
Content-Level Conformance Testing: An Information
Mapping Case Study

Boonserm Kulvatunyou, Nenad Ivezic, Albert T. Jones

National Institute of Standards and Technology, 100 Bureau Drive,
Gaithersburg, MD 20899, USA
{serm, nivezic, jonesa}@nist.gov

Abstract. Content-level conformance testing is a key to achieving interoper-
able data exchange among applications deployed across collaborating, yet in-
dependent enterprises. In this paper, we identify four types of content-level
conformance tests to support interoperable data exchange: document verifica-
tion tests, information mapping tests, transaction behavior tests, and scenario-
based tests. We describe in substantial detail our experience with information
mapping tests within an industrial B2B integration effort. We review different
approaches to information mapping conformance verification including logical
consistency checking, human-computer interaction, and event-based checking.
We adopt the human-computer interaction approach and describe a test-case
generation methodology. The methodology details modeling, test requirements
specification, abstract test-case definition, and, ultimately, executable test-case
generation. Lastly, we provide experimental results of applying our methodol-
ogy in the context of an automotive industry development of data exchange
standard for interoperable inventory visibility applications.

1 Introduction

The research study described in this paper is a result of a large business-to-
business (B2B) integration initiative called Inventory Visibility and Interoperability
(IV&I). The initiative is a collaboration that includes the Automotive Industry Action
Group (AIAG) [1], its member companies, and the Manufacturing B2B Interoperabil-
ity Testbed at the National Institute of Standards and Technology (NIST) [2]. A key
objective of this initiative is to enable different tools supporting vendor-managed
inventory (VMI or Inventory Visibility (IV)) to interoperate using an internet-based
B2B integration infrastructure. In this paper, we explain the role of content-level
conformance testing in achieving this objective, detail the testing methodology, and
provide results from applying the methodology to one type of content-level confor-
mance test: the information mapping tests. In Section 2, we present the interoperabil-
ity problem addressed in the IV&I project. Section 3 summarizes the content-level
conformance tests needed to support interoperability. Section 4 provides an overview
of the information-mapping test, alternatives to the information mapping confor-
mance verification, and the rationale for our selected approach. Section 5 describes
the test-case generation methodology for the information-mapping test. Section 6

illustrates experimental results from interaction with participating IV tool vendors.
Finally, Section 7 concludes the paper by summarizing key research results.

2 Inventory Visibility and Interoperability Problem

Currently, the automotive customer companies typically require their suppliers to
monitor customer inventory and replenish parts using IV tools that use proprietary
formats to exchange data. Consequently, each supplier needs multiple IV tools to
communicate with multiple customers. Fig. 1 shows the current status of the IV tool
usage that involves costly data exchange using proprietary formats.

Fig. 2 shows the target usage scenario where IV tools interoperate in a federated
architecture. In this case, each supplier needs only one tool since the IV tools ex-
change inventory data using a standard message called SyncQuantityOnHand
(SQOH). SQOH is a Business Object Document (BOD) based on a standards speci-
fication from the Open Application Group Integration Specification (OAGIS) [3].
These OAGIS specifications are based on the eXtensible Markup Language (XML)
format [4].

C a

C b

IV T o o l 1

IV T o o l 1

S a

S b

In ven to ry D ata 1 to S a

In ven to ry D ata 1 to S b

Inv en to ry D ata 2 to S b

In v en to ry D ata 2 to S a

IV T o o l 2

IV T o o l 2

Fig. 1. In the current status of the IV tools usage, customer Ca sends inventory data in a pro-
prietary format (Data 1) to IV Tool 1, while Cb uses another format (Data 2) with IV Tool 2.
Both Ca and Cb trade with suppliers Sa and Sb that, consequently, need to employ both IV tools.

Before interoperability can be achieved among IV tools, it is important to assure that
each IV tool consistently uses the data in the SQOH BOD specification. This is the
purpose for developing the content-level conformance testing methods. It should be
noted that these conformance tests are not necessary in the Fig. 1 scenario, since the
IV tools only operate using their own proprietary representations.

3 Types of Content-Level Conformance Testing

Content-level conformance testing is a function testing (also called functional testing)
[17] focusing on the application-level interoperability in the B2B stack [14]. We
classify the conformance tests at the content level into one of the following four types

 2

that are equally important and complementary: (1) document verification tests, (2)
information mapping test, (3) transaction behavior test, and (4) scenario-based test.

