WSR-88D Data Status And Plans

Michael Istok NWS Office of Science & Technology and Tim Crum WSR-88D Radar Operations Center

18 June 2008

National Weather Service

Family Of Services/Partners Meeting

Silver Spring, MD

Overview

- WSR-88D Level II Data
- WSR-88D Level III Data
- WSR-88D Dual Polarization Modification Plans
- TDWR Data/Product Plans

Level II Status

- 121 NWS, 13 DOD and 1 FAA Sites on the NWS Level II Network
 - No funding available for additional connections
- Software Build 10 Deployment complete; installed at 90+ sites
 - Level II data format changed from "MSG 1"to "MSG 31"
 - Needed for RDA to RPG Level II data transfer
 - Enables larger Level II data sets to meet future requirements
 - "Super Resolution" in "Split Cuts"
 - Dual Polarization adds 3 moments
 - Used for both Recombined and Super Resolution data transmission
 - NWS sites (only) begin sending Super Resolution Level II data when their added bandwidth/NOAANet installed (completion by July)
 - NOAANet will have higher reliability than comms links replaced
 - No projected date when Super Resolution data will be sent from DOD due to funding constraints
 - NWS will provide advance notice when/if able to switch Level II data flow from DOD and FAA sites to Super Resolution

Level II Data Beyond Build 10 Plans

- Build 11
 - Deployment scheduled to begin in May 2009
 - Clutter Mitigation Decision Algorithm added
 - Automates and improves clutter removal (e.g., AP clutter)
 - Should reduce use of ALL BINS clutter filtering
- Beyond Build 11
 - Staggered Pulse Repetition Time, Phase 3; improves velocity dealiasing; ultimately apply in all cuts at and above 1.8 deg
 - Faster volume coverage patterns (e.g., Automated Volume Scan Evaluation & Termination Algorithm)
 - Other "point releases" possible to implement required security updates

Level II Data Plans

- NWS beginning redesign work for Level II network
 - No implementation date set
 - Tentative plan to use two data aggregation points with 24/7 support available; improve data flow reliability
 - Plan to continue to send data to top tier sites
 - Use NOAANet
 - Will keep top tier sites and Level II users updated on planning and implementation

Level III Status and Plans

- Build 10
 - Legacy Mesocyclone Algorithm and associated products, including Product #60, retained
- Digital Hybrid-Scan Reflectivity (DHR, Product #32) and Digital Storm Total Precipitation (DSP, Product #138) added to Central Collection/RPCCDS
- Build 11
 - Severe Weather Probability Product (SWP, Product #47) will be deleted
- Beyond Build 11
 - Selected algorithms may use Super Resolution Data; pending technical validation and development resources

WSR-88D Dual Polarization Modification

- Beyond Build 10, no further Level II changes are planned until possible addition of 3 new Dual Pol moments to transmitted data stream
 - Differential Reflectivity
 - Differential Phase
 - Correlation Coefficient
- Not Determined if Dual Pol Data Will be Added to Level II Data Collection And Distribution Network With Deployment
 - Additional bandwidth required, preliminary estimate 768 kbps
 - Bandwidth and total increase of data flow dependent on Dual Pol collection strategy implemented
 - NWS goal to distribute Dual Pol Level II data, but depends on cost and funding availability

WSR-88D Dual Polarization Modification

(Continued)

- Beta Test scheduled to begin 2CY10; 2-year deployment scheduled to begin 4CY10
- NWS Evaluating which Dual Pol-unique products may be added to the Central Collection data stream
- Level II data collection and distribution uncertain due to funding

