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Abstract

Accurate locations of the offshore boundaries of the United States are needed by the U.S.
Department of the Interior Minerals Management Service (MMS) for minerals
management purposes on the Outer Continental Shelf (OCS).

Offshore boundary lines are (1) equidistant lines that are located at the midpoints between
two coastlines or (2) boundary lines that are located by projecting a coastline seaward and
more or less parallel to itself.

Equidistant lines, which include median lines and lateral lines, consist of an unbroken
series of intersecting curved line segments and "straight” line segments, every point of
which is equidistant from the closest points on opposite coastlines.

Three-dimensional geodetic computational techniques and mathematical equations are
presented. These techniques and equations have been developed for computing the
locations of and for preparing complete and accurate descriptions of the equidistant lines
that form the offshore boundaries of the United States for minerals management
purposes.

Introduction

The following is a description of three-dimensional computational techniques including
mathematical equations that have been developed for determining the locations of and for
preparing complete and accurate descriptions of the equidistant lines, which in many
areas form the offshore boundaries of the United States.

Definitions

Listed below are definitions of terms that are used in describing the computational
processes:

Median Lines, Lateral Lines, and Equidistant Lines - Geometric median lines, lateral
lines, and equidistant lines consist of a continuous unbroken series of intersecting curved
line segments and/or "straight line"” segments, every point of which is equidistant from the
closest points on opposite coastlines. In the case of a median line, the opposite coastlines
are more or less parallel with each other, similar to the opposite banks of a river, and the
median line is located at midpoint between the two coastlines. In the case of a lateral
line, one coastline is actually a continuation of the other. The "opposite” coastlines are
the same coastline. They are adjacent or side-by-side and the lateral line extends seaward
following a course that is more or less perpendicular to the coastline. Lateral lines and
median lines can both be described as equidistant lines.



Baseline - The normal baseline is the line of mean low water, or mean lower low water
where applicable, along that portion of the seacoast that is in direct contact with the open
sea. Baselines also include closing lines across the mouths of rivers and bays.

For computational purposes, a baseline is a mathematical approximation of the location
of the (lower) low water line. It is represented by (1) a series of points only and (2) points
connected by short straight line segments. The baseline points usually represent
prominent points along irregular stretches of coastline. The straight line segments of the
baseline represent smoother, straighter stretches of coastline and closing lines.

The locations of all baseline points are defined by their geographic coordinates (i.e.,
latitude and longitude), which are determined by surveys or by digitizing from nautical

charts or from specially prepared large scale charts.

When baseline points and lines have been agreed upon by all interested parties, their
coordinates are treated thereafter as though they are exact.

The Computational Baseline

For computational purposes, the baseline is defined as a mathematical approximation of
the mean (lower) low water line and is represented on charts by a series of (1) points only
and (2) points connected by straight line segments. The locations of all baseline points
are obtained from best available information and are represented by their geographic
coordinates.

For computational purposes, some of the baseline points that represent the coastline and
which do not influence the location of an equidistant line are eliminated. The baseline for
computational purposes is therefore represented by a subset of the fully defined baseline.
All baseline points that might influence the equidistant line are treated as though they do
influence the equidistant line. A conservative computational baseline subset will usually
consist of discontinuous but otherwise unaltered portions of the baseline.

A subset of the baseline, which is to be used for an equidistant line between two

coastlines separated by a distance of several hundred miles, might include only a small
portion of the baseline points needed to represent the actual coastline.

A Semi-graphical Approach

The procedures outlined for computing the locations and types of equidistant line
segments are a multi-step process that can best be described as semi-graphical or semi-
analytical. First, a plot of the baseline points and lines is prepared at a workable map
scale. Second, the approximate locations and types of equidistant line segments are
developed using semi-graphical techniques. Then, the exact coordinates of equidistant



angle points, endpoints, points of intersection and other associated points are computed
using the equations presented in the Appendix. A computer program is used to compute
all needed coordinates after the most appropriate baseline/equidistant line computational
options have been identified.

Baseline/equidistant Line Combinations

The most frequently encountered baseline/equidistant line combinations are illustrated in
figure 1 and are described throughout the text. The descriptions, figure 1 diagrams, and
equations are linked by computational-option abbreviations, e.g. [P1L2].

Following are descriptions and illustrations of several different types of baselines, and
descriptions of the geometric relationships between baselines and equidistant lines. Also
included are descriptions and diagrams of the most commonly encountered
baseline/equidistant line conditions that affect the shape and location of the equidistant
line, which must be recognized and identified for computational purposes. In addition,
analytical procedures and mathematical equations are presented that can be used to
compute the coordinates of all points needed to determine the location of an equidistant
line and to prepare an accurate and complete description of an equidistant line.

Types of Coastlines

Two different types of equidistant line/baseline relationships are considered: (1)
equidistant lines associated with baselines defined by isolated baseline points or clusters of
baseline points only and (2) equidistant lines associated with baselines defined by both
straight line segments and by isolated points and/or clusters of points. In the case of a
baseline defined by points only, the equidistant line consists of a set of intersecting straight
line segments only. In the case of a baseline defined by straight line segments and by
points, the equidistant line consists of a set of intersecting straight line segments and/or
curved line segments.

(US)
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Figure 1. Most frequently encountered baseline conditions with equidistant line (EL) angle
points, O, and associated points, AP, plus corresponding computational-option abbreviations.




Baseline Defined by Straight Line Segments and by Salient Points -If a baseline is
defined by straight line segments only or by a combination of straight line segments and
salient points, the equidistant line will consist of an unbroken set of intersecting straight
line segments and/or curved line segments. A baseline, defined by straight line segments
only and the associated equidistant line, exists within the channel shown in figure 2A
between equidistant line points D and K. A baseline, defined by a combination of straight
line segments and salient points and the associated equidistant line, exists within the same
channel between equidistant line points K and M.

Equidistant line direction changes occur abruptly as angle points at the point of
intersection of two straight line segments (point J, fig. 2A) at the point of intersection of a
non-tangent curved line segment and a straight line segment (point D, fig. 2A) and at the
point of intersection of two non-tangent curved line segments, (point L, fig. 2A).
Direction changes can also occur gradually along curved line segments (line segment
EFGH]I, fig. 2A) at the point of intersection of a straight line segment that is tangent to a
curved line segment (point E, fig. 2A) or at the point of intersection of two tangent curved
line segments.

