an average latitude over the arca.
Similarly, there is a 2.5-nautical mile grid
interval in the y direction and a 2.5 x cos(36.5")
= 2.001-nautical mile grid interval in the x
direction. (See fig. 11.) Grid intervals in
kilometers are given exactly for the x and y
axes. (See figs. 13 and 15.)

Surface of the Second
Derivative in the Gradient
Direction (SDG)

The theoretical mathematical derivation
presented in this section was written by Carl de
Boor (1995, On determining the Foot of the
Continental Slope, private commun.(adapted)).
The official United Nation's definition of the
FCS seems to be made with a univerate image
in mind. One previous approach to compute the
FCS uses the location of the highest ridge of the
SMC. This approach seems to interpret the
"maximum change in the gradient” to mean
"maximum curvature" and then further
associates curvature with a surface. This
interpretation of the "maximum in the rate of
change of the gradient” to be the same as a
maximum in the curvature of the seafloor
ignores the legal definition, which suggests a
profile or curve. The curvature will have a
maximum at a well-defined foot; however, it
can be large at other points also.

To comply with the legal definition, the
approach should be one of a cross-section
profilte of the continental shelf in transition
from the relatively flat continental shetf
dropping to a steeply dipping slope to the rather
flat rise of the continental rise or abyssal plain.



See figure 1. The narrow region where the
continental slope meets the continental rise is
the FCS. It is characterized by the rapid change
of the gradient from a steep slope to one of
being almaost flat. In mathematical terms,
curvature in that small region is maximally
pasitive. Which profile should one choase to
comply with the legal definition at any point
(x,v)? The answer is the profile determined by
the gradient at (x,y).

An approach representative of the legal
definition of the FCS would be obtained as
follows: Let S(x,v) (See app. A, eq. A2.)bea
bi-cubic spline function generated by Matlab
M-file TCSAPS and represent the smoothed
bathymetric data:

Zix,y), (i=1, ... n; j=1, ..., m).

1

The notation " := " below means "defined to
be",
To construct the SDG (Surface of the R.QQ.

of the H in the direction of the Gradient):

1. Determine the direction of the steepest drop
of the seafloor at the point (x,y). This is -DS,
where DS is the gradient of S at (x,¥), i.e.,

DS:= (DS, D,S).

(It 15 the direction perpendicular to a contour
line of the seafloor threugh the point (x,¥}.)

2. Determine the normalized second derivative
of S at (x,y) in the gradient direction established
above. This is given by the number N where:

N:=v'D*Sv:=(v }'D,.S
+2vy, DS +(»)’D,.S, )
where the " T " superscripting a vector means
"transpose”, and with the second partial
derivatives, D S, DS, DS, of the function §
all calculated at the point (x,y) and with:

vi=(v, v)=DS /DS, (2)

where lv F:=v?+y?, ie., v is the normalized
gradient of S at (x,y). The calculation of N is
certainly casier than the calculation of the value
needed in the computation of the SMC.

Note that, with v such that:
v=DS /DS,
equation 1 can be rewritten as:
N=[(DS'H(DS)]/ (DSY'(DS)],  (3)

where H the Hessian matrix of S 1s defined to

be:
DITS D.:_\'S 2
H: = D.S D,$ =DS.

This shows the number ¥ to be the R.QQ. for
H evaluated at the vector, v=DS:

Ry(v):=N=("Hv)/ (»W). 4)

The relationship between the SDG of equation
4 and the SMC is as follows:

If by the word "curvature™ one means
nothing more than the second derivative in any
particular normalized direction, then by the
argument just given, the maximum curvature
would be the maximum of the R.Q. of H.ie,
the maximum eigenvalue of H. In particular, if
the gradient-directed second derivative is
"large", then so must be the maximum
"curvature”. However, this maximum
"curvature” may well be large in places where
the gradient directed second derivative N, i.e.,
the "curvature” in the gradient direction, is not
large.

Actually, the SMC proposed by Vanicek et
al. (1994) as a means for determining the FCS
is based on the actual curvature of the surface,
2 where:

Yooy = (xy, Sy ),
and hence may be even further removed from
the original intent of the legal definition of the
FCS.
Specifically, the SMC is obtained as:

(x,y) — (x, v, max{ 0, max k{(x,y)}),



with max k(x,v) the maximum normal curvature
of X at the point (x, y, S(x,y)). Elementary
differential geometry applied to the surface 2.
shows the normal curvature of X in the direction
v equals the R.Q.. evaluated at v. To see this

let H” be the matrix of the second fundamental
formfor % ,ie..:

H*=H/| (-DS,1) |,

and G be the matrix of the first fundamental
form for %, ie..:

; 1+(D,SY D,SD.S
G = (D) (DX = E
DSDS 14(D,S)

then
K(»):=Ry", c(v):=[v'"H* / v"Gv]=
[v"Hyv / v'Gv]/ SQRT [DS" + D‘,Sz+1]. (5

For the specific choice v=DS, one has
KDS)=N/| (-DS, )|,

hence a simple relationship between the SDG,
N, and the SMC, max , K (v). Since |(-DS, 1|
may vary widely, there may be no connection
between the maxima of N and those of the SMC,
This makes the SMC even more doubtful in
computing the FCS. Since both approaches use
second derivative information, careful
smoothing of the original data is imperative to a
correct location of the FCS by either method.
Since both H* and G are real symmetric, the
maximum normal curvature at a point is the
larger of the two principle curvatures at that
point, i.e., the larger of the two eigenvalves
k, . k, of the generalized eigenvalve problem:

H” - kG.

