
DoC ISSI Emulation and Test System (DIETS)

 Requirements, Architecture and Design Overview

Version 0.7
July 18, 2006

S. Quirolgico
M. Ranganathan

Advanced Network Technologies Division
Information Technology Laboratory

National Institute of Standards and Technology

K. Behnam

Institute for Telecommunication Sciences
National Telecommunications and Information Administration

Version 0.7

Contents

DRAFT July 18, 2006i

Version 0.7

1. Definitions

• Commercial RFSS: (“actual” or “vendor” RFSSs) RFSSs that are implemented by
vendors.

• Scenario: A definition of a call flow or signaling interaction between RFSSs.
• Emulated RFSS: A process that provides all the signaling to execute a given scenario but

no actual RF interface.
• Test RFSS: An Emulated RFSS with a test execution facility.
• Test Launcher : A management client that loads test cases into emulated RFSSs and

initiates the test.
• ISSI IUT: (or IUT) ISSI Implementation Under Test. An ISSI Implementation that is

being evaluated for reference testing or subsystem interoperability.
• Reference Testing : Isolated testing against a standard or reference implementation.
• Subsystem Interoperability Testing: Testing between vendor implementations of the ISSI

G interface that does not necessarily involve an intervening reference implementation.
• Node: An entity (typically a machine) having a specified IP address.
• Test system: System that comprises one or more emulated nodes with the ability to

initiate and respond to signaling actions and one ISSI IUT.
• Emulator: Synonymous with ISSI Emulator.
• Message trace: Signaling trace (comprising SIP Call Setup and Push To Talk signaling)

for call setup, mobility and call teardown.

2. Introduction

The DoC ISSI Emulation and Test System (DIETS) provides a set of tools for testing emerging
ISSI technologies. More specifically, DIETS aims to facilitate reference testing and subsystem
interoperability testing of commercial Radio Frequency Subsystems (RFSSs) and to enable
controlled laboratory experiments to evaluate the ISSI design. An emulated RFSS can execute a
call setup scenario and provides the necessary signaling for the call setup but does not have a
functional radio interface.

In this document, we make a distinction between reference testing and subsystem interoperability
tests and treat these separately.

Reference testing tests dynamically assess the interoperation of a given implementation under test
by testing interactions against a standard or reference implementation. Reference testing tests
necessitate the interaction of a vendor implementation with a reference RFSS implementation.

Subsystem interoperability tests, on the other hand do not necessitate the presence of a standard
or reference RFSS. An subsystem interoperability test can consist of two or more vendor
implemented RFSSs interacting with each other to exercise a scenario. The vendor
implementations are not necessarily from the same vendor. Note that passing reference tests does
not guarantee subsystem interoperability between vendor implementations nor does subsystem
interoperability imply that reference testing will pass.

Conducting reference testing tests requires:

DRAFT July 18, 20061

Version 0.7

 1. A test suite
 2. A reference implementation.
 3. A test driver to exercise the interactions in the test suite.

 We will use the test cases developed by the ISSI TG and authored by EADS (henceforth referred
to as the “EADS document”) to define a test suite. To support such tests, the DIETS tools suite
provides a test driver to initiate interactions between vendor RFSSs and a test tool which
emulates the network messaging behavior of an actual RFSS.

 Subsystem interoperability tests of vendor RFSSs requires tools to perform analysis of how such
RFSSs interact with other RFSSs while exercising a scenario, treating the components in between
as a black box.

For subsystem interoperability testing, DIETS provides non-invasive trace capture and
visualization tools to analyze interactions between RFSSs.

2.1.Functional Summary
In the first phase, the DIETS project will provide the following test tools:

1. A protocol emulator to exercise the protocols defined in the ISSI Specification document.
This protocol emulator is henceforth referred to as the “ISSI Emulator”. The purpose of
the ISSI emulator is to provide a stand alone emulation of the scenarios described in the
call flows section (appendix C of the ISSI specification) and the test cases defined in the
EADS test document so as to verify correctness and completeness of the ISSI protocol
suite.