Straight equidistant line segments exist where an equidistant line passes between two
straight baseline line segments, i.e., where all points of the equidistant line are equidistant
from two straight baseline line segments on opposite baselines (segment I, fig 2A).
Straight equidistant line segments also exist where an equidistant line passes between two
opposite baseline angle points that are convex toward the equidistant line, or where an
equidistant line passes between two baseline salient points (segment ABC, fig. 2A).

Curved equidistant line segments are usually parabolic; all points of which are equidistant
from a baseline salient point or from a baseline angle point, which is convex toward the
equidistant line on one baseline and a straight line segment on the opposite baseline
(segment EFGHI, fig. 2A).

Equidistant line curves can be simple parabolic curves consisting of independent curved
line segments bounded by straight line segments such as segment EFGHI, or can be
relatively complex curves consisting of two or more intersecting curved line segments
(NOP, fig. 2A).

When the baseline is defined by straight line segments only or by a combination of
straight line segments and salient points, the location of the equidistant line can be
defined accurately in terms of the coordinates of the equidistant line end points, the
coordinates of equidistant line angle points, and the coordinates of equidistant line
straight line segment end points, supplemented by the coordinates of a small number of
additional points-on-curves, which are needed to define uniquely the shapes and locations
of curved equidistant line segments.
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Figure 2B. Equidistant line associated with a baseline defined by salient points
only.

Baselines Defined By Salient Points - If a baseline is defined only by the coordinates of
prominently located points, such as large rocks or boulders scattered along or near the
water's edge of an irregular coastline, for example, the baseline is described as being
defined by salient points. In such cases, the equidistant line consists of an unbroken set
of intersecting straight line segments only. A baseline of this type and the associated
equidistant line are shown in figure 2B.

Straight line segments of the equidistant line, such as segments RS and ST in figure 2B,
represent a portion of the equidistant line every point of which is equidistant from two
salient points only (points 110 and 213 in the case of segment RS), one point on each
opposite baseline.

Equidistant line direction changes occur abruptly as angle points at the points of
intersection of adjoining straight line segments as occurs at point S in figure 2B at the

point of intersection of segments RS and ST.

The location of this type of median line can be defined accurately and completely in terms
of the coordinates of equidistant line angle points and end points only.

Equidistant Line Defining Points and Associated Points

Equidistant line defining points are points on an equidistant line, the coordinates of which
are needed to accurately define the location of the equidistant line. Defining points
include equidistant line beginning and ending points, straight line segment end points,



curved line segment end points, points of intersection of adjoining curved and/or straight
line segments, equidistant line angle points, and points on curves.

Equidistant line associated points are points on baseline straight line segments or non-
defining points on the equidistant line, the coordinates of which are needed for
computations associated with the determination of the coordinates of equidistant line
defining points or for computations needed to relate the location of the equidistant line to
the locations of nearby boundary lines, points on the coastline, etc.

Computing the Locations of Equidistant Line End Points

The points of beginning or ending of an equidistant line are usually points of intersection
between the equidistant line and an offshore boundary line. The coordinates of the end
points are determined by computing the coordinates of the points of intersection of the
equidistant line and the limiting boundary lines.

Auxiliary End Points - In order to compute the coordinates of the end points, it is
sometimes helpful to compute the coordinates of one or more associated points on the
equidistant line. If these points are located near the probable location of the end points,
they can be used to isolate a localized segment of the equidistant line in the vicinity of the
boundary line, which will assist in computing the coordinates of the end points. The non-
defining end point of, and points on, localized equidistant line segments are referred to as
auxiliary end points.

Baselines Defined by Salient Points Only (Option P2D2) - In the case of baselines
defined by salient points only, an auxiliary end point would be a point on a straight line
segment of the equidistant line that is: (1) equidistant from two salient points that are
located on opposite baselines and (2) that is also located a chosen distance from the two
salient points. Point A in figure 2A, for example, is an auxiliary end point that is located
a distance D from the two baseline points 103 and 202. One or more points A might be
computed in the vicinity of a projected offshore boundary line (by varying the distance D)
to assist in computing the coordinates of the point of intersection of the equidistant line
with the offshore boundary line.

The coordinates of equidistant line auxiliary end points, such as A, can be determined
utilizing the equations for point O presented in the Computational Option P2D2 section
of the Appendix.

Also, in the case of a projected offshore boundary line, the actual equidistant line
endpoint can sometimes be determined in a similar manner if (1) the distance D is equal
to the offshore boundary projection distance; (2) the offshore boundary line at the point of
intersection with the equidistant line consists of arc segments; and (3) the salient points,
which determine the location of the equidistant line, also determine the location of the
offshore boundary line at the point of intersection.



L1P1L1
B
I/
/ \
\
A \ \
\ \
\ \
\ i \
A - 2
uxilia
End Point ——/// \ End I’ \Equidistant Line
/
c / //
/ /
| /
/
\\
Boundary Line 1 D

Figure 3. End point and auxiliary end point on a straight line segment of an equidistant line
associated with a baseline defined by straight line segments only.

Baselines Defined by Straight Line Segments Only, or by a Combination of Straight
Line Segments and Salient Points (Options LIPILI and PILIPI) - In the case of
baselines defined by straight line segments only, where the equidistant line passes
between two straight baseline segments on opposite baselines, an auxiliary end point
would lie on a straight line segment of the equidistant line and would be equidistant from
(1) the straight baseline segment on one baseline and (2) a selected point, having known
coordinates, which lies on the straight baseline segment on the opposite baseline. Point O
in figure 3, for example, is an auxiliary end point that is equidistant from straight baseline
segment CD on one baseline and from point P, on the straight baseline segment AB on
the opposite baseline.

One or more points O might be computed in the vicinity of an offshore boundary line (by
varying the location of point P) to assist in computing the coordinates of the point of
intersection of the equidistant line with the boundary line.

The coordinates of equidistant line auxiliary end points such as O can be determined
utilizing the equations for point O presented in the Computational Option L1P1L1 section
of the Appendix.



In the case of an equidistant line that passes between a straight baseline segment on one
baseline and either a salient point or a baseline angle point that is convex toward the
equidistant line on the opposite baseline, the equidistant line would be curved.

When the equidistant line endpoint is the point of intersection of a curved line segment of
the equidistant line with an offshore boundary line, three or more auxiliary end points on
the equidistant line curve in the vicinity of the boundary line would provide sufficient
information to define the location of a localized segment of the equidistant line curve.
This would assist in computing the coordinates of the point of intersection of the
equidistant line with the boundary line.

