

An XML Schema Naming A
Elements a

Manufacturing Syste
Manufacturing

NISTIR 7143
ssister for
nd Types

Puja Goyal
Computer Scientist

ms Integration Division
Engineering Laboratory

NISTIR 7143

An XML Schema Naming Assister for
Elements and Types

Puja Goyal
Computer Scientist

Manufacturing Systems Integration Division
Manufacturing Engineering Laboratory

July 2004

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arden L. Bement, Jr., Director

Abstract

Providing a consistent naming convention for elements and types is essential in the creation,
development, and maintenance of Extensible Markup Language (XML) schemas. It improves
schema readability and consistency, consequently speeding up future schema adoptions and
implementations. The Naming Assister focuses on mapping terms used to assemble element or
type names against a table of allowable terms, and checking the construction of compound
names against the Automated Equipment Exchange (AEX) Testbed’s extension to the
International Standardization Organization (ISO) -11179 recommended naming convention. This
tool was originally written to determine naming inconsistencies within the AEX Testbed’s XML
schemas, and to assist in the establishment of a table of standard terms.

.

Introduction

The Naming Assister facilitates the process of establishing consistency when naming elements
and types in Extensible Markup Language (XML) schemas [1]. These element and type names
found in XML schemas are formed by concatenating terms (such as “facility”, and “location”) to
form a compound name (“facilityLocation”). The compound name in turn, corresponds to the
tags in an associated XML instance file. The Naming Assister parses the names found in a
schema into their constituent terms, and checks these terms against a list of allowable terms (or a
table of standard terms) provided by the user.

Aside from individual term checking, the tool also verifies the structure of the entire compound
name. The International Organization for Standardization (ISO) [2] established a naming
convention in ISO-11179 Part 5 [3], that recommends names should consist of terms categorized
into four (4) usages including <object class>, <qualifier>, <property>, and <representation>. The
qualifier may qualify the <object class>, <property>, and/or <representation>. These usages
signify locations of terms in a compound name. The Automating Equipment Information
Exchange (AEX) Testbed [4] further extended ISO-11179 by adding the three (3) usages
<prefix>, <quantity>, and <suffix>. It also restricts the qualifier usage to the property. Based on
this restriction and extension, terms according to their usages must be compounded in the
following order <prefix><object class><qualifier><property><representation><quantity>
<suffix>. The Naming Assister checks the order of terms according to their usages to verify the
compound name complies with this suggested naming convention, and suggests a rearranged
name if it does not comply.

This tool can drastically improve the time it takes developers to locate and fix mistakes in their
schemas. If a term is not found in the table, this could signal a spelling error in the schema, i.e.,
a term is used in the schema and is not allowed, or the term is a new term that should be added to
the table. If a compound name does not follow the AEX Testbed naming convention, this could
signal an incorrect arrangement of terms. This type of name and term checking can assist
developers to use terms consistently throughout their schemas, and institute naming guidelines
for future XML schemas.

The rest of this document details the Naming Assistor’s system requirements, programming
environment, input files, output files, tool logic, user interface (the form), and a guide to running
the naming assister using the form or from the command line. Each of this is described in its own
subsection.

System Requirements Environment

The software has been tested to work on Windows 2000 and XP. The latest version of the .NET
framework must be installed [5].

Programming Environment

The Naming Assister is developed using the Microsoft Visual Basic.NET environment.

Input Files

The following input files are required from the user:

· A table of terms spreadsheet that contains a list of vocabulary allowed when naming
types and elements. The format and information required in the table are described in
Table 1.

 · XML schema files. These files contain the names that will be verified by the Naming
Assister

· Optional – A file containing a list of line-separated XML schemas should the user wish to
parse multiple schemas in a single run as shown in Figure 1.

Abbr Acrn Term Expansion Usage 2nd Usage Explanation
A Yes 3D threeDimensional Qualifier Three-dimensional
A No E enumeration Prefix Enumeration
F No algorithm algorithm representation Algorithm

 Table 1: Example of a table of terms

1) The Abbr column indicates if a term is an abbreviation. The value of “A” signals the
term is an abbreviation, while the value “F” signals the term is not.

2) The Acrn column indicates if the term is an acronym. The value is either “yes” or “no”,
where “yes” indicates that the term is an acronym.

3) The Term column contains the term itself. A value in this column is required.
4) The Expansion Column expands the term to its full spelling. An example in Table 1

expands the term “3D” to its full expansion “threeDimensional.”
5) The Usage column indicates the term’s usage. The value must be one of seven possible

choices as defined by the AEX Testbed naming convention either prefix, class object,
qualifier, property, representation, quantity, or suffix. The term’s usage is required.

6) The 2nd Usage column specifies the term’s alternate usage. The value of this column has
the same selections as those of the fifth column.

7) The Explanation column contains a short explanation or meaning of the term.

