Text Size

Related Links

MEDIA CONTACTS:

For more information, contact:

Don Savage
NASA Headquarters
Washington, D.C.
(Phone: 202 358 1727)

Bill Steigerwald
Goddard Space Flight Center
Greenbelt, Md.
(Phone: 301 286 5017)

SOHO

More about CMEs

Space Weather Primer

NASA's Sun-Earth Connection Program

Viewable Images

High-resolution images:

Item 1

(1.4 meg TIF image)

Item 2

(1.5 meg TIF image)

Item 3

(1.2 meg TIF image)

Caption for movie and Items 1 - 3:

This movie and series of images is a view of a Coronal Mass Ejection (CME) in three dimensions. The Sun is the orange sphere in the middle of the image, and the CME appears in false color as the white areas. This CME was launched from the Sun on June 29, 1999 and was directed toward Earth. Researchers analyzed ordinary two-dimensional images from the Solar and Heliospheric Observatory (SOHO) spacecraft in a new way to yield the 3D images.

Credit: NASA, the European Space Agency, Tom Moran, Tom Bridgman

Story Archives

The Top Story Archive listing can be found by clicking on this link.

All stories found on a Top Story page or the front page of this site have been archived from most to least current on this page.

For a list of recent press releases, click here.

July 2, 2004 - (date of web publication)

FIRST 3D VIEW OF SOLAR ERUPTIONS

 

front view of CME in 3 dimensions

Item 1

Click here for 0.5 meg MPEG movie
Click here for 2.2 meg MPEG movie

NASA-funded scientists have created the first three-dimensional (3D) view of massive solar eruptions called Coronal Mass Ejections (CMEs). The result is critical for a complete understanding of CMEs, which, when directed at Earth, may disrupt radio communications, satellites, and power systems.

 

 

 

side view of 3D CME

Item 2

 

The researchers analyzed ordinary two-dimensional images from the Solar and Heliospheric Observatory (SOHO) spacecraft in a new way to yield the 3D images. (Items 1 through 3 are front and side views of a CME made with this technique. Click on the link below Item 1 for a movie showing the full 3D view.)

 

 

 

side view of 3D CME

Item 3

 

"We need to see the structure of CMEs in three dimensions to fully understand their origin and the process that launches them from the Sun," said Dr. Thomas Moran of the Catholic University of America, Washington, DC. "Views in three dimensions will help to better predict CME arrival times and impact angles at the Earth." Moran developed the analysis technique and is lead author of a paper on this research published in Science July 2. Dr. Joseph Davila of NASA's Goddard Space Flight Center in Greenbelt, Md., is the co-author of the paper.

CMEs are among the most powerful eruptions in the solar system, with billions of tons of electrified gas being blasted from the Sun's atmosphere into space at millions of miles (kilometers) per hour. Researchers believe CMEs are launched when solar magnetic fields become strained and suddenly "snap" to a new configuration, like a rubber band that has been twisted to the breaking point. Complex and distorted magnetic fields travel with the CME cloud and sometimes interact with the Earth's own magnetic field to pour tremendous amounts of energy into the space near Earth.

The magnetic fields are invisible, but because the CME gas is electrified (a plasma), it spirals around the magnetic fields, tracing out their shapes. A view of the CME gas in three dimensions therefore gives scientists valuable information on the structure and behavior of the magnetic fields powering the CME.

The new analysis technique for SOHO data determines the three-dimensional structure of a CME by taking a sequence of three SOHO Large Angle and Spectrometric Coronagraph (LASCO) images through polarizers at separate angles and computing the ratio of polarized-to-unpolarized brightness at each pixel. Based on the way light scatters off electrically charged particles (electrons) in CME gas (plasma), light from CME structures at angles closer to the plane-of-the-Sun will be more polarized than light from structures at angles farther from the plane. The distance from the plane is computed from the measurements, giving the three-dimensional coordinates of the mean scattering position to construct a view in three dimensions. (Light has wave-like properties, one of which is oscillation of its electric field perpendicular to the propagation direction. Light which has an electric field oriented randomly in all directions is unpolarized, while light with an electric field oriented in just one direction is polarized.)

With the technique, the team has confirmed that the structure of Earth-directed (halo) CMEs is an expanding arcade of loops, rather than a bubble or rope-like structure. Although the CME eventually disconnects from the Sun, the team also discovered that the loops remained connected to the source region for an unexpectedly long time, at least as long as the CME was visible to the SOHO instrument.

The team learned that the technique was independently developed previously and used to study relatively static structures in the solar atmosphere during total solar eclipses. The team believes its method will complement the upcoming Solar Terrestrial Relations Observatory (STEREO) mission, scheduled for launch in February 2006, which will use two widely separated spacecraft to construct 3D views of CMEs by combining images from the different vantage points of the twin spacecraft.


 

Back to Top