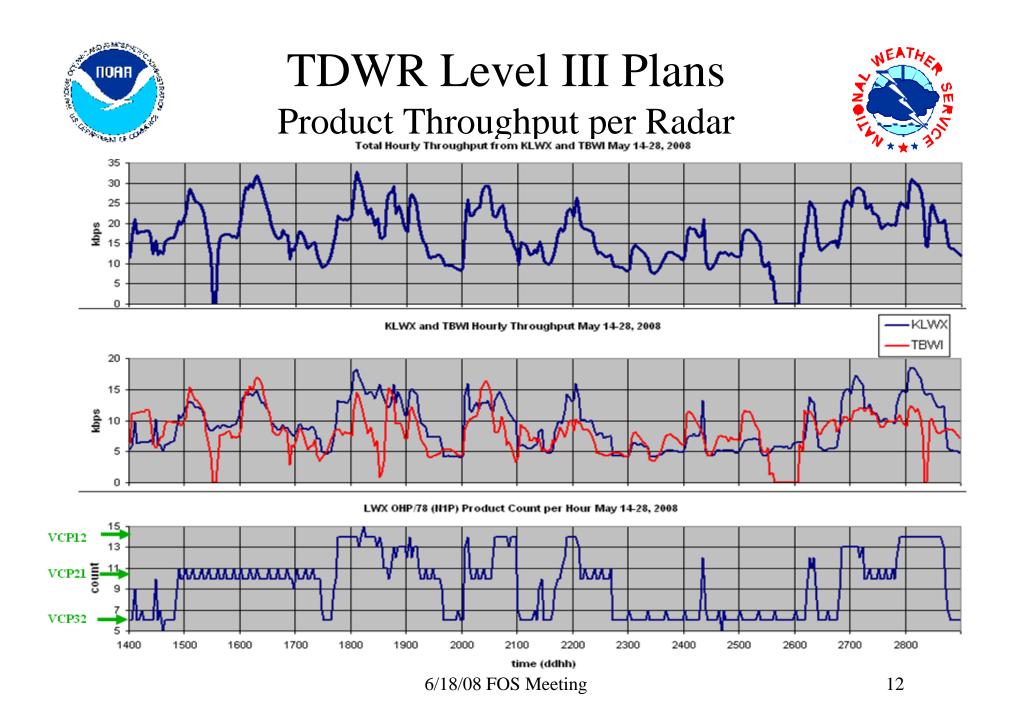
TDWR Plans

- NWS connections to remaining 35 TDWRs scheduled by end of September 2008
- TDWR Level II data collection and distribution uncertain due to funding;
- Product Central Collection & Distribution planned for early 2009
 - RPCCDS Broadcast
 - Added to 10 second radar product bundles
 - Mix of WSR-88D RPG and TDWR SPG Products
 - Central Server Level III Transmit/Receive Status Web Page
 - Radar FTP Server
 - Products common to WSR-88D
 - Under existing product directories and in own radar id directory
 - New products (i.e., base products R/181, V/182, LR/186)
 - New product name directories and in own radar id directory 6/18/08 FOS Meeting