2. A test tool to interact with vendor developed RFSSs and verify compliance: The test
component of DIETS is henceforth referred to as the “ISSI Tester”. In this mode, DIETS
takes a test script and stimulates responses from vendor developed RFSSs or will respond
to stimuli from vendor RFSS implementations. The purpose of reference testing testing is
to analyze vendor implementations in isolation by treating them as a “black box” and
analyzing interactions between an ISSI Reference implementation and a vendor
implementation. For this we need a test driver to drive the interactions. DIETS will
provide the test driver framework to exercise all the tests in the EADS test document
[Ref].

3. A packet capture and visualization tool to display the interactions between RFSSs
captured during subsystem interoperability testing. Note that subsystem interoperability
testing does not have to involve a reference implementation. The primary purpose of
trace capture and visualization is diagnostic. DIETS will provide a set of tools that can
capture (log) the interactions between vendor RFSSs and that can display these as
signaling traces.

In this document, we specify the requirements and architecture of DIETS and its support for
specific objectives. Following is a detailed set of requirements for the DIETS tool suite.

DRAFT July 18, 20062

Version 0.7

2.2. Requirements

The ISSI test system will be designed to meet the following requirements:

1) Distributed architecture: the system must be able to support communication between
distributed RFSSs running on hosts with differing IP addresses while providing a central
point of monitoring and control for all the emulated RFSSs involved in a test scenario.

2) Multiple commercial RFSSs: the system must be able to non-obtrusively capture
interactions between multiple commercial RFSSs to facilitate subsystem interoperability
testing.

3) Portable platform support: the test system must support major operating systems
including Windows XP and Unix.

4) Extensible scripting: The test system should support an XML based scripting
environment to allow users to extend the suite of reference testing test cases.

5) Black Box Testing: The test system should test only external input / output message
protocol behavior of RFSSs and not their internal behaviors.

6) Apriori knowledge of topology : The test system must have knowledge of the ISSI
configuration for a given test (i.e., RFSS IDs, IP addresses, and ports) before test
execution begins. Note that this cannot include apriori knowledge of the RTP ports used
for Push to talk Signaling. These ports are dynamically assigned during call setup (ref.
the ISSI messages and procedures design document).

7) Manageability and configurability: The distributed test system should be manageable and
configurable using a central configuration and management tool. The system must
provide a management client for centrally managing the distributed test system. The
management client will provide a user friendly GUI-based user interface to monitor and
control the test system.

8) Trace analysis tools: The system must provide a set of tools for analyzing message
transactions (i.e., message traces) between RFSSs. These tools must be used in
conjunction with the test system to support testing of RFSSs. These tools will be bundled
with DIETS, but can also be used independently of DIETS. These tools must provide
support for:

a. Client-side trace capture: Components are needed for capturing message
transactions, or “traces”, between all RFSSs in the system

b. Server-side trace aggregation A centralized component is needed to aggregate
and display trace logs generated by distributed trace capture components
associated with each RFSS in the system.

9) Functional Extensibility: The tool may later be extended to support performance tests. It
should be architected with this potential future requirement in mind

3. Architectural Overview

The distributed DIETS architecture for reference testing is shown in Figure 1. This architecture
comprises multiple RFSSs, one of which can be a IUT as well as a single central management
client/controller. Note that an RFSS in the figure below can be either an emulated or commercial
RFSS. Note that in various places, the EADS document states “Tests may be performed

DRAFT July 18, 20063

Version 0.7

conjointly or in isolation”. In this document, we refer to multiple vendor RFSS tests as Subsystem
interoperability tests and single vendor RFSS tests as reference testing tests. The same scenario
may be run in both cases but the set of tools are different in each case. To perform a reference
testing test as defined in the EADS test document, only one of the RFSSs can be an IUT. The
rest of the system is emulated. The same test may be run as a subsystem interoperability test
where more than one node is an actual RFSS. The EADS document does not make a distinction
between these two types of testing but we treat these as separate.