In this case an auxiliary end point would lie on the curved line segment of the equidistant
line and would be equidistant from (1) a selected point on the straight baseline segment
on one baseline; and (2) the salient point or convex angle point on the opposite baseline.
Point O in figure 4, for example, is an auxiliary end point that is equidistant from point P,
on the straight baseline segment CD on one baseline and from point P, on the opposite
baseline.

Three or more points O computed in the vicinity of a boundary line (by varying the
location of point P,) would assist in computing the coordinates of the point of intersection
of the equidistant line with the boundary line.

The coordinates of equidistant line auxiliary end points such as O can be determined
utilizing the equations for point O presented in the Computational Option P1L1P1 section
of the Appendix.

To be sure that the end point of an equidistant line is located accurately in relation to the
baseline, the baseline should be extended a sufficient distance beyond the desired end of
the equidistant line. This is because the equidistant line location can be influenced by
baseline points or line segments that might be located some distance away from the end
point of the equidistant line. Therefore, baseline salient points should be selected and/or
straight line segments of the baseline should be extended well beyond points of
intersection with a boundary line.

Equidistant Line Direction Changes

10

Equidistant line direction changes occur (1) at the point of intersection of adjoining
straight equidistant line segments; (2) at the point of intersection of adjoining curved
equidistant line segments with straight equidistant line segments that are either tangent or
not tangent to one another; and (3) at the point of intersection of adjoining curved line
segments that are either tangent or not tangent to one another.
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Figure 4. End point and auxiliary end points on a curved line segment of an equidistant
line associated with a baseline defined by straight line segments and by salient points.

Baseline Defined By Salient Points Only

Points of Intersection of Straight Line Segments (Option P2P1) - In the case of a
baseline defined by salient points only where all equidistant line segments are straight
line segments the equidistant line angle points are points of intersection of adjoining
straight equidistant line segments and are equidistant from three salient points. One pair
of salient points determines the location of one straight equidistant line segment, a second
pair of salient points determines the location of the intersecting straight equidistant line
segment, and one of each of the two pairs of salient points is the same point (i.e., one
salient point is common to both pairs). Angle point T in figure 5, for example, is the
point of intersection of equidistant line segment ST (which is equidistant from salient
points P, and P;) and equidistant line segment TU (which is equidistant from salient
points P, and P;). In this case, point P; is the common salient point, and angle point T 1s
equidistant from all three salient points P,, P,, and P,.

The coordinates of equidistant line angle points such as T can be determined utilizing the

equations for point O presented in the Computational Option P2P1 section of the
Appendix.

11
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Figure 5. Equidistant line angle point associated with a baseline defined by salient
points only.

Baseline Defined by Straight line Segments Only

Points of Intersection of Straight line Segments (Option L2L1) - In the case of baselines
defined by straight line segments only, straight line segments of the equidistant line exist
where the location of the equidistant line is determined by two straight baseline segments,
one on each opposite baseline. Equidistant line direction changes occur at angle points
when the equidistant line passes between (1) two straight baseline segments connected by
a baseline angle point, which is concave, toward the equidistant line on one baseline and
(2) one straight baseline segment on the opposite baseline. At an equidistant line angle
point of this type, the angle point is equidistant from all three of the straight baseline
segments. Angle point J, figure 6, for example, is the point of intersection of equidistant
line segment IJ (which is equidistant from straight baseline segments EF and AB) with
straight equidistant line segment JK (which is equidistant from straight baseline segments
EF and CD). In this case, angle point J is equidistant from all three straight baseline
segments AB, CD, and EF. (Baseline points B and C might or might not be the same
point).

The coordinates of equidistant line angle points such as J can be determined utilizing the
equations for point O presented in the Computational Option L2L1 section of the
Appendix.
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Figure 6. Equidistant line angle point associated with a baseline defined by straight
line segments only.

Points of Intersection of a Straight line Segment and a Curved Line Segment (Option
LIPILI) - In the case of baseline defined by straight line segments only, curved line
segments of the equidistant line exist where the location of the equidistant line is
determined by a baseline angle point that is (1) convex toward the equidistant line on one
baseline and (2) by a straight baseline segment on the opposite baseline. Straight line
segments of the equidistant line exist where the location of the equidistant line is
determined by two straight baseline segments, one on each opposite baseline. Equidistant
line direction changes occur gradually along a parabolic curve when a straight line
segment of the equidistant line intersects a curved line segment of the equidistant line at a
point of tangency. This occurs when the locations of both a curved line segment of the
equidistant line and a straight line segment of the equidistant line are determined by a
common straight baseline segment. In this case, the point of intersection (i.e., point of
tangency) is equidistant from the common straight baseline segment, the straight baseline
segment on the opposite baseline, and the angle point. Point F, figure 7, for example, is
the point of intersection (point of tangency) of the straight equidistant line segment EF
(which is equidistant from straight baseline segments AB and CD) with the curved
median line segment FG (which is equidistant from baseline point P, and from the
common straight baseline segment CD). (Baseline point B and angle point P, might or
might not be the same point).

The coordinates of equidistant line points of intersection such as F can be determined
utilizing the equations for point O presented in the Computational Option L1P1L1 section
of the Appendix.

13
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Figure 7. Point of intersection of a curved equidistant line segment with a straight
equidistant line segment at a point of tangency associated with a baseline defined by
straight line segments only.

Points of Intersection of curved Line Segments (Option P1L2) - In the case of baselines
defined by straight baseline segments only, curved line segments of the equidistant line
exist where the location of the equidistant line is determined by a baseline angle point
that is convex toward the equidistant line on one baseline and by a straight baseline
segment on the opposite baseline. Equidistant line direction changes occur abruptly when
curved equidistant line segments intersect adjoining curved equidistant line segments that
are not tangent to one another. This occurs when the locations of two adjoining curved
line segments of the equidistant line are determined by a common baseline angle point
that is convex toward the equidistant line on one baseline and by two different straight
baseline segments connected by a baseline angle point, which is concave toward the
equidistant line on the opposite baseline. The common convex angle point and the two
straight baseline segments determine the locations of the two adjoining curved equidistant
line segments. At an equidistant line angle point of this type, the angle point is
equidistant from (1) the common convex baseline angle point and (2) from both of the
two straight baseline segments. Angle point O, figure 8, for example, is the point of
intersection of curved equidistant line segment NO (which is equidistant from baseline
angle point P, and from straight baseline segment AB) with curved equidistant line
segment OP (which is equidistant from the common convex baseline angle point P; and
from straight baseline segment CD). In this case angle point O is equidistant from both
straight baseline segments AB and CD and from the common baseline angle point P,.
(Baseline points B and C might or might not be the same point).
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Figure 8. Point of intersection of non-tangent curved equidistant line segments associated
with a baseline defined by straight line segments only.