TDWR Level III Plans

TDWR SPG Product Collection

, "	NIKINI	WMO	Radar	De des Dre duct Nome	Kbytes	Frequency	NWSTG		
#	NNN		Prod	Radar Product Name			Distribution	RPCCDS FTP	
H			Code					Dir Name	
1	GSM	NXUS6i	2	General Status Message(GSM)	0.1	~ 5/day	RPCCDS & SBN	DS.p2gsm	
2	FTM	NOUS6i	75	Free Text Message(FTM)	0.3	< 1/day	RPCCDS & SBN	DS.75ftm	
3	RSL	SDUS4i	152	Archive Status Product(ASP)	3	3/day RPCCDS & SBN		DS.152rs	
4	TZL	SDUS5i	186	Reflectivity (Z) - 0.6 deg Long Range - 8bit	80	10/hr	RPCCDS & SBN	DS.186zl	
5	TR0	SDUS5i	181	Reflectivity (Z) - Lowest elev - 4bit	25	10/hr	RPCCDS & SBN	DS.181r0	
6	TR1	SDUS2i	181	Reflectivity (Z) - 1.0 deg - 4bit	14	10/hr	RPCCDS & SBN	DS.181r1	
7	TR2	SDUS2i	181	Reflectivity (Z) - 3rd elev- 4bit	12	10/hr	RPCCDS & SBN	DS.181r2	
8	TV0	SDUS5i	182	Velocity (V) - Lowest elev - 8bit	90	10/hr	RPCCDS & SBN	DS.182v0	
9	TV1	SDUS7i	182	Velocity (V) - 1.0 deg - 8bit	70	10/hr	RPCCDS & SBN	DS.182v1	
10	TV2	SDUS7i	182	Velocity (V) - 3rd elev - 8bit	45	10/hr	RPCCDS & SBN	DS.182v2	
11	NCR	SDUS5i	37	Composite Ref (CZ)	20	10/hr	RPCCDS & SBN	DS.p37cr	
12	NET	SDUS7i	41	Echo Tops (ET)	1.5	10/hr	RPCCDS & SBN	DS.p41et	
13	NVW	SDUS3i	48	VAD Wind Profile (VWP)	7.5	10/hr	RPCCDS & SBN	DS.48vwp	
14	NVL	SDUS5i	57	Vert Integ Liq (VIL)	1.3	10/hr	RPCCDS & SBN	DS.57vil	
15	NST	SDUS6i	58	Storm Tracking Information (STI)	3.5	10/hr	RPCCDS	DS.58sti	
16	NHI	SDUS6i	59	Hail Index (HI)	3.2	10/hr	RPCCDS	DS.p59hi	
17	NTV	SDUS6i	61	Tornadic Vortex Signature (TVS)	2.1	10/hr	RPCCDS	DS.61tvs	
18	N1P	SDUS3i	78	One Hour Precip (OHP)	10	10/hr	RPCCDS & SBN	DS.78ohp	
19	NTP	SDUS5i	80	Storm Total Precip (STP)	11	10/hr	RPCCDS & SBN	DS.80stp	
20	DPA	SDUS8i	81	Digital Precip Array (DPA)	7	10/hr	RPCCDS & SBN	DS.81dpr	
21	SPD	SDUS6i	82	Supplemental Precipitation Data (SPD)	2.8	10/hr	RPCCDS	DS.82spd	
22	DHR	SDUS5i	32	Digital Hybrid Scan Refl (DHR)	32	10/hr	RPCCDS & SBN	DS.32dhr	
23	DSP	SDUS5i	138	Digital Storm Total Precip (STP)	15	10/hr	RPCCDS & SBN	DS.138dp	
24	NMD	SDUS3i	141	Mesocyclone (MD)	2	10/hr	RPCCDS & SBN	DS.141md	



TDWR Level III Plans

TDWR SPG IDs, Sending WFOs, FTP dir names

WFO #	SPGs @ wfo	Sending WFO ID CCCC	TDWR SPG ID xxx	TDWR SPG ID	Radar FTP Site directory	SPG #	WFO #	SPGs @ wfo	Sending WFO ID CCCC	TDWR SPG ID xxx	tdwr Spg Id	Radar FTP Site directory	SPG #
1	1	KBOU	DEN	3013	SI.tden	1			KLWX	ADW	3001	SI.tadw	22
2	1	KBOX	BOS	3004	SI.tbos	2	17	4	KLWX	BWI	3005	SI.tbwi	23
3	1	KCLE	LVE	3006	SI.tlve	3	17	4	KLWX	DCA	3012	SI.tdca	24
4	1	KDTX	DTW	3015	SI.tdtw	4			KLWX	IAD	3019	SI.tiad	25
5	1	KEAX	MCI	3025	SI.tmci	5	18	1	KMEG	MEM	3028	SI.tmem	26
6	1	KFFC	ATL	3002	SI.tatl	6			KMFL	FLL	3017	SI.tfll	27
7	2	KFWD	DAL	3010	SI.tdal	7	19	3	KMFL	MIA	3029	SI.tmia	28
'	2	KFWD	DFW	3014	SI.tdfw	8			KMFL	PBI	3035	SI.tpbi	29
8	1	KGSP	CLT	3007	SI.tclt	9	20	1	KMKX	MKE	3030	SI.tmke	30
9	2	KHGX	HOU	3018	SI.thou	10	21	1	KMLB	MCO	3026	SI.tmco	31
9		KHGX	IAH	3020	SI.tiah	11	22	1	KMPX	MSP	3031	SI.tmsp	32
10	1	KICT	ICH	3021	SI.tich	12	23	1	KOHX	BNA	3003	SI.tbna	33
	3	KILN	СМН	3008	SI.tcmh	13	13 14 24	2	KOKX	EWR	3016	SI.tewr	34
11		KILN	CVG	3009	SI.tcvg	14		2	KOKX	JFK	3023	SI.tjfk	35
		KILN	DAY	3011	SI.tday	15	25	1	KOUN	OKC	3033	SI.tokc	36
12	1	KIND	IDS	3022	SI.tids	16	26	1	KPBZ	PIT	3038	SI.tpit	37
13	1	KLIX	MSY	3032	SI.tmsy	17	27	1	KPHI	PHL	3036	SI.tphl	38
14	1	KLMK	SDF	3040	SI.tsdf	18	28	1	KPSR	PHX	3037	SI.tphx	39
15	2	KLOT	MDW	3027	SI.tmdw	19	29	1	KRAH	RDU	3039	SI.trdu	40
15		KLOT	ORD	3034	SI.tord	20	30	1	KSLC	SLC	3042	SI.tslc	41
16	1	KLSX	STL	3043	SI.tstl	21	31	1	KTBW	TPA	3044	SI.ttpa	42
							32	1	KTSA	TUL	3045	SI.ttul	43
							33	1	KVEF	LAS	3024	SI.tlas	44
							34	1	TJSJ	SJU	3041	SI.tsju	45