Note also that k,< N < k,, hence at any point the
SDG is less than or equal to the SMC.

Equivalently, max k is the larger of the two
solutions of the quadratic equation

det( H* - kG) =0,
which, on expanding the determinant and

4

collecting terms according to powers of &,
gives exactly the result of equation 2 in Vantcek
et al. {1994)(as 1t should be).

The SDG requires only x and y axes have
the same coordinate units. Rescaling units only
changes & in equation (3) by a constant, The
SMC requires the x, y, and z axes all have the
same coordinate units. The SQRT term in
computing K in the denominator of equation (5)
causes the SMC to be very sensitive to scaling.

Finally, the simple real examples that follow
show that the original legal definition of the
FCS does not always cover every situation.
There are places where the passage frem a steep
descent to flattish continental rise of the
seafloor can be quite gradual with no particular
area of sharp change in gradient. For this
situation, an alternate legal definition of the
FCS seems needed.

See table 1 for a concise statement of the
SDG algorithm. '

Table 1. The steps of the SDG algorithm

1. Let S(x, ¥} be an explicit mathemnatical spline
representation obtained from discrete
bathymetric rectangular array of Z(x,y), which
represents the seafloor.

2. Specify a rectangular grid to be used, 1. ¢.,
partition 1o be used in the x and y vectors. Let
(x,y) be any point in the grid.

3. Compute the gradient vector v at (x,y):
vixy) = DS(x, ).

4. Compute the Hessian matrix H of S(x.y) at
the point (x, ¥}

D,S DS
H: = ,r ¥ .
DS DS

5. Compute the Rayleigh Quotient R of the
vector v at {x,y):
Rxy)=[mTHW® /[ () (0]

(superscript T means transpose)

6. Enter the value of Rx,v), obtained from the
Rayleigh Quotient in the above step 5 for each
point (x,y) of the grid to obtain the SDG.

Note: The location of the crest of the highest ridge on the SDG
surface is the estimated FCS.




Example: The U.S. Atlantic Foot
of The Continental Slope

The procedures outlined above will be
implemented on the NOAA worldwide
bathymetric dataset ETOPOS by computing the
SDG and the SMC for the area outlined from
longitude -76 to -69 and from latitude 33 N to
40 N, This is the U.S. Atlantic coast from
Charleston, South Carolina, to just south of New
York, New York. Figure 2 shows an outline of
this area on a map. This 7° x 7° area encloses a
sizable portion of the U.S. Atlantic FCS.

Let:

Zx, ¥, (=1, j=L1,..., m)

be the ETOPO3S subsea bathymetric data given
on an equally spaced 5-nautical mile rectangular

grid. (Information from scattered data would
have to be transformed to a rectangular grid
prior to using this technique.) Figure 3 shows

a 3-dimensional net display of the ETOPOS
data. The data appear quite noisy. Let S{x,y) be
the bi-cubic spline-smoothed function
representation obtained from the 7°x 77 area of
the ETOPOS data described in the previous
paragraph and given by the 83 x 85 grid:

z(x, y)), (i=1,..., 85; j=1,..., 85),

returned by spline-smoothing Matlab M-file
TCSAPS. TCSAPS has smoothing parameters
p,and p,where O<p < land0 < p < 1. With
p.and p, set to 1, there is no smoothing. With p,
and p, set to 0, there is the most smoothing.
Usually p, and p, are chosen such that p=p =p..

1 ! ) -
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Figure 2. Map of study area of U.S. Atlantic coast.
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Figure 3. 3-D Net display of original NOAA ETOPOS3 data of 7 degrees longitude by 7 degrees latitude
portion of U.S. Atlantic coast (*Z = is sea level; S-nautical mile grid interval (85 x 85 grid))p=I.

For clarity of presentation, contour maps will
be used to show the effects of data smoothing by
TCSAPS for various values of the smoothing
parameters p=p =p. . The first contour map is
figure 4, which is a contoured presentation of
figure 3, the original data. This was
accomplished by M-file TCSAPS with the
smoothing parameters p, and p, such that p=p =
p,=1.0, which 1s no smoothing; Just a S(x,v)
interpolation of the raw ETOPOS data. The
contour interval on this map is 500 meters. The
contours presented are from -300 meters to
-5000 meters below sea level. Note the
angularity and sharp points on most of the
contours. Also note the prominent presence of
Hudson Canyon as it affects the contours
located between (-70°, 36y and (-71° , 40°).