Ca

Cb

IV Tool 1

IV Tool 2

Sa

Sb

Inventory Data 1 to Sa

Inventory Data 1 to Sb

Forward to Sb
Inventory Data 1 using
SQOH Representaiton

Forward to Sa
Inventory Data 2 using
SQOH Representation

Inventory Data 2 to Sa

Inventory Data 2 to Sb

Fig. 2. The figure illustrates the target scenario for the IV tools usage. Customer Ca may still
send inventory data in its proprietary format (Data 1) to IV Tool 1, while Cb may still use
another proprietary format (Data 2) with IV Tool 2. However, both IV Tool 1 and IV Tool 2
are capable of exchanging the data using the SQOH BOD standard message. Therefore, suppli-
ers Sa and Sb. may use only a single IV tool.

3.1 Document Verification Test

The document verification test spells out structural, syntactic, and semantic rules that
must hold for a message instance containing data exchanged between applications. A
document verification test includes a generation and a consumption test components.
In the generation case, the tests verify whether the application under test generates
arbitrary valid message instances. In the consumption case, the tests verify whether
the application under test appropriately consumes arbitrary valid message instances.
In both cases, valid means structurally, syntactically, and semantically correct. This
test is a pre-requisite for the three remaining tests.

3.2 Information Mapping Test

The information mapping test validates that the intended usage of exchanged data
within the application under test in fact conforms to the agreed upon shared seman-
tics, which is declared in the relevant content standard specification. For example, the
SQOH specification includes data definitions for Customer Id, Inventory Id, and
Storage Location Id. It is important that the applications exchanging the inventory
data ‘interpret’ the data the same way. This means that they must support the use of
the data in a manner consistent with the content standard specification. On one hand,
an application may interpret ‘Customer’ as a manufacturing plant, ‘Inventory’ as the
quantity on hand at a specific building that has associated delivery docks within a
manufacturer’s plant, and ‘Storage Location’ as the quantity on hand at specific bins
or an area within the site. Another application, however, may interpret the ‘Customer’
as an OEM who has multiple manufacturing plants, ‘Inventory’ as quantity on hand at
a specific plant (which has one or more buildings), and ‘Storage Location’ as a build-

 3

ing within a plant. Such inconsistent ‘interpretation’ of the business data by two ap-
plications could cause the execution of inappropriate business actions.

3.3 Transaction Behavior Test

The transaction behavior test focuses on transactional response of the application
under test. In the transaction behavior test, responses based on transactional success,
partial success, and failure conditions are verified. These conditions are referred to as
business rules, which must be agreed upon as part of the content standard specifica-
tion. For example, there is a requirement for a protocol that specifies whether passing
inventory information about an item, which is unknown to one IV system, should be
treated as a success or a failure by another IV system. In Fig. 2, if IV Tool 1 consid-
ers the above circumstance a failure condition, while IV Tool 2 accepts partial suc-
cesses, Tool 1 might end up resending duplicate data. In addition to testing the behav-
ior based upon those business rules, we must test for the proper response, and the
proper set of follow-up behaviors to other typical error conditions such as boundary
conditions of the field’s domain [16, 18]. Transactional behavior at the content level
may potentially interact and be confused with the transport protocol level behavior.
The boundary between the two levels needs to be well established before interopera-
bility can be achieved.

3.4 Scenario Based Test

While the previous types of tests typically involve only one business document at a
time (not counting the transactional response document), the scenario-based test typi-
cally involves multiple business requests and responses. The scenario-based test seeks
to verify the business logic of an application that must be common across data ex-
change steps and participating partners. It focuses on testing a high-level control flow
of business actions and consequences. Transaction flow analysis [16] and cause-and-
effect graphing [13] on an agreed upon business process could help generate test
cases. For example, in some instantiations of the VMI Min/Max business scenario, a
business response to a shipment notice is expected within a certain time period when
the inventory data shows that the available quantity is below a specified minimum
level. In others, a receipt notice and purchase order transactions that are handled by
multiple, segregated applications are required. As these examples show, scenario-
based testing can be very involved, difficult to perform, and hard to verify [5].

4 Information Mapping Test

Information mapping tests have been developed for other data exchange standards
such as the Standard for Exchange of Product Data (STEP) testing [6]. Building on
the STEP testing methodology, we propose the addition of two steps to verify the
information-mapping conformance: the Input Test and the Output Test [7]. The Input

 4

Test verifies that the application can read and correctly interpret the standard repre-
sentation. The Output Test verifies that the application can translate correctly from its
internal representation to the standard representation.

4.1 Overview of the Test Procedure

Fig. 3 illustrates the general procedure for the two testing steps. The outputs from
both the Output Test and Input Test go through a verification process to determine
conformance by checking syntactic and semantic integrity against the inputs.

 Pre-processor
(Output) Testing
Component under Test

Validation
Standard
Instance

Post-processor
(Input) Testing
Component under Test

Standard
instance

Analyze
Result

Non-standard
Format

Report

Report

Non-standard
Format

Fig. 3. General procedure for information mapping test consists of the Output Test and Input
Test. The Output Test requires the test data in a proprietary, non-standard format. The output
from the Output Test is translated to the target standard representation, the standard instance.
The input to the Input Test is the test data in the target standard representation, the standard
instance, and the translated output is a non-standard format, a proprietary representation.