The coordinates of equidistant line angle points such as point O can be determined
utilizing the equations for point O presented in the Computational Option P1L2 section of
the Appendix.

Baseline Defined by Straight line Segments and by Salient Points

Points of Intersection of a Straight Equidistant Line Segment and a Curved
Equidistant Line Segment (Options P1L2 and P2L1) - In the case of baselines defined
by straight line segments and by salient points, curved line segments of the equidistant
line exist where the location of the equidistant line is determined by a baseline salient
point on one baseline and by a straight baseline segment on the opposite baseline.
Straight line segments of the equidistant line exist where the location of the equidistant
line is determined by two straight baseline segments, one on each opposite baseline.
Equidistant line direction changes occur abruptly when a straight line segment of the
equidistant line intersects a curved line segment of the equidistant line (at a point that
might not be a point of tangency). In this case, the point of intersection is equidistant
from (1) the salient point and (2) from both of the straight baseline segments. Angle
point G, figure 9, for example, is the point of intersection of curved equidistant line
segment FG (which is equidistant from baseline salient point P, and from straight
baseline segment CD) with straight equidistant line segment GH (which is equidistant

15
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Figure 9. Point of intersection of a curved equidistant line segment and a straight
equidistant line segment (which might not be tangent) associated with a baseline defined
by straight line segments and by salient points.

from straight baseline segments AB and CD). In this case, angle point G is equidistant
from both straight baseline segments AB and CD and from baseline salient point P;.

The coordinates of equidistant line angle points such as G can be determined utilizing the
equations for point O presented in the Computational Option P1L2 section of the
Appendix.

Also, in the case of baselines defined by straight line segments and by salient points,
straight line segments of the equidistant line will exist wherever the equidistant line
passes between two salient points (i.e., where the location of the equidistant line is
determined by two salient points that are located on opposite baselines). In this case, the
point of intersection of the straight line segment and the curved line segment is
equidistant from (1) the two salient points and (2) from the straight baseline segment,
which determines the location of the curved line segment of the equidistant line. Angle
point Q, figure 10, for example, is the point of intersection of straight equidistant line
segment PQ (which is equidistant from salient points P, and P;) with curved equidistant
line segment QR (which is equidistant from salient point P, and from straight baseline
segment AB). In this case point Q is equidistant from the two salient points P, and P, and
from the straight baseline segment AB.
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Figure 10. Point of intersection of a curved equidistant line segment and a straight
equidistant line segment (which might not be tangent) associated with a baseline defined by
straight line segments and by salient points.

The coordinates of equidistant line angle points such as Q can be determined utilizing the
equations for point O presented in the Computation Option P2L1 section of the
Appendix.

Point of Intersection of Curved Line Segments (Option P2L1) - In the case of baselines
defined by straight line segments and by salient points, curved line segments of the
equidistant line exist where the location of the equidistant line is determined by a salient
point on one baseline and by a straight baseline segment on the opposite baseline.
Equidistant line direction changes occur abruptly when curved equidistant line segments
intersect adjoining curved equidistant line segments that are not tangent to one another.
This occurs when the locations of two adjoining curved line segments of the equidistant
line are determined by (1) a common straight baseline segment on one baseline and (2) by
two different baseline salient points on the opposite baseline. The straight baseline
segment and one salient point determine the location of one of the curved equidistant line
segments, and the same straight baseline segment and the other salient point determine
the location of the second curved equidistant line segment. At an equidistant line angle
point of this type, the angle point is equidistant from (1) the common straight baseline
segment and (2) from both of the two baseline salient points. Angle point L, figure 11,
for example, is the point of intersection of curved equidistant line segment KL (which is
equidistant from baseline salient point P, and from straight baseline segment AB) with
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Figure 11. Point of intersection of non-tangent curved equidistant line segments
associated with a baseline defined by straight line segments and by salient points.

curved equidistant line segment LM (which is equidistant from baseline salient point P,
and from the common straight baseline segment AB). In this case, angle point L is
equidistant from both salient points P, and P, and from the common straight baseline
segment AB.

The coordinates of equidistant line angle points such as L can be determined utilizing the

equations for point O presented in the Computational Option P2L1 section of the
Appendix.

Points on Curves

In order to accurately define the shape and location of a curved line segment of an
equidistant line, the coordinates of one or more points on the curved line segment of the
equidistant line are needed in addition to the coordinates of the end points. Since an
equidistant line curve is equidistant from a baseline salient point or from a convex
baseline angle point on one baseline and from a straight baseline segment on the opposite
baseline, the convex angle point or salient point plus several other selected points located
on the straight baseline segment are utilized to determine the locations of points on the
equidistant line curve, the coordinates of which can be computed accurately and
conveniently.

18



One convenient choice for the location of a point-on-curve includes the point on the curve
that lies on the line that is perpendicular to the straight baseline segment on one baseline
and that also passes through the salient point or the convex baseline angle point on the
opposite baseline. Point D, figure 12, is a point-on-curve of this type.

The coordinates of equidistant line points-on-curves such as point D can be determined
using the equations for point O presented in the Computational Option P1L1 section of
the Appendix.

Another convenient choice is the point on the curve that lies on the bisector of the convex
baseline angle point. Point C, figure 12, is a point-on-curve of this type.

The coordinates of equidistant line points-on-curves such as point C can be determined
using the equations for point O presented in the Computational Option L2BL1 section of
the Appendix.

Other choices might correspond to points on the straight baseline segment that are at the
mid-point or quarter points of the portion of the straight baseline segment that lies
between those points that correspond to the end points of the equidistant line curved line
segment. Points B and E, figure 12, are points-on-curve that correspond to the quarter
points B1 and E1 of the straight baseline segment that lies between straight baseline
segment points Al and F1. Al and F1 correspond to the endpoints A and F of the curved
line segment of the equidistant line. (Points Al through F1, fig. 12, are points on the
straight baseline segment from which perpendiculars pass through corresponding points-
on-curve A through F).

The coordinates of equidistant line points-on-curves such as B and E can be determined
using the equations for point O presented in the Computational Option P1L1P1 section of
the Appendix. The coordinates of the curved line end points such as A and F can also be
determined using the equations presented in the appropriate Computational Option
section of the appendix. (For example, in the case of a straight line/curved line point of
tangency as shown in figure 12, the coordinates of end points such as A and F can be
computed using the equations for point O presented in the Computational Option L1PI1L1
of the Appendix).