The SDG procedure was run on this raw
dataset and the results plotted on the contour
map of figure 4. In this and other contour maps,
the FCS is indicated by a heavy black line.

This line is generated and drawn by the
computer software. The FCS jumps from the
-500 meter contour to the -3500 meter contour

at 37° N latitude and 38° N latitude as observed
in figure 4. The FCS between Cape Hatteras,
North Carolina, and Virginia Beach, Virginia,
zigs and zags between the -500 meter contour
and the -2000 meter contour. Notice the close
spacing for the -500 meter, - 1000 meter, and
-1500 meter contours. This represents a steep
dip or gradient.

To smooth out some noise, set p=
P.=p,=-9999. The results are plotted in figure 5.
Note that the contours are less angular and less
pointed but their spacial location is still the
same as well as the relative distance between
them. Also note the Hudson Canyon on the right
side of the map is still well defined; hence, there
has been little loss of information content by
this slight degree of smoothing.

The FCS as computed by the SDG method
still zigs and zags between the -500 meter
contour and the -2000 meter contour between
Cape Hatteras, North Carolina, and Cape May,
New Jersey; however, the large spikes at 37° N
and 38° N have been eliminated. More
smoothing is required.
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Figure 4. Contour map of original NOAA ETOPOS data with smoothing parameters: p=p,=p,= 1.0
of 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast (contour interval = 500 meters;
5-nautical mile grid interval (85 x 85 grid); heavy line is a plot of the FCS as found by SDG).

Figure 5. Contour map of the spline-smoothed NOAA ETOPO5 data with smoothing parameters:

p=p, =P, =.9999 from 7 degrecs longitude by 7 degrees latitude portion of U.S. Atlantic coast {contour
interval = 500 meters; 5-nautical mile grid interval (85 x 85 grid); heavy line is a plot of the FCS as found
by SDG).



Set p=p,=p,=-9990 and consider the results as
given in figure 6. The contours have been
smoothed further. There are no sharp points nor
angular edges remaining in the contours. Note
that the relative distance between the contours
on this map has been preserved and is about the
same as the original data when p=1 in figure 4.
The Hudson Canyon on the right side of the map
is still clearly evident. From Cape Hatteras,
North Carolina, to Cape May, New Jersey, with
only one exception, the FCS is contained
between the -1500 meter cantour and the -2000
meter contour. This is where it should be,
according to the legal definition, because this is
exactly where the "maximum change in the
gradient at its base" occurs, i.e., after the closely
spaced contours that indicate a steep slope; the
foot is located by an increase in the spacing
between the contours, which is where the
maximum change in the gradient at the base
ocCurs.

To introduce more smoothing, set p=p,=p,=
.9900. The results are given in figure 7. Now the
contours are very smooth. Note the -500 meter,
- 1000 meter, and -1500 meter contours in figure
6 are close together and -2000 meter, -2500
meter, -3000 meter contours begin to widen out.
In figure 7, the -500, -1000,-1500, and -2000
contours are about equally spaced. Note also the
Hudson Canyon on the right side of the map is
essentially nonexistent. Although this is a map
with nice smooth contours, it has lost much of
the information content of the original data in
this last smoothing increment, i.e., there has
been too much smoothing of the data by setting
p=p.=p,=.9900. So p=p,=p,=.9990 is optimal if
we increment the smoothing parameter by
dropping off a 9 at each step. This is the dataset
that will produce the best results for a two
derivative procedure with p=.9990.

An equation for p is given on page 2-13 by
de Boor (1992) to be:

p=11[1+(h6}), (6)

where h is the grid interval. Using de Boor's
equation &, one finds that when h=1/12, then p
=.9999. For this dataset and the objectives of
this report, figure 5 shows that this is not
enough smoothing. The results from this report
would suggest replacing the constant 6 in
equation 6 with a constant of .6; thus, forh =
1/12, then p = .9990, which yields the optimum
value of p found for this dataset.

In the previous figures, the line representing
the FCS was plotted on the contour maps
without explaining how the lines representing
the FCS were obtained. The intermediate steps
that were used to obtain results presented will
now be given. Figure 8 is a 3-dimensional net
display of the surface generated by the SDG
procedure as given by the SDG algorithm in
table 1 above. Note the crest of the highest
ridge on the surface locates the FCS and runs
from the lower left-hand corner to the upper
right-hand corner of the display. Also, note the
small ridge just to the left of the big FCS ridge.
It represents the place in the data where it was
close to the coast line, and from there to the
coast line all the z values were arbitrarily set to
a value of -10 meters in the original dataset.
The smaller features to the right of the FCS
ridge are of interest. These trends should be
examined in more detail by oceanographers to
see what they represent.