4.2 Information Mapping Test Challenges

Challenges associated with the information-mapping test include effective approaches
for (1) creating the non-standard format as an input to the Output Test, (2) analyzing
the non-standard format output from the Input Test, and (3) validating the standard
instance from the Output Test.

Applications under test typically can read the target standard representation and at
least one proprietary representation. Since the capability to read different formats
varies among components under test, a straightforward way to handle this issue
would be to create and maintain test data in multiple representations. However, this is
a costly commitment. Similarly, analyzing different non-standard outputs from the
Input Test becomes an unmanageable task. The level of difficulty in validating the
output from the component under test is related directly to the target standard repre-
sentation: the more flexible the standard is, the more complicated the validation. On
the other hand, the more formally expressed the standard semantics are, the easier the
validation.

To deal with the first and second challenges, we investigated a ‘reflexive’ testing
approach (shown in Fig. 4) for both the Input and Output Tests. This approach would
resolve issues stemming from proprietary representations because we would have to
deal with the target standard representation only. However, it turns out that this ap-
proach only verifies the integrity of data passing between the input and output inter-

 5

faces but not the data ‘interpretation’ within the application. The approach is easily
compromised as it leaves the critical mapping mismatch undetectable (see Fig. 5).

Validation

Standard
Instance

Post-processor
(Input) Testing
Component under Test

Standard
instance

Report Pre-processor
(Output) Testing
Component under Test

Fig. 4. An initial ‘reflexive’ testing approach was insufficient to detect mapping mismatch

 Assume that a correct mapping of a field A in the standard
representation is the field B in the proprietary representation. A B

Application post-processes incorrectly by mapping the field
A to its proprietary representation field C . A C

Application pre-processes the same way as the post-
processing by mapping the data in C back to the standard
representation field A . It is not possible to detect that the
mapping is incorrect.

A C

Fig. 5. The reflexive testing approach cannot detect incorrect mapping from field A to field C
(i.e., coincidentally correct mapping error)

Our refined approach followed the argument that if either the Input Test or Output
Test is verified to conform to the specification, then the other can rely on the reflex-
ive testing approach. Fig.6 illustrates the proof for this argument when the Input Test
is first verified to conform. It can be shown that the same conclusion holds when the
Output Test is performed first. If this approach holds, then the challenge #1 is elimi-
nated: we need to create test data only in the target standard representation. This is a
major improvement from the STEP testing approach where test data are engineering
graphics on the pieces of paper. In the Output Test, an engineer would draw the
graphic using the tool under test and then push out the graphic data in the target stan-
dard representation.

In the next three subsections, we describe the three potential approaches to address
the second and third challenges: to verify conformance of the Input and Output Tests.

4.2.1 Logical Consistency Approach
The logical consistency approach based on formal ontologies may be used to verify
the results of both Output and Input Tests. However, an ontology of the standard
terminology is needed for the Output Test and another ontology for each application
vendor’s proprietary terminology is needed for the Input Test. In practice, however,
such ontologies are rarely available. Logical consistency alone may only confirm
validity of a document but not correctness of the mapping. Additionally, verifying
the correctness a document requires necessary and sufficient conditions for targeted

 6

terms. However, sufficient conditions often cannot be expressed nor validated from
the data perspective alone but may need to be expressed in terms of business events.

Assume that a correct mapping of a field A in the
standard representation is field B in the proprietary
representation.

A

The post-processing has been corrected in the
application, which now maps A to B.

The reflexive testing approach is used to verify the
output test. Field A is given and the application first
post-processed correctly. The application is then
triggered to pre-process the same information. Data in
C is mapped to A of the standard representation and the
incorrect output mapping is detected.

In the Input Test, the application has been verified that
it post-processes incorrectly in that it maps A to C.

A

A

A

A

A

A

A

B

B

C

C

B

C

B

C

Fig. 6. In the refined testing approach, we rely on showing that Input Test is verified before
using the reflexive testing approach

Consider the term ReceivedDate, a data field in the SQOH BOD. Customers typi-
cally update this filed whenever they receive a shipment of ordered goods from a
supplier. Logical relationships between the ReceivedDate and other fields in the
SQOH BOD may be established such that ReceivedDate must be before the BOD’s
current date. A better definition of the field would relate this field to be on or after the
ShippedDate in the latest shipment BOD from the supplier. This requires information
from another transaction. For some test cases, this information may be available; in
others it may not. The two axioms about the ReceivedDate still represent only neces-
sary conditions. A sufficient condition may be that the ReceivedDate correspond to
the Date and Time at which the item is recorded into the inventory. If the item has to
be inspected before it is considered received, then this sufficient condition involves
the execution of an event and requires knowledge about the inspection time. If the
event is not broadcast and recorded somewhere then there is no reference data to
validate the condition. On the other hand, a research is being conduct in our team to
combine the logical consistency approach with the model-based instance equivalence
measurement as a test verification method [19]. The research have demonstrated that
the logical consistency coupled with the instance equivalence measure performs well
when sufficient conditions can be bound or assumed and have suggested a context
where the assumption may hold.