The diagram below shows emulated RFSSs interacting with each other using a defined control
interface with a central Management and Configuration client and a single unit under test.
Vendor developed RFSSs do not export a management interface and hence we do not depict the
controller as interacting with a vendor developed RFSS. For input output behavior (black box)
testing, the test system can be driven by stimuli (messages) from either emulated or actual RFSSs.
However, assertions on messages are only checked locally at the emulated RFSSs.

Figure 1. Distributed DIETS architecture.

4. Test System Architecture

The purpose of the test system is to stimulate responses from RFSSs under test by setting up calls
with vendor implemented RFSSs in the call path to react to calls initiated by a vendor

DRAFT July 18, 20064

Version 0.7

implementation under test and to check for expected properties of input and output messages
locally at the emulated nodes. An emulated RFSS consists of two distinct parts: (1) a call Setup
Emulator and (2) a Push To Talk Emulator. The figure below shows an architectural overview of
an emulated RFSS. Each emulator consists of the following protocol stacks on top of which we
build higher layer abstraction:

1. A SIP Stack (we use NIST-SIP for this purpose)
2. An RTP stack on top of which we implement the Push To Talk protocol of the ISSI

specification.

We have based our design of the emulated RFSS roughly on same lines as the ISSI specification.
The function of each of the major components of an emulated RFSS maps directly to
corresponding functional descriptions in the ISSI specification. We refer the reader to the ISSI
specification for details and describe their function here briefly.

Each emulator houses a Unit to Unit Call Control Manager, a Group Call Control Manager, a
Unit to Unit Mobility Manager and a Group Mobility Manager. The functions of each of these
entities maps to the corresponding functions in the ISSI specification. The Unit To Unit Call
Control Manager performs the function of setting up calls between Subscriber Units for point to
point call setup. The Group Call Control Manager performs the function of setting up calls
between subscriber units and groups. Each group is pre-assigned a home RFSS (specified in the
topology configuration file). The Mobility Manager tracks the movement of Emulated Subscriber
Units. The Unit to Unit Mobility Manager tracks the movement of subscriber units between
emulated RFSSs and the Group Mobility manager tracks the movement of members of a group as
they move from RFSS to RFSS. The Transmission Control Manager sets up and manages point to
point sessions for SU to SU calls as well point to multipoint sessions for group calls. Each of
these components (CC Manager, Mobility Manager and Transmission Control Manager) exports
an Event-Oriented interface to an emulated Subscriber Unit. Each Emulated SU has a handle to
talk to the Mobility Manager, Call Control Manager and Transmission Control Manager in the
emulated RFSS via a Service Access Point (SAP) interface as described in the RFSS
specification.

DRAFT July 18, 20065

Version 0.7

Figure 2: Software Architecture of an emulated RFSS.

4.1.Operational Description

For reference testing, we assume that a single RFSS at a time will be tested as part of a scenario.
The EADS test document specifies several tests where multiple vendor developed RFSSs are
involved. Although all RFSs are involved in the test, our unit test driver framework involves

DRAFT July 18, 20066

Version 0.7

interacting with and analyzing responses from an isolated vendor developed unit under test. We
treat multi vendor developed RFSSs separately. We call these subsystem interoperability tests
although the EADS document does not make a clear distinction between subsystem
interoperability and reference testing. We provide a test driver framework to execute an
emulation of each of the test cases defined in the EADS test document. In performing a test, a
single emulated RFSS may be replaced by a vendor implemented RFSS. The test consists of
sending requests to the unit under test and analyzing responses from the unit under test for
expected properties or by reacting to messages sent from the IUT. Note that because the ISSI
specification does not include a management or external control interface for a vendor developed
RFSS we cannot fully automate the testing. We can only automate those tests for which the
stimulus is originating from an emulated RFSS. We make several assumptions which are outlined
below.