The FCS line plotted on all the previous
contour maps was obtained by contouring the
SDG of figure 8. This is displayed in figure 9.
The line indicating the FCS displayed in
figure 9 was found by the program keeping a
record of where the cells of the grid obtained
the largest value and connecting a line between
those cells as the computation progressed.
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Figure 6. Contour map of the spline-smoothed NOAA ETOPOS data with smoothing parameters:

P =P, = p, = .9990 from 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast {contour
interval = 500 meters; 5-nautical mile grid interval (83 x 85 grid); heavy line is a plot of the FCS as found
by the SDG).
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Figure 7. Contour map of the spline-smoothed NOAA ETOPOS data with smoothing parameters:
p=p,=p, =.9900 from 7 degrees longitude by 7 degrees latitude portion of U.5. Atlantic coast {contour
interval = 500 meters; 5-nautical mile grid interval (85 x 85 grid); heavy line 1s a plot of the FCS as found
by the SDG).
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Figure 8. 3-D Net display of the SDG of splinc-smoothed NOAA ETOPQS data with p = p, = p, = .9990
from 7 degrees longitude by 7 degrees latitude portion of the U.S. Atlantic coast 5-nautical mile grid
interval (85 x 83 grid}; FCS is located by the peak of the highesi ridge).
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Figure 9, Contour map of the SDG using the spline-smoothing NOAA ETOPQOS data with smoothing
parameters: p=p,=p, =.9990, 7 degrees longitude by 7 degrees latitude portion of U.S. Atlantic coast
(FCS is obtained from the crest of the highest ridge; 5-nautical mile grid interval (85 x 85 grid); heavy
line is a plot of the FCS as found by SDG).



One now shows that the 85 x 85 grids can be
partitioned to a finer grid. The smoothing
parameter p = .9990 eliminated much of the
noise and still maintained the information
content of the ETOPOS z values. These data are
on a 5-nautical mile grid interval. At this point,
because the bi-cubic smoothing spline is a
closed mathematical function, it could be
sampled to as fine a grid as desired. Because
this dataset was already quite large with an 85 x
85 grid, the grid was only refined once in this
example by adding twice the number of equally
spaced points in the x vector and the v vector to
define the grid to be 170 x 170 with a
2.5-nautical mile grid interval.

Note in figure 3 the noisy 3-D net display of
S(x,y) was given for the original ETOPOS
dataset with smoothing parameter p = 1.0.
Figure 4 showed what happened when this
dataset was contoured and the SDG computed
with this S(x,y) as input. This gave a very poor
location of the FCS at a grid interval of 5

nautical miles. Figure 10 is a 3-D net display of
S{x,¥) with an optimal smoothing parameter of
p =.9990. The data have been smoothed and the
FCS plotted at a grid interval of 2.5 nautical
miles. It misses the FCS at some places; but it is
locating it at most of them.

Figure 11 is a contour map of figure 10. The
FCS is located in map view by latitude and
longitude to the accuracy of the 2.5-nautical
mile grid. The bi-cubic spline-smoothing
representation S{x,y} with an optimal smoothing
parameter does an excellent job of eliminating
most of the noise and maintaining the data
integrity and information content.

This ETOPOS5 dataset was chosen because it
covered most of the coastal areas of the world.
Working with the noisy original ETOPOS data
would have produced poor results with any
approach attempting to compute a surface that
has to be differentiated twice, because taking the
derivative of any real dataset always increases
the noise level.

Figure 10. 3-D Net display of the spline-smoothed NOAA ETCGPOS data with smoothing parameters: p=p, = p, =.9990
from 7 degrees tongitude by 7 degrees latitude portion of U.S. Atlantic coast (Z = O’ is sea level; 2.5-nautical mile grid
interval (170 x 170 grid); heave line is a plot of the FCS as found by SDG).
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Figure 11. Contour map of the spling-smoothed NOAA ETOPOS data with smoothing parameters:
p=p,=p = 9990 from 7 degrees longitude by 7 degrees latitude protion of U.S. Atlantic coast {conlour
interval = 300 meters; 2.5-nautical mile grid interval (170 X 170 grid); heavy line is the FCS as found by §DG).

The SDG approach described above will be
contrasted for this example with the SMC as
outlined by Vanicek et al. (1994). The SMC was
computed using equations 1-5 and 11 of their
report. The results of running the SMC on this
dataset as it originally was given in x: degrees,
y: degrees and z: meters are not presented,
because it gave no reasonable location of the
FCS. In the Introduction, it was explained why
this would happen without scaling. In order to
obtain meaningful results with the SMC, the
units of measurement on all axes needed to be
changed to the same units. The input used had a
smoothing parameter of p =.9990, which
previously was found to be the optimal
smoothing parameter for this dataset. With the
data grid scaled so that the grid units are
kilometers on the x, y, and 7 axes, the SMC's
peak of its highest ridge locates the FCS. The
scaled SMC map of the FCS then needs to be
scaled again to return the map to the proper
aspect ratto of the original data. As pointed out
in the Introduction, the SDG approach requires
only the x and y axes have the same units and
requires no scaling of the ETOPOS data to
obtain the FCS. To accommeodate the SMC, the

12

data are now scaled to compare the location of
the FCS using the SMC and the SDG.