4.2.2 Human-Computer Interaction Approach
In this approach, the user or the application developer manually encodes the data
from its proprietary representation into the target standard representation for the Input
Test. Therefore, the output from the Input Test will already be in the target standard
representation. In such cases, the conformance verification can rely on one represen-
tation that is the target standard representation for both the Input and Output tests.
Here we circumvent the second challenge. Fig. 7 illustrates this approach associated

 7

with the Input Test, while the Output Test is based on the refined reflexive testing
approach as illustrated earlier in Fig. 6.

Post-processor
(Input) Testing

Component under Test

Standard instance Post-processor
output

Proprietary representation
Store in
proprietary
representatio

Analysis User Representation

Generate User
Representation

Fill a standard instance form.

Standard
instance

Report

1 2

3
45

Fig. 7. Human-computer interaction-based conformance verification approach

The procedure for the Input Test would be as follows. (1) The application post-
processes a test instance given in the target standard representation. (2) The applica-
tion stores the data in its proprietary representation. (3) Another procedure in the
application then renders the data for user consumption. (4) The user fills a new stan-
dard instance form. (5) The test verifies the syntax and semantic integrity against the
original standard instance given in step 1. It should be noted that procedures in step 2
and 3 are treated as a black box, which means that we assume that the two steps,
particularly the rendering of data onto the screen, are done correctly. In effect, we are
testing the mapping implementation in step 1 and conceptual mapping in step 4. If a
mapping mismatch is found in step 5, the vendor has to determine if the problem lies
in the post-processor (step 1) or the conceptual mapping (step 4).

We note that this approach is not foolproof from the standpoint of coincidental
correctness. Some incorrect mappings may still get through undetected if the vendor
behavior in step 4 coincides with the symmetric mapping as described in Fig. 5.
However, this is less of an issue since differences between the UI representation and
the proprietary representation decrease the chances of coincidental correctness. The
test will have higher fidelity if a user who has no knowledge of the pre- and post-
processing interfaces conducts the test.

4.2.3 Event-Based Approach
The event-based approach relies on one or more sequences of messages to trigger
some events in the component under test whenever data changes. If the component
under test triggers the events as expected, then it may conform to the specification.
The event-based approach has a severe limitation in that there are few event-
triggering fields in a typical exchange messages such as BODs. The test is harder to
generate and automate the execution because multiple messages may be needed be-
fore the event is triggered and some events may be actual physical events.

5 Information Mapping Test Case Generation Method

In this section, we describe the procedure to generate test cases for the information
mapping conformance test. As described in [8], the heart of this procedure is the

 8

business-case. The business case definition is described in Section 5.1. Then, a sam-
ple mapping table is described in Section 5.2. Finally, the detail test case generation is
described in Section 5.3.

5.1 Business Case Definition

Business Case Definitions specify requisite constraints among the message elements
and attributes in terms of usage occurrence and tool-support indicators.

The ‘usage occurrence’ for a BOD indicates the minimum and maximum allow-
able occurrences for each element/attribute in the context of particular data exchange
(e.g., the IV&I project). These occurrence constraints are different from those ex-
pressed in the BOD schema because they reflect additional requirements. The occur-
rences of each element/attribute are specified conditionally on their parent elements.
For example, within a SQOH document schema, the ItemStatus (parent) element may
have a usage occurrence of 0, while the ItemStatus/Code (child) element may have a
usage occurrence of 1. The meaning is that the ItemStatus/Code element must occur
if the ItemStatus element occurs; otherwise, the ItemStatus/Code element must not
occur. The following notation applies:

- 0 means an optional element/attribute that may occur 0 or 1 time.
- C means a conditional optional element/attribute may occur 0 or 1 time, based on
conditions involving elements/attributes beyond the occurrences of their ancestors.
- 1 means a required element/attribute that must occur once and only once.
- 0+ means an optional element/attribute that may occur zero or more times.
- C+ is similar to C where an element/attribute may occur multiple times.
- 1+ means a required element/attribute that must occur at least one time.