TDWR Level III Plans Implementation and Impacts

- To evaluate the impact on communications and data storage systems, implementation will be phased and evaluated by those responsible for respective systems.
- The phases and planned start dates are:
 - October 2008: AWIPS OB9 beta test (1 3 sites),
 - January 2009: AWIPS OB9 Deployment (up to 15 sites),
 - March 2009: AWIPS OB9 Deployment (up to 30 sites),
 - June 2009: Full Implementation (45 sites).
- May 14-28, 2008 tbwi ranged from 4 to 16 kbps (average 8.5 kbps).
- High utilization can occur during clear air since the short-range highres TDWR radar products tend to be full and have high texture.
- Products are zlib compressed before being put on the SBN, so the total SBN load of 45 radars is estimated to be below 225 kbps

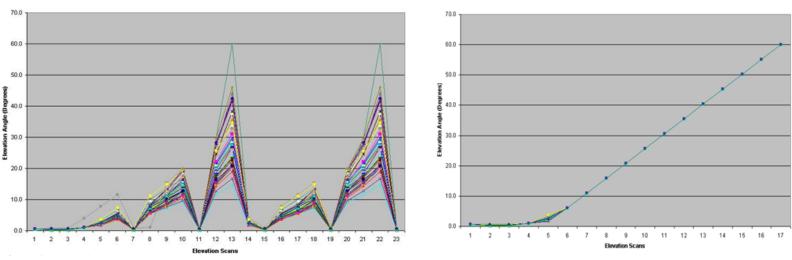
Additional Information

- Project updates and other Level II information:
 - http://www.roc.noaa.gov/NWS_Level_2
- NWS Real-Time WSR-88D Transmit/Receive Status:
 - http://weather.noaa.gov/monitor/radar/
- NWS Real-Time Level II Data Monitoring Site:
 - http://weather.noaa.gov/monitor/radar2/
- WSR-88D Software/Program updates for product users:
 - http://www.nws.noaa.gov/tg/rpccds.html
- Build specific training materials:
 - http://www.wdtb.noaa.gov/

Additional Information

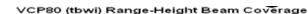
- (Continued)
- NCDC Radar Resources: Order Level II and Level III Archive Data Via FTP, Use NCDC Java Viewer to View Level II and Level III Archive Data, etc.
 - http://www.ncdc.noaa.gov/oa/radar/radarresources.html
- Run RPG Software, LINUX Platform: The Common Operations and Development Environment (CODE)
 - http://www.weather.gov/CODE88D
- Federal Meteorological Handbook No. 11 (FMH-11) Part A Updated for Build 10 will be available electronically in July
 - http://www.ofcm.gov/homepage/text/pubs.htm
- Follow-up questions to: Michael.Istok@noaa.gov or Tim.D.Crum@noaa.gov

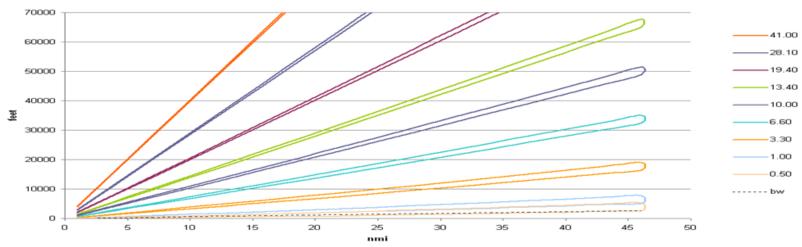
TDWR Level III Plans – Backup Slide TDWR System Overview