To scale the x and y axes of the dataset, the
degrees were converted to kilometers. For
latitude, y, 1§1 kilometers for each degree was
used: hence for latitudes 33° to 407 the
kilometers ranged from O to 777 on the y-axis.
On the y-axis the scaling factor is r, = 11. For
longitudes -76° to -69°, X, c0s(36.5") x 777 =
625; hence the scale was from 0 to 625 on the
x-axis. On the x-axis the scaling factor is
89.228. The 36.5° is the mean of 40 and 33
degrees. Both axes are in kilometers.

The SMC did place the FCS in essentially the
same locations as the SDG after the scaling of
the x, y, and z axes to kilometers. The 3-I> net
displays of the scaled axes of the SMC and SDG
are given in figures 12 and 14, respectively.
Note the sharp rise from 0 of the ridge that
represents the FCS as found by the SDG in
figure 14. To the west of the FCS is a smaller,
secondary ridge of essentially the same
orientation. The smaller ridge is where a -10
meters below sea level truncation of the data
occurs. In figure 12, the SMC does not show
this as a distinct ridge; but it has only one wide



ridge with no clear break between the two
ridges. Figures 13 and 15 are the contour maps
of the SMC and SDG, respectively. Note that
the SMC in figure 13 and the SDG in figure 15
the highest ridge (FCS) run from the lower left
corner to the upper right corner on both; but the
ridge on the SDG in figure 15 is more well
defined. In general, the features in the SMC in
figure 13 are not as well defined, nor distinct;
rather, they run together. The SDDG obtained the
same location of the FCS at all scales. Compare
figures 9 and 15 which have different scales.
There is no figure for the FCS by the SMC
because it cannot compute it at the original scale
of the data.

When scaling in figures with scaling factors,
r, and r,, the following equations are
recommended for the transformed coordinates to
determine the best smoothing parameters
p.and p:

px = pm/[pm + ( 1- p,m) r/t}]’
and

p_\ = p_\ﬂl[p_\'lJ + (l- p_\‘()) rl\'B]'

Withp=p,=p,,=.999 and r, =89.228 and r,
= 111, the optimum smoothing parameters are

found to be p, = 1.4 x 107 and p, = 7.2993 x
10, Actually, in the transformed space, the best
results were obtained by scaling p, and p, by 0.3
obtaining p,= 7.0078 x 10 and p, = 3.650 x
1074,

For this ETOPOS3 dataset and the processing
used in this report, the SDG has features that are
better defined and more distinct than those same
features as outlined y the SMC . It was shown in
theory, in the paragraph following equation 4,
that, " this maximum curvature may well be
large in places where the gradient directed
second derivative, N, i.e., the curvature in the
gradient direction is not large.” This property
may afford the SDG more flexibility and
treedom than the SMC and thus allow it to be a
more sensitive indicator of the FCS. More data
need to be run to verify this conjecture.

A numerical verification of this theoretical
observation in the paragraph following equation
4 about the relative heights of the two surfaces
will now be given. The surface A = SMC - SDG
was computed as the difference of the two
surfaces. Every value of the surface A was
found to be zero or positive. This is clearly
shown in figure 16 by the 3-D net plot of the
surface A.

This approach of bi-cubic smoothing and
data representation should make NOAA's
ETOPOS worldwide database of interest and
value in many areas of oceanography. Previous
to the smoothing methods of this report it has
been too noisy to be of much interest.
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Figure 12. 3-D Net display of the SMC; x, v, and 7 axes are in kilometers using the spline-smoothed
NOAA ETOPOS data with smoothing parameters: p, = 7.00728 x 107, p, = 3.650 x 10 7 degrecs longitude
and 7 degrees latitude portion of U.S. Atlantic coast {28.135-kilometer grid interval x-axis; 35.000-kilometer
erid interval v-axis (85 x 85 grid); FCS is the peak of the highest ridpe}.
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Figure 13. Contour map of the SMC; x, v, and z axes in kilomelers with smoothing parameters:

p,= 7.00728 x 10, p, = 3.650 x 10” 7 degrecs longitude by 7 degrees latitude portion of U.S. Atlantic
coast (contour values in kilometers as labeled; 28.135-kilometer grid interval x-axis; 35.000-kilometer
grid interval v-axis (85 x 85 grid); heavy line is a plot of the FCS as found by SMC).
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Figure 14. 3-D Net display of the SDG, x, y, and z axes are in kilomelers using the spline-smeothed
NOAA ETOPOS3 data with smoothing parameters: p, = 7.00728 x 107, p, = 3.650 x 10 7 degrees
longitude by 7 degrees latitude portion of U.S. Atlantic coast (28.1335-kilometer grid interval x-axis;
35.000-kilometer grid interval y-axis (85 x 85 grid); FCS is the peak of the highest ridge).
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Figure 15. Contour map of the SDG, x, y, and 7 axes in kilometers with smoothing parameters:

p, = 7.00728 x 10, p, = 3.650 x 107 7 degrees longitude by 7 degrees latitude portion of