 The ‘tool support’ indicates optionality of elements/attributes from a functional-
requirements perspective and drives the definition of the business cases for testing
purposes. If the field's usage occurrence is required (1 or 1+), that field always re-
quires tool support (S). If the field's usage occurrence is optional or conditionally
optional (0, 0+, C, C+), the tool support indicates whether the tool must be able to
process the field, if it occurs in a message. The following notation applies:

- S means mandatory tool support for the field, i.e., the tool must be able to store,
process, and/or interpret the field.
- NS means optional tool support for the field, i.e., the sending tool may not expect
the receiving tool to interpret, process, and/or store the field.

 The S and NS tool support indicators are also interpreted conditionally on the
parent of the element/attribute in the same way as the usage occurrence. All the fields
with mandatory tool support constitute one or more Base Business Cases dependent
upon the optional and conditional usage occurrences.

5.2 Mapping Tables

Mapping Tables specify mappings between each XML-based message ele-
ment/attribute and an intended vendor tool interface. Table 1 shows a mapping table

 9

example with usage occurrence and tool support specifications. Each row of the
‘Element’ column is an XPATH language representation of the document structure
[9]. The row with the bold type font represents an aggregate (complex type) element,
which has children elements/attributes. The ‘Vendor Support’ column shows a ven-
dor support of each document schema element/attribute. The difference between the
Tool Support and the Vendor Support suggests an additional implementation re-
quirement for the vendor to satisfy the user’s functional requirements. For example,
the vendor support of the From and To components of the EffectivePeriod but not of
the Duration component is a potential problem since the ‘Tool Support’ column indi-
cates all three elements must be supported by the tool.

Table 1. An example mapping table with usage occurrence and tool support definitions

Element Description
Usage

Occurrence
Tool

Support
Vendor
Support

Item/CustomerItemId Customer part number 1 S Yes

 Item/CustomerItemId/Id Customer part number 1 S Yes
 Item/CustomerItemId/Revision Part revision number 0 S Yes

Item/EffectivePeriod The period part will be in production C S Yes

 Item/EffectivePeriod/From Start date of part production C S Yes
 Item/EffectivePeriod/To Planned end date of production C S Yes
 Item/EffectivePeriod/Duration Planned duration of production C S No
Item/EndEffectiveQuantity Planned part cumulative quantity C NS No
Item/AvailableQuantity Quantity available for production 1 S Yes
Item/MinimumQuantity The minimum inventory the customer

wishes to have on-hand.
1 S Yes

Item/MaximumQuantity The maximum inventory the customer
wishes to have on-hand.

1 S Yes

5.3 Test Cases Generation Procedure

As mentioned previously, mandatory tool support specification defines one or more
Business Cases with different combinations of optional and conditional ele-
ments/attributes. The specification of business cases defines testing requirements for
the IV&I conformance tests.

Prior to test requirements generation, we must specify possible IV&I profiles (i.e.,
valid combinations of Tool Support and Conditional fields and type of data will be
used such as language, standard identification code, and standard code lists). The
IV&I profiles determine which individual business case makes sense to support from
the business requirements standpoint. Once the profiles are determined, test require-
ments are created to indicate data elements/attributes that must appear in test cases.

Table 2 includes some examples of business cases and associated test requirements
(TR). The numbers in the test requirement columns are ‘Occurrence in Test’. The
possible values are 1, 1+, or 0, which indicate whether the field will be instantiated in
the test data once and only once, once or more, or not at all. Business case 1 repre-

 10

sents baseline functional requirements as indicated in the Tool Support and the Usage
Occurrence columns. In the example, the base case has the first 3 and the last 3 ele-
ments’ occurrences in test equal to 1, because they all have the Usage Occurrence
equal 1 and the Tool Support equals S with an exception of the Revision field. The
Revision field can have the Occurrence in Test equal 1 in the base case, because there
is no condition on its occurrence. This helps reduce the number of tests.

Table 2. Example business cases and test requirements

Bus. Case 1
(Base case)

Bus. Case 2
Element

Usage
Occurrence

Tool
Support

TR1-1 TR2-1 TR2-2
Item/CustomerItemId 1 S 1 1 1

 Item/CustomerItemId/Id 1 S 1 1 1
 Item/CustomerItemId/Revision 0 S 1 0 0
Item/EffectivePeriod C S 0 1 1

 Item/EffectivePeriod/From C S 0 1 1
 Item/EffectivePeriod/To C S 0 1 0
 Item/EffectivePeriod/Duration C S 0 0 1
Item/EndEffectiveQuantity C NS 0 0 0
Item/AvailableQuantity 1 S 1 1 1
Item/MinimumQuantity 1 S 1 1 1
Item/MaximumQuantity 1 S 1 1 1

The EffectivePeriod and its child elements as well as the EndEffectiveQuantity
have additional logic associated to deal with the plan production period or quantity;
hence, they constitute the second business case. Two test requirements are necessary
for the business case, because the conditions in the Usage Occurrence column indi-
cate that the To and the Duration elements cannot be used at the same time. We note
that the mutually exclusive condition between the EffectivePeriod and the EndEffec-
tiveQuantity fields could constitute the third test requirement in the second business
case. However, the EndEffectiveQuantity is excluded because the user indicates that
the tool does not need to support the field.