Midpoints

The coordinates of midpoints are needed for many purposes. The coordinates of
midpoints and quarter points (such as points B, and E, fig. 12) are needed to compute the
coordinates of points on curves, for example.

The coordinates of a midpoint can be determined using the equations for point O
presented in the Computational Option P1P1 section of the Appendix.
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Figure 12. Defining points on a curved equidistant line segment and associated points on the
straight baseline segment.

Identifying the Correct Computational Option and Correct Multiple
Solution

To be sure that the correct coordinate computational equations are utilized, the geometric
baseline/equidistant line computational option must be identified correctly. (In a
preceding paragraph, for example, it was mentioned that the coordinates of the particular
type of curved line end points associated with a point of tangency such as points A and F
should be computed using the Computational Option L1P1L1 equations).

Similar appearing baseline/equidistant line conditions might be represented
mathematically by significantly different equations. For example, the curved line end
points F, figure 7, and Q, figure 10, might appear to be the same (i.c., a straight
line/curved line type of point of intersection); but the two are actually different
geometrically, and the coordinates of the two end points are computed using different sets

of equations (L1P1L1 and P2L1).
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Also, different appearing baseline/equidistant line conditions might be represented
mathematically by the same equations. For example, the coordinates of the points of
intersection O, figure 8, and G, figure 9, which appear to be different, are both computed
using the same set of equations (P1L2). Therefore, in determining the computational
option to apply, the underlying geometric baseline/equidistant line relationship must be
identified.

To assist in matching baseline/equidistant line conditions with corresponding
computational options, the baseline/equidistance line conditions that have been described
and illustrated separately are summarized graphically in figure 1. Also, the computational
option abbreviations accompany the first line of each description, the description
illustrations in the appendix, and the corresponding figure 1 diagram.

In addition, valid multiple solutions are obtained for the computed coordinates of many
points. In some cases, the desired coordinates can be identified relatively easily; but in
other cases, the preferred solution is not obvious, and some additional analysis is required
to make the proper selection.

Because of the necessity for selecting the correct computational option (based
occasionally upon subtle differences) and for identifying the correct solution (which might
sometimes require considerable judgement), it is difficult to fully automate scientific
computations of this type safely. For this reason, the existing computer programs have
been designed to depend upon human interaction.

Legal Description of an Equidistant Line

An equidistant line, which is a single, continuous unbroken line, is described by a sequence
of points of intersection having known geographic coordinates that are connected by
identified "straight line" segments and/or curved line segments. The phrase
"BEGINNING AT" is used to describe the beginning point of the line. Thereafter, when
the equidistant line follows the path of a straight line segment the phrase “BY STRAIGHT
LINE TO” is printed, and the geographic coordinates of the point of intersection with the
next segment in sequence are listed. When the equidistant line follows the path of a
curved line segment, the phrase, “BY CURVED LINE TO” is printed, and the geographic
coordinates of the point of intersection are specified.

Locating an Equidistant Line Within a Block /Grid System

For minerals management purposes, the OCS has been subdivided into a planar network of
square or rectangular blocks bounded by grid lines uniformly spaced in both X and Y
directions. The grid system adopted for use on the OCS, when adjacent to areas
previously leased by a coastal State, is frequently the State Plane Coordinate System of
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the State. In most other cases, the Universal Transverse Mercator (UTM) coordinate
system has been adopted.

The location of an equidistant line is determined without considering the block/grid
system. However, the two must be compatible if they are to be related. A common grid
scale factor and plane coordinate system are necessary.

If there is compatibility, the location of the equidistant line on the grid can be determined
by computing the coordinates of the points of intersection of the equidistant line with the
lease block grid lines and by determining the grid coordinates of other needed equidistant
line defining points and associated points. Because the equidistant line is defined
geodetically, an equation in terms of grid coordinates must be derived to represent the
equidistant line in the plane coordinate system.

Polynomial equations are usually used for this purpose and can be derived in the
following manner. The geographic coordinates of a relatively large number of points
spaced at regular intervals along the equidistant line are computed, and these coordinates
are transformed into the plane coordinate system of the leasing area. Employing curve
fitting procedures, a polynomial equation is derived that will closely approximate the
offshore boundary line on the grid. In all subsequent cartographic computations, the
equidistant line is represented by the polynomial equation.

Summary

22

Three-dimensional equidistant line computational techniques and mathematical equations
are described, which have been developed for computing the locations of and for
preparing complete and accurate descriptions of the equidistant lines that form the
offshore boundaries of the United States for minerals leasing purposes.

A baseline is an approximation of a coastline that can be represented mathematically.
Baselines are sometimes defined by meander traverses only, and are sometimes defined
by prominently located salient points only, or by combinations of meander traverses and
salient points.

A geometric median line, lateral line, or equidistant line consists of a series of
intersecting curved line segments and/or straight line segments, every point of which is
equidistant from the closest point on opposite baselines, as measured along an arc over
the earth’s ellipsoidal surface..

The shape and location of an equidistant line is determined by the shape and location of
the baseline, and the type of equidistant line is determined by the type of baseline.



A semi-analytical process is utilized for computing the locations of equidistant lines in
which baseline plots are examined, baseline/equidistant line conditions and corresponding
computational options are identified, and the coordinates of all points needed to determine
the accurate location of and to prepare a description of an equidistant line are determined.

Descriptions and illustrations of the most commonly encountered baseline/equidistant line

conditions plus the corresponding mathematical equations that are used to compute the
coordinates of all needed equidistant line points have been presented.
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Appendix
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Two Non-linear Equations Having Two Unknown Variables

An iterative procedure can be used to obtain the values of two variables when two non-
linear equations have been obtained and when estimated values of the two unknown
variables can be determined. For example, if the two equations F,,(y, z) and F,,(y, z)
exist where

F,=dz* +dgz +dgy +dy +dy* +dg =0,

_ 2 2 _
F, =ez° +ez +ezy +ey+ ey +e6—0,

and estimated values of y and z have been determined; then improved estimates y’ and z’
can be obtained using the equations

y =y +dy,
and
7 =z +dz,
where
dz = (Fanz - F12F21)
(F|2F23 - F13F22)
and
- (—F“ - Fde)
y = ,
F,
in which
F, =2y +dyz+d,,
F, = 2dlz + d3y + d2 ,
Fp = 2ey v ey + ey,
and

F23 = 2elz + ey toe,.