U.S. Atlantic coast {contour values in kilometers as labeled; 28.135-kilometer grid interval x-axis;
35.000-kilometer grid interval y-axis {85 x 85 grid); heavy line is a plot of the FCS as found by SDG).
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Figure 16, 3-D Net display of A= SMC - 8DG, x, ». and z axes are in kilometers vsing the
spline-smoothed NOAA ETOPOS data with smoothing parameters: p, = 7.00728 x 107,
p, = 3.650 x 10* 7 degrees longitude by 7 degrees latitude portion of LS. Atlantic coast
(28.135-kilometer mile grid interval x-axis; 35.000-kilometer grid interval y-axis (85 x 85 grid)).



Summary and Conclusions

1. The preprocessing of the NOAA's ETOPOS
worldwide bathymetric dataset by bi-cubic
spline smoothing provides an explicit
mathematical function S(x,v) that reduces the
noise and retains most of the original
information content of the data. This
representation of the ETOPOS dataset should
provide valuable information about the world's
seafloors to many arcas of oceanography.

This data smoothing is requisite to obtaining
good results in constructing any second
derivative surface. Noisy data will always give
poor results using gradient methods, because
taking derivatives introduces angularity and
magnifies the noise. There is a limit to the
amount of smoothing that should be done. An
equation is given that provides a smoothing
parameter p as a function of the grid interval.
This parameter p should not destroy the original
information content of the data. The constant
required in the equation for an optimal p will
vary depending on the dataset. The explicit,
mathematical bi-cubic spline function allows the
display of the data at a finer grid. These
techniques can be implemented on any digital
dataset having a rectangular grid.

2. The SDG approach is an accurate
mathematical modeling of the legal definition of
the FCS. The FCS is given by tracing the peak
of the highest ridge of the SDG, } : {x,3,5(x,¥}).
The SDG is obtained by computing the gradient
at any point {x,y) of the grid, then computing the
R.Q. of the H matrix of S(x,) in the direction of
the gradient at (x,¥). The SDG contains other
smaller but distinct ridges representing
deep-water features seaward of the FCS. These
should be examined by oceanographers in
further study. See figure 8.

3. The SDG on the ETCPOS dataset was
computationally stable and does not require
special scaling of the data to obtain accurate
results.

4. The SDG will not find the FCS n all
cases. In particular, when a cross-section
perpendicular to the contours of the continental
shelf is the arc of a circle, the legal definition
will not yield the FCS. Because of the uniform
gradient in this case, there is no maximum
gradient at the base. In such cases, an alternative
definition to the current definition of the FCS
must be used. When the FCS is formed under
normal sedimentation conditions, this situation
will be rare.

5. The theoretical mathematical relationship
between the SDG and the SMC is presented in
this report. The SDG uses the R.Q. of the Hof §
in the direction of the gradient to find the FCS.
It has fewer mathematical steps than computing
the SMC.

The SDG requires only the x and y axis to
have the same units to focate the FCS
accurately. The SMC required scaling the three
axes to the same units to find the FCS. It must
then be scaled again to restore the proper aspect
ratio for the proper location of the FCS.
Equations are given for the equivalent optimal
smoothing parameters after scaling.

The SDG is always less than or equal to the
SMC at each (x,y). This was shown in the theory
on page 4 and verified in the example.

6. With new technology allowing deeper
dritling and mining, coastal countries are going
to be increasingly more interested in the
accurate location of their FCS when it is past the
EEZ.

7. It is hoped that this report will show how
to utilize the information content of the NOAA
ETOPOQOS5 dataset in many areas of oceanography
and allow many countries to use it to compute
their FCS with it. Please contact me at the
address on the title page if I can be of help.
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Appendix A: Brief Discussion of
Spline Functions

For those unfamiliar with splines, this brief
discussion of spline functions 1s presented
because they are used in this report to smooth
the raw bathymetric data. Splines are used
physically by draftspersons and in ship fairing to
obtain smooth curves. These splines are long
plastic or wooden strips that have weights
placed on them at the points the strip is to bend.
The function, which is the mathematical analog
of the physical spline, is also called a spline.
The cubic spline is the one of interest in this
report. The mathematical analog of the physical
weight is called a knot. The plastic or wooden
strips are represented by the mathematical
splines as cubic polynomials joined together at
the knots. At the breakpoints where the cubic
polynomial pieces meet, they are constructed to
have two continuous derivatives. To construct
the second derivative surface of this report, we
need to be able to take two derivatives of a
function and still have a non constant function
to describe the resulting surface. The cubic
spline is just what is needed.