In summary, the business case concept is a logical grouping of information ele-
ments to make the tests more manageable and understandable. In Table 2, for exam-
ple, the TR 2-1 could be combined with the TR 1-1 for the information mapping test
because there is no conditional conflict. This could result in smaller number of tests.

These test requirements (together with IV&I profiles) guide test data selection,
which matches sample application data with test requirements to form test data.
Then, the test data are assembled in the form of abstract (i.e., independent of a spe-
cific format) test cases that match test requirements. The semantic validation rules
ensure valid abstract test cases.

Before generating the executable test cases, conformance level statements are cre-
ated to aggregate abstract test cases that match some conformance testing strategy.
Such a strategy identifies possible aggregation of IV&I profiles and the correspond-
ing business cases.

 11

6 Experimental Results

Using the approach described above, we have developed test cases and executed them
against two IV applications. Initially, the vendors perform the document verification
testing which is a self-test using a Reflector Tool [20]. Fig. 8 summarizes the testing
approach used for the mapping test. We validated the generated BOD instances (1)
using an XML parser against the schema using XML Spy 2004 [10], (2) with addi-
tional structural and semantic rules encoded in Schematron [11] using XT 20020426a
XSLT transformation engine [12], and (3) with a Schematron diff tool using the same
XT implementation. The diff tool has been developed in this project to assist the
conformance verification. The tool takes test data, such as a BOD instance, as input
and generates Schematron rules that compare the BOD output from the Input or Out-
put Test with the test data. Due to its limited capability, the tool cannot completely
automate the conformance verification. For example, the current tool would raise a
flag if the test data were specified in a different order from the ones in the BOD out-
put from the test.

The rest of this section summarizes the experiment and highlights some results
from the test with the IV applications using the test cases from the base business case
of the SQOH BOD partially illustrated in Table 2.

6.1 Results from the Input Test

At the initiation of the test, we identified a number of mapping mismatches among the
fields Sender, Receiver, CustomerPartyId, SupplierPartyId, Inventory/SiteId, and
StorageLocation/Id. We discovered these mismatches right away because they were
used for authentication and authorization. The BOD development experts define the
Sender as the OEM, the CustomerPartyId as the OEM plants, the Inventory/SiteId as
a pointer to an inventory facility inside the customer plant, and the StorageLoca-
tion/Id as a location within an inventory facility. This means that an OEM can update
“on hand data” at the level of plant, building within a plant, and location within a
building. On the other hand, the IV tool under test interpreted the Sender to be the
same as the CustomerPartyId, which points to the OEM (the Sender serves only as
routing information), Inventory/SiteId as pointing to the OEM’s plant, while Stor-
ageLocation/Id is an identifier for arbitrary locations within the plant. These mis-
matches were later resolved with the team of business process experts to match inter-
pretations suggested by the IV tool vendors. In addition, the XML parser validation
and the Schematron rules validation indicated that a required field, Inven-
tory/LastModificationDateTime, was missing.

The Schematron diff also raised flags, which indicated either a mapping mismatch
or a representation mismatch in a number of fields. Table 3 lists these fields and pro-
vides a list of input and output values for the tool under test. Table 4 lists the con-
cerns raised in each case and their resolutions, if there were any.

 12

Pre-processor
(Output) Testing
Component under Test

Auto-generated
BOD Instance

Post-processor
(Input) Testing
Component under Test

BOD Instance
- Schema validation
- Schematron rules

validation
- Schematron diff

Manually Generated
BOD Instance

Report

Report

BOD Instance
- Schema validation
- Schematron rules

validation
- Schematron Diff

Fig. 8. Summary of the approach for BOD mapping test

Table 3. A list of fields in the SQOH with potential mapping problems as indicated by the
information mapping test

Field Description Test value Return value
CreationDateTime BOD timestamp An arbitrary date time -

2003-11-10T11:30:47-
08:00

Current date time - 2004-
01-28T14:36:02-08:00

BODId BOD unique Id in one
year

An arbitrary string -
200311101130QOH442

An arbitrary string -
637a732d6c7415ee671:fa5
e9fe859:-8000

LastShipment
Info/ShipToParty

Location code of item’s
last shipment destination

DUNS number of customer
plant – 832022258

DUNS number of supplier
plant – 732022158

LastShipment
Info/ShipFromParty

Location code of item’s
last shipment origin

DUNS number of supplier
plant – 732022158

DUNS number of cus-
tomer (OEM) –
132022257

LastShipment
Info/Received-
DateTime

Date and Time of last
shipment received by
Customer.