Similarly, new improved estimates

"

y =y +dy',
and

"

" =7 +d7



are obtained by substituting y’ for y and z’ for z in the preceding equations. The entire
procedure is performed repeatedly until the values of dy and dz become very small,
approaching zero. The final estimates of y and z are then accepted as approximations of
the true values of y and z.

Point of Intersection

The geocentric coordinates of point 4, (X,, ¥, Z,) , the point at which the straight baseline
segment

Pt. 4 (x,,Y,.2,)

LN

G (xg: ¥g1 Zg)

AB intersects the straight baseline segment CD can be obtained using the equations

(Mlza - Mz, + xp - 'xa)

2y =

Yy = )

. 2
in which
M - (xb - xa)
l o - ) ,
. - (x. = %)
Tl -a)”
- (yb " Ya
S w)
and
o - Pe V)
) (2 - 2)
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The geocentric coordinates of point G, (xg, Vg Zg) ,which is a point on the straight
baseline AB where the distance from point G to point4 is equal to the distance from point
D to point 4 can be obtained from

x, =adG + x,,

yg=a2dG+y4,
and
zg=a3dG+Z4,
in which
a, =x, - x,,
a2_ya_y4’
03'—‘20“24,
Cy =X, T X,
€ =Yg " Vs
€3 7% ~ %o
1
[ .2 2 2\3
a'A—(al + a, +a3) ,
1
.2 2 2\3
dD—(c1 + ¢y +c3) ,
and

dG = — .



Notation

a = length of ellipsoidal semi-major axis
b = length of ellipsoidal semi-minor axis

Pt,4(x4, Var 2 4) = the point at which the straight baseline segment AB intersects the
straight baseline segment CD

Pt.G(x v Y., 2 ) = a point on the straight baseline segment AB where the distance
88 from Pt. G to Pt. 4 is equal to the distance from Pt. D to Pt. 4.
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Computational Option P1L1

2
W’
S g . \’és\" -’
~ X\
~ Q\)\ >
“~.~ < prs
L7 | ?
Sag (o) I - ¢
.~...--+---'-”‘
|
]
A - n - B
R

28

Given: The geographic coordinates (¢, A) of point A (,, A,), point B (¢,, A,), and point P,

(2)

(4)

(8)

(10)

(12)

(14)

(16)

(17)

(18)

(92, 1.
Compute: The geographic coordinates (¢, A) of point P, (¢, X)) and equidistant point O
(@05 Xo)-
Azo2 +Bz; + C =0 (1) Xy = - My,
Yo = Mizy + B, (3) T X
F=y, -y, (5) G =gz -z,
H = Ex, + Fy, + Gz M, = E
2 2 2 (7) G
F
M, =E (9) B, =x, - Mgz,
H - EB, - FB
B, =y, - Mg, (11) z, = ( 2 )
(EM, + FM, + G)
x = Mgz, + By (13) » = Mgz + B,
Q=x - x (15) R =y, -y
S=1z -7
1
T=E[(x22+y2+zzz)—(x,+y,+zl)]




M, - (GQ - SE)
(RE - FQ)

_ (TE - HQ)

' (RE - FQ)

2
A=M+ M+ L
bZ

(19)

(21)

(23)

_(FM, + G)

2 E
5 - (H - FB)
2
E

B = 2(M,B, - M,B))

C =B+ B} -a?

(20)

(22)

(24)

(25)
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Computational Option L2BL1

BISECTOR

a"z 3/2

30

Given: The geographic coordinates (¢,A) of point A (@,, A,), point B (¢,, A,), point C (¢,
A, point D (g, A,), point E (., A,), and point F (¢, A;) . (Points B, C, and P, can be the

same point.)

Compute: The geographic coordinates (¢,A) of point P, (¢, A;) and equidistant point O

(@5 o)
d ,yoz

2
elyo

(D - By, - Cz)

2
+ eZZD + e3yozo + e4yo

(3)

¢ A
y, = Mz, + B

A=x -x

g d
C=2z -z
E=x -x
G=2z-z2

(5)
(7)
(9)

(11)

(13)

* dZZOZ + d3yozo + d4yo + SZo + d6 =0

+eszo+e6=0

x, = Mgz, + B
z, = By, + Bz, + B,
B =y, -y,

(1)

(2)

(8)

(10)

(12)

(14)



B6=xe—Mz

P =EM, + FM, + G

(23)

(25)

(27)

(29)

(43)

(39)

d

4

dy

F

M. =

TG
B7:ye_M7Ze
Q = EB; + FB,
[o- %)

B. =
2 j2

Ay = ~MgB,

Az = x, - MgB,
Ap = ~M;B,

Ay = -B,

Ay =2z, - B

- B

d3 = AZZA + A31A - A“C - AlzB + AClBlB2
AyA + AD - A;B + AC,B,

AjpA + ALD - AC + ACB,

(24)

(40)

(41)

(42)
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(45)

(47)

(49)

e, = 2BC

es = -2CD

(46)

(48)



Computational Option P1L1P1

Given: The geographic coordinates (@, A) of point A (¢,, A,), point B (¢,, A), point P, (¢,,

A,) and point P, (@,, A,).

Compute: The geographic coordinates (@, A) of equidistant point O (@, A,).

Az02+Bzo+C=O
Yo = Mz, + B,
F=y -y,

H = Ex + Fy, + Gz,

R:yz—yl
u, - (62 =SB
(RE - FQ)
g - TE - HQ)
' (RE - FQ)
A=M,2+M22+—al;—2

(1)

(3)

(5)

(16)

(18)

- My,

Q
1
&
[
~

B = 2(M,B, - M,B,)

(15)

(17)
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Computational Option L1P1L1

34

Given: The geographic coordinates (¢, A) of point A (@,, A,), point B (¢, A,), point C (¢,
L), point D (o4, A,), point E (¢, A.), and point F (¢, A . (Points B, C, and P, can be the

same point.)

