NOAA

Geophysical Fluid
Dynamics Laboratory

Skip to: [content] [navigation]
If you are using Navigator 4.x or Internet Explorer 4.x or Omni Web 4.x , this site will not render correctly!

gfdl's home page > gfdl on-line bibliography > 1994: AMBIO, 23(1), 44-49

Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide

Manabe, S., R. J. Stouffer, and M. J. Spelman, 1994: Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide. AMBIO, 23(1), 44-49.
Abstract: This study investigates the response of a climate model to a 1% per year increase of atmospheric carbon dioxide. The model is a general circulation model of the coupled ocean-atmosphere-land surface system, with a global computational domain, smoothed geography, and seasonal variation of insolation. The simulated increase of sea-surface temperature is very slow in the northern North Atlantic and the Circumpolar Ocean of the Southern Hemisphere where the vertical mixing of water penetrates very deeply and the rate of deep water formation is relatively fast. Extending this work, we investigated the transient responses of the coupled model to the doubling and quadrupling of atmospheric CO2, over the period of several centuries. During the entire 500-yr. period of the experiment, the global mean surface air temperature increases almost 3.5°C when CO2 is doubled, and 7°C when it is quadrupled. In the latter experiment, the thermal structure and dynamics of the model oceans undergo drastic changes, such as cessation of the thermohaline circulation in most of the model oceans, and substantial deepening of the thermocline, especially in the North Atlantic. These changes prevent the ventilation of the deeper layer of the oceans and, if they occurred in reality, could have a profound impact on the carbon cycle and biogeochemistry of the coupled ocean-atmosphere system.
smaller bigger reset
last modified: March 23 2004.