An arbitrary date time
before the current date -
2004-03-02T09:30:00-
05:00

The date portion of the test
value without time infor-
mation - 2004-03-
02T00:00:00-08:00

Inventory/
LastModification-
DateTime

The last time the Inven-
tory was changed via a
(Shipment) BOD coming
into the sending system
or an event happened
within the sending sys-
tem (e.g., part consump-
tion).

An arbitrary date time
before the current date -
2004-02-28T12:00:00-
05:00

Current date time - 2004-
04-28T15:46:11-08:00.

Uom (unit of measure) Quantity unit of measure Each An abbreviated form – ea

6.2 Results from the Output Test

In the Output Test, similar flags were raised with CreationDateTime, BODId, Re-
ceivedDateTime, and LastModificationDateTime. The additional observations lead to
potential problems: (1) only one line item was returned when two were submitted; (2)
the LastShipmentInfo/ShipFromParty and LastShipmentInfo/ShipToParty were miss-
ing; and (3) the field Inventory/InTransitQuantity contained value zero although it
was not specified in the input. In the first case, we discovered that the test application
did not allow inventory information (for a given item and inventory site) to be associ-
ated with more than one supplier. In the second case, it seems that a similar problem
occurred in the Input Test, which could explain the observed mapping problem: If a

 13

field A was mapped (incorrectly) to B and vice versa in the first place and if this map-
ping were fixed (after running the input test) so that now A correctly maps to C, then
the reverse output test may not have had a value in the field B to generate any output,
as observed. This demonstrates the improvement of the refined reflexive testing ap-
proach as described earlier in Fig. 6.

Table 4. Comments and resolution to fields with potential mapping problems

Field Comment and resolution
CreationDateTime The integration scenario involves federation of business data exchanged among

tools used by customers and suppliers. It might be necessary for the traceability
purpose that the BOD CreationDateTime remains the same from customer to
suppliers. However, the tool under test generates a new timestamp for every new
BOD. A group of IV business process experts indicated that this is not an issue
because the scenario involves continuous updates and traceability is not needed.

BODId The BODId holds similar potential issue and resolution to the Creation-
DateTime.

LastShipment
Info/ShipToParty
LastShipment
Info/ShipFromParty

The mismatches of these two fields appear to result from incorrect mapping. The
use of customer (OEM) identifier instead of the plant identifier is an incorrect
mapping. Consequently, the engineer discovered that the incorrect placements of
the customer identifier into the ShipFromParty field and of the supplier identifier
into the ShipToParty field are mapping errors.

LastShipment
Info/ReceivedDateT
ime

The tool stores and/or retrieves only date portion of the input. This is discovered
to be the tool implementation problem.

Inventory/
LastModification-
DateTime

At the first pass, the tool did not generate this field. In the second pass, the tool
interprets and generates this field as the current date time. Both passes indicate
that the information mapping is incorrect.

Uom (unit of meas-
urement)

This error indicates the representation mismatch in the unit of measure. Typi-
cally, this field should be based on a standard. However, the business experts
have indicated that in this scenario, the IV tool should generate the Uom with
the same representation as it receives from the customer.

In the third case, the InTransitQuantity means the inventory quantity being trans-
ported to, but not yet received by, the customer at the time of issuing the SQOH mes-
sage. The difference between the data not being specified and the data using a default,
not-agreed-upon value can result in a different interpretation. When the data is not
specified, it means that the field is not used between the customer and the supplier.
However, the supplier may use that particular field with another customer. Showing
or generating a field with a default value (e.g., zero) when it is not actually in use
could result in an incorrect decision made by the supplier (e.g., supplier repeating the
part shipment assuming that it has not shipped the part yet). To avoid these problems,
we recommended to the tool vendors that a null field should not be generated or dis-
played to the user. The tool vendors have agreed that this is an issue which requires
attention.

6 Conclusion

Four types of content-level conformance tests have been identified and described. All
of them can affect interoperability positively at the application level. Of the four, we

 14

discussed in detail various approaches to information-mapping conformance only.
Although the logical consistency approach has attractive capabilities, it could be
expensive and it has implementation limitations. The human-computer interaction
approach is less expensive, but it does not guarantee absolute conformance. It helps
reduce the test data generation effort to only include the target standard representa-
tion. Currently, we are studying how an ontological approach could address the defi-
ciency in the Schematron diff tool when measuring the equivalence between the test
input and the corresponding test output.