We assume that the topology (i.e. assignment of RFSS IDs to IP address and SIP listen port) are
known a priori and are made available to each emulated RFSS and to the test controller at startup
time. Note that there is no defined format for inputting this information into an actual vendor
implemented RFSSs. Therefore, each commercial implementation under test will have to
manually configure this information using its own proprietary scheme.

The test controller and each of the emulated RFSSs have access to the same topology description
and to the same test database. A network node (i.e. machine with a given IP Address) can
contain one or more emulated RFSSs. In order to run a test, the test launcher loads the same test
script in each emulated RFSS and then instructs each emulated RFSS to run the test case. Each
emulated RFSS starts executing the script at the same time. Because the execution is time based
and because each emulated RFSS loads the same test script, no additional test coordination is
necessary between emulated RFSSs at run-time. We assume that some vendor specific
mechanism will be defined for effecting test actions on real RFSSs. For example, in testing
mobility scenarios, an RFSS may have to support movement of an SU to its domain. The
programmatic interface for effecting this action is not defined in the ISSI specification and hence
is outside the scope of this document.

 Test assertions are checked locally at each emulated RFSS. After the test is complete
(determined by waiting for a pre-defined period of time), the trace viewer can retrieve the traces
from the emulated RFSSs (provided the emulated RFSSs are logging traces locally). Alternately,
traces can be gathered from the trace capture daemons. The logging and trace viewing
architecture is discussed below.

4.2.Specifying Test Cases

Test cases are specified in XML as time-based event oriented scripts. Each nested XML tag is an
“action” to be performed. Each action specifies an event to occur at a certain time into the test.
For example, in the test script below, at time 0, SU “12” places a unit to unit call to SU “34” and
at time 10 seconds SU “12” moves to RFSS with identifier 3. All emulated RFSS’s start
executing the script at the same time when the central controller sends a command to do so.
While exact synchronization is impossible, so long as the time granularity of the test system is
less than the synchronization error, the system should generate reproducible results. We assume
that a granularity of 1 sec. is sufficient for the purposes of specifying actions and that the
emulated RFSS’s test start time can be synchronized to within a second of each other. Here is a

DRAFT July 18, 20067

Version 0.7

specification for a test:

4.3.Emulating Mobility
In-call roaming is the act of an SU moving from one RFSS to another RFSS and resuming the
call there. In-call roaming is emulated without any central control as follows:

• At the time at which the roaming SU departs an RFSS, the RFSS from which the SU
departs removes the RFSS from its served set.

• At the time at which the emulated roaming SU is supposed to arrive at the new Serving
RFSS, the new emulated serving RFSS (which is running the same script as the old
serving RFSS) initiates the mobility related SIP signaling actions (i.e. ReINVITE,
REGISTER, BYE) as described in the ISSI Messages and Procedures document.

4.4.Topology Specification
The topology of the test system is specified by an XML file which is supplied to each emulated
RFSS. The XML file specifies the WACN, System, RFSS ID, the IP address and port at which
each RFSS is expected to receive SIP signaling messages for every real and emulated RFSS in
the system. It also specifies a set of subscriber units and the initial Serving RFSSs for each
emulated SU. Here is an example topology file tag that specifies the configuration of an emulated
RFSS :

DRAFT July 18, 2006

<test-script
systemId="2"
wacnId="1"

>

<!-- At t ime 0 SuId 12 calls SuId 34. T his is the init ial condit ion in Page 308 of the ISSI spec. -->
<su-to-su-call-scenario

id="su-to-su-call-0"
t ime = "0"
callingSuId= "12"
calledSuId="34"

/>
<!-- at t ime 10 seconds, the suId 12 roams to rfssId 3. It takes 3 seconds for the roaming to occur -->
<roaming-scenario

id="roaming-scenario-1"
t ime = "10"
suId = "12"
rfssId = "5"
delay="3"

/>

</test-script>

8

Version 0.7

The configuration above indicates that the IP address of the RFSS (where it receives SIP and RTP
messages) is 127.0.0.1. The port at which it receives SIP messages is 5060. Note that the RTP
(PTT) ports are not specified at this time – they are randomly assigned at call setup time. The
RFSS ID assigned to the RFSS is 3. In addition, for an emulated RFSS, note that the HTTP port
at which the RFSS can be contacted. The following is the configuration for a subscriber unit.
Note that this includes the user profile for the subscriber unit and the RFSS that is initially its
Serving RFSS.