A cubic polynomial P(x) is of the form:

P(x)=Ax'+ Bx*+ Cx + D,

where A, B, C, and D are real numbers. The
graph of a univariate cubic polynomial P(x) is
given in figure A1.A.

A univariate cubic spline S(x) is a sequence
of cubic polynomials connected at the
breakpoints so that the first and second
derivatives match at the breakpoints. This is
indicated schematically in figure A1.B.

A univariate cubic spline can be written as:

n
Sxy =Y A P (x), { Al)
i=1

where each P, (x) is a cubic basis spling nonzero
on[x,x,,,],where { x.:i=1,...,n} are the
knots, and the {4, : i=1, ..., n} are the real
coefficients.

A bivariate or bi-cubic spline S(x,y) ts made
up of patches of bi-cubic polynomials whose
values and partial derivatives match along and

parallel to the x and y axis. A schematic display
of a bi-cubic spline is shown in figure Al1.C.
The general form of a bi-cubic spline is:

nx n,\'
Sxyy=3 Y A; P (0P (), (A2)
i=1 j=1

where {A; ,:i=1,...n.j=1,. ,n}arethen,
times #, real number coefficients and {P, (x}:
i= 1, ...,n, } are the n_ univariate basis splines in
the x direction with knots at {x,:¢i=1, ... n }
and {P,(y): j= 1, ..., ntare the n, univariate
basis splines in the direction with knots {y;:
j=1,..,n_}, as mentioned above in the
univariate case.

In one dimension, n data points {(x,y)
i=1, ..., n)} can readily be interpolated by a
unique polynomial of degree less than n by one
of several polynomial interpolating procedures.
The problem is that these higher order
polynomials (n>9) are under such tension that
in between the data points they can assume
erratic values, which make polynomials of little
practical use over the entire domain of
definition. The Matlab M-files { script files) of
the Spiine Toolbox compute the coefficients
{A, . i=1,...n, j=1,..,n.} for equation A2.
Splines are used to represent the data rather than
polynomials because splines are so much more
flexible and supple than polynomials and, hence
give a representation that honors the information
content of the data better. They also yield better
results between the original data points where
the data are interpolated. The basis functions for
polynomials have infinite support; hence,
remote data unrelated to local data can cause
poor representation locally. Because of local
support of the spline basis functions, the local
spline representation of the data is not distorted
by remote data. The bivariate spline smoothing
of this bathymetric data yields a function S(x,y)
of the data at the point (x,v). The bi-cubic spline
function S(x,y) of equation A2 is used to
represent the smoothed data, because it is the
spline of lowest degree that has the continuous
second partial derivatives that are required in
the computation of the SDG. There is assurance
that the two continuous partial derivatives exist
at any point (x,y) in the domain of the function
S(x,v), because they exist for each of the
univariate cubic spline function components
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from which S(x,y) is constructed; hence, S(x,y)
has two continuous derivatives over its domain
of definition:

[X). Xn ]x[Y,, ¥n,]

The Matlab M-file, "CSAPS", is a univariatc
spline-smoothing program. It has a parameter p,
where 0 < p < 1. With pset to 0, the
algorithm gives a least squares spline
approximation to the data. With p set to 1, the
algorithm gives a cubic spline interpolation of
the data. When O < p < 1, the representation is
a weighted mixture of the two options. (p=1)

The 2-dimensional version of CSAPS is
calied TCSAPS. It provides the bi-cubic
spline-smoothed representation of the data
{Zfx,.yp i=1,..,n, j=1,...,n} lthas
two smoothing parameters p,and p,, 0 < p, < 1
and0 < p, < L.

With p, and p, set to 0, TCSAPS returns a
least squares linear spline approximation to the
data. With p, and p, set to 1, TCSAP returns
cubic spline interpolation of the data. Clearly, p,
and p, can assume any value between 0 and 1,
yielding a weighted mixture of least squares
approximation and interpolation in the x and y
direction, respectively. In the labeling of the
figures, the value of the smoothing parameters
p. and p. will be indicated by the letter p. It is
understood that p = p, = p, in the original
coordinate system.

Because we need a bi-cubic spline function
with two partial derivatives in x and v direction,
smoothing parameters p will be chosen close to
1.0, 1.e., .9999, 9990, .9900. When the
coordinate system is transformed by scaling, the
proper p, and p, in the transformed coordinate
system is given by equations (see p.13) a
function of the scaling parameters in the x and v
direction.

Splines have proved to be most useful in
smoothing and representing general statistical
data in various fields where the raw data are
noisy. For application to general statistical data,
see Bennett (1972). For application to remote
sensing, pattern recognition, and image
processing of digital satellite data, see Bennett
(1974) and Bennett et al. {1974). For a more
detailed presentation of spline functions, see
Cheney and Kincaid (1985 ). For a more
theoretical discussion of splines, see Schumaker
(1981) and de Boor (1978, chapter 17).