*Note: These headings (Abbr, Acrn, etc) in Table 1 are not required; they are only used to
illustrate the information contained in each column. Additionally, the values used above to
indicate the term is an abbreviation (“A”, “F”) or an acronym (“Yes”, “No”) are also not required
– you may use any value to illustrate this behavior. However, the order in which this data is
stored in each row needs to be maintained. In other words, the third column must contain the
term, the fourth its usage, etc.

Figure 1: Example of a list of XML schemas

Figure 1 illustrates an optional file where “ctx.xsd”, “ctxU.xsd”, “abcd.xsd”, and “xyz.xsd” are
XML schema files the user wishes the Naming Assister to use.

Output Files

The output contains the following information when the program has finished.

1) The XML Schema file name
2) The line number which points to the location where the compound name was found
3) The term itself, extracted when the compound name was broken down
4) The term’s full declaration/compound name

These columns indicate a possible inconsistency associated with the term/compound name,
and outputs the following:
5) Displays the term if it is not found in the table
6) Displays the compound name if it is greater than 25 characters
7) Displays the original compound name and the suggested rearranged name if it does not

follow the naming convention mentioned earlier.

Schema
Name

Line
No

Term Full Declaration
/Compound name

Term
NOT
found in
table

Compound
Name > 25
Characters

Suggested Name

ctx.xsd 514 custom <xsd:element
name="customLocation
AndGeographicArea"
type="ext:Custom"
minOccurs="0">

 customLocati
onAndGeogr
aphic
Area

ctx.xsd 514 location <xsd:element
name="customLocation
AndGeographicArea"
type="ext:Custom"
minOccurs="0">

location customLocati
onAndGeogr
aphic
Area

ctx.xsd
ctxU.xsd
abcd.xsd
xyz.xsd

ctx.xsd 140 organiz
ation

<xsd:element
name="customOrganizat
ion" type="ext:Custom"
minOccurs="0">

 ORIGINAL NAME:
customOrganization
SHOULD THE
NAME BE THE
FOLLOWING?:
OrganizationCustom

Table 2: Example output

Tool Logic

The Naming Assister parses through one or more schemas, finds the compound names, and
breaks the compound name into their component terms. These terms can either be acronyms, full
words, or abbreviations (numbers are also broken down as terms, and unless numbers are
specified in the table of terms, they have no significance in this tool). The program then checks
for the following situations: 1) Is the term located in the table? 2) Is the entire compound name
greater than 25 characters? (Note that the 25 characters length used here is an arbitrary value,
this number is typically derived from the restriction of the database field name), and 3) Does the
construction of terms in the compound name follow the AEX Testbed naming convention of
<prefix>< object class><qualifier><property><representation><quantity><suffix>? The Naming
Assister works as follows.

First the program opens the table of terms, and converts it to a .csv (comma delimited) file, and
renames it “Table_Temp.txt.” This text file is used as a lookup table for the program to check
against XML schema names. As the program opens a schema file, it searches for the string
“name=” in the XML tagging to determine names associated with elements and types. The set of
characters in the double quote encountered immediately to the right is the compound name. The
program begins the breakdown process by reading the first character of the name to determine if
it’s 1) a capital or 2) a lowercase character from its ASCII value. 1) If it is lowercase, it reads
the rest of the characters until an uppercase character is found. All the characters read are stored
as a term. 2) If the first character is uppercase, it then checks if the second character is A) a
capital or B) lowercase. In case A where the second character is also an upper case, further
characters are read until a lowercase character is encountered. These characters are also joined
to form one term, and since they contain all capital - it is an acronym. In case B where the second
character is a lowercase, it’s similar to the first case in that it keeps reading until an uppercase
character is found.

The diagram below illustrates an example of the terms produced from the original name
declaration following this breakdown process:

<xsd:element
name="customLocation
AndGeographicArea….>

Searches for “name=“
in XML tagging to
locate the name
declaration

customLocationAndGeo
graphicArea

custom, Location, And,
Geographic, Area

Cursor starts at the
beginning of
compound word

 Breaks down

compound w
into terms

Locates next
“name=” ord

Figure 2: Breaking down compound names into its constituent terms

As each term is retrieved:

1) The program verifies if the term is allowed by looking up the TERM column of the user’s
table and retrieves its corresponding usage in the USAGE column of the same table. The
term is written to the output file if it was not found.

The program continues the breakdown process until the entire compound name is read. After the
compound name is retrieved, the following occurs:

2) The program determines if the length of the compound name is greater than 25
characters. The compound name is written to the output file if it is greater than 25
characters.

3) Next the program verifies if the compound name follows the naming convention:

<prefix><class object><qualifier><property><representation><quantity><suffix>. If
not, the program outputs the original compound name, and suggests a rearranged name to
the output file. Note that if one of the terms does not appear in the table of terms, then
the term will not appear in the suggested rearranged name.