Similarly, Groups are specified a-priori along with the Home RFSS of the group and the set of
subscriber units that belong to the group as follows:

DRAFT July 18, 2006

<rfssconfig
ipAddress

="127.0.0.1"
port = "5060"
rfssId = "rfss3"
httpPort = "8082"
rmiPort = "1099"

<suconfig
suId="su12"
homeRfssId = "rfss1"
servingRfssId = "rfss2"

>
<userprofile>
<![CDAT A[
u-access:1
u-dup:0
u-sec:0
u-gcall:3
u-ucall:1
u-upri:10
u-iccall:0
u-icsec:1
u-icpri:10
u-authtype:0
u-availcheck:1
u-prefsetup:0
]]>
</userprofile>

9

Version 0.7

All of this information is made available to every RFSS at startup. The tests use SU and RFSS
identifiers that are specified in this XML document.

4.5.Verifying correct operation of Units Under Test
Refrerence tests will be based upon interactions of a vendor developed RFSS with an emulated
one. Compliance with the specification is checked by assertion testing at the emulated RFSSs.
For example, for simple SU to SU call setup, the INVITE must be sent out, arrive at the
destination and the Calling Serving RFSS sending the INVITE must later get an OK. Each SIP
header for the messages sent and received are known. The Calling and Called emulated RFSSs
check for the fields to make sure that they comply with the specification. Calls are expected to
complete in a fixed time bound. If not, a timeout error occurs and the test fails. While testing
against an actual implementation, we apply the same assertion based approach to testing at the
emulated nodes. Clearly, no such checking is possible at the actual RFSSs under test because we
do not have access to the internals. However, if we assume that there is a single RFSS under test,
we can check messages originating from the Implementation Under Test.

5. Message Logging

The purpose of message logging and trace display is for subsystem interoperability testing.
Subsystem interoperability testing does not need to involve a Reference emulator or test driver.
Subsystem interoperabilty tests can use the same scenarios as are used for reference testing. The

DRAFT July 18, 2006

<sgconfig
sgId= "group56"
homeRfssId = "rfss3"

>
<subscriber

suId = "su12"
/>
<subscriber

suId = "su34"
/>
<subscriber

suId = "su56"
/>
<groupprofile>
<![CDAT A[
g-access:1
g-agroup:0B4561A27271
g-pri:2
g-ecap:1
g-eprempt:0
g-rfhangt:0
g-ccsetupt :0
g-intmode:0
g-sec:1
g-ic:0
g-icsecstart :0
]]>
</groupprofile>

10

Version 0.7

test driver does not need to be involved in the test. For subsystem interoperability analysis,
message logging and visualization is a useful diagnostic tool.

 Logging requires (1) Gathering of the relevant data to be logged (2) Displaying information
about sent/received messages in a simple to understand and intuitive fashion. There are two
components – packet capture and trace visualization.

5.1.Packet Capture Component

To adequately test actual RFSSs, information about their sent and received messages must be
captured. Components for capturing such information should be non-invasive and allow users to
easily configure and “plug into” the test framework. Emulated RFSSs incorporate application
level logging of formatted SIP and PTT messages. There are two approaches that may be
considered for capturing information from an actual RFSS:

1. Capturing from emulated RFSS: Here, an emulated RFSS captures information received
from an actual RFSS as well as messages sent from the emulated RFSS to the actual
RFSS; that is, information about messages sent and received by an actual RFSS is
captured by a (peer) emulated RFSS. Although this approach might be suitable for cases
where an actual RFSS interacts directly with an emulated RFSS, it does not work
between two or more actual RFSSs. In order to monitor messages between actual
RFSSs, a more general approach is required.