Compute: The geographic coordinates (¢, A) of point P, (¢,, A,) and equidistant point O

(@05 Ao)-

2 2
dlyo + ZZO * d3yozo B d4yo - SZo * d6

2 2
elyo * eZZO + eSyOZO B e4y0 B e5Z0 + e6 - 0

(3)

° A
x, = Mz, + B, (5)
(x, - x,)
L = —— (7)
(z - z,)
B =x - Mgz (9)
E =X - X, (11)

z, =Ly, + Mz, + N

¥, = Mz, + B

- Y,)

M, - oy -y,

(z; - 2,)

B, Y - Mzzf
F=y -y,

(1)

(6)

(8)

(10)

(12)




G=z -z (13) J = EM, + FM, + G (14)
K = EB, + FB, (15) A=x -x, (16)
B=y, -y, (17) C=2 -2, (18)
AF - EB
D = Ax, + By, + Cg, (19) L- @£ (20)
AJ
DE
(AG - EC) (-— —KJ
M =
v (21) volA (22)
J
B2 _ C2 a2
d, = el 1.0 (23) d, = Ry (24)
2BC _ 2BD
b= (25) 4 = =5 (26)
_2CD _D*
ds = e (27) dg = el -a (28)
M.B
L 2| M, - —/;-] - Llm? - M2+ 1.0)} (29)
M,C
M| 2|10 - —‘-—) - M(M? - M} 1.0)] (30)
| A

+L(1.0 —M—‘C]} (31)
A

- MM\N + B)) - M,M,N + B)) - N] -
(32)

B
X(MIN + B - x)+MN +B, - yl}
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MMD - C(M\N + B,) + Cx,
es = 2 1

+N -2z -
(33)

M[N + M\(M\N + B)) + My(M,N + Bz)] }

2DM\N + B, -

X
1) N x12 + y12 + le _ N2 _
A (34)

(M\N + B} - (M,N + B}

86:



Computational Option P1L.2

Given: The geographic coordinates (¢,A) of point A (,, 4,), point B (¢, A,), point C
(d., A,), point D (4, Ay), and point P, (d,, A,). (Points B, C, and P, can be the same

point.)

Compute: The geographic coordinates (¢,1) of point P, (¢, A,) point P, ($,, A,) and

equidistant point O (¢, A,).

dy,

2

€Vo T €I, T &Y,

B=y, -y,
D = Ax, + By, + (Cz,

J =y, -V,

+ dzz

o

2

(3)

(5)

(7)

(2)

(11)

(13)

(15)

2
+

Tl T e,

d}yozo + d4yo * dSZo + d6 =0

+e =0

(1)

(2)

(4)

(6)

(8)

(10)

(12)

(14)

(16)
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L=x, -x, (17) M=y, -y, (18)

H
N=z -z (19) M, = — (20)
K
L J
M, = = 21 = —
3TN (21) M % (22)
M
M, = = (23) B, =x, - Mg, (24)
N
B, = x, - Mz, (25) B =y, - Mgz, (26)
Bg =y, - Mgz, (27) R = HM, + JM; + K (28)
S = HB, + JB, (29) T = LM, + MM, + N (30)
vy
U = LB, + MB; (31) B - A (32)
21 R
= 2
B A (33) A (34)
By = R By = R
M - 2) (N - E)
A (35) A (36)
By, = T By, = T
[Q - U)
g .4 (37) A, = MB,, (38)
33 T
A, = M,B,, (39) Ay = MyBy + By - x (40)
A21 = MSBZI (41) A22 = M5B22 (42)
A23 = MSBZ3 + BS g (43) A31 = Bz[ (44)
Ay, = By (45) A,y = By, -z (46)



B, = M)B), + B,

C, =M, + My + 1.0

G = B?2 + Bsz + 3223

e, =A%+ B?
e, = 2BC
es = -2CD

(47) By = M(B,, + B
(49) C, =M,B, + MB; + B,
2
AC,B
(51) d - AA - AB -
2
AC,B2,

d, = Ap,A - AC -

dy = A(Azz * A31) - A,C - A,B - AC\B,B,,

d, = ApA + A\D - A;B - AC,B,,

dg = Aj;A + ALD - A,C - AC,B,,

d, = AD - A§3 . A("32 * ;32 * 232)
(58) = Chr A;‘zlz
(60) e, = -2BD
(62) € = D? - A%?

(48)

(50)

(52)

(53)
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Computational Option P2D2

/\5

1
\p
1} 1
1
]

Equidistant Line ' o

40

Given: The geographic coordinates (¢, A) of point P,(¢,, A,), point P,(¢,, A,) and distances
D, and D, (D, and D, can be different.)

Compute: The geographic coordinates of equidistant point O(¢,, A,).

ClZg * CXg * Cil * G * CiZg * Cg = 0 (1)
bleZ * b;z""o2 + byxgzy + by + bszy + bg = 0 (2)
y, =A + Bx, + Cz, (3) A =x, - x (4)
A, =y, — (5) Ay =1z, -z (6)
2 2, 2 2
A = (Dl _D2 tXy vty 4 ‘A5> (7)
N 2
A4
Ag = x; +y + 2z (8) A:_A— (9)
2
g - c- -5
= ——_ lo = T ll
A2 (10) Az (11)
b, = C?+ 10 (12) b, = B* + 1.0 (13)
b, = 2BC (14) b, = 2(AB - By, - x|) (15)



(18)

(20)

(22)
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Computational Option L2L1

Given: The geographic coordinates (¢,A) of point A (@,, A,), point B (¢,, A,), point C (¢,
A.), point D (g4, A,), point E (o,, A,), and point F (@, Ay) . (Points B, C, and P, can be the
same point.)

Compute: The geographic coordinates (¢,A) of point P, (9,, A,), point P, (9,, ,), point P,
(1, A4), and equidistant point O (@, A,).

dly(’z * dzzoz * d3y020 * d4yo *asz, t d6 =0 (1)
elyo2 + ezza2 + €y ,2, ey, t ez, + e = 0 (2)
(D - By, - Cz)
xo = " (3) Z?_ = Bllyo + BIZZO + Bl3 (4)
4 = B2lyu + Bzzzo + BzS (5) = B3|yo + B32Z0 + B33 (6)
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x, = Mz, + B,
x4=M3z:4+B3
y; = Mgz, + B
A=xg—xd
C=2 -z
E=xf—xe
G =1z -z,
J=y4_ya
L=x4—xd
N =2z -2
v E
F
M4=-5
M
M6=W
BZZxa_MZZa
B, =y, - Mg,
By =y, - Mg,
Q - EB, + FB,
S = HB, + JB

(19)

(21)

(23)

(25)

(27)

(29)

(31)

(33)

(35)

(37)

(39)

(41)

K =2z -2
M=y, -y,
u - E

G

m, - L

N

J

M. =L

S K
Blzxe_Mlze
B, =x;, - My,
BS:ya_MSZa

P=EM, +FM, + G
R = HM, + JM; + K

T = LM, + MM, + N

(32)

(34)

(36)

(38)

(40)

(42)
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U = LB, + MB,
o<
B, = P
/-2
B, = R
A
B,, = R
By, = T
A, =MB, - MB,