We also described information-mapping test-case generation in detail. The current
approach relies on filling out a business case and test requirements spreadsheet manu-
ally. In the future, portions of this process will be automated as certain assumptions
for XML schema design are enforced. In the present approach, we introduced the
conditionally optional concept as distinct from the purely optional field. The result is
a reduction in the number of tests as the optional fields need not be permutated. In
addition, if the conditions are formally expressed, they can be used to automatically
enumerate the test requirements. It should be noted that the proposed test cases and
testing technique are based only on positive cases. We envision that the data valida-
tion testing techniques [15] might be useful for information mapping test using nega-
tive test cases. The approach would rely on the implication that if the application
correctly identifies an error, then it is likely that it has correctly mapped/interpreted
the fields. However, there are subtle issues that require further studies and experimen-
tation. An apparent issue is that the applicability of the test may be application spe-
cific. That is, some error conditions are not discovered by the application but by a
middleware component such as a generic schema-based data parser. Another issue is
that the content standards are created for flexible usage, with only a small number of
usage conditions specified. In addition, these usage conditions could be application
specific. In such situations, the only useful conditions could be the common business
rules used in the transaction behavior test and the scenario-based test.

Finally, we discussed experimental results of a mapping-conformance test using
the human-computer interaction approach to verify the conformance of IV tool im-
plementations with IV&I SQOH BOD specification. We witnessed a strong need for
repeated cycles of testing whenever the vendors updated their tools in response to
new conformance requirements or bug fixes. The feedbacks received from the IV
tool vendors indicate significant benefits from the conformance testing runs, which
identified a number of problems and inconsistencies. Currently, we are planning to
run experiments to analyze benefits of performing the content-level conformance tests
as a prerequisite for interoperability testing and system deployment.

Disclaimer

Certain commercial software products are identified in this paper. These products
were used only for demonstrations purposes. This use does not imply approval or
endorsement by NIST, nor does it imply that these products are necessarily the best
available for the purpose.

 15

References

1. Automotive Industry Action Group Web Site, accessed December 2004. Available online
via <http://www.aiag.org>

2. The Manufacturing Business-to-Business Interoperability Testbed Web Site, accessed
December 2004. Available online via <http://www.mel.nist.gov/msid/b2btestbed/>

3. The Open Application Group: Open Application Group Integration Specification version
8.0 (2002). Available online via <http://www.openapplications.org/downloads>

4. World Wide Web Consortium: Extensible Markup Language (XML) 1.0 (Third Edition)
W3C Recommendation (February 2004).

5. Morris, K.C., Flater, D. (September 1999): Standards-based Software Testing in a Net-
Centric World. Proceedings of Ninth International Workshop on Software Technology
and Engineering Practice, Computer Society, Pittsburgh, PA 115-122

6. Kemmerer, S.J. (July 1999). STEP the Grand Experience, National Institute of Standards
and Technology Special Publication 939.

7. Morris, K.C., Mitchell, M.J., Barnard, A. (May 1993): Validating STEP Application
Models at the National PDES Testbed.

8. Ivezic, N., Kulvatunyou, B.S., Jones, A.T., Frechette, S., Cho, H., and Jeong, B. (October
2004): An Interoperability Testing Study: Automotive Inventory Visibility and Interop-
erability. Fourteenth E-Challenge Conference, Vienna, Austria, 551-558.

9. World Wide Web Consortium: XML PATH Language Version 1.0 (November 1999).
Available online via <http://www.w3.org/TR/xpath>

10. Altova GmbH: XML Spy 2004 Professional Edition
11. Jelliffe, R.: The Schematron Assertion Language 1.5. Academia Sinica Computing Center

(2000). Available online via
12. Lindsey, B.: XT version 20020426a, Extensible Stylesheet Transformation

Implementation in Java (2002). Available online via
<http://www.blnz.com/xt/index.html>

13. Elmendorf, W.R. (1973) : Cause-Effect Graph in Functonal Testing, TR-00.2487. IBM
Systems Development Division, Poughkeepsie, NY.

14. Kulvatunyou, B.S., Ivezic, N., Martin, M.J., Jones, A.T (october 2003) : A Business-to-
Business Interoperability Testbed: An Overview. The 5th International Conference on
ELECTRONIC COMMERCE (ICEC), Pittsburgh, PA.

15. Beizer, B. (1983): Software Testing Techniques. Van Nostrand Reinhold electri-
cal/computer science and engineering series, NY.

16. Beizer, B. (1990): Software Testing Techniques, 2nd Ed. Van Nostrand Reinhold, NY.
17. Beizer, B. (1995): Black-Box TestingJohm Wiley & Sons, NY.
18. Myers, G.J. (1979): The Art of Software Testing. Wiley Series in Business Data Process-

ing.
19. Anicic, N., Ivezic, N., and Jones, A (Feburary 2005) : An Architecture for Semantic

Enterprise Application Integration Standards. First International Conference on Interop-
erability of Enterprise Software and Applications, Geneva, Switzerland.

20. Accordare Web Site, accessed April 2004. Available at <http://www.accordare.com>

 16