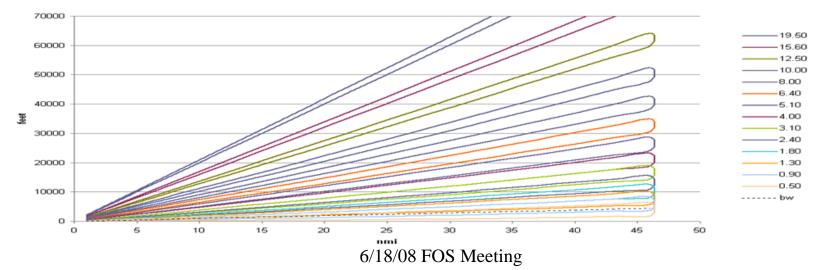


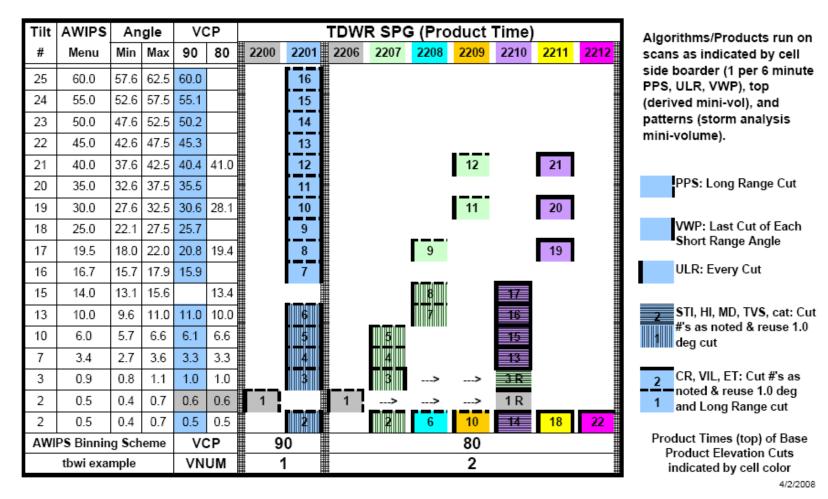
Comparison of 45 TDWR Scan Strategies - Hazardous Mode

Antenna				
PeakPower	250 KW			
B earn Width	0.55 Degrees			
Power Gain	50 dB			
Minimum Elevation	0 Degrees			
Maximum Elevation	60 Degrees			
Maximum Rotation Rate	5 RPM			
Transmitter				
Frequency	CBand			
Wavelength	5.3 cm			
Pulse Width	1.1 msec			
Polarization	Linear Horizontal			
Max. Reflectivity Range	460 km			
Min Unambiguous Doppler Range	90 km			
Maximum Doppler Range	90 km			
Range Resolution	150 m (out to 135 km)			
(Reflectivity)	300 m (135 km – 460			
Doppler Range Resolution	150 m			




TDWR Level III Plans – Backup Slide Differences from WSR-88D


- TDWR is C-band
 - Significant Attenuation at times
 - More range and velocity folding
- Aggressive clutter filtering
- WSR-88D beamwidth is 1 degree, whereas TDWR is ¹/₂ degree
 - TDWR computes radial data at 1 degree azimuths, but still vertically narrow
- Scan Strategies / Volume Coverage Patterns (VCP)
 - TDWR scan strategy elevation angles are site specific
 - Higher elevation angles and larger intervals between elevations
 - SPG translates TDWR Hazardous and Monitor modes to VCP 80 and 90, respectively. Both are 6 minutes in duration.
 - Some elevations angles in VCP 80 repeat during the volume scan
- TDWR Spatial resolution and coverage area provided by SPG
 - Long range surveillance scan is at 300m resolution to 225 nmi range
 - All other elevations are at 150m resolution and extend to 45 nmi
 - Product range is 45nmi, except for rainfall products, and long range base Refl
 - SPG product VS time varies within a volume to distinguish product repeats


VCP12 (WSR-88D) Range-Height Beam Coverage

TDWR Level III Plans – Backup Slide TDWR SPG Algorithm/Product Processing