A,, =MB, - M;B,
A, =B, - B,
A B. -B

33 - 13

By, = M,B,; + B,
B\, = MB), + B;
C,=MB, + MB, + B

13

C, =M; + M2 + 10

(43)

(45)

(49)

(53)

(55)

4
B, = P
DE
B - A
13~ P
x- o
B,, = R
-
B, = T
—DA-L- -U
By, = T
A, =MB, - MB,
A, = MB, - MB,

Ay, = By, - B,
B, = M\B,; + B,
B, = MB, + B,

C, =M!+ M+ 10

Cp = B72 + 392 + 3123

Cy, = MB; + MB,;, + B

2 2 2
Cyy = By + By + By

A,y = MB,; - M,B\; + B - B,

23

(44)

(50)

(56)

(58)

(60)

(62)

(64)

(66)

(68)

(70)

(71)



A(C113121 - CZIBZZI)

2

(72)

d =A,A -AB+

A(C113122 B Clezzz)
2

U
H

, = AA - ALC

d, = AyA + A;A - A C - A,B + A(c B, B, - CZlelBZZ) (74)

1n=ir-iz

dy = ApyA + A D - Aj3B - A(CIZBH - szle) (75)

ds = AjA + ApD - ARC + A(CIZBIZ - szBzz) (76)
d, = AD + A(C‘32 ) (77) e, = B2 + A? (78)
e, = C? A;‘zlz (79) e, = 2BC (80)
e, = -2BD (81) es = -2CD (82)
€ = D? - A%? (83)
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Computational Option P1P1

\/

|
Equidistant Line § O

|

|

A

Given: The geographic coordinates (o, A) of point P, (¢,, A,) and point P, (¢,, A,).

Compute: The geographic coordinates (¢, A) of equidistant point O (g, A,).

Az’ + Bzy + C = 0 (1) X = By - My, (2)
Yo = Mz, + B, (3) P =x -x (4)
Q=y -y (5) R=2z -z (6)

sz o)l
T =x, +x (8) U=y, +y (9)
V=z,+z (10) W:%(PT+QU+RV) (11)

(12) E =y(z, -2) - y(z - 2,) (13)

F=x -z) - x( - 2z) (14) G = xy, - x5y, (15)




H =Gz,
_ (FM, + G)
2 E
H - FB
5, . - FB)
E

B = 2(B\M, - B,M,)

(16)

(18)

(20)

(22)

_ (GP_- RE)
(QE - FP)

_ (SE - HP)
(QE - FP)

(17)

(19)
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Computational Option P2P1

48

Given: The geographic coordinates (¢,A) of point P, (b,, A,), point P, (¢,, A,) and point
P3 (5, Ay).

Compute: The geographic coordinates (¢,1) of equidistant point O (¢, A,).

Az} + Bz, + C =0 (1) Xy = My, + B, (2)
Yo _MIZO +Bl (3)
1 2 2 2 2 2 2
AO=E[(X2 +)’2+22>”(X1 N +21)] (4)
(xz - xl) @2 - yl)

A =2 (5) 4, = ——— (6)

! A, A4,

(zz - Zl)

Ay = (7)

Ao

l 2 2

Co = 5[ (XJ Tyt z}z) - (xlz AT le)] (8)




(9)

(11)

(13)

(15)

(17)

(A2C3 - A3C2)
2 D

(C2 - Az)
? D

B = 2(M,B, + M,B,)

C =Bl +B; -a

(14)

(16)

(18)

(19)
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Computation Option P2L1

Given: The geographic coordinates (¢, L) of point E (¢, A,), point F (¢, Ay, point P; (¢,,
A,) and point P, (@4, A,) .

Compute: The geographic coordinates (@,A) of point P, (¢,, A,) and equidistant point O
(@6, A)-

dlyo2 + dzzo2 +dyz, + dy, +dgz, + d6 =0 (1)
ely02 * eZZ¢72 + e3yozo + e4—y0 + e5Z0 + e6 =0 (2)

i (D - By, - Cz) (Exo + Fy, + Gz, - Q)

(4)

(3) Z, =

c A P
x, = Mz, + B, (5) Y, = Mgz, * B, (6)
A= 2x, - xy) (7) B =20y, -y (8)
C =2z - z) (9) H = x32 + )’32 + Z32 (10)
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P=EM, + FM, + G

(F - BE)
L=\ A J
P
DE
(T ] Q)
N =
P
B, = M,N + B,
A, = -MM
A, = ML

>
S

(ll) E = xf - xe
(13) G = Zf - Z,
F
15 M, = —
(15) 4 G
(17) B4 = Ye —M4ze
(19) 0 = EB, +FB4
(G - CE)
(21)
M - A
P
(23) B, = M\N + B,
(25) A, =ML
(27) Ay =x; - M\N - B,
(29) Ay = MM
(31) Ay = -L
(33) Ay =7 - N
(35) C,=MB, + MB, + N
Alc,L?
(37) d =A,A-A,B+ 5
Alc,m?)
d, = AjA - AC + >

d, = AyA + AyA - A,C - A,B + AC LM

d, = AA +AD - A,B + AC,L

(22)

(24)

(26)

(28)

(30)

(32)

(34)

(36)

(38)

(39)

(40)

(41)
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d, = AjyA + A,D - A,,C + ACM

(43) e, = A? + B?
(45) 63 = 2BC
(47) e = -2CD

(42)

(44)

(46)

(48)

(49)



The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility
for most of our nationally owned public lands and natural resources. This includes fostering
sound use of our land and water resources; protecting our fish, wildlife, and biological diversity;
preserving the environmental and cultural values of our national parks and historical places;
and providing for the enjoyment of life through outdoor recreation. The Department assesses
our energy and mineral resources and works to ensure that their development is in the best
interests of all our people by encouraging stewardship and citizen participation in their care.
The Department also has a major responsibility for American Indian reservation communities
and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS)
primary responsibilities are to manage the mineral resources located on the Nation's Outer
Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian
lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program
administers the OCS competitive leasing program and oversees the safe and environmentally
sound exploration and production of our Nation's offshore natural gas, oil and other mineral
resources. The MMS Royalty Management Program meets its responsibilities by ensuring the
efficient, timely and accurate collection and disbursement of revenue from mineral leasing and
production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being
responsive to the public's concerns and interests by maintaining a dialogue with all potentially
affected parties and (2) carrying out its programs with an emphasis on working to enhance the
quality of life for all Americans by lending MMS assistance and expertise to economic
development and environmental protection.