This process continues until the program has located and broken down all the names in the
schema. If more than one schema is specified, it repeats this process on the rest of the schemas.

User Interface

If no command line arguments are given, a form will be displayed upon opening the Naming
Assister as shown in Figure 3.

Figure 3: User Interface

On the form, there are four text fields including CurrentFile, File or Files, Input Table Name,
and Working Directory, one check box labeled single, and two buttons labeled Browse and Run.
Each one is explained below.

The CurrentFile text field displays the schema file in process by the Naming Assister

The Table Name text field is where the user must enter in the file name of his/her table of
standard terms

The Working Directory text field contains the path to the location of schema files and table. The
user must change this according to the location of schema files and table of terms on his/her own
machine using the Browse button.

The File or Files text field indicates if the program should search through one file, or multiple
files. If the user prefers one file, the user must click on the checkbox “single" and then type the
name of the schema file, for example, “ctx.xsd” in the input box directly below. Otherwise, if the
user wants to run through all the files, the checkbox "single" must be unchecked, and the user
input into the text field the name of the file that contains a list of all the files to parse.

The Run button starts the program

Guide to running the Naming Assister

1. Create and save a table of terms as an Excel Spreadsheet.

Using the Form

2. Save the XML schema file(s) in the same location as the table.

3a. For parsing multiple schemas:

- Create a text file containing the name of all the schema files to be checked in the same
location as the table and schema files.

On the user interface form:
- Enter the file name of the table of terms under the Input Table Name
- Ensure that the checkbox “single” is unchecked.
- Type the file name just created to contain schema files on the form under the File or Files

text box.

 3b. For parsing a single schema:
 On the Form:

- Enter the file name of the table of terms under the Input Table Name.
- Check the checkbox marked “single”.
- Type the name of the schema file on the form under the File or Files text box.

4. Next to the Current Working Directory text box, click the Browse button to specify the
location of the table and schema files.

5. Click Run for the Naming Assister to begin.

When the message box “Completed Operations!” appears, the program has concluded and an
“Output” folder is created in the working directory to store all the output files –
“DetailParseLog.xls,” and “DetailParseLog.txt” (comma delimited version).

From the Command Line

2. Save the XML schema file(s).

3a. Change to the directory where you installed the Naming Assister (This is where the .exe file
should be)

4a. Run the following command:
NamingAssister.exe <inputTable.xls> <inputSchema.xsd | listOfFiles.txt> <outputFile.xls>

<inputTable.xls> - absolute location of the table of terms
<inputSchema.xsd> - absolute location of the schema you want to parse OR
<listOfFiles.txt> - absolute location of the text file containing list of schemas. These should be
listed one schema name per line.
<outpuFfile.xls> - absolute location of the file containing results of the program

*Note if the user specifies a text file (.txt) as the second argument, the Naming Assister will
assume the user wants to run multiple schemas and will treat this text file as a list of files as

described earlier. However, if the argument contains an .xsd extension, the tool will assume a
single schema.

The results from the tool are written to the output file, and a message box “Completed
Operations!” appears when the program has concluded

References

1. World Wide Web Consortium (May 2001). XML Schema Part 1: Structure W3C

Recommendation. Available online via http://www.w3.org/TR/xmlschema-1
2. International Organization for Standardization. Information about this organization is

available online via http://www.iso.org. Accessed May 2004.
3. Metadata Standards Organization. ISO/IEC 11179, Information Technology – Metatdata

Registries (MDR). Available online via http://metadata-stds.org/. Accessed May 2004.
4. Fiatech. Automating Equipment Information Exchange (AEX). Information about the AEX

project is available online via http://www.fiatech.org/projects/idim/aex.htm. Accessed May
2004.

5. Microsoft. .NET Framework 1.1. Available online via
http://msdn.microsoft.com/netframework/technologyinfo/howtoget/. Accessed May 2004

DISCLAIMER

This software was produced by the National Institute of Standards and Technology (NIST),
an agency of the U.S. government and by statute is not subject to copyright in the United
States. Recipients of this software assume all responsibility associated with its operation,
modification, maintenance, and subsequent redistribution.

Names of companies and products, and links to commercial pages are provided in order to
adequately specify procedures and equipment used. In no case does such identification
imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the products are necessarily the best available for the
purpose.

Acknowledgements

Special thanks to Marty Burns, K.C. Morris, and the rest of the AEX Testbed for their input and
expertise.

Status

The Naming Assister is currently a work in progress. Enhancements are being discussed and
designed such as converting this application to a web-based tool, and providing an interactive
look-up of terms in addition to schema parsing.

http://www.w3.org/TR/xmlschema-1
http://www.iso.org/
http://metadata-stds.org/
http://www.fiatech.org/projects/idim/aex.htm
http://msdn.microsoft.com/netframework/technologyinfo/howtoget/

	System Requirements Environment
	Programming Environment