2. Packet capture application: Here, a standalone application is used to capture (sniff)
messages sent and received by RFSSs involved in a test scenario. This application runs
separately from the RFSS in the background, capturing specific messages and processing
them. There is a front end trace visualization component which retrieves traces from the
packet capture daemon, collates and sorts them and displays them in an easy to
understand fashion.

Of these alternatives, the packet capture application is the least invasive and is the easiest for
users to install and configure. It is, however complex to implement because of the dynamic
nature of the protocol. We describe this in greater detail below.

A packet capture application is used to capture SIP and RTP messages sent from, or received by,
any actual (or emulated) RFSS as shown in Figure 2.

DRAFT July 18, 200611

Version 0.7

Figure 2. Packet capture application

 An ISSI packet capture application comprises a number of components as shown in Figure 3.
The figure represents the processing steps involved in packet capture and post processing.

DRAFT July 18, 200612

Version 0.7

Figure 3. Packet capture components.

To access incoming or outgoing SIP and RTP packets from a (local) RFSS, a packet capture
application requires a subcomponent for accessing raw sockets. There are several options here
for packet capture. (1) libpcap or WinPcap libraries can be used to access raw sockets and capture
byte streams from UNIX or Windows platforms, respectively. (2) Ethereal can be used for packet
capture. In either case, packet capture is passive. There is a single packet capture daemon for a
given test network. The captured packets are logged, processed offline (i.e., after running the
tests), and formatted into a XML structure that can be displayed by the Trace Viewer application.
In order to reduce the amount of online processing (i.e., during a test), online processing is

DRAFT July 18, 200613

Version 0.7

restricted to a simple filtering function. Figure 3 shows a block diagram of a packet capture tool
and the various steps that need to be performed. We explain this architecture in detail below.

The packet sniffer needs to have knowledge about the endpoints (IP addresses) and ports to
which packets are headed. For this purpose, it takes an XML file that describes the test topology.
The XML file contains the IP addresses and ports where the participating RFSSs are expecting to
receive SIP signaling traffic. Tools such as ethereal can filter packets based upon filter rules (i.e.
port, IP Address etc). Unfortunately the ports for the PTT traffic is not known apriori. This port
exchange is part of the SIP call setup. Thus Ethereal has to log all the SIP and PTT UDP traffic
between the IP addresses involved using only IP address and packet type (PTT or SIP) for filter.
During offline processing, the topology is used again, using the SIP ports, which are static and
defined in the topology file, to sort the SIP traffic. Each SIP request and response is parsed and
the ports for the push to talk UDP packets are extracted from the SDP of the SIP
request/response. Using these ports, the RTP traffic for push-to-talk signaling can be extracted
from the message log and formatted as XML traces. Once this processing has been completed,
two files are generated – one for push to talk signaling and another for SIP call setup signaling.
These can then be input to the Trace viewer tool and displayed in an intuitive fashion. Offline
processing is sufficient for the test frame work.

5.1.1.Analyzer

TBD

5.1.2.Communicator

TBD

5.2.Trace Aggregation and Visualization Tool

6. Central Controller

TBD

DRAFT July 18, 200614

	1.Definitions
	2.Introduction
	2.1.Functional Summary
	2.2. Requirements

	3.Architectural Overview
	4.Test System Architecture
	4.1.Operational Description
	4.2.Specifying Test Cases
	4.3.Emulating Mobility
	4.4.Topology Specification
	4.5.Verifying correct operation of Units Under Test

	5.Message Logging
	5.1.Packet Capture Component
	5.1.1.Analyzer
	5.1.2.Communicator

	5.2.Trace Aggregation and Visualization Tool

	6. Central Controller