20

References for Appendix A

Bennett, John G., 1972, Spline Smoothing of
Histograms Using B-Splines, Rice University
Computer Center, ICSA 275-025-022; Also

NASA Technical Report, NASA-CR-133987.

1974, Estimation of Multivariate
Probability Density Functions Using B-splines,
Ph. D. Dissertation, Rice University.

Bennett, John ., de Figurueiredo, Rui, P., and
Thompson, James. R., 1974, Classtfication by
Means of B-Spline Potential Functions with
Application to Remote Sensing, Invited Paper
presented by J.O. Bennett at IEEE Sixth
Southeastern Symposium on System Theory,
Baton Rouge, Louisiana, Published in
Symposium Proceedings, March 1974.

Cheney, Ward and Kincaid, David, 1985,‘
Numerical Mathematics and Computing,
Brooks/Cole, Monterey, California.

de Boor, Carl, 1978, A Practical Guide to
Splines, Applied Mathematics Sciences # 27,
Springer-Verlag, New York, New York.

1992, Spline Toolbox User's Guide, The
MathWarks, Inc.

Schumaker, Larry L., 1981, Spline Functions;
Basic Theory, John Wiley, New York, New
York.



A. GRAPH OF CUBIC POLYNOMIAL, P (x)

Y

o/“\J_o P(x)

X

B. GRAPH OF A CUBIC SPLINE, S (x):

Y

o/\-\)/\dﬂi (x)

o = o X

C. GRAPH OF A BI-CUBIC SPLINE, § {x.y):

{\f\vs x,¥)
‘\f\)
f’\ LaS,

/ p_e_p(xy)

Y

Figure Al. Graphs of {A4) cubic polynomial P(x), (B} cubic spline 5{x), and
(C) bi-cubic spline S(x,¥).

21



Appendix B: Area of U.S.
Atlantic Coast Where FCS is
Seaward of the 200-Nautical
Mile EEZ

In the first area of interest presented in
figures 2 to 16 in the body of this report, the
200-nautical mile EEZ was always seaward of
the FCS; therefore, the EEZ was not plotted on
the maps in these figures.

We now consider the area of the U.S.
Atlantic coast from -81° to -71° longitude and
from 29° N to 39° N latitude. The location of
this area is outlined in figure B1. In a portion of
this arca off the coast of Florida, the location of
the FCS (FCS plus 60 miles) is seaward of the
200-nautical mile EEZ.

Figure B2 shows a more detailed contour
map of this area. Article 76, item 4.{4), ii; of the
Law of the Sea (LOS} extends the edge of the
continental margin of the United States an
additional 60 nautical miles seaward of the FCS.
The FCS is indicated by the heavy black line.
The FCS plus 60 nautical miles is indicated by
the dashed heavy line. The 200-nautical mile
EEZ is located on the map by the line
overwritten with circles. The area of the
seafloor between the EEZ and the "FCS plus 60
nautical miles", which represents the additional
mineral rights acquired by the United States by
virtue of the LOS, is indicated by the shaded
region.

Note that this area represents a sizable
increase in the mineral rights of the United
States, under the LOS.

nﬂ

I\I I

!
ﬁ — Area of Interast

|

Figure B1. Map of U.S. Atlantic coast, Appendix B area of interest.
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Figure B2. Contour map of the NOAA ETOPOS data with smoothing parameter p=9990, U.S. Atlantic

coast, 10 degrees longitude by 10 degrees latitude (5-nautical mile grid interval; contour interval=300 meters:

heavy line is a plot of the location of FCS as found by SDG; heavy dashed line is location of the FCS plus
60 nantical miles; line with circles over it is the 200-nautical mile EEZ}.
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The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility
for most of our nationally owned public lands and natural resources. This includes fostering
sound use of our land and water resources; protecting our fish, wildlife, and biological diversity;
preserving the environmental and cultural values of our national parks and historical places;

and providing for the enjoyment of life through outdoor recreation. The Departraent assesses
our energy and mineral resources and works to ensure that their development is in the best
interests of all our people by encouraging stewardship and citizen participation in their care.
The Department also has a major responsibility for American Indian reservation communities
and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's {(MMS5)
primary responsibilities are to manage the mineral resources located on the Nation's Outer
Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian
tands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program
administers the OCS competitive leasing program and oversees the safe and environmentally
sound exploration and production of our Nation's offshore natural gas, oil and other mineral
resources. The MMS Royalty Management Program meets its responsibilities by ensuring the
efficient, timely and accurate collection and disbursement of revenue from mineral leasing and
production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being
responsive 1o the public's concerns and interests by maintaining a dialogue with all potentially
affected parties and (2) carrying out its programs with an emphasis on working to enhance the
quality of life for afl Americans by lending MMS assistance and expertise to economic
development and environmental protection.



